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Abstract. A stochastic time process algebra that deals with generally
distributed delays in the style of real-time process theories is presented.
Two types of race condition are distinguished to enable a compositional
modeling as well as a non-trivial expansion law. The interplay of real-time
and stochastic time is analyzed for the standard bisimulation definitions
and for the race condition. Finally, a new notion of context-sensitive
interpolation is proposed that captures time-additivity as induced by
the race condition.

1 Introduction

Stochastic process algebras support the combined modeling of the functional-
ity and performance of a system in a compositional manner. Markovian pro-
cess algebras, like EMPA, PEPA, IMC, exploit the memoryless property of the
exponential distribution and typically produce Markov chains. However, more
general distributions are required, for example, to model contemporary Inter-
net protocols: the transfer control protocol requires real-time time-outs; media
streaming and web services are governed by heavy-tail distributions with high
variance [1]; etc. Therefore, stochastic process algebras with general distributions
have emerged, like TIPP, GSMPA, SPADES, IGSMP and NMSPA [2–6] yielding
generalized semi-Markov processes [7] as underlying performance models.

Compositional modeling with general distributions, however, proves to be a
non-trivial task. For general distributions one cannot rely on the memoryless
property that enables efficient and elegant expansion laws for the parallel com-
position in the exponential setting. In generalized semi-Markov processes, one
exploits clocks to retain the Markov property of history independence. In the
same vein, stochastic process algebras typically have a layered semantics: The
topmost, symbolic layer uses clocks to manipulate the stochastic delays that
guard the actions, whereas the second concrete layer deals with probabilistic
timed transitions. Note that uncountably infinite state spaces can occur in case
the clocks have continuous probability distributions.

The symbolic representation with clocks is appealing as it enables manipula-
tion of finite structures (e.g., stochastic automata [8] or extensions of generalized
semi-Markov processes [5]). In order to obtain a concrete model, the clocks are

⋆
Corresponding author: j.markovski@tue.nl. Supported by Bsik-project BRICKS AFM 3.2



Fig. 1. Race condition: a) residual lifetime semantics with clocks, b) spent lifetime
semantics with clocks and c) spent lifetime semantics with stochastic delays

sampled to obtain the probabilistic timed transitions. In general, two execution
policies can be adopted [1, 9]: (1) race condition [2, 4, 6], which enables the action
transitions guarded by the clocks that expire first (standard for the Markovian
models) and (2) pre-selection policy [3, 5], which preselects the clocks by a prob-
abilistic choice (the execution policy of the generalized semi-Markov processes).
In absence of the memoryless property, the samples of the clocks must be up-
dated after each timed transition. The literature provides two techniques for
doing this: (1) keeping track of the residual lifetime of clocks, i.e., the time that
is left before the clock expires or (2) keeping track of the spent lifetime of clocks,
i.e., the time that the clock has been active.

The residual lifetime semantics [4], depicted in Fig. 1a, supports performance
analysis via discrete event simulation, that is extensively exploited when ana-
lytical methods cannot be applied. However, it has been criticized for its being
unfair as the outcome of the race condition is known upfront due to early sam-
pling of clocks. The spent lifetime semantics [2, 3, 5, 6], depicted in Fig. 1b, has
been advocated for its correspondence to standard real-time, as the clocks in-
crease as time passes. Additionally, the approach is considered fair with respect
to the race condition as (1) the clocks are pre-sampled to statistically determine
the minimal sample and, afterwards, (2) the original samples are discarded, and
(3) the probability distributions of the remaining clocks are ‘aged’ with the min-
imal sample. However, the fairness comes at a price: re-sampling of the clocks is
required after each resolution of the race condition.

An alternative, but equivalent approach to the race condition, see Fig. 1c, is
(1) to make a probabilistic assumption on the outcome of the race condition by
conditioning on the clocks that win the race, and afterward (2) to sample from
the (joint) probability distribution of the winning clocks [10]. This alternative
approach samples each clock only once. So, we no longer speak of clocks as there
is no need to keep track of their lifetimes, but the ‘age’ of the distributions is still
preserved. We refer to the samples as stochastic delays, resembling the notion of
timed delays. Note that multiple clocks can simultaneously exhibit the minimal
duration only if they sample from discrete probability distributions.

The main goal of our paper is to analyze the similarities of real-time and
stochastic time and, subsequently, to exploit the common features to embed real-

2



time in the style of [11, 12] into stochastic time. In [13] a structural translation
from stochastic automata to timed automata with deadlines that preserves timed
traces and enables embedding of real-time in SPADES is given. A translation
from IGSMP into pure real-time models called interactive timed automata is
reported in [5]. Thus, stochastic clocks have close ties with timed automata.
However, we consider timed delays as a more natural choice for the algebraic
approach. In that direction, we look more closely at the race condition. We note
that real-time actually induces a trivial race condition in which the shortest
‘sample’ is always exhibited by the same set of delays and always has the same
(deterministic) duration. Therefore, we propose to represent timed delays as
Dirac stochastic delays.

In the approach presented here, we model stochastic delays as separate con-
structs guided by discrete (finite or countably infinite) random variables. We
cater for weak choice between passage of time and immediate actions and ter-
mination [11]. We provide a layered semantics in terms of stochastic transition
schemes on the symbolic level (in essence, stochastic automata with spent life-
time semantics) and stochastic transition systems (representing the concrete
model based on the probabilistic timed transition systems). Furthermore, we
differentiate between two types of stochastic delays: (1) independent, and (2) de-
pendent. In the former the random variables involved are unrelated and is meant
for modeling purposes. In the latter, the same samples are produced when guided
by the same random variable. Using dependence, the outcomes of the race condi-
tion can be made explicit which is helpful when unfolding a parallel composition.
After setting up the theory, we introduce timed delays as degenerated stochastic
delays and we analyze to what extent the standard properties of real-time are
preserved. Finally, we revisit the notion of time additivity and introduce the
finer notion of context-sensitive interpolation.

The rest of this paper is organized as follows: Section 2 provides the back-
ground and discusses the design choices. Section 3 introduces the basic sequential
processes and their semantics. Section 4 deals with the parallel composition and
its expansion. Section 5 relates real-time and stochastic time. Section 6 wraps
up with concluding remarks.

Acknowledgments Many thanks to Jos Baeten and Nikola Trčka for fruitful
discussions on the topic and comments on early drafts of the paper.

2 The Race Condition

We use discrete random variables to represent durations of stochastic delays.
The set of distribution functions F such that F (t) = 0 for t ≤ 0 is denoted by F ;
the set of the corresponding random variables by V. We use X, Y and Z to
range over V and FX , FY and FZ for their respective distribution functions. If
P (X = t) = 1, for some t > 0, the random variable X is said to be degenerated
or Dirac and we write Xt. The set of such random variables is denoted by Vdeg.
By assumption, the support set supp(X) = { t > 0 | P (X = t) > 0 } of a
random variable X is finite or countably infinite. By F̄X(t) we denote the residual
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probability distribution 1 − FX(t). For S ⊆ V, y ∈ IR and ⋄ either <, > or =,
we write S ⋄ y if X ⋄ y, for all X ∈ S. Conditional random variables are denoted
by 〈X |Event〉 with X ∈ V and Event such that P (Event) > 0. By PS(S) we
denote a standard probability space over the set S.

A stochastic delay is a timed delay of a duration guided by a random vari-
able. We observe simultaneous passage of time for a number of stochastic delays
until one or some of them expire. This phenomenon is referred to as the race
condition and the process as the race. For multiple racing stochastic delays, dif-
ferent stochastic delays can be observed simultaneously as being the shortest.
The ones that have the shortest duration are called winners and the others are
referred to as losers. We consider two types of races: (1) dependent, in which
the stochastic delays simultaneously guided by the same random variable always
exhibit the same duration and (2) independent, in which the stochastic delays
guided by the same random variable are equally distributed, but not necessarily
equally sampled. The probability that W ⊆ V are the winners out of the racing
delays V with a duration d is denoted by RCd(W,V ). It is defined as

RCd(W,V ) =
∏

X∈W

P (X = d) ·
∏

X∈V \W

F̄X(d).

The probability for W ⊆ V being the winners is denoted by RC(W,V ). and can
be calculated from RC(W,V ) =

∑

d∈supp(W ) RCd(W,V ).

Design choices Next, we motivate our design choices. We informally write
X.p ‖ Y.q for the parallel composition of two processes that are prefixed by
stochastic delays guided by the random variables X and Y in Fig. 2 and, simi-
larly, we write X.p + Y.q + X.r for the alternative composition in Fig. 3.

X.p ‖ Y.q2
X=x

(X<Y )

yyrrrrrrrrrr � Y =y
(X>Y )

%%LLLLLLLLLL_

X,Y =d
(X=Y )

��

p ‖ Y ′.q p ‖ q X ′.p ‖ q

Fig. 2. Parallel composition

X.p + Y.q + X.r6

X

zzvvvvv
vvvv �

Y

%%KKKKKKKKKK_

X,Y

��

p + Y ′.q + r p + q + r X ′.p + q + X ′.r

Fig. 3. Alternative composition

As depicted in Fig. 2, the loser becomes dependent on the winner in case of inter-
leaving, whereas the delays are synchronized if they exhibit the same duration.
For example, in the leftmost transition in Fig. 2, X is the winner and Y is the
loser. By Y ′ we denote that the distribution of Y has changed. The dependence
on the winning duration is expressed using an aging function | : [F × IR −→ F ]
given by (F |d)(t) = (F (t + d) − F (d))/(1 − F (d)), provided that F (d) < 1. We
note that iterative aging of a stochastic delay is the same as aging it simultane-
ously by the sum of the durations, i.e., (. . . (F |d1) . . .)|dn = F | (

∑n
i=1 di) [14].
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Expansion Another important issue we consider is the expansion law. Stan-
dardly, X.p ‖ Y.q is decomposed as an alternative composition of summands
containing X.p and Y.q. Clock-based approaches [4, 5, 9] split the stochastic de-
lay X on a starting X+ and a termination X− activity and (intuitively) put

X.p ‖ Y.q = X+.X−.p ‖ Y +.Y −.q = X+.Y +.(X−.p ‖ Y −.q) + Y +.X+.(X−.p ‖ Y −.q).

However, this splitting of a delay into separate activities of start and termi-
nation does not completely match the expansion in real-time of the form

t.p ‖ s.q = min(t, s).
(

(t − min(t, s)).p ‖ (s − min(t, s)).q
)

,

obtained by prefixing with the minimal delay, where t, s > 0.
An initial account of stochastic delays in real-time is given in [15], where name

dependence is treated to obtain a suitable expansion. Dependent stochastic de-
lays in an alternative composition are depicted in Fig. 3, where delays guided
by the same random variable X observe the same duration. Unfortunately, de-
pendent stochastic delays are not congruent with respect to any composition
because of name dependencies [15]. Therefore, we provide two types of delays
here: independent stochastic delays, notation ζX. , are in place for modeling pur-
poses; dependent stochastic delays, notation σX. , support the expansion of the
parallel composition. In order to deal with name dependencies in a compositional
manner, we introduce the name resolution operator | |. Dependent delays within
the scope of this operator are treated as independent with respect to the ones
outside the scope. Furthermore, we need to have means to distinguish the win-
ners of a race and to make the losers dependent on them. We introduce a race
condition guard

[

W
L

]

, where W ⊆ V is the non-empty set of winners and L ⊆ V
is a (disjoint) set of losers. This way we can decompose, e.g.,

σX.p + σY.q =
[

X
Y

]

σX.(p + σY.q) +
[

Y
X

]

σY.(p + σX.q) +
[

X,Y
∅

]

σX.(p + q)

where X is the winner in the first summand, Y is the winner in the second and
X and Y win the race together in the third. Note the analogy with the trivial
race in real-time process theories where σt.p+σt+s.q = σt.(p+σs.q), where σt.p
denotes a timed delay of duration t.

3 Basic Sequential Processes

Let A be a set of actions and V a set of random variables that guide the stochastic
delays. The collection BSPdst of basic sequential processes with discrete stochas-
tic time distinguishes between dependent processes D with possible unresolved
name dependencies and independent processes I. Characteristic for BSPdst are
the immediate actions and termination, the dependent and independent delays,
the race condition guard and a name resolution operator.

Definition 1. Processes in BSPdst (the precedence is implied by the ordering)
consists of two constants δ and ǫ, four unary operator schemes (1) a. for a ∈ A,
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(2) σX. for X ∈ V, (3) ζX. for X ∈ V and (4)
[

W
L

]

for W ∈ (2V \ {∅}) and
L ⊆ V such that W ∩L = ∅, one binary operator (5) + and one unary operator
(6) | |. The syntax is given by P , where

D ::= P | a.D | σX.D |
[

W
L

]

D | D + D

P ::= δ | ǫ | |D| | a.P | ζX.P | P + P

The sets I and D of independent and dependent processes are generated by P
and D, respectively, and they are ranged over by p, q, r, etc. We omit { and }

when clear from the context and write, for example,
[X,Y

U,V

]

p instead of
[{X,Y }
{U,V }

]

p.

In the setting above, the interpretation of the alternative composition relies on
the context: (1) a non-deterministic choice is made between actions; (2) a weak
choice is allowed between actions, successful termination and stochastic delays;
(3) a dependent race is imposed on dependent stochastic delays; (4) an indepen-
dent race is enabled between independent stochastic delays. By construction, all
dependent delays are captured in scope of the name resolution operator.

Stochastic transition schemes Semantics is given in terms of stochastic tran-
sition schemes based on the operational rules given in Table 1 below. In essence,
they represent stochastic automata with spent lifetime semantics reflecting the
race condition. The explicit is given in terms of stochastic transition systems
introduced later, which handle stochastic delays as probabilistic timed delays.
They are induced from the schemes by solving the races and sampling, cf. Fig. 1c.

As we implement spent lifetime semantics, we have to keep track of the
dependencies of the losers on the winners. This is done in an environment that
for each variable holds a set of stochastic delays on which it depends. We put
α : V → 2V and write Ed for the set of all such environments. W.l.o.g., the initial
state has no dependencies between the delays, so the initial environment α∅ with
α∅(X) = ∅, for X ∈ V, applies.

Definition 2. A stochastic transition system scheme is a tuple
(S × Ed, 〈s, α∅〉,A,V,→, 7→, ↓,R), where

– S × Ed is a set of states in environments;
– 〈s, α∅〉 ∈ S × Ed is an initial state;
– → ⊆ S ×A× S is the labeled transition relation;
– 7→ ⊆ (S×Ed)×(2V \{∅})×(S×Ed) is the stochastic delay transition relation.
– ↓ ⊆ S is the immediate termination predicate;
– R: S → 2V is the racing delays function, where S〈u,α〉 ⊆ R(u), for S〈u,α〉 =

⋃

S:〈u,α〉 S7−→〈u′,α′〉
S.

We note that the labeled transitions do not alter the environment as they depend
only on the structure of the process term. The stochastic delay transitions define
the winners of a race. The potential transitions are only performed internally by
the operational rules, as they are used to resolve the name dependencies in the
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dependent races. They are not visible in the graph that represents the stochastic
transition scheme as all dependent delays are in the scope of the independent
race operator. However, we consider them in the stochastic bisimulation relation
below as separate constructs in order to allow manipulation of dependent terms
in the equational theory. Finally, whether or not a state has the termination
option is given by the termination predicate ↓. For the stochastic transition
scheme of p ∈ I, defined by the operational rules in Table 1 below, we write
STS(p).

Structural operational semantics We next discuss the operational rules
presented in Table 1. For a process p ∈ I, the racing delays R(p) are defined as
the dependent and independent stochastic delays that are directly connected by
the topmost alternative composition, i.e., R(p) = I(p) ∪ D(p), where

I(ζX.p) = {X}, I(|p|) = D(d), I(p + q) = I(p) ∪ I(q)
D(σX.p) = {X}, D(

[

W
L

]

p) = W ∪ L, D(p + q) = D(p) ∪ D(q)

and I(p),D(p) = ∅ for the other cases. It is assumed that all stochastic delays have
unique names, so there are no clashes in the environment [15]. For conciseness, we
put f{f1/D1 . . . fn/Dn}(x) = fi(x) if x ∈ Di, and f(x) otherwise, for functions
f, f1, . . . , fn : C → D and disjoint subsets D1, . . . ,Dn ⊆ D for n ∈ IN. Also, we
put αX(Y ) = α(Y ) ∪ {X} for Y ∈ V.

We have the standard rules for termination options and action prefix. Rule 7
states that the independent stochastic delay transition ζX.p allows passage of
time as guided by X. Rule 13 shows that the dependent stochastic delay prefix
σX.p enables a potential delay guided by X. Non-determinism can be resolved
by an action transition, as captured by rule 5. The racing delays of the losing
summand are made dependent on the winners by adding a winning random
variable to their dependence set as given by rule 10. Rule 8 represents weak
choice between immediate labeled transitions and passage of time. Rule 12 states
that a joint race can be won by the union of the winners of the both summands.
The weak choice in the dependent case is given by rule 14. The importance of
random variable names is readily observed in the rules 16 and 18: The additional
condition S∩R(q) = ∅ in rule 16 guarantees that no winner and loser are guided
by the same random variable. In rule 18 the losers and winners of both summands
are compared. Rules 19 to 21 describe mixed races: If the race is won by both
summands, the joint delay is dependent because of the name dependence of one of
the summands. Rules 25, 26 and 28 show that the scope operator does not affect
the termination options, the action prefix or independent delays, but it turns
dependent stochastic delays into (actual) independent ones as given by rule 27.
Rules 29 and 30 are straightforward. Finally, rule 31 provides means to explicitly
specify and make the losers dependent on the winners. The conditions assure
well-formedness, whereas the environment is updated only for the outdated losers
that exist in the dependent racing delays of the resulting term p′.

Stochastic transition schemes defined by the structural operational semantics
in Table 1 induce complete probability measures using the race condition because
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1 〈ǫ, α〉↓ 2
〈p, α〉↓

〈p + q, α〉↓
3

〈q, α〉↓

〈p + q, α〉↓
4 〈a.p, α〉

a
−→ 〈p, α〉

5
〈p, α〉

a
−→ 〈p′, α〉

〈p + q, α〉
a

−→ 〈p′, α〉
6

〈q, α〉
b

−→ 〈q′, α〉

〈p + q, α〉
b

−→ 〈p′, α〉
7 〈ζX.p, α〉 X7−→ 〈p, α〉

8
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉 /7−→

〈p + q, α〉 S7−→ 〈p′, α′〉
9

〈p, α〉 /7−→ , 〈q, α〉 T7−→ 〈q′, α′〉

〈p + q, α〉 T7−→ 〈q′, α′〉

10
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉 T7−→ 〈q′, α′′〉, X ∈ S

〈p + q, α〉 S7−→ 〈p′ + q, α′{α′
X/R(q)}〉

11
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉 T7−→ 〈q′, α′′〉, Y ∈ T

〈p + q, α〉 T7−→ 〈p + q′, α′′{α′′
Y /R(p)}〉

12
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉 T7−→ 〈q′, α′′〉

〈p + q, α〉 S ∪ T7−→ 〈p′ + q′, α{α′/R(p), α′′/R(q)}〉

13 〈σX.p, α〉
X
799K 〈p, α〉 14

〈p, α〉
S
799K 〈p′, α′〉, 〈q, α〉 /799K

〈p + q, α〉
S
799K 〈p′, α′〉

15
〈p, α〉 /799K , 〈q, α〉

T
799K 〈q′, α′〉

〈p + q, α〉
S
799K 〈q′, α′〉

16
〈p, α〉

S
799K 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, S ∩ R(q) = ∅, X ∈ S

〈p + q, α〉
S
799K 〈p′ + q, α′{α′

X/R(q)}〉

17
〈p, α〉

S
799K 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, S ∩ R(q) = ∅, X ∈ S

〈p + q, α〉
S
799K 〈p′ + q, α′{α′

X/R(q)}〉

18
〈p, α〉

S
799K 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, S ∩ (R(q) \ T ) = ∅, (R(p) \ S) ∩ T = ∅

〈p + q, α〉
S ∪ T
799K 〈p′ + q′, α{α′/R(p)}{α′′/R(q)}〉

19
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, X ∈ S

〈p + q, α〉 S7−→ 〈p′ + q, α′{α′
X/R(q)}〉

20
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, Y ∈ T

〈p + q, α〉
T
799K 〈p′ + q, α′′{α′′

Y /R(p)}〉

22
〈p, α〉

S
799K 〈p′, α′〉, 〈q, α〉 T7−→ 〈q′, α′′〉, X ∈ S

〈p + q, α〉
S
799K 〈p′ + q, α′{α′

X/R(q)}〉
23

〈p, α〉
S
799K 〈p′, α′〉, 〈q, α〉 T7−→ 〈q′, α′′〉, Y ∈ T

〈p + q, α〉 T7−→ 〈p′ + q, α′′{α′′
Y /R(p)}〉

21
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉

〈p + q, α〉
S ∪ T
799K 〈p′ + q′, α{α′/R(p)}{α′′/R(q)}〉

24
〈p, α〉

S
799K 〈p′, α′〉, 〈q, α〉 T7−→ 〈q′, α′′〉

〈p + q, α〉
S ∪ T
799K 〈p′ + q′, α{α′/R(p)}{α′′/R(q)}〉

25
〈p, α〉↓

〈|p| , α〉↓
26

〈p, α〉
a

−→ 〈p′, α′〉

〈|p| , α〉
a

−→ 〈|p′| , α′〉
27

〈p, α〉
S
799K 〈p′, α′〉

〈|p| , α〉 S7−→ 〈|p′| , α′〉
28

〈p, α〉 S7−→ 〈p′, α′〉

〈|p| , α〉 S7−→ 〈|p′| , α′〉

29
〈p, α〉↓

〈
ˆ

W
L

˜

p, α〉↓
30

〈p, α〉
a

−→ 〈p′, α′〉

〈
ˆ

W
L

˜

p, α〉
a

−→ 〈p′, α′〉

31
〈p, α〉

S
799K 〈p′, α′〉, D(p) ⊆ S ⊆ W, I(P ) = ∅, X ∈ W

〈
ˆ

W
L

˜

p, α〉
W
799K 〈p′, α′{α′

X/
`

R(p′) ∩ {Y ∈ L | α(Y ) ∩ W = ∅}
´

}〉

Table 1. Structural operational semantics for BSPdst

of Rules 10-12, 16-18 and 19-24, which enable all possible outcomes of a race.
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Moreover, there are no multiple equal transitions from the same state as each
stochastic delay transition is uniquely labeled by the winning set.

Stochastic transition systems A stochastic transition system represents an
instantiation of a stochastic transition scheme with respect to a given assign-
ment ϕ : V → F of probability distributions. The race condition is used to derive
the underlying probability spaces that define the probabilistic behavior of each
stochastic delay transition. In order to compute the probability distributions of
the stochastic delays we have to keep track of the exhibited durations. More
precisely, we need both the original distribution function and its age, i.e., the
amount of time that the stochastic delay participated in races that it lost [14].
The age of a stochastic delay is calculated from the durations of the stochas-
tic delays on which it depends. Therefore, we extend the environments with
a function β : V → IR+ ∪ {⊥}. Also, we extend the set of possible durations to
IR⊥ = IR+∪{⊥} with the special symbol ⊥ to denote that a stochastic delay has
not yet expired. By convention F |⊥ = F and x+⊥ = x, for x ∈ IR⊥. Thus, an en-
vironment is a pair of two functions (α, β). Moreover, we assume, for each X ∈ V
and t > 0, that the probability distribution function FX(t) = (ϕ(X)|t(X))(t)
is defined. Here, the function t : V → IR⊥ provides the total age of X, i.e.,
t(X) =

∑

Y ∈α(X) β(Y ) + t(Y ). If α(X) = ∅ then t(X) = ⊥. We denote the set
of all well-defined environments by Et. Again, w.l.o.g., we assume that in the
initial state there are no expired stochastic delays, so the initial environment is
(α∅, β⊥), where β⊥(X) = ⊥ for all X ∈ V.

Definition 3. A stochastic transition system is a tuple
(S × Et, 〈s, (α∅, β⊥)〉,A,V, ϕ,→, 7→, ↓), where

– S × Et is a set of states in well-defined environments;
– ϕ : V → F assigns the distributions to the random variables;
– 〈s, (α∅, β⊥)〉 ∈ S × Et is the initial state;
– → ⊆ (S × Et) ×A× (S × Et) is the labeled transition relation;
– 7→ : S × Et → PS(IR+ × (S × Et)) is the stochastic delay transition function;
– ↓ ⊆ S × Et is the immediate termination predicate.

Each stochastic transition scheme coupled with an assignment of probability
distributions to the stochastic delays induces a stochastic transition system. The
labeled transitions and the termination predicate are defined by the structural
operational semantics in Table 1 as they do not depend on any environment. The
probability measure of the stochastic delays is induced by the race condition. The
formal definition is as follows:

Definition 4. The stochastic transition scheme S = (S × Ed, 〈s, α∅〉,A,V,→
, 7→, ↓,R) coupled with an assignment function ϕ : V → F , induces a stochas-
tic transition system (S × Et, 〈s, (α∅, β⊥)〉,A,→, 7→, ↓), where 7→ (〈u, (α, β)〉) =
(IR+ × (S × Et), P ) is the probability space induced by the race condition.
The probability measure P is given by P ((t, 〈u′, (α′, β′)〉)) = RCt(S,R(u)), for
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t ∈ supp(S), where 〈u, α〉 S7−→ 〈u′, α′〉 and β(X) ∈ supp(ϕ(X)|t(X)) is well-
defined for X ∈ V. The stochastic transition system induced by S and ϕ is
denoted by (S, ϕ).

Stochastic bisimulation In defining a suitable process equivalence for stochas-
tic transition systems, we follow the standard approach. See, e.g., [16, 8, 5]. We
require the bisimulation to be an equivalence, such that every two states from
the same class (1) perform the same labeled transitions, (2) perform stochas-
tic delay transitions to every other class with the same duration and the same
accumulative probability, and (3) have the same termination options.

Definition 5. Let R be an equivalence relation on S × Et. The accumulative
transition probability for stochastic delay from a state u ∈ S to an equivalence
class C of R with duration d is given by Pacc(u,C, d) =

∑

u′∈C P (d, u′), where

7→ (u) = (IR+ × (S × Et), P ). The relation R is a stochastic bisimulation if, for
all uRv, a ∈ A, d > 0 and C ∈ (S × Et)/R:

1. if u
ℓ
→ u′ then v′ ∈ S for some v′ such that v

ℓ
→ v′ and u′Rv′;

2. Pacc(u, d, C) = Pacc(v, d, C);
3. if u↓ then v↓.

If u, v are bisimilar we write u - v. Two transition systems T and T ′ are bisimilar
if their initial states are, notation T -T ′. Two independent terms p, q ∈ I are
bisimilar, notation p- q, if for every ϕ : V → F , (STS(p), ϕ)- (STS(q), ϕ).

We note that the dependent stochastic delays play no role in the definition of the
bisimulation relation, as the language prohibits their existence outside the scope
of the name resolution operator. However, the equational theory given below,
deals with constituent dependent terms. To extend the stochastic bisimulation
to dependent processes, two additional transfer conditions must hold for α ∈ Ed:

– if 〈p, α〉
S
799K 〈p′, α′〉 then 〈q, α〉

S
799K 〈q′, α′〉 and 〈p′, α′〉R〈q′, α′〉 for p′, q′ ∈ D;

– if 〈p, α〉
S
799K 〈p′, α′〉 then 〈q, α〉

S
799K 〈q′, α′〉 and 〈p′, α′〉- 〈q′, α′〉 for p′, q′ ∈ I.

For a congruence proof for - , we refer to our previous work [14] for the inde-
pendent stochastic delays (in a slightly different setting).

Theorem 6. The bisimulation relation - is a congruence for BSPdst. ⊓⊔

For the dependent delays the congruence property should be clear as bisimilar
dependent processes must perform exactly the same potential transitions as in
the case of standard strong bisimulation.

α-conversion A major requirement for the operational rules in Table 1 to be
well-defined is uniqueness of random variable names. However, the uniqueness
of variable names is not a prerequisite in the syntax, so we have to tackle this
problem in another way. We allow renaming of random variables with fresh
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random variables and we ensure that the original and the replacement have
the same probability distribution to preserve equivalent stochastic behaviour. In
the process of renaming, all dependent stochastic delays in the same race are
renamed together because of name dependencies.

For a technical underpinning of the renaming of the variables, we define a
relation ≃α ⊆ I × I. As an example, we want p = ζX.ǫ + ζX.ǫ to be congruent
to p′ = ζX.ǫ + ζY.ǫ, p′′ = ζY.ǫ + ζX.ǫ and p′′′ζY.ǫ + ζY.ǫ provided that FX = FY

because variable names play no role in the stochastic bisimulation, but they do
introduce conflicts in the environments.

As a technical aid we need an auxiliary function A(p) : I → 2V that extracts
all stochastic delays of a process term p:

A(δ) = A(ǫ) = ∅, A(a.p) = A(|p|) = A(p), A(σX.p) = A(ζX.p) = {X} ∪ A(p),

A(
[

W
L

]

p) = W ∪ L ∪ A(p), A(p + q) = A(p) ∪ A(q)

Furthermore, by [C → D] we denote the set of all bijections from C to D. We
define an auxiliary predicate cfr(p, p′), where r ∈ [D(p) → D(p′)] is well-defined.
The predicate cfr ensures that dependent stochastic delays are correctly renamed
and it is given by

cfr(δ, δ) = cfr(ǫ, ǫ) = cfr(a.p, a.p′) = cfr(ζX.p, ζY.p′) = cfr(|p| , |p
′|) = true

cfr(σX.p, σY.p′) if r(X) = Y

cfr(
[

W
L

]

p,
[

W ′

L′

]

p′) if r(W ) = W ′, r(L) = L′

cfr(p + q, p′ + q′) if cfr(p, p′), cfr(q, q
′)

For technical convenience, we use the notion of a maximal distinct representa-
tion [15] in which all stochastic delays have unique names (modulo permuta-
tions of V). For example, ζX.(ζX.ζX.ǫ + ζX.δ) + ζX has ζX.(ζY.ζZ.ǫ + ζU.δ) + ζV

as a maximal distinct representation as long as the distribution function and
the dependence sets of the variables are the same. The relation mdrr ⊆ S × S,
for r : V → V holds if the first term is a maximal distinct representation of the
second. We use r to keep track of the last renaming of variables (required for
[

W
L

]

p) and initially we put for all X ∈ V and some Y ∈ V, r(X) = Y such that
FX = FY .

mdrr(δ, δ) mdrr(ǫ, ǫ) mdrr(a.p, a.p′) if mdrr(p
′, p) mdrr(|p

′|, |p|) if mdrr(p
′, p)

mdrr′(ζY.p′, ζX.p) if Y 6∈ A(p′), FY = FX , mdrr(p
′, p), r′ = r{Y/X}

mdrr′(σY.p′, σX.p) if Y 6∈ A(p′), FX = FY , mdrr(p
′, p), r′ = r{Y/X}

mdrr′′(p′ + q′, p + q) if cfr′′(p + q, p′ + q′), r′′ ∈ [R(p + q)) → R(p′ + q′)],
(A(p′ + q′) \ R(p′ + q′)) ∩ (A(p + q) \ R(p + q)) = ∅,
mdrr(p

′, p), mdrr′(q′, q), r′′ = r′{r/A(p)}

mdrr(
[r(W )

r(L)

]

p′,
[

W
L

]

p) if mdrr(p
′, p).

With all the machinery in place, α-conversion becomes easy. Two process terms
can be α-converted if they have the same maximal distinct representations.
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Definition 7. Two BSPdst-terms p and q are α-convertible, notation p≃α q, if
{p′ ∈ I ∪ D | mdr(p′, p)} = {q′ ∈ I ∪ D | mdr(q′, q)}.

Intuitively, the definition states that the renaming of variables is allowed
as long as the stochastic delays have the same stochastic behavior. As a con-
sequence, α-conversion does not alter the stochastic behavior of the stochastic
transition schemes and ≃α is a congruence. This can be proven rigorously by
structural induction and case analysis for every rule of the operational semantics
and, therefore, the proof is omitted here. Note that the α-conversion implicitly
introduces side conditions that restrict the assignment of distributions to the
random variables. Here, we get a little bit sloppy and do not rigorously formal-
ize the existence of the side conditions, but, as it is standard, we assume that
they are fulfilled when assigning distributions to random variables.

Now, we define a conflict-free stochastic transition scheme.

Definition 8. The conflict-free stochastic transition scheme of p ∈ I is given
by STS(p′), where mdr(p′, p).

We overload the notation STS(p) to denote a conflict-free stochastic transi-
tion scheme of p ∈ I.

Name resolution Another issue that we consider due to the name dependencies
is replacement of independent processes of the form |p| by p. This substitution
is important for axiomatization purposes. The replacement is safe if (1) there is
a name resolution scope on a higher level, (2) the dependent delays of p do not
have common variable names with the dependent delays of the context in the
alternative composition, and (3) the dependent delays of p do not occur in the
winning or the losing set of the race condition guard. For example, we cannot
replace |σX.p| by σX.p in the context of (1) a. |σX.p|, (2) ||σX.p| + σX.q + r| or
(3)

∣

∣

[

Y
X,Z

]

σY.(|σX.p| + σZ.q)
∣

∣ because in (1) the dependent delay would exist
outside the scope of any name resolution operator, in (2) there is a clash in the
random variable names which leads to a different stochastic behavior and in (3)
there is a clash with the losing set. In all conflicting cases α-conversion is used
to obtain a conflict-free renaming of the term.

For technical underpinning of the name resolution, we require the notion of
a context. We say that p is in the context C(�) of the term q if C(p) ≡ q, where
≡ denotes syntactic equality. The context C is given by the BNF:

C ::= � | δ | ǫ | a.C | σX.C | ζX.C |
[

W
L

]

C | |C| | C + C,

where a ∈ A, X ∈ V, W,L ⊆ V, such that W 6= ∅ and W ∩L = ∅ and C contains
only one �. For example, the context of p in a.(p + q) is a.(� + q).

Using the contexts, we can formally express the three conditions for safe
replacement from above.

Theorem 9. The context C(�) is safe for substitution of |p| by p if the following
conditions are fulfilled:

12



1. C(�) ≡ C ′(|C ′′(�)|);
2. If C(�) ≡ C ′(q + �) or C(�) ≡ C ′(� + q) then D(p) ∩ D(q) = ∅;
3. If C(�) ≡ C ′(

[

W
L

]

(q + σX.C ′′(�) + r)) and X ∈ W then D(p) ∩ L = ∅. ⊓⊔

It is not difficult to perceive that the conflict-free stochastic transition schemes of
C(|p|) and C(p) are isomorphic if the conditions for safe replacement are fulfilled.
As for α-conversion, the proof requires simple, but meticulous case analysis for
every operational rule in Table 1 and, therefore, it is omitted.

Typical specifications Often, system specifications contain only independent
stochastic delays, action transitions and termination options as given by T :

T ::= δ | ǫ | a.T | ζX.T | T + T, for a ∈ A and X ∈ V.

However, in the setting BSPdst, the language also allows specifications in terms
of dependent stochastic delays. It turns out that this ‘a-typical’ specifications
have greater expressiveness than the ‘typical’ specifications as they have the
capability of defining outcomes of incomplete races (which induce incomplete
probability spaces), like, for example,

∣

∣

[

X
Y

]

(σX.δ + σY.δ)
∣

∣. As we focus on the
interplay between stochastic and real time, in the current setting we develop an
equational theory only for the typical specifications, as is done elsewhere [1, 9].

Equational Theory First, we define the term algebra of BSPdst.

Definition 10. The term algebra of BSPdst is

IP(BSPdst) = (I/≃α , δ, ǫ, a. for a ∈ A, ζX. for X ∈ V, + ).

Next, we formally define the term model of BSPdst.

Definition 11 (Term model of BSPdst). The term model of BSPdst is the
quotient algebra IP(BSPdst)/ - .

The equational theory for typical specifications up to α-conversion is given in
Table 2. We discuss some of the axioms. The main property of dependent delays
is given by A6. As usual, ζX.p + ζX.q 6- ζX.(p + q) for independent stochastic
delays, unless FX is Dirac. Independent delays can be replaced by dependent
delays in an immediate scope of the name resolution operator, axiom I5. Merger
of two name resolution operators is conditioned by disjoined dependent racing
delays, axiom I6. Axiom R1 shows when the race condition guard is well-defined,
whereas R2 induces an initial race on one stochastic delay. Iterative application
of the race condition guard is given by R5. Axioms R6 allows renaming of winners
as they observe the same duration in the race they win together. Axioms R7, R8
and R9 define resolution of three types of races: (R7) common winners induce a
race in which the winners are joined, provided that there are no clashes between
the losers; (R8) if the losers of the first race are the winners of the second then
the winners of the first race are the overall winners, again provided that there
are no clashes; (R9) if there are no common winners or losers then the race can
have every possible outcome. Next, we give an example of a derivation:
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Example 12. We have the following derivation that transforms a typical spec-
ification ζX.ζY.ǫ + ζX.δ + a.ǫ to a term with dependent stochastic delays and
completely resolved race conditions.

ζX.ζY.ǫ + ζX.δ + a.ǫ
I5
= |σX. |σY.ǫ|| + |σX.δ| + a.ǫ

NR
= |σX.σY.ǫ| + |σX.δ| + a.ǫ

I6
=

|σX.σY.ǫ + σZ.δ + a.ǫ|
R2
=

∣

∣

[

X
∅

]

σX.σY.ǫ +
[

Z
∅

]

σZ.δ
∣

∣ + a.ǫ
R9,R2,A5,I3,R6,FX=FZ

=
∣

∣

[

X
Z

]

σX.
([

Y
∅

]

σY.ǫ +
[

Z
∅

]

σZ.δ
)

+
[

X,Z
∅

]

σX.σY.ǫ +
[

Z
X

]

σZ.σX.σY.ǫ + a.ǫ
∣

∣

R9,A5,R2
=

∣

∣

[

X
Z

]

σX.
([

Y
Z

]

σY.
(

ǫ +
[

Z
∅

]

σZ.δ
)

+
[

Y,Z
∅

]

σY.ǫ +
[

Z
Y

]

σZ.
[

Y
∅

]

σY.ǫ
)

+
[

X,Z
∅

]

σX.
[

Y
∅

]

σY.ǫ +
[

Z
X

]

σZ.
[

X
∅

]

σX.
[

Y
∅

]

σY.ǫ + a.ǫ
∣

∣ ,

where NR indicates name resolution.

The soundness and completeness property are stated in the following theorem.

Theorem 13. The equational theory in Table 2 is sound and ground-complete
for the typical specifications of BSPdst.

Proof. Soundness We give proof of soundness of some characteristic axioms.
The rest of the axioms can be proven in the same style. It suffices to give a
bisimulation relation R for every ℓ, r ∈ I, such that ℓ and r present the left
and the right side of the axiom. In case the terms cannot perform some type
of transition or cannot terminate, we omit those cases in the analysis. As a
reminder, dependent stochastic delays have to perform the same stochastic delay
transitions.

I5 Let R = {(ζX.x, |σX.x|) | x ∈ D} ∪ {(|σX.x| , ζX.x) | x ∈ D} ∪ {(x, x) | x ∈ D}
∪ {(x, |x|) | x ∈ D, } ∪ {(|x| , x) | x ∈ D}.

The only possible stochastic delay transition for both terms is guided

by X, i.e., 〈ζX.p, α〉 X7−→ 〈p, α〉 and 〈|σX. |p|| , α〉 X7−→ 〈p, α〉. Note that
if ζX.p is not in a context in the scope of the name resolution operator
then p ∈ I. Otherwise, Theorem 9 for name resolution applies for the
replacement of |p| by p.

I6 Let R = {(|x + y| , |x| + |y|) | x, y ∈ D} ∪ {(|x| + |y| , |x + y|) | x, y ∈ D} ∪
{(x, x) | x ∈ D}.

1. If |〈p + q, α〉|
a

−→ 〈r, α〉 then either 〈|p| , α〉
a

−→ 〈r, α〉 or 〈|q| , α〉
a

−→

〈r, α〉 for p, q, r ∈ D and α ∈ Ed. In any case 〈|p|+ |q| , α〉
a

−→ r. Similarly
for the other direction.

2. The independent racing delays for both terms are the same, so the induce
the same stochastic delay transitions. As D(p) ∩ D(q) = ∅, both terms
induce the same potential stochastic delay transitions. This amounts to
the same races, thus the same stochastic behavior.

3. If 〈|p + q| , α〉↓ then either 〈p, α〉↓ or 〈q, α〉↓. In any case 〈|p| + |q| , α〉↓.
Similarly for the other direction.

R8 Let R = {(
[

W
L

]

σX.x,
[

W
L

]

σY.x) | X,Y ∈ W, x ∈ D}∪{(
[

W
L

]

σY.x,
[

W
L

]

σX.x) |
X,Y ∈ W, x ∈ D} ∪ {(x, x) | x ∈ D}.
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1. The only transition that both terms can perform is the potential stochas-

tic delay transition 〈
[

W
L

]

σX.p, α〉
W
799K 〈p, α〉 and 〈

[

W
L

]

σY.p, α〉
W
799K 〈p, α〉.

R9 Let R = {(
[

W
L

]

σX.x +
[

U
T

]

σY.y,
[

W
L∪U∪T

]

σX.(x +
[

U
T

]

σY.y)) | L∩U 6= ∅, L∩
T = W ∩ (U ∪ T ) = R(p) ∩ U = ∅, X ∈ W, Y ∈ U, x, y ∈ D} ∪
{(

[

W
L∪U∪T

]

σX.(x +
[

U
T

]

σY.y),
[

W
L

]

σX.x +
[

U
T

]

σY.y) | L ∩ U 6= ∅, L ∩ T =
W ∩ (U ∪ T ) = R(p) ∩ U = ∅, X ∈ W, Y ∈ U, x, y ∈ D} ∪ {(x, x) | x ∈ D}.

Here we have 〈
[

W
L

]

σX.p, α〉
W
799K 〈p, α{αX/(R(p)∩L)}〉 and 〈

[

U
T

]

σY.q, α〉
U
799K

〈q, α{αY /(R(q)∩T )}〉 as possible transitions of the summands. Because
L ∩ U 6= ∅, the only possible transition of their sum is: 〈

[

W
L

]

σX.p +
[

U
T

]

σY.q, α〉
W
799K 〈p +

[

U
T

]

σY.q, α{αX/(R(p) ∩ L)}{αX/(U ∪ T )}〉. We
note that the rest of the conditions are required for well-formedness
of the operational rule. Next, the term on the right side performs the

transition
[

W
L∪U∪T

]

σX.(x +
[

U
T

]

σY.y)
W
799K 〈p +

[

U
T

]

σY.q, α{αX/((R(p) ∪
U ∪ T ) ∩ (L ∪ U ∪ T ))}〉. Note that α{αX/(R(p) ∩ L)}{αX/(U ∪ T )} =
α{αX/((R(p) ∪ U ∪ T ) ∩ (L ∪ U ∪ T ))}.

Ground-completeness We note that we get a little bit sloppy when defining the
typical specifications, i.e., we write IP(BSPdst), which stands for the every spec-
ification possible in BSPdst, but we mean only the typical specifications. In any
case, it is not difficult to observe that the typical specifications are bisimilar only
if they have isomorphic stochastic delays prefixes (up to α-conversion). This is
because it is always possible to find different distributions for different inde-
pendent stochastic delays. Moreover, the axioms only give transformations from
independent to dependent terms and vice versa. Thus, each typical specification
can be rewritten in the following form:

n
∑

i=1

ai.pi +
N

∑

j=1

ζXj
.qj [ + ǫ],

where ai.pi 6- ak.pk for 1 ≤ i 6= k ≤ n and the square brackets around ǫ indicate
that it is an optional summand.

Now we can separate action prefixed and stochastic time prefixed summands.
The sum of all action prefixed summands of a process p is denoted by pa and the
sum of all stochastic time prefixed summands is denoted by ps. Thus, we write
p = pa + ps[+ǫ].

If p- q then pa - qa and ps - qs. The statement holds because the processes
pa and qa cannot do any stochastic delays and cannot terminate and vice versa,
ps and qs cannot do action transitions and they cannot terminate successfully.

We can easily reuse the proof from [11], by example, to show that if
IP(BSPdst)/ - |= pa = qa then BSPdst ⊢ pa = qa. It remains to be proven

that if IP(BSPdst)/ - |= ps = qs then BSPdst ⊢ ps = qs. As we mentioned before,
in this case, the stochastic delays of ps and qs must be syntactically equal. This
completes the proof. ⊓⊔
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A1 p + q = q + p A2 (p + q) + r = p + (q + r) A3 ǫ + ǫ = ǫ A4 a.p + a.p = a.p

A5 p + δ = p A6 σX.p + σX.q = σX.(p + q) I1 δ = |δ| I2 ǫ = |ǫ| I3 a.p = |a.p|

I4 ζX.p = |ζX.p| I5 ζX.p = |σX.p| I6 |p + q| = |p| + |q| if D(p) ∩ D(q) = ∅

R1
ˆ

W
L

˜

p = δ if D(p) 6⊆ W, I(p) 6= ∅ R2 σX.p =
ˆ

X
∅

˜

σX.p

R3
ˆ

W
L

˜

(p + ǫ) =
ˆ

W
L

˜

p + ǫ if D(p) ⊆ W, I(p) = ∅

R4
ˆ

W
L

˜

(p + b.q) =
ˆ

W
L

˜

p + b.q if D(p) ⊆ W, I(p) = ∅

R5
ˆ

W
L

˜ˆ

U
T

˜

p =
ˆ

W
L∪T

˜

p if D(p) ⊆ U ⊆ W, I(p) = ∅

R6
ˆ

W
L

˜

σX.p =
ˆ

W
L

˜

σY.p if X, Y ∈ W

R7
ˆ

W
L

˜

p +
ˆ

U
T

˜

q =
ˆ

W∪U
L∪T

˜

(p + q), if W ∩ U 6= ∅, W ∩ T = L ∩ U = ∅,

D(p) ⊆ W, D(q) ⊆ U, I(p) = I(q) = ∅

R8
ˆ

W
L

˜

σX.p +
ˆ

U
T

˜

σY.q =
ˆ

W
L∪U∪T

˜

σX.(p +
ˆ

U
T

˜

σY.q)

if L ∩ U 6= ∅, L ∩ T = W ∩ (U ∪ T ) = R(p) ∩ U = ∅, X ∈ W, Y ∈ U

R9
ˆ

W
L

˜

σX.p +
ˆ

U
T

˜

σY.q =
ˆ

W
U∪T∪L

˜

σX.(p +
ˆ

U
T

˜

σY.q) +
ˆ

W∪U
L∪T

˜

(σX.p + σY.q) +
ˆ

U
W∪L∪T

˜

σY.(q +
ˆ

W
L

˜

σX.p)

if W ∩ U = L ∩ U = T ∩ W = R(p) ∩ U = R(q) ∩ W = ∅, X ∈ W, Y ∈ U

Table 2. Process theory BSPdst

Normal Forms Along the lines of Example 12 above, every process term can
be rewritten in a normal form with completely resolved races as follows.

Theorem 14. Every process |p| ∈ I can be rewritten in the following form:

p =
Pm

i=1 ai.pi +
˛

˛

˛

Pn

j=1

ˆWj

Lj

˜

σXj.qj

˛

˛

˛
[ + ǫ],

where ai.pi 6- ak.pk, for 1 ≤ i, k ≤ m, and
∑

is a shorthand for the alternative

composition and it is equal to δ if m = 0, and Xj ∈ Wj, where
[Wj

Lj

]

cannot be

combined with any
[

Wℓ

Lℓ

]

using the axioms R7, R8 and R9, for 1 ≤ j, ℓ ≤ n, and
[ + ǫ] is an optional termination option.

Proof. The proof is based on a term rewriting system that transforms every term
prefixed by an independent stochastic delay ζX.p into a term in the immediate
scope of the name resolution operator and a dependent stochastic delay |σX.p|.
Afterwards, the name resolution Theorem 9 is used to eliminate all, but the
topmost name resolution operator. Axioms R1-R9 provide the rewriting rules
that resolve the name condition. The proof that the rewriting system is strongly
terminating is based on the fact that the number of compatible race condition
guards decreases with each application of the rules induced by axioms R7−R9.
The confluence property is obtained as all possible combinations of racing guards
are considered and the order of application of the rules is not important. ⊓⊔
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The initial case study given in [15] pointed out that this normal form carries
more information than the underlying generalized semi-Markov process. More-
over, it corresponds to the notion of regional trees that is used to model check
stochastic automata [17]. Regional trees are obtained from stochastic automata
(e.g., [8]) by explicitly ordering clock samples by their duration to state an out-
come of a race, which is symbolically achieved by the race condition guard.

4 Basic Communicating Processes

In this section, we add an ACP-style parallel composition operator to BSPdst

and obtain the algebra BCPdst of basic communication processes with discrete
stochastic time. Standardly, the parallel composition allows both for interleaving
and communication of immediate actions. In the present setting it should cater
for interleaving and synchronization of stochastic delays as well. Immediate ac-
tions always take precedence over passage of time in the parallel composition,
but do not disable any stochastic delays. As in real-time process algebras, delays
are merged in case the processes perform stochastic delays with different dura-
tion and combined in case the duration is the same. The race that is induced by
the parallel composition has the same probabilistic behavior as the alternative
composition discussed before.

We extend the signature with the operator ‖ and the auxiliary operators T
and |. We reuse I and D to represent dependent and independent concurrent
processes.

Definition 15. The signature of BCPdst contains two constants δ and ǫ, four
unary operator schemes (1) a. for a ∈ A, (2) σX. for X ∈ V, (3) ζX. for
X ∈ V and (4)

[

W
L

]

for W ∈ (2V \ {∅}) and L ⊆ V such that W ∩ L = ∅ and

four binary operators (1) + , (2) T , (3) | , (4) ‖ . The syntax of BCPdst

is given as follows:

D ::= P | σX.D |
[

W
L

]

D | D + D | D ‖ D | D TD | (D | D)

P ::= δ | ǫ | |D| | ζX.P | P + P | P ‖ P | P TP | (P | P )

where a ∈ A, X ∈ V, W ∈ (2V \ ∅) and L ⊆ V such that W ∩ L = ∅, and
H ⊆ A. The precedence of the operators is given by the following ordering: a. ,
σX. , ζX. ,

[

W
L

]

, ‖ , T , | , + , | |. Again, we write I for independent

BCPdst-terms and D for dependent process terms and use p, q and r to range
over all terms.

The parallel composition p ‖ q imposes a race condition in the same way
as the alternative composition, whereas the actions are synchronized according
to the synchronization function γ. The race conditions extend to the auxiliary
operators pT q and p | q as for the other compositions. The semantics of inde-
pendent terms is given again via stochastic transition schemes. The definitions
of D( ) and I( ) are extended straightforwardly to apply to the new operators
by putting D(p ⋄ q) = D(p) ∪ D(q) and I(p ⋄ q) = I(p) ∪ I(q) for ⋄ = ‖, T , |.
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We give the operational semantics of the new operators in Table 4. Again we
assume the uniqueness of variables names and, for the sake of compactness of
presentation we put ⋄ =‖, T , | for the common rules.

32
〈p, α〉 ↓, 〈q, α〉 ↓

〈p ‖ q, α〉 ↓
33

〈p, α〉
a

−→ 〈p′, α〉

〈p ‖ q, α〉
a

−→ 〈p′ ‖ q, α〉
34

〈q, α〉
a

−→ 〈q′, α〉

〈p ‖ q, α〉
a

−→ 〈p ‖ q′, α〉

35
〈p, α〉

a
−→ 〈p′, α〉, 〈q, α〉

b
−→ 〈q′, α〉, γ(a, b) = c

〈p ‖ q, α〉
c

−→ 〈p′ ‖ q′, α〉

36
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉 /7−→, 〈q, α〉↓

〈p ‖ q, α〉 S7−→ 〈p′, α′〉
37

〈p, α〉 /7−→, 〈p, α〉↓, 〈q, α〉 T7−→ 〈q′, α′〉

〈p ‖ q, α〉 T7−→ 〈q′, α′〉

38, 49, 60
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉 T7−→ 〈q′, α′′〉, X ∈ S

〈p ⋄ q, α〉 S7−→ 〈p′ ⋄ q, α′{α′
X/R(q)}〉

39, 50, 61
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉 T7−→ 〈q′, α′′〉, Y ∈ T

〈p ⋄ q, α〉 T7−→ 〈p ⋄ q′, α′′{α′′
Y /R(p)}〉

40, 51, 62
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉 T7−→ 〈q′, α′′〉

〈p ⋄ q, α〉 S ∪ T7−→ 〈p′ ⋄ q′, α{α′/R(p)}{α′′/R(q)}〉

41, 52, 63
〈p, α〉

S
799K 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, S ∩ R(q) = ∅, X ∈ S

〈p ⋄ q, α〉
S
799K 〈p′ ⋄ q, α′{α′

X/R(q)}〉

42, 53, 64
〈p, α〉

S
799K 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, R(p) ∩ T = ∅, Y ∈ T

〈p ⋄ q, α〉
T
799K 〈p′ ⋄ q, α′′{α′′

Y /R(p)}〉

43, 54, 65
〈p, α〉

S
799K 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, S ∩ (R(q) \ T ) = ∅, (R(p) \ S) ∩ T = ∅

〈p ⋄ q, α〉
S ∪ T
799K 〈p′ ⋄ q′, α{α′/R(p)}{α′′/R(q)}〉

44, 55, 66
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, X ∈ S

〈p ⋄ q, α〉 S7−→ 〈p′ ⋄ q, α′{α′
X/R(q)}〉

45, 56, 67
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉, Y ∈ T

〈p ⋄ q, α〉
T
799K 〈p′ ⋄ q, α′′{α′′

Y /R(p)}〉

46, 57, 68
〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉

T
799K 〈q′, α′′〉

〈p ⋄ q, α〉
S ∪ T
799K 〈p′ ⋄ q′, α{α′/R(p)}{α′′/R(q)}〉

47
〈p, α〉

a
−→ 〈p′, α〉

〈p T q, α〉
a

−→ 〈p′ ‖ q, α〉
48

〈p, α〉 S7−→ 〈p′, α′〉, 〈q, α〉 /7−→, 〈q, α〉↓

〈p T q, α〉 S7−→ 〈p′, α′〉

58
〈p, α〉↓, 〈q, α〉↓

〈p | q, α〉↓
59

〈p, α〉
a

−→ 〈p′, α〉, 〈q, α〉
b

−→ 〈q′, α〉, γ(a, b) = c

〈p | q, α〉
c

−→ 〈p′ ‖ q′, α〉

Table 3. Structural operational semantics for BCPdst
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We briefly discuss the new rules. The rules 32-35 are the standard for the ter-
mination options and action transitions with synchronization. Rules 36 and 37
show that if one process terminates, the other one proceeds with passage of time.
Rules 38-40, 41-43 and 44-46 enable independent, dependent and mixed races,
respectively, as for the alternative composition. Rule 47 is the standard for action
transitions of the left operand of the left merge. Rule 48 enables passage of time
if the right summand terminates. Rules 49 − 57 enable independent, dependent
and mixed races in the left merge analogous to the parallel composition. The
termination options and synchronized action transitions for the synchronization
operator are given by the rules 58 and 59, respectively. Finally, rules 60− 68 en-
able independent, dependent and mixed races for the synchronization operator.

We note that the bisimulation remains unaltered. We straightforwardly ex-
tend cfr( ) and mdrr( , ), where r : V → V, for ⋄ =‖, T, | as follows:

cfr(p ⋄ q, p′ ⋄ q′) if cfr(p, p′), cfr(q, q
′)

mdrr′′(p′ ⋄ q′, p ⋄ q) if cfr′′(p ⋄ q, p′ ⋄ q′), r′′ ∈ [R(p ⋄ q)) → R(p′ ⋄ q′)],
(A(p′ ⋄ q′) \ R(p′ ⋄ q′)) ∩ (A(p ⋄ q) \ R(p ⋄ q)) = ∅,
mdrr(p

′, p), mdrr′(q′, q), r′′ = r′{r/A(p)}

Also, the α-conversion conditions remain unaltered as well as the name resolu-
tion, which now straightforwardly extends to the other compositions as for the
other operations.

The typical specifications are also extended with the new operators, as well
as the term algebra and the term model. The equational theory for the typical
specifications is given in Table 4. We comment some of the axioms. The merger
of the scope of the name resolution operators is given by the axioms P1, L1
and S1. The standard expansion axiom for the parallel composition is P2. The
left merge expansion where the left operand is prefixed by a dependent stochastic
delay is given only for the normal form of the right operand as the races must
be resolved. The synchronization operator behaves similarly to the alternative
composition and the race conditions are handled in a similar fashion as given
by the axioms S10-S12. The soundness and completeness property are proven
as before with the most complicated being axiom L6, which is basically a ‘mini’
expansion law for the left merge.

Theorem 16. The equational theory in Table 2 is sound and ground-complete
for the typical specifications of BCPdst. ⊓⊔

Expansion theorem By using the normal forms, the outcomes of a race become
explicit. This enables us to readily state an expansion theorem in the same vein
of real-time process theories, cf. [12, 11], a result lacking in previous work [14].
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P1 |p| ‖ |q| = |p ‖ q| if D(p) ∩ D(q) = ∅ P2 p ‖ q = p T q + q T p + p | q if I(p) = ∅

L1 |p| T |q| = |p T q| if D(p) ∩ D(q) = ∅ L2 δ T p = δ L3 ǫ T p = δ

L4 a.p T q = a.(p ‖ q) L5 (p + q) T r = p T r + q T r

L6 σX.p T q = σX.p T
`

Pm

i=1 ai.pi +
PM

j=1

ˆWj

Lj

˜

σXj.qj [ + ǫ]
´

=
P

X∈Wj

ˆWj∪{X}

Lj

˜

σX.(p T qj) +
P

X∈Lj

ˆ Wj

Lj∪{X}

˜

σXj.(σX.p T qj) +

P

X 6∈Wj∪Lj

“

ˆ

X
Wj∪Lj

˜

σX.(p T
ˆWj

Lj

˜

qj) +
ˆWj∪{X}

Lj

˜

σX.(p T qj) +
ˆ Wj

Lj∪{X}

˜

σXj.(σX.p T qj)
”

if
Pm

i=1 ai.pi +
PM

j=1

ˆWj

Lj

˜

σXj.qj [ + ǫ] is the normal form of q

S1 |p| | |q| = |p | q| if D(p) ∩ D(q) = ∅ S2 (p + q) | r = p | r + q | r if I(r) = ∅

S3 p | q = q | p S4 δ | p = δ S5 ǫ | ǫ = ǫ S6 a.p | ǫ = δ S7 a.p | σX.q = δ

S8 a.p | b.q = c.(p ‖ q) if γ(a, b) = c S9 a.p | b.q = δ if γ(a, b) not defined

S10
ˆ

W
L

˜

σX.p |
ˆ

W ′

L′

˜

σY.q =
ˆ

W∪W ′

L∪L′

˜

σX.(p | q)

if W ∩ W ′ 6= ∅, W ∩ L′ = L ∩ W ′ = ∅, X ∈ W, Y ∈ W ′, I(p) = I(q) = ∅

S11
ˆ

W
L

˜

σX.p |
ˆ

W ′

L′

˜

σY.q =
ˆ

W
L∪W ′∪L′

˜

σX.(p |
ˆ

W ′

L′

˜

σY.q)

if L ∩ W ′ 6= ∅, L ∩ L′ = W ∩ (L ∪ W ′ ∪ L′) = R(p) ∩ W ′ = ∅, X ∈ W, Y ∈ W ′

S12
ˆ

W
L

˜

σX.p |
ˆ

W ′

L′

˜

σY.q =
ˆ

W
W ′∪L′∪L

˜

σX.(p |
ˆ

W ′

L′

˜

σY.q) +
ˆ

W∪W ′

L∪L′

˜

(σX.p | σY.q) +
ˆ

W ′

W∪L∪L′

˜

σY.(q |
ˆ

W
L

˜

σX.p)

if W ∩ W ′ = L ∩ W ′ = L′ ∩ W = R(p) ∩ W ′ = R(q) ∩ W = ∅, X ∈ W, Y ∈ W ′

Table 4. Process theory BCPdst
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Theorem 17. For processes x =
∑m

i=1 ai.pi +
∑M

j=1

[Wj

Lj

]

σXj
.qj [ + ǫ] and

y =
∑n

k=1 bk.rk +
∑N

ℓ=1

[

Uℓ

Tℓ

]

σYℓ
.sℓ [ + ǫ], it holds that x ‖ y =

∑m
i=1 ai.(pi ‖ y) +

∑n
k=1 bk.(x ‖ rk) +

∑

γ(ai,bk) def. γ(ai, bk).(pi ‖ rk)[ + ǫ] +
∑

Wj∩Uℓ 6=∅,Wj∩Tℓ=Lj∩Uℓ=∅

[Wj∪Uℓ

Lj∪Tℓ

]

σXj
.(qj ‖ sℓ) +

∑

Lj∩Uℓ 6=∅,Lj∩Tℓ=Wj∩(Uℓ∪Tℓ)=R(qj)∩Uℓ=∅

[ Wj

Lj∪Uℓ∪Tℓ

]

σXj
.(qj ‖

[

Uℓ

Tℓ

]

σYℓ
.sℓ) +

∑

Wj∩Tℓ 6=∅,Lj∩Tℓ=Uℓ∩(Wj∪Lj)=Wj∩R(sℓ)=∅

[ Uℓ

Wj∪Lj∪Tℓ

]

σYℓ
.(
[Wj

Lj

]

σXj
.qj ‖ sℓ) +

∑

Wj∩Uℓ=Wj∩Tℓ=Lj∩Uℓ=R(qj)∩Uℓ=Wj∩R(sk)=∅

(

[ Wj

Lj∪Uℓ∪Tℓ

]

σXj
.(qj ‖

[

Uℓ

Tℓ

]

σYℓ
.sℓ) +

[Wj∪Uℓ

Lj∪Tℓ

]

σXj
.(qj ‖ sℓ) +

[ Uℓ

Wj∪Lj∪Tℓ

]

σYℓ
.(
[Wj

Lj

]

σXj
.qj ‖ sℓ)

)

⊓⊔.

The first three summands of the expansion are the standard ones for untimed
theory. As usual, the termination option of x ‖ y is enabled only if both x and y
have termination options. The fourth summand synchronizes races with common
winners analogous to axiom R7 for the alternative composition in Table 2. The
fifth and the sixth summand treat the races when the winners come both from
the left and the right summand, respectively, as corresponding to axiom R8. The
seventh summand gives the expansion of unresolved races as in axiom R9.

For comparison, we present the expansion of the parallel composition with
clocks in residual lifetime semantics [4]. The treatment of expansion for clocks
with spent lifetimes and start-termination semantics is similar [5, 9]. Here, the
processes are given by x = set C in x′ and y = set D in y′, for x′ =

∑m
i=1(when

Ci 7→ ai; pi) and y′ =
∑n

j=1(when Dj 7→ bj ; qj), where the operator set sets the
clocks and ‘a; ’ is the action prefix operator. Then it holds that x ‖A y =

set (C ∪ D) in

(

∑

ai 6∈A when Ci 7→ ai; (pi ‖A y′) +
∑

bj 6∈A when Dj 7→ bj ; (x
′ ‖A qj) +

∑

ai=bj∈A when (Ci ∪ Dj) 7→ ai; (pi ‖A qj)
)

.

Note that the above expansion actually involves setting the joint sets of clocks
(i.e., the starting activities). However, the typical expansion for real-time process-
es is given on completed delays (cf. [11]), as in our Theorem 17. We argue that
this stresses the similarity of the notions of a stochastic and real-timed delay.

5 Real-Time

Relative standard timed delays of duration t > 0 are introduced in the cur-
rent setting by means of Dirac (or degenerated) random variables Xt, where
P (Xt = t) = 1 for Xt ∈ Vdeg (cf. [14]). Again, we distinguish between inde-
pendent and dependent delays because of the race condition. For example, the
degenerated stochastic delay Yt in

∣

∣

[

X
Yt

]

σX.σYt
.δ

∣

∣ is dependent on a stochastic
delay. So, its residual distribution is no longer a real-time delay. We note that
the degenerated stochastic delays comply with the race condition. However, such
inclusion of real-time in our stochastic process algebra has a side effect, viz. the
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stochastic transition schemes may contain non-accessible transitions. For exam-

ple, the transition 〈ζXt
.p+ζXt+s

.q, α∅〉
Xt+s
7−→ 〈ζXt

.p+q, α∅{Xt+s/{Xt}}〉 will never
be observed in the concrete model and, similarly, the only transition with non-
zero probability of ζXt

.p+ ζYt
.q is the joint stochastic delay transition labeled by

{Xt, Yt}. One way to avoid such zero-probability transitions is to introduce real-
time as a separate timed delay transition in the stochastic transition schemes.
In any case, the treatment of real-time proposed here gives rise to several issues
of interest when considering stochastic time and real-time.

Bisimulation In general, stochastic bisimulation is a one-step bisimulation,
i.e., it takes into consideration only one stochastic delay transition at a time.
In contrast, the timed bisimulation typically employs time additivity [12], i.e.,
merging of subsequent timed delays into one delay to compare processes that
delay in time. To the best of our knowledge, with the exception of [18], all
stochastic process theories consider a one-step-like stochastic bisimulation: in [2]
the actions are coupled with the stochastic clocks, in [4] there is an alternation
between clocks and action transitions, whereas in [3, 5] the merging is impeded
by the combination of pre-selection policy and start-termination semantics. Al-
though originally introduced with one-step-like stochastic bisimulation [6], an
attempt is made in [18] to present weak stochastic bisimulation that merges
subsequent stochastic delays. Unfortunately, such an approach is not composi-
tional as the merging of stochastic delays does not support the race condition.
A simple counter-example is the process ζX.ζY.δ. Although the process has the
same stochastic properties as the process ζZ.δ, provided FZ = FX+Y , these pro-
cesses are not bisimilar in any composition with any other process that is capable
of performing a stochastic delay. For example, ζX.ζY.δ + ζU.δ is not bisimilar to
ζZ.δ + ζU.δ because the race of X and U induces a different probability choice
on the winner compared to the race between Z and U .

We conclude that the states in the stochastic transition schemes between the
stochastic delays transitions are relevant. The same holds for the degenerated
stochastic delays. Thus, the concept of time additivity is no longer valid, although
it is a standard property of real-time process algebra [12]. However, the race
condition together with the one-step-like stochastic bisimulation induce, in fact,
a finer notion than (arbitrary) time additivity as depicted in Fig. 4. We propose
to refer to this concept as as ‘context-sensitive interpolation’.

Fig. 4. Arbitrary interpolation of the timed delay t in a) by additivity is given in b),
where t = t′ + t′′ + t′′′; Context-sensitive interpolation of the timed delay t in c) in the
context of the alternative composition with the timed delay s is given in d)

22



Additivity vs. Interpolation Time additivity allows the observer to distin-
guish a partial passage of time of a real-time delay before a change of state is
induced. Therefore, it treats a timed delay as the aggregate of every possible
shorter delay (cf. Fig. 4a and Fig. 4b). However, this approach is not valid in the
context of stochastic time as the observer can statistically measure the ‘branch-
ing’ probabilities for the winners of the race in the interpolated states. Now, the
view of strong interpolation is that a real-time delay can be interpolated only
in the context of a composition performing a shorter delay in order to conform
to the race condition. In that way, we ensure that the intermediate state actu-
ally exists, as illustrated in Fig. 4c and Fig. 4d. Axioms that describe strong
interpolation for the Dirac stochastic delays in an alternative composition are:

A7 ζXt.p + ζYt.q = ζXt.(p + q) A8 ζXt.p + ζYt+s.q = ζXt.p + ζYt.ζYs.q

At first sight this may seem too restrictive, in view of the time additivity law
σt.p = σt′.σt′′.p where t′+t′′ = t. However, strong interpolation does exactly what
time additivity is typically used for: merging of delays with the same duration
by taking the shortest/minimal delay. Moreover, as argued, the interpolation
fits naturally in the expansion of the parallel composition, which makes it a
promising candidate for a finer notion of time additivity in general purpose real-
time process algebra.

6 Conclusions and Future Work

A stochastic process algebra that comprises real-time has been proposed. Its so-
called typical processes involving complete race conditions come equipped with
a sound and complete axiomatization exploiting normal forms in which the race
condition is explicitly resolved. This enables an expansion of the parallel compo-
sition in the style of real-time process theories. Finally, stochastic bisimulations
and standard timed bisimulation are compared resulting in a proposal for a finer
notion of standard time additivity, called context-sensitive interpolation, induced
by the race condition and depending on the context.

As future work, we continue our axiomatization efforts to completely describe
all possible specifications. Current investigations point out that we need a prior-
ity operator that disables the weak choice, also required by the maximal progress
operator [11]. We also schedule further study of real-time process theories that
implement context-sensitive interpolation and one-step-like timed bisimulation.
At this point, we expect that such theories can also accommodate for verification
and analysis of processes with timed delays. Also, we find it worthwhile to inves-
tigate deeper into the relation between the race condition and the pre-selection
policies, which might pave the way for merging subsequent stochastic delays. Our
final goal is the analysis of contemporary Internet protocols involving time-outs
as well as generally distributed delays.
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