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Nomenclature

Notations
R Set of all real numbers
Rm×n Set of all real matrices of dimension m × n
Rn Set of all real vectors of dimension n
C Set of all complex numbers
C− The open left half complex plane
dim(V) Dimension of a vector space V
I Identity matrix of the desired order
A−1 Inverse of matrix A
AT Transpose of matrix A
rank A Rank of matrix A
σ(A) Set of all eigenvalues of matrix A
det(A) Determinant of matrix A
σ(E,A) Set of all generalised eigenvalues of matrix pencil (E,A)
σ f (E,A) Set of all finite eigenvalues of matrix pencil (E,A)
σ∞(E,A) Set of all infinite eigenvalues of matrix pencil (E,A)
Ker(T) Kernel of transformation or matrix T
Im(T) Image of transformation or matrix T
Span(T) Subspace spanned by the columns of matrix T
Kr(A,b) Order-r Krylov subspace generated by matrix A

of dimension n × n and a vector b of dimension n
ẋ or x′ Derivative of x with respect to time t
Span{x1, x2, · · · , xn} Vector space spanned by the vectors x1, x2, · · · , xn
diag{d1,d2, · · · ,dn} Diagonal matrix with diagonal elements d1,d2, · · · ,dn
Index-µ DAEs DAEs of tractability index-µ



2 Nomenclature

Acronyms
MOR Model Order Reduction
DAEs Differential algebraic equations
LU Lower and Upper triangular matrix
SVD Singular valued decomposition
CFD Computational fluid dynamics
RLC Resistor-inductor-capacitor
RC Resistor-capacitor
MIMO Multiple-input Multiple-output system
SISO Single-input Single-output system
IMOR Index-aware model order reduction
IIMOR Implicit index-aware model order reduction
ODEs Ordinary differential algebraic equations
LTI Linear time invariant
MNA Modified nodal analysis
PRIMA Passive Reduced-Order Interconnect Macromodeling Algorithm
SPRIM Structure-preserving reduced-order interconnect macromodeling
AE Algebraic elimination



Chapter 1

Introduction

Large scale differential algebraic equations (DAEs) arise in a variety of applications such

as modeling of constrained multibody systems, electrical networks, aerospace engineer-

ing, chemical processes, computational fluid dynamics (CFD), gas transport networks,

see [10, 12, 16, 24, 35, 45]. Such systems have characteristics of leading to state space

descriptions of high dimension in which the coefficient of the first order derivative is a

singular matrix. In practice, such applications lead to DAEs with very large dimension

compared to the number of inputs and the desired outputs. Despite the ever increas-

ing computational power, simulation of these systems in real time on such large scale

is very difficult because of the storage requirements and expensive computations. This

is an attractive feature to apply model order reduction (MOR). However, if the initial

condition is inconsistent or when the smoothness of the input does not correspond to the

index of the DAE, currently available MOR techniques may lead to inaccurate reduced-

order models, see [1, 2]. These reduced-order models may lead to wrong solutions that

do not adequately represent the hidden truly fast modes or are very difficult to solve

numerically. In most publications and applications it is assumed that the matrix pencil

is regular, and conventional MOR techniques based on either Krylov subspaces or sin-



4 1 Introduction

gular value decomposition (SVD) are used to extract dominant behavior of the transfer

function [3, 9, 58]. However, it has recently been shown that such approaches may lead

to reduced models that are not adequate, as they do not take into account the special

behavior due to infinite state variables of the system [45]. The initial condition of the

finite state variables can be chosen arbitrary while the initial condition of the infinite

state variables have to satisfy certain hidden constraints. Thus the initial condition of the

differential algebraic equations must be a consistent initial value.

However, it happens that the conventional MOR methods [3, 9, 58] cannot be applied

immediately especially to higher index DAEs because they deal only with a system pos-

sessing zero initial condition. Moreover, most conventional MOR methods treat DAEs

as ODEs, for example PRIMA method [49] sometimes leads to ordinary differential

equations (ODEs) reduced-order models even if the original model is a DAE. This may

lead to loss of their mathematical properties. As a consequence, new concepts were

needed to provide reliable reduced-order models for DAEs. In the new approach, DAEs

must first be decoupled into differential and algebraic parts before applying any MOR

technique. This observation has lead to the development of new methods specifically for

DAEs, see [17, 18, 25, 32, 45] and to some extent the modification of the existing MOR

methods, see [25, 45]. Most of these recently developed methods are application based

and some are more general. In [45], they proposed the most successful MOR method

for DAEs known as the balanced truncation method for descriptor systems, however it

is computationally expensive since it involves solving four Lyapunov equations. Then,

most recently the computationally cheaper, model reduction of descriptor systems by

interpolatory projection methods was proposed in [25]. Both methods are robust and

lead to accurate reduced-order models for DAEs. They both use the spectral project-

ors to split DAEs into differential and algebraic parts before reduction. However, the

Kronecker canonical forms are used to construct the spectral projectors which are well

known to be numerically infeasible [1, 42]. Hence, the existing most accurate MOR

methods for DAEs are much limited to DAEs with special structures and can not be

extended to DAEs with variable coefficients.

In this thesis, a computationally cheaper way of decoupling and reducing DAEs is pro-

posed. This decoupling procedure relies on the framework of special projector and mat-

rix chain for DAEs, enabling a decomposition into separate differential and algebraic
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parts as introduced by März in [42]. However, the März decoupling procedure leads to

much larger decoupled system of dimension n(µ+1), where n and µ is the dimension and

the tractability index of the DAE, respectively. Hence, the März decoupling procedure

does not preserve some of the mathematical properties of the DAEs such as dimension

and stability. This motivated us to modify the März decoupling procedure using spe-

cial bases of projectors instead of the full projectors, thus preserving the dimension and

stability of DAEs in the decoupled system. Having performed this separation, differ-

ent reduction methods can be used to each of these parts. For the differential part, one

can use the conventional MOR methods while the algebraic part, we have developed

new methods since there was no known reduction methods for algebraic systems. This

procedure lead to a new MOR method for DAEs which we call the Index-aware MOR

method abbreviated as IMOR method [1, 2]. The IMOR method is illustrated in Fig-

ure 1.1. This method is very robust and leads to simple reduced-order models for even

DAE

Projected
DAE

(März [42])

SplitDifferential Part Algebraic part

MOR for
ODEs

MOR for
Algebraic
systems

Reduced
order DAE

Figure 1.1: IMOR methods procedure

higher index DAEs. However, the IMOR method has an inherited limitation of matrix

inversion which makes it computationally very expensive. This lead to the development

of its implicit version which we call the implicit IMOR method which is abbreviated as

IIMOR method. The implicit IMOR method is computationally cheaper than the IMOR

method. However, experiments show that the IMOR method is more accurate, thus one

needs to trade off between complexity and accuracy. Using our decoupled systems, we

were able to analyse the limitations of the conventional MOR methods. We observed that
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sometimes conventional MOR methods can lead to accurate reduced-order models even

for higher index DAEs, if and only if the consistent initial condition does not depend

on the derivatives of the input data. This is equivalent to a DAE having a proper trans-

fer function. The explicit and implicit decoupling procedures are also advantageous for

solving DAEs more efficiently numerically since they enable one to use the conventional

ODEs integration methods to solve higher index DAEs.

Other, well known tools used to investigate DAEs are the transformation into Kronecker

normal form and the decoupling by means of Drazin inverses and spectral projectors.

These tools are very accurate but they are numerically infeasible and can not be gener-

alized to variable coefficient linear and nonlinear DAEs [42]. However, our decoupling

procedures used in both IMOR and IIMOR methods, relies on the matrix and projector

chain approach introduced by März [42] which can also be applied to general variable

coefficient equations, see [27]. Hence the IMOR and IIMOR methods can be extended

to variable coefficient linear and nonlinear DAEs.

The NWO project

This work is part of the research programme Model Order Reduction for Differential

Algebraic Systems, which is (partly) financed by the Netherlands Organisation for Sci-

entific Research (NWO).

The aim of this PhD project is to investigate model order reduction techniques for dif-

ferential algebraic systems. The ultimate goal of the project is to deliver fundamental

mathematical knowledge and efficient numerical tools for the next generation of MOR

techniques for differential algebraic equations. This thesis addresses the mathematical

aspect of the reduction of differential algebraic equations including the limitations of the

conventional MOR methods. We have developed reduction methods for DAEs, using the

underlying structure of DAEs, with the aim of obtaining robust reduction methods that

can also be applied to DAEs with arbitrary index



Chapter 2

Differential Algebraic Equations

In this Chapter, we introduce the differential algebraic equations which we abbreviate

as DAEs. DAEs arise in a variety of applications such as modeling of constrained

multibody systems, electrical networks, aerospace engineering, chemical processes, com-

putational fluid dynamics (CFD), gas transport networks, see [10, 12, 16, 24, 35, 45].

Therefore their analysis and numerical treatment plays an important role in modern

mathematics. In many articles, DAEs are also called singular systems [12], descriptor

systems [16, 45, 66], generalized state space systems [45], semi-state systems, degen-

erated systems, constrained systems, implicit systems but in most literatures they are

called DAEs [39, 42, 52]. In this thesis, we shall also call them DAEs.

2.1 What are DAEs?

Consider an explicit ordinary differential equations (ODEs),

ẋ = f (t, x), (2.1.1)
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where ẋ = dx
dt and x ∈ Rn, f : R × Rn

→ Rn. In general the first order ODE can be

written in implicit form

F(t, x, ẋ) = 0. (2.1.2)

According to [61], if the Jacobian matrix ∂F
∂ẋ is nonsingular then it is possible to solve

(2.1.2) for ẋ in order to obtain an ODE (2.1.1). However, if ∂F
∂ẋ is singular, this is no

longer possible and the solution x has to satisfy certain algebraic constraints. Hence, if
∂F
∂ẋ is singular, then (2.1.2) is referred to as a DAE. In modeling the formulation of pure

ODE problems often requires the combination of ; conservation laws (mass and energy

balance), constitutive equations (equations of state, pressure drops, heat transfer) and

design constraints (desired operations). This means that there are some problems where

not all the equations in a differential system involves derivatives, thus we can come up

with a special case of DAEs which can be written as,

ẋ = f (t, x, y), (2.1.3a)

0 = g(t, x, y), (2.1.3b)

where x-differential variables, y-algebraic variables and (2.1.3b) is a constraint equation.

Equation (2.1.3) is a special type of DAEs which is commonly called the semi-explicit

DAEs.

2.2 Models for DAEs

According to [16], it is well known from modern control theory that two main mathemat-

ical representations for dynamical systems are the transfer matrix representation and the

state space representation. The former describes only the input-output property of the

system, while the latter gives further insight into the structural property of the system.

2.2.1 State space representation

State space representation was developed at the end of the 1950s and the beginning of

the 1960s, which has the advantage that it not only provides us with efficient method for

control system analysis and synthesis, but also offers us a deeper understanding about

the various properties of the systems, see [16]. The state space models of the systems are
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obtained mainly using the so-called state space variable method [16]. To obtain a state

model of a practical system, we need to choose some physical variables such as currents

and voltages in an electrical network. Then, by the physical relationships among the

variables or by some model identification techniques such as modified nodal analysis in

network analysis, a set of equations can be established. Naturally, this set of equations

are usually differential and/or algebraic equations, which form a mathematical model

of the system. By properly defining a state vector x(t) and an input vector u(t), which

are formed by the physical variables of the system, and an output vector y(t) , whose

elements are properly chosen measurable variables of the system, this set of equations

can be arranged into two equations given by

f (ẋ(t), x(t),u(t), t) = 0, (2.2.1)

g(y(t), x(t),u(t), t) = 0, (2.2.2)

where f and g are vector functions of appropriate dimensions with respect to ẋ(t), x(t), y(t),

u(t) and t. Equations (2.2.1) and (2.2.2) are the so-called state equation and output
equation, or the observation equation. Equations (2.2.1) and (2.2.2) give the state space

representation for a general nonlinear dynamical system. If we consider a special form

of (2.2.1)–(2.2.2) :

E(t) ẋ(t) = F(x(t),u(t), t)

y(t) = K(x(t),u(t), t),
(2.2.3)

where t ≥ 0 is the time variable, F and K are appropriate dimensional vector functions,

x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, y(t) ∈ R` is the

measured output vector. The matrix E(t) must be singular for some t ≥ 0 for our case

since we are considering DAEs. Equation (2.2.3) is the general form of the so-called

nonlinear DAEs. If we consider the case, when F and K are linear functions of vectors

x(t) and u(t), the general nonlinear DAEs (2.2.3) simplifies to the following form:

E(t) ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = CT(t)x(t) + DT(t)u(t),
(2.2.4)

where E(t),A(t) ∈ Rn×n, C(t) ∈ Rn×`, D(t) ∈ Rm×`, B(t) ∈ Rn×m are matrix functions

of time t, and they are called the coefficients matrices of the system (2.2.4). Equation
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(2.2.4) describes the so-called linear time varying DAEs. If the matrix coefficients are

constant, i.e., time independent, the system (2.2.4) is called the linear constant coefficient

DAEs or linear time invariant (LTI) DAEs which can be written as,

E ẋ(t) = Ax(t) + Bu(t), (2.2.5a)

y(t) = CTx(t) + DTu(t), (2.2.5b)

where E,A ∈ Rn×n, C ∈ Rn×`, D ∈ Rm×`, B ∈ Rn×m are constant coefficient matrices.

For DAEs of the form (2.2.5), there is also a concept of the dynamical order, which is

defined as the rank of singular matrix E. Equations (2.2.4) and (2.2.5) are the two basic

classes of DAEs. From this point, we restrict ourselves on the DAE of the form (2.2.5)

unless stated otherwise.

2.2.2 Transfer matrix representation

In this Section, we discuss the transfer matrix representation. This representation is

derived from the state space representation using the Laplace transform . The transfer

matrix representation is commonly used to validate reduced-order models in the model

order reduction community and is commonly called the transfer function.

Definition 2.2.1 (Laplace transform [58]) The Laplace transform of a function f (t) in

the time domain is the function F(s) in the frequency domain and it is defined as,

L{ f (t)} = F(s) :=
∫ ∞

0
e−st f (t) dt, where s = σ + jω ∈ C, with σ,ω ∈ R.

We shall restrict ourselves on the transfer matrix representation of the LTI DAEs (2.2.5)

and also assume s = jω, i.e σ = 0. Taking the Laplace transform of (2.2.5) and simpli-

fying, we obtain

Y(s) =
[
CT(sE − A)−1B + DT

]
U(s) + CT(sE − A)−1Ex(0), (2.2.6)

where U(s) and Y(s) are the Laplace transforms of u(t) and y(t), respectively. The ra-

tional matrix-valued function

H(s) = CT(sE − A)−1B + DT
∈ R`×m, (2.2.7)
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is called the transfer matrix representation of (2.2.5) or transfer function. Then, H(s)

gives the relation between the Laplace transforms of the input u(t) and the output y(t).

In other words, H(s) describes the input-output behavior of (2.2.5) in the frequency

domain.

Definition 2.2.2 ( [62]) The transfer function H(s) is called proper if lim
s→∞

H(s) < ∞,

and improper otherwise. if lim
s→∞

H(s) = 0, then H(s) is called strictly proper.

Almost all conventional MOR methods assume vanishing initial condition, i.e.,

Ex(0) = 0, which leads to Y(s) = H(s)U(s). We need to ask ourselves wether, we can

always describe the transfer matrix representation or transfer function of an entire DAE

dynamical system as for the case of ODE systems, i.e., Is it always possible to assume

Ex(0) = 0 in (2.2.6) to obtain Y(s) = H(s)U(s)? This question is answered in Section

2.3.4 after gathering enough knowledge about DAEs.

2.3 Linear constant coefficient DAEs

In this Section, we discuss the analysis of LTI DAEs. For simplicity, the coefficient

matrix D in (2.2.5) is assumed to be zero matrix unless specified. Thus, (2.2.5) simplifies

to:

E ẋ(t) = A x(t) + B u(t), x(0) = x0, (2.3.1a)

y(t) = CTx(t), (2.3.1b)

where E ∈ Rn×n is singular, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×` , the input vector u(t) ∈ Rm,

output vector y(t) ∈ R` and x0 ∈ R
n is the initial value.

2.3.1 Solvability of DAEs

Here, we are interested in the solutions of the homogenous system obtained by setting

u(t) = 0, then (2.3.1a) becomes

Eẋ(t) − Ax(t) = 0. (2.3.2)
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As for the case of ODEs using the guess solution x∗(t) = x0eλ∗t. Substituting the guess

solution into (2.3.2) leads to eλ∗t(λ∗E − A)x0 = 0. Hence according to [34], x∗(t) is a

nontrivial solution of the DAE (2.3.2) if λ∗ is a zero of polynomial P(λ) := det(λE−A),

λ ∈ C and x0 , 0 satisfies (λ∗E − A)x0 = 0. λ and x0 are called the generalized ei-

genvalues and eigenvectors, respectively. Thus, we say that the DAE (2.3.1a) is solvable

provided the matrix pencil λE − A is regular, see [34]. We note that λE − A can also be

written as (E,A) which is called the matrix pencil or matrix pair.

Definition 2.3.1 ( [34, 52]) A matrix pair (E,A) is called regular if the polynomial

P(λ) = det(λE − A) is not identically zero otherwise singular.

A pair (E,A) with nonsingular E is always regular, and its polynomial P(λ) is of

degree n. In case of singular matrices E, the polynomial degree is lower. According

to [33], regularity of a matrix pair is closely related to the solution behavior of the cor-

responding DAE. In particular, regularity is necessary and sufficient for the property

that for every sufficiently smooth inhomogeneity u the DAE is solvable and the solu-

tion is unique for every consistent initial value. This is well understood, if we consider

Weierstraß-Kronecker canonical form of a given DAE as discussed in Section 2.3.3.

Definition 2.3.2 ( [62]) A pair (α, β) ∈ C2
\{(0, 0)} is said to be a generalized eigenvalue

λ = α
β of the matrix pencil λE − A if det(αβE − A) = 0. If β , 0 , then the pair (α, β)

represents a finite eigenvalue λ = α
β of the matrix pencil λE − A. But if β = 0, the pair

(α, 0) represents an infinite eigenvalue of λE − A. Clearly, the pencil λE − A has an

eigenvalue at infinity if and only if the matrix E is singular.

The set of all finite eigenvalues of the matrix pencil (E,A) is denoted by σ f (E,A) while

the infinite spectrum of the matrix pencil (E,A) is denoted by σ∞(E,A). Thus, the set of

all generalized eigenvalues (finite and infinite ) of the matrix pencil (E,A) is called the

spectrum of (E,A) and donated by σ(E,A) = σ f (E,A) ∪σ∞(E,A). We note that if E is

nonsingular, then σ(E,A) = σ f (E,A) which is equal to the spectrum of E−1A. This also

means that if E is nonsingular, the homogeneous equation (2.3.2) represents an implicit

regular ODE and its fundamental solution system forms an n-dimensional subspace in

C
1. But what happens if E is singular, this is closely related to the notion of the regular

matrix pencil (E,A) [34] as discussed in Section 2.3.3.
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2.3.2 Stability of DAEs

According to [16], in practice a practical system should be stable otherwise, it may not

work properly or may even be destroyed in practical use. Like the ODE systems case,

when studying stability of DAEs, we also need to only consider the homogenous system

(2.3.2).

Definition 2.3.3 ( [62]) The DAE (2.3.1) is called asymptotically stable if lim
t→∞

x(t) = 0

for all solutions x(t) of the homogenous system Eẋ(t) = Ax(t).

This leads us to the following theorem that collects equivalent conditions for system

(2.3.1) to be asymptotically stable.

Theorem 2.3.1 ( [12, 62]) Consider a DAE (2.3.1) with regular matrix pencil λE − A.
The following statements are equivalent.

1. System (2.3.1) is asymptotically stable.

2. All finite eigenvalues of the matrix pencil λE − A lie in the open left half complex

plane, i.e., σ(E,A) ⊂ C−, where C− = {s|s ∈ C,Re(s) < 0} represents the open left

half complex plane.

According to [62], the matrix pencil λE − A is called c-stable if it is regular and all the

finite eigenvalues of λE − A have negative real part.

We can note that, in view of the above theorem, the infinite eigenvalues of the matrix

pencil (E,A) have no effect on stability of DAEs of the form (2.3.1), since the infinite

eigenvalues of λE − A do not affect the behavior of the homogenous system at infinity

[62].

2.3.3 Weierstraß-Kronecker canonical form

In this Section, we present the Weierstraß-Kronecker canonical form. This is the most

commonly used tool to understand the DAE structure of constant coefficients linear

DAEs [16,33,42]. Scaling (2.3.1) by nonsingular matrix P ∈ Rn×n and the state variable

x according to x = Qx̃ with a nonsingular matrix Q ∈ Rn×n, we obtain

Ẽ ˙̃x(t) = Ãx̃(t) + B̃u(t), (2.3.3a)

y(t) = C̃Tx̃(t), (2.3.3b)
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where Ẽ = PEQ, Ã = PAQ, B̃ = PB and C̃ = QTC, which is again a DAE with constant

coefficients. According to [33], the relation x = Qx̃ gives a one-to-one correspondence

between the corresponding solution sets. This means that we can consider the trans-

formed problem (2.3.3) instead of (2.3.1) in order to understand the underlying structure

of constant coefficients linear DAEs. This leads to the following definition of equival-

ence [33].

Definition 2.3.4 ( [33]) Two matrix pairs (Ei,Ai), Ei,Ai ∈ C
m×n are called (strongly)

equivalent if there exits nonsingular matrices P ∈ Rm×m and Q ∈ Rn×n such that

E2 = PE1Q, A2 = PA1Q. (2.3.4)

If this is the case, we can write (E1,A1) ∼ (E2,A2).

As already suggested by the definition, relation (2.3.4) fixes an equivalence relation [33].

Thus, this relation poses reflexivity, transitivity and symmetry.

Lemma 2.3.1 ( [33]) The relation introduced in Definition (2.3.4) is an equivalence re-

lation.

Proof 2.3.1 ( [33]) We must show that the relation is reflexive, symmetric, and transitive.

Reflexivity: We have (E,A) ∼ (E,A) by P = Im and Q = In.

Symmetry: From (E1,A1) ∼ (E2,A2). It follows that E2 = PE1Q and A2 = PA1Q
with nonsingular matrices P and Q. Hence, we have E1 = P−1E2Q−1, A1 = P−1A2Q−1

implying that (E2,A2) ∼ (E1,A1).

Transitivity: From (E1,A1) ∼ (E2,A2) and (E2,A2) ∼ (E3,A3) it follows that

E2 = P1E1Q1,A2 = P1A1Q1 and E3 = P2E2Q2,A3 = P2A2Q2 with nonsingular

matrices Pi,Qi, i = 1, 2.

Having defined an equivalence relation, the standard procedure then is to look for a

canonical form, i.e., to look for a matrix pair which is equivalent to a given matrix

pair and which has a simple form from which we can directly read off the properties

and invariants of the corresponding DAE [33]. In our case, such a canonical form is

represented by the so-called Weierstraß-Kronecker canonical form. Here, we briefly

discussed about Weierstraß-Kronecker canonical form but more details can be found

in [16, 33, 52]. A special case which we want to discuss here in more detail and for
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which we want to derive the associated part of the Weierstraß-Kronecker canonical form

is that of the so-called regular matrix pairs.

Lemma 2.3.2 ( [33]) Every matrix pair which is strongly equivalent to a regular matrix

pair is regular.

Proof 2.3.2 ( [33]) We only need to discuss square matrices. Let E2 = PE1Q and

A2 = PA1Q with nonsingular matrices P and Q. Using Definition 2.3.1 for regular

matrix pairs, we have

P2(λ) = det(λE2 − A2) = det(λPE1Q − PA1Q),

= det(P)det(λE1 − A1)det(Q) = cP1(λ), with c , 0.

Theorem 2.3.2 (Weierstraß-Kronecker canonical form [33, 52] ) Let (E,A) be a reg-

ular matrix pencil. Then, we have (E,A) ∼

I 0
0 N

 , J 0
0 I

 , where J ∈ Rk×k for some

nonnegative k ≤ n, is a matrix in Jordan canonical form and N ∈ R(n−k)×(n−k) is a nilpo-

tent matrix with index µ ≤ n − k also in Jordan canonical form. Moreover, it is allowed

that one or the other block is not present.

The proof of Theorem 2.3.2 can be found in [33]. The regular matrix pencil λE − A
can be transformed into λẼ − Ã, where

Ẽ = PEQ =

In f
0

0 N

 , Ã = PAQ =

J 0
0 In∞

 , (2.3.5)

by the use of suitable nonsingular matrices P,Q ∈ Rn×n, where the block matrix

J ∈ Rn f×n f corresponds to the finite eigenvalues and has the form [62]

J = diag(J1,1, J1,2, · · · , J1,m1
, J2,1, · · · , J2,m2

, · · · , Jk,1, · · · , Jk,mk
),

where J j,q =


λ j 1
. . .

. . .

. . . 1

λ j


is the Jordan block of order n j,q with

k∑
j=1

m j∑
q=1

n j,q = n f and

λ j is a finite eigenvalues of the matrix pencil λE − A. According to [62], the number m j
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is called the geometric multiplicity of λ j, the number a j =

m j∑
q=1

n j,q is called the algebraic

multiplicity of λ j and n f is the dimension of the left and right deflating subspaces of

λE − A corresponding to the finite eigenvalues. The definition of deflating subspaces of

a matrix pencil can be found in [62]. The block matrix N in (2.3.5) corresponds to the

eigenvalues at infinity of the pencil λE − A and has the form N = diag(Nn1
, · · · ,Nnt

),

where Nn j
=


0 1
. . .

. . .

. . . 1

0


is a nilpotent Jordan block of order n j. The size of the

largest nilpotent block, denoted by µ, is called the index of the matrix pencil λE − A or

the index of the DAE (2.3.1a). This index concept is commonly called the Kronecker

index [16,33,42,52,62]. We can clearly observe that Nµ−1 , 0 and Nµ
= 0. If the matrix

E is nonsingular, then matrix pencil λE − A is of index zero (µ = 0). According to [62],

the matrix pencil λE − A is of index one if and only if it has exactly n f = rank(E) finite

eigenvalues. We note that it is possible to have n f = 0, meaning Ẽ = N, Ã = I this

implies that the spectrum of the matrix pencil λE − A has only infinite spectrum, i.e.,

σ(E,A) = σ∞(E,A). Also if E is nonsingular then n f = n which yields Ẽ = I, Ã = J,

this implies that the spectrum of the matrix pencil σ(E,A) = σ f (E,A) has only finite

spectrum. Assuming the matrix pencil λE − A has both the finite and infinite spectrum,

then the matrices B̃ and C̃ can be partitioned in blocks corresponding to the partitions

of Ẽ and Ã given by B̃ =
(
B̃T

1 B̃T
2

)T
and C̃ =

(
C̃T

1 C̃T
2

)T
. Under the coordinate

transformation x̃ = Q−1x = (x̃T
1 (t), x̃T

2 (t))T, system (2.3.3a) can be written as Weierstraß-

Kronecker canonical form which leads to an equivalent decoupled system

˙̃x1(t) = Jx̃1(t) + B̃1u(t), (2.3.6a)

N ˙̃x2(t) = x̃2(t) + B̃2u(t). (2.3.6b)

We observe that (2.3.6a) represent a standard explicit ODE and without loss of generality

the solution of (2.3.6b) can be written as

x̃2(t) = −

µ−1∑
i=0

NiB̃2u(i)(t), (2.3.7)
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since N is a nilpotent matrix with index-µ, where u(i)(t) = di

dt u(t) provided u(t) is smooth

enough, that is, at least µ−1 times differentiable. Equation (2.3.7) shows the dependence

of the solution x(t) of (2.3.1a) on the derivatives of the input function u(t). We can

observe that the higher the index-µ, the more differentiations are involved. It is only in

the index-1 case where, we have N = 0, hence x̃2(t) = −B̃2u(t), and no derivatives are

involved. According to [34, 42], since numerical differentiations in these circumstances

may cause considerably trouble numerically, it is very important to know the index-µ of

the DAE (2.3.1a) as well as details on the structure responsible for a higher index (µ > 1)

when modeling and simulating with DAEs in practice. From (2.3.6), we can observe that

the number of finite eigenvalues, n f and infinite eigenvalues, n∞ are equal to the number

of differential and algebraic equations, respectively, in a given DAE. Thus, for the case

of index-1 DAEs the number of differential equations is equal to the rank of singular

matrix E. We also note that the solutions x̃1 and x̃2 which corresponds to the differential

and algebraic part are commonly known as the slow and fast solutions, respectively

[12, 16, 33, 62]. We can also observe that the general solution of the homogeneous DAE

(2.3.2), if matrix pencil (E,A) is regular, is of the form x(t) = Q
e−tJ

0

 x̃1(0), x̃1(0) ∈ Rk,

this means that the solution space has dimension k according to [34]. We can easily prove

that the differential part of (2.3.6) inherits the stability of DAEs of the form (2.3.1), that

is, σ f (E,A) = σ(J).

Index concept of DAEs

An index of a DAE is commonly defined as the measure of the difficulties arising in the

theoretical and numerical treatment of a given DAE. According to [33], the motivation to

introduce an index is to classify different types of DAEs with respect to the difficulty to

solve them analytically as well as numerically. Sometimes the index of a DAE is defined

as a measure of how much the DAE deviates from an ODE. In the previous Section, we

have defined index-µ as the nilpotency index of a nilpotent matrix N. This index is also

known as the Kronecker index of a DAE. They are many other index concepts that exist,

see [8, 52, 61], but in this thesis we shall restrict ourselves to only three, i.e., Kronecker

index, differentiation index and tractability index. We note that all these index concepts

coincide for the case of linear DAEs with constant matrices. If we differentiate (2.3.7)

with respect to t, we obtain: ˙̃x2(t) = −

µ−1∑
i=0

NiB̃2u(i+1)(t). This means that exactly µ differ-
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entiations are needed to transform (2.3.6) into a system of explicit ordinary differential

equations. Hence, the Kronecker and the differentiation index coincide for LTI DAEs.

This type of index is called the differentiation index and it is defined as in Definition

2.3.5. According to [33], the differentiation index was introduced to determine how far

the DAE is away from an ODE, for which the analysis and numerical techniques are well

established.

Definition 2.3.5 ( [61]) The nonlinear DAE, F(t, x, ẋ) = 0, has differentiation index γ,

if γ is the minimal number of differentiations

F(t, x, ẋ) = 0,
d
dt

(
F(t, x, ẋ)

)
= 0, · · · ,

dγ

dt

(
F(t, x, ẋ)

)
= 0, (2.3.8)

in order to extract an explicit ordinary differentiation system ẋ = f (t, x) using only

algebraic manipulations.

This can be illustrated in the example below.

Example 2.3.1 Consider a semi-explicit DAE of the form,

ẋ = f (x, y),

0 = g(x, y).
(2.3.9)

Using chain rule on the constraint equation:

ẋ = f (x, y),

ẏ = −gy(x, y)−1
[
gx(x, y) f (x, y)

]
.

The DAE has a differentiation index γ = 1 provided det(gy) , 0.

In the next example, we compare the differentiation index and the Kronecker index.

Example 2.3.2 Consider a DAE of the form (2.3.1) with system matrices,

E =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , A =


0 1 0 0
1 0 0 0
−1 0 0 1

0 1 1 1

 , B =


0
0
0
−1

 and C =


0
0
1
0

 . (2.3.11)
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The matrix pencil (E,A) is regular since det(λE −A) = λ2
+ λ + 1 , 0. Using Theorem

2.3.2, we can choose nonsingular matrices, Q =


1 0 1 −1
0 1 0 0
0 0 −1 1
0 0 1 0

 and P =


1 0 0 0
−1 −1 1 0

0 1 0 0
1 0 0 1


such that (E,A) ∼

I 0
0 N

 , J 0
0 I

 , where J =

−1 −1
1 0

 and N =

0 0
0 0

 . Thus this DAE is of

Kronecker index-1, since N is of nilpotent index one. Next, we compute the differenti-

ation index. This can be done as follows: We need to first rewrite system (2.3.11) in the

semi-explicit form (2.3.9) where x =

x1

x3

 , y =

x2

x4

 , f (x, y) =

x2

x1

 and g(x, y) =

 −x1 + x4

x2 + x3 + x4

.
Thus, gy =

0 1
1 1

. Since det(gy) = −1 , 0, then DAE (2.3.11) has differentiation index-1.

Hence the Kronecker index and differentiation index coincide, that is, µ = γ = 1.

Consistent initial condition of DAEs

From system (2.3.6), we observe that (2.3.6a) is a linear differential equation which

can easily be solved when an arbitrary initial condition x̃1(0) is applied and its analytic

solution can be written as:

x̃1(t) = x̃1(0)etJ
+ etJ

∫ T

0
e−τJB̃1u(τ) dτ. (2.3.12)

We observe that the solution (2.3.12) of (2.3.6a) is always unique for any choice of the

initial value x̃1(0) while the initial value of (2.3.6b) has to satisfy the hidden constraint,

x̃2(0) = −

µ−1∑
i=0

NiB̃2u(i)(0). (2.3.13)

We can observe that, we have no enough freedom to arbitrary choose the initial values

x̃2(0). For example, if µ = 1, we have to choose the initial value such that

x̃2(0) = −B̃2u(0). For µ > 1, equation (2.3.13) is a differentiation problem, thus the

initial value x̃2(0) is fixed, and the input function u(t) has to be at least µ − 1 times

differentiable, i.e., u(t) ∈ Cµ−1. The initial value problems for (2.3.1) lead to unique

classical solutions if the initial value x(0) = x0 is consistent, that is

x(0) = Qx̃(0) = Q
(
x̃1(0)T x̃2(0)T

)T
, (2.3.14)
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where x̃1(0) is a free parameter while x̃2(0) has to satisfy (2.3.13). Thus x(0) must be a

consistent initial condition of the DAE (2.3.1a). We note that, if the initial condition x0

is inconsistent or the input function u(t) is not sufficiently smooth, then the solution of a

DAE (2.3.1a) may have impulsive modes, see [12, 62].

2.3.4 Transfer matrix representation of the Kronecker form

Using (2.3.6) and the decomposed output equation, the control problem (2.3.1) can also

be written in equivalent form

˙̃x1(t) = Jx̃1(t) + B̃1u(t), (2.3.15a)

x̃2(t) = −

µ−1∑
i=0

NiB̃2u(i)(t), (2.3.15b)

y(t) = C̃T
1x̃1(t) + C̃T

2x̃2(t). (2.3.15c)

Taking the Laplace transform of (2.3.15) and using the fact that

L{ f (n)(t)} = sn
L{ f (t)} −

n∑
k=1

sk−1 f (n−k)(0),

and simplifying we obtain,

Y(s) = C̃T
1(sI − J)−1B̃1U(s) + C̃T

1(sI − J)−1 x̃1(0)+

− C̃T
2

µ−1∑
i=0

NiB̃2
[
siU(s) −

i∑
k=1

sk−1u(i−k)(0)
]
. (2.3.16)

Recall from Section 2.2.2, in order to obtain the transfer matrix representation we need

to assume vanishing initial data x̃(0) for the case of ODEs. Here comes the answer to our

question wether it always possible to set initial data to zero also for case of DAEs. This

is discussed as follows. We have already discussed that for the case of DAEs, we always

need to apply consistent initial data x̃(0) =
(
x̃1(0), x̃2(0)

)T
, where x̃1(0) can be chosen

arbitrary, thus we can set x̃1(0) = 0 while x̃2(0) has to satisfy some constraint equation

(2.3.13) which depends on the smoothness of the input vector u(t). Setting x̃1(0) = 0,
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simplifies (2.3.16) to,

Y(s) =
[
H1(s) + H2(s)

]
U(s) + C̃T

2

µ−1∑
i=0

NiB̃2

i∑
k=1

sk−1u(i−k)(0), (2.3.17)

where H1(s) = C̃T
1(sI − J)−1B̃1 and H2(s) = −C̃T

2

µ−1∑
i=0

NiB̃2si.

Lemma 2.3.3 ( [16]) Two systems with matrix coefficients (E,A,B,C) and (Ẽ, Ã, B̃, C̃)

whose matrix pairs (E,A) and (Ẽ, Ã), respectively, are (strongly) equivalent. Their

transfer functions must coincide.

Proof 2.3.3 Let Ẽ = PEQ, Ã = PAQ, B̃ = PB and C̃ = QTC with nonsingular P and

Q. Then,

H̃(s) = C̃T(sẼ − Ã)−1B̃ = CTQ(sPEQ − PAQ)−1PB,

= CTQQ−1(sE − A)−1P−1PB,

= CT(sE − A)−1B = H(s).

From the above Lemma, H̃(s) = H1(s) + H2(s) coincides with the conventional

definition of the transfer function H(s) = CT(sE − A)−1B, since (2.3.1) and (2.3.15) are

equivalent systems, i.e., H̃(s) = H(s). Thus, the input-output function (2.3.17) can be

written as Y(s) = H(s)U(s) + P(s), where P(s) := C̃T
2

µ−1∑
i=0

NiB̃2

i∑
k=1

sk−1u(i−k)(0). This

means that assuming Ex(0) = 0 implies x̃1(0) = 0 and Nx̃2(0) = 0 as a result the hidden

polynomial P(s) is forced to zero. But, we can observe that this polynomial contains

some parts of the DAE which might be vital. Thus assuming Ex(0) = 0 may lead to

loss of important information of the DAE especially for higher index (µ > 1) DAEs.

For the case of index-1 DAE, the nilpotent matrix N = 0, thus Nx̃2(0) = 0 always

and the polynomial P(s) does not exist. Thus, for index-1 DAE assuming Ex(0) = 0

has no effect on the conventional MOR methods. However for higher index DAEs, the

nilpotent N , 0, thus Nx̃2(0) , 0 and the polynomial P(s) exists and P(s) , 0, apart

from some special cases when B̃2 = 0. We can observe that (2.3.17) can also be written

in decomposed form as

Y(s) = Y1(s) + Y2(s),
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where Y1(s) = H1(s)U(s) and Y2(s) = H2(s)U(s) +P(s) represent the input-output func-

tion of the differential and algebraic parts, respectively. We note that the H1(s) and H2(s)

are commonly called the strictly proper and the polynomial parts of H(s), respectively,

see [25, 62]. We observe that the input-output relation of the differential part is given

by Y1(s) = H1(s)U(s), where H1(s) is its transfer matrix representation and it is inde-

pendent of the index-µ of the DAE (2.3.1a) while input-output relation of the algebraic

part is given by Y2(s) = H2(s)U(s) + P(s) which depends on the index-µ of the DAE

(2.3.1a). This explains why the conventional MOR techniques based on the assumption

that Ex(0) = 0 can only be used on index-1 DAEs but become cumbersome for higher

index DAEs. This is illustrated with some numerical examples in Section 3.2.1. Hence,

the best way to apply model order reduction on DAEs is to first split the control DAE

(2.3.1) into differential and algebraic parts. Then, apply reduction on the two parts sep-

arately. According to [39, 52], transforming (2.3.1) into a Kronecker canonical form is

just in theory, but practical implementation may be difficult or impossible. This is due

to the fact that computing the Kronecker canonical form in finite precision arithmetic is,

in general, an ill-conditioned problem in the sense that small changes in the data may

extremely change the Kronecker canonical form [62]. Proper formulations and projector

methods attempt to overcome these drawbacks, allowing additionally for an extension

of the results to the time varying context [52]. These techniques provide an index char-

acterization in terms of the original problem description. This motivated us to use the

projector and matrix chain approach in order to decompose DAEs into differential and

algebraic parts as introduced by März in [42]. This is discussed in Chapter 4.

2.4 Real-life applications of DAEs

DAEs appear in many fields as mentioned earlier. In this Section, we present some of

the applications of DAEs in the real-world. After modeling these applications, they lead

to DAEs of the form (2.3.1a) with singular matrix E, since some of the rows are always

zeros as illustrated in examples below.

2.4.1 Electrical network problems

Many electrical circuit systems can be described by DAEs. This is due to the fact that,

the most commonly used method in electrical circuit networks design is the modified
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nodal analysis (MNA). This approach leads a DAE when modeling a network involving

resistor networks such as RLC network, i.e., Resistor-Inductor-Capacitor network, RC

network, i.e., Resistor-Capacitor network, RL network, i.e., Resistor-Inductor network

and so on, see [28, 43, 64]. For illustration, we consider only RLC and RC networks.

(i) RLC network. Consider a linear RLC electric network, that is, a network which

connects linear capacitors, inductors and resistors, and current sources, v(t) ∈ RnV

and ı(t) ∈ RnI . The unknowns which describe the network are the node potentials

e(t) ∈ Rn, and the currents through inductors L(t) ∈ RnL .

Following the formalism of modified nodal analysis [28, 43], we introduce: the

incidence matrices AC ∈ R
n×nC , AL ∈ R

n×nL and AR ∈ R
n×nG , which describe the

branch-node relationships for capacitors, inductors and resistors; the incidence

matrices AV ∈ R
n×nV and AI ∈ R

n×nI , which describe this relationship for voltage

and current sources, respectively. Then, the DAE model for the RLC network with

unknown x = (e, L, V )T is given by [5]
ACCAT

C 0 0
0 L 0
0 0 0

 dx
dt

=


−ARGAT

R −AL −AV

AT
L 0 0

AT
V 0 0

 x +


−AI 0

0 0
0 −I


 ıv

 . (2.4.1)

where C ∈ RnC ,nC , L ∈ RnL,nL and G ∈ RnG ,nG are the capacitance, inductance and

conductance matrices, respectively which are usually assumed to be symmetric

and positive definite.

(ii) RC network. The RC model can be derived from that of the RLC model (2.4.1)

by simply eliminating the inductor currents L. Then, the DAE model of the RC

network with unknown x = (e, V )T is given byACCAT
C 0

0 0

 dx
dt

=

−ARGAT
R −AV

AT
V 0

 x +

−AI 0
0 −I

  ıv
 . (2.4.2)

We can observe that (2.4.1) and (2.4.2) are DAEs of the form (2.3.1a).

2.4.2 Computational fluid dynamics problems

(i) Supersonic Inlet flow example. This example originates from [35]. Consider an

unsteady flow through a supersonic diffuser as shown in Figure 2.1. The diffuser
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operates at a nominal Mach number of 2.2, however it is subject to perturbations

in the incoming flow, which may be due to atmospheric variations. In nominal

operation, there is a strong shock downstream of the diffuser throat, as can be

seen from the Mach contours plotted in Figure 2.1. Incoming disturbances can

cause the shock to move forward towards the throat. When the shock sits at the

throat, the inlet is unstable, since any disturbance that moves the shock slightly up-

stream will cause it to move forward rapidly, leading to unstart of the inlet. This

is extremely undesirable, since unstart results in a large loss of thrust. In order to

prevent unstart from occurring, one option is to actively control the position of the

shock. This control may be effected through flow bleeding upstream of the dif-

fuser throat. In order to derive effective active control strategies, it is imperative to

have low-order models which accurately capture the relevant dynamics. Figure 2.2

Figure 2.1: Steady-state mach contours inside diffuser.

presents the schematic of the actuation mechanism. Incoming flow with possible

disturbances enters the inlet and is sensed using pressure sensors. The controller

then adjusts the bleed upstream of the throat in order to control the position of

the shock and to prevent it from moving upstream. In simulations, it is difficult to

automatically determine the shock location. The average Mach number at the dif-

fuser throat provides an appropriate surrogate that can be easily computed. There

are several transfer functions of interest in this problem. The shock position will

be controlled by monitoring the average Mach number at the diffuser throat. The

reduced-order model must capture the dynamics of this output in response to two

inputs: the incoming flow disturbance and the bleed actuation. In addition, total

pressure measurements at the diffuser wall are used for sensing. The response of

this output to the two inputs must also be captured. This problem is modeled using



2.4 Real-life applications of DAEs 25

Figure 2.2: Supersonic diffuser active flow control problem setup

an unsteady, two-dimensional flow of an inviscid, compressible fluid which is gov-

erned by the Euler equations. The two-dimensional integral Euler equations are

linearized about the steady state solution to obtain a semi-explicit DAE of index-1

of the form (2.3.1) with system matrices

E =

E11 E12

0 0

 , A =

A11 A12

A21 A22

 , B =

B1

B2

 , C =

C1

C2

 , x =

x1

x2

 , (2.4.3)

where E11 ∈ R
n1×n1 and A21E−1

11 E12 − A22 ∈ R
n2×n2 are nonsingular matrices due

to index-1 property and n = n1 + n2 is the dimension of the DAE.

(ii) Semidiscretized Stokes equation. In this Section, we present the semidiscretized

Stokes equation originating from [45]. Consider the instationary Stokes equation

describing the flow of an incompressible fluid

∂υ

∂t
= ∆υ − ∇p + f , (ζ, t) ∈ Ω × (0,T)

0 = divυ,
(2.4.4)

with appropriate initial condition and boundary condition. Here υ(ζ, t) ∈ Rd is the

velocity vector (d = 2 or 3 is the dimension of the spatial domain), p(ζ, t) ∈ R is the

pressure, f (ζ, t) ∈ Rd is the vector of external forces, Ω ∈ Rd is a bounded open

domain and T > 0 is the endpoint of the time interval. The spatial discretization of

the Stokes equation (2.4.4) by either the finite difference or finite element meth-
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ods on a uniform staggered grid leads to a DAE of the form (2.3.1) with system

matrices;

E =

E11 0
0 0

 , A =

A11 A12

AT
12 0

 , B =

B1

B2

 , C =

C1

C2

 , x =

υh

ph

 , (2.4.5)

where υh ∈ R
n1 and ph ∈ R

n2 are the semidiscretized vectors of velocity and

pressure, respectively, see [45]. The matrix E11 ∈ R
n1×n1 is a nonsingular mat-

rix, but for this case E11 = I, A11 ∈ R
n1×n1 is the discrete Laplace operator,

−A12 ∈ R
n1×n2 and −AT

12 ∈ R
n2×n1 are, the discrete gradient and divergence op-

erators, respectively. Due to the non-uniqueness of the pressure, the matrix A12

has a rank defect one. In this case, instead of A12 we can take a full column rank

matrix obtained from A12 by discarding the last column. Therefore, in the fol-

lowing we will assume without loss of generality that A12 has full column rank.

In this case system with matrix coefficients (2.4.5) is of index-2. The matrices

B1 ∈ R
n1×m, B2 ∈ R

n2×m and the control input u(t) ∈ Rm are the resulting from

the boundary condition and external forces, the output y(t) ∈ R` is the vector of

interest. The order n = n1 +n2 of system (2.4.5) depends on the level of refinement

of the discretization and is usually very large, whereas the number m of inputs and

the number ` of outputs are typically small.

2.4.3 Constrained mechanical problems

This example originates from [45]. We consider the holonomically constrained damped

mass-spring system as illustrated in Figure 2.3. The ith mass of weight mi is connected

to the (i + 1)st mass by a spring and a damper with constants ki and di, respectively,

and also to the ground by a spring and a damper with constants ki and δi, respectively.

Additionally, the first mass is connected to the last one by a rigid bar and it is influenced

by the control u(t). The vibration of this system is described by a DAE of the form

(2.3.1) with system matrices

E =


I 0 0
0 M 0
0 0 0

 , A =


0 I 0
K D −GT

G 0 0

 , B =


0

B2

0

 , C =


C1

0
0

 , x(t) =


p(t)

v(t)

λ(t)

 , (2.4.6)
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Figure 2.3: A damped mass-spring system with a holonomic constraint.

where p(t) ∈ Rg is the position vector, v(t) ∈ Rg is the velocity vector, λ(t) ∈ R is

the Lagrange multiplier, M = diag(m1, · · · ,mg) is the mass matrix, D and K are the

tridiagonal damping and stiffness matrices, G = [1, 0, · · · , 0,−1] ∈ R1×g is the constraint

matrix, B2 = e1 and C1 = [e1, e2, · · · , eg−1]T . Here ei denotes the ith column of the

identity matrix Ig. Thus the system is of dimension n = 2g + 1. According [45], system

(2.4.6) is of index-3 since G is a full row rank.
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Chapter 3

Model Order Reduction

In this Chapter, we introduce the Model Order Reduction (MOR) or Model Reduction. In

simple words, model order reduction can be defined as a mathematical theory to replace

a given mathematical model of a control system or a control process by a model that is

much smaller than the original model, but still describes at least approximately certain

aspects of the system or process, see [16]. This is normally achieved by preserving

the input-output relationship commonly knows as the transfer function. These system

of equations can sometimes be ODEs or DAEs. However model order reduction, was

mainly developed for ODEs, this is the reason why many methods reduce mainly linear

ODE systems and very few methods can reduce either algebraic equations or DAEs,

see [3, 9, 48, 58]. Hence, model order reduction techniques for DAEs are a lot less

developed and less well understood than the ODE ones. MOR techniques for ODEs are

often applied to DAEs [19, 49], which may lead to inaccurate reduced-order models or

reduced-order models which are very difficult to solve numerically, see [1, 2]. This is

also illustrated in Example 3.2.1 and 3.2.2.
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3.1 Introduction

Consider a LTI system

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0 (3.1.1a)

y(t) = CTx(t), (3.1.1b)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×` , the input vector u(t) ∈ Rm and output vector

y(t) ∈ R` of the system. x(t) ∈ Rn is the state vector and x0 is the initial value. The

number of state variables n is called the order of system or the state-space dimension.

m and ` are the number of inputs and outputs, respectively. If I = E, then (3.1.1) is

a standard state space system. Otherwise, (3.1.1) is a descriptor system or generalized

state space system, see [44]. According to [45], modeling of complex physical and

technical process such as fluid flow, very large system integrated (VLSI) chip design

or mechanical systems simulation, leads to descriptor systems of very large order n,

while the number m of inputs and the number ` of outputs are typically small compared

to n. Despite the ever increasing computational power, simulation of these systems in

real- time for such large scale is very difficult because of the storage requirements and

expensive computations. This is an attractive feature to apply model order reduction.

This is done by replacing (3.1.1) by a reduced-order model

Er ẋr(t) = Ar xr(t) + Bru(t)

yr(t) = Cr xr(t),
(3.1.2)

where Er,Ar ∈ R
r×r, Br ∈ R

r×m, Cr ∈ R
r×` and the reduced dimension r � n. In model

order reduction, we require the reduced-order model (3.1.2) to preserve mathematical

properties of the original model (3.1.1) such as regularity, stability and passivity. It is

also desired for the approximation error ‖y − yr‖ to be small, in a suitable norm and

the computation of the reduced-order system should be numerically reliable and more

efficient than the original model. For higher index DAEs, we may also need to preserve

the index. The biggest challenge in model order reduction is to measure the quality of

the reduced-order models, the commonly used concept is the concept of the use of the

transfer function H(s). In the next Section, we shall see that the transfer function being

accurate does not mean that the output solutions are also accurate for the case of higher

index DAEs. Hence, we require both the approximation error ‖H − Hr‖ and ‖y − yr‖ to
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be small in the suitable norm.

3.2 Conventional MOR methods

In this Section, we discuss about the conventional or traditional MOR methods. By con-

ventional MOR methods, we mean those reduction techniques originally developed to re-

duce ODEs. In [45], conventional MOR methods are called model reduction approaches

for standard state space systems. These approaches include balanced truncation [3, 63],

moment matching approximation [19, 49, 58], singular perturbation approximation [37]

and optimal Hankel norm approximation [3]. Model order reduction approaches can be

divided into two basic methods: Krylov subspace based methods or moment-matching

methods such as PRIMA [49], SPRIM [19] and the singular value decomposition (SVD)

based methods such as the balanced truncation method [45]. Overview of these methods

can be found in [3, 9, 48, 58] and also for some special applications in [29, 38, 65]. Tra-

ditionally these methods were developed for ODE dynamical systems in standard state

space system, i.e., E = I. It is just recent that MOR methods have been developed to

reduce systems in descriptor form or generalized state space system with E nonsingular

or singular, see [19,29,38,45,49]. However, little effort has been made to develop MOR

methods specifically for DAEs, i.e., E is singular. What is currently been done is to just

replace I with E in the conventional MOR method especially for the Krylov subspace

based methods, see [19, 49], but this is not always lead to good reduced-order model es-

pecially with DAEs with index great than one [2]. For the case of the SVD based meth-

ods especially the balanced truncation method, this problem has already been noticed

and solved, see [45], however the computations are too expensive and much restricted

on DAEs with special structures. In this thesis, we focus more on the Krylov subspace

based methods. This is discussed as follows. MOR techniques based on Krylov subspace

methods also known as moment matching techniques aim at generating a reduced-order

model which preserves a reasonable number of moments of the transfer function of the

original model. This is done by using projection methods. There is a large variety of

projection methods such as the Lanczos-type and the Arnoldi processes, but we shall re-

strict ourselves on Arnoldi process commonly known as PRIMA method [49]. PRIMA

method’s main features are provably passive reduced-order models and a Padé-type ap-

proximation property [19]. It employs a block version of the Arnoldi process. This is

done as follows. We choose an arbitrary s0 ∈ C as the expansion point such that the mat-
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rix pencil s0E−A is regular. In practice, s0 is chosen such that it is in some sense close to

the frequency range of interest. The frequency range of interest is usually a subset of the

imaginary axis in the complex s-plane. In order to use the Krylov subspace techniques,

we need to rewrite the transfer H(s) of the original system (3.1.1) using the identity:

H(s) = CT(sE−A)−1B = CT
[
I + (s− s0)M

]−1
R, where M = M(s0) = (s0E−A)−1E and

R = R(s0) = (s0E − A)−1B. The function H(s) admits the Taylor expansion

H(s) = h(0)
+ h(1)(s − s0) + h(2)(s − s0)2

+ · · · + h( j)(s − s0) j
+ · · ·

about s0. The coefficients h( j), j = 0, 1, . . . , are called the moments of the transfer func-

tion of system (3.1.1) about the expansion point s0. These moments can be constructed

as follows. Using the Neumann expansion [23]: (I − ηG)−1
=

∞∑
k=0

(ηG)k, where G is a

square matrix and η > 0. Then we have

H(s) =

∞∑
k=0

h(k)(s − s0)k, (3.2.1)

where h(k)
= (−1)kCTMkR, k = 0, 1, . . . defines the moments of the transfer function

around the expansion point s0. We then consider the order-r Krylov subspace generated

by M and R given by Kr(M,R) = span{R,MR, . . . ,Mr−1R}, r ≤ n, and denote by

V ∈ Rn×rm the matrix of an orthonormal basis for Kr(M,R), so that VTV = Irm. Then

we seek an approximate solution of the form x = Vxr that is,

VTEVẋr(t) = VTAVxr(t) + VTBu(t), xr(0) = VTx0 (3.2.2a)

yr(t) = CTVxr(t). (3.2.2b)

From (3.2.2), the matrices of the reduced-order model (3.1.2) are given by

Er = VTEV, Ar = VTAV, Br = VTB and Cr = VTC,

and its transfer function is given by Hr(s) = Cr
T(sEr − Ar)

−1Br. Then, we have

Hr(s) =

r∑
k=0

(−1)kCr
TMk

rRr(s − s0)k,
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where Mr = (s0Er −Ar)
−1Er and Rr = (s0Er −Ar)

−1Br. Then, the k-th moment, h(k)
r , of

the transfer function for the reduced model is given by h(k)
r = (−1)kCT

r Mk
rRr. According

to [45], the moment matching approximation problem for the DAE (3.1.1) consists in

determining a rational matrix-valued function Hr(s) at s0 has the form

Hr(s) = h(0)
r + h(1)

r (s − s0) + h(2)
r (s − s0)2

+ · · · + h(k)
r (s − s0)k

+ · · ·

where the moments h(k)
r satisfy the moment matching conditions h(k)

r = h(k),

k = 0, 1, 2, . . . , r − 1. If s0 = ∞, the h(k)
r are the Markov parameters of (3.1.1) and

the corresponding approximation problem is known as partial realization [21]. For s0,

the approximation problem reduces to the padé approximation problem [30]. For an

arbitrary complex number s0 , 0, the moment matching approximation of the problem

of rational interpolation or shifted Padé approximation that has been considered in [23].

Apart from a single interpolation point one can construct a reduced-order system with

the transfer function Hr(s) that matches H(s) at multiple points {s0, s1, · · · , sk}. Such as

approximation is called a multi-point Padé approximation or a rational interpolant [30].

3.2.1 Limitation of conventional MOR methods

In this Section, we discuss the limitations of conventional MOR methods. We note that

for some special cases conventional MOR methods can be used to reduce higher index

DAEs and lead to accurate reduced-order models. But in general, conventional MOR

methods may not always lead to accurate reduced-order models, so one has to be very

careful. Using conventional MOR methods may lead to reduced-order models which

lead to wrong solutions or they are very difficult to solve numerically especially those

with index higher than one. This is illustrated in Example 3.2.1 and 3.2.2.

Example 3.2.1 This example originates from [2]. Consider an index-2 DAE of the form
(3.1.1) with system matrices

E =



1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0


, A =



−4 2 −1 1 0.5
1 −1 1 0 −0.5
−1 1 0 1 0

1.25 2.25 0 −4 1
−0.5 −0.5 0 1 0


, C =



0
0
1
1
0


.

This system is solvable since the polynomial det(λE − A) = 2λ + 3 does not vanish

identically and in addition, we assume that input function u is differentiable in the desired
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time interval and x(0) is a consistent initial condition. In this example we consider two

different cases of control input matrix B with input data u(t) = cos(t).

(i) If B =
(
−1 0 0 0 0

)T
, then the consistent initial condition is given by

x(0) =
(
3 1 −4 2 −1

)T
x2(0) +

(
0 0 −1

2 0 − 1
2

)T
u(0),

where x2(0) can be chosen arbitrary. We then apply the PRIMA method [49] on the

DAE. Using s0 = 0 as the expansion point. We were able to obtain a reduced-order

model of dimension 3. We observed that the reduced-order model is an ODE. We com-

pared the transfer function of the original model with that of the reduced-order model.

We observed that the transfer functions coincide with a very small approximation error

as shown in Figure 3.1. Then, we numerically solved the reduced-order model and the

Figure 3.1: Comparison of the transfer function and error.

original DAE model using the Matlab software implicit ODE solver ode15s. We ob-

served that the solution of the original model coincides with that of the reduced-order

model (PRIMA model) as shown in Figure 3.2. Thus, the PRIMA model is a good

reduced-order model for the original model since the reduced-order model leads to ac-

curate solutions with ease.
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Figure 3.2: Comparison of the solutions

(ii) If B =
(
0 0 0 0 −1

)T
, then the consistent initial condition is given by

x(0) =
(
3 1 −4 2 −1

)T
x2(0) +

(
2 0 − 5

4 2 7
2

)T
u(0) +

(
0 0 0 0 1

)T
u′(0),

where x2(0) can be chosen arbitrary, for our case we chose x2(0) = −0.5. Using the

same expansion point as before we obtain a reduced-order model of dimension 3. Still

the PRIMA method leads to a ODE reduced-order model and also for this case the trans-

fer function of the original model coincides with that of the reduced-order model with

very small approximation error as shown in Figure 3.3. We also numerically solved

Figure 3.3: Comparison of the transfer function and error.

the reduced-order model using the Matlab software implicit ODE solver ode15s. We



36 3 Model Order Reduction

observed that the reduced-order model leads to a good solution, provided the absolute

error tolerance is greater than 10−2 (AbsTol > 10−2) otherwise the implicit ODE solver

fails after a few time-steps. For more details of the choice of AbsTol the reader should

refer to the MATLAB documentation. In Figure 3.4, we compare the solutions of the

reduced-order model and the original model at different choices of absolute error toler-

ances. We can observe that the solutions of the PRIMA reduced-order model coincides

with that of the original model when the absolute error tolerance is greater than 10−2 in

this given time interval. We note that different Matlab software implicit ODE solvers can

have different limits but all fails if you use very small absolute error tolerance. However,

if one uses the backward Euler method this difficulty is not visible. Hence for this case

one should always use the low order implicit integration techniques instead of the the

higher order techniques.

Figure 3.4: Comparison of the solutions at different absolute error tolerances

Example 3.2.1 illustrates that using conventional MOR methods on higher index DAEs

may lead to less accurate reduced-order models. This is due to the fact that the consistent

initial condition x0 in this example depends on u and its derivative, while in the former it

only depends on u. In the previous Chapter, we have already discussed that conventional

MOR methods always assume that Ex(0) = 0, but this assumption is not valid for DAEs,

since we do not have enough freedom to choose the initial condition because of the hid-

den constraints. Making this assumption, implies that some mathematical information of

the original DAE is not inherited in the reduced-order system. However, they are some

special cases where assuming Ex(0) = 0 does not affect the conventional methods. One
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of the special cases is if the consistent initial condition x(0) of the DAEs only depends

on u, as illustrated in Example 3.2.1(i). In the previous example, we have discussed that

the difficult of solving the reduced order model from conventional MOR methods can

be avoided by using lower order implicit integration techniques such as the backward

Euler method. However, this remedy only works for some special cases. For worst case

scenario the reduced-order model may be unsolvable if one applies conventional MOR

methods on higher index DAEs as illustrated in the next example.

Example 3.2.2 In this example, we use the generator model originating from [20], as
described in Figure 3.5. In this model: The input function is the angle φin on the left

Figure 3.5: A model of a generator
axis. This axis is connected to a rotating mass with inertia J which is rotated at an angle
φ and rotates with the angular velocity ω. The torque acting on the left side of the mass
is M1 and the torque on the right side is M2. The mass is then connected to a second
axis which is connected to the actual generator. The variables describing the second
axis and the electrical quantities are then assumed to depend on each other according to
M2 = kI and u1 = kω for some constant k. The rest of the electrical circuit consists of
two resistors and one inductor. The measured output is the voltage u4. This model leads
to an index-3 DAE of the form (3.1.1) with system matrices

E =



0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 J 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 L 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



, A =



0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 −1 0 0 k 0 0 0 0
0 0 k 0 0 −1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 R1 0 0 −1 0
0 0 0 0 R2 0 0 0 −1
0 0 0 0 0 −1 1 1 1



, B =



1
0
0
0
0
0
0
0
0



, C =



0
0
0
0
0
0
0
0
1



,

(3.2.3)

and x =
(
M1 M2 ω φ I u1 u2 u3 u4

)T
, u = φin. This system is solvable since

det(λE−A) = −R1 −R2 − λL does not vanish identically. Letting J = 1, k = −1,R1 = 1,
R2 = 1, L = 1 and using s0 = 0 as the expansion point, we are able to construct the
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orthonormal basis matrix Vr using the PRIMA method. We then used this Vr to construct
PRIMA reduced-order model of (3.2.3) given by

Er =


0 0 0 0

−0.2774 0.4615 −0.1155 0.0665
−0.0595 −0.2227 0.0557 −0.0321
−0.2637 −0.1197 0.0299 −0.0172

 , Ar =


0 0 0 0

−0.2774 0.1538 −0.7175 0
−0.8326 0.0330 0.2944 −0.0278

0.4795 0.1463 0.0962 −0.0483

 ,
Br =

(
0 0.2774 0.8326 −0.4795

)T
, and Cr =

(
0 0.2774 0.0595 0.2637

)T
. (3.2.4)

We can see that the original model is reduced to dimension 4. The next step is to check

the validity of the derived reduced-order model. Unfortunately the reduced-order model

leads to a singular matrix pencil since det(λEr −Ar) = 0. Thus, the reduced-order model

is unsolvable even if the original system is solvable. Hence, we cannot use the conven-

tional MOR methods to reduce the DAE (3.2.3). If we look closely at the Krylov se-

quence V = {R,MR,M2R, · · · ,M8R}, where M = −A−1E and R = −A−1B generated

by the PRIMA method. We observe that the sequence can be written asV = {V1,V1},

whereV1 = {R,MR,M2R} and

V2 = {M3R, 1
2 M3R, 1

22 M3R, 1
23 M3R, 1

24 M3R, 1
25 M3R} is a geometric sequence with

common ratio 1
2 and M3R as the starting term. Thus, the Krylov subspace K9(M,R)

has a maximum dimension 4<9. But this information does not tell us why the PRIMA

method lead to an unsolvable reduced-order model. Hence more research is still need in

this direction.

From the above examples, we have seen that not always we can reduce DAEs using con-

ventional MOR methods and lead to accurate reduced-order models. So one has to be

very careful when applying conventional MOR methods on DAEs. We note that this lim-

itation is not just on PRIMA method but also other MOR methods developed specifically

for ODEs such as the interpolatory model reduction, see [25]. This observation has lead

to the development of new MOR methods specifically for DAEs, see [17, 18, 25, 32, 45]

and to some extent the modification of the existing MOR methods for ODEs, see [25,45].

Most of these recently developed methods are application based and some are more gen-

eral such as [25, 45]. In the next section, we briefly discuss some of these methods.
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3.3 Recent MOR methods for DAEs

In this Section, we discuss the recently developed MOR methods specifically for DAEs.

All these methods find the way of manipulating the index of the DAEs. As we have

already discussed in the previous Chapter that the index of the DAE is the source of

difficult of both reducing and solving DAEs. Earlier developed methods focused on

index reduction than preserving the index of the DAE, but this is very dangerous since

it may lead to loss of the important mathematics properties of the DAE. Other earlier

methods developed were application specific, see [17,18] and cannot be used on general

DAEs. The main characteristics of these methods is to extract differential equations from

original DAEs and then apply the conventional MOR methods.

3.3.1 Kron reduction method

There are systematic ways to extract several sets of ODEs from the original DAEs. The

algebraic variables are excluded from the DAE, e.g., using Kron reduction [14]. Ac-

cording to [13], the Kron reduction can be demonstrated as follows. Consider a linear

DAE (3.1.1a), where the variable x is partitioned into the state variables x1 and algebraic

variables, x2. Then (3.1.1a) can be rewritten as:E11 0
0 0

 x1

x2

′ =

A11 A12

A21 A22

 x1

x2

 +

B1

B2

 u(t). (3.3.1)

Assuming A22 and E11is nonsingular, we can then eliminate the algebraic variables lead-

ing to a differential equation given by

E11x′1 =
[
A11 − A12A−1

22 A21

]
x1 +

[
B1 − A22B2

]
u(t).

Then the algebraic variables x2 can be obtained from the state variables x1 and the input

function u(t) using x2 = −A−1
22 A21x1 − A−1

22 B2u(t). According to [13], the above step

is called the Kron reduction. The main idea is transforming a DAE into an ODE. This

procedure can be viewed as an index reduction procedure. In the recent publications

[17, 18] the same approach has been used to reduce the index of the DAEs from power

systems. If we also partition C as C =
(
CT

1 CT
2

)T
, we can further transform a DAE into
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an ODE given by

x̂′ = Âx̂ + B̂u(t), (3.3.2a)

y = ĈT x̂ + D̂Tu(t), (3.3.2b)

where Â = E−1
11

[
A11 − A12A−1

22 A21

]
, B̂ = E−1

11

[
B1 − A12A−1

22 B2

]
, ĈT

= CT
1 − CT

2 A−1
22 A21

and D̂T
= −C2A−1

22 B2 and x̂ = x1. Then the conventional MOR methods can be used

to further reduce system (3.3.2). We can observe that algebraic part is not reduced,

it is rather just hidden. Unfortunately it is not always possible to transform (3.1.1a)

into (3.3.1), hence this approach is much restricted on index-1 DAEs. Moreover, the

numerical solutions of the index-reduced problems will most likely suffer from the so

called "drift off" effect, see [26]. Hence this approach cannot be applied on general

DAEs.

3.3.2 Balanced truncation method for DAEs

Balanced truncation MOR method is one of the conventional MOR methods which have

been extended or modified to be able to reduce DAEs, see [45]. If we assume E = I the

balanced truncation method makes use of two Lyapunov equations,

AP + PAT
= −BBT, AT

Q + QA = −CCT. (3.3.3)

The solutions P ∈ Rn×n and Q ∈ Rn×n of these equations are called the controllabil-

ity and observability Gramians, respectively. The balanced truncation method consists

of transforming the state space system into a balanced form whose controllability and

observability Gramians become diagonal and equal, together with a truncation of those

states that are both difficult to reach and observe. This method is one of few well known

method which fulfills almost all goals of model order reduction, moreover even the ex-

istence of a priori computable error bound that allows an adaptive choice of the state

space dimension r of the reduced model depending on how accurate the approximation

is needed. The main drawback of the balanced truncation used to be that the two mat-

rix Lyapunov equations (3.3.3) have to be solved, followed by an SVD and that both

steps are computationally very expensive, since they require O(n2) storage and O(n3)

flops [3]. However, recently a low rank approximations to the solutions of Lyapunov

equations make the balanced truncation model reduction approach attractive to large



3.3 Recent MOR methods for DAEs 41

scale systems [45]. In [45], they extended the balanced truncation method to descriptor

system or DAEs, i.e., E is singular, using spectral projectors. This is done as follows:

From (2.3.5), there exist nonsingular matrices P and Q such that

E = P−1

I 0
0 N

 Q−1, A = P−1

J 0
0 I

 Q−1, (3.3.4)

where matrices J and N are defined as in Theorem 2.3.2. In [45], they used these nonsin-

gular matrices to construct the spectral projectors given by

Pr = Q

In f
0

0 0

 Q−1 and Pl = P

In f
0

0 0

 P−1, (3.3.5)

onto the right and left deflating subspaces, respectively of the matrix pencil λE − A
corresponding to the finite eigenvalues. It has been proven in [62] that the proper con-

trollability and observability Gramians are unique symmetric, positive definite solutions

of the projected generalized continuous-time Lyapunov equations

EGpcAT
+ AGpcET

= −PlBBTPT
l , Gpc = PrGpcPT

r , (3.3.6)

ET
GpoA + AT

GpoE = −PrCCTPT
r , Gpo = PT

l GpoPl. (3.3.7)

Also, the improper controllability and observability Gramians are unique symmetric,

positive definite solutions of the projected generalized discrete-time algebraic Lyapunov

equations

AGicAT
− EGicET

= (I − Pl)BBT(I − Pl)
T, PrGicPT

r = 0, (3.3.8)

AT
GioA − ET

GioE = (I − Pr)
TCCT(I − Pr), PT

l GioPl = 0. (3.3.9)

Similarly as in standard state space systems or ODEs, the controllability and observab-

ility Gramians can be used to define Hankel singular values for the descriptor system

(3.1.1) that are of great importance in model reduction via balanced truncation, see [45]

for more details about this method. From this point, we can observe that for the case of

DAEs one needs to solve four Lyapunov equations (3.3.6), (3.3.7), (3.3.8) and (3.3.9).

This means that the computational effort has now doubled and moreover in Chapter 2, we

have already discussed that computing the Kronecker canonical form in finite precision

arithmetic is, in general, an ill-conditioned problem. Hence numerical computational of
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spectral projectors (3.3.5) may not be feasible for general DAEs. However, for some

structured problems arising in circuit simulation, multibody systems and computational

fluid dynamics, these projectors can be constructed in an explicit form that signific-

antly reduces the computation complexity of the balanced truncation method for DAEs.

Consider the matrices GpcET
GpoE and GicAT

GioA. According to [45], these matrices

play the same role for DAEs as the product of controllability and observability Grami-

ans for standard state space systems. Since the proper and improper controllability and

observability Gramians are symmetric and positive semidefinite, there exist Cholesky

factorizations

Gpc = RpRT
p, Gpo = LpLT

p, Gic = RiR
T
i , Gio = LiL

T
i , (3.3.10)

where the matrices Rp, Lp, Ri, Li ∈ R
n×n are Cholesky factors of the Gramians. In

this case the proper Hankel singular values of system (3.1.1) can be computed as the n f

largest singular values of the matrix LT
pERp, and the improper Hankel singular values

of (3.1.1) are the n∞ largest singular values of the matrix LT
i ARi. The square roots

of the largest n f eigenvalues of the matrix GpcET
GpoE denoted by ζ j, are called the

proper Hankel singular values of the continuous-time DAE (3.1.1). The square roots

of the largest n∞ eigenvalues of the matrix GicAT
GioA, denoted by θ j, are called the

improper Hankel singular values of the system (3.1.1). n f and n∞ are the dimensions

of the deflating subspaces of the matrix pencil λE − A corresponding to the finite and

infinite eigenvalues, respectively. Assume that the proper and improper Hankel singular

values are order decreasingly, i.e., ζ1 ≥ ζ2 ≥ · · · ≥ ζn f
≥ 0 and θ1 ≥ θ2 ≥ · · · ≥ θn∞

≥ 0.

Definition 3.3.1 ( [45]) A realization
[
E,A,B,C

]
of the transfer function H(s) is called

balanced if

Gpc = Gpo =

Σ 0

0 0

 and Gic = Gio =

0 0

0 Θ

 ,
where Λ = diag(ζ1, . . . , ζn f

) and Θ = diag(θ1, . . . , θn∞
).

According to [45], for a minimal realization
[
E,A,B,C

]
with a c-stable matrix pencil

λE − A, it is possible to find nonsingular transformation matrices Wb and Tb such that

the transformed realization
[
WT

b ETb,W
T
b ATb,W

T
b B,CTTb

]
is balanced. These matrices
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are given by

Wb =
[
LpUpΣ

−1/2, LiUiΘ
−1/2

]
, Tb =

[
RpVpΣ

−1/2, RiViΘ
−1/2

]
. (3.3.11)

Observe, however, as for the ODEs, the balancing transformation for DAEs is not unique

[45]. It should also be noted that for the matrices Wp and Tb as in (3.3.11), we have

Eb = WT
b ETb =

In f
0

0 E2

 , Ab = WT
b ATb =

A1 0
0 In∞

 ,
Bb = WT

b B =

B1

B2

 , Cb = TT
b C =

C1

C2

 , (3.3.12)

where the matrix E2 = Θ
−1/2UT

i LT
i ERiViΘ

−1/2 is nilpotent and the matrix

A1 = Σ
−1/2UT

pLT
pARpVpΣ

−1/2 is nonsingular. Thus, the pencil λEb − Ab of a balanced

DAE is in a form that resembles the Weierstraß-Kronecker canonical form discussed in

Section 2.3.3. We can observe that the balanced DAE (3.3.12) can be decoupled into

differential and algebraic parts. These two parts can then be reduced separately. For

the balanced system (3.3.12), the differential states related to the small proper Hankel

singular values Σ are difficult to reach and to observe at the same time. The truncation of

these states essentially does not change system properties [45] and reduces the order of

the differential part. Unfortunately, this does not hold for the improper Hankel singular

values. If we truncate the algebraic states that correspond to the small non-zero improper

Hankel singular values, then the pencil of the reduced-order system may get finite eigen-

values in the closed right half-plane, see [36]. In this case the approximation may be

inaccurate. According to [45], reducing the order of the algebraic subsystem of system

(3.3.12) is equivalent to the balanced model reduction of the discrete-time system

ξk+1 = E2ξk + B2uk,

y2,k = C2ξk.

The Hankel singular values of this system are just the improper Hankel singular values

of (3.1.1), see [45]. Since we truncate only the states corresponding to the zero im-

proper Hankel values, the polynomial part of the transfer function H(s) of the reduced

and original model are equal and the index of the system is equal to the degree of the

polynomial part plus one. In this case the error system is strictly proper, and we have the
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following H∞− norm error bound [45]

‖H(s) −Hr(s)‖H∞ ≤ 2(ζ` f +1 + · · · + ζn f
).

Existence of the error bound is an important property of the balanced truncation model

reduction approach for DAEs. It makes this approach preferable compared, for instance,

to moment matching techniques [45]. However the balanced truncation model reduc-

tion approach for DAEs is computationally very expensive and it relies on Weierstraß-

Kronecker canonical form to construct the spectral projectors (3.3.5). This limits its

application to DAEs with special structure. Hence alternative procedures are required to

decouple the DAE more efficiently.

3.3.3 Interpolatory projection method for DAEs

In this Section, we discuss the interpolatory projection method which was extended in

order to reduce DAEs of the form (3.1.1) accurately. This extension is proposed in [25].

Consider the reduced-order model (3.1.2) with system matrices

Er = WTEV, Ar = WTAV, Br = WTB and Cr = VTC, (3.3.13)

where the n× r projection matrices V and W determine the subspaces of interest and can

be computed in many different ways depending on the model order reduction method.

According to [25], in the projection-based interpolatory model reduction methods, the

choice of V and W enforces certain tangential interpolation of the transfer function H(s).

In [25], they stress that extending interpolatory model order reduction from standard

state space systems with E = I to descriptor systems (DAEs) with singular E is not as

simple as replacing I by E. This is illustrated in [25], by example showing that the naive

approach may lead to a poor approximation with an unbounded error H(s) − Hr(s) al-

though the classical interpolatory subspace conditions are satisfied. According to [25],

the reason is simple, even though E is singular, Er may genetically be a nonsingu-

lar matrix . Then the transfer function Hr(s) of the reduced-order model (3.3.1) is

proper, although H(s) might be improper. In this case H(s) can be decomposed as

H(s) = Hsp(s) + P(s), where Hsp(s) and P(s) denote the strictly proper and the poly-

nomial parts of H(s), respectively. Hence, special care needs to be taken in order to

match the polynomial part of P(s). This agrees with our observation in Section 2.3.4.
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In [25], they modified the classical interpolatory subspace condition in order to enforce

bounded error using spectral projectors, see [25] for more details. In their modified inter-

polatory subspace condition they ensured that the polynomial part of Hr(s) has to match

P(s) exactly. Based on the literature from [25], the interpolatory projection methods for

descriptor systems which we call DAEs in this thesis is briefly discussed as follows. In

order to have boundedH2 andH∞ errors, the polynomial part of Hr(s) has to match the

polynomial part of H(s) exactly, see [25]. They enforced that the transfer function Hr(s)

of the reduced order model (3.3.13) to have the decomposition Hr(s) = Hspr
(s) + Pr(s)

with Pr(s) = P(s). This implies that the error transfer function does not contain a poly-

nomial part, i.e.,

Herr(s) = H(s) −Hr(s) = Hsp(s) −Hspr
(s)

is strictly proper meaning lim
s→∞

Herr(s) = 0. Clearly if Hspr
(s) interpolates Hsp(s), we

can be able to enforce that Hr(s) interpolates H(s). According to [25], the spectral

projectors Pl and Pr as defined in (3.3.5) plays a vital role in interpolatory-based model

reduction. This lead to the following theorem that provides the projection matrices W
and V satisfying subspace conditions such that the reduced-order model Hr(s) obtained

by projections as in (3.3.13) will not only satisfy the interpolation conditions but also

match the polynomial part of H(s).

Theorem 3.3.1 ( [25]) Given a full-order model H(s) = C(sE−A)−1B+D, define Pl and

Pr to be the spectral projectors onto the left and right deflating subspaces of the matrix

pencil λE − A corresponding to the finite eigenvalues. Let the columns of W∞ and V∞
span the left and right deflating subspaces of λE − A corresponding to the eigenvalue

at infinity. Let σ, µ ∈ C be interpolation points such that sE − A and sEr − Ar are

nonsingular for s = σ, µ and let b ∈ Cm and c ∈ C`. Define V f and W f such that

Im(V f ) = span{((σE − A)−1E) j−1(σE − A)−1PlBb, j = 1, · · · ,N},

Im(W f ) = span{((µE − A)−1E) j−1(µE − A)−1PT
r CTc, j = 1, · · · ,M}.

Then, with the choice of W =
[
W f ,W∞

]
and V =

[
V f ,V∞

]
, the reduced-order model

Hr(s) = Cr(sEr − Ar)
−1B + Dr obtained via projection as in (3.3.13) satisfies

1. Pr(s) = P(s),

2. H(`)(σ)b = H(`)
r (σ)b for ` = 0, 1, · · · ,N − 1,

3. cTH(`)(µ) = cTH(`)
r (σ) for ` = 0, 1, · · · ,M − 1.
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If σ = µ, we have, additionally, cTH(`)(µ)b = cTH(`)
r (σ)b for ` = 0, · · · ,M + N + 1.

The proof of this theorem can be found in [25]. In this proof, they were able to show

that the matrices of the reduced-order model (3.3.13) have the form

Er =

WT
f EV f 0
0 WT

∞EV∞

 , Ar =

WT
f AV f 0
0 WT

∞AV∞

 ,
Br =

WT
f B

WT
∞B

 , Cr =
(
WT

f C WT
∞C

)
. (3.3.14)

From (3.3.14), we can observe that the reduced-order model is decoupled into differen-

tial and algebraic part. Also, from Theorem 3.3.1 we can observe that the interpolatory

projection method is only applied on the differential part and the algebraic part is un-

reduced. This makes sense since in [25] , they emphasize the polynomial part of H(s)

and Hr(s) to be exact. The model reduction approach also involves the explicit computa-

tion of the spectral projectors (3.3.5), which could be numerically infeasible for general

large-scale problems. Hence this limits it application to general DAEs.

3.4 MOR methods for algebraic systems

Currently, there is no yet known published MOR method specifically for algebraic sys-

tems. However there is a lot of progress made in reducing algebraic systems from elec-

trical networks especially the resistor networks, see [15, 59]. The underlying method

used is the Kron reduction method [32]. This method is used in [15, 59], to reduce res-

istor networks. The basic idea of the Kron reduction method for algebraic systems can

be discussed as follows. We note that most of the literature presented in this Section

is from [59]. Consider a linear resistor electric network, that is, a network which con-

nects linear resistors and current sources, ı(t) ∈ RnI . The unknowns which describe the

network are the node potentials e(t) ∈ Rn. Following the formalism of modified nodal

analysis (MNA), we introduce: the incidence matrix AR ∈ R
n×nG , which describe the

branch-node relationships for resistors; the incidence matrix AI ∈ R
n×nI , which describe

this relationship for current sources. Then the model for a resistor network for the un-

known v is given by

ARGAT
Rv = −AI ı, (3.4.1)
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where G is the conductance matrix. For convenience (3.4.1) can be written as

Gv = iin, (3.4.2)

where G = ARGAT
R is symmetric positive semidefinite matrix and iin = −AI ı are in

injected node currents. Since currents can only be injected in external nodes, and not in

internal nodes of the network, system (3.4.2) can be reordered to obtain the following

partitioned structure:G11 G12

G
T
12 G22


ve

vin

 =

b
0

 ı, (3.4.3)

where ve ∈ R
ne and vin ∈ R

ni are the voltages of external and internal nodes, respectively,

and b ∈ Rne×nI is the incidence matrix for the current injections. The next step is to

reduce (3.4.3). The most trivial reduction is to eliminate all the internal nodes which are

not connected to the external currents which leads to a reduced linear system which is

given by

Grvr = bı, (3.4.4)

where Gr = G11 − G12G
−1
22G

T
12 ∈ R

ne×ne and vr = ve. We note that Gr is the Schur

compliment of G22. Thus the system is reduced from n to ne. This is illustrated in the

next example.

Example 3.4.1 Consider a resistor network with incidence matrices

AR =



1 0 0 0 0 0
−1 1 0 1 0 0

0 −1 −1 0 1 0
0 0 1 0 0 0
0 0 0 −1 −1 1
0 0 0 0 0 −1


, AI =



−1 0 0
0 0 0
0 0 0
0 −1 0
0 0 0
0 0 1


, (3.4.5)

and the conductance matrix given by G = diag
(
G1,G2,G3,G4,G5,G6

)
. Thus substitut-

ing (3.4.5) and the conductance matrix into (3.4.1). We obtain a linear system of order 6
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given by

G1 −G1 0 0 0 0
−G1 G1 + G2 + G4 −G2 0 −G4 0

0 −G2 G2 + G3 + G5 −G3 −G5 0
0 0 −G3 G3 0 0
0 −G4 −G5 0 G4 + G5 + G6 −G6

0 0 0 0 −G6 G6





v1

v2

v3

v4

v5

v6


=



1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 −1




ı1
ı2
ı3

 . (3.4.6)

After reordering the above system, we obtain a system in a partitioned structure of the
form (3.4.3) given by

G1 0 0
... −G1 0 0

0 G3 0
... 0 −G3 0

0 0 G6

... 0 0 −G6

· · · · · · · · · · · · · · · · · · · · ·

−G1 0 0
... G1 + G2 + G4 −G2 −G4

0 −G3 0
... −G2 G2 + G3 + G5 −G5

0 0 −G6

... −G4 −G5 G4 + G5 + G6





v1

v4

v5

· · ·

v2

v6

v3


=



1 0 0
0 1 0
0 0 −1
· · · · · · · · ·

0 0 0
0 0 0
0 0 0




ı1
ı2
ı3

 .

We can observe that the voltages of the external and internal nodes are given by

ve =
(
v1 v4 v5

)T
, vin =

(
v2 v6 v3

)T
and the incidence matrix for current injections

given by b =


1 0 0
0 1 0
0 0 −1

 . For convenience, we can set all the resistors to Gi = 1,

i = 1, 2, · · · , 6. Thus, we can now eliminate all the internal nodes which are not connec-
ted to the external currents which leads to a reduced-order system

0.50 −0.25 −0.25
−0.25 0.50 −0.25
−0.25 −0.25 0.50



v1

v4

v5

 =


1 0 0
0 1 0
0 0 −1

 ı, (3.4.7)

Hence the original system (3.4.6) is reduced to a reduced-order system (3.4.7) of di-

mension 3 using Kron reduction method.

This technique is also known as reduction by Elimination Internal Nodes in [59]. In

practice, since the number ne of terminals is usually much smaller than the number ni

of internal unknowns, in terms of unknowns this leads in general to a huge reduction.

According to [59], in many cases, however, elimination of all internal nodes leads to a

dramatic increase in the number of resistors and is hence not advisable. However, if you
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construct an efficient way of finding these specific internal nodes, that cause the most

fill-in can greatly improve this reduction procedure. In [59], they were able to solve this

problem by using the graph and matrix reordering algorithms that can be applied to very

large scale networks. Two algorithms: fastR and reduceR, for efficient computations

with large resistors networks were developed, see [59] for more details. However these

algorithms are much restricted on the resistor networks, hence reduction MOR methods

for general algebraic systems still need to be developed.
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Chapter 4

Decoupling of DAEs using special
projectors

In Section 2.3, we discussed the decoupling of DAEs into differential and algebraic parts.

This was done by transforming the DAE into a Weierstraß-Kronecker canonical form.

However, this form is numerically infeasible, thus it can not be used in practice. Other

tools that can be used to decoupled DAEs are the Drazin inverses and spectral projectors.

According to [42], these tools are much restricted on linear constant DAEs and there are

no sufficiently good ideas on appropriate generalizations for variable coefficient linear

DAEs and nonlinear ones, respectively. This motivated März to decouple DAEs in a

different way using special projector and matrix chain [22]. Fortunately, the matrix and

projector chain approach applies also in the case of general variable coefficient equa-

tions, see [27]. According to [42], there is some first experience to use these decoupling

via linearizations for lower index nonlinear problems, in particular. These projectors

are approved to be a useful tool, e.g., for stating local solvability, asymptotical stability,

see [40]. Actually, some of the most important questions in discussing DAEs seem to be

whether the DAE induces a vector field on a manifold and how the state manifold can



52 4 Decoupling of DAEs using special projectors

be described in terms of the original DAE (cf. [50, 51]). Also from this point of view

the canonical projector chain has proved its value, see [41]. In [42], these matrix and

projector chain were extended to linear constant coefficient DAEs. In this Chapter, we

discuss the März decoupling procedure for linear constant coefficient DAEs based on the

content in her paper [42].

4.1 März decoupling method

In this Section, instead of using the Weierstraß-Kronecker canonical form, we use pro-

jector and matrix chain to decouple DAEs into differential and algebraic parts. This is

done iteratively, based on the literature from [42] as follows. Consider linear constant

coefficient DAEs of the form

Eẋ = Ax + Bu, x(0) = x0, (4.1.1)

where E,A ∈ Rn×n, B ∈ Rn×m with E singular and the input vector u ∈ Rm. We intend to

decouple (4.1.1) into differential and algebraic parts, using projector and matrix chains.

The construction of these projector and matrix chains is based on the definition of the

tractability index below.

Definition 4.1.1 (Tractability index [42]) If we assume that (4.1.1) is solvable, i.e., the

matrix pair (E,A) is regular. We define a matrix and projector chain by setting

E0 := E and A0 := A, then

E j+1 := E j − A jQ j, A j+1 := A jP j, for j ≥ 0, (4.1.2)

where Q j are projectors onto Ker E j and P j = I −Q j. There exists an index µ such that

Eµ is nonsingular and all E j are singular for all 0 ≤ j < µ − 1. This type of index is

called the tractability index and we say that the system (4.1.1) has tractability index-µ.

Next, we use the matrix and projector chain defined in (4.1.2) to decouple (4.1.1) as

follows. For the initial step, we set: E0 := E, A0 := A. Then (4.1.1) can be written as

E0 ẋ = A0x + Bu. (4.1.3)
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We then choose projector Q0 such that it projects onto the nullspace of E0, i.e.,

Im Q0 = Ker E0 and its complementary projector P0 := I −Q0.

At step 1, we have to define matrices, E1 := E0 − A0Q0, A1 := A0P0, which satisfy

the identities

E1P0 = E0, A1 − E1Q0 = A0. (4.1.4)

Substituting the identities (4.1.4) into (4.1.3), we obtain:

E1

[
P0 ẋ + Q0x

]
= A1x + Bu. (4.1.5)

If we assume E1 to be nonsingular, then (4.1.5) can be written as

P0 ẋ + Q0x = E−1
1

[
A1x + Bu

]
. (4.1.6)

Since E1 nonsingular, then we say that the DAE (4.1.1) is of tractability index-1 or

index-1 DAE, since the subscript of E1 is µ = 1. We can observe that by left multiplying

(4.1.6) by P0 and Q0, we obtain the differential and algebraic parts, respectively of the

DAE (4.1.1). Thus, the decoupled equivalent system of (4.1.1) with its output equation

can be written as:

ẋP = P0E−1
1 A0xP + P0E−1

1 Bu, (4.1.7a)

xQ = Q0E−1
1 A0xP + Q0E−1

1 Bu, (4.1.7b)

y = CTxP + CTxQ, (4.1.7c)

where xP := P0x and xQ := Q0x. Thus (4.1.7a) and (4.1.7b) are the differential and

algebraic parts of system (4.1.1) and (4.1.7c) is the decomposed output equation.

If E1 is singular, we need to repeat the process iteratively as follows: Assume matrices

E j,A j ∈ R
n×n and the projectors Q j ∈ R

n×n onto Ker E j, and P j = I −Q j, j > 0 satisfy:

E jQ j = 0, Q2
j = Q j, Q j + P j = I. We also assume that the following form of system

(4.1.1) holds, then

E j

[
P j−1 · · ·P0 ẋ + Q0x + · · · + Q j−1x

]
= A jx + Bu. (4.1.8)
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Equation (4.1.8) coincides with (4.1.5) for j = 1. Then, we define the matrices

E j+1 := E j − A jQ j, A j+1 := A jP j,

which satisfy the identities

E j+1P j = E j, A j+1 − E j+1Q j = A j.

Using the above identities in (4.1.8), we obtain [42]

E j+1

[
P j · · ·P0 ẋ + Q0x + · · · + Q jx

]
= A j+1x + Bu. (4.1.9)

This procedure can be continued indefinitely, but after a finite number of iterations, we

end up with a non-singular matrix Eµ. Then, we have Eµ+ j = Eµ, Aµ+ j = Aµ ∀ j ≥ 0.

The index-µ is the so called the tractability index of the DAE (4.1.1) or simply the index

of the DAE. For j = µ − 1, the form (4.1.9) becomes:

Eµ

[
Pµ−1 · · ·P0 ẋ + Q0x + · · · + Qµ−1x

]
= Aµx + Bu. (4.1.10)

Since Eµ is nonsingular, we have,

Pµ−1 · · ·P0 ẋ + Q0x + · · · + Qµ−1x = E−1
µ

[
Aµx + Bu

]
. (4.1.11)

Equation (4.1.11) is the generalization of (4.1.6). Also, the projectors form a generalized

decomposition of the identity,

I = Pµ−1 · · ·P0 + Q0 + · · · + Qµ−1. (4.1.12)

It can be proved that the projectors product Pµ−1 · · ·P0 in this decomposition are not

projectors, i.e. (Pµ−1 · · ·P0)2 , Pµ−1 · · ·P0, ∀µ > 1, if we only use Definition (4.1.2)

to construct projector chain. Moreover, to decompose higher index DAEs (µ > 1) into

differential and algebraic parts, we need to use other decompositions of the identity

matrix. Thus, we need to choose somewhat special projectors Q j within (4.1.2), in order

to obtain an appropriate tool for decoupling the DAE (4.1.1). This is done by introducing

an additional constraint [42]

Q jQi = 0, j > i (4.1.13)
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in the projector and matrix chain construction. We use this condition (4.1.13) to obtain

the absorption properties below:

P jQi = Qi, Q jPi = Q j, ∀ j > i,

which in turn imply, P jP j−1 · · ·P0 = I−
j∑

i=0

Qi, ∀ j > 0. We use the absorption properties

to come up with other decompositions of the identity matrix. Hence to decouple (4.1.11),

we need to first choose special projectors Q j, j > 0 that satisfy (4.1.13). We note that

these special projectors that satisfy (4.1.13) exist in practice and their construction is

well discussed in [44]. According to [42], to decouple (4.1.1), we need to decompose

the identity matrix into two ways:

I = P0 + Q0 = Πµ−1 + Πµ−2Qµ−1 + · · · + Π0Q1 + Q0, (4.1.14)

I = Pµ−1 + Qµ−1 = Π
∗
0 + Q0Π

∗
1 + · · · + Qµ−2Π

∗
µ−1 + Qµ−1, (4.1.15)

where Π j := P0P1 · · ·P j, Π
∗
j = P jP j+1 · · ·Pµ−1, j = 0, 1, . . . , µ − 1. If (4.1.13) holds

then both decompositions of identity matrix are made up of mutually orthogonal pro-

jectors. We can now use these two decompositions to decompose higher index DAE into

differential and algebraic equations. This done as follows: Decomposition (4.1.14) is

used to define the differential and algebraic components:

xP := Πµ−1x, xQ,0 := Q0x, xQ,i := Πi−1Qix, i = 1, . . . µ − 1. (4.1.16)

The second decomposition (4.1.15) is used to derive the differential and algebraic parts.
In general, using the decompositions (4.1.14) and (4.1.15), provided (4.1.13) is valid, we
can decompose DAEs with arbitrary index into differential and algebraic parts. Without
loss of generality, if the DAE (4.1.1) is of tractability index-µ, then its decoupled system
is given by

ẋP = Π∗0E−1
µ (AµxP + Bu), xP(0) = Πµ−1 x(0), (4.1.17a)

xQ,µ−1 = Πµ−2Qµ−1E−1
µ (AµxP + Bu), (4.1.17b)

xQ,i = Πi−1QiΠ
∗
i+1E−1

µ (AµxP + Bu) +

µ−1∑
j=i+1

Πi−1Qi, j ẋQ, j, i = µ − 2, . . . 0, (4.1.17c)
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where, Qi, j =

QiQi+1, j = i + 1,

QiPi+1 . . .P j−1Q j, j > i + 1

Then, solution (4.1.1) can be obtained using the formula x = xP +

µ−1∑
i=0

xQ,i. Equations

(4.1.17a)-(4.1.17c) can be solved in the following way: first, the differential part xP is

computed from the purely differential equation (4.1.17a); then the algebraic parts are

computed, starting from the last one, xQ,µ−1, given by (4.1.17b), and substituting the

computed values in the last but one equation for xQ,µ−2, given by (4.1.17c) for i = µ− 2,

and so on, up to the first equation for xQ,0. We observe that at each substitution, an

additional time derivative appears. In the next example, we illustrate the decoupling of

index-1 DAE using März decoupling procedure.

Example 4.1.1 Consider a semi-explicit index-1 DAE with the following system matrices:

E =

E11 E12

0 0

 , A =

A11 A12

A21 A22

 , B =

B1

B2

 and C =

C1

C2

 . (4.1.18)

We assume E11 ∈ R
n1,n1 and A21E−1

11 E12 − A22 ∈ R
n2×n2 are nonsingular blocks due to

index-1 property and n = n1 + n2 is the dimension of the DAE. Let E0 = E and A0 = A.

We can then choose projectors Q0 and P0 given by

Q0 =

0 −E−1
11 E12

0 I

 and P0 =

I E−1
11 E12

0 0

 , (4.1.19)

such that Im Q0 = Ker E0 and P0 = I − Q0. Next, we compute E1 = E0 − A0Q0 given

by:

E1 =

E11 (I + A11E−1
11 )E12 − A12

0 A21E−1
11 E12 − A22

 . (4.1.20)

Since E1 is nonsingular, thus (4.1.18) is indeed an index-1 DAE. Substituting Equations

(4.1.18)-(4.1.20) into (4.1.7), we obtain the decoupled system of (4.1.18) using März

decoupling procedure. This leads to a decoupled system of dimension 2n. Hence this

decoupling procedure does not preserve the dimension of the DAE.

In [42, Sec. 2], it is shown that the projectors P j may be chosen such that they are ca-

nonical, i.e., the related decoupling becomes complete. This implies that (4.1.17) can be
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decoupled completely using the canonical projectors. In [42], März also compared these

projectors with spectral projector decoupling and she was able to show that P0P1 · · ·Pµ−1

represents in fact the projector onto the subspace corresponding to the finite eigenvalues

of the matrix pencil (E,A) along its infinite eigenspace.

Remark 4.1.1 The tractability index-µ is independent of the choice of the projectors Q j

and it coincides with the differentiation and Kronecker index for the case of linear con-

stant coefficient DAEs. The tractability index concept is numerically feasible compared

to other index concepts because it does not involve computing derivatives arrays.

However, the drawback of the projector and matrix approach used to be the computa-

tionally expensive construction of projectors Q j onto the nullspace of E j for large-scale

sparse matrices. The standard way to compute these projectors is to use SVD or alike

decompositions to find the nullspace of the singular matrix E j, which can be very ex-

pensive for very large-size matrices. Fortunately, they have been successful development

in efficient construction of such projectors, see [66] for more details. This is briefly dis-

cussed below. We discuss a fast way to construct projector Q j onto the nullspace of E j

of large sparse matrix. This approach uses the sparse LU decomposition- based routine

presented in [66], called LUQ. This routine decomposes a singular sparse matrix E j,

into ET
j = L j

U j 0
0 0

 R j, where L j,R j ∈ R
n×n are nonsingular matrices, U j ∈ R

r×r is a

nonsingular upper triangular matrix, r is the rank E j. Using this routine as a starting

step and using the fact that the nullspace of E j can be computed via its left nullspace of

ET
j, we can compute projectors Q j onto nullspace of E j in an optimal way. Hence, this

algorithm can be used to compute projectors Q j onto the nullspace of E j for large sparse

matrices and it is numerically tested on large-scale sparse matrices, see [66]. We have

discussed how to decouple constant coefficients linear DAEs using the März decoupling

procedure. This procedure can be implemented numerically and leads to good solutions.

However the März decomposition procedure has two main limitations.

(i) It can easily proved that the DAE (4.1.1) of index-µ with dimension n leads to a

decoupled system (4.1.17) of total dimension n(µ + 1). Thus the März decoupling

procedure does not preserve the dimension of the DAEs, see [44].

(ii) This decoupling procedure does not also preserve the spectrum of the matrix pencil.

Hence it is impractical to apply model order reduction on the decoupled system (4.1.17).
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Chapter 5

Decoupling of DAEs using special
bases

In Chapter 4, we have already discussed that the März decoupling procedure which uses

projector and matrix chain to decouple the DAE into one differential and µ algebraic

parts. However, this decoupling procedure leads to a much larger decoupled system

of total dimension n(µ + 1). This limits us from using März decoupling procedure in

its original form to apply model order reduction. The reason of the increase in the

dimension of the decoupled system is due to the use of projectors whose column rank

is always less than their respective dimension. This introduces some redundancy into

the decoupled system. In this Chapter, we present away of avoiding this redundancy.

The main idea is to decouple the DAE using the linearly independent columns of the

projector matrices intend of using the projectors matrices themselves.
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5.1 Modification of März decoupling procedure

In this Section, we propose a procedure to modify the März decoupling procedure in

order to preserve the mathematical properties of the DAE. The main idea of this proced-

ure is to use bases of the projectors instead of the full projectors. Our main tool is the

Rank-Nullity theorem below.

Theorem 5.1.1 (Rank-Nullity Theorem [47]) Let V and W be vector spaces over a

field F, and let T : V →W be a linear transformation. Assuming the dimension of V is

finite, then dim(V) = dim(Ker(T )) + dim(Im(T )).

The proof can be found in [47].

5.2 Index-1 DAEs

In Section 4.1, we observed that when decoupling index-1 DAEs using März decoupling

procedure leads to a decoupled system of dimension 2n. In this Section, we propose

a procedure which can lead to a decoupled system which preserves the dimension of

index-1 DAEs. This can be done as follows: Recall from Section 4.1, we can decouple

index-1 DAEs using März decoupling procedure leading to

ẋP = P0E−1
1 A0xP + P0E−1

1 Bu, (5.2.1a)

xQ = Q0E−1
1 A0xP + Q0E−1

1 Bu, (5.2.1b)

y = CTxP + CTxQ, (5.2.1c)

where xP := P0x ∈ Rn, and xQ := Q0x ∈ Rn are the differential and algebraic

components, respectively. The solution of the DAE is obtained using the formula,

x = xP + xQ ∈ R
n, leading to a decomposed output equation (5.2.1c). We can ob-

serve that decoupled system (5.2.1) is of dimension 2n. This is because the projectors

Q0,P0 ∈ R
n×n introduces some redundancy in the decoupled system as a result, we

obtained 2n linearly dependent equations. We can remove this redundancy as follows:

Using the rank-nullity Theorem 5.1.1. Let np = rank(E0), nq = n−np, and let us consider

a basis matrix (q, p) = {q1, · · · , qnq
, p1, · · · , pnp

} ∈ Rn made of nq independent columns
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of projection matrix Q0 and np independent columns of the complementary projection

matrix P0, such that,

Q0q = q, Q0 p = 0, P0q = 0, P0 p = p, (5.2.2)

holds. Then, we can expand x with respect to the new basis, obtaining

x = qξq + pξp, ξq ∈ R
nq , ξp ∈ R

np , which implies that xP = pξp and xQ = qξq.

Since (q, p) is a basis matrix, it is invertible, and let
(
q∗T p∗T

)T
be its inverse, where

q∗T ∈ Rnq×n and p∗T ∈ Rnp×n. Then, we have

q∗Tq = I, q∗T p = 0, p∗Tq = 0, p∗T p = I, (5.2.3)

which gives p∗Tx = ξp and q∗Tx = ξq. In terms of ξp and ξq, system (5.2.1) simplifies

to

ξ′p = Apξp + Bpu,

ξq = Aqξp + Bqu,

y = CT
p ξp + CT

q ξq,

(5.2.4)

where

Ap = p∗TE−1
1 A0 p ∈ Rnp×np , Bp = p∗TE−1

1 B ∈ Rnp×m,Aq = q∗TE−1
1 A0 p ∈ Rnq×np ,

Bq = q∗TE−1
1 B ∈ Rnq×m and Cq = qTC ∈ Rnq×`,Cp = pTC ∈ Rnp×`. We can observe

that the total dimension of the decoupled system is n = np + nq, which is equal to

the dimension of the decoupled system. This system also preserves the spectrum of

the matrix pair (E,A) since it can easily be proved that σ f (E,A) = σ(Ap). Thus this

procedure preserve the dimension of the DAE in contrast with the März decoupling

procedure. The example below illustrates how one can decouple index-1 DAE using the

modified März decoupling procedure for index-1 DAEs.

Example 5.2.1 In this example, we use system matrices (4.1.18) from Example 4.1.1,

for comparison. Thus, we use the same procedure (4.1.18)–(4.1.20) to construct matrix

and projector chain: E0,E1 and Q0,P0. Here, we only need to construct the bases of

projectors P0 and Q0, and their respective inverses given by

p0 =

I

0

 , q0 =

−E−1
11 E12

I

 and p∗T =
(
I E−1

11 E12

)
, q∗T =

(
0 I

)
. (5.2.5)
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Finally substituting (4.1.18)-(4.1.20) and (5.2.5) into (5.2.4), we obtain the modified
decoupled system of (4.1.18) with coefficient matrices given by

Ap = E−1
11

[
A11 −

(
A11E−1

11 E12 − A12

) (
A21E−1

11 E12 − A22

)−1
A21

]
∈ Rn1×n1 ,

Bp = E−1
11

[
B1 −

(
A11E−1

11 E12 − A12

) (
A21E−1

11 E12 − A22

)−1
B2

]
∈ Rn1×m,

Aq =
(
A21E−1

11 E12 − A22

)−1
A21 ∈ R

n2×n1 , Bq =
(
A21E−1

11 E12 − A22

)−1
B2 ∈ R

n2×m,

Cp = C1 ∈ R
n1×`, Cq = C2 − ET

12E−T
11 C1 ∈ R

n2×`.

We can observe that the DAE (4.1.18) is decoupled into n1 differential equations and

n2 algebraic equations, whose total dimension is n = n1 + n2. Hence the dimension

of the DAE system is preserved. If we compare Example 5.2.1 and Example 4.1.1, we

observe that the Example 5.2.1 preserves the dimension and the stability of the DAE

while Example 4.1.1 does not.

5.3 Index-2 DAEs

In this Section, we assume (4.1.1) is a DAE of tractability index-2. Thus, we need to

assume that projectors Q0 and Q1 satisfy the condition (4.1.13), that is, Q1Q0 = 0. We

can, then decouple system (4.1.1) using the März decoupling procedure. Substituting

µ = 2 into (4.1.17), we obtain a decoupled system for index-2 DAEs given by

ẋP = P0P1E−1
2 A2xP + P0P1E−1

2 Bu, (5.3.1a)

xQ,1 = Q1E−1
2 A2xP + Q1E−1

2 Bu, (5.3.1b)

xQ,0 = Q0P1E−1
2 A2xP + Q0P1E−1

2 Bu + Q0Q1 ẋQ,1, (5.3.1c)

y = CTxP + CTxQ,0 + CTxQ,1. (5.3.1d)

We observe that xP, xQ,1, xQ,0 ∈ R
n. We can observe that this time the decoupled system

(5.3.1) is of dimension 3n. Next, we need to modify system (5.3.1) as follows. We first

construct basis column matrices from the projectors. The starting point is the same as

that of index-1 DAEs. Let k0 = dim(Ker E), this implies that n0 = n − k0, and let us

consider a basis matrix (p, q) = {p1, · · · , pn0
, q1, · · · , qk0

} ∈ Rn made of k0 independent

columns of projection matrix Q0 and n0 independent columns of the complementary

projection matrix P0, such that,

Q0q = q, Q0 p = 0, P0q = 0, P0 p = p, (5.3.2)
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holds. Then the inverse of the basis matrix is (p, q)−1
=

(
p∗T q∗T

)T
, where q∗T ∈ Rk0×n

and p∗T ∈ Rn0×n. Then, we have

q∗Tq = Ik0
, q∗T p = 0, p∗Tq = 0, p∗T p = In0

. (5.3.3)

Next, we use the basis matrix (p, q) and its inverse
(
p∗T q∗T

)T
as the starting basis for

the construction of new bases for index-2 DAEs. From (4.1.14), setting µ = 2, we can

decompose the identity matrix as follows,

I = P0P1 + P0Q1 + Q0, (5.3.4)

in order to obtain the differential and algebraic components for index-2 DAEs. We need

to construct the basis of projector products P0P1 and P0Q1. We note that for the case of

index-1 DAEs, we can always have a differential part but this is not always the case for

higher index systems depending on the spectrum of the matrix pencil (E,A). We note

that in this sense linear systems can ne viewed as index-1 DAEs without a differential

part. If the spectrum of the matrix pencil has no finite spectrum, i.e., σ(E,A) = σ∞(E,A)

or det(λE − A) = c ∈ C \ {0}, ∀λ ∈ C, then decoupled system has no differential part

otherwise it has a differential part. This implies that P0P1 = 0 or P0P1 , 0 depending

on the spectrum of the index-2 DAEs. If P0P1 = 0 then we have no differential part

otherwise we have a differential part. We consider both cases in the Sections below.

5.3.1 Index-2 DAEs with a differential part

Here, we assume that the matrix pencil of (4.1.1) has at least one finite eigenvalue, that

is, P0P1 , 0. We, then construct the bases for P0P1 and P0Q1 as follows:

If we right multiply (5.3.4) by the basis column matrix p of complementary projection

matrix P0 and simplifying, we obtain,

p = P0P1 p + P0Q1 p, (5.3.5)

since Q0 p = 0. Then, if we left multiply (5.3.5) by p∗T, we obtain:

p∗T p = p∗TP0P1 p + p∗TP0Q1 p. (5.3.6)



64 5 Decoupling of DAEs using special bases

We already know that p∗T p = In0
and if we let Zp0

= p∗TP0P1 p = p∗TP1 p and

Zq0
= p∗TP0Q1 p = p∗TQ1 p, we have,

In0
= Zp0

+ Zq0
. (5.3.7)

Then, we can come up with the Theorem below [2].

Theorem 5.3.1 Let Zp0
= p∗TP1 p and Zq0

= p∗TQ1 p, then Zp0
,Zq0

∈ Rn0×n0 are pro-

jectors in Rn0 provided the constraint condition Q1Q0 = 0 holds. Moreover they are

orthogonal complimentary to each other, i.e., In0
= Zp0

+ Zq0
.

Proof 5.3.1 We need to show that Z2
p0

= Zp0
and Z2

q0
= Zq0

as follows. In this prove we

assume that projector Q0 and Q1 are chosen such that Q1Q0 = 0 holds. Then,

Z2
p0

= (p∗TP0P1 p)2
= p∗TP0P1 pp∗TP0P1 p,

= p∗TP0P1P0P1 p,

= p∗TP0(P1 − P1Q0)P1 p,

= p∗TP0(P1 −Q0)P1 p, Since P1Q0 = Q0, iff Q1Q0 = 0.

= p∗TP0P1 p = Zp0
.

Also

Z2
q0

= (p∗TP0Q1 p)2
= p∗TP0Q1 pp∗TP0Q1 p,

= p∗TP0Q1P0Q1 p,

= p∗TP0Q2
1 p, Since Q1P0 = Q1, iff Q1Q0 = 0.

= p∗TP0Q1 p = Zq0
.

Hence proved as required that Zp0
and Zq0

are projectors and are orthogonal compli-

ment to each other.

We need now to construct the bases of the projectors Zp0
and Zq0

. Let k1 = dim(Im Zq0
),

this implies n1 = n0 − k1, and let us consider a basis matrix (zp0
, zq0

) ∈ Rn0 made of

n1 independent columns of projection matrix Zp0
and k1 independent columns of the

complementary projection matrix Zq0
, such that,

Zp0
zp0

= zp0
, Zp0

zq0
= 0, Zq0

zp0
= 0, Zq0

zq0
= zq0

, (5.3.8)
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holds. Since (zp0
, zq0

) is a basis matrix, it is nonsingular, and let
(
z∗Tp0

z∗Tq0

)T
be its inverse,

where z∗Tp0
∈ Rn1×n0 and z∗Tq0

∈ Rk1×n0 . Then, we have

z∗Tp0
zp0

= In1
, z∗Tp0

zq0
= 0, z∗Tq0

zp0
= 0, z∗Tq0

zq0
= Ik1

. (5.3.9)

Hence the basis of projectors products P0P1 and P0Q1 are given by pzp0
∈ Rn×n1 and

pzq0
∈ Rn×k1 , respectively, where n0 = k1 + n1 such that,

P0P1 pzp0
= pzp0

, P0P1zq0
= 0, P0Q1 pzp0

= 0, P0Q1zq0
= zq0

. (5.3.10)

Then, we can now expand x with respect to the new bases, obtaining

x = pzp0
ξp + pzq0

ξq,1 + qξq,0, ξp ∈ R
n1 , ξq,1 ∈ R

k1 , ξq,0 ∈ R
k0 , (5.3.11)

which implies that ,

xP = pzp0
ξp, xQ,1 = pzq0

ξq,1, xQ,0 = qξq,0. (5.3.12)

The inverses of pzp0
∈ Rn×n1 and pzq0

∈ Rn×k1 are given by z∗Tp0
p∗T ∈ Rn1×n and

z∗Tq0
p∗T ∈ Rk1×n such that

z∗Tp0
p∗T pzp0

= In1
, z∗Tp0

p∗T pzq0
= 0, z∗Tq0

p∗T pzp0
= 0, z∗Tq0

p∗T pzq0
= Ik1

. (5.3.13)

Thus,

z∗Tp0
p∗Tx = ξp, z∗Tq0

p∗Tx = ξq,1, q∗Tx = ξq,0. (5.3.14)

Substituting (5.3.12) into system (5.3.1) and simplifying we obtain,

ξ
′

p = Apξp + Bpu, (5.3.15a)

ξq,1 = Aq,1ξp + Bq,1u, (5.3.15b)

ξq,0 = Aq,0ξp + Bq,0u + Aq0,1
ξ
′

q,1, (5.3.15c)

y = CT
p ξp + CT

q,1 ξq,1 + CT
q,0 ξq,0, (5.3.15d)

where

Ap = z∗Tp0
p∗TP1E−1

2 A2 pzp0
∈ Rnp×np , Bp = z∗Tp0

p∗TP1E−1
2 B ∈ Rnp×m,Aq,1 = z∗Tq0

p∗TQ1E−1
2 A2 pzp0

∈ Rk1×np ,
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Bq,1 = z∗Tq0
p∗TQ1E−1

2 B ∈ Rk1×m, Aq,0 = q∗TP1E−1
2 A2 pzp0

∈ Rk0×np ,Bq,0 = q∗TP1E−1
2 B ∈ Rk0×m,

Aq0,1
= q∗TQ1 pzq0

∈ Rk0×k1 , Cp = zT
p0

pTC ∈ Rnp×`, Cq,1 = zT
q0

pTC ∈ Rk1×`, Cq,0 = qTC ∈ Rk0 . If we

apply initial condition ξp0
(0) = z∗Tp0

p∗Tx(0), where x(0) is a consistent initial condition,

we can solve the differential part (5.3.15a), and then solve algebraic parts (5.3.15b) and

(5.3.15c). We can see that the number of differential equations is equal to np = n1 and

nq = k1 + k0 is the total number of algebraic equations and the total system dimension

is n = np + nq. It can also easily be shown that σ f (E,A) = σ(Ap) still holds. Thus

the number of differential equation is always equal to the total algebraic multiplicity of

finite eigenvalues of the matrix pencil (E,A).

5.3.2 Index-2 DAEs without a differential part

Here, we assume that the matrix pencil of (4.1.1) has no finite eigenvalues. From (5.3.4),

this implies that P0P1 = 0, thus the decomposition of the identity reduces to

I = P0Q1 + Q0.

Then, the decoupled system (5.3.1) reduces to

xQ,1 = Q1E−1
2 Bu, (5.3.16a)

xQ,0 = Q0P1E−1
2 Bu + Q0Q1 ẋQ,1, (5.3.16b)

y = CTxQ,1 + CTxQ,0. (5.3.16c)

We can observe that the decoupled system has only algebraic parts of total dimension 2n.

The modification of this decoupled system is done in the same way as the case of index

-1 DAEs since P0Q1 = P0. If, we let k0 = dim(Im Q0), this implies k1 = n−k0. Then, we

consider a basis matrix (p, q) ∈ Rn made of k0 independent columns of projection matrix

Q0 and k1 independent columns of the product of projection matrix P0Q1. Then the

inverse of the basis matrix is denoted by
(
p∗T q∗T

)T
, where q∗T ∈ Rk0×n and p∗T ∈ Rk1×n.

Thus, (5.3.16) simplifies to

ξq,1 = Bq,1u, (5.3.17a)

ξq,0 = Bq,0u + Aq0,1
ξ
′

q0
, (5.3.17b)

y = CT
q,1 ξq,1 + CT

q,0 ξq,0, (5.3.17c)
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where Bq,1 = p∗TQ1E−1
2 B ∈ Rk1×m, Bq,0 = q∗TP1E−1

2 B ∈ Rk0×m, Aq0,1
= q∗TQ1 p ∈ Rk0×k1 ,

Cq,1 = pTC ∈ Rk1×` and Cq,0 = qTC ∈ Rk0×`. We can observe that this time we do not need to

apply any initial condition rather the input function has to be smooth enough. In order

to solve (5.3.17), we first solve algebraic part (5.3.17a) and then solve (5.3.17b). The

total number of algebraic equations is equal to the dimension n of the system, thus the

dimension of the DAE is preserved. We have seen that index-2 DAEs can be decoupled

in two ways depending on the eigenvalues of the matrix pencil (E,A). Thus special has

to be taken when implementing this procedure. In Example 5.3.1 and 5.3.2, we illustrate

the modified decoupling of index-2 DAEs with and without differential part, respectively.

Example 5.3.1 This example originates from [60]. In this example we consider a sys-
tem composed of two rotating masses as shown in Figure 5.1. The two rotating parts

Figure 5.1: Two interconnected rotating masses.

are described by the torques M1,M2,M3 and M4 and the angular velocities z1 and z2.
The system of equations describing this system is a DAE of dimension 4 with system
matrices

E =


J1 0 0 0
0 J2 0 0
0 0 0 0
0 0 0 0

 , A =


0 0 1 0
0 0 0 1
0 0 −1 −1
−1 1 0 0

 , B =


1 0
0 1
0 0
0 0

 , u =

M1

M4

 , (5.3.18)

where x =
(
z1 z2 M2 M3

)T
and let J1, J2 ≥ 0. We are interested only with the velocities

thus C = B. Since the matrix pencil (E,A) is regular , that is det(λE−A) = (J1+J2)λ , 0,
thus the DAE is solvable. Next, we checked the tractability index of the DAE and we
found out that it is of tractability index-2. We then chose projectors

Q0 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , Q1 =



J2
J1+J2

−
J2

J1+J2
0 0

−
J1

J1+J2

J1
J1+J2

0 0
J1 J2

J1+J2
−

J1 J2
J1+J2

0 0

−
J1 J2

J1+J2

J1 J2
J1+J2

0 0


,

such that Q1Q0 = 0 holds true and the corresponding complementary projectors can be
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obtained as Pi = I −Qi, i = 0, 1. The last values of the matrix chains are given by,

E2 =


J1 0 −1 0
0 J2 0 −1
0 0 1 1
−1 1 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

This system is indeed an index-2 DAE since E2 is nonsingular. We can easily check that
P0P1 , 0, thus the decoupled system of the DAE takes the form (5.3.15). We can now
use the procedure derived in Section 5.3.1 to decouple the DAE as follows: We need to

first constructed the new basis vector (p, q) and their corresponding inverses
(
p∗T q∗T

)T

given by

p =


1 0
0 1
0 0
0 0

 , q =


0 0
0 0
1 0
0 1

 , and p∗T = pT, q∗T = qT,

for the projector Q0 and its complementary P0, respectively. Using Theorem 5.3.1, we
construct another pair of projector matrices Zp0

and Zq0
given by

Zp0
= p∗TP1 p =

1
J1 + J2

J1 J2

J1 J2

 , Zq0
= p∗TQ1 p =

1
J1 + J2

 J2 −J2

−J1 J1


and their respective bases and inverses are given by

zp0
=

11
 , zq0

=

 J2

−J1

 , and z∗Tp0
=

1
J1 + J2

(
J1 J2

)
, z∗Tq0

=
1

J1 + J2

(
1 −1

)
. (5.3.19)

Thus, substituting equation (5.3.18) – (5.3.19) into the modified decoupled system

(5.3.15), we obtain decoupled system with system matrices

Ap = 0, Bp = 1
J1+J2

(
1 1

)
, Aq,1 = 0, Bq,1 =

(
0 0

)
, Aq,0 =

00
 , Bq,0 = 1

J1+J2

−J2 J1

J2 −J1

 ,
Aq0,1

= J1 J2

 1
−1

 , Cp = 1
J1+J2

(
J1 J2

)
, Cq,1 = 1

J1+J2

(
1 −1

)
, Cq,0 =

0 0
0 0

 . We observe that

np = 1, k1 = 1 and k0 = 2, thus the decoupled system has only 1 differential equation

and 3 algebraic equations. This is leads to a decoupled system with total dimension 4

which is equal to the dimension of the DAE (5.3.18). On simplifying, this decoupled
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system reduces to an ODE given by

ξ
′

p =
1

J1 + J2

(
1 1

)
u

y =
1

J1 + J2

J1

J2

 ξp.

(5.3.20)

Applying the initial value ξp(0) on the differential part, we can obtain the desired solution

of the DAE (5.3.18).

Example 5.3.2 Consider a simple RL network in Figure. 5.2. Using the modified nodal
analysis on this network leads to DAE with system matrices ,

E =


0 0 0
0 0 0
0 0 L

 , A =


−G G 0

G −G −1
0 1 0

 , B =


1
0
0

 , x =


e1

e2

ıL

 , u = ı.

We can choose the control output matrix as C =
(
1 1 1

)T
. The matrix pencil is regular

ı

G

ıR1 L
ıL

e1 e2

Figure 5.2: Simple RL network.

since det(λE − A) = G > 0, this system is solvable and its matrix pencil (E,A) has only
infinite eigenvalues. Thus its decoupled system has no differential part. We can choose

special projectors, Q0 =


1 0 0
0 1 0
0 0 0

 and Q1 =


0 0 L
0 0 L
0 0 1

 , such that Q1Q0 = 0 holds. Then, we

have, E2 =


G −G 0
−G G 1

0 −1 L

 . Since the E2 is nonsingular. Thus, this is an index-2 DAE. We

can easily check that P0P1 = 0, thus the decoupled system of the DAE takes the form
(5.3.17). We can now use the procedure derived in Section 5.3.2 to decouple the DAE as
follows. The linearly independent columns and their respective inverses of projector Q0
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and its complimentary P0 are given by

p =


0
0
1

 , q =


1 0
0 1
0 0

 , p∗T =
(
0 0 1

)
, q∗T =

1 0 0
0 1 0

 .
Thus, substituting the above system matrices and bases into (5.3.17), and simplifying

we obtain the decoupled system with system matrices given by

Bq,1 = 1, Bq,0 =

G−1

0

 ,Aq0,1
=

L
L

 , Cq,1 = 1, Cq,0 =

11
 .

This decoupled system leads to an output solution which coincides with the exact solu-

tion given by y = (G−1
+ 1)u + 2Lu

′

.

5.4 Index-µ DAEs

In this Section, we generalize the procedure of modifying the März decoupling proced-

ure. Assume (4.1.1) is of tractability index-µ, then using the März decoupling procedure

leads to a decoupled system of the form (4.1.17). Then, its compact form is given by:

x′P = APxP + BPu, xP(0) = Πµ−1x(0), (5.4.1a)

xQ,µ−1 = AQ,µ−1xP + BQ,µ−1u, (5.4.1b)

xQ,i = AQ,ixP + BQ,iu +

µ−1∑
j=i+1

AQi, j
x′Q, j, i = µ − 2, . . . 0, (5.4.1c)

y = CTxP + CT
µ−1∑
i=0

xQ,i. (5.4.1d)

where

AP := Π
∗
0E−1

µ Aµ, BP := Π
∗
0E−1

µ B, AQ,µ−1 := Πµ−2Qµ−1E−1
µ Aµ,

BQ,µ−1 := Πµ−2Qµ−1E−1
µ B, AQ,0 := Πi−1QiΠ

∗
i+1E−1

µ Aµ,

BQ,0 := Πi−1QiΠ
∗
i+1E−1

µ B, AQi, j
:= Πi−1Qi, j, Qi, j =

QiQi+1, j = i + 1,

QiPi+1 . . .P j−1Q j, j > i + 1.

We have already discussed that this decomposition increases the dimension of the system

dimension to (µ + 1)n and it does not preserve the stability of the DAE. Thus, we need
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to generalize the modification of the März decoupling procedure for higher index DAEs.

This is done by generalizing the modification procedures derived in Section 5.2 and

5.3 for index-1 and -2 DAEs, respectively. This is done as follows. We modify the

system (5.4.1) by constructing basis column matrices for the projectors and the projector

products in the decomposition (4.1.14). From (4.1.14), we have:

In = Q0 +

µ−1∑
i=1

Πi−1Qi + Πµ−1. (5.4.2)

In Section 5.3, we mentioned that higher index DAEs have a possibility of having a

purely algebraic system depending on the nature of the spectrum of the matrix pencil

(E,A). This implies the projector product Πµ−1 can vanish to zero depending on the

matrix pencil of the DAE (4.1.1). Thus in this section, we also consider two cases of

compact decomposition of the DAE (4.1.1) depending on the spectrum of the matrix

pencil (E,A). In both cases the starting point is the same as that of index-1 as presented

in Section 5.2.

5.4.1 Index-µ DAEs with a differential part

Here, we assume that the spectrum of the matrix pencil of (4.1.1) has at least one finite

eigenvalue, this implies that Πµ−1 , 0. Let k0 = dim(Ker E0), n0 = n − k0, and let

us consider an orthonormal basis matrix (p0, q0) = (p0,1, . . . , p0,n0
, q0,1, . . . , q0,k0

) ∈ Rn

which contains k0 independent vectors q0,i which span Ker E0. Since (p0, q0) is a basis

matrix, it is invertible, and let (p∗T0 , q∗T0 )T be its inverse, with q∗0 ∈ R
n×k0 and p∗0 ∈ R

n×n0 .

Then, we have

q∗T0 q0 = Ik0
, q∗T0 p0 = 0, p∗T0 q0 = 0, p∗T0 p0 = In0

, (5.4.3)

and also

q0q∗T0 + p0 p∗T0 = In0
. (5.4.4)

The previous relations imply that we can represent the projectors Q0 and P0 as

Q0 = q0q∗T0 , P0 = p0 p∗T0 . (5.4.5)
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We note that, by construction we have

Q0q0 = q0, Q0 p0 = 0, P0q0 = 0, P0 p0 = p0. (5.4.6)

Then we take the following steps:

Step: 0 if µ > 1:

By construction, (5.4.2) can be written as,

In0
= p∗T0 Π0Q1 p0 + p∗T0

µ−1∑
i=2

Πi−1Qi p0 + p∗T0 Πµ−1 p0

Then,

In0
= Zq0

+ Zp0
, (5.4.7)

with Zp0
:= p∗T0

µ−1∑
i=2
µ>2

Πi−1Qi p0 + p∗T0 Πµ−1 p0, Zq0
:= p∗T0 Π0Q1 p0. Using the general

form of Theorem 5.3.1, Zp0
and Zq0

are mutually orthogonal projectors, acting in Rn0 .

Let k1 = dim(Im Zq0
), and n1 = n0−k1, and let us consider a basis matrix (zp0

, zq0
) ∈ Rn0

made of n1 independent columns of projection matrix Zp0
and k1 independent columns

of the complementary projection matrix Zq0
. We denote by (z∗Tp0

, z∗Tq0
)T the inverse of

(zp0
, zq0

), such that

z∗Tp0
zp0

= In1
, z∗Tp0

zq0
= 0, z∗Tq0

zp0
= 0, z∗Tq0

zq0
= Ik1

, zp0
z∗Tp0

+ zq0
z∗Tq0

= In0
. (5.4.8)

Then, we can represent Zp0
and Zq0

as Zp0
= zp0

z∗Tp0
and Zq0

= zq0
z∗Tq0
, respectively.

Then, we have

Zp0
zp0

= zp0
, Zp0

zq0
= 0, Zq0

zp0
= 0, Zq0

zq0
= zq0

. (5.4.9)

We can see that if µ = 2 then the bases of the projector products {Q0,Π0Q1,Π1} in

(5.4.2) are {q0, p0 zq0
, p0 zp0

}, respectively.
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Step: 1 if µ > 2:

Using the identities (5.4.8) and (5.4.9) on (5.4.7) leads to

In1
= Zq1

+ Zp1
, (5.4.10)

with Zp1
:= z∗Tp0

p∗T0

µ−1∑
i=3
µ>3

Πi−1Qi p0 zp0
+ z∗Tp0

p∗T0 Πµ−1 p0 zp0
, Zq1

:= z∗Tp0
p∗T0 Π1Q2 p0 zp0

. We

can also see that the projectors are mutually orthogonal projectors, acting in Rn1 .

Let k2 = dim(Im Zq1
), and n2 = n1−k2, and let us consider a basis matrix (zp1

, zq1
) ∈ Rn1

made of n2 independent columns of projection matrix Zp0
and k2 independent columns

of the complementary projection matrix Zq1
. We denote by (z∗p1

, z∗q1
)T the inverse of

(zp1
, zq1

), such that

z∗Tp1
zp1

= In2
, z∗Tp1

zq1
= 0, z∗Tq1

zp1
= 0, z∗Tq1

zq1
= Ik2

, zp1
z∗Tp1

+ zq1
z∗Tq1

= In1
.

Then, we can represent Zp1
and Zq1

as Zp1
= zp1

z∗Tp1
and Zq1

= zq1
z∗Tq1
, respectively.

Then, we have

Zp1
zp1

= zp1
, Zp1

zq1
= 0, Zq1

zp1
= 0, Zq1

zq1
= zq1

. (5.4.11)

We can also see that if µ = 3 then the bases of the projector products {Q0,Π0Q1,Π1Q2,Π2}

are {q0, p0 zq0
, p0 zp0

zq1
, p0 zp0

zp1
} respectively.

Step: j if µ > j + 1:

It’s interesting to see that this process is an iterative process and the jth iteration leads

to an identity matrix given by,

In j
= Zq j

+ Zpj
, j = 1, . . . , µ − 2, µ > 2, (5.4.12)

with

Zp j
:= z∗Tpj−1

· · · z∗Tp0
p∗T0

µ−1∑
i= j+2
j<µ−2

Πi−1Qi p0 zp0
· · · zpj−1

+ z∗Tpj−1
· · · z∗Tp0

p∗T0 Πµ−1 p0 zp0
· · · zpj−1

,

Zq j
:= z∗Tpj−1

· · · z∗Tp0
p∗T0 Π jQ j+1 p0 zp0

· · · zpj−1
.
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These projectors are also mutually orthogonal projectors, acting in Rn j .

Let k j+1 = dim(Im Zq j
), and n j+1 = n j − k j+1, and let us consider a basis matrix

(zpj
, zq j

) ∈ Rn j made of n j+1 independent columns of projection matrix Zpj
and k j+1 in-

dependent columns of the complementary projection matrix Zq j
. We denote by (z∗Tpj

, z∗Tq j
)T

the inverse of (zpj
, zq j

), such that

z∗Tpj
zpj

= In j+1
, z∗Tpj

zq j
= 0, z∗Tq j

zpj
= 0, z∗Tq j

zq j
= Ik j+1

, zpj
z∗Tpj

+ zq j
z∗Tq j

= In j
.

Then, we can represent Zp j
, Zq j

as Zpj
= zpj

z∗Tpj
, Zq j

= zq j
z∗Tq j
, respectively. We, then

s have

Zpj
zpj

= zpj
, Zpj

zq j
= 0, Zq j

zpj
= 0, Zq j

zq j
= zq j

. (5.4.13)

Hence the bases of the projector products {Q0,Π0Q1, . . . ,Πi−1Qi, . . . ,Πµ−1} in (5.4.2)

are given by {q0, p0 zq0
, . . . , p0 zp0

· · · zpi−2
zqi−1

, . . . , p0 zp0
· · · zpµ−2

}, i = 2, . . . , µ − 1, re-

spectively. Thus we can now expand x with respect to these bases, obtaining,

x = p0 zp0
· · · zpµ−2

ξp + q0ξq,0 + p0 zq0
ξq,1 +

µ−1∑
i=2

p0 zp0
· · · zpi−2

zqi−1
ξq,i, (5.4.14)

where ξp ∈ R
nµ−1 , ξq,i ∈ R

ki , ξq,0 ∈ R
ki ,i = 0, . . . , µ − 1 and with inversion expressions

ξp = z∗Tpµ−2
· · · z∗Tp0

p∗T0 xP, ξq,0 = q∗T0 xQ,0, ξq,1 = z∗Tq0
p∗T0 xQ,1,

ξq,i = z∗Tqi−1
z∗Tpi−2
· · · z∗Tp0

p∗T0 xQ,i, i = 2, . . . , µ − 1. (5.4.15)

Substituting the variables in (5.4.14) and (5.4.15) into (5.4.1) leads to modified de-
coupled system given by

ξ′p = Apξp + Bpu, (5.4.16a)

ξq,µ−1 = Aq,µ−1ξp + Bq,µ−1u, (5.4.16b)

ξq,i = Aq,iξp + Bq,iu +

µ−1∑
j=i+1

Aqi, j
ξ′q, j, i = µ − 2, . . . 2, (5.4.16c)

ξq,1 = Aq,1ξp + Bq,1u +

µ−1∑
j=2

Aq1, j
ξ′q, j, (5.4.16d)

ξq,0 = Aq,0ξp + Bq,0u +

µ−1∑
j=1

Aq0, j
ξ′q, j, (5.4.16e)
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y = CT
pξp +

µ−1∑
i=0

CT
q,iξq,i, (5.4.16f)

where

Ap := z∗Tpµ−2
· · · z∗Tp0

p∗T0 AP p0 zp0
· · · zpµ−2

∈ Rnp×np , Bp := z∗Tpµ−2
· · · z∗Tp0

p∗T0 BP ∈ R
np×m,

Aq,µ−1 := z∗Tqµ−2
z∗Tpµ−3

· · · z∗Tp0
p∗T0 AQ,µ−1 p0 zp0

· · · zpµ−2
∈ Rkµ−1×np ,

Bq,µ−1 := z∗Tqµ−2
z∗Tpµ−3

· · · z∗Tp0
p∗T0 BQ,µ−1 ∈ R

kµ−1×m,

Aq,i := z∗Tqi−1
z∗Tpi−2
· · · z∗Tp0

p∗T0 AQ,i p0 zp0
· · · zpµ−2

∈ Rki×np ,

Bq,i := z∗Tqi−1
z∗Tpi−2
· · · z∗Tp0

p∗T0 BQ,i ∈ R
ki×m,

Aqi, j
:= z∗Tqi−1

z∗Tpi−2
· · · z∗Tq0

p∗T0 AQi, j
p0 zp0

· · · zp j−2
zq j−1

∈ Rki×k j

Aq,1 := z∗Tq0
p∗T0 AQ,1 p0 zp0

· · · zpµ−2
∈ Rk1×np , Bq,1 := z∗Tq0

p∗T0 BQ,1 ∈ R
k1×m,

Aq1, j
:= z∗Tp0

p∗T0 AQ1, j
p0 zp0

· · · zp j−2
zq j−1

∈ Rk1×k j ,

Aq,0 := q∗T0 AQ,0 p0 zp0
· · · zpµ−2

∈ Rk0×np , Bq,0 := q∗T0 BQ,0 ∈ R
k0×m,

Aq0, j
:=

q∗T0 AQ0, j
p0 zq0

, If j = 1,

q∗T0 AQ0, j
p0 zp0

· · · zp j−2
zq j−1

, Otherwise.

CT
p = CT p0 zp0

· · · zpµ−2
∈ R`×np , CT

q,0 = CT q0 ∈ R
`×k0 , CT

q,1 = CT p0 zq0
∈ R`×k1 ,

CT
q,i = CT p0 zp0

· · · zpi−2
zqi−1

∈ R`×ki np = nµ−1.

We can observe that, (5.4.16) can be written in a compact form given by

ξ′p = Apξp + Bpu,

−Lξ′q = Aqξp − ξq + Bqu,

y = CT
p ξp + CT

q ξq,

(5.4.17)

where ξp ∈ R
np , Ap ∈ R

np,np ,Bp ∈ R
np,m, ξq = (ξq,µ−1, . . . , ξq,0)T

∈ Rnq ,

Aq = (Aq,µ−1, . . . ,Aq,0)T
∈ Rnq×np, Bq = (Bq,µ−1, . . . ,Bq,0)T

∈ Rnq×m ,

Cq = (CT
q,µ−1, . . . ,C

T
q,0)T

∈ Rnq×` and L ∈ Rnq×nq is a strictly lower triangular nilpotent

matrix of index-µ with entries Aqi, j
as defined in the decoupled system (5.4.16). np

and nq =

µ−1∑
i=0

ki is the number of differential and algebraic equations, respectively and

n = np + nq is the dimension of the DAE. Thus, the decoupled system (5.4.17) preserves

the dimension of the DAE (4.1.1). It can be proved that the decoupled system (5.4.17)
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can be written in the form:

ξ′p = Apξp + Bpu (5.4.18a)

ξq =

µ−1∑
i=0

L
iAqAi

pξp +

µ−1∑
i=1

i−1∑
k=0

L
iAqAk

pBpu(i−k−1)
+

µ−1∑
i=0

L
iBqu(i), (5.4.18b)

y = CT
p ξp + CT

q ξq, (5.4.18c)

where u(i)
∈ Rm is the ith derivative of the input data. Equation (5.4.18a) and (5.4.18b)

are the differential and algebraic part of DAE (4.1.1), respectively. Next, we ana-

lyze the initial value of the DAE (4.1.1) as follows: Using system (5.4.18), we have:

ξ(0) :=
(
ξp(0)

ξq(0)

)
, where

ξq(0) =

µ−1∑
i=0

L
iAqAi

pξp(0) +

µ−1∑
i=1

i−1∑
k=0

L
iAqAk

pBpu(i−k−1)(0) +

µ−1∑
i=0

L
iBqu(i)(0).

(5.4.19)

We observe that ξp(0) can be chosen arbitrary while ξq(0) has to be chosen such that

the hidden constraint (5.4.19) is satisfied. Thus the initial value x(0) of DAE (4.1.1)

has to be consistent initial value and the input data has to be at least µ − 1 times dif-

ferentiable. In this approach we take care of this since, If we apply initial condition

ξp(0) = z∗Tpµ−2
· · · z∗Tp0

p∗T0 x(0), where x(0) is a consistent initial condition, we can solve

the system (5.4.18) hierarchically by numerically integration of differential part (5.4.18a)

and then compute the algebraic solutions using (5.4.18b). Then the desired output solu-

tions are obtained using (5.4.18c). It can be proved that σ f (E,A) = σ(Ap) , thus system

(5.4.18) preserves stability of the DAEs. The number of differential equation is always

equal to the total algebraic multiplicity of finite eigenvalues of the matrix pencil (E,A).

5.4.2 Index-µ DAEs without a differential part

Here, we assume that the spectrum of the matrix pencil of (4.1.1) has no finite eigenval-

ues, this implies Πµ−1 = 0. Thus, (5.4.2), reduces to

In = Q0 +

µ−1∑
i=1

Πi−1Qi. (5.4.20)
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Repeating steps from (5.4.3) to (5.4.9). It is nice to see that if µ = 2, then (5.4.20) sim-

plifies to, In = Q0 + Π0Q1 = Q0 + P0. Thus if µ = 2 then the bases of the projector

products {Q0,Π0Q1} in (5.4.20) are {q0, p0}, respectively otherwise we follow the steps

below:

Step: 0 if µ > 2:

Then by construction, (5.4.20) can be written as,

In0
= p∗T0 Π0Q1 p0 + p∗T0

µ−1∑
i=2

Πi−1Qi p0.

Then,

In0
= Zq0

+ Zp0
, (5.4.21)

with Zp0
:= p∗T0

µ−1∑
i=2
µ>2

Πi−1Qi p0, Zq0
:= p∗T0 Π0Q1 p0. Using the general form of Theorem

5.3.1, Zp0
and Zq0

are mutually orthogonal projectors, acting in Rn0 .

Let k1 = dim(Im Zq0
), and n1 = n0−k1, and let us consider a basis matrix (zp0

, zq0
) ∈ Rn0

made of n1 independent columns of projection matrix Zp0
and k1 independent columns

of the complementary projection matrix Zq0
. We denote by (z∗Tp0

, z∗Tq0
)T the inverse of

(zp0
, zq0

), such that

z∗Tp0
zp0

= In1
, z∗Tp0

zq0
= 0, z∗Tq0

zp0
= 0, z∗Tq0

zq0
= Ik1

, zp0
z∗Tp0

+ zq0
z∗Tq0

= In0
.(5.4.22)

Then, we can represent Zp0
and Zq0

as

Zp0
= zp0

z∗Tp0
, Zq0

= zq0
z∗Tq0
,

and we have

Zp0
zp0

= zp0
, Zp0

zq0
= 0, Zq0

zp0
= 0, Zq0

zq0
= zq0

. (5.4.23)

Thus, if µ = 3 then the bases of the projector products {Q0,Π0Q1,Π1Q2} in (5.4.20) are

{q0, p0 zq0
, p0 zp0

}, respectively.

Step: 1 if µ > 3:
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Using the identities (5.4.22) and (5.4.23) on (5.4.21) leads to

In1
= Zq1

+ Zp1
, (5.4.24)

with Zp1
:= z∗Tp0

p∗T0

µ−1∑
i=3
µ>3

Πi−1Qi p0 zp0
, Zq1

:= z∗Tp0
p∗T0 Π1Q2 p0 zp0

. We can also see that

the projectors are mutually orthogonal projectors, acting in Rn1 .

Let k2 = dim(Im Zq1
), and n2 = n1−k2, and let us consider a basis matrix (zp1

, zq1
) ∈ Rn1

made of n2 independent columns of projection matrix Zp0
and k2 independent columns

of the complementary projection matrix Zq1
. We denote by (z∗Tp1

, z∗Tq1
)T the inverse of

(zp1
, zq1

), such that

z∗Tp1
zp1

= In2
, z∗Tp1

zq1
= 0, z∗Tq1

zp1
= 0, z∗Tq1

zq1
= Ik2

, zp1
z∗Tp1

+ zq1
z∗Tq1

= In1
.

Then, we can represent Zp1
and Zq1

as Zp1
= zp1

z∗Tp1
, Zq1

= zq1
z∗Tq1
, and we have

Zp1
zp1

= zp1
, Zp1

zq1
= 0, Zq1

zp1
= 0, Zq1

zq1
= zq1

. (5.4.25)

Thus, if µ = 4 then the bases of the projector products {Q0,Π0Q1,Π1Q2,Π2Q3} in

(5.4.20) are {q0, p0 zq0
, p0 zp0

zq1
, p0 zp0

zp1
}, respectively. This a recursive process which

can easily be generalized.

Step: j if µ > j + 2:

The jth iteration leads to an identity matrix given by,

In j
= Zq j

+ Zpj
, j = 1, . . . , µ − 2, µ > 2, (5.4.26)

with Zpj
:= z∗Tpj−1

· · · z∗Tp0
p∗T0

µ−1∑
i= j+2
j<µ−2

Πi−1Qi p0 zp0
· · · zpj−1

,

Zq j
:= z∗Tpj−1

· · · z∗Tp0
p∗T0 Π jQ j+1 p0 zp0

· · · zpj−1
. These projectors are also mutually ortho-

gonal projectors, acting in Rn j . Let k j+1 = dim(Im Zq j
), and n j+1 = n j − k j+1, and let us

consider a basis matrix (zpj
, zq j

) ∈ Rn j made of n j+1 independent columns of projection

matrix Zpj
and k j+1 independent columns of the complementary projection matrix Zq j

.
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We denote by (z∗Tp j
, z∗Tq j

)T the inverse of (zpj
, zq j

), such that

z∗Tp j
zpj

= In j+1
, z∗Tpj

zq j
= 0, z∗Tq j

zpj
= 0, z∗Tq j

zq j
= Ik j+1

,

zp j
z∗Tpj

+ zq j
z∗Tq j

= In j
. (5.4.27)

Then, we can represent Zpj
, Zq j

as Zpj
= zpj

z∗Tpj
, Zq j

= zq j
z∗Tq j
, and we have

Zpj
zpj

= zp j
, Zp j

zq j
= 0, Zq j

zpj
= 0, Zq j

zq j
= zq j

. (5.4.28)

Hence the bases of the projector products {Q0,Π0Q1,Π1Q2, . . . ,Πi−1Qi, . . . ,Πµ−2Qµ−1}

in (5.4.20) are {q0, p0 zq0
, p0 zp0

zq1
, . . . , p0 zp0

· · · zpi−3
zqi−2

, . . . , p0 zp0
· · · zpµ−2

},

i = 3, . . . , µ − 1, respectively. Thus, we can now expand x with respect to these bases,

obtaining,

x = q0ξq,0 + p0 zq0
ξq,1 +

µ−2∑
i=2

p0 zp0
· · · zpi−2

zqi−1
ξq,i + p0 zp0

· · · zpµ−3
ξq,µ−1, (5.4.29)

where ξµ−1 ∈ R
nµ−2 , ξq,i ∈ R

ki , ξq,0 ∈ R
ki ,i = 0, . . . , µ − 2 and with inversion expressions

ξµ−1 = z∗Tpµ−3
· · · z∗Tp0

p∗T0 xQ,µ−1, ξq,0 = q∗T0 xQ,0, ξq,1 = z∗Tq0
p∗T0 xQ,1,

ξq,i = z∗Tqi−1
z∗Tpi−2
· · · z∗Tp0

p∗T0 xQ,i, i = 2, . . . , µ − 2. (5.4.30)

If we substitute the variables in (5.4.29) and (5.4.30) into (5.4.1) leads to modified de-
coupled system given by

ξq,µ−1 = Bq,µ−1u, (5.4.31a)

ξq,i = Bq,iu +

µ−1∑
j=i+1

Aqi, j
ξ′q, j, i = µ − 2, . . . 2, (5.4.31b)

ξq,1 = Bq,1u +

µ−1∑
j=2

Aq1, j
ξ′q, j, (5.4.31c)

ξq,0 = Bq,0u +

µ−1∑
j=1

Aq0, j
ξ′q, j, (5.4.31d)

y =

µ−1∑
i=0

CT
q,iξq,i, (5.4.31e)
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where

Bq,µ−1 := z∗Tpµ−3
· · · z∗Tp0

p∗T0 BQ,µ−1 ∈ R
kµ−1×m, Bq,i := z∗Tqi−1

z∗Tpi−2
· · · z∗Tp0

p∗T0 BQ,i ∈ R
ki×m,

Bq,0 := q∗T0 BQ,0 ∈ R
k0 ,m, Bq,1 := z∗Tq0

p∗T0 BQ,1 ∈ R
k1×m,

Aqi, j
:=

z∗Tqi−1
z∗Tpi−2
· · · z∗Tp0

p∗T0 AQi, j
p0 zp0

· · · zpµ−3
, If j = µ − 1,

z∗Tqi−1
z∗Tpi−2
· · · z∗Tp0

p∗T0 AQi, j
p0 zp0

· · · zp j−2
zq j−1

, Otherwise,

Aq1, j
:=

z∗Tq0
p∗T0 AQ1, j

p0 zp0
· · · zpµ−3

, If, j = µ − 1,

z∗Tq0
p∗T0 AQ1, j

p0 zp0
· · · zp j−2

zq j−1
, Otherwise.

Aq0, j
:=


q∗T0 AQ0, j

p0 zq0
, If, j = 1,

q∗T0 AQ0, j
p0 zp0

· · · zp j−2
zq j−1

, If, 2 ≤ j ≤ µ − 2,

q∗T0 AQ0, j
p0 zp0

· · · zpµ−3
, If, j = µ − 1.

CT
q,0 = CT q0 ∈ R

`×k0 , CT
q,1 = CT p0 zq0

∈ R`×k1 , CT
q,i = CT p0 zp0

· · · zpi−2
zqi−1

∈ R`×ki .

We can observe that equations (5.4.31) can be written as

−Lξ′q = −ξq + Bqu (5.4.32a)

y = CT
qξq, (5.4.32b)

where ξq = (ξq,µ−1, . . . , ξq,0)T
∈ Rn, Bq = (Bq,µ−1, . . . ,Bq,0)T

∈ Rn×m,

Cq = (CT
q,µ−1, . . . ,C

T
q,0)T

∈ Rn×`, L ∈ Rn×n is a strictly lower triangular nilpotent matrix

of index µ. It can also be proved that the decoupled system (5.4.32) can be written in the

form:

y = CT
q

µ−1∑
i=0

L
iBqu(i), (5.4.33)

where u(i)
∈ Rm is the ith derivative of the input data. We observe that, we have only al-

gebraic equations and their solutions can be computed exactly. We can also observe that

n =

µ−1∑
i=0

ki is the total number of algebraic equations which is also equal to the dimension

of the DAE. Thus the decoupled system (5.4.32) preserves the dimension of the DAE.

For comparison with the DAE (2.3.1), we can rewrite either system (5.4.18) or (5.4.32)

in the descriptor form given by

Ẽξ′ = Ãξ + B̃u, (5.4.34a)

y = C̃Tξ, (5.4.34b)
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where: if the spectrum of the matrix pencil (E,A) has at least one finite eigenvalue, then

Ẽ =

(
I 0
0 −L

)
∈ Rn×n, Ã =

(
Ap 0
Aq −I

)
∈ Rn×n, B̃ =

(
Bp

Bq

)
∈ Rn×m, C̃ =

(
Cp

Cq

)
∈ Rn×` and if the

spectrum of the matrix pencil (E,A) has no finite eigenvalue, then Ẽ = −L ∈ Rn×n,

Ã = −I ∈ Rn×n, B̃ = Bq ∈ R
n×m, C̃ = Cq ∈ R

n×`. We can observe that this form reveals

the interconnection structure of the DAE (2.3.1). Moreover it can be proved that systems

(2.3.1) and (5.4.34) are equivalent. This implies that also their respective matrix pencils

(E,A) and (Ẽ, Ã) are equivalent. If we consider DAEs whose matrix pencil (E,A) has

at least one finite eigenvalue, we can show that they have same spectrum , since we can

easily show that det(λẼ − Ã) = det(λI − Ap), since det(I − λL) = (1)nq . This identity

shows that the finite eigenvalues of the matrix pencil (E,A) coincide with the (possibly

complex) eigenvalues of the matrix Ap of the differential part, which are exactly np,

counting their multiplicity, i.e., σ(Ap) = σ f (E,A). Thus, the differential part of the

decoupled system inherits the stability properties of DAEs.

5.4.3 Decoupling of index-3 DAEs

In Section 5.2 and 5.3, we have discussed the decoupling of index-1 and-2 DAEs, re-

spectively. These decoupled system can be written in the descriptor form (5.4.34) and it

is easy to check that for the case of index-1 and -2 DAEs, nilpotent matrices are given

by L = 0 and L =

(
0 0

Aq0,1
0

)
, respectively. In this Section, we discuss how to decouple

index-3 DAEs using the generalized procedure in the previous Section. Thus we need

to assume that the DAE (4.1.1) is an index-3 DAE, i.e., µ = 3. We also assume that

the projectors are constructed such that (4.1.13) holds true. Thus index-3 DAEs can be

decoupled as follows: If system (4.1.1) has a matrix pencil with at least one finite eigen-

value then decoupled system take the form (5.4.16). Thus substituting µ = 3 into (5.4.16)

and simplifying, we obtain a modified decoupled system for index-3 DAEs given by:

ξ′p = Apξp + Bpu, (5.4.35a)

ξq,2 = Aq,2ξp + Bq,2u, (5.4.35b)

ξq,1 = Aq,1ξp + Bq,1u + Aq1,2
ξ′q,2, (5.4.35c)

ξq,0 = Aq,0ξp + Bq,0u + Aq0,1
ξ′q,1 + Aq0,2

ξ′q,2, (5.4.35d)

y = CT
p ξp + CT

q,2 ξq,2 + CT
q,1 ξq,1 + CT

q,0 ξq,0 (5.4.35e)
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where

Ap := z∗Tp1
z∗Tp0

p∗T0 AP p0 zp0
zp1
∈ Rnp×np , Bp := z∗Tp1

z∗Tp0
p∗T0 BP ∈ R

np×m,

Aq,2 := z∗Tq1
z∗Tp0

p∗T0 AQ,2 p0 zp0
zp1
∈ Rk2×np , Bq,2 := z∗Tq1

z∗Tp0
p∗T0 BQ,2 ∈ R

k2×m,

Aq,1 := z∗Tq0
p∗T0 AQ,1 p0 zp0

zp1
∈ Rk1×np , Bq,1 := z∗Tq0

p∗T0 BQ,1 ∈ R
k1×m,

Aq,0 := q∗T0 AQ,0 p0 zp0
zp1
∈ Rk0×np , Bq,0 := q∗T0 BQ,0 ∈ R

k0×m,

Aq1,2
:= z∗Tq0

p∗T0 AQ1,2
p0 zp0

zq1
∈ Rk1×k2 , Aq0,1

:= q∗T0 AQ0,1
p0 zq0

∈ Rk0×k1 ,

Aq0,2
:= q∗T0 AQ0,2

p0 zp0
zq1
∈ Rk0×k2 , CT

p = CTp0 zp0
zp1
∈ Rnp×`,

CT
q,2 := CTp0 zp0

zq1
∈ Rk2×`,CT

q,1 := CTp0 zq0
∈ Rk1×`, CT

q,0 := CTq0 ∈ R
k0×`,

and
AP := P0P1P2E−1

3 A3 ∈ R
n×n, BP := P0P1P2E−1

3 B ∈ Rn×m,

AQ,2 := P0P1Q2E−1
3 A3 ∈ R

n×n, BQ,2 := P0P1Q2E−1
3 B ∈ Rn×m,

AQ,1 := P0Q1P2E−1
3 A3 ∈ R

n×n, BQ,1 := P0Q1P2E−1
3 B ∈ Rn×m,

AQ1,2
:= P0Q1Q2 ∈ R

n×n, AQ,0 := Q0P1P2E−1
3 A3 ∈ R

n×n,

BQ,0 := Q0P1P2E−1
3 B ∈ Rn×m, AQ0,1

:= Q0Q1 ∈ R
n×n,

AQ0,2
:= Q0P1Q2 ∈ R

n×n.

After re-arranging and simplifying this decoupled system can be simplified to the form

(5.4.18) given by:

ξ′p = Apξp + Bpu,

ξq =

2∑
i=0

L
iAqAi

pξp +

2∑
i=1

i−1∑
k=0

L
iAqAk

pBpu(i−k−1)
+

2∑
i=0

L
iBqu(i),

y = CT
pξp + CT

qξq,

(5.4.36)

where ξq = (ξq,2, ξq,1, ξq,0)T
∈ Rnq , Aq = (Aq,2,Aq,1,Aq,0)T

∈ Rnq×np,

Bq = (Bq,2,Bq,1,Bq,0)T
∈ Rnq ×m, Cq = (Cq,2,Cq,1,Cq,0)T

∈ Rnq×`, nq =
∑2

i=0 ki and

L ∈ Rnq×nq is a strictly lower triangular nilpotent matrix of index-3 given by

L :=


0 0 0

Aq1,2
0 0

Aq0,2
Aq0,1

0

 . (5.4.37)

If system (4.1.1) has a matrix pencil with only infinite spectrum then its März decoupled

system can be modified into the form (5.4.31). Thus substituting µ = 3 into (5.4.31) and
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simplifying, we obtain a modified decoupled system of index-3 DAEs given by:

ξq,2 = Bq,2u, (5.4.38a)

ξq,1 = Bq,1u + Aq1,2
ξ′q,2, (5.4.38b)

ξq,0 = Bq,0u + Aq0,1
ξ′q,1 + Aq0,2

ξ′q,2, (5.4.38c)

y = CT
q,2 ξq,2 + CT

q,1 ξq,1 + CT
q,0 ξq,0, (5.4.38d)

where

Bq,2 := z∗Tp0
p∗T0 BQ,2 ∈ R

k2×m, Bq,1 := z∗Tq0
p∗T0 BQ,1 ∈ R

k1×m, Bq,0 := q∗T0 BQ,0 ∈ R
k0×m,

Aq1,2
:= z∗Tq0

p∗T0 AQ1,2
p0 zp0

∈ Rk1×k2 , Aq0,1
:= q∗T0 AQ0,1

p0 zq0
∈ Rk0×k1 , CT

q,0 = CTq0 ∈ R
k0×`,

Aq0,2
:= q∗T0 AQ0,2

p0 zp0
∈ Rk0×k2 , CT

q,2 = CT p0 zp0
∈ Rk2×`, CT

q,1 = CT p0 zq0
∈ Rk1×`.

Also after re-arranging and simplifying this decoupled system can be simplified into the

form (5.4.33) given by:

y = CT
q,

2∑
i=0

L
iBqu(i), (5.4.39)

where ξq = (ξq,2, ξq,1, ξq,0)T
∈ Rn, Bq = (Bq,2,Bq,1,Bq,0)T

∈ Rn×m,

Cq = (Cq,2,Cq,1,Cq,0)T
∈ Rn×m, L ∈ Rn×n is a strictly lower triangular nilpotent matrix

of index-3 which takes the same form as (5.4.37). Hence index-3 DAEs can be decoupled

into the form either (5.4.36) or (5.4.39) depending on the spectrum of the matrix pencil.

In the examples below, we illustrate the decoupling of index-3 DAEs.

Example 5.4.1 ( [46]) As a simple mechanical example, we consider a car-pendulum
system shown in Figure 5.3 that consists of a cart of mass m1 and a pendulum of length L
and of mass m2. In [46], they linearized nonlinear equations of motion of this multibody
system along the equilibrium

[
0, 0,−L, 0, 0,m2g/(2L)

]
which yields an index-3 DAE
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Figure 5.3: A cart-pendulum system

with system matrices :

E = diag(1, 1, 1,m1,m2,m2, 0), A =



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−m2g/L m2g/L 0 0 0 0 0
m2g/L −m2g/L 0 0 0 0 0

0 0 m2g/L 0 0 0 2L
0 0 −2L 0 0 0 0


,

B =
[
0, 0, 0, 1, 0, 0, 0

]T
, C =

0 1 0 0 0 0 0
0 0 1 0 0 0 0

T

. (5.4.40)

This system has a regular matrix pencil (E,A) and has the finite eigenvalues
σ f (E,A) = {0, 0,±i

√
(m1 + m2)g/(m1L)}. We constructed special projector chain Q0,Q1

and Q2 of this system that satisfy (4.1.13) given by,

Q0 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 m2

2L 0 0 m2
2L 1


, Q1 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 1 0
0 0 0 0 0 0 0


, Q2 =



0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





5.4 Index-µ DAEs 85

and final matrices on the matrix chain given by,

E3 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 m1 0 0 0
0 0 0 0 m2 0 0
0 0 gm2

L 0 0 m2 −2L
0 0 2L 0 0 0 0


, A3 =



0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
−

gm2
L

gm2
L 0 0 0 0 0

gm2
L −

gm2
L 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Since E3 is non-singular, then this system is of tractability index-3 or index-3 DAE.

We need to first construct the basis vector (p, q) and their corresponding inverses

p∗T

q∗T


given by

p =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −m2

2L 0 0 −m2
2L


, q =



0
0
0
0
0
0
1


, p∗T =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


, q∗T =



0
0
m2
2L

0
0
m2
2L

1


, (5.4.41)

for the projector Q0 and its complementary P0, respectively. Then, we use the above

basis to construct the second basis (zp0
, zq0

) and their corresponding inverses

z∗Tp0

z∗Tq0

 given

by,

zp0
=



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 −1 0 0


, zq0

=



0
0
0
0
0
1


, z∗Tp0

=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


, z∗q0

=



0
0
1
0
0
1


, (5.4.42)

for the projector Zp0
and its complementary Zq0

, respectively. Thus, we use the above

bases to construct the third basis (zp1
, zq1

) and their corresponding inverses

z∗Tp1

z∗Tq1

 given
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by,

zp1
=



1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1


, zq1

=



0
0
1
0
0


, z∗Tp1

=


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 , z∗Tq1
=

(
0 0 1 0 0

)
, (5.4.43)

for the projector Zp1
and its complementary Zq1

, respectively. Substituting (5.4.41)-
(5.4.43) into (5.4.35), we obtain the modified decoupled system with matrix coefficients,

Ap =


0 0 1 0
0 0 0 1

−m2g/(Lm1) m2g/(Lm1) 0 0
g/L −g/L 0 0

 , Bp =


0
0

1/m1

0

 , Aq,2 =
(
0 0 0

)
, Bq,2 = 0,

Aq,1 =
(
0 0 0 0

)
, Bq,1 = 0, Aq1,2

= 0, Aq,0 =
(
0 0 0 0

)
, Bq,0 = 0, Aq0,1

=
m2

2L
,

Aq0,1
= 0, CT

p =

0 1 0 0
0 0 0 0

 , CT
q,2 =

01
 , CT

q,1 =

00
 , CT

q,0 =

00
 .

After simplifying the decoupled system reduces to an ODE dynamical system given by,

ξ
′

p =


0 0 1 0
0 0 0 1

−m2g/(Lm1) m2g/(Lm1) 0 0
g/L −g/L 0 0

 ξp +


0
0

1/m1

0

 u,

y =

0 1 0 0
0 0 0 0

 ξp.

(5.4.44)

When we computed the eigenvalues of Ap we found out that they are equal to the

finite eigenvalues of the matrix pencil (E,), i.e., σ f (E,A) = σ(Ap) as expected. We can

observe that DAE dynamical system (5.4.40) of dimension 7 reduces to an ODE system

(5.4.44) of dimension 4 even before applying any MOR technique. Hence this approach

is not only advantageous in solving DAEs but also in MOR of DAEs.
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Example 5.4.2 Consider an index-3 DAE obtained from [63] with system matrices
given by

E =


0 1 0
0 0 1
0 0 0

 , A =


1 0 0
0 1 0
0 0 1

 , B =


10
0.1
0

 , C =


0.04
30
1

 . (5.4.45)

Since the det(λE − A) = −1, thus the DAE system (5.4.45) is solvable and its matrix
pencil has no finite eigenvalues. Hence we expect its decoupled system to have no
differential part. We can then choose the projector chains,

Q0 =


1 1 1
0 0 0
0 0 0

 , Q1 =


0 0 0
0 1 1
0 0 0

 , Q2 =


0 0 0
0 0 0
0 0 1


that satisfy the condition Q jQi = 0, j > i, i, j = 0, 1, 2 and the last matrix chain is given

by E3 =


−1 1 0

0 −1 1
0 0 −1

 . Following the same procedure we discussed earlier, we were able

to construct projector bases given by

p0 =


−1 −1

1 0
0 1

 , q0 =


1
0
0

 , p∗T0 =

0 1 0
0 0 1

 , q∗T0 =
(
1 1 1

)
,

and zp0
=

−1
1

 , zq0
=

10
 , z∗Tp0

=
(
0 1

)
, z∗Tq0

=
(
1 1

)
.

Thus, substituting the above matrices into (5.4.38), we obtain the system matrices given

by, Bq,2 = 0, Bq,1 = −0.1, Aq1,2
= 1, Bq,0 = −10.1, Aq0,1

= 1, Aq0,2
= 0,

Cq,2 = −29, Cq,1 = 29.96, Cq,0 = 0.04. This leads to a decoupled system given by

ξq,2 = 0u,

ξq,1 = −0.1u + ξ′q,2,

ξq,0 = −10.1u + ξ′q,1 + 0ξ′q,2,

y = −29ξq,2 + 29.96ξq,1 + 0.04ξq,0.

(5.4.46)

We can observe that it is easy to solve (5.4.46) and its solution coincide with that of

(5.4.45) given by y = −3.4u − 0.004u′.
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In this Chapter, we have discussed how to decouple linear constant DAEs using spe-

cial bases of projectors and their respective products. We have seen that this approach

preserves the dimension and the spectrum of the DAE in contrast with the März decoup-

ling procedure discussed in the previous Chapter. This approach is robust and leads to

simple decoupled systems which can be solved using the existing numerical integration

techniques for ODEs. This means that one no longer need special numerical integra-

tion techniques for DAEs. However, this decoupling procedure and März decoupling

procedure use the projected DAE (4.1.11) as the starting projected system in order to

decouple the DAE into differential and algebraic parts. We can observe that (4.1.11)

involves the inversion of matrix Eµ which can be computationally very expensive for

large-scale problems. This limits the use of this method on large-scale problems. In the

next Chapter, we derive another procedure which do not involve the inversion of matrix

Eµ, i.e., we use (4.1.10) as the starting projected system.



Chapter 6

Decoupling of DAEs without matrix
Eµ inversion

Consider a DAE of the form

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0, (6.0.1a)

y(t) = CTx(t), (6.0.1b)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×` , the input vector u(t) ∈ Rm and output vector

y(t) ∈ R` of the system. x(t) ∈ Rn is the state vector and x0 is a consistent initial value.

In this Section, we use (4.1.10) to decouple the DAE (6.0.1a) instead of (4.1.11). Thus,

the projected system of (6.0.1a) is given by:

Eµ

[
Pµ−1 · · ·P0 ẋ + Q0x + · · · + Qµ−1x

]
= Aµx + Bu, (6.0.2)

where µ is the tractability index the DAE (6.0.1a). This decoupling procedure is different

that proposed by März [42] which involves the inversion of matrix Eµ which might be
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computationally expensive and impractical for large scale problems. This decoupling

procedure led to explicit differential and algebraic parts. If we use (6.0.2) as the starting

projected system, this will lead to an implicit differential part and a linear system. The

latter will be computational cheaper to decouple than the former since does not involve

matrix inversion.

6.1 Index-1 DAEs

In this Section, we assume that (6.0.1a) is of index-1, i.e., µ = 1. This implies that E1

must be a nonsingular matrix. Thus substituting µ = 1 into (6.0.2) , we obtain:

E1

[
P0 ẋ + Q0x

]
= A1x + Bu. (6.1.1)

Recall from Section 5.2, the decomposition of x for index-1 DAEs is given by

x =
(
p q

) ξp

ξq

 , where p ∈ Rn×np and q ∈ Rn×nq are the linearly independent columns of

projectors P0 and Q0, respectively. ξp ∈ R
np and ξq ∈ R

nq are the projected differential

and algebraic variables, respectively and n = np + nq is the dimension of the DAE.

Substituting the decomposed x into (6.1.1) and simplifying leads to,

(
E1 p 0

) ξp

ξq

′ =
(
A1 p −E1q

) ξp

ξq

 + Bu. (6.1.2)

Left multiplying (6.1.2) by
(
p̂T q̂T

)T
∈ Rn×n, we obtain

 p̂TE1 p 0

q̂TE1 p 0


ξp

ξq

′ =

 p̂TA1 p − p̂TE1q
q̂TA1 p −q̂TE1q

 ξp

ξq

 +

 p̂TB
q̂TB

 u. (6.1.3)

In order to decouple (6.1.2), we need to also construct full column rank matrices

p̂T
∈ Rnp×n and q̂T

∈ Rnq×n such that Span( p̂) = Ker qTET
1 and Span(q̂) = Ker pTET

1 , that

is, p̂TE1q = − p̂TAq = 0 and q̂TE1 p = q̂TEp = 0. This implies that Span( p̂) = Ker qTAT

and Span(q̂) = Ker ET. This is due to the fact that Ker ET
⊂ Ker pTET

⊂ PT
0 ET. We
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note that q̂ = q, if E is symmetric, i.e., E = ET. Thus, (6.1.3), simplifies to p̂TE1 p 0
0 0

 ξp

ξq

′ =

 p̂TA1 p 0
q̂TA1 p −q̂TE1q

 ξp

ξq

 +

 p̂TB
q̂TB

 u. (6.1.4)

Using the fact that E1 = E − AQ0 and A1 = AP0, (6.1.4) simplifies to an implicit

decoupled system of (6.0.1) given by

Epξ
′
p = Apξp + Bpu, (6.1.5a)

Eqξq = Aqξp + Bqu, (6.1.5b)

y = CT
pξp + CT

qξq, (6.1.5c)

where

Ep = p̂TEp, Ap = p̂TAp ∈ Rnp×np , Bp = p̂TB ∈ Rnp×m, Eq = −q̂TAq ∈ Rnq×nq ,

Aq = q̂TAp ∈ Rnp×nq , Bq = q̂TB ∈ Rnq×m and Cp = pTC ∈ Rnp,`, Cq = qTC ∈ Rnq,`.

We note that matrices Ep and Eq must be nonsingular. We can observe that (6.1.5) is

an implicit version of the decoupled system (5.2.4) and their solutions must coincide.

However (6.1.5) is computationally cheaper to derive than (5.2.4). We also note that, it

can be proved that σ(Ep,Ap) = σ f (E,A). Thus, the implicit system also preserves the

dimension and the stability of the DAE.

Example 6.1.1 In this example, we use matrices from Example 5.2.1. Using (5.2.5) and

(4.1.18), we can construct p̂ and q̂ such that qTA p̂ = 0 and pTEq̂ = 0 given by

p̂T
=

(
I −(A12 − A11Q12)(A22 − A21Q12)−1

)
and q̂T

=
(
I 0

)
, (6.1.6)

where Q12 = E−1
11 E12. Substituting (4.1.18)-(4.1.20), (5.2.5) and (6.1.6) into (6.1.5), we

obtain the coefficients of implicit decoupled system given by

Ep = p̂TEp = E11, Ap = p̂TAp = (A11 − (A12 − A11Q12)(A22 − A21Q12)−1A21),

Eq = −q̂TAq = (A21Q12 − A22), Aq = q̂TAp = A21, Bq = q̂TB = B2, Cp = pTC = C1

and Cq = qTC = C2 −QT
12C1. Hence the implicit decoupled system of (4.1.18) is given

by

E11ξ
′
p =

[
A11 − (A12 − A11Q12)(A22 − A21Q12)−1A21

]
ξp

+
[
B1 − (A12 − A11Q12)(A22 − A21Q12)−1B2

]
u,
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(A21Q12 − A22)ξq = A21ξp + B2u,

y = CT
1ξp + (CT

2 − CT
1 Q12)ξq.

We can observe that this decoupled system and the explicit decoupled system derived in

Example 5.2.1 lead to the same solutions.

6.2 Index-2 DAEs

In this Section, we assume that (6.0.1a) is an index-2 DAE, i.e., µ = 2. Thus the matrix

chain E2 must be nonsingular. Substituting µ = 2 into (6.0.2) , we obtain

E2

[
P1P0 ẋ + Q0x + Q1x

]
= A2P0P1x + Bu. (6.2.1)

Projector Q1 is chosen such that Im Q1 = Ker E1, and P1 = I −Q1 is its complementary

projector. However, in order to ensure that the projector products are also projectors,

we assume that projectors Q0 and Q1 are constructed such that Q1Q0 = 0 holds true.

In the previous Chapter, we discussed that for higher index DAEs there is a possibility

of obtaining a decoupled system with either a differential part or without a differential

part depending on the nature of the spectrum of the matrix pencil. Thus for the case of

index-2 DAEs, we shall consider two cases as follows:

6.2.1 Index-2 DAEs with a differential part

Assume that the matrix pencil (E,A) of (6.0.1a) has at least one finite eigenvalue. Thus

using (5.3.11), we can introduce a decomposition

x =
(
pzp0

pzq0
q
) 
ξp

ξq,1

ξq,0

 ∈ Rn×n,
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where ξp ∈ R
np , ξq,1 ∈ R

k1 , ξq,0 ∈ R
k0 and n = np + k1 + k0. Substituting the decomposed

x into (6.2.1), we obtain,

(
E2 pzp0

−E2Q0Q1 pzq0
0
) 
ξp0

ξq0

ξq


′

=
(
A2 pzp0

−E2Q1 pzq0
−E2q

) 
ξp

ξq,1

ξq,0

 + Bu.

(6.2.2)

In order to decouple (6.2.2), we first introduce p̂T
∈ Rn0×n, q̂T

∈ Rk0×n, where
n0 = np +k1, such that p̂TE2q = 0 and q̂TE2 p = 0. This implies that Span( p̂) = Ker qTET

2

and Span(q̂) = Ker pTET
2 . We then construct ẑT

p0
∈ Rk1,n0 , ẑT

q0
∈ Rk0×n0 , such that

ẑT
p0

p̂TE2 pzq0
= 0, ẑT

q0
p̂TE2 pzp0

= 0. This implies that Span ẑp0
= Ker ( p̂TE2 pzq0

)T

and Span ẑq0
= Ker ( p̂TE2 pzp0

)T. Multiplying (6.2.2) by
(

ẑT
p0

p̂T ẑT
q0

p̂T q̂T
)T

and simplify-
ing, we obtain

ẑT
p0

p̂TE2 pzp0
0 0

0 0 0
0 −q̂TE2Q1 pzq0

0



ξp

ξq,1

ξq,0


′

=


ẑT

p0
p̂TA2 pzp0

0 0
ẑT

q0
p̂TA2 pzp0

− ẑT
q0

p̂TE2 pzq0
0

q̂TA2 pzp0
−q̂TE2Q1 pzq0

−q̂TE2 q



ξp

ξq,1

ξq,0

 +


ẑT

p0
p̂TB

ẑT
q0

p̂TB
q̂TB

 u.

From the above system, without loss of generality the implicit decoupled system of

(6.0.1) is given by

Epξ
′
p = Apξp + Bpu, (6.2.3a)

Eq,1ξq,1 = Aq,1ξp + Bq,1u, (6.2.3b)

Eq,0ξq,0 = Aq,0ξp + Bq,0u + Aq0,1

[
ξ′q,1 − ξq,1

]
, (6.2.3c)

y = CT
pξp + CT

q,1ξq,1 + CT
q,0ξq,0 (6.2.3d)

where

Ep = ẑT
p0

p̂TEpzp0
∈ Rnp×np , Ap = ẑT

p0
p̂TApzp0

∈ Rnp×np , Bp = ẑT
p0

p̂TB ∈ Rnp×m,

Eq,1 = ẑT
q0

p̂TE2 pzq0
∈ Rk1×k1 , Aq,1 = ẑT

q0
p̂TApzp0

∈ Rk1×np , Bq,1 = ẑT
q0

p̂TB ∈ Rk1×m,

Eq,0 = −q̂TAq0 ∈ R
k0×k0 , Aq,0 = q̂TApzp0

∈ Rk0×np , Bq,0 = q̂TB ∈ Rk0×m,

Aq0,1
= −q̂TApzq0

∈ Rk0×k1 , Cp = zT
p0

pTC ∈ Rnp×`, Cq,1 = zT
q0

pTC ∈ Rk1×`

and Cq,0 = qTC ∈ Rk0×`.

We note that matrices Ep, Eq,1 and Eq,0 must be nonsingular. We can observe that (6.2.3)

is an implicit version of (5.3.15) and their solutions must be coincide. This decoupled

system also preserves the dimension and the stability of the DAE as its counterpart.

Since, we can observe that (6.2.3a), (6.2.3b) and (6.2.3c) are of dimension np, k1 and k0,
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respectively and n = np + k1 + k0 is the dimension of the DAE system (6.0.1a). np and

k1 + k0 are the dimensions of the differential and algebraic parts, respectively.

6.2.2 Index-2 DAEs without a differential part

Here, we assume that the matrix pencil (E,A) of (6.0.1a) has no finite eigenvalues, i.e.,

σ f (E,A) = ∅. This implies that P0P1 = 0, thus (6.2.1) simplifies to,

E2

[
P1P0 ẋ + Q0x + Q1x

]
= Bu. (6.2.4)

Recall from Section 5.3.2 that the state-space of index-2 DAE without differential part

can decompose x as, x =
(
p q

) ξq,1

ξq,0

 , ξq,1 ∈ R
k1 , ξq,0 ∈ R

k0 and this time n = k1 + k0

is the dimension of the DAE (6.0.1a). Substituting x into (6.2.4) and simplifying , we

obtain:

(
E2P1 p 0

) ξq,1

ξq,0

′ = −
(
E2Q1 p E2q

) ξq,1

ξq,0

 + Bu. (6.2.5)

In order to decouple (6.2.5), we introduce p̂T, q̂T, such that p̂TE2q0 = 0, q̂TE2Q1 p = 0.

This implies that Span p̂ = Ker qTET
2 and Span q̂ = Ker pTQT

1E
T
2. Multiplying (6.2.2) by(

p̂T q̂T
)T

, we obtain:

 0 0
q̂TE2P1 p 0

 ξq,1

ξq,0

′ +  p̂TE2Q1 p 0
0 q̂TE2q

 ξq,1

ξq,0

 =

 p̂TB
q̂TB

 u.

Thus, from above system, if (6.0.1) is of index-2 and the spectrum of its matrix pencil

(E,A) has only infinite eigenvalues, it can be decoupled into the form

Eq,1ξq,1 = Bq,1u,

Eq,0ξq,0 = Bq,0u + Aq0,1
ξ′q,1,

y = CT
q,1 ξq,1 + CT

q,0 ξq,0,

(6.2.6)

where Eq,1 = p̂TE2Q1 p ∈ Rk1×k1 , Bq,1 = p̂TB ∈ Rk1×m, Eq,0 = q̂TE2q ∈ Rk0×k0 ,

Bq,0 = q̂TB ∈ Rk0×m, Aq0,1
= −q̂TE2P1 p ∈ Rk0×k1 , Cq,1 = pTC ∈ Rk1×` and

Cq,0 = qTC ∈ Rk0×`. We can observe that n = k0 + k1 is the dimension of the DAE.
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Hence index-2 DAEs can be decoupled in two ways depending on the spectrum of the

matrix pencil. This is also illustrated in Example 6.2.1 and 6.2.2.

Example 6.2.1 In this example, we use the same matrices from Example 5.3.1. This

DAE has matrix pencil whose spectrum as one finite eigenvalue and it is of index-2.

Thus, its decoupled system must have a differential part. We can then use the procedure

in Section 6.2.1 to derive its implicit decoupled system. We used the procedure in section

6.2.1 to construct bases p̂, q̂ and ẑp0
, ẑq0

and obtained

p̂ =


1 0

1 0

1 0

0 1

 , q̂ =


0 1

J1

0 − 1
J2

1 0

0 1

 and ẑp0
=

10
 , ẑq0

=

01
 . (6.2.7)

Substituting matrices from Example 5.3.1 and (6.2.7) into (6.2.3) we obtain an implicit

decoupled system with system matrices: Ep = J1 + J2, Ap = 0, Bp =
(
1 1

)
,Eq,1 = −J1 − J2,

Aq,1 = 0, Bq,1 =
(
0 0

)
, Eq,0 =

 1 1
− 1

J1

1
J2

 , Aq,0 =

00
 , Bq,0 =

 0 0
1
J1
− 1

J2

 , Aq0,1
=

 0
J1 + J2

 ,
Cp = 1

J1+J2

(
J1 J2

)T
, Cq,1 = 1

J1+J2

(
1 −1

)T
, Cq,0 =

0 0
0 0

T

. We can observe that if we simplify this

implicit decoupled system, it reduces to an ODE given by

(J1 + J2)ξ′p =
(
1 1

)
u,

y =
1

J1 + J2

J1

J2

 ξp.
(6.2.8)

We can observe that solutions of (5.3.20) and (6.2.8) coincide. We can also observe that

(6.2.8) is an implicit version of (5.3.20).

Example 6.2.2 In this example, we use system matrices from Example 5.3.2. This DAE

has matrix pencil whose spectrum has no finite eigenvalues and it is of index-2. Thus, its

decoupled system has no differential part. Using matrices from Example 5.3.2, we con-

structed p̂ and q̂ using the derived procedure for implicit decoupling of index-2 system

without a differential part and obtained : p̂ =

1
1
0

 , q̂ =

1 0
0 0
0 1

 . Substituting the column

matrices and those from Example 5.3.2 into (6.2.6), we obtain an implicit decoupled
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system without a differential part with system matrices given by

Eq,1 = 1, Bq,1 = 1, Eq,0 =

(
G −G
0 −1

)
, Bq,0 =

(
1
0

)
, Aq0,1

=

(
0
−L

)
, Cq,1 = 1, Cq,0 =

(
1
1

)
.

Solving the system lead to an output solution y = (G−1
+ 1)u + 2Lu

′

which coincides

with that in Example 5.3.2.

6.3 Index-3 DAEs

In this Section, we assume that (6.0.1a) is an index-3 DAE, i.e., µ = 3. Thus the matrix

chain E3 must be nonsingular. Substituting µ = 3 into (6.0.2), we obtain

E3

[
P2P1P0x′ + Q2x + Q1x + Q0x

]
= A3P0P1P2x + Bu. (6.3.1)

Projectors Qi is chosen such that Im Qi = Ker Ei and Pi = I − Qi, i = 0, 1, 2 is its

complementary projectors. Also for this case , we assume that Q jQi = 0, j > i holds

true. For the case of index-3 DAEs we can also have two possibilities depending on the

spectrum of the matrix pencil (E,A) as follows:

6.3.1 Index-3 DAEs with a differential part

Assume that the matrix pencil (E,A) of (6.0.1a) has at least one finite eigenvalues, i.e,

σ f (E,A) , ∅. Thus from Section 5.4.3 for the case of index-3 DAE with differential

part, x can be decomposed as

x =
(

pzp0
zp1

pzp0
zq1

pzq0
q
) 

ξp

ξq,2

ξq,1

ξq,0

 , ξp ∈ R
np , ξq,2 ∈ R

k2 , ξq,1 ∈ R
k1 , ξq,0 ∈ R

k0 .
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Substituting x into (6.3.1) and simplifying, we obtain

(
E3P2P1 pzp0

zp1
E3P2P1 pzp0

zq1
−E3Q0Q1 pzq0

0
)

ξp

ξq,2

ξq,1

ξq,0


′

=
(
0 A3 pzp0

zp1
−E3Q2 pzp0

zq1
−E3Q1 pzq0

−E3 q0

)

ξp

ξq,2

ξq,1

ξq,0

 + Bu (6.3.2)

In order to decouple (6.3.2), we construct full column matrices in three steps below.
(i) First construct p̂T

∈ Rn0×n, q̂T
∈ Rk0×n such that p̂TE3q = 0 and q̂TE3 p = 0. This im-

plies that Span( p̂) = Ker (E3q)T and Span(q̂) = Ker (E3 p0)T
= 0. (ii) Next,we construct

column matrices ẑT
p0
∈ Rn1×n0 , ẑT

q0
∈ Rk1×n0 such that ẑT

p0
p̂TE3 pzq0

= 0 and
ẑT

q0
p̂TE3 pzp0

= 0. This implies that Span( ẑp0
) = Ker ( p̂TE3 pzq0

)T and
Span( ẑq0

) = Ker ( p̂TE3 pzp0
)T. (iii) Finally, we construct column matrices ẑT

p1
∈ Rnp×n1 ,

ẑT
q1
∈ Rk2×n1 such that ẑT

p1
ẑT

p0
p̂TE3 pzp0

zq1
= 0 and ẑT

q1
ẑT

p0
p̂TE3 pzp0

zp1
= 0. This also im-

plies that Span( ẑp1
) = Ker ( ẑT

p0
p̂TE3 pzp0

zq1
)T and Span( ẑq1

) = Ker ( ẑT
p0

p̂TE3 pzp0
zp1

)T.

Thus left multiplying (6.3.2) by
(

ẑT
p1

ẑT
p0

p̂T ẑT
q1

ẑT
p0

p̂T ẑT
q0

p̂T q̂T
)T

and simplifying leads to


ẑT

p1
ẑT

p0
p̂TE3P2P1 pzp0

zp1
0 0 0

0 0 0 0
0 ẑT

q0
p̂TE3P2P1 pzp0

zq1
0 0

0 q̂TE3P2P1 pzp0
zq1

−q̂TE3Q0Q1 pzq0
0



ξp

ξq,2

ξq,1

ξq,0


′

=


ẑT

p1
ẑT

p0
p̂TA3 pzp0

zp1
0 0 0

ẑT
q1

ẑT
p0

p̂TA3 pzp0
zp1
− ẑT

q1
ẑT

p0
p̂TE3Q2 pzp0

zq1
0 0

ẑT
q0

p̂TA3 pzp0
zp1

− ẑT
q0

p̂TE3Q2 pzp0
zq1

− ẑT
q0

p̂TE3Q1 pzq0
0

q̂TA3 pzp0
zp1

−q̂TE3Q2 pzp0
zq1

−q̂TE3Q1 pzq0
−q̂TE3 q0



ξp

ξq,2

ξq,1

ξq,0

 +


ẑT

p1
ẑT

p0
p̂TB

ẑT
q1

ẑT
p0

p̂TB
ẑT

q0
p̂TB

q̂TB

 u.

Using the above system, without loss of generality the implicit decoupled system of
(6.0.1) is given by

Epξ
′
p = Apξp + Bpu,

Eq,2ξq,2 = Aq,2ξp + Bq,2u,

Eq,1ξq,1 = Aq,1ξp + Bq,1u + Eq1,2
ξq,2 + Aq1,2

ξ′q,2,

Eq,0ξq,0 = Aq,0ξp + Bq,0u + Eq0,2
ξq,2 + Eq0,1

ξq,1 + Aq0,2
ξ′q,2 + Aq0,1

ξ′q,1,

y = CT
pξp + CT

q,2ξq,2 + CT
q,1ξq,1 + CT

q,0ξq,0,

(6.3.3)
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where

Ep = ẑT
p1

ẑT
p0

p̂TE3P2P1 pzp0
zp1
∈ Rnp×np , Ap = ẑT

p1
ẑT

p0
p̂TA3 pzp0

zp1
∈ Rnp×np , Bp = ẑT

p1
ẑT

p0
p̂TB ∈ Rnp×m,

Eq,2 = ẑT
q1

ẑT
p0

p̂TE3Q2 pzp0
zq1
∈ Rk2×k2 , Aq,2 = ẑT

q1
ẑT

p0
p̂TA3 pzp0

zp1
∈ Rk2×np , Bq,2 = ẑT

q1
ẑT

p0
p̂TB ∈ Rk2×m,

Eq,1 = ẑT
q0

p̂TE3Q1 pzq0
∈ Rk1×k1 , Aq,1 = ẑT

q0
p̂TA3 pzp0

zp1
∈ Rk1×np , Bq,1 = ẑT

q0
p̂TB ∈ Rk1×m,

Eq1,2
= − ẑT

q0
p̂TE3Q2 pzp0

zq1
∈ Rk1×k2 , Aq1,2

= − ẑT
q0

p̂TE3P2P1 pzp0
zq1
∈ Rk1×k2 , Eq,0 = q̂TE3 q ∈ Rk0×k0 ,

Aq,0 = q̂TA3 pzp0
zp1
∈ Rk0×np , Bq,0 = q̂TB ∈ Rk0×m, Eq0,2

= −q̂TE3Q2 pzp0
zq1
∈ Rk0×k2 ,

Eq0,1
= −q̂TE3Q1 pzq0

∈ Rk0×k1 , Aq0,2
= −q̂TE3P2P1 pzp0

zq1
∈ Rk0×k2 , Aq0,1

= q̂TE3Q0Q1 pzq0
∈ Rk0×k1 ,

CT
q,2 = CTp0 zp0

zq1
∈ Rk2×`, CT

q,1 = CTp0 zq0
∈ Rk1×`, CT

q,0 = CTq0 ∈ R
k0×`.

6.3.2 Index-3 DAEs without a differential part

Here, we assume that the matrix pencil (E,A) of (6.0.1a) has no finite eigenvalues, i.e.,

σ f (E,A) = ∅. This implies that P0P1P2 = 0, thus (6.3.1) simplifies to,

E3

[
P2P1P0x′ + Q2x + Q1x + Q0x

]
= Bu, (6.3.4)

Also from Section 5.4.3 for the case of index-3 DAEs without differential part, x can be

decomposed as x =
(
pzp0

pzq0
q
) 
ξq,2

ξq,1

ξq,0

 , ξq,2 ∈ R
k2 , ξq,1 ∈ R

k1 , ξq,0 ∈ R
k0 . Then substituting x into

(6.3.4) and simplifying we obtain

(
E3P2 pzp0

−E3Q0Q1 pzq0
0
) 
ξq,2

ξq,1

ξq,0


′

=
(
−E3Q2 pzp0

−E3Q1 pzq0
−E3 q0

) 
ξq,2

ξq,1

ξq,0

 + Bu. (6.3.5)

In order to decouple (6.3.5), we need to construct two pairs of full column rank matrices.
This is done as follows: We first construct p̂T

∈ Rn0×n, q̂T
∈ Rk0×n such that p̂TE3q = 0

and q̂TE3 p = 0. This implies that Span( p̂) = Ker (E3q)T and Span(q̂) = Ker (E3 p0)T.
We then construct ẑT

p0
∈ Rn1×n0 , ẑT

q0
∈ Rk1×n0 such that ẑT

p0
p̂TE3Q1 pzq0

= 0 and
ẑT

q0
p̂TE3Q2 pzp0

= 0. This implies that Span( ẑp0
) = Ker ( p̂TE3Q1 pzq0

)T and

Span( ẑq0
) = Ker ( p̂TE3Q2 pzp0

)T. Thus left multiplying (6.3.5) by
(
ẑT

p0
p̂T ẑT

q0
p̂T q̂T

)T
and

simplifying, we obtain
0 0 0

ẑT
q0

p̂TE3P2 pzp0
0 0

q̂TE3P2 pzp0
−q̂TE3Q0Q1 pzq0

0



ξq,2

ξq,1

ξq,0


′

=


− ẑT

p0
p̂TE3Q2 pzp0

0 0
0 − ẑT

q0
p̂TE3Q1 pzq0

0
−q̂TE3Q2 pzp0

−q̂TE3Q1 pzq0
−q̂TE3 q



ξq,2

ξq,1

ξq,0

 +


ẑT

p0
p̂TB

ẑ∗Tq0
p̂TB

q̂TB

 u.
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From the above system, without loss of generality the implicit decoupled system of

(6.0.1) is given by

Eq,2ξq,2 = Bq,2u,

Eq,1ξq,1 = Bq,1u + Aq1,2
ξ′q,2,

Eq,0ξq,0 = Bq,0u + Eq0,2
ξq,2 + Eq0,1

ξq,1 + Aq0,2
ξ′q,2 + Aq0,1

ξ′q,1,

y = CT
q,2ξq,2 + CT

q,1ξq,1 + CT
q,0ξq,0,

(6.3.6)

where

Eq,2 = ẑT
p0

p̂TE3Q2 pzp0
∈ Rk2×k2 , Bq,2 = ẑT

p0
p̂TB ∈ Rk2×m, Eq,1 = ẑT

q0
p̂TE3Q1 pzq0

∈ Rk1×k1 ,

Bq,1 = ẑT
q0

p̂TB ∈ Rk1×m, Aq1,2
= − ẑT

q0
p̂TE3P2 pzp0

∈ Rk1×k2 , Eq,0 = q̂TE3 q0 ∈ R
k0 ,k0 ,

Bq,0 = q̂TB ∈ Rk0×m, Aq0,2
= −q̂TE3P2 pzp0

∈ Rk0×k2 Aq0,1
= q̂TE3Q0Q1 pzq0

∈ Rk0×k1

Eq0,1
= −q̂TE3Q1 pzq0

∈ Rk0×k1 , Eq0,2
= −q̂TE3Q2 pzp0

∈ Rk0×k2 , CT
q,2 = CT p0 zp0

∈ Rk2×`,

CT
q,1 = CT p0 zq0

∈ Rk1×` and CT
q,0 = CT q0 ∈ R

k0×`.

Example 6.3.1 In this example, we use matrices from Example 5.4.1. This DAE is of
index-3 and its matrix has at least one finite eigenvalue. Thus following the procedure
in Section 6.3.1, we can construct the decoupling column matrices given by

p̂T =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1


, q̂T =



0
0

− 4L2

3L+g

0
0

− 2L2

m2(3L+g)

1



T

, ẑT
p0

=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

ẑq0
=



0
0
−L
0
0
1


, ẑT

p1
=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , ẑq1
=



0
0
0
0
1


.

Substituting the above column matrices and those from Example 5.4.1 into (6.3.3) , we
obtain an implicit decoupled system with system matrices given by

Ep =


1 0 0 0
0 1 0 0
0 0 m1 0
0 0 0 m2

 , Ap =


0 0 1 0
0 0 0 1
−

gm2
L

gm2
L 0 0

gm2
L −

gm2
L 0 0

 , Bp =


0
0
1
0

 , Eq,2 = 0, Aq,2 =
(
0 0 0 0

)
, Bq,2 = 0, Eq,1 = L,
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Aq,1 =
(
0 0 0 0

)
, Bq,1 = 0, Eq1,2

= 0, Aq1,2
= 0, Eq,0 =

(
4L3

m2(3L+g)

)
, Aq,0 =

(
0 0 0 0

)
, Bq,0 = 0, Eq0,2

= 0,

Eq0,1
= − 2L2

3L+g , Aq0,2
= 0, Aq0,1

= − 2L2

3L+g , CT
p =

0 1 0 0
0 0 0 0

 , CT
q,2 =

01
 , CT

q,1 =

00
 , CT

q,0 =

00
 . We can

observe that the system can be simplified to an ODE system given by


1 0 0 0
0 1 0 0
0 0 m1 0
0 0 0 m2

 ξ′p =


0 0 1 0

0 0 0 1

−
gm2

L
gm2

L 0 0
gm2

L −
gm2

L 0 0

 ξp +


0

0

1

0

 u,

y =

0 1 0 0

0 0 0 0

 ξp,

(6.3.7)

We can observe (6.3.7) is an implicit version of (5.3.20) and their solutions coincide.

Example 6.3.2 Using matrices from Example 5.4.2 and following the procedure for the
case of index-3 DAEs without a differential part, we construct the decoupling column
matrices given by

p̂T =


0 0
1 0
0 1


T

, q̂T =


1
3
2
3

1


T

, ẑT
p0

=

01
T

, ẑT
q0

=

 1
√

2
1
√

2

 .
Substituting these column matrices and those from Example 5.4.2 into (6.3.6), we obtain

an implicit decoupled system with system matrices given by:

Eq,2 = −1, Bq,2 = 0, Eq,1 = −
1
√

2
, Bq,1 =

1

10
√

2
, Aq1,2

= −
1
√

2
, Eq,0 = −

1
3
,

Bq,0 =
17
5
, Eq0,2

=
1
3
, Eq0,1

=
1
3
, Aq0,2

= −
1
3
, Aq0,1

= −
1
3
.

Hence the implicit decoupled system of this DAE is given by

−ξq,2 = 0u,

−
1
√

2
ξq,1 =

1

10
√

2
u −

1
√

2
ξ′q,2,

−
1
3
ξq,0 =

17
5

u +
1
3
ξq,2 +

1
3
ξq,1 −

1
3
ξ′q,2 −

1
3
ξ′q,1,

y = −29ξq,2 + 29.96ξq,1 + 0.04ξq,0.

After solving the above system leads to an output solution y = −3.4u − 0.004u′ which

coincides with that obtained in Example 5.4.2.
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6.4 Comparison of implicit and explicit decoupling methods

In this Section, we compare the no-inversion decoupling procedure discussed in this

Chapter and the inversion decoupling procedure presented in Chapter 5. We call the

no-inversion and inversion procedures, the implicit and explicit decoupling procedures,

respectively. Let us first generalize the implicit decoupled system as follows. Assume

(6.0.1) is an index-µ DAE. If the spectrum of the matrix pencil has at least one finite

eigenvalue, then the DAE can be decoupled implicitly as

Epξ
′
p = Apξp + Bpu (6.4.1a)

−Lξ′q = Aqξp − Lqξq + Bqu, (6.4.1b)

y = CT
pξp + CT

qξq, (6.4.1c)

where L is a nilpotent matrix of index µ. Lq is a non-singular lower triangular matrix

with block diagonal matrices for µ > 1. ξp ∈ R
np , ξq ∈ R

nq , Aq ∈ R
nq×np, Bq ∈ R

nq×m

and Cq ∈ R
nq×`, Cp ∈ R

np×`. And, if spectrum of the matrix pencil of (6.0.1) has only

infinite eigenvalues then (6.4.1) simplifies to

−Lξ′q = −Lqξq + Bqu, (6.4.2a)

y = CT
q ξq. (6.4.2b)

For comparison with the DAE (6.0.1), we can rewrite the implicit decoupled systems

either (6.4.1) or (6.4.2) in the descriptor form given by

Ẽξ′ = Ãξ + B̃u, (6.4.3a)

y = C̃Tξ, (6.4.3b)

where Ẽ =

(
Ep 0
0 −L

)
∈ Rn×n, Ã =

(
Ap 0
Aq −Lq

)
∈ Rn×n, B̃ =

(
Bp

Bq

)
∈ Rn×m, C̃ =

(
Cp

Cq

)
∈ Rn×`. If

the spectrum of the matrix pencil (E,A) has at least one finite eigenvalue and

Ẽ = −L ∈ Rn×n, Ã = −Lq ∈ R
n×n, B̃ = Bq ∈ R

n×m, C̃ = Cq ∈ R
n×`, if the spectrum

of the matrix pencil (E,A) has no finite eigenvalues. We can observe that this form also

reveals the interconnection structure of the DAE (6.0.1). Moreover it can also be proved

that systems (6.0.1) and (6.4.3) are equivalent. This implies that also their matrix pencils

(E,A) and (Ẽ, Ã) are equivalent, thus they must have the same spectrum. If we consider
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DAEs whose matrix pencil (E,A) has at least one finite eigenvalue, we can show that

they have same spectrum, since we can easily show that det(λẼ − Ã) = det(λEp − Ap),

since det(Lq − λL) = (1)nq . This identity shows that the finite eigenvalues of the mat-

rix pencil (E,A) coincide with the (possibly complex) eigenvalues of the matrix E−1
p Ap

of the differential part, which are exactly np, counting their multiplicity. This implies

that the differential part of the implicit decoupled system also inherits the stability prop-

erties of the DAE (6.0.1a). Hence both the implicit and explicit decoupling procedure

preserves the dimension and stability of the DAE. If we compare the descriptor forms

(5.4.34) and (6.4.3), they coincide if Ep = I and Lq = I. The main difference between

these two procedures is the computational cost involved in deriving the respective de-

coupled systems. The explicit decoupling is the most expensive since its decoupling

procedure involves inversion of matrix Eµ which can be computationally very expens-

ive. We note that both decoupling procedure can lead to a complete decoupling, that

is, when matrix Aq vanishes if one uses the so called canonical projectors proposed by

März [42]. In Example 6.4.1, we compare the computational cost of the explicit and

implicit decoupling procedure using index-1 power system models.

Example 6.4.1 In this example, we use index-1 power system models obtained from

[54–57] to compare the computational cost of the explicit and implicit decoupling meth-

ods of DAEs. They are all index-1 DAEs of the form (6.0.1). We were able to decouple

them into np differential equations and nq algebraic equations, where n = nq + nq is the

dimension of the DAE using both the explicit and the implicit decoupling methods. We

compared the time both methods took to generate the matrices of their respective de-

coupled system as shown in Table 6.1. The experiments were done using Matlab2012b

on a laptop of 6.00GB of RAM with 64 bit operating system. From Table 6.1, we can

observe that the implicit decoupling procedure takes far less time to decouple the DAE

than the explicit decoupling method. We in fact gain more than 85% times reduction

for all the power systems. We can also observe that for the large examples the explicit

method fail to decouple the system in the allowed computational time.
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Table 6.1: Computational cost of implicit and explicit decoupling
Systems # inputs/# outputs Decoupled model Comp. Cost (Seconds) % Time Reduction

n # inputs # outputs np nq Explicit method Implicit method
40366 2 2 5727 34639 - 20.9 100.0
40337 2 1 5723 34614 - 20.5 100.0
21476 1 1 3172 18304 98.5 5.5 89.4
21128 4 4 3078 18050 79.4 5.0 88.1
20944 2 2 3012 17932 76.9 4.6 88.8
20738 1 6 2940 17798 82.5 4.9 88.7
16861 4 4 2476 14385 58.7 4.4 86.0
15066 4 4 1998 13068 53.8 3.9 86.6
13309 8 8 1676 11633 32.4 1.7 89.9
13296 46 46 1664 11632 29.0 1.9 88.0
13275 4 4 1693 11582 29.2 1.9 88.0
13250 1 1 1664 11586 28.8 1.7 88.7
13250 46 46 1664 11586 28.7 1.9 87.9
13251 28 28 1664 11587 28.6 1.7 88.7
13251 1 1 1664 11587 28.4 1.8 88.3
11685 1 1 1257 10428 23.8 1.3 89.7
11305 4 4 1450 9855 24.1 1.7 86.9

9735 4 4 1142 8593 20.8 1.3 88.0
7135 4 4 606 6529 14.4 1.0 86.5

From this experiment, we can conclude that the implicit decoupling method is com-

putationally cheaper to use than the explicit decoupling method. In Chapter 5 and 6,

we have derived two decoupling procedures for decoupling linear constant DAEs into

differential and algebraic parts using special bases of projectors. Both procedures pre-

serve dimension of the DAE and the spectrum of the matrix pencil (E,A). One may

wonder wether the construction of the special bases of projectors is numerically feasible

especially with large-scale problems. Fortunately, the same procedure proposed in [66]

to construct projector onto the nullspace of a singular large sparse matrix can also be

used to construct these bases more efficiently. Also most of the applications that lead

to DAEs, have special structures of matrix E and A, thus one can easily be able to con-

struct these bases explicitly. However some applications such as the circuits problems

which are modeled using the incidence matrices, we recommend to use the incidence

matrices to construct these bases instead of using singular matrix E and A since these

matrices may be ill-conditioned. Since the main objective of this thesis is to develop

robust MOR methods for DAEs. We use the explicit and implicit decoupled systems

derived in Chapter 5 and 6, to develop MOR methods for DAEs. This is discussed in

Chapter 7 and 8, respectively.
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Chapter 7

Index-aware Model Order
Reduction (IMOR) method

Some of the content in this Chapter can also be found in our papers [1, 2, 6]. In this

Chapter, we introduce the Index-aware model order reduction method which can be

abbreviated as IMOR method. We use the decoupled systems derived in Chapter 5 to

develop the IMOR method. Consider DAEs of the form

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0 (7.0.1a)

y(t) = CTx(t), (7.0.1b)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×` , the input vector u(t) ∈ Rm and output vector

y(t) ∈ R` of the system. x(t) ∈ Rn is the state vector and x0 is the initial value. The

number of state variables n is called the order of system or the state-space dimension.

m and ` are the number of inputs and outputs, respectively. Before deriving the IMOR

method we propose a method which can be used to reduce the algebraic parts of the

decoupled system. This method is presented in the next Section. We call this method the
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Algebraic Elimination (AE) method. The main idea of the AE method is to eliminate

algebraic variables of a given DAE which do not contribute to the output solution.

7.1 Algebraic Elimination MOR method

In this Section, we discuss the reduction of the algebraic parts of the decoupled system,

if the decoupled systems are derived from Chapter 5. This is done using reordering

techniques and then eliminate algebraic variables which do not contribute to the output

solutions.

7.1.1 Index-1 DAEs

Assume (7.0.1a) is of index-1 then it can be decoupled into the form (5.2.4) given by

ξ′p = Apξp + Bpu, (7.1.1a)

ξq = Aqξp + Bqu, (7.1.1b)

y = CT
pξp + CT

qξq, (7.1.1c)

where Ap ∈ R
np×np , Bp ∈ R

np×m, Aq ∈ R
nq×np , Bq ∈ R

nq×m and Cp ∈ R
np×`, Cq ∈ R

nq×`.

Let us assume Cq , 0 otherwise the DAE can just be reduced to an ODE (7.1.1a) of

dimension np. Consider the algebraic subsystem of (7.1.1) given by

ξq = Aqξp + Bqu, (7.1.2a)

yq = CT
qξq. (7.1.2b)

The algebraic reduction of (7.1.2) can be done as follows. Assume Cq has at least one

zero row, i.e., the row rank of Cq is less than nq. Let Pπ1
∈ Rnq×nq be a permutation

matrix such that Pπ1
Cq =

C̃q1

0

, where C̃q1
∈ Rτ×` and also let ξq = PT

π1
ξ̃q =

ξ̃q1

ξ̃q2

,
where ξ̃q1

∈ Rτ, ξ̃q2
∈ Rnq−τ and Qπ1

= P−T
π1

. Then Aq and Bq can be partitioned as

Qπ1
Aq =

Ãq1

Ãq2

 and Qπ1
Bq =

B̃q1

B̃q2

 , where Ãq1
∈ Rτ×np , Ãq2

∈ R(nq−τ)×np , B̃q1
∈ Rτ×m,

B̃q2
∈ R(nq−τ)×m. Hence (7.1.2) can be reduced to a reduced-order algebraic system of
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dimension τ � nq given by

ξ̃q1
= Ãq1

ξp + B̃q1
u,

yp = C̃T
q1
ξ̃q1
.

(7.1.3)

Thus, system (7.1.1) can be reduced to a reduced-order model of dimension np + τ < n

given by

ξ′p = Apξp + Bpu,

ξ̃q1
= Ãq1

ξp + B̃q1
u,

y = CT
pξp + C̃T

q1
ξ̃q1
.

(7.1.4)

Hence (7.1.4) is AE reduced-order model of (7.0.1).

7.1.2 Index-2 DAEs

Assume (7.0.1a) is a DAE of index-2. If we consider the case of the index-2 DAEs

whose matrix pencil with spectrum having at least one finite eigenvalue. Then, the DAE

(7.0.1) can be decoupled into the form (5.3.15) given by

ξ′p = Apξp + Bpu,

ξq,1 = Aq,1ξp + Bq,1u,

ξq,0 = Aq,0ξp + Bq,0u + Aq0,1
ξ′q,1,

y = CT
pξp + CT

q,1ξq,1 + CT
q,0ξq,0,

(7.1.5)

where Ap ∈ R
np×np , Bp ∈ R

np×m, Aq,1 ∈ R
k1×np , Bq,1 ∈ R

k1×m, Aq,0 ∈ R
k2×np ,

Bq,0 ∈ R
k2×m, Aq0,1

∈ Rk2×k1 and Cp ∈ R
np×`, Cq,1 ∈ R

k1×`, Cq,0 ∈ R
k2×`. If we consider

only algebraic parts of the system (7.1.5), we obtain an algebraic subsystem given by

ξq,1 = Aq,1ξp + Bq,1u, (7.1.6a)

ξq,0 = Aq,0ξp + Bq,0u + Aq0,1
ξ′q,1, (7.1.6b)

yq = CT
q,1ξq,1 + CT

q,0ξq,0. (7.1.6c)

We can observe that, if Cq,1 = 0 and Cq,0 = 0 , then the DAE (7.0.1) can be reduced to

an ODE (7.1.6a) of dimension np. If Cq,1 , 0 and Cq,0 = 0 or Cq,1 = 0, Aq0,1
= 0 and
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Cq,0 , 0 then the DAE (7.0.1) can be reduced to an index-1 DAE of dimension np + k1

and np + k0, respectively. If (7.1.6) is reduced to an index-1 DAE. Then, we use the

same procedure in the previous Section to further reduce the algebraic parts. Assume

the above conditions are not satisfied then the algebraic subsystem (7.1.6) can be re-

duced as follows. We assume Cq,1 ∈ R
k1×` and Cq0

Rk0×` have at least one zero row, i.e.,

the row rank of Cq,1 and Cq0
is less than k1 and k2, respectively. First, we compute the

permutation matrices Vπ,Wπ ∈ R
k2×k2 such that WT

πCq,0 =

Cq1,0

0

. Then, we have par-

titions VπBq,0 =

Bq1,0

Bq2,0

 ,VπAq,0 =

Aq1

Aq2

 . Next, we construct another set of permutation

matrices Pπ,Qπ ∈ R
k1×k1 such that VπAq0,1

Qπ =

Aq011 ,1
0

Aq021 ,1
0

 , QT
πCq,1 =

Cq1,1

0

. Then,

we have a partition PπAq,1 =

Aq1,1

Aq1,2

 , PπBq,1 =

Bq1,1

Bq2,1

. If we let ξq,1 = Qπξ̃q,1 =

ξ̃q1,1

ξ̃q2,1

,
where ξ̃q1,1 ∈ R

τ1 , ξ̃q2,1 ∈ R
k1−τ1 and ξq,0 = Wπξ̃q,0 =

ξ̃q1,0

ξ̃q2,0

, where ξ̃q1,0 ∈ R
τ2

ξ̃q2,0 ∈ R
k2−τ2 . Then left multiply (7.1.6a) and (7.1.6b) with Pπ and Vπ, respectively.

We obtain a partitioned system of (7.1.6). We can then eliminate the algebraic variables

ξ̃q2,1 and ξ̃q2,0 which do not contribute to the output solution (7.1.6c). This leads to a

reduced-order model of dimension τ1 + τ2 < nq given by

ξq,1 = Aqτ,1ξp + Bqτ,1u, (7.1.7a)

ξqτ,0 = Aqτ,0ξp + Bqτ,0u + Aq0τ,1
ξ′qτ,1, (7.1.7b)

yqτ
= CT

qτ,1ξqτ,1 + CT
qτ,0ξqτ,0, (7.1.7c)

where Bqτ,1 = Bq1,1 ∈ R
τ1×m, Aqτ,0 = Aq1

∈ Rτ2×np , Aq0τ,1
= Aq011 ,1

∈ Rτ2×τ1 and

Cqτ,1 = Cq1,1 ∈ R
τ1×`, Cqτ,0 = Cq1,0 ∈ R

τ2×`. Thus the DAE (7.0.1) is reduced to a

reduced-order model of dimension np + τ1 + τ2 < n given by

ξ′p = Apξp + Bpu,

ξq,1 = Aqτ,1ξp + Bqτ,1u,

ξqτ,0 = Aqτ,0ξp + Bqτ,0u + Aq0τ,1
ξ′qτ,1,

y = CT
pξp + CT

qτ,1ξqτ,1 + CT
qτ,0ξqτ,0.
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Example 7.1.1 In this example, we consider the decoupled systems of index-1 DAE

model generated in Table 6.1 using the explicit decoupling procedure. Recall, we were

able to decouple these DAEs into np differential equations and nq algebraic equations,

where n = nq + nq is the dimension of the DAE. We cam then apply the AE method to

these decoupled systems in order to reduce the number of algebraic equations. In Table

7.1, we can observe that the algebraic equations of the decoupled power systems are

greatly reduced. In fact, we obtain an overall reduction of more than 85% as shown in

last column of Table 7.1.

Table 7.1: Algebraic Reduced models of power systems
Systems # inputs/# outputs Decoupled model Alg. Reduced model Reduced system % Reduction

n # inputs # outputs np nq np τ np + τ

40366 2 2 5727 34639 5727 8 5735 85.8
40337 2 1 5723 34614 5723 6 5729 85.8
21476 1 1 3172 18304 3172 34 3206 85.1
21128 4 4 3078 18050 3078 16 3094 85.4
20944 2 2 3012 17932 3012 8 3020 85.6
20738 1 6 2940 17798 2940 0 1755 91.5
16861 4 4 2476 14385 2476 16 2492 85.2
15066 4 4 1998 13068 1998 16 2014 86.6
13309 8 8 1676 11633 1676 0 1676 87.4
13296 46 46 1664 11632 1664 92 1756 86.8
13275 4 4 1693 11582 1693 16 1709 87.1
13250 1 1 1664 11586 1664 1 1665 87.4
13250 46 46 1664 11586 1664 46 1710 87.1
13251 28 28 1664 11587 1664 0 1664 87.4
13251 1 1 1664 11587 1664 0 1664 87.4
11685 1 1 1257 10428 1257 4 1261 89.2
11305 4 4 1450 9855 1450 16 1466 87.0

9735 4 4 1142 8593 1142 16 1158 88.1
7135 4 4 606 6529 606 16 622 91.2

Example 7.1.2 In this example, we use RLC network descriptor models of electric

power grids obtained from [17] and PEEC model of dimension n = 480 from [49].

These are all index-2 DAEs of the form (2.3.1). We were able to decouple these models

into differential and algebraic parts using the procedure presented in Section 5 and then

used the AE method to reduce the algebraic parts. The results are shown in Table 7.2.

We can observe that most of the algebraic equations are eliminated, although we do not

gain too much overall reduction since these DAEs have more differential equations than

the algebraic equations.

The AE method does not reduce the differential part and the algebraic part is not always

completely reduced. Thus, the AE reduced-order models must be further be reduced
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Table 7.2: Algebraic Reduced models of RLC systems
Systems # inputs/# outputs Decoupled model Alg. Reduced model Reduced system % Reduction

n # inputs # outputs np k1 k2 np τ1 τ2 np + τ1 + τ2

4182 1 1 4028 35 119 4028 0 1 4029 3.7
2182 1 1 2028 35 119 2028 0 1 2029 7.0
1182 1 1 1028 35 119 1028 0 1 1029 12.9
682 1 1 528 35 119 528 0 1 529 22.4
4182 3 3 4028 35 119 4028 0 3 4031 3.6
2182 3 3 2028 35 119 2028 0 3 2031 6.9
1182 3 3 1028 35 119 1028 0 3 1031 12.8

682 3 3 528 35 119 528 0 3 531 22.1
480 1 1 181 61 238 181 0 1 182 62.1

using the Index-aware MOR method.

7.2 Index-aware MOR method

In this Section, we present the Index-aware MOR method which can be abbreviated as

the IMOR method. This MOR method was first proposed in [1, 2] for the case of index-

1 and -2 DAEs, respectively and its generalization in [6] which we called the GIMOR

method. The IMOR method uses the system matrices from the decoupled systems de-

rived in Chapter 5. This is done by reducing both the differential and algebraic parts

separately of the decoupled systems. We use the conventional MOR methods to reduce

the differential part and we have developed new methods that reduces the algebraic part.

For the algebraic part, we first apply the Algebraic Elimination (AE) method proposed

in the previous Section so that we can eliminate some algebraic variables which do not

contribute to the output solution. We note that this idea is new from what we proposed

in [1, 2, 6], it greatly increases the efficiency of the IMOR method. The main motivation

of the IMOR method is the need to develop computationally efficient methods which can

reduce higher index DAEs. We are not the only people who have attempted to develop

MOR methods specifically for DAEs by first splitting them into differential and algeb-

raic parts. Some of the recently developed MOR methods for DAEs, have already been

discussed in Section 3.3. The most successful and accurate MOR methods for DAEs

are the balanced truncation and interpolatory projection methods for DAEs. However

their splitting procedure is based on spectral projectors which may be numerically in-

feasible, see [25, 45]. Moreover, the spectral projectors are not sufficiently good tools

on appropriate generalizations for variable coefficient linear DAEs and nonlinear DAEs,
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respectively [42]. This gives our decoupling procedure and the IMOR method an ad-

vantage over the existing MOR methods for DAEs since it is based on projector and

matrix chain introduced by März [42] which are extendable to variable coefficient linear

DAEs and nonlinear DAEs, respectively. Thus the IMOR method can also be extended

to nonlinear DAEs.

7.2.1 Index-aware MOR for index-1 DAEs

Assume (7.0.1a) is an index-1 DAE, then its explicit decoupled system can be written

in the form (7.1.1). Strictly separating the decoupled system (7.1.1) into differential and

algebraic parts leads to

ξ′p = Apξp + Bpu,

yp = CT
pξp,

(7.2.1)

and

ξq = Aqξp + Bqu, (7.2.2a)

yq = CT
qξq, (7.2.2b)

where the output equation of the DAE can be reconstructed as y = yp + yq. Then, the

IMOR method for index-1 DAE can be derived into the following two steps:

(a) Reduction of the differential part: Here we consider the differential subsystem

(7.2.1). This subsystem can be reduced by convectional MOR methods such as

those presented in [3,9,45,58]. In this Section, we restrict ourselves on the Krylov

subspace based methods and the method of choice will be the PRIMA method

[49]. Here we seek a reduced-order model of (7.2.1) given by

ξ′pr1
= Apr1

ξpr1
+ Bpr1

u,

ypr1
= CT

pr1
ξpr1

,
(7.2.3)

where Apr1
∈ Rr1×r1 , Bpr1

∈ Rr1×m and Cp ∈ R
r1×`, such that r1 � np. The

approximation error yp − ypr1
and Hp(s) − Hpr1

(s) must be small with respect to

a specific norm. In the frequency domain, this means that the transfer function
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of (7.2.3) is given by Hpr1
(s) = CT

pr1
(sI − Apr1

)−1Bpr1
approximates Hp(s) of

(7.2.1) well. The reduced-order subsystem (7.2.3) can be obtained via projection

as follows. We first construct np × r1m matrix Vp that approximates the original

state-space ξp(t) by Vpξpr1
and then enforce the Galerkin condition

VT
p

(
Vpξ

′
p − ApVpξpr1

− Bpu
)

= 0, ypr1
= CT

pVpξpr1
.

This leads to a reduced-order model (7.2.3) with the system matrices

Apr1
= VT

pApVp, Bpr1
= VT

pBp, Cpr1
= VT

pCp, and VT
pVp = Ir1m.

The projection matrix Vp determine the subspace of interest and can be construc-

ted in many different ways, see [3, 9, 45, 58]. If, we apply the Arnoldi process,

based on the Krylov subspace

Kr1
(Mp,Rp) := Span{Rp,MpRp, · · · ,M

r1−1
p Rp}, r1 ≤ np, (7.2.4)

where Mp := (s0I−Ap)−1, Rp := (s0I−Ap)−1Bp and s0 ∈ C\σ(Ap) which can be

chosen arbitrary. We denote by Vp ∈ R
np×r1m the matrix of an orthonormal basis

for Kr1
(Mp,Rp), so that VT

pVp = Ir1m.

(b) Reduction of the algebraic part: In this Section, we derive the reduction pro-

cedure for the algebraic subsystem (7.2.2). For this case, we seek a reduced-order

algebraic subsystem of the form

ξqr2
= Aqr2

ξpr1
+ Bqr2

u, (7.2.5a)

yqr2
= CT

qr2
ξqr2

, (7.2.5b)

where Aqr2
∈ Rr2×r1 , Bqr2

∈ Rr2×m and Cqr2
∈ Rr2×`, r2 < nq. This can be done

as follows. If we substitute ξp = Vpξpr1
into (7.2.2a), we obtain

ξ̃q = AqVpξpr1
+ Bqu. (7.2.6)

From (7.2.6), we can observe that the reduction procedure for the differential vari-

ables induces a reduction for the algebraic variables, where ξ̃q is the approximation

of ξq induced by the reduction of ξp. According to [1], this relations shows that ξ̃q
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lives in the subspaceVq given by

Vq := Span{Bq,AqVp} = Span{Bq} + AqKr1
(Mp,Rp). (7.2.7)

We denote by r2 the dimension of Vq and by Vq ∈ R
nq×r2m the matrix of an

orthonormal basis for Vq, so that VT
q Vq = I ∈ Rr2m×r2m. Thus, we can represent

the algebraic solution in the form ξ̃q = Vqξqr2
. Substituting ξ̃q = Vqξqr2

into (7.2.6)

and (7.2.2b) leads to a reduced-order algebraic subsystem of the form (7.2.5) with

system matrices

Aqr2
= VT

q AqVp, Bqr2
= VT

q Bq and Cqr2
= VT

q Cq.

Hence the IMOR reduced-order model of (7.0.1) is of dimension r1 + r2 � n and

is given by

ξ′pr1
= Apr1

ξpr1
+ Bpr1

u, (7.2.8a)

ξqr2
= Aqr2

ξpr1
+ Bqr2

u, (7.2.8b)

yr = CT
pr1
ξpr1

+ CT
qr2
ξqr2

. (7.2.8c)

7.2.2 Index-aware MOR for higher index DAEs

Here, we generalize the IMOR method for higher index DAEs whose decoupled systems

with or without a differential part. We also present a theoretical explanation why the

conventional MOR method fail for higher index DAEs and under which conditions they

can be used. We consider the two cases of decoupled systems as follows.

Decoupled systems with a differential part

Here, we assume that (7.0.1a) is of index-µ with the spectrum of its matrix pencil with

at least one finite eigenvalue. This DAE can be decoupled in form (5.4.17) given by

ξ′p = Apξp + Bpu,

−Lξ′q = Aqξp − ξq + Bqu,

y = CT
pξp + CT

qξq,

(7.2.9)
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where ξp ∈ R
np , Ap ∈ R

np×np , Bp ∈ R
np , ξq ∈ R

nq , Aq ∈ R
nq×np, Bq ∈ R

nq×m,

L ∈ Rnq×nq is a strictly lower triangular nilpotent matrix of index-µ. In Section 3.2.1,

we discussed the limitation of the conventional MOR methods to DAEs using numerical

examples. Here, we theoretically explains why these methods indeed fail and what are

their limitation on reducing DAEs. This is done as follows. Taking the Laplace transform

of (7.2.9) and simplifying, we obtain

Y(s) = CT
p(sI − Ap)−1BpU(s) + CT

q (I − sL)−1
[
Aq(sI − Ap)−1Bp + Bq

]
U(s)

+ CT
q (I − sL)−1

[
Aq(sI − Ap)−1ξp(0) − Lξq(0)

]
+ CT

p(sI − Ap)−1ξp(0).

(7.2.10)

We already know that ξp(0) can be chosen arbitrary while ξq(0) has to satisfy certain

hidden constraints. Thus setting ξp(0) = 0, then (7.2.10) simplifies to

Y(s) = CT
p(sI − Ap)−1BpU(s) + CT

q (I − sL)−1
[
Aq(sI − Ap)−1Bp + Bq

]
U(s)

− CT
q (I − sL)−1

Lξq(0). (7.2.11)

In order to derive the reduced-order model using the conventional MOR methods, we

always assume vanishing initial conditions, i.e., ξ(0) = 0 which leads to the input-output

relation Y(s) = H(s)U(s), where H(s) is the transfer function. Then, H(s) is approx-

imated such that H(s) − Hr(s) is small in the suitable system norm, where Hr(s) is the

transfer function of the reduced-order model. However, from (7.2.11), we can observe

that, we can not always have this freedom for the case of DAEs since ξq(0) does not al-

ways vanish to zero for higher index DAEs. This is only possible for the case of index-1

systems since L = 0, which implies Y(s) = H(s)U(s). Thus assuming vanishing initial

condition does not affect index-1 DAEs. This the reason why conventional MOR meth-

ods lead to accurate reduced-order models for index-1 DAEs and fail for higher index

DAEs. We further explain in depth what actually destroys the accuracy of the convention

MOR methods and under which conditions can they be used. This is done as follows. If

we let P(s) := −CT
q (I − sL)−1

Lξq(0), then (7.2.11) can written as

Y(s) = H(s)U(s) + P(s), (7.2.12)

where the traditional transfer function H(s) can be decomposed as H(s) = Hp(s)+Hq(s),

where Hp(s) = CT
p(sI − Ap)−1Bp and Hq(s) = CT

q (I − sL)−1
[
Aq(sI − Ap)−1Bp + Bq

]
, is
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the transfer of the differential and algebraic part, respectively. It can be proved that

(I − sL)−1
=

µ−1∑
j=0

L
js j, (7.2.13)

since L is a nilpotent matrix of index µ. Thus, using the identity (7.2.13), P(s) can be

written as

P(s) := −CT
q

µ−2∑
j=0

L
j+1s jξq(0). (7.2.14)

Using the definition of ξq(0) from (5.4.19) and setting ξp(0) = 0, we obtain

ξq(0) =

µ−1∑
i=1

i−1∑
k=0

L
iAqAk

pBpu(i−k−1)(0) +

µ−1∑
i=0

L
iBqu(i)(0). (7.2.15)

Substituting (7.2.15) into (7.2.14) and simplifying, we can prove that P(s) is a polyno-

mial of degree µ − 2 given by

P(s) := −CT
q

µ−2∑
j=0

L
js j
Q(u(0)), (7.2.16)

where

Q(u(0)) := Lξq(0) =

µ−2∑
i=1

i−1∑
k=0

L
i+1AqAk

pBpu(i−k−1)(0) +

µ−2∑
i=0

L
i+1Bqu(i)(0).

We can see that Q(u(0)) is also a polynomial of degree µ − 2 of the form

Q(u(0)) = ζ0u(0)(0) + ζ1u(1)(0) + ζ2u(2)(0) + · · · + ζµ−2u(µ−2)(0), (7.2.17)

where ζ j are constant matrices. We can observe that P(s) depends on the smoothness of

u(0), i.e., u(0) must be at least µ − 2 times differentiable. We observed that the conven-

tional MOR methods fail if the polynomial Q(u(0)) in (7.2.17) has nonzero coefficients.

We note that even if P(s) = 0 but the coefficients of Q(u(0)) are nonzero, the conven-

tional MOR methods will still lead to wrong reduced-order models or reduced-order

models which are very difficult to solve. Hence Q(u(0)) is the hidden polynomial that
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destroys the accuracy of the conventional MOR methods when applied on higher index

DAEs. However there are some special cases where conventional MOR methods can be

applied to higher index DAEs and lead to accurate reduced-order models. This happens

when the coefficients of Q(u(0)) are all zeros. This is can be illustrated using index-2

and -3 DAEs as follows.

(1) For index-2 DAEs, we substitute µ = 2 into (7.2.16) and we obtain

P(s) := −CT
qQ(u(0)), (7.2.18)

where Q(u(0)) = LBqu(0). We can observe that index-2 DAEs cannot be reduced

by conventional MOR methods if LBq , 0 even if P(s) = 0. But if LBq = 0
conventional MOR methods can lead to accurate reduced-order models for index-

2 DAEs. This is illustrated in the example below.

Example 7.2.1 In this example, we use the system matrices from Example 3.2.1

and the two cases of control input matrix B. Both cases the DAEs are of index-2

since they have the same matrix pencil (E,A). Also since det(λE−A) = 2λ+3 , 0,

thus both DAEs are solvable and their decoupled system have a differential part.

These DAEs can be decoupled into the form (7.2.9). Below, we discuss the affect

of conventional MOR method on the two DAEs.

(i) Here, we use control input matrix from Example 3.2.1(i), where the conven-

tional MOR method lead to an accurate solution. This system is decoupled into 1

differential and 2 algebraic equations using the explicit decoupling method which

lead to decoupled system of the form (5.3.15) with system matrices given by

Ap = − 3
2 , Bp = − 3

4 , Aq,1 =

00
 , Bq,1 =

00
 , Aq,0 =

− 4
3

− 1
3

 , Bq,0 =

− 1
2

− 1
2

 ,Aq,01 =

−1 11
30

0 1

 ,
Cp = 2

3 , Cq,1 =

01
 and Cq,0 =

10
 . Using these matrices, we can write the decoupled

system into the form (7.2.9) with system matrices L =


0 0 0 0
0 0 0 0
−1 11

30 0 0

0 1 0 0

 , Aq =


0
0
− 4

3

− 1
3

 and
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Bq =


0
0
− 1

2

− 1
2

 and Cq =


0
1
1
0

. Since, this is an index-2 DAE, the polynomial P(s) is of

the form (7.2.18) and Q(u(0)) is given by Q(u(0)) = LBqu(0) =
(
0 0 0 0

)T
u(0).

We can observe that LBq = 0 thus, the conventional MOR methods can be used

to reduce this system even if the DAE is of higher index. This is the reason why

the PRIMA method lead to reduced-order model in Example 3.2.1(i) which was

easier to solve numerically.

(ii) Here, we use control matrix from Example 3.2.1(ii), where the conventional

MOR method lead to a reduced-order model which was very difficult to solve

accurately since it needed big time steps. This system is also decoupled into 1

differential and 2 algebraic equations using the explicit decoupling method which

leads to decoupled system of the form (5.3.15) with system matrices Ap = − 3
2 ,

Bp = − 3
4 , Aq,1 =

00
 , Bq,1 =

 11
30

1

 , Aq,0 =

− 4
3

− 1
3

 , Bq,0 =

 3
4

4

 , Aq,01 =

−1 11
30

0 1

 , Cp = 2
3 , Cq,1 =

01


and Cq,0 =

10
 . Using these matrices, we can write the decoupled system into the

form (7.2.9). We observe that L, Aq and Cq remains the same as in (i) but Bq

changes to Bq =
(

11
30 1 3

4 4
)T

since we just changed matrix B. For this case Q(u(0))

is given by Q(u(0)) = LBqu(0) =
(
0 0 0 1

)T
u(0). We can observe that LBq , 0

but CqLBq = 0. From Example 3.2.1(ii), we saw that the PRIMA reduced-order

model was very difficult to solve since it needs bigger time steps even if P(s) = 0.

Thus, this agrees with our theory that conventional MOR methods cannot lead

to accurate reduced-order systems for this class of DAEs even if P(s) = 0 but

Q(u(0)) , 0.

(2) For index-3 DAEs, we substitute µ = 3 into (7.2.16), we obtain

P(s) := −CT
q

[
Q(u(0)) + sLQ(u(0))

]
, (7.2.19)

where Q(u(0)) =
[
L

2AqBp +LBq

]
u(0) +L

2Bqu′(0). We can observe that Q(u(0))

has nonzero coefficients if either LBq , 0 or L2Aq , 0. Thus, these are the cases

where the conventional MOR methods will fail for the case of index-3 systems.
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Example 7.2.2 In this example, we use system matrices from Example 3.2.2,
which is a generator model of index-3. This system can be decoupled into a de-
coupled system of the form (5.4.35) with system matrices given by
Ap = −2, Bp = 2, Aq,2 = 0, Bq,2 = 1, Aq,1 = 0, Bq,1 = 1, Cq,2 = 0,
Cq,1 = 0,Aq1,2

= 1, Cp = 1,

Aq,0 =



0
0
0
0
0
0


, Bq,0 =



0
1
−1

1
−1
−1


, Aq0,1

=



1
0
0
0
0
0


, Aq0,2

=



0
0
−1
−1

0
0


and Cq,0 =



0
0
0
0
0
1


.

Thus this system can also written in the form (7.2.9) with system matrices given
by

L =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, Aq =



0
0
0
0
0
0
0
0


, Bq =



1
1
0
1
−1

1
−1
−1


, Cq =



0
0
0
0
0
0
0
1


.

Since this is an index-3 DAE its polynomial P(s) is of the form (7.2.19) and its

hidden polynomial Q(u(0)) is given by

Q(u(0)) =
(
0 1 1 0 −1 −1 0 0

)T
u(0) +

(
0 1 1 0 −1 −1 0 0

)T
u′(0)

Thus the convectional MOR methods when applied on this system will fail since

Q(u(0)) has nonzero coefficients for arbitrary u(0). This is the reason why the

PRIMA method lead to unsolvable reduced order model in Example 3.2.2.

In conclusion, the limitations of conventional MOR methods to reduce DAEs can be

summarized as follows. Almost all conventional MOR method aims at approximating

the so called transfer function H(s) and ignore the polynomial P(s). As a result Hp(s) is

well approximated but Hq(s) may be inaccurate since some of its information is in P(s).

Thus most of the important information of the DAE is always lost. We have discussed

that the conventional MOR methods fail if the hidden polynomial Q(u(0)) has nonzero

coefficients. However, the conventional MOR method can be used to reduced index-1
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DAEs since their polynomial P(s) does not exist and for some special cases of higher

index DAEs, if hidden polynomial Q(u(0)) has zero coefficients. We can now see that

it is extremely difficult to check wether the conventional MOR method will work on

higher index DAEs or not. Hence, the best way to avoid this problem, is to first splitting

the DAE system into differential and algebraic parts before applying any model order

reduction method.

For the case of IMOR method. This can be done as follows. Separating (7.2.9) into

ξ′p = Apξp + Bpu,

yp = CT
pξp,

(7.2.20)

and

−Lξ′q = Aqξp − ξq + Bqu, (7.2.21a)

yq = CT
qξq, (7.2.21b)

subsystems. Systems (7.2.20) and (7.2.21) are the differential and algebraic subsystems

respectively. The differential subsystem (7.2.20) can be reduced by substituting

ξp = Vpξpr
, where Vp can be constructed using the Arnoldi process. Thus, the reduced-

order model of (7.2.20) is given by

ξ′pr
= Apr

ξpr
+ Bpr

u,

ypr
= CT

pr
ξpr
,

(7.2.22)

where Apr
= VT

pApVp ∈ R
r×r, Bpr

= VT
pBp ∈ R

r×m and Cp = VT
pCp ∈ R

r×`, such

that r � np. The transfer function of the reduced-order differential subsystem (7.2.22)

is given by Hpr
(s) = CT

pr
(sI − Apr

)−1Bpr
. Next, we seek a reduced-order model of

algebraic subsystem (7.2.21) which can be written as

−Lrξ
′
qr

= Aqr
ξpr
− ξqr

+ Bqr
u, (7.2.23a)

yqr
= CT

qr
ξqr
, (7.2.23b)

where Aqr
∈ Rτ×r, Bqr

∈ Rτ×m and Cqr
∈ Rτ×`, τ < nq and its transfer function can

be written as Hqr
(s) = CT

qr
(I − sLr)

−1
[
Aqr

(sI − Apr
)−1Bpr

+ Bqr

]
. The matrices of the
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reduced-order model (7.2.23) can be constructed as follows. If we substitute ξp = Vpξpr

into (7.2.2a) and rearranging, we obtain

ξ̃q = Lξ̃′q + AqVpξpr
+ Bqu, (7.2.24)

where ξ̃q is the approximation of ξq induced by the reduction of ξp. Equation (7.2.24)

can be written as

ξ̃q =

µ−1∑
k=0

L
k(Vpξ

(k)
pr

+ Bqu(k)), (7.2.25)

where ξ(k)
pr

=
dkξpr

dtk
and u(k)

= dku
dtk

. We can observe, that the reduction of the differential

part of the decoupled system, which confines ξp to the subspace Vp, spanned by Vp,

then also ξ(k)
p , k = 1, · · · , µ − 1, belongs to the same space. Thus from (7.2.25), we

observe that for the algebraic variable ξq, we have the restriction

ξq ∈ Vq = Kµ(L,Rq), (7.2.26)

where Rq =
[
Bq AqVp

]
∈ Rnq×(r+1)m. We denote by Vq an orthonormal basis ofVq so

that VT
q Vq = I. We can then write ξq = Vqξqr

. Substituting ξq = Vqξqr
and ξp = Vpξpr

into (7.2.21) leads to a reduced-order algebraic subsystem of the form (7.2.23) with

system matrices :

Lr = VT
qLVq, Aqr

= VT
qApVp, Bqr

= VT
q Bq and Cqr

= VT
qCq.

Thus, the IMOR reduced-order model of (7.0.1) is given by

ξ′pr
= Apr

ξpr
+ Bpr

u,

−Lrξ
′
qr

= Aqr
ξpr
− ξqr

+ Bqr
u,

yr = CT
pr
ξpr

+ CT
qr
ξqr
,

(7.2.27)

with total dimension r + τ � n, where r and τ = dim(Vq) are the dimension of the

reduced-order differential and algebraic parts, respectively. The transfer function of the

IMOR reduced model is equal to the sum of the transfer function of the differential and

algebraic parts given by Hr(s) = Hpr
(s) + Hqr

(s).
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Decoupled systems without differential part

Here, we consider the case of decoupled systems without a differential part. Assume

(7.0.1a) is of index-µ with the spectrum of its matrix pencil with no finite eigenvalues.

Thus, this DAE can be decoupled into the form (5.4.32) given by

−Lξ′q = −ξq + Bqu,

y = CT
qξq,

(7.2.28)

where ξq ∈ R
n, Aq ∈ R

n×n Bq ∈ R
n×m , L ∈ Rn×n is a strictly lower triangular nilpotent

matrix of index-µ. Taking the Laplace transform of (7.2.28) and simplifying, we obtain

Y(s) = H(s)U(s) + P(s),

where H(s) = CT
q (I− sL)−1Bq and P(s) = CT

q (I− sL)−1
Lξq(0). Next, we discuss wether

conventional MOR methods also fail for these class of DAEs. This is done by analyzing

polynomial P(s) as follows. Using the identity (7.2.13), H(s) and P(s) can be written as

H(s) = CT
q

µ−1∑
j=0

L
jBqs j, and P(s) = −CT

q

µ−2∑
j=0

L
j+1s jξq(0). (7.2.29)

Using (7.2.15) and ignoring the differential part contribution, we can write ξq(0) as

ξq(0) =

µ−1∑
i=0

L
iBqu(i)(0). (7.2.30)

From (7.2.29) and (7.2.30), we observe that the moments of H(s) and coefficients of ξq(0)

lie in the same subspaceKµ(L,Bq). Thus approximating H(s) is enough to approximate

these class DAEs. Thus, the assumption of vanishing initial condition, used by conven-

tional MOR methods does not affect the reduced-order models of the DAEs with only

infinite spectrum. Hence conventional MOR methods can be used to reduce this class

of DAEs. We can also observe that this subspace coincides with that in (7.2.14) if we

ignore the differential components for the IMOR method. Thus, ξq lies in the subspace

ξq ∈ Vq = Kµ(L,Bq),
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we denote by Vq an orthonormal basis of Vq so that VT
q Vq = I. Then, we can write

ξq = Vqξqr
. We can also reduce the order of the algebraic part by substituting ξq = Vqξqr

into (7.2.28). This leads to a IMOR reduced-order model of (7.0.1) which is given by

−Lrξ
′
qr

= −ξqr
+ Bqr

u,

yr = CT
qr
ξqr
,

(7.2.31)

with system matrices constructed as

Lr = VT
qLVq, Bqr

= VT
q Bq and Cqr

= VT
qCq

and its transfer function is given by Hr(s) = CT
qr

(I − sLr)
−1Bqr

. For comparison with

other existing MOR methods, we can rewrite the IMOR reduced-order models of either

(7.2.27) or (7.2.31), in descriptor form given by

Ẽrξ
′
r = Ãrξr + B̃ru

ỹr = C̃T
r ξr,

where Ẽr =

 I 0
0 −Lr

 , Ãr =

Apr
0

Aqr
−I

 , B̃r =

Bpr

Bqr

 , C̃r =

Cpr

Cqr

 and ξ̃ =

ξpr

ξqr


for DAEs with differential parts and Ẽr = −Lr, Ãr = −I, B̃r = Bqr

, C̃r = Cqr
and

ξ̃ = ξqr
for DAEs without a differential part and the transfer function of the reduced-order

model is given by H̃r(s) = C̃r(sẼr − Ãr)
−1B̃r.

7.3 Simple examples

In this Section, we illustrate the IMOR method using small DAE examples with higher

index.

Example 7.3.1 In this example, we use the decoupled system matrices from Example

7.2.1. We can recall that these decoupled systems are derived from system matrix of

Example 3.2.1, for the two cases of control input matrix B.

(i) Using system matrices from Example 7.2.1(i), the decoupled system of the index-2
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DAE can be written as

ξ′p = −
3
2
ξp −

3
4

u,

ξq,1 =

00
 ξp +

00
 u,

ξq,0 =

−4
3

−1
3

 ξp −

 1
2
1
2

 u +

−1 11
30

0 1

 ξ′q,1,
y =

2
3
ξp +

(
0 1

)
ξq,1 +

(
1 0

)
ξq,0.

(7.3.1)

The transfer function of this decoupled system can also be decompose as

H(s) = Hp(s) + Hq(s), where Hp(s) = −1
2s+3 and Hq(s) = 2

2s+3 −
1
2 which coincides with

the transfer function of the DAE in Example 3.2.1(i) given by H(s) = CT(sE − A)−1B.
The desired output solution also coincides with that of the original DAE given by

y(t) = −1
2 u(t)− 2

3 e−
3
2 t
[
ξp(0)− 3

4

∫ T
0 u(τ)e

3
2 τ dτ

]
.Next, we need to reduce this system using

the IMOR method. Before, we use the IMOR method, we need to first use the Algebraic

Elimination method for index-2 DAEs. Thus using the AE method the decoupled system

(7.3.1) can be reduced to

ξ′p = −
3
2
ξp −

3
4

u,

ξq,1 =

00
 ξp +

00
 u,

ξ̃q1,0 = −
4
3
ξp −

1
2

u +
(
−1 11

30

)
ξ′q,1,

yr =
2
3
ξp +

(
0 1

)
ξq,1 + ξ̃q1,0.

(7.3.2)

Then the decoupled system can be written in the form (7.2.9) with system matrices

Ap = −
3
2
, Bp = −

3
4
, Cp =

2
3
, L =


0 0 0
0 0 0
−1 11

30 0

 , Aq =


0
0
− 4

3

 ,Bq =


0
0
− 1

2

 , Cq =


0
1
1

 .
We can observe that the differential part cannot be reduced any further, thus setting

Vp = 1. In order to further reduce the algebraic parts, we use (7.2.26) to construct the

Krylov subspace of order-µ = 2, K2(L, bq) = Span{Rq,LRq}, where
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Rq =
[
Bq AqVp

]
=


0 0
0 0
− 1

2 −
4
3

 . Then the orthonormal basis is given by Vq =
(
0 0 1

)T
.

Then the reduced-order model is of the form (7.2.27) with system matrices given by

Apr
= −3

2 , Bpr
= − 3

4 , Cpr
= 2

3 , Lr = 0, Aqr
= − 4

3 ,Bqr
= −1

2 , Cqr
= 1. We can easily

check that the transfer functions and output solutions of the reduced-order model and

original DAE model coincide. Thus the reduced-order model of this DAE is given by

Ẽr =

1 0

0 0

 , Ãr =

−3
2 0

−4
3 −1

 , B̃r =

− 3
4

− 1
2

 , C̃r =

2
3

1

 . (7.3.3)

Hence the DAE is reduced from dimension 5 to 2 leading to an accurate reduced-order

model.

(ii) Using the matrices from Example 7.2.1(ii), the decoupled system of the index-2 DAE
can be written as

ξ′p = −
3
2
ξp −

3
4

u,

ξq,1 =

00
 ξp +

 11
30

1

 u,

ξq,0 =

− 4
3

− 1
3

 ξp +

 3
4

4

 u +

−1 11
30

0 1

 ξ′q,1,
y =

2
3
ξp +

(
0 1

)
ξq,1 +

(
1 0

)
ξq,0,

(7.3.4)

The transfer function of this decoupled system can also be decompose as
H(s) = Hp(s) + Hq(s), where Hp(s) = −1

2s+3 and Hq(s) = 2
2s+3 + 7

4 which coincides with
the transfer function of the DAE in Example 3.2.1(ii) given by H(s) = CT(sE − A)−1B.
The desired output solution also coincides with that of the original DAE system given by
y(t) = 7

4 u(t)− 2
3 e−

3
2 t
[
ξp(0)− 3

4

∫ T
0 u(τ)e

3
2 τ dτ

]
. Next, we need to reduce this system using

the IMOR method. Before, we use the IMOR method, we need to first use the Algebraic
Elimination method for index-2 DAEs. Thus, using the AE method the decoupled system
(7.3.4) can be reduced to

ξ′p = −
3
2
ξp −

3
4

u,

ξq,1 =

00
 ξp +

 11
30

1

 u,

ξ̃q1 ,0
= −

4
3
ξp +

3
4

u +
(
−1 11

30

)
ξ′q,1,

y =
2
3
ξp +

(
0 1

)
ξq,1 + ξ̃q1 ,0

.

(7.3.5)
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We can now apply the IMOR method as follow. The AE reduced-order model (7.3.5)
can be written in form (7.2.9) with system matrices given by

Ap = −
3
2
, Bp = −

3
4
, Cp =

2
3
, L =


0 0 0
0 0 0
−1 11

30 0

 , Aq =


0
0
− 4

3

 ,Bq =


11
30

1
3
4

 , Cq =


0
1
1

 .
We can observe that the differential part cannot be reduced any further, thus we can just
set Vp = 1. In order to further reduce the algebraic parts, we use (7.2.26) to construct
the Krylov subspace of order µ = 2: K2(L, bq) = Span{Rq,LRq}, where

Rq =
[
Bq AqVp

]
=


11
30 0
1 0
3
4 −

4
3

. Then the orthonormal basis is given by Vq =


746

2167 0
2089
2225 0
0 1

 . Thus the

IMOR reduced-order model is of the form (7.2.27) with system matrices given by

Apr
= −

3
2
, Bpr

= −
3
4
, Cpr

=
2
3
, Lr =

0 0
0 0

 , Aqr
=

 0
− 4

3

 ,Bqr
=

 2225
2089

3
4

 , Cqr
=

(
2089
2225 1

)
.

We can observe the transfer functions and the output solutions of the original and

reduced-order models coincide. This reduced-order model can be written in descriptor

form with system matrices given by

Ẽr =


1 0 0

0 0 0

0 0 0

 , Ãr =


−3

2 0 0

0 −1 0

−4
3 0 −1

 , B̃r =


−3

4
2225
2089

3
4

 , C̃r =


2
3

2089
2225

1


T

. (7.3.6)

Hence the DAE is reduced from dimension 5 to 3 leading to an accurate reduced-order

model using the IMOR method.

Example 7.3.2 In this example, we used the same matrices from Example 7.2.2, which
is an index-3 DAE problem. This system can be decoupled as

ξ′p = −2ξp + 2u,

ξq,2 = 0ξp + 1u,

ξq,1 = 0ξp + 1u + ξ′q,2,

ξq,0 =



0
0
0
0
0
0


ξp +



0
1
−1

1
−1
−1


u +



1
0
0
0
0
0


ξ′q,1 +



0
0
−1
−1

0
0


ξ′q,2,

(7.3.7)
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y = ξp + 0ξq,2 + 0ξq,1 +
(
0 0 0 0 0 1

)
ξq,0.

The transfer function of this decoupled system can also be decompose as

H(s) = Hp(s) + Hq(s), where Hp(s) = 2
s+2 and Hq(s) = −1 which coincides with the

transfer function of the DAE in Example 3.2.2 given by H(s) = CT(sE−A)−1B = − s
s+2 .

The desired output solution also coincides with that of the original DAE given by

y(t) = −u(t) + e−2t
[
ξp(0) − 2

∫ T

0
u(τ)e2τ dτ

]
.

Next, we need to reduce this system using the IMOR method. Before, we use the IMOR

method, we need to first use the Algebraic Elimination method for index-2 DAEs. Thus

using the AE method the decoupled system (7.3.7) can be reduced to

ξ′p = −2ξp + 2u, (7.3.8a)

ξ̃q,0 = 0ξp − u, (7.3.8b)

ỹ = ξp + ξ̃q,0 (7.3.8c)

We can observe the transfer functions and the output solutions of the original and reduced-

order models coincide. This reduced-order model can also be written in the descriptor

form given by

Ẽr =

1 0

0 0

 , Ãr =

−2 0

0 −1

 , B̃r =

 2

−1

 , C̃r =

11
 . (7.3.9)

Hence the DAE system is reduced from dimension 9 to 2 using the AE method. For

this example we do not need to apply the IMOR method. This reduced-order system

is solvable and its solutions coincides with the original model . We can recall from

Example 3.2.2 that the PRIMA method lead to unsolvable reduced-order model. Hence

IMOR method leads to reliable reduced-order models.

7.4 Extension of IMOR method to truncation methods

We have been more focused on moment matching methods while discussing the IMOR

method. However, the IMOR method can be extended to SVD based methods such as

the balancing and balanced approximations methods. These methods are well studied,
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see [3] and are well known to preserve stability and the existence of an a priori comput-

able error bound. It used to be difficult to apply balanced truncation methods on large

scale problems due to the fact that two matrix Lyapunov equations have to be solved

which are computationally very expensive [45]. However, recent results on low rank

approximations to the solution of the Lyapunov equations make the balanced truncation

method attractive for large scale systems. The balanced truncation method has also been

extended to reduce DAEs, see [45, 62]. We have already discussed this extension in

Section 3.3.2 and its limitation. We observed that the balanced truncation method for

descriptor systems involves solving four Lyapunov equations and it also relies on the

spectral projectors which limits its applicability to large-size and general DAEs. How-

ever, the matrix and projector chain used in the IMOR method can be extended to vari-

able coefficient DAEs and it requires only two Lyapunov equations. The extension of the

IMOR method to truncation methods is done as follows. The main idea is that instead

of using the moment matching method to reduce the differential part, we shall use the

truncation methods and this will also induce a reduction in the algebraic parts as for the

moment matching case. This implies that the reduction procedure for the algebraic part

will remain unchanged. Let us consider the decoupled system (7.2.9) of the DAE given

by

ξ′p = Apξp + Bpu,

−Lξ′q = Aqξp − ξq + Bqu,

y = CT
pξp + CT

qξq,

(7.4.1)

where ξp ∈ R
np , Ap ∈ R

np×np , Bp ∈ R
np , ξq ∈ R

nq , Aq ∈ R
nq×np, Bq ∈ R

nq×m , L ∈ Rnq×nq

is a strictly lower triangular nilpotent matrix of index-µ. We still first separate (7.4.1)

into differential and algebraic parts as follows:

ξ′p = Apξp + Bpu,

yp = CT
pξp,

(7.4.2)

and

−Lξ′q = Aqξp − ξq + Bqu, (7.4.3a)

yq = CT
qξq, (7.4.3b)
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where the output equation can be reconstructed as y = yp + yq.

7.4.1 Reduction of the differential part

Applying a state-space transformation ξp = Tpξ̃p does not affect the input-output beha-

vior of the differential subsystem (7.4.2). Using this transformation system (7.4.2) can

be transformed into

ξ̃′p = T−1
p ApTpξ̃p + T−1

p Bpu,

ỹp = CT
pTpξ̃p.

(7.4.4)

The simplest transformation could be chosen to be based on the eigenvalue decomposi-

tion of the matrix Ap given by ApTp = TpΛp which implies that Λp = T−1
p ApTp, where

Λp is a diagonal matrix of the eigenvalues of Ap. In order to truncate the transformed

system (7.4.4), we can do a reordering such that the eigenvalues occur in the decreas-

ing magnitude. Then the system can be truncated by restricting the matrix Tp to the

dominant eigenvalues. This process is termed as modal truncation [58].

However, the commonly used truncation method is the balanced truncation method also

known as Truncated Balanced Realization (TBR) method [3, 58]. For the case of bal-

anced truncation method the transformed system (7.4.4) must be a balanced representa-

tion of the system (7.4.2), then we can truncate some of the state variables. A balanced

realization of a system is one in which states that are difficult (easy) to reach are also

difficult (easy) to observe. From a mathematical viewpoint, balancing methods consist

of the simultaneous diagonalization of appropriate reachability and observability Grami-

ans, which are positive definite matrices. Given a stable linear subsystem (7.4.2). The

controllability and the observability Gramians associated to the linear subsystem (7.4.2)

are defined as Pp =

∫ ∞

0
eAptBpBT

peAT
p t dt and Qp =

∫ ∞

0
eAptCpCT

peAT
p t dt, respectively.

The matrices Pp and Qp are the unique solutions of two Lyapunov equations:

ApPp + PpAT
p = −BpBT

p, AT
pQp + QpAp = −CpCT

p. (7.4.5)

After finding the Gramians, we look for a state space transformation Tp which bal-

ances the system (7.4.2). Model reduction by balanced truncation, requires balancing

the whole system (7.4.2) followed by truncation of the state variables. This approach
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may turn out to be numerically inefficient and ill-conditioned, especially for large-scale

problem. Hence it is much restricted on small problems. The reason is that often Pp

and Qp have numerically low rank compared to np. Thus, they are several developed

algorithms for balancing and balanced truncation, which although in theory they are

identical, in practice yield algorithms with quite different numerical properties [3]. Some

of these algorithms are well discussed in [3]. One of the algorithm for constructing the

balancing transformation Tp goes as follows. Since the (infinite) Gramians of a reach-

able, observable, and stable system (7.4.2) of dimension np are positive definite square

matrices denoted by Pp,Qp ∈ R
np,np . Then, they can be decomposed using a Cholesky

decomposition:

Pp = UpUT
p and Qp = RpRT

p, (7.4.6)

where Up ∈ R
np,np and Rp ∈ R

np,np are upper and lower triangular matrices, respectively.

The eigenvalue decomposition of UT
pQpUp produces the orthogonal matrix K and the

diagonal matrix Σ which is composed of the Hankel singular values of system (7.4.2).

Then, we have

UT
pQpUp = KpΣ

2
pKT

p. (7.4.7)

They are various balancing transformations that can be derived from (7.4.6) and (7.4.7),

see [3] but we shall restrict ourselves on only one. Thus, the balancing transformation

Tp ∈ R
np,np and its inverse are

Tp = UpKpΣ
−1/2
p and T−1

p = Σ
1/2
p KT

pU−1
p . (7.4.8)

The procedure (7.4.6)–(7.4.8) is called balancing [58]. It can easily be shown that Tp

indeed balances the system (7.4.2) that is, T−1
p PpT−T

p = Σp and TT
pQpTp = Σp. Thus

(7.4.4) is a balanced system. The next step is to truncate the system in order to obtain a

reduced-order model of (7.4.2). The balance system (7.4.4) can be written as

ξ̃′p = Ãpξ̃p + B̃pu,

ỹp = C̃T
p ξ̃p.

(7.4.9)

where Ãp = T−1
p ApTp, B̃p = T−1

p Bp and C̃p = TT
pCp. Since a transformation was

defined which transforms the system according to the Hankel singular values, now very
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easily a truncation can be defined [3]. Thus, the diagonal matrix Σp can be partitioned as

Σp =

Σp1
0

0 Σp2

 , where Σp1
contains the largest Hankel singular values. This is the main

advantage of this balanced truncation method over the moment matching methods, since

now we can manually choose an appropriate value of the size of the reduction, instead

of guessing one which can be time consuming. Thus Ãp, B̃p and C̃p can be partitioned

in conformance with Σp:

Ãp =

Ãp11
Ãp12

Ãp21
Ãp22

 , B̃p =

B̃p1

B̃p2

 , C̃p =

C̃p1

C̃p2

 (7.4.10)

and transformed variables can also be partitioned as ξ̃p =
(
ξ̃T

p1
, ξ̃T

p2

)T. If we truncate

the state variable corresponding to the largest Hankel singular values, the reduced-order

model of the differential subsystem (7.4.2) is given by

ξ′pr
= Apr

ξ̃pr
+ Bpr

u,

ypr
= CT

pr
ξpr
,

(7.4.11)

where Apr
= Ãp11

∈ Rr×r, Bpr
= B̃p1

∈ Rr×m and

Cpr
= C̃p1

∈ Rr×` and ξpr
= ξ̃p1

∈ Rr, ypr
= ỹp ∈ R

`×r. The reduced-order model

(7.4.11) is also stable with Hankel singular values given by diagonal elements of

Σp1
= diag(σ1, · · · , σr) with σ1 ≥ σ2 ≥ · · · ≥ σr > 0, where r � np is the order of the

reduced system (7.4.11). It is possible to choose r via computable error bound

‖Hp −Hpr
‖2 ≤ 2‖u‖2

np∑
k=r+1

σk. (7.4.12)

7.4.2 Reduction of the algebraic part

In the previous Section, we have just reduced the differential subsystem (7.4.2) but the

algebraic subsystem (7.4.3) is unreduced. However, if we make a transformation

ξp = Tpξ̃p , where Tp is the balancing transformation of the differential part (7.4.2), it

induces a balancing also in the algebraic part. Thus (7.4.3a) can be written as

−Lξ̃′q = AqTpξ̃p − ξ̃q + Bqu, (7.4.13)
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where ξ̃q is the approximation of ξq induced by balancing of the differential subsystem

(7.4.2). Thus, we can also partition Ãq = AqTp as Ãq =
(
Ãq11

Ãq12

)
corresponding to

the partition in (7.4.10). Thus, (7.4.13) can be written as

−Lξ̃′q = Ãq11
ξ̃pr
− ξ̃q + Bqu. (7.4.14)

Further, (7.4.14) can be written as

ξ̃q =

µ−1∑
k=0

L
k(Ãq11

ξ̃(k)
pr

+ Bqu(k)), (7.4.15)

where ξ̃(k)
pr

=
dk ξ̃pr

dtk
and u(k)

= dku
dtk

, since L is a nilpotent matrix of index-µ. Thus, from

(7.4.15), we observe that for the algebraic variable ξ̃q , we have the restriction

ξ̃q ∈ Tq = Kµ(L,Rq), (7.4.16)

where Rq =
[
Bq Ãq11

]
∈ Rnq×m(r+1), we denote by Tq an orthonormal basis of Tq so

that TT
q Tq = I. We can then write ξ̃q = Tqξqr

. Substituting ξ̃q = Tqξqr
into (7.4.14) and

(7.4.3b), we obtain the reduced-order model of the algebraic part (7.4.3) is given by

−Lrξ
′
qr

= Aqr
ξpr
− ξqr

+ Bqr
u, (7.4.17a)

yqr
= CT

qr
ξqr
. (7.4.17b)

where

Lr = TT
qLTq ∈ R

τ×τ, Aqr
= TT

qÃq11
∈ Rτ×r, Bqr

= TT
q Bq ∈ R

τ×m and Cqr
= TT

qCq ∈ R
τ,`.

τ = dim(Tq) � nq is the dimension of the reduced-order algebraic system. Thus, the

IMOR reduced-order model based on the balanced truncation method of a DAE is given

by

ξ′pr
= Apr

ξpr
+ Bpr

u,

−Lrξ
′
qr

= Aqr
ξpr
− ξqr

+ Bqr
u,

yr = CT
pr
ξpr

+ CT
qr
ξqr
,

(7.4.18)
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with total dimension r + τ � n, where r and τ are the dimension of the reduced differen-

tial and algebraic parts, respectively. We note that this reduced-order model will always

be stable and have a computable error bound (7.4.12) for the differential part. This is

illustrated in the example below.

Example 7.4.1 Consider a DAE with system matrices

E =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 2 −1 0 0 0
0 0 −1 2 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1


, A =



−0.1 0 0.1 0 −1 0 0
0 −0.1 0 0 0 −1 1

0.1 0 −0.2 0.1 0 0 0
0 0 0.1 −0.1 0 0 −1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 −1 0 1 0 0 0


, B =



0
0
0
0
−1

0
0


, C =



0
0
0
0
0
1
1


.

(7.4.19)

This DAE is solvable since det(λE − A) , 0 and its stable since
σ f (E,A) = {− 1

10 ,
−1±

√
2399

60 } ∈ C−. This system is of index-1 and can be decoupled into
the form (7.4.1) with system matrices given by

Ap =


− 1

10
1
30 −

1
3

0 − 1
30 −

2
3

0 1 0

 , Bp =


1
15
1
30

0

 , L =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Aq =


0 0 0
0 0 0
1

10 0 0
0 0 1

 ,

Bq =


1
0

− 1
10

0

 , Cp =


0
0
1

 , Cq =


0
0
0
1

 . (7.4.20)

We can observe that the DAE system is decoupled into np = 3 differential equations
and nq = 4 algebraic equations. The system is still stable since it can easily be checked
that σ(Ap) = σ f (E,A). Next, we use the balanced truncation method to reduce the
differential part. This goes as follows. After substituting matrices Ap, Bp and Cp into
(7.4.5), we can solve for the Gramians given by

Pp =


0.0169 0.0086 0.0025
0.0086 0.0167 0.0000
0.0025 0.0000 0.0250

 and Qp =


0 0 0
0 22.5 0.75
0 0.75 15.025

 . (7.4.21)

We then use these Gramians to construct the balancing transformation and its inverse
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using (7.4.8) obtaining

Tp =


0 −4.2857 −3.5714
0 −4.2857 3.4286

0.0004 −0.0002 0

 and T−1
p =


−0.072829 −0.047269 2803.6
−0.11429 −0.11905 0
−0.14286 0.14286 0

 . (7.4.22)

Substituting (7.4.22) into (7.4.9), we obtain a balanced system. We can, then partition

Ãp, B̃p and C̃p in conformance with Σp to obtain a reduced-order subsystem of the form

(7.4.11) with coefficient matrices given by

Apr
=

−0.016327 0.81633

−0.81633 −0.017007

 , Bpr
=

−0.14286

−0.14286

 , Cpr
=

−0.14286

0.14286

 .
(7.4.23)

We observe that the reduced-order subsystem is of dimension r = 2 and the comput-

able error bound is given by ‖Hp − Hpr
‖2 ≤ 3.2 × 10−9

‖u‖2. We can then compute the

orthonormal basis Tq using (7.4.16) which reduces the algebraic system (7.4.3) given by

Tq =


−9.9504 · 10−1

−9.2464 · 10−4
−9.9507 · 10−2

0 0 0

9.9511 · 10−2
−8.8689 · 10−3

−9.95 · 10−1

3.7491 · 10−5
−9.9996 · 10−1 8.9169 · 10−3

 . (7.4.24)

Substituting (7.4.24) into (7.4.17), we obtain reduced-order algebraic system given by

Lr =


0 0 0
0 0 0
0 0 0

 , Aqr
=


0 0
0 0

−0.0072829 −0.0047269
−0.14286 0.14286

 , Bqr
=


−1.005

−3.7743 · 10−5

−7.1046 · 10−6

 ,

Cqr
=


3.7491 × 10−5

−0.99996
0.0089169

 . (7.4.25)

Thus the algebraic system is reduced to dimension τ = 3. Substituting (7.4.23) and
(7.4.25) into (7.4.18) we obtained a IMOR reduced-order model based on balanced trun-
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cation which we can write in the descriptor form given by

Er =



1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, Ar =



−0.016327 0.81633 0 0 0
−0.81633 −0.017007 0 0 0

0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


, Br =



−0.14286
−0.14286
−1.005

−3.7743 · 10−5

−7.1046 · 10−6


,

Cr =
(
−0.14286 0.14286 3.7491 · 10−5

−0.99996 0.0089169
)
. (7.4.26)

Hence the DAE (7.4.19) is reduced to a reduced-order model (7.4.26) of dimension

r + τ = 5. Figure 7.1, shows the comparison of the magnitude and phase angle of the

Figure 7.1: Comparison of the magnitude and phase angle of the transfer function.

transfer functions of the original model (7.4.19) and reduced-order model (7.4.26). We

observed that the magnitude and phase angle of the transfer functions coincides and

the approximate error ‖H − Hr‖2 ≈ 0. Figure 7.2, shows the comparison of the output

solutions and the approximation error using u(t) = sin(πt) as the input function. We can

observe that the solutions coincides with an acceptable approximation error.

We have discussed that IMOR method can also be extended to balance truncation method

and lead to accurate reduced-order models. In the next section, we discuss the properties

of the IMOR methods.
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Figure 7.2: Output solution and the approximation error

7.5 Properties of the IMOR method

In this Section, we discuss the properties of the IMOR method. For convenience, we

restrict ourselves on DAEs with a differential part. We note that the properties of the

IMOR method depends on the properties of the conventional MOR method used to re-

duce the differential part. This is because the reduction of the algebraic part is induced

by the reduction of the differential part. For instance, if we use the Arnoldi processes

commonly known as the PRIMA method [49] to reduce the differential part. We can

show that the IMOR method preserves the same properties as the PRIMA method such

as moment matching property and passivity. This can be done as follows. Recall from

Section 7.2.2 the transfer function of the DAE can be decomposed as

H(s) =
(
CT

p CT
q

) sI − Ap 0

−Aq sL − I

−1 Bp

Bq

 = Hp(s) + Hq(s), (7.5.1)

where Hp(s) = CT
p(sI−Ap)−1Bp and Hq(s) = CT

q (I− sL)−1
[
Aq(sI−Ap)−1Bp +Bq

]
, is the

transfer function of the differential and algebraic parts, respectively. We can use (7.5.1)

to show that the IMOR methods also preserve the properties of model order reduction.

The properties of the IMOR method are also presented in [7]. These properties are

discussed as follows.

(i) Moment matching property.

This is one of the properties of MOR which must be fulfilled by any moment

matching MOR method such as the PRIMA method. Thus, we need to check

wether the IMOR methods fulfills the moment matching property as follows. If we

use the block Arnoldi process (PRIMA method) to reduce the differential part of the
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decoupled system. It is well known that it will preserve the first r moments [49] of

the differential component Hp(s) of the decomposed transfer function (7.5.1). This

leads to the following theorem.

Theorem 7.5.1 IMOR methods preserves the moment matching property if and

only if the conventional MOR method applied on the differential part preserves the

moment matching property.

Proof 7.5.1 The proof can be done following the same proof for moment matching

property of the PRIMA method presented in [49]. If we choose the expansion

point as s0 = 0 and assume Ap is nonsingular. The transfer function Hp(s) of the

differential part can be written as Hp(s) =

∞∑
k=0

h(k)
p sk, where h(k)

p = (−1)kCT
pMk

pRp

are the (block) moments of Hp(s), Mp = −A−1
p and Rp = −A−1

p Bp. Likewise, the

transfer function of the PRIMA reduced-order differential part can be written as

H̃p(s) =

r−1∑
k=0

h̃(k)
p sk, where h̃(k)

p = (−1)kC̃T
pM̃p

kR̃p, are the moments, M̃p = −Ã−1
p

and R̃p = −Ã−1
p B̃p. Then, C̃p = VT

pCp, Ãp = VT
pApVp, B̃p = VT

pBp. We can

observe that h̃(k)
p can be written as

h̃(k)
p = −CT

pVp

[
(VT

pApVp)−1
]k

(VT
pApVp)−1VT

pBp.

By construction VpVT
p is a projector onto Kr(Mp,Rp). Thus it holds

VpVT
pMk

pRp = Mk
pRp, k = 0, 1, · · · , r − 1.

This in turn implies that VT
pMT

pRp = M̃k
pR̃p, hence h̃(k)

p = h(k)
p , k = 0, 1, · · · , r − 1.

Next, we can show that the induced reduction on the algebraic part of the DAE

(7.0.1) also preserves the first r moments of the algebraic component of the trans-

fer function, Hq(s). The transfer function, Hq(s), of the algebraic part can be writ-

ten as Hq(s) =

µ−1∑
j=0

h( j)
q s j, where h( j)

q = CqL
j
[
AqRp +Bq

]
, j = 0, · · · , µ−1. Also, by

construction VqVT
q is a projector ontoKµ(L,Rq), where Rq =

[
Bq AqKr(Mp,Rp)

]
.

Thus it holds VqVT
q (AqMk

pRp + Bq) = AqMk
pRp + Bq. Using the identity

VT
pMT

pRp = M̃k
pR̃p, it is possible to show that h̃(k)

q = h(k)
q , k = 0, 1, · · · , r − 1.
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The above discussion implies that the number of matching moments of the IMOR

method depends on the MOR method used to reduce the differential part.

(ii) Passivity preservation property.

A passive system is one that does not generate energy internally. A strictly passive

system is a dissipative system [66]. For an LTI system, (strict) passivity is equival-

ent to the transfer function being (strictly) positive real. According to [49] if we

assume that E is symmetric and nonnegative definite the necessary and sufficient

condition for the system admittance matrix H(s) to be passive has to satisfy the

following theorem.

Theorem 7.5.2 (see [66]) A rational matrix-valued transfer function H(s) ∈ Cm×m

is positive real (strictly positive real) if and only if:

1) H(s) is analytic in C+
= {s ∈ C|Re(s) > 0};

2) Φ( jω) = H( jω) + H∗( jω) is positive semi-definite (positive definite) for all

ω ∈ R such that jω is not a pole of H(s), where ∗ means the conjugate

transpose operation;

3) If jω0 or ∞ is a pole H(s), then it is a simple pole and the m × m residue

matrix is positive semi-definite.

Since systems (7.0.1) and (7.2.9) are equivalent. Thus their transfer function must

coincide. Using (7.5.1) and (7.2.13) the transfer function of (7.0.1) can be rewritten

as

H(s) = CT(sE − A)−1B,

= Hp(s) + Hq(s),

= CT
p Rp(s) + CT

q(I − sL)−1
[
AqRp(s) + Bq

]
,

= CT
p Rp(s) + CT

q

µ−1∑
j=0

L
js jN(s), since N(s) = AqRp(s) + Bq,

= CT
p Rp(s) + M0(s)︸                ︷︷                ︸

Hpr(s)

+

µ−1∑
j=1

s jM j(s)︸        ︷︷        ︸
Himpr(s)

,

where Rp(s) = (sI − Ap)−1Bp, M0(s) = CT
qN(s) and M j(s) = CT

qL
jN(s). Hpr(s) is

the proper part (bounded as s→ ∞) and Himpr(s) the improper part (unbounded as
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s → ∞) of H(s). Thus, the transfer function Hp(s) = CT
p Rp(s) of the differential

part is a strictly proper part of H(s). Based on Theorem 7.5.2, H(s) is positive real

if and only if Hpr(s) and M j(s) are positive real. Consequently, a key to testing

the passivity of DAEs is to first decouple it into its proper and improper parts [66].

Hence the matrices coefficients of the decoupled systems derived in Chapter 5,

can be used to test the passivity of the DAEs using the passivity test for DAEs

proposed in [66]. Following the proof for passivity preserving in [49], it can be

proved that if the conventional MOR method applied on the differential part is

passivity preserving then the differential part of the IMOR reduced-order model is

also passive, i.e, H̃pr(s) is positive real. However, in order to ensure that the IMOR

methods are passivity preserving one need to also prove that M̃ j(s) is also positive

real which is still an open question.

(iii) Approximation error.

In [7], they proposed that the approximation error of the reduced-order models for

DAEs should be computed using the input-output transfer function (7.2.12) instead

of just the transfer function. Thus, from (7.2.12) the approximation error of the

IMOR method can be computed as

‖Y(s) − Ỹ(s)‖ ≤ ‖H(s) − H̃(s)‖ ‖U(s)‖ + ‖P(s) − P̃(s)‖. (7.5.2)

where P(s) is defined as in (7.2.16).Thus,

‖H(s) − H̃(s)‖ ≤ ‖Hp(s) − H̃p(s)‖ + ‖Hq(s) − H̃q(s)‖ and

‖P(s) − P̃(s)‖ ≤ ‖C̃q
∑µ−1

j=0 L̃
j
− Cq

∑µ−1
j=0 L

j
‖ ‖Q̃(u(0)) − Q(u(0))‖. For example, if

we consider the case of index-2 DAEs, from (7.2.18) P(s) is defined as

P(s) = −CT
qLBqu(0). Then, we have

‖P(s) − P̃(s)‖ = ‖C̃T
q L̃qB̃q − CT

qLqBq‖ ‖u(0)‖. (7.5.3)

We note that for higher index DAEs the above inequality will depend on the de-

rivatives of the input function u(t) at t = 0. Substituting (7.5.3) into (7.5.2), we

obtain

‖Y(s) − Ỹ(s)‖ ≤ ‖Hp(s) − H̃p(s)‖ ‖U(s)‖ + ‖Hq(s) − H̃q(s)‖ ‖U(s)‖ + γ‖u(0)‖,

where γ = ‖C̃T
q L̃qB̃q −CT

qLqBq‖. Hence the output-transfer function of the IMOR
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reduced-order model has a small approximation error if and only if

(a) ‖H − H̃‖ is small

(b) and ‖P(s) − P̃(s)‖ is also very small in a suitable norm ‖.‖.

(iv) Stability

In Section 5.4, we already discussed that for the case of DAEs with a differential

part the decoupled system inherits the stability properties of DAEs since

σ(Ap) = σ f (E,A). Hence stability preservation of the IMOR method depends on

the MOR method used to reduce the differential part.

We note that, if we use the balanced truncation method to reduce the differential part.

We can guarantee stability of the reduced-order model and have an a priori computable

error bound. Moreover, we can easily choose the size of the reduced-order model before

hand.

7.6 Limitations of the IMOR method

The limitations of the IMOR method originates from März decoupling procedure dis-

cussed in Chapter 4 since it involves matrix inversions. This lead to decoupled systems

with very dense matrix coefficients which can be very difficult to reduce. Hence in the

next Chapter, we develop its implicit version which we call the implicit-IMOR (IIMOR)

method.
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Chapter 8

Implicit Index-aware Model Order
Reduction (Implicit IMOR) method

In this Chapter, we discuss the Implicit Index-aware MOR method which can be abbre-

viated as IIMOR method. This method uses the implicit decoupled systems derived in

Chapter 6. This is due to the fact that the implicit decoupling procedure is computation-

ally cheaper than the explicit decoupling procedure derived in Chapter 5. We consider

DAEs of the form

Eẋ(t) = Ax(t) + Bu(t), x(0) = x0, (8.0.1a)

y(t) = CTx(t), (8.0.1b)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×` , the input vector u(t) ∈ Rm and output vector

y(t) ∈ R` of the system. x(t) ∈ Rn is the state vector and x0 is the initial value. The

number of state variables n is called the order of system or the state-space dimension.

m and ` are the number of inputs and outputs, respectively. We need to reduce (8.0.1)

using the IIMOR method.
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8.1 Algebraic Elimination MOR method

In this Section, we discuss the reduction of the algebraic parts if the decoupled systems

are derived from Chapter 6. The basic idea is the same as that presented in Chapter 7,

which is to eliminate algebraic variables which do not contribute to the output solution.

This can also be done using the reordering techniques.

8.1.1 Index-1 DAEs

Assume (8.0.1) is of index-1 then it can be decoupled into the form (6.1.5) given by

Epξ
′
p = Apξp + Bpu, (8.1.1a)

Eqξq = Aqξp + Bqu, (8.1.1b)

y = CT
pξp + CT

qξq, (8.1.1c)

where Ep,Ap ∈ R
np×np , Bp ∈ R

np×m, Eq ∈ R
nq×nq , Aq ∈ R

nq×np , Bq ∈ R
nq×m and

Cp ∈ R
np×`, Cq ∈ R

nq×`. The trivial case is when Cq = 0, then (8.0.1) can just be reduced

to an ODE of dimension np. Thus, if we consider the nontrivial case, assume Cq , 0.

Then, the Algebraic Elimination MOR model for index-1 DAEs can derived as follows.

Consider the algebraic subsystem from (8.1.1) given by

Eqξq = Aqξp + Bqu, (8.1.2a)

yq = CT
qξq. (8.1.2b)

We compute permutation matrices Pπ,Qπ ∈ R
nq×nq such that QT

πCq =

C̃q1

0

 and

PπEqQπ =

Ẽq11
Ẽq12

Ẽq21
Ẽq22

, where Ẽq22
is a non-singular matrix. Then, the rest of the matrices

can be partitioned as PπAq =

Ãq1

Ãq2

 and PπBq =

B̃q1

B̃q1

 . If we let ξq = Qπξ̃q =

ξ̃q1

ξ̃q2

 , where

ξ̃q1
∈ Rτ, ξ̃q1

∈ Rnq−τ and substituting it into (8.1.2) and left multiplying (8.1.2a) by

Pπ, we obtain a partitioned system of (8.1.2). We can then eliminate ξ̃q2
since it does

not contribute to the output solution. This leads to a reduced-order model of dimension
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τ < nq which is given by

Eqτ
ξqτ

= Aqτ
ξp + Bqτ

u, (8.1.3a)

yp = CT
qτ
ξqτ

(8.1.3b)

where Eqτ
=

[
Ẽq11
− Ẽq12

Ẽ−1
q22

Ẽq21

]
∈ Rτ×τ, Aqτ

=
[
Ãq1
− Ẽq12

Ẽ−1
q22

Ãq2

]
∈ Rτ×np ,

Bqτ
=

[
B̃q1
− Ẽq12

Ẽ−1
q22

B̃q2

]
∈ Rτ×m and Cqτ

= C̃q1
∈ Rτ×` and the reduced dimension is

given by τ < nq. Thus the DAE (8.0.1) is reduced to a reduced-order model of dimension

np + τ < n which is given by

Epξ
′
p = Apξp + Bpu, (8.1.4a)

Eqτ
ξqτ

= Aqτ
ξp + Bqτ

u, (8.1.4b)

y = CT
pξp + CT

qτ
ξqτ

(8.1.4c)

8.1.2 Index-2 DAEs

Assume (8.0.1) is of index-2. Then, if we consider the case of the index-2 DAEs with at

least one finite eigenvalue then it can be decoupled in the form (6.2.3) given by

Epξ
′
p = Apξp + Bpu,

Eq,1ξq,1 = Aq,1ξp + Bq,1u,

Eq,0ξq,0 = Aq,0ξp + Bq,0u + Aq0,1

[
ξ′q,1 − ξq,1

]
,

y = CT
pξp + CT

q,1ξq,1 + CT
q,0ξq,0,

(8.1.5)

where Ep,Ap ∈ R
np×np , Bp ∈ R

np×m, Eq,1 ∈ R
k1×k1 , Aq,1 ∈ R

k1×np , Bq,1 ∈ R
k1×m,

Eq,0 ∈ R
k2×k2 , Aq,0 ∈ R

k2,np , Bq,0 ∈ R
k2×m, Aq0,1

∈ Rk2×k1 and Cp ∈ R
np×`, Cq,1 ∈ R

k1×`,

Cq,0 ∈ R
k2×`. From (8.1.5), we can observe that we can easily obtain a reduction for

the following trivial cases; (i) If Cq,1 = 0 and Cq,0 = 0, then (8.0.1) can be reduced

to an ODE of dimension np, (ii) If Aq0,1
= 0 and Cq,1 = 0 or Cq,0 = 0, then (8.0.1)

can be reduced to index-1 system of dimension np + k1 and np + k2, respectively. After

checking for the trivial cases, then we can eliminate the algebraic variables as follows. If

we consider only algebraic parts of the system (8.1.5), we obtain an algebraic subsystem
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given by

Eq,1ξq,1 = Aq,1ξp + Bq,1u, (8.1.6a)

Eq,0ξq,0 = Aq,0ξp + Bq,0u + Aq0,1

[
ξ′q,1 − ξq,1

]
, (8.1.6b)

yq = CT
q,1ξq,1 + CT

q,0ξq,0. (8.1.6c)

Using the same trick as for the case of index-1 system. We can first compute permuta-

tion matrices Vπ,Wπ ∈ R
k2×k2 such that WT

πCq,0 =

Cq1 ,0

0

 and VπEq,0Wπ =

Eq11 ,0
Eq12 ,0

Eq21 ,0
Eq22 ,0

,
where Eq22,0 is a nonsingular matrix. Then,VπBq,0 =

Bq1 ,0

Bq2 ,0

 , VπAq,0 =

Aq1

Aq2

 . Next, we com-

pute another set of permutation matrices Pπ,Qπ ∈ R
k1×k1 such that VπAq0,1

Qπ =

Aq011 ,1
0

Aq021 ,1
0

 ,
QT
πCq,0 =

Cq1 ,1

0

and PπEq,1Qπ =

Eq11 ,1
Eq12 ,1

Eq21 ,1
Eq22 ,1

, where Eq22,1 is a nonsingular matrix. Then,

PπAq,1 =

Aq1 ,1

Aq1 ,2

 ,PπBq,1 =

Bq1 ,1

Bq2 ,1

. If we let ξq,1 = Qπξ̃q,1 =

ξ̃q1 ,1

ξ̃q2 ,1

, where ξ̃q1,1 ∈ R
τ1 , ξ̃q2,1 ∈

Rk1−τ1 and ξq,0 = Wπξ̃q,0 =

ξ̃q1 ,0

ξ̃q2 ,0

, where ξ̃q1,0 ∈ R
τ2 , ξ̃q2,0 ∈ R

k2−τ2 . Then left multiply

(8.1.6a) and (8.1.6b) with Pπ and Vπ, respectively. We can obtain a partitioned system

of (8.1.6). We can then eliminate the algebraic variables ξ̃q2,1 and ξ̃q2,0 which do not con-

tribute to the output equation (8.1.6c). This leads to a reduce-order model of dimension

τ1 + τ2 given by

Eqτ,1ξq,1 = Aqτ,1ξp + Bqτ,1u, (8.1.7a)

Eqτ,0ξqτ,0 = Aqτ,0ξp + Bqτ,0u + Aq0τ,1

[
ξ′qτ,1 − ξqτ,1

]
, (8.1.7b)

yqτ
= CT

qτ,1ξqτ,1 + CT
qτ,0ξqτ,0, (8.1.7c)

where

Eqτ,1 =
[
Eq11,1 − Eq12,1E−1

q22,1Eq21,1

]
∈ Rτ1×τ1 , Bqτ,1 =

[
Bq1,1 − Eq12,1E−1

q22,1Bq2,1

]
∈ Rτ1×m,

Eqτ,0 =
[
Eq11,0 − Eq12,0E−1

q22,0Eq21,0

]
∈ Rτ2,τ2 , Aqτ,0 =

[
Aq1
− Eq12,0E−1

q22,0Aq2

]
∈ Rτ2×np ,

Aq0τ,1
=

[
Aq011 ,1

− Eq12,0E−1
q22,0Aq021 ,1

]
and Cqτ,1 = Cq1,1 ∈ R

τ1×`, Cqτ,0 = Cq1,0 ∈ R
τ2×`.

Hence, the DAE (8.0.1) is reduced to a reduced-order model of dimension np + τ1 + τ2
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given by

Epξ
′
p = Apξp + Bpu,

Eqτ,1ξq,1 = Aqτ,1ξp + Bqτ,1u,

Eqτ,0ξqτ,0 = Aqτ,0ξp + Bqτ,0u + Aq0τ,1

[
ξ′qτ,1 − ξqτ,1

]
,

y = CT
pξp + CT

qτ,1ξqτ,1 + CT
qτ,0ξqτ,0,

This same technique can used for even higher index DAEs. However, we do not gain

too much reduction as compared to applying the AE method on the explicit decoupled

system as illustrated in the next example. Thus the AE method is not so useful for the

implicit decoupled systems. This is due to the fact that it is very difficult to eliminate

all the algebraic variables which do not contribute to the output equation in the implicit

form. However, this can be improved using the graph and matrix reordering algorithms.

Example 8.1.1 In this example, we use the same system models as those used in Ex-

ample 7.1.1 for comparison. These are all index-1 DAE and this time we decoupled

the power system using the implicit decoupling procedure discussed in Chapter 6. If

we compare Table 8.1 and 7.1, we obtain the same number of differential and algebraic

equations. However, we can observe that this time the AE method leads to much larger

reduced algebraic part. This is due to that fact that not all the algebraic variables which

do not contribute to the output solution can easily be removed.

8.2 Implicit IMOR method for DAEs

We have seen that the using the AE method the differential part remains unreduced.

Hence, we do not get good reduction for the algebraic parts. In this Section, we ex-

tend the Index-aware MOR method discussed in Chapter 7, for the case of implicitly

decoupled systems which we derived in Chapter 6. In this Section, we discuss the Im-

plicit version of the IMOR method which we call the IIMOR method. We first proposed

this approach in [4], thus some of the content presented here is also in [4]. The basic

idea is still the same as the IMOR method, the only difference is the starting decoupled

system. Recall, for the case of IMOR method we use the explicit decoupled systems

derived in Chapter 5 while for the case of IIMOR method, we have to use the implicit

decoupled systems derived in Chapter 6. The advantage of using the implicit decoupling
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Table 8.1: Algebraic Reduced models of power systems
Systems # inputs/# outputs Decoupled model Alg. Reduced model Reduced system % Reduction

n # inputs # outputs np nq np γ np + γ

40366 2 2 5727 34639 5727 27797 33524 17.0
40337 2 1 5723 34614 5723 27791 27791 16.9
21476 1 1 3172 18304 3172 11370 14542 32.3
21128 4 4 3078 18050 3078 11113 14191 32.8
20944 2 2 3012 17932 3012 3390 6402 69.4
20738 1 6 2940 17798 2940 0 1755 91.5
16861 4 4 2476 14385 2476 7448 9924 41.1
15066 4 4 1998 13068 1998 6140 8138 46.0
13309 8 8 1676 11633 1676 0 1676 87.4
13296 46 46 1664 11632 1664 7090 8754 34.2
13275 4 4 1693 11582 1693 7045 7045 34.2
13250 1 1 1664 11586 1664 7075 8739 34.1
13250 46 46 1664 11586 1664 7075 8739 34.1
13251 28 28 1664 11587 1664 7076 8740 34.0
13251 1 1 1664 11587 1664 0 1664 87.4
11685 1 1 1257 10428 1257 5917 7174 38.6
11305 4 4 1450 9855 1450 5320 6770 40.1
9735 4 4 1142 8593 1142 4032 5174 46.9
7135 4 4 606 6529 606 1968 2574 63.9

procedure is the computational advantage over the explicit decoupling procedure. The

IIMOR method is derived as follows. Assume (8.0.1) is of index-µ, with the spectrum

of its matrix pencil has at least one eigenvalue. Then, it can be decoupled into a system

of the form (6.4.1) given by

Epξ
′
p = Apξp + Bpu,

−Lξ′q = Aqξp − Lqξq + Bqu,

y = CT
pξp + CT

qξq,

(8.2.1)

where L is a nilpotent matrix of index-µ. Lq is a non-singular lower triangular matrix

with block diagonal matrices for µ > 1. ξp ∈ R
np , ξq ∈ R

nq , Aq ∈ R
nq×np, Bq ∈ R

nq×m and

Cq ∈ R
nq×`, Cp ∈ R

np×`. Taking the Laplace transform of (8.2.1) and setting ξp(0) = 0

since it can be chosen arbitrary. Then, the output function is given by

Y(s) := H(s)U(s) + P(s), (8.2.2)

where H(s) is decomposed as H(s) = Hp(s)+Hq(s), where Hp(s) := CT
p(sEp−Ap)−1Bp

and Hq(s) := CT
q (Lq− sL)−1

[
Aq(sEp−Ap)−1Bp +Bq

]
are transfer functions correspond-

ing to the differential part and algebraic parts, respectively and

P(s) := CT
q (Lq − sL)−1

Lξq(0). If we let Q(u(0)) := Lξq(0) then P(s) can be written
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as P(s) = CT
q (Lq − sL)−1

Q(u(0)). Following the same steps as for the case of IMOR

method. It is easy to show that if the hidden polynomial Q(u(0)) has nonzero coefficient

the conventional MOR methods fail or lead to reduced-order models which are very dif-

ficult to solve for the case of higher index DAEs. For the interested reader, follow the

same steps as in Section 7.2.2.

The derivation of the IIMOR method goes as follows. We use the same strategy as

in the IMOR method by the first splitting the decoupled system (8.2.1) into separate

subsystems as

Epξ
′
p = Apξp + Bpu,

yp = CT
pξp,

(8.2.3)

and

−Lξ′q = Aqξp − Lqξq + Bqu, (8.2.4a)

yq = CT
qξq, (8.2.4b)

where (8.2.3) and (8.2.4) are the differential and algebraic subsystems. Then the output

equation can be reconstructed using: y = yp+yq.Next, we derive the reduction procedure

for (8.2.3) and (8.2.4), respectively.

8.2.1 Reduction of the differential part

Consider the subsystem (8.2.3). We can use the conventional MOR methods such as

the PRIMA method to reduce this subsystem as follows. Choose an expansion point

s0 ∈ C \ σ(Ep,Ap) and then construct an order-r Krylov subspace generated by Mp and

Rp given by

Vp := Kr(Mp,Rp) = Span{Rp,MpRp, . . . ,M
r−1
p Rp}, r ≤ np,

where Mp := (s0Ep−Ap)−1Ep and Rp := (s0Ep−Ap)−1Bp. Then, Vp ∈ R
np,r denotes the

orthonormal basis matrix of the above subspace, so that VT
pVp = I. The reduced-order

subsystem is obtained by using the approximation ξp = Vpξ̂p, leading to a reduced-order
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subsystem

Êpξ̂
′
p = Âpξ̂p + B̂pu,

ŷp = ĈT
pξ̂p,

(8.2.5)

where Êp = VT
pEpVp, Âp = VT

pApVp ∈ R
r×r, B̂p = VT

pBp ∈ R
r×m and

Ĉp = VT
pCp ∈ R

r×p. ξ̂p ∈ R
r is the reduced state vector and ŷp ∈ R

` is the approximated

output. Thus the dimension of the differential part is reduced to r ≤ np. The transfer

function of the reduced-order model (8.2.5) is given by Ĥp(s) = ĈT
p(sÊp − Âp)−1B̂p.

8.2.2 Reduction of the algebraic part

Here, we intend to reduce the algebraic subsystem (8.2.4). Substituting ξp = Vpξ̂p into

(8.2.4), we obtain

−Lξ′q = AqVpξ̂p − Lqξq + Bqu, (8.2.6a)

yq = CT
qξq. (8.2.6b)

From (8.2.6a), we can observe that the reduction of the differential part induces a reduc-

tion on the algebraic part but the order of the algebraic part is unchanged. In order to

reduce the algebraic part, we need to take the following steps. We start from (8.2.6a),

which can be written as

Lqξq = NqLqξ
′
q + bq, (8.2.7)

where bq = AqVpξ̂p + Bqu and Nq = LL
−1
q is also a nilpotent matrix with the same

index-µ as L. Thus, (8.2.7) can be written as

Lqξq =

µ−1∑
k=0

Nk
qb(k)

q =

µ−1∑
k=0

Nk
q(AqVpξ̂

(k)
p + Bqu(k)). (8.2.8)

We can observe that, for the algebraic variable ξq, we have the restriction

Lqξq ∈ Wq = Kµ(Nq,Rq),
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with Rq =
(
Bq AqVp

)
∈ Rnq×(r+1)m. Since Nq = LL

−1
q , it follows that

ξq ∈ Vq = L
−1
q Wq = Kµ(L−1

q Nq,L
−1
q Rq). (8.2.9)

We denote by Vq an orthonormal basis ofVq, so that VT
q Vq = I, and we write ξq = Vqξ̂q.

Substituting ξq = Vqξ̂q into (8.2.6) and after simplifying, we obtain a reduced-order

algebraic subsystem given by

−L̂ξ̂′q = Âqξ̂p − L̂qξ̂q + B̂qu, (8.2.10a)

ŷq = ĈT
q ξ̂q, (8.2.10b)

with L̂q = VT
qLqVq ∈ R

τ×τ, L̂ = VT
qLVqR

τ×τ, Âq = VT
q AqVpR

τ×r, B̂q = VT
q BqR

τ×m

and Ĉq = VT
qCqR

τ×`. ξ̂q ∈ R
τ is the reduced algebraic state vector and ŷq ∈ R

` is the

approximated output. Thus the dimension of the algebraic part is reduced to τ ≤ nq.

The transfer function of this reduced-order model of the algebraic part (8.2.4) is given

by Ĥq(s) := ĈT
q (L̂q − sL̂)−1

[
Âq(sÊp − Âp)−1B̂p + B̂q

]
. Thus, combining (8.2.5) and

(8.2.10), we obtain the IIMOR reduced-order model of (8.0.1) given by

Êpξ̂
′
p = Âpξ̂p + B̂pu,

−L̂ξ̂′q = Âqξ̂q − L̂qξ̂q + B̂qu,

ŷ = ĈT
p ξ̂p + ĈT

q ξ̂q,

(8.2.11)

with total dimension r + τ � n, where r and τ are the dimension of the reduced differen-

tial and algebraic parts, respectively. The transfer function of the IMOR reduced model

is equal to the sum of the transfer function of the differential and algebraic parts given

by Hr(s) = Hpr
(s) + Hqr

(s).

Remark 8.2.1 We note that in practice the algebraic part (8.2.4a) has µ algebraic sub-

systems. Thus Vq can be partitioned as: Vq =
(
V

T
q,µ−1, · · · , V

T
q,1, V

T
q,0

)T
, where the

length of each partition corresponds to the block sizes of algebraic subsystems given by

ki, i = µ − 1, . . . , 1, 0, respectively. We can then compute the orthonormal basis matrix

of each partition to build a block diagonal orthonormal matrices

Vq = blkdiag
[
Vq,µ−1, . . . ,Vq,1,Vq,0

]
, where Vq,i = orth(Vq,i). Although this approach

leads to a much larger reduced-order model especially for MIMO systems, but preserves

the structure of the algebraic parts.
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For comparison with other existing MOR methods, we can rewrite the IIMOR reduced-

order model in descriptor form given by

Êξ′r = Âξ̂ + B̂u

ŷr = ĈTξ̂,
(8.2.12)

where Ê =

Êp 0
0 −L̂

 , Â =

Âp 0
Âq −L̂q

 , B̂ =

B̂p

B̂q

 , Ĉ =

Ĉp

Ĉq

 and ξ̂ =

ξ̂p

ξ̂q

T

for DAEs with a

differential part and Ê = −L̂, Â = −I, B̂ = B̂, Ĉ = Ĉq and ξ̂ = ξ̂q for DAEs

without a differential part and the transfer function of the reduced-order model can be

written as Ĥ(s) = Ĉ(sÊ − Â)−1B̂.

8.3 Simple examples

In order to compare IIMOR and IMOR methods, we use the same examples as in Section

7.3. Thus, we use the matrices from Examples 3.2.1 and 3.2.2. These are index-2 and -3

DAEs, respectively. In order to use the IIMOR method, we first decouple these systems

using the implicit decoupling procedure derived in Chapter 6.

Example 8.3.1 In this example, we use matrices from Example 3.2.1 with both cases of
the control input matrix B. These are index-2 DAEs with the same matrix pencil (E,A).
These DAEs are solvable and they have only one finite eigenvalue, thus we expect their
decoupled systems to have a differential part.
(i) For this case, we use the control input matrix B of Example 3.2.1(i). Using the
implicit decoupling procedure this system can be decoupled in to the form (6.2.3) given
by

−
2
3
ξ′p = ξp +

1
2

u,−1 −1
−1 1

 ξq,1 =

00
 ξp +

00
 u,− 20

7
3
7

4
7 −

2
7

 ξq,0 =

 11
3

− 2
3

 ξp +

 17
14

− 1
7

 u +

−1 − 13
7

0 4
7

 [ξ′q,1 − ξq,1

]
,

y =
2
3
ξp +

(
1 −1

)
ξq,1 +

(
1 0

)
ξq,0.

(8.3.1)

Before, we apply the IIMOR method on the system (8.3.1), we need to use the AE
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method which leads to a AE reduced-order model given by

−
2
3
ξ′p = ξp +

1
2

u,−1 −1
−1 1

 ξq,1 =

00
 ξp +

00
 u,

−2ξq1 ,0
=

8
3
ξp + u −

(
1 1

) [
ξ′q,1 − ξq,1

]
,

y =
2
3
ξp +

(
1 −1

)
ξq,1 + ξq1 ,0

,

(8.3.2)

We can now apply the IIMOR method as follow. This done by first rewriting system
(8.3.2) into the form (8.2.1) with system matrices given by

Ep = −
2
3
, Ap = 1, Bp =

1
2
, Cp =

2
3
,

L =


0 0 0
0 0 0
−1 −1 0

 , Lq =


−1 −1 0
−1 1 0
−1 −1 −2

 ,Aq =


0
0
8
3

 ,Bq =


0
0
1

 , Cq =


1
−1

1

 . (8.3.3)

We can observe that the differential part cannot be reduced any further, thus we can just

set Vp = 1. In order to further reduce the algebraic parts, we use (8.2.9) to construct the

Krylov subspace of order µ = 2 given by,

K2(Ñq, R̃q) = Span{R̃q, ÑqR̃q},

where Rq =
[
Bq AqVp

]
=


0 0
0 0
1 8

3

 , Ñq = L−1
q Nq =


0 0 0
0 0 0
− 1

2 0 0

 and R̃q = L−1
q Rq =


0 0
0 0
− 1

2 −
4
3

 . Then the

orthonormal basis is given by Vq =
(
0 0 1

)T
. Thus, substituting (8.3.3) and orthonor-

mal basis Vq into (8.2.11). We obtain a reduced-order model which can be written in
descriptor form (8.2.12) with system matrices given by

Ê =

− 2
3 0
0 0

 , Â =

1 0
8
3 2

 , B̂ =

 1
2
8
3

 , Ĉ =

 2
3

1

 . (8.3.4)

Thus the dimension of the DAE is reduced from 5 to 2 using the IIMOR method. It is

easy to check that this reduced-order mode is accurate since its transfer function and out-

put solution coincides with that of the original DAE. If we compare the IIMOR reduced-

order model (8.3.4) and (7.3.3), we observe they have the same size.

(ii) For this case, we use the control input matrix B of Example 3.2.1(ii). Using the
implicit decoupling procedure this system can be decoupled in to the form (6.2.3) given
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by

−
2
3
ξ′p = ξp +

1
2

u,−1 −1
−1 1

 ξq,1 =

00
 ξp +

 0
−1

 u,− 20
7

3
7

4
7 − 2

7

 ξq,0 =

 11
3

− 2
3

 ξp +

 0
−1

 u +

−1 − 13
7

0 4
7

 [ξ′q,1 − ξq,1

]
,

y =
2
3
ξp +

(
1 −1

)
ξq,1 +

(
1 0

)
ξq,0.

(8.3.5)

Here, we also first apply the AE method which leads to a reduced decoupled system
given by

−
2
3
ξ′p = ξp +

1
2

u,−1 −1
−1 1

 ξq,1 =

00
 ξp +

 0
−1

 u,

−2ξq1 ,0
=

8
3
ξp −

3
2

u −
(
1 1

) [
ξ′q,1 − ξq,1

]
,

y =
2
3
ξp +

(
1 −1

)
ξq,1 + ξq1 ,0

,

(8.3.6)

Then, we apply the implicit IMOR method as follows. This done by first rewriting sys-
tem (8.3.6) into the form (8.2.1) with system matrices given by

Ep = −
2
3
, Ap = 1, Bp =

1
2
, Cp =

2
3
,

L =


0 0 0
0 0 0
−1 −1 0

 , Lq =


−1 −1 0
−1 1 0
−1 −1 −2

 ,Aq =


0
0
8
3

 ,Bq =


0
−1
− 3

2

 , Cq =


1
−1

1

 . (8.3.7)

We can observe that the differential part cannot be reduced any further, thus we can also

just set Vp = 1. In order to further reduce the algebraic parts, we use (8.2.9) to construct

the Krylov subspace of order µ = 2 given by

K2(Ñq, R̃q) = Span{R̃q, ÑqR̃q},

where Rq =
[
Bq AqVp

]
=


0 0
−1 0
− 3

2
8
3

 , Ñq = L−1
q Nq =


0 0 0
0 0 0
− 1

2 0 0

 and R̃q = L−1
q Rq =


1
2 0
− 1

2 0
3
4 −

4
3

 . Then

the orthonormal basis is given by Vq =


1
√

2
0

− 1
√

2
0

0 1

 . Substituting orthonormal basis Vq and
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(8.3.7) into (8.2.11) , we obtain a reduced-order model with system matrices given by

Epr
= −

2
3
, Apr

= 1, Bpr
=

1
√

2
, Cpr

=
2
3
,

Lr =

0 0
0 0

 , Aqr
=

0
8
3

 , Lqr
=

1 0
0 −2

 ,Bqr
=

 1
√

2

− 3
2

 , Cqr
=

√2
1

 . (8.3.8)

This reduced-order model can be written in descriptor form (8.2.12) with system matrices
given by

Ê =


− 2

3 0 0
0 0 0
0 0 0

 , Â =


1 0 0
0 −1 0
8
3 0 2

 , B̂ =

 1
√

2

− 3
2

 , Ĉ =


2
3√
2

1

 . (8.3.9)

Thus the dimension of the DAE is reduced from 5 to 3 using the IIMOR method. It is

easy to check that this reduced-order mode is accurate since its transfer function and out-

put solution coincides with that of the original DAE. If we compare the IIMOR reduced-

order model (8.3.9) and (7.3.6), we observe they have the same size.

Example 8.3.2 In this example, we used system matrices from Example 3.2.2. This is
an index-3 system whose matrix pencil has at least one finite eigenvalue. Thus it can be
decoupled into the form (6.3.3) given by

1
2
ξ′p = −ξp + u,

−ξq,2 = 0ξp + u,
1
2
ξq,1 = 0ξp + u +

1
2
ξq,2 +

1
2
ξ′q,2,

− 1
3

2
3 0 0 0 0

2
3

2
3 1 0 0 0

1
3

1
3 0 0 0 0

1
3

1
3 0 0 1 0

1
3

1
3 0 0 0 1

0 0 1 −1 −1 −1


ξq,0 =



0
0
0
0
0
0


ξp +



0
0
1
0
0
0


u +



1
3

− 2
3

− 1
3

− 1
3

− 1
3

0


ξq,2 +



− 1
3

− 1
3
1
3
1
3
1
3

0


ξq,1 +



1
3
1
3

− 1
3

− 1
3

− 1
3

0


ξ′q,2 +



− 1
3
2
3
1
3
1
3
1
3

0


ξ′q,1,

y = ξp + 0ξq,2 + 0ξq,1 +
(
0 0 0 0 0 1

)
ξq,0.

(8.3.10)

We can observe that the DAE system of dimension is decoupled into 1 differential
equation and 8 algebraic equations. Also here, we used the AE method on (8.3.10),
which reduced it to an index-2 reduced order system given by

1
2
ξ′p = −ξp + u, (8.3.11a)

−ξq,2 = 0ξp + u, (8.3.11b)
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0 1 0
0 0 1
−1 −1 −1

 ξq,0 =


0
0
0

 ξp +


−1
−1

2

 u +


0
0
−1

 ξq,2 +


0
0
1

 ξ′q,2, (8.3.11c)

y = ξp + 0ξq,2 +
(
0 0 1

)
ξq,0. (8.3.11d)

We can observe the decoupled system cannot be completely reduced by the AE method,
thus we can now apply the implicit IMOR method as follows. The AE reduced model
can be written into the form (8.2.1) with system matrices given by

Ep =
1
2
, Ap = −1, Bp = 1, Cp = 1,

L =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , Lq =


−1 0 0 0

0 0 1 0
0 0 0 1
1 −1 −1 −1

 ,Aq =


0
0
0
0

 ,Bq =


1
−1
−1

2

 , Cq =


0
0
0
1

 . (8.3.12)

We can observe that the differential part cannot be reduced any further, thus we can just

set Vp = 1. In order to further reduce the algebraic parts, we use (8.2.9) to construct the

Krylov subspace of order µ = 2,

K2(Ñq, R̃q) = Span{R̃q, ÑqR̃q},

where Rq =
[
Bq AqVp

]
=


1 0
−1 0
−1 0

2 0

 , Ñq = L−1
q Nq =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 and R̃q = L−1
q Rq = −


1 0
1 0
1 0
1 0

 . Then

the orthonormal basis is given by Vq =


1 0 0

0 − 1
√

2
1
√

2

0 − 1
2 −

1
2

0 − 1
2 −

1
2


. Substituting orthonormal basis Vq

and (8.3.12) into (8.2.11). We obtain a reduced-order model with system matrices given
by

Epr
=

1
2
, Apr

= −1, Bpr
= 1, Cpr

= 1,

Lr =


0 0 0
− 1

2 0 0
− 1

2 0 0

 , Lqr
=


−1 0 0

− 1
2 − 1

4
2
√

2−1
4

− 1
2 −

2
√

2+1
4 − 1

4

 , Aqr
=


0
0
0

 ,Bqr
=


1

√
2−1
2

−
√

2+1
2

 , Cqr
=


0
− 1

2

− 1
2

 . (8.3.13)

The reduced system can be written in descriptor form (8.2.12) with system matrices
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given by

Ê =


1
2 0 0 0
0 0 0 0
0 1

2 0 0
0 1

2 0 0

 , Â =


−1 0 0 0
0 1 0 0
0 1

2
1
4

−2
√

2+1
4

0 1
2

2
√

2+1
4

1
4

 , B̂ =


1
1
√

2−1
2

−
√

2+1
2

 , Ĉ =


1
0
− 1

2

− 1
2

 . (8.3.14)

Thus the dimension of the DAE is reduced from 9 to 4 using the IIMOR method. It is

easy to check that this reduced-order mode is accurate since its transfer function and out-

put solution coincides with that of the original DAE. If we compare the IIMOR reduced-

order model (8.3.14) and (7.3.9), we observe that the IIMOR reduced model is a much

larger reduced model.

8.4 Extension of IIMOR method to truncation methods

In this Section, we discuss how the IIMOR method can be extended to the truncation

methods especially the balanced truncation method. This approach is the same as that

discussed in Section 7.4 for the case of the IMOR method. However, for this case we

need to solve the generalized Lyapunov equations in order to compute the system con-

trollability and observability Gramians. This is done as follows. Consider a stable DAE

(8.0.1) which is decoupled into a stable implicit decoupled system in the form (8.2.1)

given by

Epξ
′
p = Apξp + Bpu

−Lξ′q = Aqξp − Lqξq + Bqu,

y = CT
pξp + CT

qξq,

(8.4.1)

where L is a nilpotent matrix of index µ. Lq is a nonsingular lower triangular matrix

with block diagonal matrices for µ > 1. ξp ∈ R
np , ξq ∈ R

nq , Aq ∈ R
nq×np, Bq ∈ R

nq×m and

Cq ∈ R
nq×`, Cp ∈ R

np×`. Then (8.4.1) can be strictly separated obtaining,

Epξ
′
p = Apξp + Bpu,

yp = CT
pξp,

(8.4.2)
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and

−Lξ′q = Aqξp − Lqξq + Bqu, (8.4.3a)

yq = CT
qξq, (8.4.3b)

where (8.4.2) and (8.4.3) are the differential and algebraic subsystems. Then the output

equation can be reconstructed using: y = yp + yq. We have already discussed that if the

DAE system is stable then the differential part must also be stable. This implies that

σ(Ep,Ap) ⊂ C−.

8.4.1 Reduction of the differential part

Here, we follow the same steps as in Section 7.4.1. After applying the balancing trans-

formation ξp = Tpξ̃p on (8.4.2). We seek a balanced system given by

Ẽpξ̃
′
p = Ãpξ̃p + B̃pu,

ỹp = C̃T
p ξ̃p,

(8.4.4)

where Ẽp = T−1
p EpTp, Ãp = T−1

p ApTp, B̃p = T−1
p Bp and C̃p = TT

pCp. Using the coeffi-

cient matrices of (8.4.2), we need to compute the balancing transformation nonsingular

matrix Tp. This is done by solving the two generalized Lyapunov equations

EpPpAT
p + ApPpET

p = −BpBT
p, ET

pQpAp + AT
pQpEp = −CpCT

p. (8.4.5)

for the controllability Gramian Pp and observability Gramian Qp instead of (7.4.5). We

then follow procedure (7.4.6) – (7.4.8) to derive the balancing transformation

Tp ∈ R
np×np and its inverse given by

Tp = UpKpΣ
−1/2
p and T−1

p = Σ
1/2
p KT

pU−1
p . (8.4.6)

It can also easily be shown that Tp indeed balances the system (8.4.2) that is,

T−1
p PpT−T

p = Σp and TT
pQpTp = Σ. We then truncate the balanced system (8.4.4) in

order to obtain a reduced-order model of (8.4.2). Since a transformation was defined

which transforms the system according to the Hankel singular values, now very easily a
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truncation can be defined using the partition of the diagonal matrix Σp given by

Σp =

Σp1
0

0 Σp2

 ,
where Σp1

contains the largest Hankel singular values. Thus Ẽp, Ãp, B̃p and C̃p can be

partitioned in conformance with Σp:

Ẽp =

Ẽp11
Ẽp12

Ẽp21
Ẽp22

 , Ãp =

Ãp11
Ãp12

Ãp21
Ãp22

 , B̃p =

B̃p1

B̃p2

 , C̃p =

C̃p1

C̃p2

 (8.4.7)

and transformed variables can also be partitioned as ξ̃p =
(
ξ̃T

p1
, ξ̃T

p2

)T. Thus the reduced-

order model of the differential subsystem (8.4.2) is given by

Epr
ξ′pr

= Apr
ξpr

+ Bpr
u,

ypr
= CT

pr
ξpr
,

(8.4.8)

where Epr
= Ẽp11

, Apr
= Ãp11

∈ Rr×r, Bpr
= B̃p1

∈ Rr×m, Cpr
= C̃p1

∈ Rr×` and

ξpr
= ξ̃p1

∈ Rr, ypr
= ỹp ∈ R

`×r. The reduced-order model (8.4.8) is also stable with

Hankel singular values given by diagonal elements of Σp1
= diag(σ1, · · · , σr) with

σ1 ≥ σ2 ≥ · · · ≥ σr > 0, where r � np is the order of the reduced system (8.4.8). It is

also possible to choose r via computable error bound (7.4.12).

8.4.2 Reduction of the algebraic part

We have seen that in the previous Section, we have just reduced the differential subsys-

tem (8.4.2) but the algebraic subsystem (8.4.3) is left unreduced. However, if we make a

transformation ξp = Tpξ̃p , where Tp is the balancing transformation of the differential

part (8.4.2), it induces a balancing also in the algebraic part. Thus (8.4.3a) can be written

as

−Lξ̃′q = AqTpξ̃p − Lqξ̃q + Bqu, (8.4.9)

where ξ̃q is the approximation of ξq induced by balancing of the differential subsystem

(8.4.2). Thus, we can also partition Ãq = AqTp as Ãq =
(
Ãq11

Ãq12

)
corresponding to
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the partition in (8.4.7). Thus, (8.4.9) can be reduced to

−Lξ̃′q = Ãq11
ξ̃p1
− Lqξ̃q + Bqu. (8.4.10)

From (8.4.10), without loss of generality and using (8.2.9), we have

ξq ∈ Tq = Kµ(L−1
q Nq,L

−1
q Rq), (8.4.11)

with Rq =
(
Bq Ãq11

)
∈ Rnq×(r+1)m and Nq = LL

−1
q . We denote by Tq an orthonormal

basis of Tq, so that TT
q Tq = I, and we write ξ̃q = Tqξqr

. Thus, substituting ξ̃q = Tqξqr

into (8.4.11) and (8.4.3b), we obtain the reduced-order model of the algebraic part (8.4.3)

given by

−Lrξ
′
qr

= Aqr
ξpr
− Lqr

ξqr
+ Bqr

u, (8.4.12a)

yqr
= CT

qr
ξqr
. (8.4.12b)

where Lqr
= TT

qLqTq, Lr = TT
qLTq ∈ R

τ×τ, Aqr
= TT

qÃq11
∈ Rτ×r, Bqr

= TT
q Bq ∈ R

τ×m

and Cqr
= TT

qCq ∈ R
τ×`. We note that the dimension of the reduced algebraic system

is given by τ = dim(Tq) < nq. Thus, the IMOR reduced-order model based on the

balanced truncation method of a DAE is given by

Epr
ξ′pr

= Apr
ξpr

+ Bpr
u,

−Lrξ
′
qr

= Aqr
ξpr
− Lqr

ξqr
+ Bqr

u,

yr = CT
pr
ξpr

+ CT
qr
ξqr
,

(8.4.13)

with total dimension r + τ � n, where r and τ are the dimension of the reduced dif-

ferential and algebraic parts, respectively. We note that this reduced-order model will

also be always stable and have a computable error bound for the differential part. This is

illustrated in the next example.
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Example 8.4.1 For comparison, we use system matrices (7.4.19) from Example 7.4.1.
This DAE can be decoupled into the form (8.4.1) with system matrices

Ep =


2 −1 0
−1 2 0

0 0 1

 , Ap =


−0.2 0.1 0

0.1 −0.1 −1.0
0 1.0 0.0

 , Bp =


0.1
0
0

 , Cp =


0
0
1

 , L =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



Lq =


0 0.1 0 1
−1 0 0 0

0 −1 0 0
0.1 0 1 0

 , Aq =


0 0 1
0 0 0
0 0 0

0.1 0 0

 , Bq =


0
−1

0
0

 , Cq =


0
0
0
1

 .

We can observe that the DAE is decoupled into np = 3 differential equations and nq = 4

algebraic equations, and the decoupled system is still stable since σ(Ep,Ap) = σ f (E,A).

Next, we use the balanced truncation method to reduce the dimension of the system. This

can be done as follows. We substitute matrices Ep, Ap, Bp and Cp into (8.4.5) to solve

for the Gramians given by

Pp =


0.0169 0.0086 0.0025

0.0086 0.0167 0.0000

0.0025 0.0000 0.0250

 and Qp =


2.5 5.0 0.25

5.0 10.0 0.5

0.25 0.5 15.025

 .
We can then use these Gramians to construct the balancing transformation and its inverse
using (8.4.6) obtaining

Tp =


0.6486 1.2972 4.7167
2.0457 4.0913 −1.5068
0.0007 −0.0005 −0.0001

 and T−1
p =


0.054218 0.12336 1095.7
0.04379 0.16026 −547.85
0.19251 −0.061038 0

 . (8.4.14)

Substituting (8.4.14) into (8.4.4), we obtain a balanced system which can then be par-

titioned in conformance with Σp to obtain a reduced-order algebraic subsystem of the

form (8.4.8) with coefficient matrices given by

Epr
=

 0.99324 0.023928

−0.021333 1.0755

 , Apr
=

−0.046022 0.82467

−0.86258 −0.024527

 ,
Bpr

=

0.064859

0.20457

 , Cpr
=

 0.19251

−0.061038

 . (8.4.15)

We observe that the reduced-order subsystem is of dimension r = 2 and the computable

error bound is given by ‖Hp − Hpr
‖2 ≤ 11.6 × 10−9

‖u‖2. We can then compute the



160 8 Implicit Index-aware Model Order Reduction (Implicit IMOR) method

orthonormal basis Tq using (8.4.11) which reduces the algebraic subsystem which is

given by

Tq =


−9.9504 · 10−1 7.3880 · 10−4

−9.9519 · 10−2

0 0 0

9.9521 · 10−2 7.0866 · 10−3
−9.9501 · 10−1

2.9859 · 10−5 9.9997 · 10−1 7.1250 · 10−3

 . (8.4.16)

Substituting (8.4.16) into (8.4.12), we obtain reduced-order algebraic subsystem which
is given by

Lr =


0 0 0
0 0 0
0 0 0

 , Lqr
=


−2.9711 · 10−5

−0.99501 −0.0071196
1.7923 · 10−5 0.0078991 −1.0049
−2.844 · 10−6

−0.099465 −0.0078694

 , Aqr
=


−0.19156 0.060735
0.0055639 0.012291
−0.01912 0.0061623

 ,

Bqr
=


0
0
0

 and Cqr
=


2.9859 · 10−5

0.99997
0.007125

 . (8.4.17)

Thus the algebraic system is reduced to dimension τ = 3. Substituting (8.4.15) and
(8.4.17) into (8.4.13) we obtained a IMOR reduced-order model based on balanced trun-
cation which we can write in the descriptor form with system matrices given by

Er =



0.99324 0.023928 0 0 0
−0.021333 1.0755 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, Br =



0.064859
0.20457

0
0
0


, Cr =



0.19251
−0.061038

2.9859 × 10−5

0.99997
0.007125


,

Ar =



−0.046022 0.82467 0 0 0
−0.86258 −0.024527 0 0 0

0 0 −2.9711 × 10−5
−0.99501 −0.0071196

0 0 1.7923 × 10−5 0.0078991 −1.0049
0 0 −2.844 × 10−6

−0.099465 −0.0078694


. (8.4.18)

Hence the DAE (7.4.19) is reduced to a reduced-order model (8.4.18) of dimension

r + τ = 5. We note the solution and transfer function coincides with those illustrated in

Figure 7.1 and 7.2.
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8.5 Properties of the IIMOR method

The IIMOR method is an extension of the IMOR method, thus it will also inherits all the

properties of the IMOR method. The main difference between the IMOR and IIMOR

methods is that IMOR method leads to explicit decoupled reduced-order models while

IIMOR method leads to implicit decoupled reduced-order models. We note that these

two methods coincide if and only if Ep = I and Lq = I. However, the IIMOR method

is computationally cheaper than the IMOR method. The IIMOR and IMOR methods

always preserves the index of the DAEs. Following the same procedure as for the case

of IMOR method in Section 7.5. The properties of the IIMOR method are discussed as

follows. From (8.2.2), the transfer function of the DAE (8.0.1) can be decomposed as

H(s) =
(
CT

p CT
q

) sEp − Ap 0

−Aq Lq − sL

−1 Bp

Bq

 = Hp(s) + Hq(s), (8.5.1)

where Hp(s) := CT
p(sEp−Ap)−1Bp and Hq(s) := CT

q (Lq−sL)−1
[
Aq(sEp−Ap)−1Bp+Bq

]
are transfer functions corresponding to the differential part and algebraic parts, respect-

ively. We can use (8.5.1) to show that the IMOR methods also preserves the properties

of the MOR. These properties are discussed as follows.

(i) Moment matching property.

After the reduction of the differential part of the decoupled system using the block

Arnoldi process, it preserves the first r moments of the differential component

Hp(s) of the decomposed transfer function (8.5.1). This leads to the following

Theorem.

Theorem 8.5.1 IIMOR methods preserves the moment matching property if and

only if the conventional MOR method applied on the differential part preserves the

moment matching property.

Proof 8.5.1 The proof can be summarized following the same procedure as in [49].

If we choose the expansion point as s0 = 0 and assume Ap is nonsingular. Then the

transfer function Hp(s) of the differential part can be written as Hp(s) =

∞∑
k=0

h(k)
p sk

where h(k)
p = (−1)kCT

pMk
pRp are the (block) moments of Hp(s), Mp = −A−1

p Ep

and Rp = −A−1
p Bp. Likewise, the transfer function of the PRIMA reduced-order
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differential part can be written as H̃p(s) =

∞∑
k=0

h̃(k)
p sk where h̃(k)

p = (−1)kC̃T
pM̃p

kR̃p,

are the moments, M̃p = −Ã−1
p Ẽp and R̃p = −Ã−1

p B̃p. Then,

C̃p = VT
pCp, Ãp = VT

pApVp, B̃p = VT
pBp. We can observe that h̃(k)

p can be written

as

h̃(k)
p = −CT

pVp

[
(VT

pApVp)−1(VT
pEpVp)

]k
(VT

pApVp)−1VT
pBp,

By construction VpVT
p is a projector onto Kr(Mp,Rp). Thus it holds

VpVT
pMk

pRp = Mk
pRp, k = 0, 1, · · · , r − 1.

This in turn implies VT
pMT

pRp = M̃k
pR̃p, hence h̃(k)

p = h(k)
p , k = 0, 1, · · · , r−1. Next,

we can show that the induced reduction on the algebraic part of the DAE also

preserves the first r moments of the algebraic component of the transfer function,

Hq(s), which can be written as Hq(s) =

µ−1∑
j=0

h( j)
q s j, where

h( j)
q = CqL

−1
q

µ−1∑
j=0

N j
q

[
AqRp + Bq

]
, j = 0, · · · , µ − 1, Nq = LL

−1
q are the moments.

Also, by construction VqVT
q is a projector onto Kµ(L−1

q Nq,L
−1
q Rq), where

Rq =
[
Bq AqKr(Mp,Rp)

]
. Thus it holds VqVT

q (AqMk
pRp + Bq) = AqMk

pRp + Bq.

Then, using the identity VT
pMT

pRp = M̃k
pR̃p. It is possible to show that

h̃(k)
q = h(k)

q , k = 0, 1, · · · , r − 1, see [4].

(ii) Passivity preservation property.

Using Theorem 7.5.2, we can also discuss the passivity preservation of IIMOR

methods as follows.

H(s) = CT(sE − A)−1B,

= Hp(s) + Hq(s),

= CT
p Rp(s) + CT

q(Lq − sL)−1
[
AqRp(s) + Bq

]
,

= CT
p Rp(s) + CT

qL
−1
q

µ−1∑
j=0

N j
qN(s)s j, since N(s) = AqRp(s) + Bq,
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= CT
p Rp(s) + M0(s)︸                ︷︷                ︸

Hpr(s)

+

µ−1∑
j=1

s jM j(s)︸        ︷︷        ︸
Himpr(s)

,

where Rp(s) = (sEp − Ap)−1Bp, Nq = LL
−1
q , M0(s) = CT

qL
−1
q N(s) and

M j(s) = CT
qL
−1
q N j

qN(s). Hpr(s) is the proper part (bounded as s→ ∞) and Himpr(s)

the improper part (unbounded as s → ∞) of H(s). Thus, the transfer function

Hp(s) = CT
p Rp(s) of the differential part is a strictly proper part of H(s). Based on

Theorem 7.5.2, H(s) is positive real if and only if Hpr(s) and M j(s) are positive

real. As we mentioned in Section 7.5, a key to testing the passivity of DAEs is

to first decouple DAEs into their proper and improper parts [66]. s Hence also

the matrices coefficients of the implicit decoupled systems derived in Chapter 6,

can be used to test the passivity of the DAEs using the passivity test for DAEs

proposed in [66]. Hence the matrices coefficients of the decoupled systems derived

in Chapter 6, can be used to test the passivity of the DAEs using the passivity test

for DAEs proposed in [66]. Following the proof for passivity preserving in [49], it

can also be proved that if the conventional MOR method applied on the differential

part is passivity preserving then the differential part of the IIMOR reduced-order

model is also passive, i.e, H̃pr(s) is positive real. However, in order to ensure that

the IIMOR methods are passivity preserving one need to also prove that M̃ j(s) is

also positive real which is still an open question.

(iii) Approximation error

The approximation error of the IIMOR methods can also be defined in the same

way as the IMOR methods from Section 7.5. Thus, using (8.2.2) the approximation

error of the IIMOR methods can be computed using

‖Y(s) − Ỹ(s)‖ ≤ ‖H(s) − H̃(s)‖ ‖U(s)‖ + ‖P(s) − P̃(s)‖, (8.5.2)

where ‖H(s) − H̃(s)‖ ≤ ‖Hp(s) − H̃p(s)‖ + ‖Hq(s) − H̃q(s)‖. If we let

Q(u(0)) := Lξq(0) to be the hidden polynomial that depends on the input data and

its derivatives at t = 0 and (Lq − sL)−1
= Lq

∑µ−1
j=0 N j

q. Then,

‖P(s) − P̃(s)‖ ≤ ‖C̃qL̃q
∑µ−1

j=0 Ñ j
q − CqLq

∑µ−1
j=0 N j

q‖ ‖Q(u(0)) − Q̃(u(0))‖. Hence

also the output-transfer function of the IIMOR reduced-order model has a small

approximation error if and only if

(a) ‖H − H̃‖ is small
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(b) and ‖P(s) − P̃(s)‖ is also very small in a suitable norm ‖.‖.

Thus, IIMOR reduced-order models can be validate more efficiently using the

above tools.

(iv) Stability

In Section 5.4, we already discussed that for the case of DAEs with a differ-

ential part the decoupled system inherits the stability properties of DAEs since

σ(E−1
p Ap) = σ f (E,A). Hence stability preservation of the IIMOR method also

depends on the MOR method used to reduce the differential part.



Chapter 9

Large scale problems

In this Chapter all experiments were done using Matlab2012b on a laptop of 6.00GB of

RAM with 64 bit operating system. In the next example, we illustrate the limitation of

the conventional MOR methods on higher index DAEs using a large scale example.

Example 9.0.1 This benchmark originates from [25]. Consider an RLC circuit in Figure

Figure 9.1: RLC circuit

9.1 which can modeled using the modified nodal analysis leading to a DAE of the form
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(2.4.1) given by [5]
ACCAT

C 0 0
0 L 0
0 0 0

︸              ︷︷              ︸
E

dx
dt

=


−ARGAT

R −AL −AV

AT
L 0 0

AT
V 0 0

︸                         ︷︷                         ︸
B

x +


0
0
−I

︸︷︷︸
B

v(t). (9.0.1)

We can use C = B as the control output matrix and the input function u(t) = v(t). This

is a SISO system. We can also observe that nC = q, nL = q − 1 and nG = q − 1 are the

number of capacitor, inductors and resistors, respectively in the RLC circuit. It can be

checked that this RLC circuit leads to an index-2 DAE of the form (9.0.1). For our case,

we use Ci = 0.1, i = 1, · · · , q, Li = 0.5, i = 1, · · · , q− 1 and G = 1/i, i = 1, · · · , q− 1 as

capacitance, inductance and conductances values, respectively. Using the same constant

q = 500 as in [25] leads to an index-2 DAE of order n = 1499. Using conventional MOR

method (PRIMA method) and s0 = 0 as the expansion point, we obtained a reduced-

order model of dimension 210. We observed that the conventional MOR reduced-order

model is an ODE. For comparison, we reduced this DAE using our newly developed

IMOR method. This is done as follows. Using the explicit and implicit decoupling

methods, we were able to decouple the DAE system into 998 and 501 differential and

algebraic equations, respectively. We then used the AE method on the algebraic parts of

both algebraic parts and we were able to reduce them to only 2 algebraic equations. Thus,

we were able to reduce both decoupled systems from dimension 1499 to 1000 exactly.

Using the same expansion point with the PRIMA method, we were able to reduce the

differential part of the explicit decoupled system from 998 to 208. Thus, the DAE system

is reduced to a IMOR reduced-order model of total dimension 210. We note the IMOR

reduced-order model is also an index-2 DAE, thus it preserves the index of the original

model. We then compared the transfer functions and the phase angles of the original and

reduced-order models. We observed the transfer function and the phase angle coincides

as shown in Figure 9.2 with small approximation error as shown in Figure 9.3. However,

the IMOR reduced-order model seems to be more accurate than the conventional MOR

model. We numerically solved the IMOR and conventional MOR reduced-order models

using as u(t) = 10 cos(t), t ∈
(
0, π

)
as the input function. We observe that the IMOR

reduced-order model leads to accurate solutions which coincides with the solution of the

original model but the conventional MOR reduced-order model leads to wrong solutions

as shown in Figure 9.4, if one used higher order implicit integration techniques. Figure



167

Figure 9.2: Comparison of the transfer function and phase angle.

9.5, shows the approximation error in the output solution. We can observe the solutions

of the conventional MOR model has large error near the initial condition. This is not

surprising to us, since in Section 7.2.2, we discussed that conventional MOR methods

fail if LBq , 0. However, if one uses the lower order implicit integration techniques

such as the backward Euler method this problem is not visible.

Figure 9.3: Comparison of the approximation error.
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Figure 9.4: Comparison of the output solutions, u(t) = 10 cos(t).

Figure 9.5: Comparison of the approximation error.

The above example shows how unreliable the conventional MOR methods can be.

Having a good approximation of the transfer function does not guarantee accuracy of the

output solution. Hence, the most reliable way is to use split MOR methods such as the

IMOR and IIMOR methods to reduce DAEs.
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Next, we apply the two newly developed IMOR and IIMOR methods for DAEs on large

scale problems from real-life applications. These applications include problems from

computational fluid dynamics (CFD), multibody systems and electrical networks. How-

ever these methods can be applied to any application that leads to a linear constant DAE.

CFD problems

These are applications from computational fluid dynamics (CFD).

Example 9.0.2 In this example, we used system matrices from supersonic inlet flow

example discussed in Section 2.4.2. Consider the Euler equations modeling the unsteady

flow through a supersonic diffuser as described in [35]. Linearization around a steady-

state solution and spatial discretization using a finite volume method leads to a semi-

explicit descriptor system of the form (2.4.3) of dimension n = 11730 and the CFD

model had 3078 grid points. This is an index-1 DAE with m = 2 inputs and ` = 1 output.

According to [35], the reduced-order model must capture the dynamics of the output:

the average Mach number at diffuser throat in response to two inputs: the incoming flow

disturbance and the bleed actuation as shown in Figure 2.2. According to [35], they are

two transfer functions of interest in this problem. Thus, the problem can be viewed as 2

single input single output (SIS0) subsystems and the frequencies of practical interest lie

in the range f
f0

= 0 to f
f0

= 2, where f0 =
a0
h , a0 is the freestream speed of sound and

h is the height of the diffuser. We decoupled this subsystems system into np = 11323

differential equations and nq = 407 algebraic equations using both implicit decoupling

and the explicit decoupling methods for index-1 DAEs. Figure 9.6 and 9.7 show the

sparsity of the matrix pencil of the implicit and explicit decoupled system in descriptor

form. We observe that the implicit decoupling procedure leads to a sparser matrix Ã
than the matrix Â of the explicit decoupling procedure. Next, we compared the IMOR

and IIMOR methods on these two subsystems. We used the PRIMA method to reduce

the differential part of both decoupled systems using s0 = 0 as the expansion point.

We were able to reduce the differential and algebraic parts of both subsystems to 15

differential and 16 algebraic equations, respectively. Thus both DAE subsystems were

reduced from dimension 11730 to 31. In Figure 9.8, we compare the magnitude of the

transfer function and its approximation error from bleed actuation to average throat Mach
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Figure 9.6: Sparsity of matrix pencil (Ẽ, Ã)

number for supersonic diffuser. We observed that all reduced-order models are accurate

in the desired frequencies but the IIMOR is more accurate than the IMOR method. In

Figure 9.10, we compare the magnitude of the transfer function and its approximation

error from the incoming flow disturbance to average throat Mach number for supersonic

diffuser. We also observed that all the reduced-order models are accurate in the desired

low frequencies. Hence, the IIMOR method is more accurate than the IMOR method for

this problems.

Figure 9.7: Sparsity of matrix pencil (Ê, Â)



171

Figure 9.8: Transfer function from bleed actuation to average throat Mach number for
supersonic diffuser.

Figure 9.9: Approximation error of the Transfer function from bleed actuation to average
throat Mach number for supersonic diffuser.
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Figure 9.10: Transfer function from incoming flow disturbance to average throat Mach
number for supersonic diffuser.

Figure 9.11: Approximation error of the Transfer function from incoming flow disturb-
ance to average throat Mach number for supersonic diffuser.

Example 9.0.3 In this example, we apply the IMOR and IIMOR method on the semidis-

cretized Stokes problem which we earlier discussed in Section 2.4.2. This is an index-2

DAE with system matrices of the form (2.4.5). We note that these results presented here

are also presented in [4]. We performed a spatial discretization of the Stokes equation
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(2.4.4) on a square domain Ω =
[
0, 1

]
×

[
0, 1

]
by the finite volume method on a uniform

staggered grid. In order to compare the computational cost of the implicit and explicit

decoupling methods, we carried out experiments on different grid sizes as shown in Table

9.1. From Table 9.1, we can observe that as the mesh becomes finer the larger the size of

the problem. Hence solving the problem becomes computationally more expensive. We

can also observe that both methods were able to decouple the problem but the implicit

method is computationally cheaper than the explicit method as expected since it does not

involve matrix inversion of matrix E2. We then reduced the decoupled Stokes problems

Table 9.1: Comparison of the computational cost
Grid Order Decoupled model Computational cost

n np k1 k2 Implicit method Explicit method
64 × 64 12159 3969 4095 4095 5521.2 -
60 × 60 10679 3481 3599 3599 3667.6 30653.3
56 × 56 9295 3025 3135 3135 5937.8 8604.0
52 × 52 8007 2601 2703 2703 1574.9 5569.7

using the IMOR and IIMOR methods. We applied the IMOR and IIMOR method, to

the explicit and implicit decoupled problems, respectively as shown in Table 9.2. We

used the PRIMA method and s0 = 0 as expansion point to reduce the differential part of

both decoupled systems. The differential and algebraic equations are reduced to order r

and τ, respectively and r + τ is the order of the reduced-order DAE as shown in Table

9.2. We observe that the IMOR method takes less time than the IIMOR method this is

due to the inversion of lower triangular matrix Lq but this is small compared to the time

it takes to generate the explicit decoupled system. We used the system matrices from

Table 9.2: Comparison of the IMOR methods
Grid Order Decoupled model IIMOR model IMOR model

n np nq r τ Time(s) r τ Time(s)
64 × 64 12159 3969 8190 11 12 63.3 - - -
60 × 60 10679 3481 7198 11 12 48.8 11 12 13.1
56 × 56 9295 3025 6270 32 33 28.8 32 33 11.7
52 × 52 8007 5406 3599 22 23 19.3 22 23 6.3

grid 52 × 52 to compare the transfer function and the phase angle of the IMOR model

and IIMOR model with that of the original as shown in Figure 9.12. We can observe

that the transfer function and phase angle of the IMOR, IIMOR and original models co-

incide. However, the IMOR model is more accurate than the IIMOR model as shown

by the approximation error plot in Figure 9.13. We finally compared the solutions of the
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Figure 9.12: Comparison of the transfer function and phase angle.

Figure 9.13: Comparison of the approximation error.

reduced-order models with that of the original model. From Figure 9.14, we observe that

the solutions of the reduced-order models coincides with that of the original model with

a small approximation error as shown in Figure 9.15. Both reduced-order models took

10 seconds while the original model took 148 seconds. Thus the decoupling techniques

also makes solving much cheaper.
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Figure 9.14: Comparison output solution y(t), u(t) = sin(πt).

Figure 9.15: Output solution.

Multibody problems

Example 9.0.4 In this example, we consider a constrained damped mass-spring system

as described in Section 2.4.3. This is a DAE of index-3 with its matrix pencil has at

least one finite eigenvalue. Thus, we expect its decoupled system to have a differential

part. We used the same constant g = 6000 as used in [45] to generate the same system
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matrices for comparison. This generates a DAE of order n = 12001 with 1 input and 3

outputs in the form (2.4.6). We used both the explicit and implicit decoupling methods

for index-3 DAEs derived in Chapter 5 and 6, respectively. Both methods, were able

to decouple the DAE into 1198 differential and 3 algebraic equations. The explicit and

implicit methods took 60 and 54 seconds, respectively to decouple the system. Thus

the implicit decoupling method is computationally cheaper than the explicit decoup-

ling method. Then, We used the IMOR and IIMOR methods to decouple the respective

decoupled systems. For both methods, we used the PRIMA method to reduce the dif-

ferential part using s0 = 10−4 as the expansion point. The IMOR and IIMOR methods

reduced their respective decoupled systems to 10 differential and 1 algebraic equations.

The IMOR and IIMOR methods took 17 and 15 seconds, respectively. Thus the original

DAE is reduced to a reduced-order model of order 11. In Figure 9.16, we compare the

Figure 9.16: Magnitude and phase plots of H3,1(iω)

magnitude and phase plots of the (3, 1) components of the frequency responses for the

reduced-order models and the original model. Figure 9.17 compares the approximation

error of the IIMOR and IMOR reduced-order models. We see that the reduced-order

models approximate the original system very well at low frequencies. However the

IMOR reduced-order model is more accurate than the IIMOR reduced-order model. In

Figure 9.18, we compare the output solutions y1(t) and y2(t) of the reduced-order mod-

els with that of the original model using u(t) = 10 sin(πt) as the input function. We

observe that the solutions coincide with that of the original model. However the solu-
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tions of the IMOR model are more accurate than the IIMOR model as illustrated in the

approximation error curve in Figure 9.19.

Figure 9.17: Approximation error

Figure 9.18: Comparison of the output solutions,u(t) = 10 sin(πt) .



178 9 Large scale problems

Figure 9.19: Approximation error of y1(t)

Electrical network problems

In this Section, we consider an application from the circuit community.

Example 9.0.5 In this example, we used a MNA model of dimension n = 10913. This

DAE model originates from [11]. This is a MIMO index-2 DAE with m = 9 inputs

and ` = 9 outputs. The spectrum of its matrix pencil (E,A) has at least one finite

eigenvalue. Thus its explicit and implicit decoupled systems takes the form (5.3.15) and

(6.2.3), respectively. We used both the explicit and the implicit decoupling methods

in order to split this DAE into differential and algebraic parts. We observed that both

methods lead to np = 10790 differential equations, k1 = 26 1st algebraic equations and

k0 = 97 2nd algebraic equations. This means that the DAE can be decoupled into 10790

differential and 123 algebraic equations. Thus the total dimension of the system is equal

to the dimension of the DAE as expected, i.e n = np + k1 + k0 = 10913 as expected. The

implicit decoupling procedure is computationally cheaper than its counter part because it

does not involves computing the inverse of E2 which is very expensive. For this example

implicit and explicit decoupling methods took 306 and 1965 seconds, respectively to
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decouple the DAE.

Figure 9.20: Magnitude and phase of the transfer functions.

Figure 9.21: Approximation error

We used both the IMOR and IIMOR methods to reduce the DAE for comparison. In

both methods we used the PRIMA method to reduced the differential part. The IMOR

method lead to reduced-order model with 900 differential and 35 algebraic equations,

while the IIMOR method lead to a reduced-order model with 900 differential and 99

algebraic equations. We can observe that the IIMOR reduced-order model is much lar-

ger. The IIMOR and IMOR method took 443 and 9662 seconds, respectively. Thus, the
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IIMOR method is computationally cheaper than the IMOR method. In Figure 9.20, we

can observe that the magnitude and phase of the transfer functions coincide with that of

the original model with a small approximation error as shown in Figure 9.21. However,

the IMOR reduced-order model is more accurate than the IIMOR model.



Chapter 10

Conclusions and Recommendations

In this thesis, two new model order reduction techniques for linear constant coefficient

DAEs have been proposed. These methods are: the Index-aware MOR (IMOR) and

Implicit IMOR (IIMOR) methods. They are both robust and lead to simple reduced-

order models. However the Implicit IMOR method is computationally cheaper than the

IMOR method, since the former does not involve matrix inversions. However, exper-

iments show that the IMOR method leads to more accurate reduced-order model than

the IIMOR method. Both methods have an attractive property that they preserve the in-

dex of the original DAE. Another interesting feature of our methods is the reduction of

the algebraic variables. These methods were tested on both small and large scale prob-

lems from different applications which lead to accurate reduced-order models. We have

also discussed that conventional MOR methods such as PRIMA method, may lead to

reduced-order models which are: difficult to solve numerically, lead to wrong solutions

or even unsolvable, while reduced-order models obtained by our methods do not present

numerical difficulties when applied to higher index DAEs. It was noted that they are

some special case where conventional MOR methods can lead to accurate reduced-order

model even for higher index DAEs. This happens when initial condition does not de-
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pend on the derivatives if the input function u at time t = 0. The implicit and explicit

decoupling procedure used in the IMOR and IIMOR methods are also new, they can

be used to efficiently solve DAEs numerically using the conventional ODEs integration

methods [5]. These decoupling procedures relies on the construction of projectors onto

the nullspace of singular sparse matrices, which used to be its main drawback. For some

applications with special structures they can be constructed explicitly and for general

sparse DAEs one can use the LU based routine which is a very fast way of constructing

projectors onto the nullspace of singular matrices [66]. This same routine can be used

to construct bases of these projectors. However, one has to be aware that the numerical

computation of these bases for the decoupling may involve serious difficulties because

of the accuracy sensitive rank decisions. But it is expected to be profitable if the bases

functions can be computed in a robust way, for example some applications such as the

electrical network problems which are modeled using the incidence matrices. Thus, we

recommend one to use the incidence matrices to construct these bases instead of using

singular matrices which may be ill-conditioned for the case of circuit problems.

Recommendations for future work

Proper orthogonal decomposition (POD) model order reduction method is commonly

used method to reduce nonlinear ODEs but there have been recent attempts to extend

it to nonlinear DAEs, see [53]. However, this extension heavily relies on the idea of

the balanced truncation MOR for the descriptor systems [45] which uses the Kronecker

forms of the DAE and we have already discussed that these forms are numerically in-

feasible which limits their practical use. Fortunately, our implicit and explicit decoupling

procedures are based on the matrix and projector chain [42] to decoupled DAEs, which

are numerically feasible, and can be extended to nonlinear DAEs, linear DAEs with time

varying coefficients or parametric DAEs, see [24,34]. The decoupling strategy of nonlin-

ear DAEs involves a mixture of tractability index and strangeness index concepts, which

can be used to split the nonlinear DAEs into a differential and algebraic parts [24]. Then

the traditional proper orthogonal decomposition MOR method can be used to reduce the

differential part and as a result the algebraic part can also be reduced. Although this is

in general computationally expensive and highly sensitive with respect to perturbations,

one may exploit it in a robust manner for model order reduction if the DAE to reduce has

a time and state independent structure, i.e., if one can find bases functions that are both
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time and state independent as is the case for circuit parts without controlled sources [2].

This may be an interesting strategy to exploit in the future.

In Section 7.1 and 8.1, we proposed the Algebraic Elimination (AE) method which re-

duces the algebraic part of the decoupled system exactly by eliminating algebraic vari-

ables which do not contribute to the output solution. However, for the case of implicit

decoupled systems as presented in Section 8.1, we do not get a good reduction of the

algebraic part since it very difficult to find these algebraic variables which do not con-

tribute to the output solution by just using the traditional permutation algorithms. We

suggest if one uses the graph and matrix reordering algorithm such as the Vertex cut

algorithms [31] to find the connected graphs in the matrices. This approach may lead

to a better reduction of the algebraic part. This strategy can be used as a foundation for

the development of MOR methods for algebraic systems since it is also an undeveloped

area.
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Summary

Index-aware Model Order Reduction Methods for DAEs

Large scale DAEs arise in a variety of applications such as modeling of constrained

multibody systems, electrical networks, aerospace engineering, chemical processes, com-

putational fluid dynamics (CFD), gas transport networks. Characteristic of such systems

is that they lead to state space descriptions of high dimension in which the coefficient of

the first order derivative is a singular matrix. In practice, applications lead to DAEs with

very large dimension compared to the number of inputs and the desired outputs. Despite

the ever increasing computational power, simulation of these systems in real time for

such large scale is very difficult because of the storage requirements and expensive com-

putations. This is an attractive feature to apply model order reduction. However, if the

initial condition is inconsistent or when the smoothness of the input does not correspond

to the index of the DAE, currently available MOR techniques may lead to inaccurate

reduced-order models. These reduced-order models may lead to wrong solutions that

do not adequately represent the hidden truly fast modes or are very difficult to solve

numerically.

The aim of this PhD project is to investigate model order reduction techniques for DAEs.

The ultimate goal of the project is to deliver fundamental mathematical knowledge and

efficient numerical tools for the next generation of MOR techniques for differential al-

gebraic equations. This thesis addresses the mathematical aspects of the reduction of

differential algebraic equations including the limitations of the conventional MOR meth-

ods. We have developed two new dedicated reduction methods for DAEs, using the un-

derlying structure of DAEs, with the aim of obtaining robust reduction methods that can

be applied to linear constant coefficient DAEs with arbitrary index. Our two new MOR
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methods for DAEs are: the Index-aware MOR (IMOR) method and its implicit version

the Implicit-IMOR (IIMOR) method. The explicit and implicit decoupling procedure

used in these two methods are also new and can be used to solve DAEs more efficiently

and effectively using conventional ODE integration methods.

This thesis begins with a brief overview of MOR methods for DAEs in Chapter 1 and

why there was need to develop new robust MOR methods for DAEs. We also briefly

explain the underlying mathematical frame work of the IMOR and IIMOR methods.

Chapter 2 introduces the theory of the DAEs and also discusses why DAEs are very

difficult both to solve and to reduce. In this thesis, we restrict ourselves to linear time

invariant DAEs or linear constant coefficient DAEs but the same applies to other types

of DAEs. In this Chapter, we also discuss the assumptions under which DAEs can

be solved as well as their mathematical properties such as stability. This is done by

first transforming the DAE into a Kronecker form in order to reveal their underlying

structure. We use the underlying structure of DAEs to discuss the index of DAEs and

how the index of DAEs affects the choice of their initial conditions. We further used this

form to discuss how the index of DAEs affects the conventional MOR methods especially

for higher index DAEs. We then discuss the reason why it is a best practice to first split

DAEs into differential and algebraic parts before applying model order reduction. We

finally describe some of the real-life applications that lead to DAEs.

In Chapter 3, we discuss model order reduction methods in general and also illustrate

numerically the limitations of conventional MOR methods using small examples. In this

Chapter, we also give an overview of the existing MOR methods for DAEs and their

limitations. We observed that the most successful methods for DAEs are: the balanced

truncation method and Interpolatory projection methods for DAEs. Both methods lead to

accurate reduced-order models for DAEs, however they both use Kronecker canonical

forms to construct spectral projectors used in decoupling which are well known to be

numerically infeasible. This limits their application to DAEs with special structures

and cannot be used on general DAEs. These methods can not be extended to linear

DAEs with variable coefficients since they use spectral projectors to decouple DAEs. We

finally discuss the MOR methods for algebraic systems specifically reduction methods

for resistor networks.



Summary 197

In Chapter 4, we discuss the decoupling of DAEs using the matrix and projector chain

based on the definition of tractability index proposed by März. We used these matrix

and projector chains to decouple DAEs into differential and algebraic parts using the

März decoupling procedure. However, we found out that we cannot apply model order

reduction on these decoupled systems since the März decoupling procedure leads to a

much larger decoupled system of dimension n(µ + 1), where µ is the index of a DAE of

dimension n, and it does not preserve stability of DAEs. We also discuss a fast way of

constructing these matrix and projector chains using an LU decomposition based routine.

In Chapter 5, we modify the März decoupling procedure using projector bases. Using

this approach, we were able to remove the redundancy in the decoupled systems. The

modified decoupled system preserves both the dimension and the stability of DAEs. We

call this decoupling procedure: explicit decoupling procedure since it leads to expli-

cit differential and algebraic parts. However this modified decoupling procedure relies

on the foundation of the März decoupling procedure which involves matrix inversions.

Hence the explicit decoupling procedure cannot be applied to large scale DAEs. This

motivated us, in Chapter 6, to develop another decoupling procedure which does not in-

volve matrix inversions. This procedure is an implicit version of the decoupled proced-

ure in Chapter 5. Experiments, also show that the implicit decoupling is computationally

cheaper than the explicit decoupling procedure as expected.

In Chapter 7, we developed one of our new MOR methods for DAEs which we call the

Index-aware MOR (IMOR) method. This is done by reducing the differential and algeb-

raic parts, separately of the explicit decoupled systems derived in Chapter 5. One can

use any conventional MOR method to reduce the differential part, while we developed

new methods to reduce the algebraic part. For illustration, we used the PRIMA method

and the balanced truncation method to reduce the differential part. The IMOR method

leads to simple reduced-order models which preserve the index of the original DAE and

also make it easy to solve. We also discussed the properties of the IMOR method and

observed that it depends on the conventional MOR method used to reduce the differential

part. However the IMOR method is impractical to be used to reduce large-scale DAEs

since it uses the computationally expensive explicit decoupling procedure in Chapter 5.

In Chapter 8, we developed the implicit version of the IMOR method which is based
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on the implicit decoupling procedure derived in Chapter 6, called the Implicit-IMOR

(IIMOR) method. It has the same properties as the IMOR method, but it is compu-

tationally cheaper than the IMOR method. In Chapter 9, we applied both the IMOR

and IIMOR methods on large-scale real-life applications. Experiments show that both

methods are very accurate and robust, and lead to simple reduced-order models which

are accurate and easy to solve. However, the IMOR is more accurate. Thus, one needs

to trade off between accuracy and complexity. In the final Chapter, we discussed the

conclusion and the future recommendations of the IMOR and IIMOR methods.
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