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Nomenclature

Notations
R Set of all real numbers
R™" Set of all real matrices of dimension m X n
R" Set of all real vectors of dimension n
C Set of all complex numbers
Cc The open left half complex plane
dim(V) Dimension of a vector space V
I Identity matrix of the desired order
A Inverse of matrix A
AT Transpose of matrix A
rank A Rank of matrix A
o(A) Set of all eigenvalues of matrix A
det(A) Determinant of matrix A
o(E,A) Set of all generalised eigenvalues of matrix pencil (E, A)
o (E,A) Set of all finite eigenvalues of matrix pencil (E, A)
o (E,A) Set of all infinite eigenvalues of matrix pencil (E, A)
Ker(T) Kernel of transformation or matrix T
Im(T) Image of transformation or matrix T
Span(T) Subspace spanned by the columns of matrix T
K.(A,b) Order-r Krylov subspace generated by matrix A

of dimension n X n and a vector b of dimension n
xorx’ Derivative of x with respect to time ¢
Span{x;,X,,--- ,X,} Vector space spanned by the vectors X, X,,- - ,X,
diag{d,,d,,---,d,} Diagonal matrix with diagonal elements d;,d,,--- ,d,

Index-u DAEs

DAE:s of tractability index-u




Nomenclature

Acronyms

MOR Model Order Reduction

DAEs Differential algebraic equations

LU Lower and Upper triangular matrix

SVD Singular valued decomposition

CFD Computational fluid dynamics

RLC Resistor-inductor-capacitor

RC Resistor-capacitor

MIMO Multiple-input Multiple-output system

SISO Single-input Single-output system

IMOR Index-aware model order reduction

IIMOR Implicit index-aware model order reduction

ODEs Ordinary differential algebraic equations

LTI Linear time invariant

MNA Modified nodal analysis

PRIMA Passive Reduced-Order Interconnect Macromodeling Algorithm
SPRIM Structure-preserving reduced-order interconnect macromodeling

AE Algebraic elimination




Chapter 1

Introduction

Large scale differential algebraic equations (DAESs) arise in a variety of applications such
as modeling of constrained multibody systems, electrical networks, aecrospace engineer-
ing, chemical processes, computational fluid dynamics (CFD), gas transport networks,
see [10, 12, 16,24, 35,45]. Such systems have characteristics of leading to state space
descriptions of high dimension in which the coefficient of the first order derivative is a
singular matrix. In practice, such applications lead to DAEs with very large dimension
compared to the number of inputs and the desired outputs. Despite the ever increas-
ing computational power, simulation of these systems in real time on such large scale
is very difficult because of the storage requirements and expensive computations. This
is an attractive feature to apply model order reduction (MOR). However, if the initial
condition is inconsistent or when the smoothness of the input does not correspond to the
index of the DAE, currently available MOR techniques may lead to inaccurate reduced-
order models, see [1,2]. These reduced-order models may lead to wrong solutions that
do not adequately represent the hidden truly fast modes or are very difficult to solve
numerically. In most publications and applications it is assumed that the matrix pencil

is regular, and conventional MOR techniques based on either Krylov subspaces or sin-
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gular value decomposition (SVD) are used to extract dominant behavior of the transfer
function [3,9,58]. Howeyver, it has recently been shown that such approaches may lead
to reduced models that are not adequate, as they do not take into account the special
behavior due to infinite state variables of the system [45]. The initial condition of the
finite state variables can be chosen arbitrary while the initial condition of the infinite
state variables have to satisfy certain hidden constraints. Thus the initial condition of the

differential algebraic equations must be a consistent initial value.

However, it happens that the conventional MOR methods [3, 9, 58] cannot be applied
immediately especially to higher index DAEs because they deal only with a system pos-
sessing zero initial condition. Moreover, most conventional MOR methods treat DAEs
as ODEs, for example PRIMA method [49] sometimes leads to ordinary differential
equations (ODEs) reduced-order models even if the original model is a DAE. This may
lead to loss of their mathematical properties. As a consequence, new concepts were
needed to provide reliable reduced-order models for DAEs. In the new approach, DAEs
must first be decoupled into differential and algebraic parts before applying any MOR
technique. This observation has lead to the development of new methods specifically for
DAE:s, see [17,18,25,32,45] and to some extent the modification of the existing MOR
methods, see [25,45]. Most of these recently developed methods are application based
and some are more general. In [45], they proposed the most successful MOR method
for DAEs known as the balanced truncation method for descriptor systems, however it
is computationally expensive since it involves solving four Lyapunov equations. Then,
most recently the computationally cheaper, model reduction of descriptor systems by
interpolatory projection methods was proposed in [25]. Both methods are robust and
lead to accurate reduced-order models for DAEs. They both use the spectral project-
ors to split DAEs into differential and algebraic parts before reduction. However, the
Kronecker canonical forms are used to construct the spectral projectors which are well
known to be numerically infeasible [1,42]. Hence, the existing most accurate MOR
methods for DAEs are much limited to DAEs with special structures and can not be

extended to DAEs with variable coefficients.

In this thesis, a computationally cheaper way of decoupling and reducing DAE:s is pro-
posed. This decoupling procedure relies on the framework of special projector and mat-

rix chain for DAEs, enabling a decomposition into separate differential and algebraic



parts as introduced by Mirz in [42]. However, the Mirz decoupling procedure leads to
much larger decoupled system of dimension n(u+ 1), where n and y is the dimension and
the tractability index of the DAE, respectively. Hence, the Mérz decoupling procedure
does not preserve some of the mathematical properties of the DAEs such as dimension
and stability. This motivated us to modify the Méirz decoupling procedure using spe-
cial bases of projectors instead of the full projectors, thus preserving the dimension and
stability of DAEs in the decoupled system. Having performed this separation, differ-
ent reduction methods can be used to each of these parts. For the differential part, one
can use the conventional MOR methods while the algebraic part, we have developed
new methods since there was no known reduction methods for algebraic systems. This
procedure lead to a new MOR method for DAEs which we call the Index-aware MOR
method abbreviated as IMOR method [1,2]. The IMOR method is illustrated in Fig-

ure 1.1. This method is very robust and leads to simple reduced-order models for even

DAE

Projected
DAE
(Mirz [42])

Differential Part

MOR for
ODEs

Algebraic part

MOR for
Algebraic
systems

Reduced

order DAE

Figure 1.1: IMOR methods procedure

higher index DAEs. However, the IMOR method has an inherited limitation of matrix
inversion which makes it computationally very expensive. This lead to the development
of its implicit version which we call the implicit IMOR method which is abbreviated as
IIMOR method. The implicit IMOR method is computationally cheaper than the IMOR
method. However, experiments show that the IMOR method is more accurate, thus one
needs to trade off between complexity and accuracy. Using our decoupled systems, we

were able to analyse the limitations of the conventional MOR methods. We observed that
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sometimes conventional MOR methods can lead to accurate reduced-order models even
for higher index DAEs, if and only if the consistent initial condition does not depend
on the derivatives of the input data. This is equivalent to a DAE having a proper trans-
fer function. The explicit and implicit decoupling procedures are also advantageous for
solving DAEs more efficiently numerically since they enable one to use the conventional

ODE:s integration methods to solve higher index DAEs.

Other, well known tools used to investigate DAEs are the transformation into Kronecker
normal form and the decoupling by means of Drazin inverses and spectral projectors.
These tools are very accurate but they are numerically infeasible and can not be gener-
alized to variable coefficient linear and nonlinear DAEs [42]. However, our decoupling
procedures used in both IMOR and IIMOR methods, relies on the matrix and projector
chain approach introduced by Mérz [42] which can also be applied to general variable
coeflicient equations, see [27]. Hence the IMOR and IIMOR methods can be extended
to variable coefficient linear and nonlinear DAEs.

The NWO project

This work is part of the research programme Model Order Reduction for Differential
Algebraic Systems, which is (partly) financed by the Netherlands Organisation for Sci-
entific Research (NWO).

The aim of this PhD project is to investigate model order reduction techniques for dif-
ferential algebraic systems. The ultimate goal of the project is to deliver fundamental
mathematical knowledge and efficient numerical tools for the next generation of MOR
techniques for differential algebraic equations. This thesis addresses the mathematical
aspect of the reduction of differential algebraic equations including the limitations of the
conventional MOR methods. We have developed reduction methods for DAEs, using the
underlying structure of DAEs, with the aim of obtaining robust reduction methods that

can also be applied to DAEs with arbitrary index



Chapter 2

Differential Algebraic Equations

In this Chapter, we introduce the differential algebraic equations which we abbreviate
as DAEs. DAEs arise in a variety of applications such as modeling of constrained
multibody systems, electrical networks, aerospace engineering, chemical processes, com-
putational fluid dynamics (CFD), gas transport networks, see [10, 12, 16, 24, 35, 45].
Therefore their analysis and numerical treatment plays an important role in modern
mathematics. In many articles, DAEs are also called singular systems [12], descriptor
systems [16, 45, 66], generalized state space systems [45], semi-state systems, degen-
erated systems, constrained systems, implicit systems but in most literatures they are
called DAEs [39,42,52]. In this thesis, we shall also call them DAEs.

2.1 What are DAEs?

Consider an explicit ordinary differential equations (ODEs),

x = f(t,x), (2.1.1)
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where x = ‘(11—’; and x € R", f : RxR" — R". In general the first order ODE can be

written in implicit form

F(t,x,%) = 0. (2.1.2)

oF
ox

(2.1.2) for x in order to obtain an ODE (2.1.1). However, if g—g is singular, this is no

According to [61], if the Jacobian matrix 5: is nonsingular then it is possible to solve

longer possible and the solution x has to satisfy certain algebraic constraints. Hence, if
g—g is singular, then (2.1.2) is referred to as a DAE. In modeling the formulation of pure
ODE problems often requires the combination of ; conservation laws (mass and energy
balance), constitutive equations (equations of state, pressure drops, heat transfer) and
design constraints (desired operations). This means that there are some problems where
not all the equations in a differential system involves derivatives, thus we can come up

with a special case of DAEs which can be written as,

x=f@x,y), (2.1.3a)
0=g(x,y), (2.1.3b)

where x-differential variables, y-algebraic variables and (2.1.3b) is a constraint equation.
Equation (2.1.3) is a special type of DAEs which is commonly called the semi-explicit
DAE:s.

2.2 Models for DAEs

According to [16], it is well known from modern control theory that two main mathemat-
ical representations for dynamical systems are the transfer matrix representation and the
state space representation. The former describes only the input-output property of the

system, while the latter gives further insight into the structural property of the system.

2.2.1 State space representation

State space representation was developed at the end of the 1950s and the beginning of
the 1960s, which has the advantage that it not only provides us with efficient method for
control system analysis and synthesis, but also offers us a deeper understanding about

the various properties of the systems, see [16]. The state space models of the systems are
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obtained mainly using the so-called state space variable method [16]. To obtain a state
model of a practical system, we need to choose some physical variables such as currents
and voltages in an electrical network. Then, by the physical relationships among the
variables or by some model identification techniques such as modified nodal analysis in
network analysis, a set of equations can be established. Naturally, this set of equations
are usually differential and/or algebraic equations, which form a mathematical model
of the system. By properly defining a state vector x(¢) and an input vector u(¢), which
are formed by the physical variables of the system, and an output vector y(f) , whose
elements are properly chosen measurable variables of the system, this set of equations

can be arranged into two equations given by

S @), x(@),u(n),n =0, (2.2.1)
gy (0, x(1),u(),1) =0, (2.2.2)

where f and g are vector functions of appropriate dimensions with respect to X(z), x(), y(¢),
u(t) and ¢. Equations (2.2.1) and (2.2.2) are the so-called state equation and output
equation, or the observation equation. Equations (2.2.1) and (2.2.2) give the state space
representation for a general nonlinear dynamical system. If we consider a special form
of (2.2.1)-(2.2.2) :

E(®) x(t) = F(x(1), u(1), 1)
Y@ = K(x(@®),u@), 1),

(2.2.3)

where ¢ > 0 is the time variable, F and K are appropriate dimensional vector functions,
x(r) € R" is the state vector, u(t) € R™ is the control input vector, y() € R is the
measured output vector. The matrix E(r) must be singular for some ¢t > 0 for our case
since we are considering DAEs. Equation (2.2.3) is the general form of the so-called
nonlinear DAEs. If we consider the case, when F and K are linear functions of vectors

x(t) and u(t), the general nonlinear DAEs (2.2.3) simplifies to the following form:

E(1) x() = A(H)x(t) + B(Hu(?),

224
y(1) = C'(0)x(1) + D(tyu(), (229

where E(), A(t) € R™", C(1) € R™, D(r) € R™, B(t) € R™ are matrix functions

of time ¢, and they are called the coefficients matrices of the system (2.2.4). Equation
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(2.2.4) describes the so-called linear time varying DAEs. If the matrix coefficients are
constant, i.e., time independent, the system (2.2.4) is called the linear constant coefficient

DAE:s or linear time invariant (LTI) DAEs which can be written as,

Ex(1) = Ax(7) + Bu(2), (2.2.5a)
y() = C'x(1) + D'u(), (2.2.5b)

where E,A € R™, C € R™, D € R™, B € R™" are constant coefficient matrices.
For DAEs of the form (2.2.5), there is also a concept of the dynamical order, which is
defined as the rank of singular matrix E. Equations (2.2.4) and (2.2.5) are the two basic
classes of DAEs. From this point, we restrict ourselves on the DAE of the form (2.2.5)

unless stated otherwise.

2.2.2 Transfer matrix representation

In this Section, we discuss the transfer matrix representation. This representation is
derived from the state space representation using the Laplace transform . The transfer
matrix representation is commonly used to validate reduced-order models in the model

order reduction community and is commonly called the transfer function.

Definition 2.2.1 (Laplace transform [58]) The Laplace transform of a function f(t) in

the time domain is the function F(s) in the frequency domain and it is defined as,
(0o

L{f(} = F(s) := f e " f(t)dt, where s = o + jw € C, with o,w € R.
0

We shall restrict ourselves on the transfer matrix representation of the LTI DAEs (2.2.5)
and also assume s = jw, i.e o = 0. Taking the Laplace transform of (2.2.5) and simpli-

fying, we obtain
Y(s) = [CT(sE ~A) B+ DT]U(s) + CISE = A)'Ex(0), (2.2.6)

where U(s) and Y(s) are the Laplace transforms of u(¢) and y(t), respectively. The ra-

tional matrix-valued function

H(s) = C'(E - A)"'B+ D" e R™", (2.2.7)
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is called the transfer matrix representation of (2.2.5) or transfer function. Then, H(s)
gives the relation between the Laplace transforms of the input u(#) and the output y(?).
In other words, H(s) describes the input-output behavior of (2.2.5) in the frequency

domain.

Definition 2.2.2 ([62]) The transfer function H(s) is called proper if lim H(s) < oo,
§—00
and improper otherwise. if lim H(s) = 0, then H(s) is called strictly proper.
§—00

Almost all conventional MOR methods assume vanishing initial condition, i.e.,
Ex(0) = 0, which leads to Y(s) = H(s)U(s). We need to ask ourselves wether, we can
always describe the transfer matrix representation or transfer function of an entire DAE
dynamical system as for the case of ODE systems, i.e., Is it always possible to assume
Ex(0) = 0 in (2.2.6) to obtain Y(s) = H(s)U(s)? This question is answered in Section
2.3.4 after gathering enough knowledge about DAE:s.

2.3 Linear constant coefficient DAEs

In this Section, we discuss the analysis of LTI DAEs. For simplicity, the coefficient
matrix D in (2.2.5) is assumed to be zero matrix unless specified. Thus, (2.2.5) simplifies

to:

Ex@®) =Ax()+Bu@®), x(0)=x,, (2.3.1a)
y(0) = CTx(), (2.3.1b)

where E € R™" is singular, A ¢ R, Be R™", C € R™  the input vector u(r) € R",

output vector y(t) € R’ and x, € R" is the initial value.

2.3.1 Solvability of DAEs

Here, we are interested in the solutions of the homogenous system obtained by setting
u(t) = 0, then (2.3.1a) becomes

Ex(r) — Ax(z) = 0. (2.3.2)
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As for the case of ODEs using the guess solution x,(f) = xoe/l*t. Substituting the guess
solution into (2.3.2) leads to et (1,E — A)x, = 0. Hence according to [34], x,.(¢) is a
nontrivial solution of the DAE (2.3.2) if A, is a zero of polynomial P(1) := det(1E — A),
A € Cand x, # 0 satisfies (1,E — A)x, = 0. A and x are called the generalized ei-
genvalues and eigenvectors, respectively. Thus, we say that the DAE (2.3.1a) is solvable
provided the matrix pencil AE — A is regular, see [34]. We note that AE — A can also be
written as (E, A) which is called the matrix pencil or matrix pair.

Definition 2.3.1 ( [34,52]) A matrix pair (E, A) is called regular if the polynomial
P(A) = det(AE — A) is not identically zero otherwise singular.

A pair (E, A) with nonsingular E is always regular, and its polynomial $(1) is of
degree n. In case of singular matrices E, the polynomial degree is lower. According
to [33], regularity of a matrix pair is closely related to the solution behavior of the cor-
responding DAE. In particular, regularity is necessary and sufficient for the property
that for every sufficiently smooth inhomogeneity u the DAE is solvable and the solu-
tion is unique for every consistent initial value. This is well understood, if we consider

Weierstral3-Kronecker canonical form of a given DAE as discussed in Section 2.3.3.

Definition 2.3.2 ( [62]) A pair(a,p) € CZ\{(O, 0)} is said to be a generalized eigenvalue
A= % of the matrix pencil AE — A if det(aBE — A) = 0. If B # 0, then the pair (a,f3)
represents a finite eigenvalue 1 = % of the matrix pencil AE — A. But if 8 = 0, the pair
(@, 0) represents an infinite eigenvalue of AE — A. Clearly, the pencil AE — A has an

eigenvalue at infinity if and only if the matrix E is singular.

The set of all finite eigenvalues of the matrix pencil (E, A) is denoted by o ((E, A) while
the infinite spectrum of the matrix pencil (E, A) is denoted by o, (E, A). Thus, the set of
all generalized eigenvalues (finite and infinite ) of the matrix pencil (E, A) is called the
spectrum of (E, A) and donated by o(E, A) = a'f(E, A)U o (E,A). We note that if E is
nonsingular, then o°(E, A) = o ((E, A) which is equal to the spectrum of E~'A. This also
means that if E is nonsingular, the homogeneous equation (2.3.2) represents an implicit
regular ODE and its fundamental solution system forms an n-dimensional subspace in
C'. But what happens if E is singular, this is closely related to the notion of the regular

matrix pencil (E, A) [34] as discussed in Section 2.3.3.
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2.3.2 Stability of DAEs

According to [16], in practice a practical system should be stable otherwise, it may not
work properly or may even be destroyed in practical use. Like the ODE systems case,
when studying stability of DAEs, we also need to only consider the homogenous system
(2.3.2).

Definition 2.3.3 ([62]) The DAE (2.3.1) is called asymptotically stable if Ilimx(t) =0
for all solutions x(t) of the homogenous system Ex(t) = Ax(t).

This leads us to the following theorem that collects equivalent conditions for system

(2.3.1) to be asymptotically stable.

Theorem 2.3.1 ([12,62]) Consider a DAE (2.3.1) with regular matrix pencil AE — A.

The following statements are equivalent.

1. System (2.3.1) is asymptotically stable.

2. All finite eigenvalues of the matrix pencil AE — A lie in the open left half complex
plane, i.e., c(E,A) c C, where C = {s|s € C,Re(s) < 0} represents the open left
half complex plane.

According to [62], the matrix pencil AE — A is called c-stable if it is regular and all the

finite eigenvalues of AE — A have negative real part.

We can note that, in view of the above theorem, the infinite eigenvalues of the matrix
pencil (E, A) have no effect on stability of DAEs of the form (2.3.1), since the infinite
eigenvalues of AE — A do not affect the behavior of the homogenous system at infinity
[62].

2.3.3 WeierstraBB-Kronecker canonical form

In this Section, we present the Weierstral-Kronecker canonical form. This is the most
commonly used tool to understand the DAE structure of constant coeflicients linear
DAEs [16,33,42]. Scaling (2.3.1) by nonsingular matrix P € R™" and the state variable

nxn

x according to x = QX with a nonsingular matrix Q € R™", we obtain

E X(t) = A%(t) + Bu(r), (2.3.32)
y(t) = C%(r), (2.3.3b)
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where E = PEQ, A =PAQ, B=PBand C = QTC, which is again a DAE with constant
coefficients. According to [33], the relation x = QX gives a one-to-one correspondence
between the corresponding solution sets. This means that we can consider the trans-
formed problem (2.3.3) instead of (2.3.1) in order to understand the underlying structure
of constant coefficients linear DAEs. This leads to the following definition of equival-
ence [33].

Definition 2.3.4 ([33]) Two matrix pairs (E;,A,), E;,A; € C™" are called (strongly)

equivalent if there exits nonsingular matrices P € R™" and Q € R™" such that
If this is the case, we can write (E, A ) ~ (E,, A,).

As already suggested by the definition, relation (2.3.4) fixes an equivalence relation [33].
Thus, this relation poses reflexivity, transitivity and symmetry.

Lemma 2.3.1 ([33]) The relation introduced in Definition (2.3.4) is an equivalence re-

lation.

Proof 2.3.1 ([33]) We must show that the relation is reflexive, symmetric, and transitive.
Reflexivity: We have (E,A) ~ (E,A)byP =1, and Q =1,,.

Symmetry: From (E{,A;) ~ (E,,A,). It follows that E, = PE,Q and A, = PA,Q
with nonsingular matrices P and Q. Hence, we have E| = P_IEZQ_l, A= P_IAZQ_1
implying that (E,,A,) ~ (E{,A)).

Transitivity: From (E;,A ) ~ (E,, A,) and (E,, A,) ~ (E3, Aj3) it follows that

E, = PLEQ,A, = P/A,Q, and E; = P,E,Q,,A; = P,A,Q, with nonsingular
matrices P;, Q;,i = 1,2.

Having defined an equivalence relation, the standard procedure then is to look for a
canonical form, i.e., to look for a matrix pair which is equivalent to a given matrix
pair and which has a simple form from which we can directly read off the properties
and invariants of the corresponding DAE [33]. In our case, such a canonical form is
represented by the so-called Weierstra3-Kronecker canonical form. Here, we briefly
discussed about Weierstra3-Kronecker canonical form but more details can be found

in [16,33,52]. A special case which we want to discuss here in more detail and for
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which we want to derive the associated part of the Weierstra3-Kronecker canonical form

is that of the so-called regular matrix pairs.

Lemma 2.3.2 ([33]) Every matrix pair which is strongly equivalent to a regular matrix

pair is regular.

Proof 2.3.2 ([33]) We only need to discuss square matrices. Let E, = PE,Q and
A, = PA,Q with nonsingular matrices P and Q. Using Definition 2.3.1 for regular

matrix pairs, we have

P,(1) = det(AE, — A,) = det(APE,Q — PA,Q),
= det(P)det(AE, — A,)det(Q) = ¢P, (1), withc # 0.

Theorem 2.3.2 (WeierstraB3-Kronecker canonical form [33,52] ) Let (E, A) be a reg-

. . 10 J 0 kxk
ular matrix pencil. Then, we have (E,A) ~ onllo1ll’ where J € R™™" for some

nonnegative k < n, is a matrix in Jordan canonical form and N € RORX=K) 4o nilpo-
tent matrix with index i < n — k also in Jordan canonical form. Moreover, it is allowed

that one or the other block is not present.

The proof of Theorem 2.3.2 can be found in [33]. The regular matrix pencil AE — A

can be transformed into AE — A, where

E = PEQ = L, 0
- (o N

, A=PAQ-= ('; 10 ] (2.3.5)

nxn

by the use of suitable nonsingular matrices P, Q € R™™", where the block matrix

J € R"7" corresponds to the finite eigenvalues and has the form [62]
J= diag(Jl,l,Jl,z, ce 9J1,ml’J2,1’ ce ,Jz,mQ, ce ’Jk,lv ce ’Jk,mk)’

;1

where J; , = is the Jordan block of order n; , with Z Z nj,=nsand
| j=1 g=1
4
4; 1s a finite eigenvalues of the matrix pencil AE — A. According to [62], the number m;
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mj

is called the geometric multiplicity of A;, the number a; = Z n;, is called the algebraic

multiplicity of A; and n; is the dimension of the left andq _r;ght deflating subspaces of
AE — A corresponding to the finite eigenvalues. The definition of deflating subspaces of
a matrix pencil can be found in [62]. The block matrix N in (2.3.5) corresponds to the
eigenvalues at infinity of the pencil AE — A and has the form N = diag(N,, ,--- ,N, ),

01

where Nnj = S is a nilpotent Jordan block of order n;. The size of the
1

0
largest nilpotent block, denoted by g, is called the index of the matrix pencil AE — A or
the index of the DAE (2.3.1a). This index concept is commonly called the Kronecker
index [16,33,42,52,62]. We can clearly observe that N ~1' £ 0 and N* = 0. If the matrix
E is nonsingular, then matrix pencil AE — A is of index zero (u = 0). According to [62],
the matrix pencil AE — A is of index one if and only if it has exactly n; = rank(E) finite
eigenvalues. We note that it is possible to have n, = 0, meaning E = N, A = I this
implies that the spectrum of the matrix pencil AE — A has only infinite spectrum, i.e.,
o(E,A) = 0 (E,A). Also if E is nonsingular then n,; = n which yields E = I, A = J,
this implies that the spectrum of the matrix pencil o(E, A) = o-f(E, A) has only finite
spectrum. Assuming the matrix pencil AE — A has both the finite and infinite spectrum,
then the matrices B and C can be partitioned in blocks corresponding to the partitions
of E and A given by B = (BlT EE)T and C = (ClT Cg)T. Under the coordinate
transformation ¥ = Q_lx = (i{(t), ig(t))T, system (2.3.3a) can be written as Weierstraf3-

Kronecker canonical form which leads to an equivalent decoupled system

¥,(t) = J&,(t) + Byu(o), (2.3.6a)
N, (1) = %,(t) + Bou(?). (2.3.6b)

We observe that (2.3.6a) represent a standard explicit ODE and without loss of generality

the solution of (2.3.6b) can be written as

u—1
%(t) = — Z N'B,u” ), (2.3.7)
i=0
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since N is a nilpotent matrix with index-u, where u(i)(t) = g—iu(t) provided u(#) is smooth
enough, that is, at least u—1 times differentiable. Equation (2.3.7) shows the dependence
of the solution x(#) of (2.3.1a) on the derivatives of the input function u(f). We can
observe that the higher the index-u, the more differentiations are involved. It is only in
the index-1 case where, we have N = 0, hence %,(f) = —I?zu(t), and no derivatives are
involved. According to [34,42], since numerical differentiations in these circumstances
may cause considerably trouble numerically, it is very important to know the index-u of
the DAE (2.3.1a) as well as details on the structure responsible for a higher index (u > 1)
when modeling and simulating with DAEs in practice. From (2.3.6), we can observe that
the number of finite eigenvalues, n, and infinite eigenvalues, n,, are equal to the number
of differential and algebraic equations, respectively, in a given DAE. Thus, for the case
of index-1 DAEs the number of differential equations is equal to the rank of singular
matrix E. We also note that the solutions ¥; and ¥, which corresponds to the differential
and algebraic part are commonly known as the slow and fast solutions, respectively

[12,16,33,62]. We can also observe that the general solution of the homogeneous DAE
—tJ
(2.3.2), if matrix pencil (E, A) is regular, is of the form x(¢) = Q [80 )fl(O), X,00) € Rk,

this means that the solution space has dimension k according to [34]. We can easily prove
that the differential part of (2.3.6) inherits the stability of DAEs of the form (2.3.1), that
18, O'f(E, A) =o()).

Index concept of DAEs

An index of a DAE is commonly defined as the measure of the difficulties arising in the
theoretical and numerical treatment of a given DAE. According to [33], the motivation to
introduce an index is to classify different types of DAEs with respect to the difficulty to
solve them analytically as well as numerically. Sometimes the index of a DAE is defined
as a measure of how much the DAE deviates from an ODE. In the previous Section, we
have defined index-u as the nilpotency index of a nilpotent matrix N. This index is also
known as the Kronecker index of a DAE. They are many other index concepts that exist,
see [8,52,61], but in this thesis we shall restrict ourselves to only three, i.e., Kronecker
index, differentiation index and tractability index. We note that all these index concepts

coincide for the case of linear DAEs with constant matrices. If we differentiate (2.3.7)
p—1

with respect to ¢, we obtain: ¥,(f) = —Z N’ﬁzu(’“)(t). This means that exactly u differ-
i=0
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entiations are needed to transform (2.3.6) into a system of explicit ordinary differential
equations. Hence, the Kronecker and the differentiation index coincide for LTT DAE:s.
This type of index is called the differentiation index and it is defined as in Definition
2.3.5. According to [33], the differentiation index was introduced to determine how far
the DAE is away from an ODE, for which the analysis and numerical techniques are well
established.

Definition 2.3.5 ([61]) The nonlinear DAE, F(t,x,Xx) = 0, has differentiation index vy,

if v is the minimal number of differentiations

Y

F(t,x,%) =0, d(F(t,x,Sc)) -0, 2

= E(F(t, x, %)) =0, (2.3.8)

in order to extract an explicit ordinary differentiation system x = f(t,x) using only

algebraic manipulations.

This can be illustrated in the example below.

Example 2.3.1 Consider a semi-explicit DAE of the form,

x = f(x,y),
0=g(x,y).

(2.3.9)

Using chain rule on the constraint equation:

X = fx.y),
y = —gy(x,.)’)_l[gx(x,)’)f(x,.}’)]-

The DAE has a differentiation index y = 1 provided det(g,) # 0.

In the next example, we compare the differentiation index and the Kronecker index.

Example 2.3.2 Consider a DAE of the form (2.3.1) with system matrices,

1000 0100 0 0
0010 1000 0 0
E-= LA = ,B= and C=| |. (2.3.11)
0000 1001 0 1
0000 0111 -1 0
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The matrix pencil (E, A) is regular since det(AE — A) = P+A+1£0. Using Theorem

1 0 1 -1 1 000
. . 01 0 O -1 -1 10
2.3.2, we can choose nonsingular matrices, Q = and P =
00 -1 1 0 100
00 1 O 1 001
10 0 -1 -1 00 . .
such that (E,A) ~ , J , Where J = and N = . Thus this DAE is of
ON)\0I 1 0 00

Kronecker index-1, since N is of nilpotent index one. Next, we compute the differenti-

ation index. This can be done as follows: We need to first rewrite system (2.3.11) in the

semi-explicit form (2.3.9) where x = (x‘), y= (xz), flx,y) = [xQ) and g(x,y) = ( T )
X3 Xy X X, + X3 +Xy

Thus, g, = ((l) :) Since det(gy) = —1 # 0, then DAE (2.3.11) has differentiation index-1.

Hence the Kronecker index and differentiation index coincide, thatis, u =y = 1.

Consistent initial condition of DAEs

From system (2.3.6), we observe that (2.3.6a) is a linear differential equation which
can easily be solved when an arbitrary initial condition ¥,(0) is applied and its analytic

solution can be written as:
T ~
#,(0) = %,(0)e” + & f ¢ B u(r) dr. (2.3.12)
0

We observe that the solution (2.3.12) of (2.3.6a) is always unique for any choice of the
initial value ¥(0) while the initial value of (2.3.6b) has to satisfy the hidden constraint,

u-1

£(0) = - > N'Bu(0). (2.3.13)

i=0

We can observe that, we have no enough freedom to arbitrary choose the initial values
X,(0). For example, if u = 1, we have to choose the initial value such that
X,(0) = —EZu(O). For 4 > 1, equation (2.3.13) is a differentiation problem, thus the
initial value ¥,(0) is fixed, and the input function #(#) has to be at least u — 1 times
differentiable, i.c., u(r) € C*~'. The initial value problems for (2.3.1) lead to unique
classical solutions if the initial value x(0) = x, is consistent, that is
T

x(0) = Q%(0) = Q(%,(0)" #,(0)") (2.3.14)
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where %,(0) is a free parameter while ¥,(0) has to satisfy (2.3.13). Thus x(0) must be a
consistent initial condition of the DAE (2.3.1a). We note that, if the initial condition x,,
is inconsistent or the input function u(z) is not sufficiently smooth, then the solution of a
DAE (2.3.1a) may have impulsive modes, see [12,62].

2.3.4 Transfer matrix representation of the Kronecker form

Using (2.3.6) and the decomposed output equation, the control problem (2.3.1) can also

be written in equivalent form

¥,.(0) = J&,(t) + Bu(), (2.3.152)
u—1

£2(0) = - > NBu), (2.3.15b)
i=0

y(t) = Cl&,(0) + Cox,(1). (2.3.15¢)

Taking the Laplace transform of (2.3.15) and using the fact that

n

LIy = s Lifor - Y 87 R,

k=1

and simplifying we obtain,

Y(s) = Cl(sT = D)7'B,U(s) + ClisT - 1) '%,(0)+

p-1 i
-G NB,y[s'U(s) - ) P00, (2.3.16)
i=0 k=1

Recall from Section 2.2.2, in order to obtain the transfer matrix representation we need
to assume vanishing initial data ¥(0) for the case of ODEs. Here comes the answer to our
question wether it always possible to set initial data to zero also for case of DAEs. This
is discussed as follows. We have already discussed that for the case of DAEs, we always
need to apply consistent initial data #(0) = (i 1(0), iz(O))T, where ¥,(0) can be chosen
arbitrary, thus we can set ¥,(0) = 0 while X¥,(0) has to satisfy some constraint equation

(2.3.13) which depends on the smoothness of the input vector u(¢). Setting ¥,(0) = 0,



2.3 Linear constant coefficient DAEs 21

simplifies (2.3.16) to,

p—1 i
Y(s) = [H; () + Hy(5)]U(s) + €] Y N'B, > s 'uM0), (2.3.17)
i=0 k=1
-l )
where H,(s) = Cl(sT - J)"'B, and H,(s) = —C§Z N'B,s".
i=0

Lemma 2.3.3 ([16]) Two systems with matrix coefficients (E, A, B, C) and (E, A, B, C)
whose matrix pairs (E,A) and (E,A), respectively, are (strongly) equivalent. Their

transfer functions must coincide.

Proof 2.3.3 LerE = PEQ, A = PAQ, B = PB and C = QTC with nonsingular P and
Q. Then,

H(s) = CT(sE - A)™'B = CTQ(sPEQ - PAQ) 'PB,
= CT'QQ !(sE - A)"'P~'PB,
= CI'GE-A)"'B = H(s).

From the above Lemma, H(s) = H,(s) + H,(s) coincides with the conventional
definition of the transfer function H(s) = CT(sE - A)_IB since (2.3.1) and (2.3.15) are
equivalent systems, i.e., H(s) = H(s). Thus, the input- output functlon (2.3.17) can be

written as Y(s) = H(s)U(s) + P(s), where P(s) := CZZ N'B Z 1a=R(0). This

means that assuming Ex(0) = 0 implies ¥,(0) = 0 and Nxz(O) = 0 as a result the hidden
polynomial P(s) is forced to zero. But, we can observe that this polynomial contains
some parts of the DAE which might be vital. Thus assuming Ex(0) = 0 may lead to
loss of important information of the DAE especially for higher index (u > 1) DAE:s.
For the case of index-1 DAE, the nilpotent matrix N = 0, thus NX,(0) = 0 always
and the polynomial $(s) does not exist. Thus, for index-1 DAE assuming Ex(0) = 0
has no effect on the conventional MOR methods. However for higher index DAE:s, the
nilpotent N # 0, thus N%,(0) # 0 and the polynomial $(s) exists and P(s) # 0, apart
from some special cases when ]§2 = 0. We can observe that (2.3.17) can also be written
in decomposed form as
Y(s) =Y,(s) + Y,(s),
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where Y, (s) = H,(s)U(s) and Y,(s) = H,(s)U(s) + P(s) represent the input-output func-
tion of the differential and algebraic parts, respectively. We note that the H, (s) and H,(s)
are commonly called the strictly proper and the polynomial parts of H(s), respectively,
see [25,62]. We observe that the input-output relation of the differential part is given
by Y,(s) = H;(s)U(s), where H,(s) is its transfer matrix representation and it is inde-
pendent of the index-u of the DAE (2.3.1a) while input-output relation of the algebraic
part is given by Y,(s) = H,(s)U(s) + P(s) which depends on the index-u of the DAE
(2.3.1a). This explains why the conventional MOR techniques based on the assumption
that Ex(0) = 0 can only be used on index-1 DAEs but become cumbersome for higher
index DAEs. This is illustrated with some numerical examples in Section 3.2.1. Hence,
the best way to apply model order reduction on DAEs is to first split the control DAE
(2.3.1) into differential and algebraic parts. Then, apply reduction on the two parts sep-
arately. According to [39, 52], transforming (2.3.1) into a Kronecker canonical form is
just in theory, but practical implementation may be difficult or impossible. This is due
to the fact that computing the Kronecker canonical form in finite precision arithmetic is,
in general, an ill-conditioned problem in the sense that small changes in the data may
extremely change the Kronecker canonical form [62]. Proper formulations and projector
methods attempt to overcome these drawbacks, allowing additionally for an extension
of the results to the time varying context [52]. These techniques provide an index char-
acterization in terms of the original problem description. This motivated us to use the
projector and matrix chain approach in order to decompose DAEs into differential and

algebraic parts as introduced by Mérz in [42]. This is discussed in Chapter 4.

2.4 Real-life applications of DAEs

DAEs appear in many fields as mentioned earlier. In this Section, we present some of
the applications of DAE:s in the real-world. After modeling these applications, they lead
to DAEs of the form (2.3.1a) with singular matrix E, since some of the rows are always

zeros as illustrated in examples below.

2.4.1 Electrical network problems

Many electrical circuit systems can be described by DAEs. This is due to the fact that,

the most commonly used method in electrical circuit networks design is the modified
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nodal analysis (MNA). This approach leads a DAE when modeling a network involving
resistor networks such as RLC network, i.e., Resistor-Inductor-Capacitor network, RC
network, i.e., Resistor-Capacitor network, RL network, i.e., Resistor-Inductor network

and so on, see [28,43,64]. For illustration, we consider only RLC and RC networks.

(i) RLC network. Consider a linear RLC electric network, that is, a network which
connects linear capacitors, inductors and resistors, and current sources, v(r) € R"
and 1(f) € R™. The unknowns which describe the network are the node potentials
e(r) € R", and the currents through inductors j, () € R"-.

Following the formalism of modified nodal analysis [28, 43], we introduce: the
incidence matrices A € R™"¢, A, € R™""t and A € R™"¢, which describe the
branch-node relationships for capacitors, inductors and resistors; the incidence
matrices A, € R™" and A; € R™", which describe this relationship for voltage
and current sources, respectively. Then, the DAE model for the RLC network with

unknown x = (e,_]L,_]V)T is given by [5]

A-CA{ 0 0 4 ~ARGAp -A; -A, ~A; 0
1l
0 Lod—fz AT 0 0 |x+| 0 0(]. 2.4.1)
v
0 00 AT 0 0 0 -I

where C € R""¢| L € R"-""t and G € R"%"¢ are the capacitance, inductance and
conductance matrices, respectively which are usually assumed to be symmetric

and positive definite.

(i1)) RC network. The RC model can be derived from that of the RLC model (2.4.1)
by simply eliminating the inductor currents j;. Then, the DAE model of the RC

network with unknown x = (e, _]V)T is given by

A~CAL 0 ~A.GAY -A ~A;, 0
cCAc 0)dx _ Dot P I (i (2.4.2)
0 0)ar A} 0 0o -1Jlv

We can observe that (2.4.1) and (2.4.2) are DAE:s of the form (2.3.1a).

2.4.2 Computational fluid dynamics problems

(i) Supersonic Inlet flow example. This example originates from [35]. Consider an

unsteady flow through a supersonic diffuser as shown in Figure 2.1. The diffuser
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operates at a nominal Mach number of 2.2, however it is subject to perturbations
in the incoming flow, which may be due to atmospheric variations. In nominal
operation, there is a strong shock downstream of the diffuser throat, as can be
seen from the Mach contours plotted in Figure 2.1. Incoming disturbances can
cause the shock to move forward towards the throat. When the shock sits at the
throat, the inlet is unstable, since any disturbance that moves the shock slightly up-
stream will cause it to move forward rapidly, leading to unstart of the inlet. This
is extremely undesirable, since unstart results in a large loss of thrust. In order to
prevent unstart from occurring, one option is to actively control the position of the
shock. This control may be effected through flow bleeding upstream of the dif-
fuser throat. In order to derive effective active control strategies, it is imperative to

have low-order models which accurately capture the relevant dynamics. Figure 2.2

Figure 2.1: Steady-state mach contours inside diffuser.

presents the schematic of the actuation mechanism. Incoming flow with possible
disturbances enters the inlet and is sensed using pressure sensors. The controller
then adjusts the bleed upstream of the throat in order to control the position of
the shock and to prevent it from moving upstream. In simulations, it is difficult to
automatically determine the shock location. The average Mach number at the dif-
fuser throat provides an appropriate surrogate that can be easily computed. There
are several transfer functions of interest in this problem. The shock position will
be controlled by monitoring the average Mach number at the diffuser throat. The
reduced-order model must capture the dynamics of this output in response to two
inputs: the incoming flow disturbance and the bleed actuation. In addition, total
pressure measurements at the diffuser wall are used for sensing. The response of

this output to the two inputs must also be captured. This problem is modeled using
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(i)
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Incoming flow | Pressure sensing :
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Figure 2.2: Supersonic diffuser active flow control problem setup

an unsteady, two-dimensional flow of an inviscid, compressible fluid which is gov-
erned by the Euler equations. The two-dimensional integral Euler equations are
linearized about the steady state solution to obtain a semi-explicit DAE of index-1

of the form (2.3.1) with system matrices

_ Ep Epp A= A Ap B= B, C= ¢ x= X1 . (243)
0 0 Ay Ap B, &) X2
nyxn -1 nyXn . .
where E;; € R™""™! and Ay;E{{E|, — A,, € R™72 are nonsingular matrices due

to index-1 property and n = n; + n, is the dimension of the DAE.

Semidiscretized Stokes equation. In this Section, we present the semidiscretized
Stokes equation originating from [45]. Consider the instationary Stokes equation

describing the flow of an incompressible fluid

v

— =Av-Vp+ f, ,HDeQx(O,T

Y p+f, D 0,T) (2.4.4)
0 = divv,

with appropriate initial condition and boundary condition. Here v({, ¢) € RY is the
velocity vector (d = 2 or 3 is the dimension of the spatial domain), p({, f) € R is the
pressure, f({,1) € R? is the vector of external forces, Q € RY is a bounded open
domain and T > 0 is the endpoint of the time interval. The spatial discretization of

the Stokes equation (2.4.4) by either the finite difference or finite element meth-
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ods on a uniform staggered grid leads to a DAE of the form (2.3.1) with system
matrices;

E B
E = llO,A: , B = l,C: Cl,xz Uh, (245)
00 B, C, Ph

where v, € R™ and p, € R"™ are the semidiscretized vectors of velocity and

All A12
Al

pressure, respectively, see [45]. The matrix E;; € R"" is a nonsingular mat-
rix, but for this case E;; = I, A;; € R" is the discrete Laplace operator,
~A,, € R"™ and —A], € R™ " are, the discrete gradient and divergence op-
erators, respectively. Due to the non-uniqueness of the pressure, the matrix A,
has a rank defect one. In this case, instead of A, we can take a full column rank
matrix obtained from A, by discarding the last column. Therefore, in the fol-
lowing we will assume without loss of generality that A, has full column rank.
In this case system with matrix coefficients (2.4.5) is of index-2. The matrices
B, € R B, € R™" and the control input u(t) € R™ are the resulting from
the boundary condition and external forces, the output y(¢) € R’ is the vector of
interest. The order n = n; +n, of system (2.4.5) depends on the level of refinement
of the discretization and is usually very large, whereas the number m of inputs and

the number ¢ of outputs are typically small.

2.4.3 Constrained mechanical problems

This example originates from [45]. We consider the holonomically constrained damped

mass-spring system as illustrated in Figure 2.3. The ith mass of weight m; is connected

to the (i + 1)st mass by a spring and a damper with constants k; and d;, respectively,

and also to the ground by a spring and a damper with constants k; and ¢;, respectively.

Additionally, the first mass is connected to the last one by a rigid bar and it is influenced

by the control u(r). The vibration of this system is described by a DAE of the form

(2.3.1) with system matrices

100 01 0 0 C, p(t)
E=[0 M 0|, A=|K D -G"|,B=(B,|,C=| 0|, x(t)=|v(®)|, (24.6)
000 GO0 o0 0 0 A1)
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Figure 2.3: A damped mass-spring system with a holonomic constraint.

where p(t) € R? is the position vector, v(f) € R is the velocity vector, A(f) € R is
the Lagrange multiplier, M = diag(m,,--- ,m,) is the mass matrix, D and K are the
tridiagonal damping and stiffness matrices, G = [1,0,---,0,—-1] € R is the constraint
matrix, B, = e; and C; = [e},e,," - ,eg_l]T . Here e; denotes the ith column of the
identity matrix I,. Thus the system is of dimension n = 2¢g + 1. According [45], system

(2.4.6) is of index-3 since G is a full row rank.
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Chapter 3

Model Order Reduction

In this Chapter, we introduce the Model Order Reduction (MOR) or Model Reduction. In
simple words, model order reduction can be defined as a mathematical theory to replace
a given mathematical model of a control system or a control process by a model that is
much smaller than the original model, but still describes at least approximately certain
aspects of the system or process, see [16]. This is normally achieved by preserving
the input-output relationship commonly knows as the transfer function. These system
of equations can sometimes be ODEs or DAEs. However model order reduction, was
mainly developed for ODEs, this is the reason why many methods reduce mainly linear
ODE systems and very few methods can reduce either algebraic equations or DAEs,
see [3,9,48,58]. Hence, model order reduction techniques for DAEs are a lot less
developed and less well understood than the ODE ones. MOR techniques for ODEs are
often applied to DAEs [19,49], which may lead to inaccurate reduced-order models or
reduced-order models which are very difficult to solve numerically, see [1,2]. This is
also illustrated in Example 3.2.1 and 3.2.2.
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3.1 Introduction

Consider a LTI system

Ex(t) = Ax(?) + Bu(r), x(0) = x, (3.1.1a)
(1) = Clx(0), (3.1.1b)

where E, A € R™", B € R™™, C e R™ | the input vector u(f) € R™ and output vector
y(@) € R’ of the system. x(f) € R" is the state vector and x;, is the initial value. The
number of state variables # is called the order of system or the state-space dimension.
m and ¢ are the number of inputs and outputs, respectively. If I = E, then (3.1.1) is
a standard state space system. Otherwise, (3.1.1) is a descriptor system or generalized
state space system, see [44]. According to [45], modeling of complex physical and
technical process such as fluid flow, very large system integrated (VLSI) chip design
or mechanical systems simulation, leads to descriptor systems of very large order n,
while the number m of inputs and the number ¢ of outputs are typically small compared
to n. Despite the ever increasing computational power, simulation of these systems in
real- time for such large scale is very difficult because of the storage requirements and
expensive computations. This is an attractive feature to apply model order reduction.

This is done by replacing (3.1.1) by a reduced-order model

E.x.(1) = A,x,(1) + Bu()
y,(0) = C.x,(0),

(3.1.2)

where E,, A, € R™, B, € R™", C, € R” and the reduced dimension r < n. In model
order reduction, we require the reduced-order model (3.1.2) to preserve mathematical
properties of the original model (3.1.1) such as regularity, stability and passivity. It is
also desired for the approximation error ||y — y,|| to be small, in a suitable norm and
the computation of the reduced-order system should be numerically reliable and more
efficient than the original model. For higher index DAEs, we may also need to preserve
the index. The biggest challenge in model order reduction is to measure the quality of
the reduced-order models, the commonly used concept is the concept of the use of the
transfer function H(s). In the next Section, we shall see that the transfer function being
accurate does not mean that the output solutions are also accurate for the case of higher

index DAEs. Hence, we require both the approximation error ||H — H,|| and |ly — y,|| to
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be small in the suitable norm.

3.2 Conventional MOR methods

In this Section, we discuss about the conventional or traditional MOR methods. By con-
ventional MOR methods, we mean those reduction techniques originally developed to re-
duce ODE:s. In [45], conventional MOR methods are called model reduction approaches
for standard state space systems. These approaches include balanced truncation [3, 63],
moment matching approximation [19, 49, 58], singular perturbation approximation [37]
and optimal Hankel norm approximation [3]. Model order reduction approaches can be
divided into two basic methods: Krylov subspace based methods or moment-matching
methods such as PRIMA [49], SPRIM [19] and the singular value decomposition (SVD)
based methods such as the balanced truncation method [45]. Overview of these methods
can be found in [3,9,48, 58] and also for some special applications in [29, 38, 65]. Tra-
ditionally these methods were developed for ODE dynamical systems in standard state
space system, i.e., E = I. It is just recent that MOR methods have been developed to
reduce systems in descriptor form or generalized state space system with E nonsingular
or singular, see [19,29,38,45,49]. However, little effort has been made to develop MOR
methods specifically for DAEs, i.e., E is singular. What is currently been done is to just
replace I with E in the conventional MOR method especially for the Krylov subspace
based methods, see [19,49], but this is not always lead to good reduced-order model es-
pecially with DAEs with index great than one [2]. For the case of the SVD based meth-
ods especially the balanced truncation method, this problem has already been noticed
and solved, see [45], however the computations are too expensive and much restricted
on DAEs with special structures. In this thesis, we focus more on the Krylov subspace
based methods. This is discussed as follows. MOR techniques based on Krylov subspace
methods also known as moment matching techniques aim at generating a reduced-order
model which preserves a reasonable number of moments of the transfer function of the
original model. This is done by using projection methods. There is a large variety of
projection methods such as the Lanczos-type and the Arnoldi processes, but we shall re-
strict ourselves on Arnoldi process commonly known as PRIMA method [49]. PRIMA
method’s main features are provably passive reduced-order models and a Padé-type ap-
proximation property [19]. It employs a block version of the Arnoldi process. This is

done as follows. We choose an arbitrary s, € C as the expansion point such that the mat-
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rix pencil soE—A is regular. In practice, s is chosen such that it is in some sense close to
the frequency range of interest. The frequency range of interest is usually a subset of the
imaginary axis in the complex s-plane. In order to use the Krylov subspace techniques,
we need to rewrite the transfer H(s) of the original system (3.1.1) using the identity:
H(s) = C'(sE-A)'B = C"[I+(s— sO)M]_lR, where M = M(s,) = (s;E—A)"'E and
R =R(sp) = (soE — A)_IB. The function H(s) admits the Taylor expansion

H(s) = h@ + hV(s - 55) + K9 (s — 50)? + - + hD (s — 5)/ + - -

about s,. The coeflicients h(j), j=0,1,..., are called the moments of the transfer func-
tion of system (3.1.1) about the expansion point s,. These moments can be constructed
as follows. Using the Neumann expansion [23]: (I — nG)_l = Z(nG)k , where G is a

k=0
square matrix and n > 0. Then we have

H(s) = > h¥(s - sp)", (3.2.1)

k=0

where h® = (—l)kCTMkR, k = 0,1,... defines the moments of the transfer function
around the expansion point s,. We then consider the order-r Krylov subspace generated
by M and R given by K. (M,R) = span{R,MR,.. .,Mr_lR}, r < n, and denote by
V € R™™ the matrix of an orthonormal basis for %,(M, R), so that V'V = I, . Then

we seek an approximate solution of the form x = Vx, that is,

VEVx,(r) = VIAVX (1) + V'Bu(r), x,(0) = V'x, (3.2.2a)
vy, (1) = C'Vx,(1). (3.2.2b)

From (3.2.2), the matrices of the reduced-order model (3.1.2) are given by
E,=V'EV,A =V'AV,B, =V'B and C,=V'C,

and its transfer function is given by H_(s) = CrT(sEr - Ar)_lBr. Then, we have

H,(s) = > (-D'C,"M{R, (s - 5",
k=0
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where M, = (s;E, —A,)'E, and R, = (soE, — A,)"'B,. Then, the k-th moment, h®, of
the transfer function for the reduced model is given by hgk) = (—l)kC;Fer‘Rr. According
to [45], the moment matching approximation problem for the DAE (3.1.1) consists in

determining a rational matrix-valued function H,.(s) at s, has the form
0 1 2 2 k k
H (s) =h” + hV(s = 50) + hP (s = 59)* +--- + KOs — 50)* + - -

where the moments hgk) satisfy the moment matching conditions hgk) =h®,

k=0,12,...,r=1.1If 55 = oo, the h(,k) are the Markov parameters of (3.1.1) and
the corresponding approximation problem is known as partial realization [21]. For s,
the approximation problem reduces to the padé approximation problem [30]. For an
arbitrary complex number s, # 0, the moment matching approximation of the problem
of rational interpolation or shifted Padé approximation that has been considered in [23].
Apart from a single interpolation point one can construct a reduced-order system with
the transfer function H,.(s) that matches H(s) at multiple points {sy, s;,- -, 5;}. Such as

approximation is called a multi-point Padé approximation or a rational interpolant [30].

3.2.1 Limitation of conventional MOR methods

In this Section, we discuss the limitations of conventional MOR methods. We note that
for some special cases conventional MOR methods can be used to reduce higher index
DAEs and lead to accurate reduced-order models. But in general, conventional MOR
methods may not always lead to accurate reduced-order models, so one has to be very
careful. Using conventional MOR methods may lead to reduced-order models which
lead to wrong solutions or they are very difficult to solve numerically especially those
with index higher than one. This is illustrated in Example 3.2.1 and 3.2.2.

Example 3.2.1 This example originates from [2]. Consider an index-2 DAE of the form
(3.1.1) with system matrices

10000 -4 2 -1 1 05 0
01000 1 -1 1 0 -05 0
E=|0000 0], A=[ -1 1 0 1 0 C=]1
00010 125 225 0 -4 1 1
00000 -05 05 0 1 0 0

This system is solvable since the polynomial det(AE — A) = 21 + 3 does not vanish

identically and in addition, we assume that input function u is differentiable in the desired
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time interval and x(0) is a consistent initial condition. In this example we consider two

different cases of control input matrix B with input data u(¢) = cos(?).

T
A IfB = (—1 000 0) , then the consistent initial condition is given by

¥0)=(31-42 -1)x0+(0 0 -1 0 -1) u),

where x,(0) can be chosen arbitrary. We then apply the PRIMA method [49] on the
DAE. Using s, = 0 as the expansion point. We were able to obtain a reduced-order
model of dimension 3. We observed that the reduced-order model is an ODE. We com-
pared the transfer function of the original model with that of the reduced-order model.
We observed that the transfer functions coincide with a very small approximation error

as shown in Figure 3.1. Then, we numerically solved the reduced-order model and the

10 :
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3 3 f
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Figure 3.1: Comparison of the transfer function and error.

original DAE model using the Matlab software implicit ODE solver odel5s. We ob-
served that the solution of the original model coincides with that of the reduced-order
model (PRIMA model) as shown in Figure 3.2. Thus, the PRIMA model is a good
reduced-order model for the original model since the reduced-order model leads to ac-

curate solutions with ease.
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03 =2

o
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—Original model
—+-PRIMA model

Time(t)
Figure 3.2: Comparison of the solutions

T
1) IfB = (O 000 —1) , then the consistent initial condition is given by

¥0=(31-42-1)x0+20-322) u0+(0000 1) w0

where x,(0) can be chosen arbitrary, for our case we chose x,(0) = —0.5. Using the
same expansion point as before we obtain a reduced-order model of dimension 3. Still
the PRIMA method leads to a ODE reduced-order model and also for this case the trans-
fer function of the original model coincides with that of the reduced-order model with

very small approximation error as shown in Figure 3.3. We also numerically solved

195 —— Criginial modal] —PRIMA model
+ PRIMA model | _ 1 .

- 1.9 ¥ : : 6
2 iy : ' I -4
g > 10
21.85 E

1.8
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Figure 3.3: Comparison of the transfer function and error.

the reduced-order model using the Matlab software implicit ODE solver odel5s. We
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observed that the reduced-order model leads to a good solution, provided the absolute
error tolerance is greater than 1072 (AbsTol > 1072) otherwise the implicit ODE solver
fails after a few time-steps. For more details of the choice of AbsTol the reader should
refer to the MATLAB documentation. In Figure 3.4, we compare the solutions of the
reduced-order model and the original model at different choices of absolute error toler-
ances. We can observe that the solutions of the PRIMA reduced-order model coincides
with that of the original model when the absolute error tolerance is greater than 107 in
this given time interval. We note that different Matlab software implicit ODE solvers can
have different limits but all fails if you use very small absolute error tolerance. However,
if one uses the backward Euler method this difficulty is not visible. Hence for this case
one should always use the low order implicit integration techniques instead of the the

higher order techniques.

4 —Original model
15 “-PRIMA model, AbsTol=10"3| - s
1 ~-PRIMA model, AbsTol=102
~*-PRIMA model, AbsTol=10"
0.5- .
S .
-0.5- .
=i 4
-15F 4
1 1 1 1
0 1 2 3 4 5 6

Time(t)
Figure 3.4: Comparison of the solutions at different absolute error tolerances

Example 3.2.1 illustrates that using conventional MOR methods on higher index DAEs
may lead to less accurate reduced-order models. This is due to the fact that the consistent
initial condition x, in this example depends on u and its derivative, while in the former it
only depends on u. In the previous Chapter, we have already discussed that conventional
MOR methods always assume that Ex(0) = 0, but this assumption is not valid for DAE:s,
since we do not have enough freedom to choose the initial condition because of the hid-
den constraints. Making this assumption, implies that some mathematical information of
the original DAE is not inherited in the reduced-order system. However, they are some

special cases where assuming Ex(0) = 0 does not affect the conventional methods. One



3.2 Conventional MOR methods 37

of the special cases is if the consistent initial condition x(0) of the DAEs only depends
on u, as illustrated in Example 3.2.1(i). In the previous example, we have discussed that
the difficult of solving the reduced order model from conventional MOR methods can
be avoided by using lower order implicit integration techniques such as the backward
Euler method. However, this remedy only works for some special cases. For worst case
scenario the reduced-order model may be unsolvable if one applies conventional MOR

methods on higher index DAEs as illustrated in the next example.

Example 3.2.2 In this example, we use the generator model originating from [20], as
described in Figure 3.5. In this model: The input function is the angle ¢;, on the left

uz Uz

iy

Figure 3.5: A model of a generator
axis. This axis is connected to a rotating mass with inertia J which is rotated at an angle

¢ and rotates with the angular velocity w. The torque acting on the left side of the mass
is M, and the torque on the right side is M,. The mass is then connected to a second
axis which is connected to the actual generator. The variables describing the second
axis and the electrical quantities are then assumed to depend on each other according to
M, = kI and u; = kw for some constant k. The rest of the electrical circuit consists of
two resistors and one inductor. The measured output is the voltage u,. This model leads
to an index-3 DAE of the form (3.1.1) with system matrices

00000O0O0OO0O0 0O 00-1 0 00 O O 1 0
0001000O00O0 0 01 0 0 0O O O 0 0
00J000O0OO0O0 1 10 0 0 00 O O 0 0
00000O0O0OO0O0 0-10 0 £k 00 O O 0 0
E=|0000000O0OGO|,A=|]0 0Ok O O0-10 0 O0f,B=|0[,C=]|0
0000LOOOO 0 00 0 0 01 O O 0 0
000000O0OO0O0 0 00 OR O0O0-1 O 0 0
00000O0O0OO0O0 0 00 OR, 00 0 -1 0 0
00000O0O0OO0O 0 00 0 O0-11 1 1 0 1

(3.2.3)

T
and x = (M1 My, w ¢ 1 u u, u, u4) , u = ¢,;,. This system is solvable since
det(1E — A) = —R; — R, — AL does not vanish identically. Letting J = 1,k = -1,R; = 1,
R, = 1,L = 1 and using s, = O as the expansion point, we are able to construct the
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orthonormal basis matrix V,. using the PRIMA method. We then used this V,. to construct
PRIMA reduced-order model of (3.2.3) given by

0 0 0 0 0 0 0 0
_|-0.2774  0.4615 -0.1155 0.0665 A = -0.2774 0.1538 -0.7175 0
" ]-0.0595 —0.2227 0.0557 -0.0321| " |-0.8326 0.0330 0.2944 -0.0278]
-0.2637 -0.1197 0.0299 -0.0172 0.4795 0.1463 0.0962 -0.0483

T T
B, =(0 0.2774 0.8326 -0.4795) . .

and C,=(0 0.2774 0.0595 0.2637) (3.2.4)

We can see that the original model is reduced to dimension 4. The next step is to check
the validity of the derived reduced-order model. Unfortunately the reduced-order model
leads to a singular matrix pencil since det(1E, — A ) = 0. Thus, the reduced-order model
is unsolvable even if the original system is solvable. Hence, we cannot use the conven-
tional MOR methods to reduce the DAE (3.2.3). If we look closely at the Krylov se-
quence V = {R,MR, MZR, .. ,MSR}, where M = ~A"'Eand R = -A™'B generated
by the PRIMA method. We observe that the sequence can be written as V = {V,V,},
where V| = (R, MR, M’R} and

VvV, = {M3R, %M3R, %M3R, 21—3M3 R, 2‘—4M3R, %M3 R} is a geometric sequence with
common ratio % and M°R as the starting term. Thus, the Krylov subspace Ko(M, R)
has a maximum dimension 4<9. But this information does not tell us why the PRIMA
method lead to an unsolvable reduced-order model. Hence more research is still need in

this direction.

From the above examples, we have seen that not always we can reduce DAEs using con-
ventional MOR methods and lead to accurate reduced-order models. So one has to be
very careful when applying conventional MOR methods on DAEs. We note that this lim-
itation is not just on PRIMA method but also other MOR methods developed specifically
for ODEs such as the interpolatory model reduction, see [25]. This observation has lead
to the development of new MOR methods specifically for DAEs, see [17, 18,25,32,45]
and to some extent the modification of the existing MOR methods for ODEs, see [25,45].
Most of these recently developed methods are application based and some are more gen-

eral such as [25,45]. In the next section, we briefly discuss some of these methods.
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3.3 Recent MOR methods for DAEs

In this Section, we discuss the recently developed MOR methods specifically for DAEs.
All these methods find the way of manipulating the index of the DAEs. As we have
already discussed in the previous Chapter that the index of the DAE is the source of
difficult of both reducing and solving DAEs. Earlier developed methods focused on
index reduction than preserving the index of the DAE, but this is very dangerous since
it may lead to loss of the important mathematics properties of the DAE. Other earlier
methods developed were application specific, see [17,18] and cannot be used on general
DAEs. The main characteristics of these methods is to extract differential equations from

original DAEs and then apply the conventional MOR methods.

3.3.1 Kron reduction method

There are systematic ways to extract several sets of ODEs from the original DAEs. The
algebraic variables are excluded from the DAE, e.g., using Kron reduction [14]. Ac-
cording to [13], the Kron reduction can be demonstrated as follows. Consider a linear
DAE (3.1.1a), where the variable x is partitioned into the state variables x| and algebraic

variables, x,. Then (3.1.1a) can be rewritten as:

E, 0)(x)) (A, A B
R o S et | e S e T (33.1)
0 0){x, Ay Ap )Xy B,
Assuming A,, and E;is nonsingular, we can then eliminate the algebraic variables lead-

ing to a differential equation given by
E x| =[A; -ApALA B, - A,B
1nxp = [ 11~ AAn 21]x1 +[ 1~ An 2]"(1)-

Then the algebraic variables x, can be obtained from the state variables x; and the input
function u(?) using x, = —AgzlAzlxl - A§21B2u(t). According to [13], the above step
is called the Kron reduction. The main idea is transforming a DAE into an ODE. This
procedure can be viewed as an index reduction procedure. In the recent publications
[17,18] the same approach has been used to reduce the index of the DAEs from power

T
systems. If we also partition C as C = (C{ c§) , we can further transform a DAE into
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an ODE given by
£ = A% + Bu(), (3.3.2a)
y=CT%2 + D), (3.3.2b)

where A = Ej| [An - A12A521A21]v B=Ej [Bl - A12A§21B2], C" = C] - C3AR Ay
and DT = —C2A521 B, and £ = x,;. Then the conventional MOR methods can be used
to further reduce system (3.3.2). We can observe that algebraic part is not reduced,
it is rather just hidden. Unfortunately it is not always possible to transform (3.1.1a)
into (3.3.1), hence this approach is much restricted on index-1 DAEs. Moreover, the
numerical solutions of the index-reduced problems will most likely suffer from the so
called "drift off" effect, see [26]. Hence this approach cannot be applied on general
DAE:s.

3.3.2 Balanced truncation method for DAEs

Balanced truncation MOR method is one of the conventional MOR methods which have
been extended or modified to be able to reduce DAEs, see [45]. If we assume E = I the

balanced truncation method makes use of two Lyapunov equations,
AP +PA" = -BB', A'Q+QA =-CC". (3.3.3)

The solutions £ € R™" and Q € R™" of these equations are called the controllabil-
ity and observability Gramians, respectively. The balanced truncation method consists
of transforming the state space system into a balanced form whose controllability and
observability Gramians become diagonal and equal, together with a truncation of those
states that are both difficult to reach and observe. This method is one of few well known
method which fulfills almost all goals of model order reduction, moreover even the ex-
istence of a priori computable error bound that allows an adaptive choice of the state
space dimension r of the reduced model depending on how accurate the approximation
is needed. The main drawback of the balanced truncation used to be that the two mat-
rix Lyapunov equations (3.3.3) have to be solved, followed by an SVD and that both
steps are computationally very expensive, since they require on®) storage and on’)
flops [3]. However, recently a low rank approximations to the solutions of Lyapunov

equations make the balanced truncation model reduction approach attractive to large
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scale systems [45]. In [45], they extended the balanced truncation method to descriptor
system or DAEs, i.e., E is singular, using spectral projectors. This is done as follows:

From (2.3.5), there exist nonsingular matrices P and Q such that
(10} _ (T 0}
E=P"' LoA=p! h 3.3.4
one v 1)e 334

where matrices J and N are defined as in Theorem 2.3.2. In [45], they used these nonsin-

gular matrices to construct the spectral projectors given by
P, =Q b, 0 Q' and P,=P b O (3.3.5)
= an = . D
’ 00 oo

onto the right and left deflating subspaces, respectively of the matrix pencil AE — A
corresponding to the finite eigenvalues. It has been proven in [62] that the proper con-
trollability and observability Gramians are unique symmetric, positive definite solutions

of the projected generalized continuous-time Lyapunov equations

EG,A" +AG,E' =-PBB'P|, G, =PG,P/ (3.3.6)
E'G,A+A'G,E=-PCCP], G,=PG,P. (3.3.7)

po po

Also, the improper controllability and observability Gramians are unique symmetric,

positive definite solutions of the projected generalized discrete-time algebraic Lyapunov

equations
AG, AT -EG E'=1-P)BB"01-P)", PG P'=0, (3.3.8)
A6, A-E'g,E=1-P)'CcC'1-P,), P/G,P =0. (3.3.9)

Similarly as in standard state space systems or ODEs, the controllability and observab-
ility Gramians can be used to define Hankel singular values for the descriptor system
(3.1.1) that are of great importance in model reduction via balanced truncation, see [45]
for more details about this method. From this point, we can observe that for the case of
DAEs one needs to solve four Lyapunov equations (3.3.6), (3.3.7), (3.3.8) and (3.3.9).
This means that the computational effort has now doubled and moreover in Chapter 2, we
have already discussed that computing the Kronecker canonical form in finite precision

arithmetic is, in general, an ill-conditioned problem. Hence numerical computational of
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spectral projectors (3.3.5) may not be feasible for general DAEs. However, for some
structured problems arising in circuit simulation, multibody systems and computational
fluid dynamics, these projectors can be constructed in an explicit form that signific-
antly reduces the computation complexity of the balanced truncation method for DAEs.
Consider the matrices QPCETQPOE and QicATgioA. According to [45], these matrices
play the same role for DAEs as the product of controllability and observability Grami-
ans for standard state space systems. Since the proper and improper controllability and
observability Gramians are symmetric and positive semidefinite, there exist Cholesky
factorizations

G,=RR, G,=LL. G.=RR/, G,=LL] (3.3.10)
where the matrices R, L ,, R;, L; € R™" are Cholesky factors of the Gramians. In
this case the proper Hankel singular values of system (3.1.1) can be computed as the n,
largest singular values of the matrix L;ERP, and the improper Hankel singular values
of (3.1.1) are the n,, largest singular values of the matrix LiTARi. The square roots
of the largest n, eigenvalues of the matrix QPCETQPOE denoted by ¢;, are called the
proper Hankel singular values of the continuous-time DAE (3.1.1). The square roots
of the largest n,, eigenvalues of the matrix Q,-CATQioA, denoted by 6;, are called the
improper Hankel singular values of the system (3.1.1). n; and n,, are the dimensions
of the deflating subspaces of the matrix pencil AE — A corresponding to the finite and
infinite eigenvalues, respectively. Assume that the proper and improper Hankel singular

values are order decreasingly, i.e.,{; > {, > -+ > {nf >0and 6, 26, >--->26, >0.

Definition 3.3.1 ( [45]) A realization [E, A,B, C] of the transfer function H(s) is called
balanced if

20 00
gpc:gp():(oo] and gic:gio:[()@]’

where A = diag({, . .. ,{n/_) and © = diag(,, ..., 06, ).

According to [45], for a minimal realization [E, A, B, C] with a c-stable matrix pencil
AE — A, it is possible to find nonsingular transformation matrices W, and T}, such that
the transformed realization [WZET,,, WgATb, WEB, CTTb] is balanced. These matrices
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are given by
W, =[L, Uz Lue '’ 1, =RV, RV '’ 3311

Observe, however, as for the ODEs, the balancing transformation for DAEs is not unique
[45]. It should also be noted that for the matrices WI7 and T, as in (3.3.11), we have

T I, 0
0 E,

A, 0

n

B C

B,=W/B=|"!|, Cc,=Tic=|"], (3.3.12)

b b B b b C
2 2

where the matrix E, = oY 2UiTL,~TERiVZ-®_1/ ? is nilpotent and the matrix

A= Z_I/ZU;L;ARPVPZ_”2 is nonsingular. Thus, the pencil AE, — A, of a balanced
DAE is in a form that resembles the Weierstra3-Kronecker canonical form discussed in
Section 2.3.3. We can observe that the balanced DAE (3.3.12) can be decoupled into
differential and algebraic parts. These two parts can then be reduced separately. For
the balanced system (3.3.12), the differential states related to the small proper Hankel
singular values X are difficult to reach and to observe at the same time. The truncation of
these states essentially does not change system properties [45] and reduces the order of
the differential part. Unfortunately, this does not hold for the improper Hankel singular
values. If we truncate the algebraic states that correspond to the small non-zero improper
Hankel singular values, then the pencil of the reduced-order system may get finite eigen-
values in the closed right half-plane, see [36]. In this case the approximation may be
inaccurate. According to [45], reducing the order of the algebraic subsystem of system

(3.3.12) is equivalent to the balanced model reduction of the discrete-time system

&k = Exé + Bouy,
Yo = Gy

The Hankel singular values of this system are just the improper Hankel singular values
of (3.1.1), see [45]. Since we truncate only the states corresponding to the zero im-
proper Hankel values, the polynomial part of the transfer function H(s) of the reduced
and original model are equal and the index of the system is equal to the degree of the

polynomial part plus one. In this case the error system is strictly proper, and we have the
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following H_,— norm error bound [45]

IH(s) = B, ()l < 200+ + &)

Existence of the error bound is an important property of the balanced truncation model
reduction approach for DAEs. It makes this approach preferable compared, for instance,
to moment matching techniques [45]. However the balanced truncation model reduc-
tion approach for DAEs is computationally very expensive and it relies on Weierstraf3-
Kronecker canonical form to construct the spectral projectors (3.3.5). This limits its
application to DAEs with special structure. Hence alternative procedures are required to

decouple the DAE more efficiently.

3.3.3 Interpolatory projection method for DAEs

In this Section, we discuss the interpolatory projection method which was extended in
order to reduce DAEs of the form (3.1.1) accurately. This extension is proposed in [25].

Consider the reduced-order model (3.1.2) with system matrices
E, =W'EV,A, =W'AV, B, =W'B and C,=V'C, (3.3.13)

where the n X r projection matrices V and W determine the subspaces of interest and can
be computed in many different ways depending on the model order reduction method.
According to [25], in the projection-based interpolatory model reduction methods, the
choice of V and W enforces certain tangential interpolation of the transfer function H(s).
In [25], they stress that extending interpolatory model order reduction from standard
state space systems with E = I to descriptor systems (DAEs) with singular E is not as
simple as replacing I by E. This is illustrated in [25], by example showing that the naive
approach may lead to a poor approximation with an unbounded error H(s) — H.(s) al-
though the classical interpolatory subspace conditions are satisfied. According to [25],
the reason is simple, even though E is singular, E. may genetically be a nonsingu-
lar matrix . Then the transfer function H.(s) of the reduced-order model (3.3.1) is
proper, although H(s) might be improper. In this case H(s) can be decomposed as
H(s) = Hsp(s) + P(s), where Hsp(s) and P(s) denote the strictly proper and the poly-
nomial parts of H(s), respectively. Hence, special care needs to be taken in order to

match the polynomial part of P(s). This agrees with our observation in Section 2.3.4.
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In [25], they modified the classical interpolatory subspace condition in order to enforce
bounded error using spectral projectors, see [25] for more details. In their modified inter-
polatory subspace condition they ensured that the polynomial part of H,(s) has to match
P(s) exactly. Based on the literature from [25], the interpolatory projection methods for
descriptor systems which we call DAEs in this thesis is briefly discussed as follows. In
order to have bounded H, and H, errors, the polynomial part of H,(s) has to match the
polynomial part of H(s) exactly, see [25]. They enforced that the transfer function H,.(s)
of the reduced order model (3.3.13) to have the decomposition H,.(s) = Hspr(s) +P.(s)
with P.(s) = P(s). This implies that the error transfer function does not contain a poly-
nomial part, i.e.,
H,,.(s) = H(s) - H,(s) = H,(s) — Hj, (s)

is strictly proper meaning lim H,,,.(s) = 0. Clearly if Hy, (s) interpolates Hj,(s), we
can be able to enforce thast_)lflo,(s) interpolates H(s). According to [25], the spectral
projectors P; and P, as defined in (3.3.5) plays a vital role in interpolatory-based model
reduction. This lead to the following theorem that provides the projection matrices W
and V satisfying subspace conditions such that the reduced-order model H,(s) obtained
by projections as in (3.3.13) will not only satisfy the interpolation conditions but also

match the polynomial part of H(s).

Theorem 3.3.1 ([25]) Given a full-order model H(s) = C(sE—A)_] B+D, define P, and
P. to be the spectral projectors onto the left and right deflating subspaces of the matrix
pencil AE — A corresponding to the finite eigenvalues. Let the columns of W, and V
span the left and right deflating subspaces of AE — A corresponding to the eigenvalue
at infinity. Let o, € C be interpolation points such that SE — A and sE, — A, are
nonsingular for s = o,y and letb € C" and ¢ € ct Define V ; and W ; such that

Im(V ) = span{((cE — A)'E) '(cE -~ A)'PBb, j=1,--- N},
Im(W ) = span{(uE — A)'E) 'WE - A)'P[Cc, j=1,--- , M}.

Then, with the choice of W = [Wf,Woo] and V = [Vf,Voo], the reduced-order model
H,(s) = C.(sE, - Ar)_lB + D, obtained via projection as in (3.3.13) satisfies

1. P.(s) = P(s),
2. H%(o)b =HO ()b for £=0,1,--- ,N -1,
3. ¢ HOw) = "H (o) for £ =0,1,--- M - 1.
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. Tyy(€ Tyy(€
If o = u, we have, additionally, ' H ()b = ¢"HO ()b for £=0,--- ,M + N + 1.

The proof of this theorem can be found in [25]. In this proof, they were able to show

that the matrices of the reduced-order model (3.3.13) have the form

T T
E:[WfEVf 0 ] Ar:(WfAVf 0 )

g 0 WLEV,_ 0 W-AV,
wiB
= (W{ B), C, =(WjC WLC). (3.3.14)

From (3.3.14), we can observe that the reduced-order model is decoupled into differen-
tial and algebraic part. Also, from Theorem 3.3.1 we can observe that the interpolatory
projection method is only applied on the differential part and the algebraic part is un-
reduced. This makes sense since in [25] , they emphasize the polynomial part of H(s)
and H,(s) to be exact. The model reduction approach also involves the explicit computa-
tion of the spectral projectors (3.3.5), which could be numerically infeasible for general

large-scale problems. Hence this limits it application to general DAEs.

3.4 MOR methods for algebraic systems

Currently, there is no yet known published MOR method specifically for algebraic sys-
tems. However there is a lot of progress made in reducing algebraic systems from elec-
trical networks especially the resistor networks, see [15,59]. The underlying method
used is the Kron reduction method [32]. This method is used in [15,59], to reduce res-
istor networks. The basic idea of the Kron reduction method for algebraic systems can
be discussed as follows. We note that most of the literature presented in this Section
is from [59]. Consider a linear resistor electric network, that is, a network which con-
nects linear resistors and current sources, 1(f) € R". The unknowns which describe the
network are the node potentials e(r) € R". Following the formalism of modified nodal
analysis (MNA), we introduce: the incidence matrix A € R, which describe the
branch-node relationships for resistors; the incidence matrix A; € R™™ which describe
this relationship for current sources. Then the model for a resistor network for the un-

known v is given by

ARGAN = —Ap, (3.4.1)
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where G is the conductance matrix. For convenience (3.4.1) can be written as
Gv=i,, (34.2)

where G = ARGAp is symmetric positive semidefinite matrix and i,, = —A,z are in
injected node currents. Since currents can only be injected in external nodes, and not in
internal nodes of the network, system (3.4.2) can be reordered to obtain the following

partitioned structure:

G G|V b

[? PN =1 (3.4.3)

G G\ 0
where v, € R" and v, € R" are the voltages of external and internal nodes, respectively,
and b € R"" is the incidence matrix for the current injections. The next step is to
reduce (3.4.3). The most trivial reduction is to eliminate all the internal nodes which are

not connected to the external currents which leads to a reduced linear system which is
given by

Gy, =b, (3.4.4)

where G, = G| — G126 G1» € R™™ and v, = v,. We note that G, is the Schur
compliment of G,,. Thus the system is reduced from n to n,. This is illustrated in the

next example.

Example 3.4.1 Consider a resistor network with incidence matrices

1 00 0 0 0 -1 00
-1 1.0 1 0 0 0 00
A<| 071 oot o oo) (345)
00 1 0 0 0-10
0 0 0-1-1 1 0 00
00 0 0 0-I 0 01

and the conductance matrix given by G = diag(Gl, G,,G;5,G4,Gs, G6). Thus substitut-
ing (3.4.5) and the conductance matrix into (3.4.1). We obtain a linear system of order 6
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given by
G, -G, 0 0 0 0 \(v,\) (1O ©
-G, G,+G,+G, -G, 0 -G, 0 |[v,] 00 o
L
0 -G G,+G;+Gs -G -G 0 00 O
2 2 3 5 3 5 Vs _ L. (3.4.6)
0 0 -G, G, 0 0 [[v,] 01 o0
l
0 -G, —Gs 0 G,+Gs+G, —Gllvs| [0 0 o]
0 0 0 0 ~G, G )\ve) 00 -1

After reordering the above system, we obtain a system in a partitioned structure of the
form (3.4.3) given by

G 0 0 -G, 0 0
0 G, 0 0 G 0 . oo
3 e v, 0 1 0

0 0 G 0 0 -G, v 0 0 -1|(y

R y

G, 0 0 | G +G,+G, -G, -G, Y2 0 0 0
. v 0 0 0
0 -G, 0 -G,  G,+G;+G;s -G, v, 0 0 0

0 0 -G, : -G, -G, G, +Gs + G

We can observe that the voltages of the external and internal nodes are given by

T T . . L
v, = (vl vy v5) , Vi = (vz Ve v3) and the incidence matrix for current injections
10 0
givenby b=|0 1 0|. For convenience, we can set all the resistors to G; = 1,
00 -1
i=1,2,---,6. Thus, we can now eliminate all the internal nodes which are not connec-

ted to the external currents which leads to a reduced-order system

0.50 -0.25 -0.25)(v, 10 O
-0.25 050 -0.25(|vy|={0 1 O}z 3.4.7)
-0.25 -0.25 0.50)\vs 00 -1

Hence the original system (3.4.6) is reduced to a reduced-order system (3.4.7) of di-

mension 3 using Kron reduction method.

This technique is also known as reduction by Elimination Internal Nodes in [59]. In
practice, since the number 7, of terminals is usually much smaller than the number n;
of internal unknowns, in terms of unknowns this leads in general to a huge reduction.
According to [59], in many cases, however, elimination of all internal nodes leads to a

dramatic increase in the number of resistors and is hence not advisable. However, if you



3.4 MOR methods for algebraic systems 49

construct an efficient way of finding these specific internal nodes, that cause the most
fill-in can greatly improve this reduction procedure. In [59], they were able to solve this
problem by using the graph and matrix reordering algorithms that can be applied to very
large scale networks. Two algorithms: fastR and reduceR, for efficient computations
with large resistors networks were developed, see [59] for more details. However these
algorithms are much restricted on the resistor networks, hence reduction MOR methods

for general algebraic systems still need to be developed.
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Chapter 4

Decoupling of DAEs using special
projectors

In Section 2.3, we discussed the decoupling of DAEs into differential and algebraic parts.
This was done by transforming the DAE into a Weierstra3-Kronecker canonical form.
However, this form is numerically infeasible, thus it can not be used in practice. Other
tools that can be used to decoupled DAEs are the Drazin inverses and spectral projectors.
According to [42], these tools are much restricted on linear constant DAEs and there are
no sufficiently good ideas on appropriate generalizations for variable coefficient linear
DAEs and nonlinear ones, respectively. This motivated Mérz to decouple DAEs in a
different way using special projector and matrix chain [22]. Fortunately, the matrix and
projector chain approach applies also in the case of general variable coefficient equa-
tions, see [27]. According to [42], there is some first experience to use these decoupling
via linearizations for lower index nonlinear problems, in particular. These projectors
are approved to be a useful tool, e.g., for stating local solvability, asymptotical stability,
see [40]. Actually, some of the most important questions in discussing DAEs seem to be

whether the DAE induces a vector field on a manifold and how the state manifold can
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be described in terms of the original DAE (cf. [50,51]). Also from this point of view
the canonical projector chain has proved its value, see [41]. In [42], these matrix and
projector chain were extended to linear constant coefficient DAEs. In this Chapter, we
discuss the Mirz decoupling procedure for linear constant coefficient DAEs based on the

content in her paper [42].

4.1 Mirz decoupling method

In this Section, instead of using the Weierstra3-Kronecker canonical form, we use pro-
jector and matrix chain to decouple DAEs into differential and algebraic parts. This is
done iteratively, based on the literature from [42] as follows. Consider linear constant
coefficient DAEs of the form

Ex = Ax + Bu, x(0) = x, 4.1.1)

where E, A € R™", B € R™" with E singular and the input vector u € R™. We intend to
decouple (4.1.1) into differential and algebraic parts, using projector and matrix chains.
The construction of these projector and matrix chains is based on the definition of the

tractability index below.

Definition 4.1.1 (Tractability index [42]) If we assume that (4.1.1) is solvable, i.e., the
matrix pair (E, A) is regular. We define a matrix and projector chain by setting
Ej:=Eand A, := A, then

where Q ; are projectors onto KerE; and P; = 1 - Q. There exists an index p such that
E, is nonsingular and all E; are singular for all 0 < j < p — 1. This type of index is
called the tractability index and we say that the system (4.1.1) has tractability index-p.

Next, we use the matrix and projector chain defined in (4.1.2) to decouple (4.1.1) as

follows. For the initial step, we set: E; := E, A; := A. Then (4.1.1) can be written as

Eyx = Ayx + Bu. (4.1.3)
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We then choose projector Qy, such that it projects onto the nullspace of E, i.e.,
Im Q, = Ker E, and its complementary projector Py, := 1 - Q.
At step 1, we have to define matrices, E; := E; — AjQ,, A, := AyP,, which satisfy

the identities

EP,=E,, A -E;Q)=A, (4.1.4)
Substituting the identities (4.1.4) into (4.1.3), we obtain:

E,[Pyx + Qx| = A;x + Bu. (4.1.5)
If we assume E; to be nonsingular, then (4.1.5) can be written as

Py + Qox = E;'|Ax + Bul. (4.1.6)

Since E; nonsingular, then we say that the DAE (4.1.1) is of tractability index-1 or
index-1 DAE, since the subscript of E; is u = 1. We can observe that by left multiplying
(4.1.6) by Py and Q,, we obtain the differential and algebraic parts, respectively of the
DAE (4.1.1). Thus, the decoupled equivalent system of (4.1.1) with its output equation

can be written as:

%p =PyE;'Agxp + PoE; 'Bu, (4.1.7a)
xo = QuE;'Agx, + QE; 'Bu, (4.1.7b)
y=C"xp+Clxy, (4.1.7¢)

where xp := Ppx and x, = Qox. Thus (4.1.7a) and (4.1.7b) are the differential and
algebraic parts of system (4.1.1) and (4.1.7¢c) is the decomposed output equation.

If E, is singular, we need to repeat the process iteratively as follows: Assume matrices
E;,A; € R™ and the projectors Q; € R™" onto KerE;, and P; = I - Q;, j > 0 satisfy:
EQ;=0, Q? =Q;, Q;+P; =1 Wealso assume that the following form of system
(4.1.1) holds, then

E[P, - Pyik+Qux+ - +Q, x| =Ax+Bu (4.1.8)
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Equation (4.1.8) coincides with (4.1.5) for j = 1. Then, we define the matrices
which satisfy the identities
Using the above identities in (4.1.8), we obtain [42]
E, [P, Py + Qo+ +Qux|=A, x+Bu (4.1.9)

This procedure can be continued indefinitely, but after a finite number of iterations, we
end up with a non-singular matrix E,. Then, we have E,,; = E,, A, ;= A Vj > 0.
The index-u is the so called the tractability index of the DAE (4.1.1) or simply the index

of the DAE. For j = u — 1, the form (4.1.9) becomes:
E,[P, - Pyk+Qux+ - +Q, x| =Ax+Bu (4.1.10)
Since E# is nonsingular, we have,

P, Ppi+Qux+---+Q, x=E;'[Ax+Bu| 4.1.11)

Equation (4.1.11) is the generalization of (4.1.6). Also, the projectors form a generalized

decomposition of the identity,
I=P, - Py+Qy+--+Q,;. (4.1.12)

It can be proved that the projectors product P,,_ - -- P, in this decomposition are not
projectors, i.e. (P,_;---Py)’ # P, ;- Py, Vu > 1, if we only use Definition (4.1.2)
to construct projector chain. Moreover, to decompose higher index DAEs (¢ > 1) into
differential and algebraic parts, we need to use other decompositions of the identity
matrix. Thus, we need to choose somewhat special projectors Q; within (4.1.2), in order
to obtain an appropriate tool for decoupling the DAE (4.1.1). This is done by introducing

an additional constraint [42]

QQ; =0, j>i (4.1.13)
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in the projector and matrix chain construction. We use this condition (4.1.13) to obtain

the absorption properties below:

PQ =Q. QP =Q; Vj>i

J
which in turn imply, P,P;_, ---Py = 1- ZQi’ Vj > 0. We use the absorption properties
i=0
to come up with other decompositions of the identity matrix. Hence to decouple (4.1.11),

we need to first choose special projectors Q;, j > 0 that satisfy (4.1.13). We note that
these special projectors that satisfy (4.1.13) exist in practice and their construction is
well discussed in [44]. According to [42], to decouple (4.1.1), we need to decompose

the identity matrix into two ways:

where I1; := PP, --- P, Hj- =PP,,--P,y, j=0.1,...,u—11f(4.1.13) holds
then both decompositions of identity matrix are made up of mutually orthogonal pro-
jectors. We can now use these two decompositions to decompose higher index DAE into
differential and algebraic equations. This done as follows: Decomposition (4.1.14) is

used to define the differential and algebraic components:

xP = H#_lx, xQ,O = Qox, xQ,i = Hi_lQix, i= 1, NS 1 (4116)

The second decomposition (4.1.15) is used to derive the differential and algebraic parts.
In general, using the decompositions (4.1.14) and (4.1.15), provided (4.1.13) is valid, we
can decompose DAEs with arbitrary index into differential and algebraic parts. Without
loss of generality, if the DAE (4.1.1) is of tractability index-u, then its decoupled system
is given by

xp = TGE, (A, xp + Bu), xp(0) =I1,_,x(0), (4.1.17a)

Xoue1 = 1,,Q, B (A x, + Bu), (4.1.17b)
p—1

Xo =TI QI B (A xp + Bu)+ > T1,,Q, kg, i=p=2,...0, (4.1.17¢)

j=i+l
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Q. i=i+1,
where, Q,; = QQin J=t
QP ...PQ; j>i+1
u-1
Then, solution (4.1.1) can be obtained using the formula x = xp + ZxQ”" Equations
i=0

(4.1.17a)-(4.1.17c) can be solved in the following way: first, the differential part xp is
computed from the purely differential equation (4.1.17a); then the algebraic parts are
computed, starting from the last one, x4 ,_;, given by (4.1.17b), and substituting the
computed values in the last but one equation for x, ,_,, given by (4.1.17¢) fori = p - 2,
and so on, up to the first equation for x,,. We observe that at each substitution, an
additional time derivative appears. In the next example, we illustrate the decoupling of

index-1 DAE using Mirz decoupling procedure.

Example 4.1.1 Consider a semi-explicit index-1 DAE with the following system matrices:

E,, E A A B C
E= " TR A= T2 B and C=| . (4.1.18)
0 0 Ar Ay B, G,
We assume E;; € R""™ and A, E[E}, — Ay, € R are nonsingular blocks due to

index-1 property and n = n; + n, is the dimension of the DAE. Let E; = E and A, = A.

We can then choose projectors Q, and P, given by

0 El_llElz I E1_111*:12
Q — and P, = , 4.1.19
0 (0 | 0 0 0 ( )

such that ImQ, = KerE; and P, = I — Q,. Next, we compute E; = E; — A,Q, given
by:

1=

-1
[En I+ALEDE —Ap (4.1.20)

-1
0 Ay EjE);; -Apy

Since E; is nonsingular, thus (4.1.18) is indeed an index-1 DAE. Substituting Equations
(4.1.18)-(4.1.20) into (4.1.7), we obtain the decoupled system of (4.1.18) using Mirz
decoupling procedure. This leads to a decoupled system of dimension 2xn. Hence this

decoupling procedure does not preserve the dimension of the DAE.

In [42, Sec. 2], it is shown that the projectors P; may be chosen such that they are ca-
nonical, i.e., the related decoupling becomes complete. This implies that (4.1.17) can be
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decoupled completely using the canonical projectors. In [42], Mirz also compared these
projectors with spectral projector decoupling and she was able to show that PP, ---P,_,
represents in fact the projector onto the subspace corresponding to the finite eigenvalues

of the matrix pencil (E, A) along its infinite eigenspace.

Remark 4.1.1 The tractability index-p is independent of the choice of the projectors Q;
and it coincides with the differentiation and Kronecker index for the case of linear con-
stant coefficient DAEs. The tractability index concept is numerically feasible compared

to other index concepts because it does not involve computing derivatives arrays.

However, the drawback of the projector and matrix approach used to be the computa-
tionally expensive construction of projectors Q; onto the nullspace of E; for large-scale
sparse matrices. The standard way to compute these projectors is to use SVD or alike
decompositions to find the nullspace of the singular matrix E;, which can be very ex-
pensive for very large-size matrices. Fortunately, they have been successful development
in efficient construction of such projectors, see [66] for more details. This is briefly dis-
cussed below. We discuss a fast way to construct projector Q; onto the nullspace of E;
of large sparse matrix. This approach uses the sparse LU decomposition- based routine

presented in [66], called LUQ. This routine decomposes a singular sparse matrix E;,
U0

into E]T =L, 7R j» where L, R; € R™" are nonsingular matrices, U; € R™" is a
00 J J J

nonsingular upper triangular matrix, r is the rank E;. Using this routine as a starting
step and using the fact that the nullspace of E; can be computed via its left nullspace of
E} we can compute projectors Q; onto nullspace of E; in an optimal way. Hence, this
algorithm can be used to compute projectors Q ; onto the nullspace of E; for large sparse
matrices and it is numerically tested on large-scale sparse matrices, see [66]. We have
discussed how to decouple constant coefficients linear DAEs using the Mérz decoupling
procedure. This procedure can be implemented numerically and leads to good solutions.

However the Miérz decomposition procedure has two main limitations.

(i) It can easily proved that the DAE (4.1.1) of index-u with dimension n leads to a
decoupled system (4.1.17) of total dimension n(u + 1). Thus the Mirz decoupling
procedure does not preserve the dimension of the DAEs, see [44].

(i) This decoupling procedure does not also preserve the spectrum of the matrix pencil.

Hence it is impractical to apply model order reduction on the decoupled system (4.1.17).



58

4 Decoupling of DAEs using special projectors




Chapter 5

Decoupling of DAEs using special
bases

In Chapter 4, we have already discussed that the Mérz decoupling procedure which uses
projector and matrix chain to decouple the DAE into one differential and u algebraic
parts. However, this decoupling procedure leads to a much larger decoupled system
of total dimension n(u + 1). This limits us from using Mérz decoupling procedure in
its original form to apply model order reduction. The reason of the increase in the
dimension of the decoupled system is due to the use of projectors whose column rank
is always less than their respective dimension. This introduces some redundancy into
the decoupled system. In this Chapter, we present away of avoiding this redundancy.
The main idea is to decouple the DAE using the linearly independent columns of the

projector matrices intend of using the projectors matrices themselves.
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5.1 Modification of Miirz decoupling procedure

In this Section, we propose a procedure to modify the Mirz decoupling procedure in
order to preserve the mathematical properties of the DAE. The main idea of this proced-
ure is to use bases of the projectors instead of the full projectors. Our main tool is the

Rank-Nullity theorem below.

Theorem 5.1.1 (Rank-Nullity Theorem [47]) Let V and W be vector spaces over a
field F, and let T : V — W be a linear transformation. Assuming the dimension of 'V is
finite, then dim(V) = dim(Ker(7")) + dim(Im(7)).

The proof can be found in [47].

5.2 Index-1 DAEs

In Section 4.1, we observed that when decoupling index-1 DAEs using Mérz decoupling
procedure leads to a decoupled system of dimension 2n. In this Section, we propose
a procedure which can lead to a decoupled system which preserves the dimension of
index-1 DAEs. This can be done as follows: Recall from Section 4.1, we can decouple

index-1 DAEs using Mérz decoupling procedure leading to

ip = PoE'Agxp + PoE'Bu, (5.2.1a)

xp = QE['Agx, + QuE; 'Bu, (5.2.1b)
y=Clxp+Clxy, (5.2.1¢)

where xp := Pox € R”, and x, := Qyx € R" are the differential and algebraic

components, respectively. The solution of the DAE is obtained using the formula,
X =Xp+xg € R", leading to a decomposed output equation (5.2.1c). We can ob-
serve that decoupled system (5.2.1) is of dimension 2n. This is because the projectors
Qy,P, € R™ introduces some redundancy in the decoupled system as a result, we
obtained 2n linearly dependent equations. We can remove this redundancy as follows:
Using the rank-nullity Theorem 5.1.1. Letn,, = rank(E,), n, = n—n,,, and let us consider

a basis matrix (¢, p) = {q," - sy Prs ,pnp} € R" made of n, independent columns
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of projection matrix Q, and n,, independent columns of the complementary projection

matrix Py, such that,

Qq=q9. Qpr=0, Pyg=0, Pyp=p, (5.2.2)
holds. Then, we can expand x with respect to the new basis, obtaining
x = gé, +pé, &, €RY, & €R", whichimplies thatxp = p£, and x, = gé,.

T\T .
Since (g, p) is a basis matrix, it is invertible, and let (q*T p*T) be its inverse, where
g"T € R and p*T € R"™*". Then, we have

¢Tq=1, ¢"p=0, pTg=0, pTp=1 (5.2.3)

which gives p*Tx =¢, and q*Tx = &, Interms of £, and &, system (5.2.1) simplifies

to
f;, = A6, +Bu,
£,= A%, +Bu, (5.2.4)
y= Cgfp + ngq’
where

A, = p*TEl_lep e R, B, = p*TEl—lB c Rnpxm’Aq _ q*TEl_lep e R,

B, = ¢ "E]'B € R"" and C, = q'C € R"QX[,CP = p'C € R"7*‘. We can observe
that the total dimension of the decoupled system is n = n, + n,, which is equal to
the dimension of the decoupled system. This system also preserves the spectrum of
the matrix pair (E, A) since it can easily be proved that o (E,A) = o(A,). Thus this
procedure preserve the dimension of the DAE in contrast with the Mirz decoupling
procedure. The example below illustrates how one can decouple index-1 DAE using the

modified Mérz decoupling procedure for index-1 DAEs.

Example 5.2.1 In this example, we use system matrices (4.1.18) from Example 4.1.1,
for comparison. Thus, we use the same procedure (4.1.18)—(4.1.20) to construct matrix
and projector chain: Eg, E; and Q,,P,. Here, we only need to construct the bases of

projectors P and Q,, and their respective inverses given by

_ I _ _E]711E12 T _ -1 T _
o=l = and p"=(1 E[Ep).¢T=(01). (525



62 5 Decoupling of DAEs using special bases

Finally substituting (4.1.18)-(4.1.20) and (5.2.5) into (5.2.4), we obtain the modified
decoupled system of (4.1.18) with coefficient matrices given by

- - - -1 nyxn
A, =E({[A, - (A ENE, - Ap) (AL ENE;, - Ay) Ay | e R,
_ _ - -1 m
B, =E;{[B, - (A E{[E; - A,) (AL E([E ), - Ay) By e R,
-1 -1 nyXn; -1 -1 nyXm
A, = (A21E11E12 - Azz) Ay €R?T B = (A21E11E12 - Azz) B, e R®™,
C,=C eR"™, C,=C,-ELE[/C, e R

We can observe that the DAE (4.1.18) is decoupled into n; differential equations and
n, algebraic equations, whose total dimension is n = n; + n,. Hence the dimension
of the DAE system is preserved. If we compare Example 5.2.1 and Example 4.1.1, we
observe that the Example 5.2.1 preserves the dimension and the stability of the DAE

while Example 4.1.1 does not.

5.3 Index-2 DAEs

In this Section, we assume (4.1.1) is a DAE of tractability index-2. Thus, we need to
assume that projectors Q, and Q, satisfy the condition (4.1.13), that is, Q,Q, = 0. We
can, then decouple system (4.1.1) using the Mirz decoupling procedure. Substituting
(= 2 into (4.1.17), we obtain a decoupled system for index-2 DAEs given by

%p = PP E;'A,xp + PP E;'Bu, (5.3.1a)
xo1 = QE;'Ayxp + QE; ' Bu, (5.3.1b)
xp0 = QP E;' Apxp + QuP E; ' Bu + QyQ % . (5.3.1¢)

y=Clxp+Clxyy+Clxy,. (5.3.1d)

We observe that xp, X, 1, X € R". We can observe that this time the decoupled system
(5.3.1) is of dimension 3n. Next, we need to modify system (5.3.1) as follows. We first
construct basis column matrices from the projectors. The starting point is the same as
that of index-1 DAEs. Let ky = dim(Ker E), this implies that ny, = n — k;, and let us
consider a basis matrix (p, q) = {p;,--- ., Doy 41> ,qko} € R" made of k, independent
columns of projection matrix Q, and n, independent columns of the complementary

projection matrix Py, such that,
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T
holds. Then the inverse of the basis matrix is (p, g)' = (p*T q*T) , where ¢*7 € RFo™"

and p*T € R™" Then, we have

q*Tq — Ik()’ q*Tp — O, p*Tq - 0, p*Tp = In()' (533)

, T
Next, we use the basis matrix (p, ) and its inverse (p*T q*T) as the starting basis for
the construction of new bases for index-2 DAEs. From (4.1.14), setting u = 2, we can

decompose the identity matrix as follows,
[=PyP, +PyQ; +Qy, (5.3.4)

in order to obtain the differential and algebraic components for index-2 DAEs. We need
to construct the basis of projector products PyP; and P,Q,. We note that for the case of
index-1 DAEs, we can always have a differential part but this is not always the case for
higher index systems depending on the spectrum of the matrix pencil (E, A). We note
that in this sense linear systems can ne viewed as index-1 DAEs without a differential
part. If the spectrum of the matrix pencil has no finite spectrum, i.e., 0(E, A) = o (E, A)
or det(AE — A) = ¢ € C\ {0}, YA € C, then decoupled system has no differential part
otherwise it has a differential part. This implies that Py)P; = 0 or PyP; # 0 depending
on the spectrum of the index-2 DAEs. If PyP; = O then we have no differential part

otherwise we have a differential part. We consider both cases in the Sections below.

5.3.1 Index-2 DAEs with a differential part

Here, we assume that the matrix pencil of (4.1.1) has at least one finite eigenvalue, that
is, PyP; # 0. We, then construct the bases for PP, and P,Q, as follows:
If we right multiply (5.3.4) by the basis column matrix p of complementary projection

matrix Py and simplifying, we obtain,

p=PyPp+P,Qp, (5.3.5)

since Qup = 0. Then, if we left multiply (5.3.5) by p*T, we obtain:

P 'p=p"PPp+p PQ,p. (5.3.6)
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We already know that p*’ p = I, andif we letZ, = p"P,P,p = p""P,pand
Z, = p"P,Q,p = pTQ, p, we have,

In0 = Zp0 + Zqo' (5.3.7)
Then, we can come up with the Theorem below [2].

Theorem 5.3.1 Let Z,, = p"P,pand Z, = p'Q,p. then Z,.Z, € R gre pro-
jectors in R" provided the constraint condition Q,Q, = 0 holds. Moreover they are

orthogonal complimentary to each other; i.e., L, = Zp0 + Zqo.

Proof 5.3.1 We need to show that Zf,o =1Z,, and Z‘ZIo = Z,, as follows. In this prove we
assume that projector Qu and Q, are chosen such that Q,Qq = 0 holds. Then,

zZ, =(p""PP,p)* = p""P,P pp PP p,
=p""P,P,P,P,p,
= p""Py(P, — P,Q)P, p,
= p'Py(P, — Q)P p, SinceP,Q, = Qp, iff Q,Q = 0.
=p"PPp = Zp,

Also

Z: = (@"PyQ,p)’ = p"PyQ,pp" " P,Q,p.
= p"PyQ,P\Q, p.
= p""P\Qip. SinceQ Py = Q. iff Q,Q, =0.
=p"PQp= Z,.

Hence proved as required that ZIJO and Zqo are projectors and are orthogonal compli-

ment to each other.

We need now to construct the bases of the projectors Z,, and Z, . Letk; = dim(ImZ, ),
o Zq,) € R"™ made of

ny independent columns of projection matrix Z, and k; independent columns of the

this implies n; = ny — k;, and let us consider a basis matrix (z

complementary projection matrix Z, , such that,

V/ 2,2z, =0, Z,z, =0, Z

p()zp() = Zp()’ Po 9 q0"Po - (538)

90 ZlIo = ZlIo >
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*T _*T

T . .
o Zqo) be its inverse,

holds. Since (z o> Zq,) is a basis matrix, it is nonsingular, and let (z

where Z*I e R and ZZI € R Then, we have

)4
«T _ «T _ «T _ «T _
Zpllp, = I”] o ZplZg, = 0, Zglp, = 0, Zglq, = Ikl : (5.3.9)

Hence the basis of projectors products PyP; and P,Q, are given by pz, € R™" and
Pz, € R"Xkl, respectively, where ny = k| + n; such that,

PoPpz, =pz,, PPz, =0, PQpz, =0, PyQiz, =z,. (53.10)
Then, we can now expand x with respect to the new bases, obtaining

X =pr, £+ pry )+ a6, RN, £ RN g eRNY (5310

which implies that ,

Xp=PLy&p Xg1 =Py, Xoo = 4,0 (5.3.12)

: nxn; nxk; . «T T nyxn
The 1nversis of pz, €R and pz, €R are given by z,, P ER and
#*T T 1 Xn
z,p € R such that

*T T «T T «T T *«T T
Z, P Py = L, Z,P Py = 0, ZyP Py = 0, Z,P Py = Iy - (5.3.13)

Thus,

2op X =&, zapx=¢, ¢Tx=¢, (5.3.14)

Substituting (5.3.12) into system (5.3.1) and simplifying we obtain,

£,= A, +Bu, (5.3.152)
g1 = Agaép + B, 1, (5.3.15b)
£q0 = Agob, + Byou + Aqow,é;,l, (5.3.15¢)

y=Cyé, +Coréyr + Cooéyor (5.3.15d)

where
A, =2, p"P\E;'A,pz, € R, B, =2, p"PE,'Be R A, =2, 7p"QE;'Aypz, € R,
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B, =z, p"QE,'BeRY A ;= ¢"PE;'A,pz, R B, =g PE;'BeR",

Ay, = q*Tlezqo e Rfohi C, = ZZJ’TC e R, C, = ZZOI)TC e RhX, C, = ¢'C e Rb. If we
apply initial condition §p0 0) = z;Ip*Tx(O), where x(0) is a consistent initial condition,
we can solve the differential part (5.3.15a), and then solve algebraic parts (5.3.15b) and
(5.3.15¢). We can see that the number of differential equations is equal to n,, = n; and
n, = k; + kg is the total number of algebraic equations and the total system dimension
isn = n, +n,. It can also easily be shown that O'f(E, A) = O'(Ap) still holds. Thus
the number of differential equation is always equal to the total algebraic multiplicity of

finite eigenvalues of the matrix pencil (E, A).

5.3.2 Index-2 DAEs without a differential part

Here, we assume that the matrix pencil of (4.1.1) has no finite eigenvalues. From (5.3.4),

this implies that P,P; = 0, thus the decomposition of the identity reduces to

Then, the decoupled system (5.3.1) reduces to

xp, = QE;'Bu, (5.3.16)
Xp0 = QP E;'Bu + QyQ, %y, (5.3.16b)
y=Clxp, +Clxyy. (5.3.16¢)

We can observe that the decoupled system has only algebraic parts of total dimension 2.
The modification of this decoupled system is done in the same way as the case of index
-1 DAEs since PyQ; = P, If, we let ky = dim(Im Qy), this implies k; = n—k,. Then, we
consider a basis matrix (p, ¢) € R" made of k, independent columns of projection matrix
Q and &, independent columns of the product of projection matrix PyQ,. Then the
inverse of the basis matrix is denoted by (p*T q*T)T , where ¢*T € R"*" and p*T e R,
Thus, (5.3.16) simplifies to

g1 =By u, (5.3.17a)
00 = Byou + Ay &y (5.3.17b)
y=Cyiéyn+Choéyo (5.3.17¢)
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where B
C

p*TQlEEIB c Rklxm7 quo — q*TPlEQIB c Rkoxm A — q*Tle c RkOXkl,

q.1 = [ (1§

o1 =P CeR™ and C, = ¢'C € R, We can observe that this time we do not need to
apply any initial condition rather the input function has to be smooth enough. In order
to solve (5.3.17), we first solve algebraic part (5.3.17a) and then solve (5.3.17b). The
total number of algebraic equations is equal to the dimension » of the system, thus the
dimension of the DAE is preserved. We have seen that index-2 DAEs can be decoupled
in two ways depending on the eigenvalues of the matrix pencil (E, A). Thus special has
to be taken when implementing this procedure. In Example 5.3.1 and 5.3.2, we illustrate

the modified decoupling of index-2 DAEs with and without differential part, respectively.

Example 5.3.1 This example originates from [60]. In this example we consider a sys-
tem composed of two rotating masses as shown in Figure 5.1. The two rotating parts

—\_M M
Mlq(f):?:::::ﬁq =

Figure 5.1: Two interconnected rotating masses.

are described by the torques M, M,, M5 and M, and the angular velocities z; and z,.
The system of equations describing this system is a DAE of dimension 4 with system
matrices

J, 000 00 1 0 10
0 J,00 00 0 1 01 M

E= 2 , A= , B= . ou=| (5.3.18)
0 000 00 -1 -1 00 M,
0 00 -11 0 0 0

where x = (Zl 2 M, M3)T and let J;, J, > 0. We are interested only with the velocities
thus C = B. Since the matrix pencil (E, A) is regular , that is det(AE—-A) = (J,+J,)4 # 0,
thus the DAE is solvable. Next, we checked the tractability index of the DAE and we
found out that it is of tractability index-2. We then chose projectors

) )

0000 hi, g 00
_ Jy
Q=0 ""% q-=|"kr wr
0010 Ah
1+ Ji+d,
0001 s s

T+, T+,

such that Q,Q, = 0 holds true and the corresponding complementary projectors can be
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obtained as P; =1 - Q;, i = 0, 1. The last values of the matrix chains are given by,

J, 0 -1 0 0000
0J, 0-1 0000
E, = 2 . A, = .
00 1 1 0000
-1 1 0 0 0000

This system is indeed an index-2 DAE since E, is nonsingular. We can easily check that
PP, # 0, thus the decoupled system of the DAE takes the form (5.3.15). We can now
use the procedure derived in Section 5.3.1 to decouple the DAE as follows: We need to

T
first constructed the new basis vector (p, ¢) and their corresponding inverses (p*T q*T)
given by

10 00
01 0
_ . _ Cand pT=p" ¢T=4"
p 00 q 10 p =pr, ¢q q
00 01

for the projector Q and its complementary P, respectively. Using Theorem 5.3.1, we
construct another pair of projector matrices Z o and Z 2 given by

1 (1 J 1 J, =J
7 — *TP — 1 2 , 7 = +T — 2 2
w =P PP =T [11 s w =P QP A

and their respective bases and inverses are given by

1 S o 1 o 1
zI,U:[l], z%:[_Jl], and zp0=m(11 1), %= T, (1 -1). (5.3.19)

Thus, substituting equation (5.3.18) — (5.3.19) into the modified decoupled system

(5.3.15), we obtain decoupled system with system matrices

0 —J J
_ _ 1 _ _ _ _ 1 2 1
A,=0,B,= (1 1),A,,=0,B,=(0 o),A%o—[O],Bq,o— ,]Hz[ I —Jl)’

1
Ay, =N (_1]’ C,= 715 (1 1) Cpu=737 (1 1), Cpo = (g 8). We observe that
n, = 1,k; = 1 and kj = 2, thus the decoupled system has only 1 differential equation
and 3 algebraic equations. This is leads to a decoupled system with total dimension 4

which is equal to the dimension of the DAE (5.3.18). On simplifying, this decoupled
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system reduces to an ODE given by

fl = ! (1 l)u
P+ 0,

), (5.3.20)
v VA L

Applying the initial value £,(0) on the differential part, we can obtain the desired solution
of the DAE (5.3.18).

Example 5.3.2 Consider a simple RL network in Figure. 5.2. Using the modified nodal
analysis on this network leads to DAE with system matrices ,

000 -G G 0 1 e,
E=|00 0|, A=| G -G -1|, B=|0]|], x=]|e|, u=u
00L 0 1 0 0 1

T
We can choose the control output matrix as C = (1 1 1) . The matrix pencil is regular

€1 G €

Figure 5.2: Simple RL network.

since det(AE — A) = G > 0, this system is solvable and its matrix pencil (E, A) has only
infinite eigenvalues. Thus its decoupled system has no differential part. We can choose

100 00L
special projectors, Q, =|0 1 0{and Q, =0 0 L], such that Q,Q, = 0 holds. Then, we
000 001
G -G O
have, E, = |-G G 1 |. Since the E, is nonsingular. Thus, this is an index-2 DAE. We
0 -1 L

can easily check that PyP; = 0, thus the decoupled system of the DAE takes the form
(5.3.17). We can now use the procedure derived in Section 5.3.2 to decouple the DAE as
follows. The linearly independent columns and their respective inverses of projector Q,,
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and its complimentary P, are given by

0 10 Lo o
=lo|, ¢=|0 1|, pT"=(00 1), ¢"= .
P q PT=(001), ¢ [010]
1 00

Thus, substituting the above system matrices and bases into (5.3.17), and simplifying
we obtain the decoupled system with system matrices given by

G L 1

This decoupled system leads to an output solution which coincides with the exact solu-

tion given by y = G+ Du+ 2Lu’.

5.4 Index-u DAEs

In this Section, we generalize the procedure of modifying the Mirz decoupling proced-
ure. Assume (4.1.1) is of tractability index-u, then using the Mirz decoupling procedure

leads to a decoupled system of the form (4.1.17). Then, its compact form is given by:

Xp = Apxp +Bpu,  xp(0) = I1,_,x(0), (5.4.1a)
Xou-1=Ag1Xp+Bg,_u, (5.4.1b)
u—1
Xpi=Agixp+Bgu+ Z AQi’jx/Q,ja i=p=2,...0, (5.4.1¢)
Jj=i+l
u—1
y=Clxp+C" Y xy, (5.4.1d)
i=0

where

s—1 sp—1 -1
AP = HOE/l A/l’ BP = HOE/l B, AQ,/J_I = Hﬂ_zQﬂ_]Eﬂ A/.l’
-1 * -1
BQ,}J—] = H[J—ZQII—]EM B, AQ,O = Hi—lQiHi+1E/.l AIJ,
B QiQis1s J=i+1,

B,o:=I,_ QI ,E;'B, Ay =1 ,Q;;, Q=
0,0 i— 1N+ 1y ’ Q;; i—1 4, 5> i,] . .
! QlPl+l P]—IQ]’ j >1+ 1

We have already discussed that this decomposition increases the dimension of the system

dimension to (u + 1)n and it does not preserve the stability of the DAE. Thus, we need
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to generalize the modification of the Mirz decoupling procedure for higher index DAEs.
This is done by generalizing the modification procedures derived in Section 5.2 and
5.3 for index-1 and -2 DAEs, respectively. This is done as follows. We modify the
system (5.4.1) by constructing basis column matrices for the projectors and the projector

products in the decomposition (4.1.14). From (4.1.14), we have:

u—1
I, =Qy+ Z I Q; + 1T, (5.4.2)

i=1
In Section 5.3, we mentioned that higher index DAEs have a possibility of having a
purely algebraic system depending on the nature of the spectrum of the matrix pencil
(E,A). This implies the projector product IT,_; can vanish to zero depending on the
matrix pencil of the DAE (4.1.1). Thus in this section, we also consider two cases of
compact decomposition of the DAE (4.1.1) depending on the spectrum of the matrix
pencil (E, A). In both cases the starting point is the same as that of index-1 as presented

in Section 5.2.

5.4.1 Index-u DAEs with a differential part

Here, we assume that the spectrum of the matrix pencil of (4.1.1) has at least one finite
eigenvalue, this implies that I, # 0. Let k, = dim(KerE), ny = n — kj, and let
us consider an orthonormal basis matrix (py, g9) = (Po,1>- - ->Pony 40,15 - - - dok,) € R"
which contains &, independent vectors g, ; which span Ker E,. Since (py, q) is a basis
matrix, it is invertible, and let (p;,’, g;")" be its inverse, with gj, € R™* and p;, € R,

Then, we have

9 90 =Te» 40 Po =0, Py 40 = 0, Py po = 1., (5.4.3)
and also
9090 +Popy’ =1, (5.4.4)

The previous relations imply that we can represent the projectors Q, and P, as

Qo =aq04)' . Py =popi- (5.4.5)
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We note that, by construction we have

Qoq0 =90> Qopo =0, Pyqy=0, Pypy = py. (5.4.6)

Then we take the following steps:
Step: Oif u > 1:

By construction, (5.4.2) can be written as,

u—1

L, =Py ToQupo + Py ) T Qipo + 15 T, g
i=2
Then,
Ly =24, +Zp, (5.4.7)
u—1
with Z, := p*TZH- Qpo + P, po. Z, = pi'T,Q,p,. Using the general
po - 0 i-1iPo o u-1Po> 9 - o 1101 Po- g g
i=2
pu>2

form of Theorem 5.3.1, Z,, and Z, are mutually orthogonal projectors, acting in R,
Letk; = dim(ImZ, ), and n; = ny—k,, and let us consider a basis matrix (z, , 2, ) € R"
made of n; independent columns of projection matrix Z, and k; independent columns
of the complementary projection matrix Z,,- We denote by (z;I, ZZI)T the inverse of

(zpo, Z‘Io)’ such that
*T _ *T _ T _ #T _ T *T _
ZpoZpy = Inl, Zp2q, = 0, Z40%py = 0, Z402q, = Ikl, ZpoZpy T 2q0%q, = Ino. (5.4.8)

_ *T _ *T :
Then, we can represent Z, and Z, as Z, = z,z, and Z, = z,z, . respectively.

P
Then, we have

Zpozpo = Zp,s Zpozqo =0, Zqozpo =0, Zqozqo =Zq,- (5.4.9)

We can see that if u = 2 then the bases of the projector products {Q, I1,Q;,II;} in
(5.4.2) are {q, Pozq,> PoZp, ) respectively.



5.4 Index-u DAEs 73

Step: 1if u > 2:
Using the identities (5.4.8) and (5.4.9) on (5.4.7) leads to

n

L, =2, +Z,, (5.4.10)

u—1
. . T _&T T _«T e T T
withZ,, = 250 po" > T Qipozy, + 2 o e Pozpy Zg, = 2 P T Qapoz,,. We
—
;l1>3
can also see that the projectors are mutually orthogonal projectors, acting in R".
Letk, = dim(ImZ, ), and ny = n; —k,, and let us consider a basis matrix (z,, , z, ) € R™
made of n, independent columns of projection matrix Zpo and k, independent columns
. . . * * \T :
of the complementary projection matrix Z, . We denote by (z, ,z, ) the inverse of
(zp, 24,)> such that
*T _ #T _ +T _ *T _ #T *T _
Zp%p = I"z’ Lp %q, = 0, Zq,%p, = 0, 2q,%q, = Ikz’ Zp2p, t 2q,%q, = I"l :
_ #T _ #T :
Then, we can represent Z, and Z, as Z, = z,z, and Z, = z, z, , respectively.
Then, we have

7,6 z

P =Z Z Z :0, Z Z :O, Z V4

Py’ P *q Sid 41 q (5'4'11)

141 q = z‘ll'

We can also see that if = 3 then the bases of the projector products {Qy, I1,Q, I1,Q,, IT,}

are {qg, PoZq, P0Zp,%q, P0%p,Zp, } TESPECtively.

Step: jifu> j+1:
It’s interesting to see that this process is an iterative process and the jth iteration leads

to an identity matrix given by,
L o=Zy+Z,, j=1....u=-2 pu>2, (5.4.12)

with

u—-1
T T T *T T _«T
ij T zpj—l ZpyPo Z Hi—lQipOzPo zpj—l + zI’jq Zp, Po H#—lpozpo szfl’
i=j+2
j<u-2

T e *T T - ; e
Z‘I.i = Zpy EpPo HJQJHPOZI’O ppr



74 5 Decoupling of DAEs using special bases

These projectors are also mutually orthogonal projectors, acting in R/

Let k;,; = dim(ImZ, ) and n;,; = n; — k;;;, and let us consider a basis matrix

(z ;%4 ) € R" made of Ny 1ndependent columns of projection matrix Z,, and k; ; ip 1n-
dependent columns of the complementary projection matrix Z . We denote by (zp .2 g Hr

the inverse of (z,, , Z‘If)’ such that
J J

Z, z =1, , 2z, =0,

*T _ T _ *T *T _
p; = e %y I T TR

_ *T _ *T N
Then, we can represent ij, qu as Zp/_ =2ZpZp. qu =Zg.%; respectively. We, then

s have

ijzpj = Zps ij_ij =0, quzpj =0, quij =24 (5.4.13)

Hence the bases of the projector products {Qy, I1,Q, ..., I, ;Q;, ..., IL,_;} in (5.4.2)

are given by {qo,pozqo, s POZpyt Zp, 1 Zg, o POy, --zp#_z}, i=2,...,u—1,re-
spectively. Thus we can now expand x with respect to these bases, obtaining,

u—-1
X = POzp0 e zpu_z‘fp + quq,O + pozqo‘fq,l + Z Pozpo T zpi_zzqi_]’fq,i, (5414)
i=2
where &, € R%-1, £ € R", £40 € RNi=0,... ,i# — 1 and with inversion expressions
T *T _*T *T «T T
Ep = 2p, ., ZpPo Xps 40 = 40 X000 €41 = 2P0 X015
_ *T . *T T . _
tfq, qu lzpi_z zpopo xQ’i, l —2,...,/1 1. (5415)

Substituting the variables in (5.4.14) and (5.4.15) into (5.4.1) leads to modified de-
coupled system given by

& =A8, +Bu, (5.4.162)

fq,,ufl = Aq,;kl‘fp + Bq,y—luv (5416b)
p=1

gq,i = Aq,igp + Bq,iu + Z Aq’.'jé‘:;’j, i= Mm—= 2, e 2, (5416C)
Jj=i+1

£ =Aué, +Bu+ Y A, £ (5.4.16d)
Jj=2

p—1

€10 = Aol + Byt + Y A, £ (5.4.16¢)
=1
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pu—1
= g s (5.4.16f)
i=0
where
A= z;I_z N Z;ZPSTAPPOZPO T, € R, B, = Z;z_z o Z;EPSTBP e R,
All,u—l = zjlf—zz;j-z o Z;EPSTAQ,H—IPOZFO s zl’y-z € Rkﬂ-lx"p’
R e . LT

A= 2 T, Ty P AgiPoZy, vz, € RF>,

Bq,i = z;;r_l Z;’,-T_z L. z;—gp(*)TBQ,i € Rkixm’

Aqi,j = ZZL z;inz o ZZZPSTAQWPOZFO cee z,,/;zij?l € Rkixk.f

Ay = Z;IPBTAQJPOZPO 2, € R, B, = ZZIPSTBQ,I € Rk
Ay = z;ngTAQLijzpo ez, 7, € RA%

Ao = 45 AgoPozy, - Ly, € R By, = gy By, € RO,

«T .
A = 90 Aq,,Pozqy> Ifj=1,
qo,; " «T .
! 90 Aq,,PoZp, """ Zp,,%, > Otherwise.

T T xn T T ok T _ T oxk
C,=C PoZp, "%, eR™r, Cp=CgyeR™, C;; =Cpyz, eR™,

eR™ p =n

T = T e
Cq,i =C PoZp, Zpia%a; 4 u=l

We can observe that, (5.4.16) can be written in a compact form given by

§; =A¢,+Bu,
_@; =Aé, &, +Bu, 5417
y=Ch¢,+ClE,

where £, eR", A, e R B, e R""" & = (£, .....6,0) € R,

A=Ay Ay) ER' B =B, ,....B o) eR"",

C, = (C;ﬂ_ T C;O)T e R"*‘and £ € R"™" is a strictly lower triangular nilpotent

matrix of index-u with entries Aq,—,,- as defined in the decoupled system (5.4.16). n,
-1

and n, = IJZ:k,- is the number of differential and algebraic equations, respectively and

n=n,+ n;:i% the dimension of the DAE. Thus, the decoupled system (5.4.17) preserves

the dimension of the DAE (4.1.1). It can be proved that the decoupled system (5.4.17)
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can be written in the form:

£ = A, +Bu (5.4.182)
,U—l . . ll_l i-1 . . #_1 . .

£,= > LAALE + > 3 LA AB LT+ LB u®, (5.4.18b)
i=0 i=1 k=0 i=0

y=Cp&,+Cyé, (5.4.18¢)

where u” € R™ is the ith derivative of the input data. Equation (5.4.18a) and (5.4.18b)
are the differential and algebraic part of DAE (4.1.1), respectively. Next, we ana-
lyze the initial value of the DAE (4.1.1) as follows: Using system (5.4.18), we have:

£,0)
0):=|" ), where
£00) (f,,( 0
u—1 ' . u—1 i-1 . ' u—1 . '
£,0)= > LAAEO0) + Y > LAAB LT D0+ LBu0).
i=0 i=1 k=0 i=0

(5.4.19)

We observe that fp(O) can be chosen arbitrary while fq(O) has to be chosen such that
the hidden constraint (5.4.19) is satisfied. Thus the initial value x(0) of DAE (4.1.1)
has to be consistent initial value and the input data has to be at least u — 1 times dif-
ferentiable. In this approach we take care of this since, If we apply initial condition
fp(O) = z;:iz xx z;ZpSTx(O), where x(0) is a consistent initial condition, we can solve
the system (5.4.18) hierarchically by numerically integration of differential part (5.4.18a)
and then compute the algebraic solutions using (5.4.18b). Then the desired output solu-
tions are obtained using (5.4.18c). It can be proved that o ((E,A) = 0(A ) , thus system
(5.4.18) preserves stability of the DAEs. The number of differential equation is always

equal to the total algebraic multiplicity of finite eigenvalues of the matrix pencil (E, A).

5.4.2 Index-u DAEs without a differential part

Here, we assume that the spectrum of the matrix pencil of (4.1.1) has no finite eigenval-

ues, this implies Hﬂ_l = 0. Thus, (5.4.2), reduces to

I,=Qy+ ) 1,Q. (5.4.20)
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Repeating steps from (5.4.3) to (5.4.9). It is nice to see that if u = 2, then (5.4.20) sim-
plifies to, I, = Qy + I1,Q; = Q( + Py. Thus if u = 2 then the bases of the projector
products {Q,, I1,Q;} in (5.4.20) are {gq,, py}, respectively otherwise we follow the steps
below:

Step: Oif u > 2:

Then by construction, (5.4.20) can be written as,

u—1
T «T
L, = po yQipy + Po Z IT;_1Q;po-
i=2
Then,
I”o = Zq0 + Zpo’ 5421

pu-1
withZ, = pSTZHi_] Qpy. Z, = Py T1,Q, py. Using the general form of Theorem
i=2

u>2
5.3.1, Z, and Z, are mutually orthogonal projectors, acting in R".
Letk; = dim(Im Zqo), and n; = ny—k;, and let us consider a basis matrix (zpo, qu) e R"™
made of n; independent columns of projection matrix ZIJO and k; independent columns
of the complementary projection matrix Z, . We denote by (z;?, ZZI)T the inverse of
(zpo, zqo), such that
s Ty Ty + Zg 2y = 1,(54.22)

T _ *T _ T _ *T _
Zpy2py = Lnps ZpyZgy = 05 24, Zp) = 05 2424 = I

Then, we can represent Z, and Z, as
Po 90

_ *T _ T
ZPo = ZpyZpy» Z‘Io = 2g42q,>
and we have
Zpozpo =2y, Zpozq0 =0, Z%zp(J =0, Zqozq0 =2Zq,- (5.4.23)

Thus, if u = 3 then the bases of the projector products {Q, I1,Q;,I1;Q,} in (5.4.20) are

{90- Pozq,» PoZp, s Tespectively.
Step: 1if u > 3:
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Using the identities (5.4.22) and (5.4.23) on (5.4.21) leads to

n

L, =%, +Z,, (5.4.24)

u—1

with Z,, = z;ngTZHi_lQipozpo, Z, = z;:p(*)TﬂlepOzpo. We can also see that
i3

the projectors are mutually orthogonal projectors, acting in R"!.

Letk, = dim(ImZ, ), and n, = n; —k,, and let us consider a basis matrix (z, , 2, ) € R™

made of n, independent columns of projection matrix Z, and k, independent columns

of the complementary projection matrix Z, . We denote by (z*lT, zfllT)T the inverse of

(zpl , qu), such that

T

_ #T _ T _ #T _ *T *T _
Zp, 2p, =Ly 2p 2, = 0,242, =0, 25 20 =10 25,2, +2424 =1,

P 1’

_ *T _ *T
Then, we can represent Zp1 and qu as ZPl =2Zp 2ps qu =Zq,2q, and we have

Z, 6 z

P, =z Z z. =0, Z z, =0, 7Z_ =z

Py’ pP*q 'Sid 41 q (5'4'25)

141 q = z‘ll'

Thus, if 4 = 4 then the bases of the projector products {Qg,11,Q;,II;Q,,I1,Q3} in
(5.4.20) are {q, Po2q,> PoZp,Zq,» PoZp,Zp, }> TESPectively. This a recursive process which
can easily be generalized.

Step: jifu> j+2:

The jth iteration leads to an identity matrix given by,

Ij:qu+ij, j=1...,u=-2, u>2, (5.4.26)

n

u—1
1 = *T .. *T *T ..
withZ, =z, -~z P Z 0 QiPozp, -+ 2p,

i=j+2

J<p=2
Z, =20 - Zpn.Q These projectors are also mutually ortho-
q; zI’_;_| ZpyPo 11jRQj+1P0%p, zI’_/—l' Proj y

T
consider a basis matrix (z, ,z, ) € R" made of n j+1 independent columns of projection
J J

gonal projectors, acting in R"/. Let ki, = dim(Im qu), andn;, =n;—kj,, and let us

matrix ij and k;,; independent columns of the complementary projection matrix qu.
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We denote by (z;T,, ZZT)T the inverse of (zp,, Z4 ), such that
J J J J

T _ #T _ *T _ #T _
ij sz - I”j+1’ ij qu =0, ij sz =0, qu ij - ij+1’
*T «T _
Zp.Zp, + Zq.%q; = In_,~' (5.4.27)
_ «T _ *T
Then, we can represent ij, qu as Zp/_ =Zp2p qu =Zg.2, and we have
Zl’.le’./ - zl’j’ ZI’./Z‘IJ =0, Z‘I./ZP./ =0, quij - ij' (54.28)

Hence the bases of the projector products {Q, I1)Q;,I1,Q,, ..., I1;1Q;, ..., 11, ,Q, 1}

in (5.4.20) are {qq, PoZ, PoZpy2q,> s P0%py " Zpy%q, 0+ -+ PoZp, " zpﬂ_z}’
i =3,...,u— 1, respectively. Thus, we can now expand x with respect to these bases,

obtaining,
=2
X = qo&40 + PoZg,Eq1 + Zl’ozpo " Zp o2 Sqi T PoZp, T, g, (5:4.29)
i=2

where fﬂ_l € RM%-2, fq’i € Rk", fq,o € Rk",i =0,...,u — 2 and with inversion expressions

_ T *T T _ T _ *T_ T
fy—l T Aps e zpopO xQ,ﬂ—l’ é:q,O =4 xQ,O’ ‘fq,l - quPO xQ,l’
*T T T T .
Eqi = 2q, Zpy g PO Xgis 1=2,., 0= 2. (5.4.30)

If we substitute the variables in (5.4.29) and (5.4.30) into (5.4.1) leads to modified de-
coupled system given by

é:q,/tfl = Bq,/,t—luﬂ (54313)
p—=1

Si=Bgu+ Z Ay o T=pH=2,...2, (5.4.31b)
=i+l
p—1

Ea=Buut ) A, £ (5.431¢)
=2
p—1

0 =B+ ) A, £ (5.4.31d)
j=1

p—=1
y= Z Cyibyir (5.431¢)
i=0
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where

i T T T ky_xm T «T «T T kjxm
Byt =2, 2P0 Boyu RV By =2y 2, 2, Py B € RV,

B, = ¢y Byo e RY™, B, =z, p;' By, € R,

*T  _«T *T __*T .
A = 2g,.,%p,, """ %pPo AQi./pozI’O h .Zl’u—.%’ If j=p-1,
ql : * £ * Sk :
' zq.-T_l zp,-T_z e ZPEPOTAQl.ijzFO " Zp %> Otherwise,
*T T s
A = ZgyPo AQl‘ijzVO 2y I, j=u-1,
q1j " * 5 .
b qupOTAQL/_pozp0 Ty 2 Otherwise.
40" Ag,  PoZy,: If, j=1,
. *T .
AqUA/ =149 AQO‘jpozP[) e zﬂj,zijfl s If, 2 < JSu-— 2,
qSTAQo‘,’pOzl’r) o ZP;,J’ If, j= M= L.
Cyo=Clgy e R, C}; = C'pyz, e R™M, C), = C'pyz,, -2, 7,  €R™N
We can observe that equations (5.4.31) can be written as
/
—qu = —fq + Bqu (5.4.32a)
T
y=C,&, (5.4.32b)

where &, = (€, _1,...,&,0) €R", B, =B, 1,....B o) e R"",
C, = (C;ﬂ_l, e C;O)T eR™ £eR™isa strictly lower triangular nilpotent matrix
of index u. It can also be proved that the decoupled system (5.4.32) can be written in the

form:

u—1
y=C; > LBu", (5.4.33)

i=0
where u'? € R™ is the ith derivative of the input data. We observe that, we have only al-
gebraic equations and their solutions can be computed exactly. We can also observe that

pu—1
n= Zki is the total number of algebraic equations which is also equal to the dimension

i=0
of the DAE. Thus the decoupled system (5.4.32) preserves the dimension of the DAE.
For comparison with the DAE (2.3.1), we can rewrite either system (5.4.18) or (5.4.32)

in the descriptor form given by

E& = A¢ + Bu, (5.4.34a)
y = CT¢, (5.4.34b)
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where: if the spectrum of the matrix pencil (E, A) has at least one finite eigenvalue, then
- ((I) _OL) eR™, A = (i: -01) eR™, B = (ﬁ:) eR™" € = (E:) e R and if the
spectrum of the matrix pencil (E, A) has no finite eigenvalue, then E = —£ € R™",
A=-T1eR™ B= B, € R™™ C = C, e R™ We can observe that this form reveals
the interconnection structure of the DAE (2.3.1). Moreover it can be proved that systems
(2.3.1) and (5.4.34) are equivalent. This implies that also their respective matrix pencils
(E,A) and (E, A) are equivalent. If we consider DAEs whose matrix pencil (E, A) has
at least one finite eigenvalue, we can show that they have same spectrum , since we can
easily show that det(AE — A) = det(AI — Ap), since det(I — AL) = (1)"s. This identity
shows that the finite eigenvalues of the matrix pencil (E, A) coincide with the (possibly
complex) eigenvalues of the matrix A, of the differential part, which are exactly n,,
counting their multiplicity, i.e., O'(Ap) = O'f(E, A). Thus, the differential part of the
decoupled system inherits the stability properties of DAE:s.

5.4.3 Decoupling of index-3 DAEs

In Section 5.2 and 5.3, we have discussed the decoupling of index-1 and-2 DAEs, re-
spectively. These decoupled system can be written in the descriptor form (5.4.34) and it

is easy to check that for the case of index-1 and -2 DAEs, nilpotent matrices are given
0 0 . . . .

by L=0and £ = ( R 0), respectively. In this Section, we discuss how to decouple
90,1

index-3 DAEs using the generalized procedure in the previous Section. Thus we need
to assume that the DAE (4.1.1) is an index-3 DAE, i.e., u = 3. We also assume that
the projectors are constructed such that (4.1.13) holds true. Thus index-3 DAEs can be
decoupled as follows: If system (4.1.1) has a matrix pencil with at least one finite eigen-
value then decoupled system take the form (5.4.16). Thus substituting u = 3 into (5.4.16)
and simplifying, we obtain a modified decoupled system for index-3 DAEs given by:

&=A¢,+Bu, (5.4.35a)
Eqo = Ag2é, +Byou, (5.4.35b)
£ =Ané, TBLu+ A, &), (5.4.35¢)
é:q,() = Aané:I’ + Bq,ou + Aqu;’l + A‘Io,zgflil’ (5‘4'35d)

y= C; &pt ng Eqn t Cg,l Eq1 t Cg,o £4.0 (5.4.35¢)
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where
T _«T T «T
A, =2, 2, Py ApPoZy 2p, € R Xy B, = zplz Tpi By € R,
_ #T_«T T k2><n B _ T *T TB szxm
Ag2 quTZpol’o Ag, zl’ozpozpl iR 02 1= 2q, 2, P Bo2 €
* «T 1><n . * IXm
Aq, = zquPO A0,1P0Zp,2p, iR ) Bq, : q po Bg, iR
- * Xn Xm
AqO = qo AQ opozpozpl e R N Bq’o = qO BQ,O e R" ,
*T _*T lek2 o— +T kOXkl
A‘I =24 Po AQl,zpozl’oz‘Il eR ’ A‘I()l 90 AQ()]pOz‘Io €R ’
Aq02 = q, AQozPOZ zg, € Rfoxk CT C’ PoZp,Zp, ER xt
T k xt T kyxt AT ! koxe
Cq’z C pozpoqu e R™ qu = C qu e R™ qu = C 0 e R™ N
and

Ap :=P,P,PE;'A; e R, B, := PP P,E;'BecR™,

Ay, =PoPQ,E;'A; e ™, B, := PP, Q,E;'B e R™",

Ay :=PyQ,PE;'A; e R™, B, = P)Q,P,E;'B e R™",

Ag,, =PyQ,Q, e R™, Apo = QP PE;'A; e R™,

’ -1

BQ,O = QOP1P2E3 B € RHXWZ’ AQO.] = Qle € Rl’le’l’

AQO,Z = QOPIQZ S Rnxn.
After re-arranging and simplifying this decoupled system can be simplified to the form
(5.4.18) given by:

&p = Aty + B,
2 2 i1 2
£,= > LAANE+> Y LAABRTD 1S LB u®, (5.4.36)
i=0 i=1 k=0 i=0
- ngp + Cgfq’

wheref = (&, 2ygq,1’§q’0)T€ R", A, =(A0.A, 1,Aq 0) e R"*"»,
= (B, ql,Bq’O)T e R"™, C, = (C C,0) € R n, = ¥ ok and

L € R""4 is a strictly lower triangular nilpotent matrix of index-3 given by

q.2> ql’

0 0 0
L:=|A,, 0 o] (5.4.37)
A 0

d0,2 A

40,1

If system (4.1.1) has a matrix pencil with only infinite spectrum then its Mirz decoupled
system can be modified into the form (5.4.31). Thus substituting = 3 into (5.4.31) and
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simplifying, we obtain a modified decoupled system of index-3 DAEs given by:

£40 = Byou, (5.4.38a)
Ea=But+ Ay &, (5.4.38b)
Ep0=Byou+ Ay & +A, £, (5.4.38¢)
T T T
Y=Cur&,+Chi&1 +Choés0 (5.4.38d)
where
Bq,Z = Z:JIPSTBQ,Z c szXm’ ]3%1 = ZZZPEF)TBQ’] c Rklxm’ Bq,() = qSTBQ70 c Rkoxm’
*T % ki xk * koxk koxt
Aql,z = Z‘IEPOTAQMPOZI’O € RN, A40,1 = qOTAQoJPOZIIO € RO, Cg’o = CTqO € RV,

_ T koxky T _ ~T kyxt ~T _ ~T kyx¢
Ay, = 40 Ay, Pozp, ERTE, Cpy = Cipgz, € R2T, Cyy = Cippz, € RU

Also after re-arranging and simplifying this decoupled system can be simplified into the
form (5.4.33) given by:

2
y=C; > LBu? (5.4.39)
i=0

where é:q = (év‘:q,Z’ é:q,l’ ‘fq,O)T € Rna Bq = (Bq,Z’ Bq,l’ Bq,O)T € Rnxm’

C,=(C,,.C,;, Cq,o)T e R™" £ € R™" is a strictly lower triangular nilpotent matrix
of index-3 which takes the same form as (5.4.37). Hence index-3 DAEs can be decoupled
into the form either (5.4.36) or (5.4.39) depending on the spectrum of the matrix pencil.

In the examples below, we illustrate the decoupling of index-3 DAEs.

Example 5.4.1 ([46]) As a simple mechanical example, we consider a car-pendulum
system shown in Figure 5.3 that consists of a cart of mass m; and a pendulum of length L
and of mass m,. In [46], they linearized nonlinear equations of motion of this multibody
system along the equilibrium [O, 0,-L,0,0,m,g/ (2L)] which yields an index-3 DAE
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Figure 5.3: A cart-pendulum system

with system matrices :

0 0 0 1000
0 0 0 0100
0 0 0 0010
E = diag(1,1,1,m,m,,m,,0), A =|-myg/L myg/L 0O 000 Of,
myg/L —-myg/L 0 000 O
0 0 myg/L 0 0 0 2L
0 0 -2L 000 O

T
0100000
). (5.4.40)

T
B:[o,o,o,l,o,o,o], c=(0 010000

This system has a regular matrix pencil (E, A) and has the finite eigenvalues
O'f(E, A)=1{0,0, +i \/(ml + m,)g/(m;L)}. We constructed special projector chain Qy, Q,
and Q, of this system that satisfy (4.1.13) given by,

00 0 00 O0 O 0000000O 0000000
00 0 00 O O 00000O00O 0010000
00 0 00 0O 0000000O 00000O00O0
Q=00 0 00 0 Of, Q =|/0000000O0|, Qb =|/0000000O0
00 0 00 0 O 0000000 0000000
00 0 00 OO 0010010 0000000
00%00%1 00000O00O 0000000
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and final matrices on the matrix chain given by,

100 0 0 0 0 0 0 01000
01 0 0 0 0 0 0 0 00100
00 1 0 0 -1 0 0 0 00000

E;=[00 0 m 0 0 0| Aj=|-£2 & 00000
000 0 m 0O O 00000
00 0 0 m -2L 0 0 00000
002L 0 0 0 0 0 0 00000

Since E; is non-singular, then this system is of tractability index-3 or index-3 DAE.

#T
We need to first construct the basis vector (p, ) and their corresponding inverses ( )

*T
given by
10 0 00 O 0 0
10000O00O0
01 0 00 O 0 0
0100000 ,
00 1 00 O 0 >
=00 0 10 0 q=\0 p*T_OOIOOOO g7 =0 (5.4.41)
P ' ' 0001000 ' o
00 0 01 O 0 0
0000100 .
00 0 00 1 0 5
m, sy 0000010
00 -200 -3 1 1
for the projector Q, and its complementary P, respectively. Then, we use the above
*T
. . . . z .
basis to construct the second basis (z, , z, ) and their corresponding inverses o | given
90
by,
10 000 0 0
100000
01 000 0 0
00 100 0 010000 1
— _ T _ x
2 =lo0 o010l Zw=|el W=[00 1000 Z=|]L (5.4.42)
000100
00 001 0 0
000010
00-100 1 1

for the projector Z, and its complementary Z,: respectively. Thus, we use the above
*T
bases to construct the third basis (z,, , 2, ) and their corresponding inverses ( f‘T) given
zZ
q
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by,
1000 0
10000
0100 0
~ _ 2 01000 4
2, =[00 00| 7, =1} zi= | z'=(0 010 0), (5.4.43)
0010 0
00001
0001 0

for the projector Z,, and its complementary Z, , respectively. Substituting (5.4.41)-
(5.4.43) into (5.4.35), we obtain the modified decoupled system with matrix coefficients,

0 0 10 0
0 0 01 0
A, = , B,= . A,=(000). B,=0
—-myg/(Lm;) m,g/(Lm;) 0 O 1/m,
g/L -g/L 00 0
m,
Au=(0000)., B,y=0 A, =0 Ay,=(0000). By=0 A, =5

0100 0 0 0
— T _ T _ T _ T _
Aqm =0, CI’_ {0 00 0]’ qu - (l]’ Cq,l - [0]’ Cq,o = [O]

After simplifying the decoupled system reduces to an ODE dynamical system given by,

0 0 10 0
. 0 0 01 0
._ﬁ-‘p: »t u
—myg/(Lmy) myg/(Lm;) 0 0 1/my 5444
g/L —g/L 00 0 (5.4.44)
(o100
Y=o 0 0 o)

When we computed the eigenvalues of A, we found out that they are equal to the
finite eigenvalues of the matrix pencil (E,), i.e., o f(E, A) =o(A p) as expected. We can
observe that DAE dynamical system (5.4.40) of dimension 7 reduces to an ODE system
(5.4.44) of dimension 4 even before applying any MOR technique. Hence this approach
is not only advantageous in solving DAEs but also in MOR of DAEs.
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Example 5.4.2 Consider an index-3 DAE obtained from [63] with system matrices

given by
010 100 10 0.04
E=|00 1|, A=|01 0], B=]0.1], C=| 30 |. (5.4.45)
000 001 0 1

Since the det(AE — A) = —1, thus the DAE system (5.4.45) is solvable and its matrix
pencil has no finite eigenvalues. Hence we expect its decoupled system to have no
differential part. We can then choose the projector chains,

111 000 000
Q=[000f, Q=|01T1|, Q=[000
000 000 001

that satisfy the condition Q jQi =0, j>i,i,j=0,1,2 and the last matrix chain is given

-1 1 0

by E; =| 0 -1 1|. Following the same procedure we discussed earlier, we were able
0 0 -1

to construct projector bases given by

-1 -1 1
010
_ _ T _ T _
p=|1 0. g=|0f po—(o()l), @ =(111),
0 1 0

-1 1 X X
and zl’oz[ 1]’ zqo:(o)’ 2y, =(0 1),z =(1 1),

Thus, substituting the above matrices into (5.4.38), we obtain the system matrices given
by,B,,=0,B,,=-01,A, =1,B,,=-101,A, =1A, =0,
Cy2=-29,C,; =29.96, C,, = 0.04. This leads to a decoupled system given by

Eqn = Ou,
E,1=-0lu+é,,,
£,0=—10.1u + g;,l + 05;’2,
y= _29611,2 + 29.966%1 + O.O4§q’0.

(5.4.46)

We can observe that it is easy to solve (5.4.46) and its solution coincide with that of
(5.4.45) given by y = —3.4u — 0.004u’.
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In this Chapter, we have discussed how to decouple linear constant DAEs using spe-
cial bases of projectors and their respective products. We have seen that this approach
preserves the dimension and the spectrum of the DAE in contrast with the Mérz decoup-
ling procedure discussed in the previous Chapter. This approach is robust and leads to
simple decoupled systems which can be solved using the existing numerical integration
techniques for ODEs. This means that one no longer need special numerical integra-
tion techniques for DAEs. However, this decoupling procedure and Mérz decoupling
procedure use the projected DAE (4.1.11) as the starting projected system in order to
decouple the DAE into differential and algebraic parts. We can observe that (4.1.11)
involves the inversion of matrix E, which can be computationally very expensive for
large-scale problems. This limits the use of this method on large-scale problems. In the
next Chapter, we derive another procedure which do not involve the inversion of matrix

E, . ie., we use (4.1.10) as the starting projected system.



Chapter 6

Decoupling of DAEs without matrix

E " inversion

Consider a DAE of the form

Ex(t) = Ax(t) + Bu(t), x(0) = x,, (6.0.1a)
y(@) = C'x(r), (6.0.1b)

where E, A € R™", B € R™™, C e R™ | the input vector u(f) € R™ and output vector
y() € R’ of the system. x(¢) € R" is the state vector and x,, is a consistent initial value.
In this Section, we use (4.1.10) to decouple the DAE (6.0.1a) instead of (4.1.11). Thus,
the projected system of (6.0.1a) is given by:

E[P, Pk +Qux+ - +Q, x| = Ax+Bu, 6.0.2)

where u is the tractability index the DAE (6.0.1a). This decoupling procedure is different

that proposed by Mirz [42] which involves the inversion of matrix E, which might be
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computationally expensive and impractical for large scale problems. This decoupling
procedure led to explicit differential and algebraic parts. If we use (6.0.2) as the starting
projected system, this will lead to an implicit differential part and a linear system. The
latter will be computational cheaper to decouple than the former since does not involve

matrix inversion.

6.1 Index-1 DAEs

In this Section, we assume that (6.0.1a) is of index-1, i.e., g = 1. This implies that E,

must be a nonsingular matrix. Thus substituting u = 1 into (6.0.2) , we obtain:
E,[Pyx + Qx| = A;x + Bu. (6.1.1)

Recall from Section 5.2, the decomposition of x for index-1 DAEs is given by

X = (p q) (? ), where p € R™"» and ¢ € R are the linearly independent columns of

q
projectors Py and Q,, respectively. &), € R"» and &, € R" are the projected differential

and algebraic variables, respectively and n = n, + n, is the dimension of the DAE.

Substituting the decomposed x into (6.1.1) and simplifying leads to,

(E.p o)(?’) = (Ap —Elq)[?’]+Bu. (6.1.2)

q q

T
Left multiplying (6.1.2) by (p" ") € R™", we obtain

GO
q"Bip 0)l&,) \d'Awp -4'Eiq)lg,) \§'B) B
In order to decouple (6.1.2), we need to also construct full column rank matrices

pr e R and §' € R™* such that Span(p) = Ker ¢'E| and Span(§) = Ker p'E|, that
is,p’E;q = —p"Ag =0and §'E,p = §'Ep = 0. This implies that Span(p) = Kerg" A"
and Span(g) = Ker E'. This is due to the fact that KerET ¢ Ker pTET C PgET. We
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note that § = ¢, if E is symmetric, i.e., E = ET. Thus, (6.1.3), simplifies to

P'Ep O)(&) _(p'Ap 0 () (p'B
AT AT To | % (6.1.4)
0 0)lg) §'Ap -4'Eq)lg, qB
Using the fact that E; = E — AQ, and A; = AP, (6.1.4) simplifies to an implicit
decoupled system of (6.0.1) given by

Epf;, = Apg-‘p + Bpu, (6.1.5a)
quq = Aqu + Bqu, (6.1.5b)
T T
= Cpfp + quq, (6.1.5¢)
where

E,=p"Ep A, TAp eR" ", B,=p'BeR"™ E, =-4 AqeR'""
A,=q'Ap e R” ", B, = §'BeR"""and C, = p'C e R, C, = ch € R"?,
We note that matrices Ep and Eq must be nonsingular. We can observe that (6.1.5) is
an implicit version of the decoupled system (5.2.4) and their solutions must coincide.
However (6.1.5) is computationally cheaper to derive than (5.2.4). We also note that, it
can be proved that O'(Ep, Ap) = O'f(E, A). Thus, the implicit system also preserves the
dimension and the stability of the DAE.

Example 6.1.1 In this example, we use matrices from Example 5.2.1. Using (5.2.5) and

(4.1.18), we can construct p and § such that qTAﬁ =0 and pTEtj = 0 given by

P = (I (A~ A QA - A21Q12)_1) and ¢" = (1 0), (6.1.6)

where Q,, = EJ/E,,. Substituting (4.1.18)-(4.1.20), (5.2.5) and (6.1.6) into (6.1.5), we

obtain the coefficients of implicit decoupled system given by

E,= P'Ep=E,, A, =p'Ap=(A; —(An— A QA — Ay Q) Ay,

Eq = —@TACI = (A21Q12 - Ay), Aq = ‘ITAP = Ay, Bq = @TB = B,, Cp = PTC =C,
and C, = q'C = C, - QT2C1- Hence the implicit decoupled system of (4.1.18) is given
by

Euf}; = [Au —(Ap—AQp)Ay - A21Q12)_1A21]§p
+ [Bl — (A —A;1Q)(Ay — A21Q12)_1B2]u,
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(A21Qi2 — Ap)é, = Ay &), + Bou,
y = Cv{fp + (Cg - CVII‘QIZ)gq‘

We can observe that this decoupled system and the explicit decoupled system derived in

Example 5.2.1 lead to the same solutions.

6.2 Index-2 DAEs

In this Section, we assume that (6.0.1a) is an index-2 DAE, i.e., u = 2. Thus the matrix

chain E, must be nonsingular. Substituting ¢ = 2 into (6.0.2) , we obtain
E, [P, Py + Qox + Qx| = A,PoP x + Bu. (6.2.1)

Projector Q, is chosen such that InQ; = KerE,, and P, =1 - Q, is its complementary
projector. However, in order to ensure that the projector products are also projectors,
we assume that projectors Q, and Q,; are constructed such that Q,Q, = 0 holds true.
In the previous Chapter, we discussed that for higher index DAEs there is a possibility
of obtaining a decoupled system with either a differential part or without a differential
part depending on the nature of the spectrum of the matrix pencil. Thus for the case of

index-2 DAEs, we shall consider two cases as follows:

6.2.1 Index-2 DAEs with a differential part

Assume that the matrix pencil (E, A) of (6.0.1a) has at least one finite eigenvalue. Thus

using (5.3.11), we can introduce a decomposition

&p
X = (pzpo Pzy, q) g1 | R,
fq,O
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where £, € R", &41 € R, &40 € R* and n = n,+k; +ky. Substituting the decomposed
X into (6.2.1), we obtain,

é:110 fp
(Eszpo —E,Q)Qpz,, 0) Sq| = (Aszpo “E,Qipz,, ~Eaq) &, |+ Bu.
é:q é‘:q,O

(6.2.2)

In order to decouple (6.2.2), we first introduce pr e R ' e RMX" where
ny = n,+k;, such that ﬁTEZq =0and qTE2 p = 0. This implies that Span(p) = Ker qTE;F

and Span(§) = Ker pTEg. We then construct 250 e Rho, 250 e RM™ guch that

2y P Espz,, = 0, 2y p'E,pz, = 0. This implies that Spanz, = Ker (p'E,pz, )"
T

and SpanZz, = Ker (pTEzpz ) Multiplying (6.2.2) by (z,,o p' 24, D" ij) and simplify-

ing, we obtain

&y P Eopz, 0 0)( &, &, P'Aspz,, 0 0 &) (%,p'B
0 0 0 g‘b‘ = 2F;oﬁﬁrAzpzl’n _EZoﬁTE2Pz‘IO 0 g‘b‘ + zzoﬁTB u.
0 —QTEZlequ 0 &40 qTAzPZpU —QTElepqu —qTEzll &40 @TB

From the above system, without loss of generality the implicit decoupled system of
(6.0.1) is given by

E &, = A, + B u, (6.2.3)
E &1 = A1, + B u, (6.2.3b)
B 0850 = Agoép + By + Aq(ll [5:1,1 - gq,l]’ (6.2.3¢)
y= Cpr + C§,1§q,1 + Cg,ofq,o (6.2.3d)
where
E, =%, pTEsz, R, A, =%, p'Apz, eR" ", B, =2, p'BeR"",
E, =2, p'Epz, e RN A = zqopTApzp R, B, =2, p'B e R\,

quy =-4'Aqy € Rl A0 =q'Apz, eR, B, = qTB € R0,

A, =—G"Apz, eR', C, =z p'CeRY, C,1 =7, p Ce R

and C,4=q'CeRY
‘We note that matrices E > Eq’I and Eq,O must be nonsingular. We can observe that (6.2.3)
is an implicit version of (5.3.15) and their solutions must be coincide. This decoupled
system also preserves the dimension and the stability of the DAE as its counterpart.

Since, we can observe that (6.2.3a), (6.2.3b) and (6.2.3¢) are of dimension n,, ky and kg,
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respectively and n = n,, + k| + k; is the dimension of the DAE system (6.0.1a). n,, and

ky + kg are the dimensions of the differential and algebraic parts, respectively.

6.2.2 Index-2 DAEs without a differential part

Here, we assume that the matrix pencil (E, A) of (6.0.1a) has no finite eigenvalues, i.e.,
O'f(E, A) = 0. This implies that P,P, = 0, thus (6.2.1) simplifies to,

E,[P Pt + Qyx + Qx| = Bu. (6.2.4)

Recall from Section 5.3.2 that the state-space of index-2 DAE without differential part
gq,]

é:q,()
is the dimension of the DAE (6.0.1a). Substituting x into (6.2.4) and simplifying , we

can decompose x as, X = (p q)( ] &1 € RN, £q0 € R* and this time n = ky + kg

obtain:

(E,P,p 0) (?’1

q,0

] = - (E,Q,p Eq) (?;) + Bu. (6.2.5)
q,

In order to decouple (6.2.5), we introduce ﬁT, t}T, such that ﬁTE2q0 =0, éTEle p=0.

This implies that Span p = Ker ¢'E, and Span § = Ker p' QE,. Multiplying (6.2.2) by
T

(iz qT) , we obtain:

( 0 0] (fq,l] N (ﬁTElep 0 )(fq,l) _ {ﬁTB]u
§'EPp 0)\€,0 0 §'Eyq)\éo) 4'B
Thus, from above system, if (6.0.1) is of index-2 and the spectrum of its matrix pencil

(E, A) has only infinite eigenvalues, it can be decoupled into the form

Eq,l‘fq,l = Bq,lu,
Eq,qu,O = Bq,Ou + Aqoylfé,l, (626)
T T
Y= Cq,l é:q,l + Cq,O é‘:q,O’
WheI’e ]Eq’1 — p\TEZle e Rklxkl’ Bq’l — ﬁTB e Rk])(n’l’ Eq’o — qTEzq e Rkoxko’

Bq,O = qTB c Rk()Xm, lAqOV1 - _qTE2P1P € Rkoxkl’ (:q’1 — pTC c Rklxg and
Cpo = TC € R, We can observe that n = kg + k; is the dimension of the DAE.
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Hence index-2 DAEs can be decoupled in two ways depending on the spectrum of the

matrix pencil. This is also illustrated in Example 6.2.1 and 6.2.2.

Example 6.2.1 In this example, we use the same matrices from Example 5.3.1. This
DAE has matrix pencil whose spectrum as one finite eigenvalue and it is of index-2.
Thus, its decoupled system must have a differential part. We can then use the procedure
in Section 6.2.1 to derive its implicit decoupled system. We used the procedure in section

6.2.1 to construct bases p, § and ﬁpo, 2% and obtained

10 0 +
1
|10 . 0—% 4 : 1 . 0 627)
= , 4= and 2z, = |, Z, =1 |. 2.
P=lo|” 1 10 P10 o1
01 0 1

Substituting matrices from Example 5.3.1 and (6.2.7) into (6.2.3) we obtain an implicit
decoupled system with system matrices: E, = J, + J,, A, =0, B, = (1 1).E,, = -J, - J,,

1 1 0 0 0 0
’Aq,oz[]’Bq,Oz(l 1)’A¢101=( ]’
0 A g Ji+J,

AW=OJ%|=@0%Ew=[_LL
00}
T T . . . .
C, =4 (1 1) - Cp= 7 (1-1) . Cpp = (O O) . We can observe that if we simplify this

A
Ji+Jy

implicit decoupled system, it reduces to an ODE given by

, + 1€, = (1 1)u,

(), (6.2.8)
A V) L

‘We can observe that solutions of (5.3.20) and (6.2.8) coincide. We can also observe that
(6.2.8) is an implicit version of (5.3.20).

Example 6.2.2 In this example, we use system matrices from Example 5.3.2. This DAE
has matrix pencil whose spectrum has no finite eigenvalues and it is of index-2. Thus, its
decoupled system has no differential part. Using matrices from Example 5.3.2, we con-

structed p and § using the derived procedure for implicit decoupling of index-2 system

1 10

without a differential part and obtained : p = {1] , 4= (0 0] . Substituting the column
0 01

matrices and those from Example 5.3.2 into (6.2.6), we obtain an implicit decoupled
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system without a differential part with system matrices given by

G -G 1 0 1
E, i =1LB,, =1LE;= (0 —1)’ Bao = (O)’ Aaos = (‘L)’ Cat =1 Cao = (1)

Solving the system lead to an output solution y = G+ Du + 2Lu’ which coincides
with that in Example 5.3.2.

6.3 Index-3 DAEs

In this Section, we assume that (6.0.1a) is an index-3 DAE, i.e., u = 3. Thus the matrix

chain E; must be nonsingular. Substituting 1 = 3 into (6.0.2), we obtain
E;[P,P Pox’ + Qux + Q,x + Qyx| = A;P P Pyx + Bu. (6.3.1)

Projectors Q; is chosen such that InQ; = KerE; and P, = 1 -Q,;,i = 0,1,2 is its
complementary projectors. Also for this case , we assume that Q;Q; = 0, j > i holds
true. For the case of index-3 DAEs we can also have two possibilities depending on the

spectrum of the matrix pencil (E, A) as follows:

6.3.1 Index-3 DAEs with a differential part

Assume that the matrix pencil (E, A) of (6.0.1a) has at least one finite eigenvalues, i.e,
O'f(E, A) # (. Thus from Section 5.4.3 for the case of index-3 DAE with differential

part, x can be decomposed as

&
&
Enl
£a0

n k k k
X = (pzpoz,,1 P2y, 2, P2y, q) EpeRY, &, eR?, & ERY, E o eRY.
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Substituting x into (6.3.1) and simplifying, we obtain

&)\
I
£
&0

&

&y
= (0 Aspz, 2, —EsQupz2, 2, —E5Qipz,, —Esq) ;2 +Bu (6.3.2)

q,1

gq,()

(EstP.pzpozp, E;P,P pz, z, —E;Q,Q,pz,, 0)

In order to decouple (6.3.2), we construct full column matrices in three steps below.

(i) First construct p € R™, 4" € R"*" such that p' E;q = 0 and §'E;p = 0. This im-
plies that Span(p) = Ker (E3q)T and Span(§) = Ker (E%pO)T = 0. (ii) Next,we construct
column matrices 2IT,O e R"™0, 220 € R guch that Zp, P'E; pzg, = 0and

2g, P Espz, = 0. TThis impliTes that Span(z,,) = Ker (p"E;pz, )" and ) )
%)an(zio)xnz Ker (p E3A ng%) A.T(m) Finally, we conAs;rli(;t (A:;)Iumn matrices 2, e R"» "1‘ s
2, €eR2TH such that 2 2p, P E3pzp0qu =0and 24,2p,P E3pzp0zp1 = 0. This also im-
plies that Span(z,, ) = Ker (2, p'Espz,,z,,)" and Span(z, ) = Ker (2, p'Espz, 2,)"-

T
Thus left multiplying (6.3.2) by (25, 25,5" 25,25 5" 25,6 ¢') and simplifying leads to

2, 2, P'EsP,P pz, 7, 0 0 0\(¢,
0 0 0 0f£,2] _
0 2, P'EsP,P pz, 7, 0 0|]&,.
0 §'EsP,Pipz, z,  —4'E;Q)Qpz, 0)¢,,
AT AT AT AT AT AT
Zp, Zp P A3pzp0z,,] 0 0 0 ‘»fp Zp, Zp P B
2T 2T AT 2T 2T AT 2T 2T AT
quTzl,Of A»;pz,,oz,,l —quszof E3Q2pzp0zql . 0 0 &2 N quszof B “
ﬁ‘lof A3pzp0z,,1 _zqof’ E3Q2pzp0qu —2%{7 E3Q|quo TO fqvl zquﬁ B
4 Aspz, 7 -4 E;Q,pz, 2, -4 E;Q,pz,, -G E;3q0)\&,0 qB

Using the above system, without loss of generality the implicit decoupled system of
(6.0.1) is given by
E &, = A, +Bu,
E 28, = A8, +Bu,
E & =78, +B u+E, &,+ Aquzf:],z’ (6.3.3)
E 0,0 = Ao, + B ou + qu'zfq,z + quglfq,l + Aqoﬂzft;,z + Aqu;,la
y= C}f,, + Cg,zfq,z + Cg,lfq,l + Cg,ofq,o,
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where

EP = 2;1 ﬁloﬁTE3P2P1sz0zP1 R, AP = 2;1 2ZoﬁTA3PZI’0zl71 eR" ™, BI’ = 2171 ﬁzoﬁTB e R,

E,= 2; 2;0ﬁTE3Q2PZPOZq, e R, A= quﬁzoi’TA3PZp0Zpl e Rk, B, = 2;[ EIT,UﬁTB € Rk,

E,i =2, P'E;Qupz,, € R, Ag = 2 P APz, 2, € RO, B, =2, p'B e R"*,

By, = 24, P EsQup2,,2,, € R, Ay, = ~24, D" EsP P pz, 7, €RVE B ) = Eyg e RO,

Ago = QTA3pzp0zm € R, B,  =§'B e R0, E,, = —thE3szzp0qu € Rhoka
E,  =-4"EQ pz, e RV, A, = —0"EP,P pz, z, eRO% AL = GTE,QQ,pz,, € R,
Cya= CTpozpoqu eRYY, Cyi= CTPozqo e R, C)o=Clgy e R

6.3.2 Index-3 DAEs without a differential part

Here, we assume that the matrix pencil (E, A) of (6.0.1a) has no finite eigenvalues, i.e.,
O'f(E, A) = 0. This implies that P,P,P, = 0, thus (6.3.1) simplifies to,

E;[P,P Pox’ + Qux + Q,x + Qyx| = Bu, (6.3.4)
Also from Section 5.4.3 for the case of index-3 DAEs without differential part, x can be
decomposed as x = (pz,, pz,, 1) i:? L€, €RR £, eRY £ e R, Then substituting x into
(6.3.4) and simplifying we obtafr?o
&) £
(EsPopz,, —E,QuQip2,, 0)|£,1| = (-EsQupz,, ~EsQipz,, —Ergy)|£, |+ Bu. (6.3.5)
£00 )

In order to decouple (6.3.5), we need to construct two pairs of full column rank matrices.
This is done as follows: We first construct p* € R, §' € R*" such that p'E;q = 0
and éTE3 p = 0. This implies that Span(p) = Ker (E3q)T and Span(g) = Ker (E; pO)T.
We then construct 2;0 e R, 24 € R such that EIT,O p'E;Q, pzg, = 0and
£q,P"E3Q,pz,, = 0. This implies that Span(z,, ) = Ker (p'E;Q, pz,, )" and

T
Span(z,,) = Ker (p"E3Q,pz,,)". Thus left multiplying (6.3.5) by (2, p" 25 p" ¢') and
simplifying, we obtain

0 0 0)(£,2 -2, P"E;sQ,pz,, 0 0 £,) (2,,0'B
2 PTEsPypz, 0 oll¢,| = 0 2 BEQupz,, 0 ||&. |+ |2 B .
‘iTE,szI’ZpO —@TE3QOQ1quOO €40 _QTEanI’ZpO _‘iTE3Q1quO _qTE3‘I &40 ‘jTB
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From the above system, without loss of generality the implicit decoupled system of

(6.0.1) is given by

E ¢, =B, u,

_ /
Ep1&g1 = Bou+ Ay &0,

(6.3.6)
/ /
Egofq0 = Boott + By £oo + By £+ Ay Eo0+ Ay Eq1s
_ T T T
y= Cq,gq,Z + Cq,l g1t Cq,(fq,o’
where
E,, =2, p'E;Q,pz, € R B , =2, p'B e R, E,, =2} p'E,Q pz,, € R,
quyl = fﬁnﬁTB € Rklxm, AqL2 - —ﬁnﬁTEaPzPZm c Rklxkz’ Eq,() - qTE3q0 c Rk(»ko,
B,, = ¢'B e R, A,, = -0'EP,pz, eR0C A = 4TEQ,Q,pz,, € R0
qu,l = —qTE3Q1pqu € RO, E'Io,z = —qTE3Q2pz,,0 e R, C;Z = CTPUZP() e R2X,
C,, = CTPquO € RkxC and CTy=C"g, e RkoxC

Example 6.3.1 In this example, we use matrices from Example 5.4.1. This DAE is of
index-3 and its matrix has at least one finite eigenvalue. Thus following the procedure
in Section 6.3.1, we can construct the decoupling column matrices given by

T

0
1000000
0 100000
0100000 L 010000
T+ 0010000 T 3L+g T
P = , g = 0 , 21 =1000100],
0001000 2o
0 000010
0000100 o2
0000001 _%?W> 000001
0
0
0 10000 0
. -L| . |o1000
W o T 00100 7|0
0
0 00010 |
1

Substituting the above column matrices and those from Example 5.4.1 into (6.3.3) , we
obtain an implicit decoupled system with system matrices given by

100 0 0 0 10

0
010 0 0 0 01 0

E - A = B,=| | Ea=04,,=(0000),B,=0F, =L
0

2 > - m m >
Pojoom o 7 =82 £2 00

00 0 m, @800
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A,=(0000),B,,=0,E,, =04, =0,E,= (L) Aw=(0000),B,=0E, =0,

my(3L+g) 0,2

g B o T_0100 T_O T_O T_0
E,, =357, =04, =-35.C= 0000 ,Cpo = ) .G,y = 0 . Cho = ol We can

observe that the system can be simplified to an ODE system given by

100 0 0 0 10 0
oroof, | O 0 01 0
00m 0 p__%%()ogp-'-]u’
000 m o am (6.3.7)
- , 3.
2 gh & () 0
—01005
Yloooo)”

We can observe (6.3.7) is an implicit version of (5.3.20) and their solutions coincide.

Example 6.3.2 Using matrices from Example 5.4.2 and following the procedure for the
case of index-3 DAEs without a differential part, we construct the decoupling column
T

matrices given by
T
00 T .
T AT 5T 0 .o V2
p=(10f,q = ’zlfn:l ’Z‘I():L.
01 V2

Substituting these column matrices and those from Example 5.4.2 into (6.3.6), we obtain

—_— L W—

an implicit decoupled system with system matrices given by:

1 1 1 1
E,=-1,B,=00E =—B =—— A =—-—E =—,
) q.2 q.1 NG g1 10V2 q12 V2 9,0 3
17 1 1 1 1
Bq,o - ?’ E‘Io,z = §’ E‘Io,] = §’ AQo,z = _5’ A‘Io,l = _5'

Hence the implicit decoupled system of this DAE is given by

—fq’z = Ou,
—Lf = Lu — Lg’
V27 0v2 2T

1 17 1 | 1, 1,
_gfq,O = ?u + g‘fq,Z + gé:q,l - gé‘:ql - gé‘:q,l’

y= _29§q,2 + 29966(171 + 004§q,0

After solving the above system leads to an output solution y = —3.4u — 0.004u" which

coincides with that obtained in Example 5.4.2.
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6.4 Comparison of implicit and explicit decoupling methods

In this Section, we compare the no-inversion decoupling procedure discussed in this
Chapter and the inversion decoupling procedure presented in Chapter 5. We call the
no-inversion and inversion procedures, the implicit and explicit decoupling procedures,
respectively. Let us first generalize the implicit decoupled system as follows. Assume
(6.0.1) is an index-u DAE. If the spectrum of the matrix pencil has at least one finite
eigenvalue, then the DAE can be decoupled implicitly as

E,&, = A€, +Bu (6.4.1a)
L8 =AgE, - L +Bu, (6.4.1b)
y=C¥§,+Cié, (6.4.1¢)

where L is a nilpotent matrix of index p. L, is a non-singular lower triangular matrix
with block diagonal matrices for 4 > 1. £, € R", &, € R™, A, € R, B, € R"""
and C, € R C, e R, And, if spectrum of the matrix pencil of (6.0.1) has only
infinite eigenvalues then (6.4.1) simplifies to

- Lf; =L, +Bu, (6.4.2a)
y= Cg &, (6.4.2b)

For comparison with the DAE (6.0.1), we can rewrite the implicit decoupled systems

either (6.4.1) or (6.4.2) in the descriptor form given by

E¢ = A¢ + Bu, (6.4.3a)
y=C'¢ (6.4.3b)

N q q q
the spectrum of the matrix pencil (E, A) has at least one finite eigenvalue and

E=-LeR™ A=-L, eR™ B=B,eR™,C=C, ¢ R™, if the spectrum

of the matrix pencil (E, A) has no finite eigenvalues. We can observe that this form also

where | = E, 0 ERnxn’A: A, 0 ER"XH,E: B, ERnxm,C: C, ER”XK.H‘
0 -£ A, -L, B C

reveals the interconnection structure of the DAE (6.0.1). Moreover it can also be proved
that systems (6.0.1) and (6.4.3) are equivalent. This implies that also their matrix pencils

(E,A) and (E, A) are equivalent, thus they must have the same spectrum. If we consider
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DAEs whose matrix pencil (E, A) has at least one finite eigenvalue, we can show that
they have same spectrum, since we can easily show that det(AE — A) = det(/lEp - Ap),
since det(Lq — AL) = (1)". This identity shows that the finite eigenvalues of the mat-
rix pencil (E, A) coincide with the (possibly complex) eigenvalues of the matrix E;lAp
of the differential part, which are exactly n,, counting their multiplicity. This implies
that the differential part of the implicit decoupled system also inherits the stability prop-
erties of the DAE (6.0.1a). Hence both the implicit and explicit decoupling procedure
preserves the dimension and stability of the DAE. If we compare the descriptor forms
(5.4.34) and (6.4.3), they coincide if E p = I and Lq = I. The main difference between
these two procedures is the computational cost involved in deriving the respective de-
coupled systems. The explicit decoupling is the most expensive since its decoupling
procedure involves inversion of matrix E,, which can be computationally very expens-
ive. We note that both decoupling procedure can lead to a complete decoupling, that
is, when matrix A, vanishes if one uses the so called canonical projectors proposed by
Mirz [42]. In Example 6.4.1, we compare the computational cost of the explicit and

implicit decoupling procedure using index-1 power system models.

Example 6.4.1 In this example, we use index-1 power system models obtained from
[54-57] to compare the computational cost of the explicit and implicit decoupling meth-
ods of DAEs. They are all index-1 DAEs of the form (6.0.1). We were able to decouple
them into n,, differential equations and n,, algebraic equations, where n = n, + n, is the
dimension of the DAE using both the explicit and the implicit decoupling methods. We
compared the time both methods took to generate the matrices of their respective de-
coupled system as shown in Table 6.1. The experiments were done using Matlab2012b
on a laptop of 6.00GB of RAM with 64 bit operating system. From Table 6.1, we can
observe that the implicit decoupling procedure takes far less time to decouple the DAE
than the explicit decoupling method. We in fact gain more than 85% times reduction
for all the power systems. We can also observe that for the large examples the explicit

method fail to decouple the system in the allowed computational time.
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Table 6.1: Computational cost of implicit and explicit decoupling

Systems  # inputs/# outputs  Decoupled model Comp. Cost (Seconds) % Time Reduction
n #inputs #outputs  n, n, Explicit method Implicit method

40366 2 2 5727 34639 - 20.9 100.0
40337 2 1 5723 34614 - 20.5 100.0
21476 1 1 3172 18304 98.5 5.5 89.4
21128 4 4 3078 18050 794 5.0 88.1
20944 2 2 3012 17932 76.9 4.6 88.8
20738 1 6 2940 17798 82.5 49 88.7
16861 4 4 2476 14385 58.7 4.4 86.0
15066 4 4 1998 13068 53.8 3.9 86.6
13309 8 8 1676 11633 324 1.7 89.9
13296 46 46 1664 11632 29.0 1.9 88.0
13275 4 4 1693 11582 29.2 1.9 88.0
13250 1 1 1664 11586 28.8 1.7 88.7
13250 46 46 1664 11586 28.7 1.9 87.9
13251 28 28 1664 11587 28.6 1.7 88.7
13251 1 1 1664 11587 284 1.8 88.3
11685 1 1 1257 10428 23.8 1.3 89.7
11305 4 4 1450 9855 24.1 1.7 86.9

9735 4 4 1142 8593 20.8 1.3 88.0

7135 4 4 606 6529 14.4 1.0 86.5

From this experiment, we can conclude that the implicit decoupling method is com-
putationally cheaper to use than the explicit decoupling method. In Chapter 5 and 6,
we have derived two decoupling procedures for decoupling linear constant DAEs into
differential and algebraic parts using special bases of projectors. Both procedures pre-
serve dimension of the DAE and the spectrum of the matrix pencil (E,A). One may
wonder wether the construction of the special bases of projectors is numerically feasible
especially with large-scale problems. Fortunately, the same procedure proposed in [66]
to construct projector onto the nullspace of a singular large sparse matrix can also be
used to construct these bases more efficiently. Also most of the applications that lead
to DAEs, have special structures of matrix E and A, thus one can easily be able to con-
struct these bases explicitly. However some applications such as the circuits problems
which are modeled using the incidence matrices, we recommend to use the incidence
matrices to construct these bases instead of using singular matrix E and A since these
matrices may be ill-conditioned. Since the main objective of this thesis is to develop
robust MOR methods for DAEs. We use the explicit and implicit decoupled systems
derived in Chapter 5 and 6, to develop MOR methods for DAEs. This is discussed in
Chapter 7 and 8, respectively.
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Chapter 7

Index-aware Model Order
Reduction (IMOR) method

Some of the content in this Chapter can also be found in our papers [1, 2, 6]. In this
Chapter, we introduce the Index-aware model order reduction method which can be
abbreviated as IMOR method. We use the decoupled systems derived in Chapter 5 to
develop the IMOR method. Consider DAEs of the form

Ei(f) = Ax(r) + Bu(n), x(0) = x, (7.0.1a)
¥(0) = C'x(1), (7.0.1b)

where E, A € R™", B € R, C e R™ | the input vector u(f) € R™ and output vector
y(@) € R’ of the system. x(f) € R" is the state vector and x,, is the initial value. The
number of state variables # is called the order of system or the state-space dimension.
m and ¢ are the number of inputs and outputs, respectively. Before deriving the IMOR
method we propose a method which can be used to reduce the algebraic parts of the

decoupled system. This method is presented in the next Section. We call this method the
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Algebraic Elimination (AE) method. The main idea of the AE method is to eliminate

algebraic variables of a given DAE which do not contribute to the output solution.

7.1 Algebraic Elimination MOR method

In this Section, we discuss the reduction of the algebraic parts of the decoupled system,
if the decoupled systems are derived from Chapter 5. This is done using reordering
techniques and then eliminate algebraic variables which do not contribute to the output

solutions.

7.1.1 Index-1DAEs

Assume (7.0.1a) is of index-1 then it can be decoupled into the form (5.2.4) given by

&, =A¢,+Bu, (7.1.1a)
g =A%, +Bu, (7.1.1b)
y=Cpé, +Ché,, (7.1.1c)

where A, € R B, e R"", A e R B, eR"" and C, e R"*, C, e R"*",
Let us assume Cq # 0 otherwise the DAE can just be reduced to an ODE (7.1.1a) of

dimension n,,. Consider the algebraic subsystem of (7.1.1) given by

&, =A%, +Bu, (7.1.2a)
¥y, = Cié,. (7.1.2b)

The algebraic reduction of (7.1.2) can be done as follows. Assume Cq has at least one

zero row, i.e., the row rank of C, is less than n,. Let P, € R"*"¢ be a permutation

"
. _ qu ~ ™l _plz _ g‘ll

matrix such that P, C, = o I where C, € R™" and also let§, = P, &, = |7 [,
a2

where £, € R, §, € R% " and Q, = P,_TIT. Then A, and B, can be partitioned as

A B - ~ .

_ q _ q ™>n (n,—T)Xn ™m

QﬂlAq—(A‘]andQ B —(El],whereAqleR P, queR q P, BqleR ,
92 9>

ﬁqz e R ™" Hence (7.1.2) can be reduced to a reduced-order algebraic system of
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dimension 7 < n, given by

& = Ay 6y B,

e (7.1.3)
yp = CQI"{:‘]I'

Thus, system (7.1.1) can be reduced to a reduced-order model of dimension n,+71<n

given by

& = Ay + B,
g, =A, ¢ +B,u, (7.1.4)
y=C,+Cé,.

Hence (7.1.4) is AE reduced-order model of (7.0.1).

7.1.2 Index-2 DAEs

Assume (7.0.1a) is a DAE of index-2. If we consider the case of the index-2 DAEs
whose matrix pencil with spectrum having at least one finite eigenvalue. Then, the DAE
(7.0.1) can be decoupled into the form (5.3.15) given by

4 —
& =A,¢,+Bu,
é:q,l = Aq,lé:p + Bq,l”?
_ /
fq,o = Aq,ng + Bq,Ou + A‘Io,lgq,l ’

_ T T T
y= Cpfp + Cq,l g1t Cq,qu,O’

(7.1.5)

where A, € R B, e R"*" A | eR" " B e R A e R,
B, € Rk2Xm, A, € Rkt and C, e R C,i € RMX¢ C,o¢€ R**C_If we consider

only algebraic parts of the system (7.1.5), we obtain an algebraic subsystem given by

Ea1 = Ag1&p + B, 0, (7.1.62)
£0 = Agof, +Boou + Ay &1, (7.1.6b)
Yq = C;F,lfq,l + C;F,ofq,o- (7.1.6¢)

We can observe that, if C, | = 0 and C,, = 0, then the DAE (7.0.1) can be reduced to
an ODE (7.1.6a) of dimension n,. If C,; # 0and C,p =0or C,; =0, A, =0and
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C,0 # 0 then the DAE (7.0.1) can be reduced to an index-1 DAE of dimension n,, + k;
and n, + ko, respectively. If (7.1.6) is reduced to an index-1 DAE. Then, we use the
same procedure in the previous Section to further reduce the algebraic parts. Assume
the above conditions are not satisfied then the algebraic subsystem (7.1.6) can be re-
duced as follows. We assume Cq, | € RF*C and C%Rk“x{ have at least one zero row, i.e.,

the row rank of C,; and C, is less than k; and k,, respectively. First, we compute the

permutation matrices V,, W, € R*** such that WIC 70 = ( q,,O)‘ Then, we have par-
’ 0

. B A .
titions V, B, = ( q“o] VoA = (Aq]] . Next, we construct another set of permutation
2,0 ()

. kyxk A‘Io 10 T C 1
matrices P, Q, € R"™ such that VA, Q. = w ol Q,C,, = z)l’ . Then,

g,
A‘102|,1
A B . £
we have a partition P;A | = [Aql’l] . P.B, = (Bql’l)' Ifweleté, | = Q &, = [équ’l],
q1.2 4,1 f‘12»1

§q|,0

2,0
ng,o € R*™™_ Then left multiply (7.1.6a) and (7.1.6b) with P, and V,, respectively.

We obtain a partitioned system of (7.1.6). We can then eliminate the algebraic variables

where éql’l eR™, 5[1271 e RN and E,0=WiE o= ( ], where 5611,0 eR™

qu’l and ng,o which do not contribute to the output solution (7.1.6¢c). This leads to a

reduced-order model of dimension 7| + 7, < n, given by

Ea1=Ay 1€, +B, u, (7.1.7a)
£.0 =g 06, + B, U+ A, & 1, (7.1.7b)
T T
qu = CqT,lé‘:qT,l + CqT,quT,O’ (7170)
where Bq,,l = B‘h’l € RTlxm’ Aqrao = A‘Il € RTZX”F’ A‘IOT,I = A‘I(Jll,l € RTZXTI and

C,1=C,, ¢ RT1%¢, C,0o=C,o€ R™*‘, Thus the DAE (7.0.1) is reduced to a

reduced-order model of dimension n, + 7, + 7, < n given by

4 —_—
&=A,5,+Bu,
g1 = Ag 18, T By 1,
_ /
€40 = Ag 05y + By o + Ay &g 1,

_ T T T
y= Cpfp + qu,l qy1 + qu,quT,O'
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Example 7.1.1 In this example, we consider the decoupled systems of index-1 DAE
model generated in Table 6.1 using the explicit decoupling procedure. Recall, we were
able to decouple these DAEs into n,, differential equations and n, algebraic equations,
where n = n, + n, is the dimension of the DAE. We cam then apply the AE method to
these decoupled systems in order to reduce the number of algebraic equations. In Table
7.1, we can observe that the algebraic equations of the decoupled power systems are
greatly reduced. In fact, we obtain an overall reduction of more than 85% as shown in

last column of Table 7.1.

Table 7.1: Algebraic Reduced models of power systems
Systems  # inputs/# outputs ~ Decoupled model ~Alg. Reduced model Reduced system % Reduction

n #inputs #outputs  n, n, n, T n,+7

40366 2 2 5727 34639 5727 8 5735 85.8
40337 2 1 5723 34614 5723 6 5729 85.8
21476 1 1 3172 18304 3172 34 3206 85.1
21128 4 4 3078 18050 3078 16 3094 85.4
20944 2 2 3012 17932 3012 8 3020 85.6
20738 1 6 2940 17798 2940 0 1755 91.5
16861 4 4 2476 14385 2476 16 2492 85.2
15066 4 4 1998 13068 1998 16 2014 86.6
13309 8 8 1676 11633 1676 0 1676 87.4
13296 46 46 1664 11632 1664 92 1756 86.8
13275 4 4 1693 11582 1693 16 1709 87.1
13250 1 1664 11586 1664 1 1665 87.4
13250 46 46 1664 11586 1664 46 1710 87.1
13251 28 28 1664 11587 1664 0 1664 87.4
13251 1 1 1664 11587 1664 0 1664 87.4
11685 1 1 1257 10428 1257 4 1261 89.2
11305 4 4 1450 9855 1450 16 1466 87.0

9735 4 4 1142 8593 1142 16 1158 88.1

7135 4 4 606 6529 606 16 622 91.2

Example 7.1.2 In this example, we use RLC network descriptor models of electric
power grids obtained from [17] and PEEC model of dimension n = 480 from [49].
These are all index-2 DAEs of the form (2.3.1). We were able to decouple these models
into differential and algebraic parts using the procedure presented in Section 5 and then
used the AE method to reduce the algebraic parts. The results are shown in Table 7.2.
We can observe that most of the algebraic equations are eliminated, although we do not
gain too much overall reduction since these DAEs have more differential equations than

the algebraic equations.

The AE method does not reduce the differential part and the algebraic part is not always

completely reduced. Thus, the AE reduced-order models must be further be reduced
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Table 7.2: Algebraic Reduced models of RLC systems
Systems  # inputs/# outputs ~ Decoupled model ~Alg. Reduced model Reduced system % Reduction

n #inputs  # outputs n, ky ky n, T T, n,+T+7
4182 1 1 4028 35 119 4028 O 1 4029 3.7
2182 1 1 2028 35 119 2028 O 1 2029 7.0
1182 1 1 1028 35 119 1028 O 1 1029 12.9
682 1 1 528 35 119 528 O 1 529 22.4
4182 3 3 4028 35 119 4028 O 3 4031 3.6
2182 3 3 2028 35 119 2028 O 3 2031 6.9
1182 3 3 1028 35 119 1028 O 3 1031 12.8

682 3 3 528 35 119 528 O 3 531 22.1

480 1 1 181 61 238 181 O 1 182 62.1

using the Index-aware MOR method.

7.2 Index-aware MOR method

In this Section, we present the Index-aware MOR method which can be abbreviated as
the IMOR method. This MOR method was first proposed in [1, 2] for the case of index-
1 and -2 DAE:s, respectively and its generalization in [6] which we called the GIMOR
method. The IMOR method uses the system matrices from the decoupled systems de-
rived in Chapter 5. This is done by reducing both the differential and algebraic parts
separately of the decoupled systems. We use the conventional MOR methods to reduce
the differential part and we have developed new methods that reduces the algebraic part.
For the algebraic part, we first apply the Algebraic Elimination (AE) method proposed
in the previous Section so that we can eliminate some algebraic variables which do not
contribute to the output solution. We note that this idea is new from what we proposed
in [1,2, 6], it greatly increases the efficiency of the IMOR method. The main motivation
of the IMOR method is the need to develop computationally efficient methods which can
reduce higher index DAEs. We are not the only people who have attempted to develop
MOR methods specifically for DAEs by first splitting them into differential and algeb-
raic parts. Some of the recently developed MOR methods for DAEs, have already been
discussed in Section 3.3. The most successful and accurate MOR methods for DAEs
are the balanced truncation and interpolatory projection methods for DAEs. However
their splitting procedure is based on spectral projectors which may be numerically in-
feasible, see [25,45]. Moreover, the spectral projectors are not sufficiently good tools

on appropriate generalizations for variable coeflicient linear DAEs and nonlinear DAEs,
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respectively [42]. This gives our decoupling procedure and the IMOR method an ad-
vantage over the existing MOR methods for DAEs since it is based on projector and
matrix chain introduced by Mirz [42] which are extendable to variable coefficient linear
DAESs and nonlinear DAEs, respectively. Thus the IMOR method can also be extended

to nonlinear DAEs.

7.2.1 Index-aware MOR for index-1 DAEs

Assume (7.0.1a) is an index-1 DAE, then its explicit decoupled system can be written
in the form (7.1.1). Strictly separating the decoupled system (7.1.1) into differential and

algebraic parts leads to

g; =A¢,+Bu,

T (7.2.1)
Yp=Cpéps
and
&, =A%, +Bu, (7.2.2a)
¥y, = Cié,. (7.2.2b)

where the output equation of the DAE can be reconstructed as y = y, + y,. Then, the
IMOR method for index-1 DAE can be derived into the following two steps:

(a) Reduction of the differential part: Here we consider the differential subsystem
(7.2.1). This subsystem can be reduced by convectional MOR methods such as
those presented in [3,9,45,58]. In this Section, we restrict ourselves on the Krylov
subspace based methods and the method of choice will be the PRIMA method
[49]. Here we seek a reduced-order model of (7.2.1) given by

: (7.2.3)

where A, € R/, B, € R and C, € R, such that ry < n, The
" "1

approximation error y >~V and Hp(s) - HI7 (s) must be small with respect to
" n

a specific norm. In the frequency domain, this means that the transfer function
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(b)

of (7.2.3) is given by Hp (s) = C; (sI — Ap )_IBP approximates Hp(s) of
1 " " "l

(7.2.1) well. The reduced-order subsystem (7.2.3) can be obtained via projection

as follows. We first construct n,, X rym matrix V, that approximates the original

state-space &,(1) by V&, and then enforce the Galerkin condition
"

T ’ T
Vo (fop — AV, — Bpu) =0. ¥, =GV, -

This leads to a reduced-order model (7.2.3) with the system matrices

_yT _yT _vT Ty _
Aprl = VoA Vp Bprl = VB, Cprl =V,CpandV,V, =1,

The projection matrix V,, determine the subspace of interest and can be construc-

ted in many different ways, see [3, 9,45, 58]. If, we apply the Arnoldi process,

based on the Krylov subspace

K., M,,R,) := Span{R,,M,R,,,--- \M

-1
i . s R <n (7.2.4)

P = Mps

where M, := (s)I-A )", R, := (sgI-A,)"'B,, and 5, € C\ (A ) which can be
chosen arbitrary. We denote by V, € R"»*"1™ the matrix of an orthonormal basis
for K, (M,,,R,), so that V)V, = I

rym:

Reduction of the algebraic part: In this Section, we derive the reduction pro-
cedure for the algebraic subsystem (7.2.2). For this case, we seek a reduced-order

algebraic subsystem of the form

&, =Aq &, TBg U (7.2.5a)
_ T
Ya, = Ca, %0, (7.2.5b)

where A, € R2*", B, € R and C, € R2%¢, r, < n,. This can be done
I FZ }’2
as follows. If we substitute £, = V&, into (7.2.2a), we obtain
"

& =AN,6, +Bgu. (7.2.6)

From (7.2.6), we can observe that the reduction procedure for the differential vari-
ables induces a reduction for the algebraic variables, where & 4 1s the approximation

of &, induced by the reduction of £,. According to [1], this relations shows that Eq
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lives in the subspace V, given by
YV, :=Span{B,, A, V,} = Span{B } + A /K, (M,,R,). (7.2.7)

We denote by r, the dimension of V, and by V, € R"”">" the matrix of an
orthonormal basis for V,, so that V;Vq =1 € R?"™"" Thus, we can represent
the algebraic solution in the form £, = Vq‘fqrz' Substituting £, = quqrz into (7.2.6)
and (7.2.2b) leads to a reduced-order algebraic subsystem of the form (7.2.5) with
system matrices

T T T
A, =V,ANV, B, =V;B, and C, =V,C,

4ar, q°7q " p’ 4r,

Hence the IMOR reduced-order model of (7.0.1) is of dimension r; + r, << n and

is given by
&, = Ap &, + By, W (7.2.82)
£, =A, &, +B, u (7.2.8b)
»,=Cp & +Cq &, . (7.2.8¢)

7.2.2 Index-aware MOR for higher index DAEs

Here, we generalize the IMOR method for higher index DAEs whose decoupled systems
with or without a differential part. We also present a theoretical explanation why the
conventional MOR method fail for higher index DAEs and under which conditions they

can be used. We consider the two cases of decoupled systems as follows.

Decoupled systems with a differential part

Here, we assume that (7.0.1a) is of index-u with the spectrum of its matrix pencil with

at least one finite eigenvalue. This DAE can be decoupled in form (5.4.17) given by

£,=A,+Bu,
—LE) = A&, — &, + B, (7.2.9)
y= C;«fp + C:]qu,
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where £, e R"?, A, e R, B, e R", £, € R", A, € R"™", B, € R""",

L € R"’"4 is a strictly lower triangular nilpotent matrix of index-u. In Section 3.2.1,
we discussed the limitation of the conventional MOR methods to DAEs using numerical
examples. Here, we theoretically explains why these methods indeed fail and what are
their limitation on reducing DAEs. This is done as follows. Taking the Laplace transform

of (7.2.9) and simplifying, we obtain

Y(s) = Cp(sI- A,)"'B,U(s) + Cj(I - sL£)'[A,(sT- A,)"'B, + B, |U(s)

+ Cy(I= s [A (5T = A,)7'£,(0) — L&, ()] + Co(sT - A,)'£,(0).
(7.2.10)

We already know that £,(0) can be chosen arbitrary while &, (0) has to satisfy certain
hidden constraints. Thus setting §p(0) = 0, then (7.2.10) simplifies to

Y(s) = Cp(sT- A,)"'B,U(s) + Ci( - sL£)'[A,(sT- A,)”'B, + B, |U(s)
— Co(1-sL)™" L£,0). (7.2.11)

In order to derive the reduced-order model using the conventional MOR methods, we
always assume vanishing initial conditions, i.e., £(0) = 0 which leads to the input-output
relation Y(s) = H(s)U(s), where H(s) is the transfer function. Then, H(s) is approx-
imated such that H(s) — H,(s) is small in the suitable system norm, where H,(s) is the
transfer function of the reduced-order model. However, from (7.2.11), we can observe
that, we can not always have this freedom for the case of DAEs since fq(O) does not al-
ways vanish to zero for higher index DAEs. This is only possible for the case of index-1
systems since £ = 0, which implies Y(s) = H(s)U(s). Thus assuming vanishing initial
condition does not affect index-1 DAEs. This the reason why conventional MOR meth-
ods lead to accurate reduced-order models for index-1 DAEs and fail for higher index
DAEs. We further explain in depth what actually destroys the accuracy of the convention
MOR methods and under which conditions can they be used. This is done as follows. If
we let P(s) := —C;(I - S.E)_I.C.fq(()), then (7.2.11) can written as

Y(s) = H(s)U(s) + P(s), (7.2.12)

where the traditional transfer function H(s) can be decomposed as H(s) = H p(s) +Hq(s),
T -1 T -1 -1 .
where H,(s) = Cj(sT - A,)"'B, and H(s) = CJ(I- s£)"'[A,(sI - A,)'B, + B | is
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the transfer of the differential and algebraic part, respectively. It can be proved that
ot S
I-s0™' =) LI, (7.2.13)

J=0

since £ is a nilpotent matrix of index u. Thus, using the identity (7.2.13), $(s) can be

written as
w2 )
P(s) := ~Cy Z LIS (0). (7.2.14)
J=0

Using the definition of fq(O) from (5.4.19) and setting & p(O) = 0, we obtain

—

pu—=1 i-

u-1
£,(0) = LAABuTD0) + Y LB u?0). (7.2.15)
i=1 k i=0

Il
(=]

Substituting (7.2.15) into (7.2.14) and simplifying, we can prove that P(s) is a polyno-
mial of degree u — 2 given by

u=2
P(s) = -Cy > Ls'Qu(0)), (7.2.16)
Jj=0
where
u=2 i-1 ) ‘ u=2 . .
Qu(0)) := LE,(0) = LA ATV 0) + ) L41Bu(0).
i=1 k=0 i=0

We can see that Q(u(0)) is also a polynomial of degree u — 2 of the form
Qm(0)) = Lu”(0) + £,uV©) + LuP ) + -+ + £, _u*(0), (7.2.17)

where {; are constant matrices. We can observe that $(s) depends on the smoothness of
u(0), i.e., u(0) must be at least u — 2 times differentiable. We observed that the conven-
tional MOR methods fail if the polynomial Q((0)) in (7.2.17) has nonzero coeflicients.
We note that even if P(s) = 0 but the coefficients of Q(u(0)) are nonzero, the conven-
tional MOR methods will still lead to wrong reduced-order models or reduced-order

models which are very difficult to solve. Hence Q(u(0)) is the hidden polynomial that
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destroys the accuracy of the conventional MOR methods when applied on higher index
DAESs. However there are some special cases where conventional MOR methods can be
applied to higher index DAEs and lead to accurate reduced-order models. This happens
when the coefficients of Qu(0)) are all zeros. This is can be illustrated using index-2
and -3 DAEs as follows.

(1) For index-2 DAEs, we substitute ¢ = 2 into (7.2.16) and we obtain
P(s) := —C,Qu(0)), (7.2.18)

where Qu(0)) = LB 44(0). We can observe that index-2 DAEs cannot be reduced
by conventional MOR methods if LBq # 0 even if P(s) = 0. But if LBq =0
conventional MOR methods can lead to accurate reduced-order models for index-
2 DAEs. This is illustrated in the example below.

Example 7.2.1 In this example, we use the system matrices from Example 3.2.1
and the two cases of control input matrix B. Both cases the DAEs are of index-2
since they have the same matrix pencil (E, A). Also since det(AE—A) = 21+3 # 0,
thus both DAEs are solvable and their decoupled system have a differential part.
These DAEs can be decoupled into the form (7.2.9). Below, we discuss the affect
of conventional MOR method on the two DAEs.

(i) Here, we use control input matrix from Example 3.2.1(i), where the conven-
tional MOR method lead to an accurate solution. This system is decoupled into 1
differential and 2 algebraic equations using the explicit decoupling method which

lead to decoupled system of the form (5.3.15) with system matrices given by
0 0 -3 -1 5
A]):_%’Bp:_%qu,l :[0]’Bq,] :(0]’Aq,0: l]’Bq’O: ’Aq,Ol :[ 01 s
3

0 1 . . .
C,=3C, = ( ] and C,, = ( ] Using these matrices, we can write the decoupled
’ 1 ’ 0

1

2

1

2
P

0000 0

0000 0

4

3

1

3

A = and

~1 400 M7=
0100 -

system into the form (7.2.9) with system matrices £ =
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2

0
0
B, = 1 anqu:
1
2

. Since, this is an index-2 DAE, the polynomial P(s) is of

S = = O

the form (7.2.18) and Q((0)) is given by Q(0)) = LB,u(0) = (000 0)T u(0).
We can observe that LBq = ( thus, the conventional MOR methods can be used
to reduce this system even if the DAE is of higher index. This is the reason why
the PRIMA method lead to reduced-order model in Example 3.2.1(i) which was

easier to solve numerically.

(ii) Here, we use control matrix from Example 3.2.1(ii), where the conventional
MOR method lead to a reduced-order model which was very difficult to solve
accurately since it needed big time steps. This system is also decoupled into 1
differential and 2 algebraic equations using the explicit decoupling method which

leads to decoupled system of the form (5.3.15) with system matrices A, = -3,

; 0 i -3 % -1 % 2 0
_ _ _130 _ _ _ 3 _ _
BP - T r Aq,l - [0]’ qul - ( 1)’ Aq,O Ik quo - 4 ’ Aq,()l - 01 ’ CP -3 qul - (1)

1 . . . .
and C, = [0]‘ Using these matrices, we can write the decoupled system into the

W= Wi

form (7.2.9). We observe that £, A, and C, remains the same as in (i) but B,
changes to B g = (% 1 % 4)T since we just changed matrix B. For this case Q(u(0))
is given by Qu(0)) = LB u(0) = (0 00 l)T u(0). We can observe that LB, # 0
but CQLBq = 0. From Example 3.2.1(ii), we saw that the PRIMA reduced-order
model was very difficult to solve since it needs bigger time steps even if P(s) = 0.
Thus, this agrees with our theory that conventional MOR methods cannot lead

to accurate reduced-order systems for this class of DAEs even if $(s) = 0 but

Q(0)) 0.
For index-3 DAES, we substitute & = 3 into (7.2.16), we obtain

P(s) := ~Cj[Q(0)) + s LQO))]. (7.2.19)
where Qu(0)) = [£2A B, + LB, |u(0) + £2B,u’(0). We can observe that Qu(0))

has nonzero coefficients if either LBq #0or .£2Aq # 0. Thus, these are the cases

where the conventional MOR methods will fail for the case of index-3 systems.
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Example 7.2.2 In this example, we use system matrices from Example 3.2.2,
which is a generator model of index-3. This system can be decoupled into a de-
coupled system of the form (5.4.35) with system matrices given by
Ap = _2, BP = 2, Aq,z = 0, Bq’z = 1, A 0, Bq,l = l, Cq’z = O,

g1 =
C, =0A, =1,C, =1,
0 0 1 0 0
0 1 0 0 0
0 -1 0 1 0
Aq,o = ol Bq’o it Aqo1 = ol Aqo2 = . and Cq)o = ol
0 -1 0 0 0
0 -1 0 0 1

Thus this system can also written in the form (7.2.9) with system matrices given

by

00000O0OOO 0 1 0
100000O00O0 0 1 0
01 000O0O00O0 0 0 0
0

r- 0000O0O0OO0 A:O,Blzl,czo,
-1 0000O0O00O0 4 0 ! -1 a 0
-1 00000O00O0 0 1 0
00000O0OO0O0O0 0 -1 0
00000O0OO0OO0 0 -1 1

Since this is an index-3 DAE its polynomial $(s) is of the form (7.2.19) and its
hidden polynomial Q(u(0)) is given by

T T
Qu(0)=(0110-1-100)u©®+(0110-1-100) '

Thus the convectional MOR methods when applied on this system will fail since
Q(0)) has nonzero coeflicients for arbitrary u#(0). This is the reason why the
PRIMA method lead to unsolvable reduced order model in Example 3.2.2.

In conclusion, the limitations of conventional MOR methods to reduce DAEs can be
summarized as follows. Almost all conventional MOR method aims at approximating
the so called transfer function H(s) and ignore the polynomial $(s). As a result H,(s) is
well approximated but H (s) may be inaccurate since some of its information is in $(s).
Thus most of the important information of the DAE is always lost. We have discussed
that the conventional MOR methods fail if the hidden polynomial Q(z(0)) has nonzero

coefficients. However, the conventional MOR method can be used to reduced index-1
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DAEs since their polynomial $(s) does not exist and for some special cases of higher
index DAEs, if hidden polynomial Q(u(0)) has zero coefficients. We can now see that
it is extremely difficult to check wether the conventional MOR method will work on
higher index DAESs or not. Hence, the best way to avoid this problem, is to first splitting
the DAE system into differential and algebraic parts before applying any model order

reduction method.

For the case of IMOR method. This can be done as follows. Separating (7.2.9) into

&p = Apty + B,

T (7.2.20)
¥p = Cpéps
and
—LE) = A, - £, + B, (7.2.21a)
¥ =Cié,, (7.2.21b)

subsystems. Systems (7.2.20) and (7.2.21) are the differential and algebraic subsystems
respectively. The differential subsystem (7.2.20) can be reduced by substituting
&p = V&, , where V, can be constructed using the Arnoldi process. Thus, the reduced-

order model of (7.2.20) is given by

/
&p, = Ay, By u,

T (7.2.22)
Yp, = Cp,&p,

—vT rxr _vT rxm _ vT =l
where Apr = VpApr e R, Bpr = Vpo e R and Cp = VpCp € R, such
that r < n,. The transfer function of the reduced-order differential subsystem (7.2.22)
is given by H, (s) = C[T,r(sl - Apr)_prr' Next, we seek a reduced-order model of

algebraic subsystem (7.2.21) which can be written as

~L,& =A €, —& +B,u, (7.2.23a)
Yo, =Ché, . (7.2.23b)

where A, € R™, B, € R™™  and C, € R™ 1 < n, and its transfer function can
be written as qu(s) = C:]Fr(l - er)_l[Aqr(sI - Apr)_prr + qu]. The matrices of the
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reduced-order model (7.2.23) can be constructed as follows. If we substitute £, = V&

into (7.2.2a) and rearranging, we obtain
&, = LE + AV €, +Bu, (7.2.24)

where gq is the approximation of £, induced by the reduction of £,. Equation (7.2.24)

can be written as

u—1
z k k k
= L'v,e0 +Bau®), (7.2.25)
k=0
w _ 4% ® _ & , - ,
where &,° = - and u™’ = d—;j. We can observe, that the reduction of the differential

part of the decoupled system, which confines £, to the subspace V,, spanned by V ,
then also f(k), k =1,---,u—1, belongs to the same space. Thus from (7.2.25), we

observe that for the algebraic variable &,, we have the restriction
&, €V, =K,(LRY, (7.2.26)

where R, = [B . AV p] e R"%X*+Dm We denote by V,, an orthonormal basis of V, so
that VqTVq = . We can then write §, = quqr. Substituting £, = Vqé:qr and &, = fopr
into (7.2.21) leads to a reduced-order algebraic subsystem of the form (7.2.23) with

system matrices :
T T T T,
L=V, LV, A, =VAV, B, =V,B, and C, =V,
Thus, the IMOR reduced-order model of (7.0.1) is given by
&, = Ap gy, + By,

_‘Ergér = Aqrfpr - é:qr + quua (7227)
Yr= CIT%-gpr + Cgrfqr’

with total dimension r + T < n, where r and 7 = dim(V q) are the dimension of the
reduced-order differential and algebraic parts, respectively. The transfer function of the
IMOR reduced model is equal to the sum of the transfer function of the differential and

algebraic parts given by H.(s) = H p,(s) + qu(s).
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Decoupled systems without differential part

Here, we consider the case of decoupled systems without a differential part. Assume
(7.0.1a) is of index-u with the spectrum of its matrix pencil with no finite eigenvalues.
Thus, this DAE can be decoupled into the form (5.4.32) given by

-LE, =-&,+Bu,

. (7.2.28)
y=C.é,

where £, e R", A e R™"B_ e R™" £ e R™ is a strictly lower triangular nilpotent
q q q y g p

matrix of index-u. Taking the Laplace transform of (7.2.28) and simplifying, we obtain
Y(s) = H(s)U(s) + P(s),

where H(s) = CJ(I-s£)"'B, and P(s) = Cy(I-sL)~' L&,(0). Next, we discuss wether
conventional MOR methods also fail for these class of DAEs. This is done by analyzing
polynomial $(s) as follows. Using the identity (7.2.13), H(s) and P(s) can be written as

u-l u=2
H(s)=C} Y LB/, and P(s)=-C] Y LI*'5g,(0). (7.2.29)
j=0 Jj=0

Using (7.2.15) and ignoring the differential part contribution, we can write &,(0) as

u—-1
£,0)= > LBu0). (7.2.30)
i=0

From (7.2.29) and (7.2.30), we observe that the moments of H(s) and coefficients of & q(O)
lie in the same subspace K, (L, B,). Thus approximating H(s) is enough to approximate
these class DAEs. Thus, the assumption of vanishing initial condition, used by conven-
tional MOR methods does not affect the reduced-order models of the DAEs with only
infinite spectrum. Hence conventional MOR methods can be used to reduce this class
of DAEs. We can also observe that this subspace coincides with that in (7.2.14) if we

ignore the differential components for the IMOR method. Thus, &, lies in the subspace

£,€V,=%K,(LB,),
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we denote by V, an orthonormal basis of V, so that Vqu = I. Then, we can write
&, = V&, - We can also reduce the order of the algebraic part by substituting §, = V&,
into (7.2.28). This leads to a IMOR reduced-order model of (7.0.1) which is given by

—L:&g, = ¢, + By u

T (7.2.31)
yr=Cg8y,

with system matrices constructed as
£,=V, LV, B, =V/B, and C, =V,C
r 9 g, q7q q, q-q

and its transfer function is given by H,(s) = C;(I - sL,)_qur. For comparison with
other existing MOR methods, we can rewrite the IMOR reduced-order models of either

(7.2.27) or (7.2.31), in descriptor form given by

E& =Ag +Bu
¥, = Cl¢&.,

- 1 0 ~ A 0 _ B N C _
Where El’ = [ )7 Ar = ( pr ]9 Br = ( pr) ) Cr = [ pr] al’ld § = [fpr]
0 _Lr Aqr~ _I - qu ~ Cq, 5 é‘:qr
for DAEs with differential partsand E, = -L,, A,=-1, B, = B, , C = qu and

,
&= &, for DAEs without a differential part and the transfer function of the reduced-order
model is given by H,(s) = C,(sE, — Ar)_lﬁr.

r r

7.3 Simple examples

In this Section, we illustrate the IMOR method using small DAE examples with higher

index.

Example 7.3.1 In this example, we use the decoupled system matrices from Example
7.2.1. We can recall that these decoupled systems are derived from system matrix of
Example 3.2.1, for the two cases of control input matrix B.

(i) Using system matrices from Example 7.2.1(i), the decoupled system of the index-2
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DAE can be written as

(7.3.1)

The transfer function of this decoupled system can also be decompose as

H(s) = H,(s) + H,(s), where H,(5) = 5 and H,(s) = 525 — 3 which coincides with
the transfer function of the DAE in Example 3.2.1(i) given by H(s) = CT(sE - A)_IB.
The desired output solution also coincides with that of the original DAE given by

y(@) = —%u(t)— ge_%’ [§ p(O)— % fOT u(T)e%T dT]. Next, we need to reduce this system using
the IMOR method. Before, we use the IMOR method, we need to first use the Algebraic
Elimination method for index-2 DAEs. Thus using the AE method the decoupled system

(7.3.1) can be reduced to

, 3 3
fp = _Efp - Zu’
= oo oo
gl = P u,
04 10 (7.3.2)
& — 11Y) &
g0 = _§§P out (_1 3_0)64,1’
2 -
Yr = gfp + (0 l)fq,l +&4,.0°

Then the decoupled system can be written in the form (7.2.9) with system matrices

\ ) 000 0 0 0
A,=-3.B,=-2.C,=3.L=|0 00|.A4,=|0|B,=/0].C=|1]
-1 50 -3 -3 1

We can observe that the differential part cannot be reduced any further, thus setting

V, = 1. In order to further reduce the algebraic parts, we use (7.2.26) to construct the

Krylov subspace of order-u = 2, K,(L, b,) = Span{R, LR}, where



124 7 Index-aware Model Order Reduction (IMOR) method

0 o0

T

R, = [Bq Aqu] =10 0|. Then the orthonormal basis is given by V, = (OO 1) .
1 4
273

Then the reduced-order model is of the form (7.2.27) with system matrices given by

_ _3 _ _3 _2 _ _ _4 __1 _ :
Apr = -3, Bpr = -1 Cpr =3, L, =0, Aqr = —E,qu = -7 qu = 1. We can easily

check that the transfer functions and output solutions of the reduced-order model and

original DAE model coincide. Thus the reduced-order model of this DAE is given by

- (10} . (=2 o) . (-3} . (2
Erz( ]9 Arz( i ]’ Br:( ‘11], Cr=(3}' (733)
00 -3 -1 -3 1

Hence the DAE is reduced from dimension 5 to 2 leading to an accurate reduced-order

model.

(i1) Using the matrices from Example 7.2.1(ii), the decoupled system of the index-2 DAE
can be written as

(7.3.4)

y = %gp +(01)&,, +(10)4,0.

The transfer function of this decoupled system can also be decompose as

H(s) = H,(s) + H,(s), where H,(s) = 5z and H,(s) = 525 + § which coincides with
the transfer function of the DAE in Example 3.2.1(ii) given by H(s) = CT(sE-A)'B.
The desired output solution also coincides with that of the original DAE system given by
y() = %u(t) - %e_%t[fp(O) - % fOT u(T)e%T dT]. Next, we need to reduce this system using
the IMOR method. Before, we use the IMOR method, we need to first use the Algebraic
Elimination method for index-2 DAEs. Thus, using the AE method the decoupled system
(7.3.4) can be reduced to

33
fp = _Egp - Zu7
0 1
fur = (0)§p : (ﬂu (7.3.5)

y=26,+(0 )6, + &0
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We can now apply the IMOR method as follow. The AE reduced-order model (7.3.5)
can be written in form (7.2.9) with system matrices given by
0
,C, = 1].
1

0
0|.B,=
_4
3

We can observe that the differential part cannot be reduced any further, thus we can just
set V,, = 1. In order to further reduce the algebraic parts, we use (7.2.20) to construct
the Krylov subspace of order u = 2: K,(L, b,) = Span{R, LR}, where
u o 246 ()
30 2167

0 | Then the orthonormal basis is given by V, = [ 28 ¢ |. Thus the
3 _4 01
4 3

IMOR reduced-order model is of the form (7.2.27) with system matrices given by

3 3 2 00 0 s
Ap':—E,B],’_:—Z,CP,:g,L,:(OO],A%:( ],qu:[3 .C, = (%2 1).

_4
3

000
000
-140

A, =

FN TR 8|

R, = [Bq AqVP] =

4
We can observe the transfer functions and the output solutions of the original and
reduced-order models coincide. This reduced-order model can be written in descriptor

form with system matrices given by

T
100 -3 0 0 -3 2
E ={000[.A, =] 0 -1 0|.B,=|22|.C =28 (7.3.6)
000 -3 0 -1 3 1

Hence the DAE is reduced from dimension 5 to 3 leading to an accurate reduced-order
model using the IMOR method.

Example 7.3.2 In this example, we used the same matrices from Example 7.2.2, which
is an index-3 DAE problem. This system can be decoupled as

£, =26, + 2u,

o= 0§], + lu,

gq,l = Ofp +1lu+ f(’[,Z’
0 0 1 0
o X 0 o (7.3.7)
0 -1l ol [|-1],

‘fq,{) = 0 ‘fp + 1 u+ 0 fq,l + -1 §q¢2’
0 -1 0 0
0 -1 0 0
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y=6&+06,+05,,+(000001)&,.

The transfer function of this decoupled system can also be decompose as

H(s) = Hp(s) + Hq(s), where Hp(s) = 5%2 and Hq(s) = —1 which coincides with the
transfer function of the DAE in Example 3.2.2 given by H(s) = CT(sE - A)_IB =-=5
The desired output solution also coincides with that of the original DAE given by

T
(0 = —u(®) + ¢ ¥|£,0) -2 f u(r)e’ drl.
0

Next, we need to reduce this system using the IMOR method. Before, we use the IMOR
method, we need to first use the Algebraic Elimination method for index-2 DAEs. Thus
using the AE method the decoupled system (7.3.7) can be reduced to

&, =-2¢, +2u, (7.3.82)
£,0=06, —u, (7.3.8b)
F=&,+&, (7.3.8¢)

We can observe the transfer functions and the output solutions of the original and reduced-
order models coincide. This reduced-order model can also be written in the descriptor

form given by

R A R I
00 0 -1 -1 1

Hence the DAE system is reduced from dimension 9 to 2 using the AE method. For
this example we do not need to apply the IMOR method. This reduced-order system
is solvable and its solutions coincides with the original model . We can recall from
Example 3.2.2 that the PRIMA method lead to unsolvable reduced-order model. Hence
IMOR method leads to reliable reduced-order models.

7.4 Extension of IMOR method to truncation methods

We have been more focused on moment matching methods while discussing the IMOR
method. However, the IMOR method can be extended to SVD based methods such as
the balancing and balanced approximations methods. These methods are well studied,
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see [3] and are well known to preserve stability and the existence of an a priori comput-
able error bound. It used to be difficult to apply balanced truncation methods on large
scale problems due to the fact that two matrix Lyapunov equations have to be solved
which are computationally very expensive [45]. However, recent results on low rank
approximations to the solution of the Lyapunov equations make the balanced truncation
method attractive for large scale systems. The balanced truncation method has also been
extended to reduce DAEs, see [45, 62]. We have already discussed this extension in
Section 3.3.2 and its limitation. We observed that the balanced truncation method for
descriptor systems involves solving four Lyapunov equations and it also relies on the
spectral projectors which limits its applicability to large-size and general DAEs. How-
ever, the matrix and projector chain used in the IMOR method can be extended to vari-
able coefficient DAEs and it requires only two Lyapunov equations. The extension of the
IMOR method to truncation methods is done as follows. The main idea is that instead
of using the moment matching method to reduce the differential part, we shall use the
truncation methods and this will also induce a reduction in the algebraic parts as for the
moment matching case. This implies that the reduction procedure for the algebraic part
will remain unchanged. Let us consider the decoupled system (7.2.9) of the DAE given
by

5;7 =A ¢, +Bu,
__55; = Aqu —&,+ Bqu, (7.4.1)
y= C1T7§p * ngq’

where £, e R"?, A, e R, B, € R", £, e R", A e R, B, € R""™", L e R"""
is a strictly lower triangular nilpotent matrix of index-u. We still first separate (7.4.1)

into differential and algebraic parts as follows:

"=A ¢ +B.u,
& ’T’g” b (7.4.2)
Yp = Cpéps

and

L8 =AgE, — £, + B, (7.4.32)
¥, = Cié,. (7.4.3b)
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where the output equation can be reconstructed asy =y, +y,.

7.4.1 Reduction of the differential part

Applying a state-space transformation &, = T £, does not affect the input-output beha-
vior of the differential subsystem (7.4.2). Using this transformation system (7.4.2) can

be transformed into
& =T,AT,E +T,'B,u,

- Tr = (7.4.4)
¥, =C, T8,

The simplest transformation could be chosen to be based on the eigenvalue decomposi-
. . . _ . . . 1

tion of the matrix A, given by A T, = T A, which implies that A, =T, A T ,, where
A, is a diagonal matrix of the eigenvalues of A ,. In order to truncate the transformed
system (7.4.4), we can do a reordering such that the eigenvalues occur in the decreas-
ing magnitude. Then the system can be truncated by restricting the matrix T, to the

dominant eigenvalues. This process is termed as modal truncation [58].

However, the commonly used truncation method is the balanced truncation method also
known as Truncated Balanced Realization (TBR) method [3, 58]. For the case of bal-
anced truncation method the transformed system (7.4.4) must be a balanced representa-
tion of the system (7.4.2), then we can truncate some of the state variables. A balanced
realization of a system is one in which states that are difficult (easy) to reach are also
difficult (easy) to observe. From a mathematical viewpoint, balancing methods consist
of the simultaneous diagonalization of appropriate reachability and observability Grami-
ans, which are positive definite matrices. Given a stable linear subsystem (7.4.2). The

controllability and the observability Gramians associated to the linear subsystem (7.4.2)

0 T 0 T
are defined as , = B pBIT,eAf" drand Q, = e pC;eAl’t dt, respectively.
0 0
The matrices #, and Q,, are the unique solutions of two Lyapunov equations:

T T T T
AP, +P,A,=-BB, AQ +QA,=-C.C, (7.4.5)
After finding the Gramians, we look for a state space transformation T, which bal-
ances the system (7.4.2). Model reduction by balanced truncation, requires balancing

the whole system (7.4.2) followed by truncation of the state variables. This approach
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may turn out to be numerically inefficient and ill-conditioned, especially for large-scale
problem. Hence it is much restricted on small problems. The reason is that often #,,
and Qp have numerically low rank compared to n,. Thus, they are several developed
algorithms for balancing and balanced truncation, which although in theory they are
identical, in practice yield algorithms with quite different numerical properties [3]. Some
of these algorithms are well discussed in [3]. One of the algorithm for constructing the
balancing transformation T, goes as follows. Since the (infinite) Gramians of a reach-
able, observable, and stable system (7.4.2) of dimension n,, are positive definite square
matrices denoted by #,,Q,, € R"»""». Then, they can be decomposed using a Cholesky
decomposition:

#,=U,U, and Q,=R,R), (7.4.6)
where U, € R"""» and R, € R"»" are upper and lower triangular matrices, respectively.
The eigenvalue decomposition of UZQPUP produces the orthogonal matrix K and the
diagonal matrix X which is composed of the Hankel singular values of system (7.4.2).
Then, we have

UlQ U =K, >2K! (7.4.7)

p—p—p p=p DT

They are various balancing transformations that can be derived from (7.4.6) and (7.4.7),
see [3] but we shall restrict ourselves on only one. Thus, the balancing transformation

T, e R and its inverse are
_ -1/2 1 w12 Tyr-1
T,=UK,'? and T, =3/’KIU". (7.4.8)

The procedure (7.4.6)—(7.4.8) is called balancing [58]. It can easily be shown that Tp
indeed balances the system (7.4.2) that is, T;PPT;T = X, and TEQPTP = X,. Thus
(7.4.4) is a balanced system. The next step is to truncate the system in order to obtain a

reduced-order model of (7.4.2). The balance system (7.4.4) can be written as
& =AZE +Bu,
%” ~f” P (7.4.9)
¥y, =Cpé,.

S| | =~ _ T . .
where Ap = Tp Apr, Bp = Tp Bp and Cp = TpCp. Since a transformation was

defined which transforms the system according to the Hankel singular values, now very
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easily a truncation can be defined [3]. Thus, the diagonal matrix X, can be partitioned as

Plox
advantage of this balanced truncation method over the moment matching methods, since

X 0
X = ( P1 ), where X, contains the largest Hankel singular values. This is the main
P2

now we can manually choose an appropriate value of the size of the reduction, instead
of guessing one which can be time consuming. Thus Ap, B , and C , can be partitioned

in conformance with 2 I

A =| Pu’rn B = BPI C = Cpl (7.4.10)
D ) p ﬁ ) p C B
P2 "7 P22 P> P>

and transformed variables can also be partitioned as E‘p = (EZI,EEZ)T. If we truncate

B
B P

the state variable corresponding to the largest Hankel singular values, the reduced-order

model of the differential subsystem (7.4.2) is given by

, N
&p, = Ap &y, + B, 1,

T
Yp, = Cp,&p,

(7.4.11)

_ A rXr D rxm
where Apr =A, eR™, Bpr = Bp] e R and

C, = Cpl e R and &, = ~p1 €eR,y, =7, ¢ R™". The reduced-order model
(7.4.11) is also stable with Hankel singular values given by diagonal elements of

X, =diag(oy, - ,0) witho 20y 2 --- >0, >0, where r < n,, is the order of the
reduced system (7.4.11). It is possible to choose r via computable error bound

nP
IH, - H, ll, < 2llul, > o (7.4.12)

k=r+1

7.4.2 Reduction of the algebraic part

In the previous Section, we have just reduced the differential subsystem (7.4.2) but the
algebraic subsystem (7.4.3) is unreduced. However, if we make a transformation
&, = Tpgp , where T, is the balancing transformation of the differential part (7.4.2), it

induces a balancing also in the algebraic part. Thus (7.4.3a) can be written as

-LE =AT,E, & +Bu, (7.4.13)
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where éq is the approximation of &, induced by balancing of the differential subsystem
(7.4.2). Thus, we can also partition A, = A T, as A, = (Aq“ Aqlz) corresponding to
the partition in (7.4.10). Thus, (7.4.13) can be written as

_LE:J = Aqngpr - gq +Bu. (7.4.14)

Further, (7.4.14) can be written as

p—1
g =D LA, &) +Bub), (7.4.15)
k=0

k
here 29 = <% and u® = 42 since £ is a nil ix of index-u. Thus, f
where &, = —F andu™ = o, since L is a nilpotent matrix of index-u. Thus, from

(7.4.15), we observe that for the algebraic variable & q » We have the restriction
£, €T, =%K,(LRY, (7.4.16)

where R, = [Bq Aq“] e R"*™*D e denote by T, an orthonormal basis of 7 so
that T:]FTq = . We can then write £, = T &, . Substituting &, = T £, into (7.4.14) and
(7.4.3b), we obtain the reduced-order model of the algebraic part (7.4.3) is given by

_‘£r§;r = Aqré‘:pr - fqr + quu’ (74173)
Yq, = Co . (7.4.17b)

where
_ T TXT _ T} T™>r _ T ™m _ T 7,0
Lr—TqLquR , Afb —Tqu“ e R, qu —TquER anqur —TquER .

7 = dim(7,) < n, is the dimension of the reduced-order algebraic system. Thus, the
IMOR reduced-order model based on the balanced truncation method of a DAE is given
by

&, = Ay, +B, 1,
-L& =A €, —& +Bu, (7.4.18)
yr = C[T)‘rfpl‘ + Cgrfqi‘,
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with total dimension r + T < n, where r and 7 are the dimension of the reduced differen-
tial and algebraic parts, respectively. We note that this reduced-order model will always
be stable and have a computable error bound (7.4.12) for the differential part. This is

illustrated in the example below.

Example 7.4.1 Consider a DAE with system matrices

00 0 0000 01 0 01 0-1 0 0 0 0

00 0 0000 0-01 0 0 0-1 1 0 0

00 2-1000 01 0-02 01 0 0 0 0 0
E=[00 -1 2000[,A=] 0o 0 01 -01 0 o0 -1[,B=| 0|, C=]o].

00 0 0000 1 0 0 0 0 0 0 -1 0

00 0 0000 0O 1 0 0 0 0 0 0 1

00 0 0001 0 -1 0 1 0 0 0 0 1
(7.4.19)

This DAE is solvable since det(AE — A) # 0 and its stable since
O'f(E, A) = {—%, _]i6— "02399} € C". This system is of index-1 and can be decoupled into

the form (7.4.1) with system matrices given by

Lo 1 0000 000
So® i 0000 000
A= 0 -5 -3|:B,=|%| L= »Bq =] ’
: 0000 500
0 1 0 0 10
0000 001
1 0
0 0 0
B=| |- C=[o].¢=|| (7.4.20)
L )
0 1

We can observe that the DAE system is decoupled into n, = 3 differential equations
and n, = 4 algebraic equations. The system is still stable since it can easily be checked
that a'(Ap) = O'f(E, A). Next, we use the balanced truncation method to reduce the
differential part. This goes as follows. After substituting matrices A ,, B, and C, into
(7.4.5), we can solve for the Gramians given by

0.0169 0.0086 0.0025 0 0 0
P, =10.0086 0.0167 0.0000| and Q,=(0 225 0.75 |. (7.4.21)
0.0025 0.0000 0.0250 0 0.75 15.025

We then use these Gramians to construct the balancing transformation and its inverse
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using (7.4.8) obtaining

0  -4.2857 -3.5714 ~0.072829 —0.047269 2803.6
T,=| 0 -42857 34286 | and T,' =|-0.11429 -0.11905 0 |. (74.22)
0.0004 —0.0002 0 ~0.14286  0.14286 0

Substituting (7.4.22) into (7.4.9), we obtain a balanced system. We can, then partition
A o B » and C » in conformance with X, to obtain a reduced-order subsystem of the form

(7.4.11) with coefficient matrices given by

(—0.016327 0.81633 ] ~ (—0.14286] ~ [—0.14286)
Pr > Ep, T ’ Py .

-0.81633 -0.017007 —-0.14286 0.14286
(7.4.23)

We observe that the reduced-order subsystem is of dimension r = 2 and the comput-
able error bound is given by |[H, — H,, [l, < 3.2 x 10™?|jull,. We can then compute the
orthonormal basis T, using (7.4.16) which reduces the algebraic system (7.4.3) given by

~9.9504-107" —9.2464-10™* -9.9507 - 107>
T = 0 0 0 (7.4.24)
77199511-107> -8.8689-107 -9.95.107" | o

3.7491-107° -9.9996-10~" 8.9169- 107

Substituting (7.4.24) into (7.4.17), we obtain reduced-order algebraic system given by

0 0
000 0 0 -1.005
L =[000[.A, = .B, =|-3.7743-107|,
©1-0.0072829 —0.0047269| P
000 ~7.1046 - 10
-0.14286  0.14286
3.7491 x 107
C, =| -0.99996 (7.4.25)
0.0089169

Thus the algebraic system is reduced to dimension 7 = 3. Substituting (7.4.23) and
(7.4.25) into (7.4.18) we obtained a IMOR reduced-order model based on balanced trun-
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cation which we can write in the descriptor form given by

10000 -0.016327 081633 0 0 0 —0.14286
01000 -0.81633 —-0.017007 0 0 0 -0.14286
E.=[00000[|, A= 0 0-1 0 0|,B, = -1.005 |,
00000 0 0 0-1 0 -3.7743-107°
00000 0 0 0 0 -1 —7.1046 - 107
C = (—0.14286 0.14286 3.7491 - 107° —0.99996 0.0089169). (7.4.26)

Hence the DAE (7.4.19) is reduced to a reduced-order model (7.4.26) of dimension
r+ 1 = 5. Figure 7.1, shows the comparison of the magnitude and phase angle of the

. : Original model
3 =SSOSO SO E SN TR S + IMOR-BalTrunc model

Magnitude
(=]
T

005 4 : s

Original model
+ IMOR-BalTrunc model

Phase (deg))

Frequency (Radfs)

Figure 7.1: Comparison of the magnitude and phase angle of the transfer function.

transfer functions of the original model (7.4.19) and reduced-order model (7.4.26). We
observed that the magnitude and phase angle of the transfer functions coincides and
the approximate error ||H — H,||, =~ 0. Figure 7.2, shows the comparison of the output
solutions and the approximation error using u(¢) = sin(st¢) as the input function. We can

observe that the solutions coincides with an acceptable approximation error.

We have discussed that IMOR method can also be extended to balance truncation method
and lead to accurate reduced-order models. In the next section, we discuss the properties
of the IMOR methods.



7.5 Properties of the IMOR method 135

0.03

0.025

o
=]
R

0.015

Original Model

o
2

QOutput solution y(t)
Approximation error

+ IMOR-BalTrunc model | | ——IMOR-BalTrunc model
0.005 5
10
0
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Time(t) Time(t)

Figure 7.2: Output solution and the approximation error
7.5 Properties of the IMOR method

In this Section, we discuss the properties of the IMOR method. For convenience, we
restrict ourselves on DAEs with a differential part. We note that the properties of the
IMOR method depends on the properties of the conventional MOR method used to re-
duce the differential part. This is because the reduction of the algebraic part is induced
by the reduction of the differential part. For instance, if we use the Arnoldi processes
commonly known as the PRIMA method [49] to reduce the differential part. We can
show that the IMOR method preserves the same properties as the PRIMA method such
as moment matching property and passivity. This can be done as follows. Recall from

Section 7.2.2 the transfer function of the DAE can be decomposed as

-1
sI-A, O B
H(s) = (C! C! r Pl=H,(s) + H,(s), 7.5.1
(s)=(C} q)(_Aq SL_I) [Bq) H(5) + H(s) (7.5.1)
T -1 T -1 -1 .
where H,,(s) = Cj(sT-A,)"'B, and H,(s) = C;(I-s£)"'[A,(sI-A)'B,+B, | is the
transfer function of the differential and algebraic parts, respectively. We can use (7.5.1)
to show that the IMOR methods also preserve the properties of model order reduction.
The properties of the IMOR method are also presented in [7]. These properties are

discussed as follows.

(i) Moment matching property.
This is one of the properties of MOR which must be fulfilled by any moment
matching MOR method such as the PRIMA method. Thus, we need to check
wether the IMOR methods fulfills the moment matching property as follows. If we
use the block Arnoldi process (PRIMA method) to reduce the differential part of the
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decoupled system. It is well known that it will preserve the first r moments [49] of
the differential component Hp(s) of the decomposed transfer function (7.5.1). This

leads to the following theorem.

Theorem 7.5.1 IMOR methods preserves the moment matching property if and
only if the conventional MOR method applied on the differential part preserves the

moment matching property.

Proof 7.5.1 The proof can be done following the same proof for moment matching
property of the PRIMA method presented in [49]. If we choose the expansion

point as sy = 0 and assume A, is nonsingular. The transfer function H,,(s) of the

differential part can be written as H (s) = Zhg‘) s, where hg‘) = (—l)kC;Ml;Rp
k=0
are the (block) moments of H,(s), M,, = —A;l and R, = —A;IBP. Likewise, the
transfer function of the PRIMA reduced-order differential part can be written as
r—1
ﬁp(s) = Zfl(pk)sk, where ﬁg‘) = (—1)k(~3£1\/1pk~p, are the moments, Mp = —A;l
k=0
5 xi-ld ~ _ vIev x _ vl 5 _ T
and Rp = —f&p Bp. Then, Cp = VpCp, Ap = VpApr, Bp = Vpo. We can
observe that hg‘) can be written as

£k _ T T -17F /T ~1yT
hp - _vap[(VpApr) ] (VI’APVP) Vpo'
By construction VPVIT7 is a projector onto K.(M,,, R ). Thus it holds

Tk _ wk _
V,VIMR, = MR, k=01, 7~ L.

This in turn implies that V[T,MIT,RP = MZRP, hence ﬁ;,k) = h;k), k=0,1,---,r—1.

Next, we can show that the induced reduction on the algebraic part of the DAE
(7.0.1) also preserves the first r moments of the algebraic component of the trans-

fer function, H (s). The transfer function, H,(s), of the algebraic part can be writ-
u—-1

ten as H,(s) = Zh(q])s], where hEI]) = CqL][Aqu+Bq], J=0,---,u—1.Also, by
j=0

construction VqVZ is a projector onto ‘KM (L, Rq), where Rq = [B q A ﬂ(r(Mp, Rp)].

Thus it holds V,V,(A,MyR, + B_) = A MyR, + B, Using the identity

V;M;Rp = MI;RP, it is possible to show that ﬁ(qk) = hg‘), k=0,1,---,r—1.
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The above discussion implies that the number of matching moments of the IMOR
method depends on the MOR method used to reduce the differential part.
(ii) Passivity preservation property.

A passive system is one that does not generate energy internally. A strictly passive
system is a dissipative system [66]. For an LTI system, (strict) passivity is equival-
ent to the transfer function being (strictly) positive real. According to [49] if we
assume that E is symmetric and nonnegative definite the necessary and sufficient
condition for the system admittance matrix H(s) to be passive has to satisfy the

following theorem.

Theorem 7.5.2 (see [66]) A rational matrix-valued transfer function H(s) € C"™"

is positive real (strictly positive real) if and only if:
1) H(s) is analytic in C* = {s € C|Re(s) > 0};
2) ®(jw) = H(jw) + H'(jw) is positive semi-definite (positive definite) for all
w € R such that jw is not a pole of H(s), where * means the conjugate

transpose operation;

3) If jwqy or oo is a pole H(s), then it is a simple pole and the m X m residue

matrix is positive semi-definite.

Since systems (7.0.1) and (7.2.9) are equivalent. Thus their transfer function must
coincide. Using (7.5.1) and (7.2.13) the transfer function of (7.0.1) can be rewritten
as

H(s) = C'(sE - A)"'B,
= H,(s) + H(9),
= CJR,(5)+ CJ1 - sL)' [A,R,(5) + B, |,

p—1
= CJR,(5) + C] > LIs/N(s), sinceN(s) = A,R,,(s) + B,,
j=0

u-1
= CJR, () + My(s) + > s/M(s),
j=1

J
Hpr(s) —_———

Himpr(s)
where R,,(s) = (sT - A,)"'B,,, My(s) = CIN(s) and M (5) = CL/N(s). H,,,(s) is
the proper part (bounded as s — oo0) and H; .(s) the improper part (unbounded as

impr
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(iii)

s — oo0) of H(s). Thus, the transfer function Hp(s) = C;Rp(s) of the differential
part is a strictly proper part of H(s). Based on Theorem 7.5.2, H(s) is positive real
if and only if H ,(s) and M;(s) are positive real. Consequently, a key to testing
the passivity of DAEs is to first decouple it into its proper and improper parts [66].
Hence the matrices coefficients of the decoupled systems derived in Chapter 5,
can be used to test the passivity of the DAEs using the passivity test for DAEs
proposed in [66]. Following the proof for passivity preserving in [49], it can be
proved that if the conventional MOR method applied on the differential part is
passivity preserving then the differential part of the IMOR reduced-order model is
also passive, i.e, H p,(s) is positive real. However, in order to ensure that the IMOR
methods are passivity preserving one need to also prove that M ;(s) is also positive
real which is still an open question.

Approximation error.

In [7], they proposed that the approximation error of the reduced-order models for
DAE:s should be computed using the input-output transfer function (7.2.12) instead
of just the transfer function. Thus, from (7.2.12) the approximation error of the

IMOR method can be computed as
1Y (s) = Y()I < IH(s) = HSI US| + [P (s) = Pl (7.5.2)

where P(s) is defined as in (7.2.16).Thus,

IH(s) — H(s)|| < [[H,,(s) — H,(s)I| + |[H,(s) — H,(s)]| and

I1P(s) = Pl < IICy £ L = Cq 225 L111Q(0)) ~ Qu(O))l. For example, if
we consider the case of index-2 DAEs, from (7.2.18) P(s) is defined as

P(s) = —CELBqu(O). Then, we have

1P(s) - P(s)l = ICT LB, - CLL,B, Il (O] (7.5.3)

We note that for higher index DAEs the above inequality will depend on the de-
rivatives of the input function u(f) at ¢+ = 0. Substituting (7.5.3) into (7.5.2), we

obtain
1Y(s) - Y(s)ll < IH,(s) — I:I,,(S)II IUCs)I + [H,(s) — ﬁq(S)II U(I| + yllwO)]],

where y = ||(~?;£~qf} q" C;LqB qll. Hence the output-transfer function of the IMOR
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reduced-order model has a small approximation error if and only if
(a) ||H - HJ| is small
(b) and [|P(s) — P(s)|| is also very small in a suitable norm ||.||.

(iv) Stability

In Section 5.4, we already discussed that for the case of DAEs with a differential
part the decoupled system inherits the stability properties of DAEs since

O'(Ap) =0 f(E, A). Hence stability preservation of the IMOR method depends on
the MOR method used to reduce the differential part.

We note that, if we use the balanced truncation method to reduce the differential part.
We can guarantee stability of the reduced-order model and have an a priori computable
error bound. Moreover, we can easily choose the size of the reduced-order model before
hand.

7.6 Limitations of the IMOR method

The limitations of the IMOR method originates from Mérz decoupling procedure dis-
cussed in Chapter 4 since it involves matrix inversions. This lead to decoupled systems
with very dense matrix coefficients which can be very difficult to reduce. Hence in the
next Chapter, we develop its implicit version which we call the implicit-IMOR (IIMOR)
method.
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Chapter 8

Implicit Index-aware Model Order
Reduction (Implicit IMOR) method

In this Chapter, we discuss the Implicit Index-aware MOR method which can be abbre-
viated as IMOR method. This method uses the implicit decoupled systems derived in
Chapter 6. This is due to the fact that the implicit decoupling procedure is computation-
ally cheaper than the explicit decoupling procedure derived in Chapter 5. We consider
DAEs of the form

Ei(t) = Ax(1) + Bu(r),  x(0) = x,, (8.0.1a)
¥(1) = C'x(1), (8.0.1b)

where E,A € R™", B € R™™, C € R™ | the input vector u(r) € R™ and output vector
y() € R of the system. x(r) € R" is the state vector and X, is the initial value. The
number of state variables n is called the order of system or the state-space dimension.
m and ¢ are the number of inputs and outputs, respectively. We need to reduce (8.0.1)
using the IIMOR method.
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8.1 Algebraic Elimination MOR method

In this Section, we discuss the reduction of the algebraic parts if the decoupled systems
are derived from Chapter 6. The basic idea is the same as that presented in Chapter 7,
which is to eliminate algebraic variables which do not contribute to the output solution.

This can also be done using the reordering techniques.

8.1.1 Index-1DAEs

Assume (8.0.1) is of index-1 then it can be decoupled into the form (6.1.5) given by

Epg;, =A,¢,+Bu, (8.1.1a)

Eé, =AkL,+Bu, (8.1.1b)
T T

y=C,§,+C ¢, (8.1.1¢)

where E,, A € R, B, e R""", E, e R""", A e R""", B, € R and

C,e R C, e R"*¢. The trivial case is when C, = 0, then (8.0.1) can just be reduced
to an ODE of dimension n,. Thus, if we consider the nontrivial case, assume Cq # 0.
Then, the Algebraic Elimination MOR model for index-1 DAEs can derived as follows.
Consider the algebraic subsystem from (8.1.1) given by

Eé, = A&, +Bu, (8.1.22)
¥e = Coly (8.1.2b)

. . C
We compute permutation matrices P, Q, € R"¢*" such that Q!C, = ( N ') and
E, E = . . .
P,EQ, = [Eq” ‘“2), where Eq22 is a non-singular matrix. Then, the rest of the matrices

421 T4xn

can be partitioned as P,A, = (2‘“) and P,B, = [g‘“]. If we let &, = Q¢, = [?"‘) , where
qs qy q

&, € R, & € R and substituting it into (8.1.2) and left multiplying (8.1.2a) by
P, we obtain a partitioned system of (8.1.2). We can then eliminate qu since it does

not contribute to the output solution. This leads to a reduced-order model of dimension



8.1 Algebraic Elimination MOR method 143

7 < n, which is given by

E, ¢ =A, &, +B,u, (8.1.3a)
y,=Cpé, (8.1.3b)
_Is B plE T _Ix & -l ™n
where ELIT - [Ij:q“j E€12E422E421] eRT, A‘]r~_ [A‘h - E412E422A42] eRTY,
B, = [Bql - quzE;;z qu] e R™™ and qu = qu € R and the reduced dimension is

given by 7 < n,,. Thus the DAE (8.0.1) is reduced to a reduced-order model of dimension

n, + 1 < n which is given by

E & =AE +Bu, (8.1.4a)
E, &, =A, ¢, +B,u, (8.1.4b)
y=Ch&,+C ¢, (8.1.4¢)

8.1.2 Index-2 DAEs

Assume (8.0.1) is of index-2. Then, if we consider the case of the index-2 DAEs with at
least one finite eigenvalue then it can be decoupled in the form (6.2.3) given by

E £, =A&, +Bu,
E 16,1 =A&, +B,u,
Eg0éq0 = Agoép + Byou + Aq(),l [6;,1 - gq,l]’
¥ = Cpé, + Cgiéyy + Cooby.

(8.1.5)

where E,,A, e R B, e R"" E e RN A | eRY" B | e R,

E o e R2C A (e RO™ B o e R A, e R and C, e R"™, C, ; e RY,
Cq,O e R**’ From (8.1.5), we can observe that we can easily obtain a reduction for
the following trivial cases; (i) If C,; = 0 and C,, = 0, then (8.0.1) can be reduced
to an ODE of dimension n,, (i1) If Aqo‘1 =0and C,; = 0or C, = 0, then (8.0.1)
can be reduced to index-1 system of dimension n,, + k; and n, + k,, respectively. After
checking for the trivial cases, then we can eliminate the algebraic variables as follows. If

we consider only algebraic parts of the system (8.1.5), we obtain an algebraic subsystem
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given by
E, &1 =415, +B,u, (8.1.6a)
E, 0,0 = Agofy + Boou + Ay €01 — €01 (8.1.6b)

¥y, = cg,lgq,l + czogq,o. (8.1.6¢)

Using the same trick as for the case of index-1 system. We can first compute permuta-

. . C E E
tion matrices V,,W_ € R% guch that W'C,, = ( ‘(1)1'0] and V,E (W, = [ 1.0 qrzvo),

m~q,0
o E

4210 a0

. . . B A
where Eq o is a nonsingular matrix. Then,V,B,_, = ( ‘“"’), VA, = [ ‘1'). Next, we com-
225 e B e

4.0 i
A%“J 0
A ol

90,1

9

pute another set of permutation matrices P, Q, € R such that VA, Q. =

C E E . . .
Q. C, = [ ;’;"']and P.E, Q, = (Eq“" ["2‘1], where E, | is a nonsingular matrix. Then,

G211 a1

PA,, = (iql"],PﬂBqJ = [E""'). If welet¢,, = Qé, = [?1*‘], where gql,l € R, éqz,l €

q1,2 9,1 Sq,.1

RN and £, = W,Z,, = EZIZ), where 5,11,0 € R™, ngﬁo € R2™™. Then left multiply
(8.1.6a) and (8.1.6b) with P, and V_, respectively. We can obtain a partitioned system
of (8.1.6). We can then eliminate the algebraic variables 511271 and ng,o which do not con-
tribute to the output equation (8.1.6¢). This leads to a reduce-order model of dimension

T, + 7, given by

By 1801 = Ag &), + By 1u, (8.1.7a)
EqT’quT’O - Aqr’ogl’ + B‘Iryou + AqOT,] [§;T,1 - fq,,l]’ (8.1.7b)
Yq, = Cg,,l g1t Cg,,ofq,,o’ (8.1.7¢)
where
Eqr’l - [E‘IH!I h E‘Ilz,lEt;zlzleqzl,l] e R™T, Bq,,l = [thl - EqIZ’lE;;Z?quQsI] e RTM
Eg0= [qul’o - Equ’OE;ZlZ’OEqu’O] €ER™, A o= [Aq1 - quz,OEr;zlz,Oqu] e R,
Aqu,1 = [Aqon_1 - EqIZ’OE;;Z’OAqOZ],I] and Cq,,l = qu’] € RHXF’ CqT,O — qu’o c R‘rzxt’.

Hence, the DAE (8.0.1) is reduced to a reduced-order model of dimension n,+7,+7,
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given by

4 —
Epfp = Apfp + Bpu,
By 1801 = Ag 16 + By 11,
— 4 —
Eqr,quT’O - Aqr,Ofp + qu,Ou + Aq()T,l [fqr,l fqr,l]’

AT T T
y=Cplp+Cy 1&g 1+ Cy o€y 05

This same technique can used for even higher index DAEs. However, we do not gain
too much reduction as compared to applying the AE method on the explicit decoupled
system as illustrated in the next example. Thus the AE method is not so useful for the
implicit decoupled systems. This is due to the fact that it is very difficult to eliminate
all the algebraic variables which do not contribute to the output equation in the implicit

form. However, this can be improved using the graph and matrix reordering algorithms.

Example 8.1.1 In this example, we use the same system models as those used in Ex-
ample 7.1.1 for comparison. These are all index-1 DAE and this time we decoupled
the power system using the implicit decoupling procedure discussed in Chapter 6. If
we compare Table 8.1 and 7.1, we obtain the same number of differential and algebraic
equations. However, we can observe that this time the AE method leads to much larger
reduced algebraic part. This is due to that fact that not all the algebraic variables which

do not contribute to the output solution can easily be removed.

8.2 Implicit IMOR method for DAEs

We have seen that the using the AE method the differential part remains unreduced.
Hence, we do not get good reduction for the algebraic parts. In this Section, we ex-
tend the Index-aware MOR method discussed in Chapter 7, for the case of implicitly
decoupled systems which we derived in Chapter 6. In this Section, we discuss the Im-
plicit version of the IMOR method which we call the IIMOR method. We first proposed
this approach in [4], thus some of the content presented here is also in [4]. The basic
idea is still the same as the IMOR method, the only difference is the starting decoupled
system. Recall, for the case of IMOR method we use the explicit decoupled systems
derived in Chapter 5 while for the case of IMOR method, we have to use the implicit
decoupled systems derived in Chapter 6. The advantage of using the implicit decoupling
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Table 8.1: Algebraic Reduced models of power systems
Systems  # inputs/# outputs  Decoupled model ~Alg. Reduced model Reduced system % Reduction

n #inputs #outputs  n, n, n, Y n,+y

40366 2 2 5727 34639 5727 27797 33524 17.0
40337 2 1 5723 34614 5723 27791 27791 16.9
21476 1 1 3172 18304 3172 11370 14542 323
21128 4 4 3078 18050 3078 11113 14191 328
20944 2 2 3012 17932 3012 3390 6402 69.4
20738 1 6 2940 17798 2940 0 1755 91.5
16861 4 4 2476 14385 2476 7448 9924 41.1
15066 4 4 1998 13068 1998 6140 8138 46.0
13309 8 8 1676 11633 1676 0 1676 87.4
13296 46 46 1664 11632 1664 7090 8754 34.2
13275 4 4 1693 11582 1693 7045 7045 342
13250 1 1664 11586 1664 7075 8739 34.1
13250 46 46 1664 11586 1664 7075 8739 34.1
13251 28 28 1664 11587 1664 7076 8740 34.0
13251 1 1 1664 11587 1664 0 1664 87.4
11685 1 1 1257 10428 1257 5917 7174 38.6
11305 4 4 1450 9855 1450 5320 6770 40.1

9735 4 4 1142 8593 1142 4032 5174 46.9

7135 4 4 606 6529 606 1968 2574 63.9

procedure is the computational advantage over the explicit decoupling procedure. The
IIMOR method is derived as follows. Assume (8.0.1) is of index-u, with the spectrum
of its matrix pencil has at least one eigenvalue. Then, it can be decoupled into a system
of the form (6.4.1) given by

E¢, = Apfp +B,u,
—L.f; =A8, - L, +Bu, (8.2.1)
T T
y=Cgp+Cily
where L is a nilpotent matrix of index-u. £, is a non-singular lower triangular matrix
with block diagonal matrices foru > 1. £, e R", &, € R", A € R""", B, € R"""" and

C, € R"7’, C, e R"". Taking the Laplace transform of (8.2.1) and setting &,(0) = 0

since it can be chosen arbitrary. Then, the output function is given by
Y(s) := H()U(s) + P(s), (8.2.2)

where H(s) is decomposed as H(s) = Hp(s) + Hq(s), where Hp(s) = C;(sEp —Ap)_pr
and H,(s) := Cg(.ﬁq —sL)™! [Aq(sE ,—A p)_lB ,+B q] are transfer functions correspond-
ing to the differential part and algebraic parts, respectively and

P(s) = Cy(L, — L)' LE,(0). If we let Qu(0)) := L&,(0) then P(s) can be written
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as P(s) = Cg(Lq - s£)_1Q(u(O)). Following the same steps as for the case of IMOR
method. It is easy to show that if the hidden polynomial Q(u(0)) has nonzero coefficient
the conventional MOR methods fail or lead to reduced-order models which are very dif-
ficult to solve for the case of higher index DAEs. For the interested reader, follow the

same steps as in Section 7.2.2.

The derivation of the IMOR method goes as follows. We use the same strategy as
in the IMOR method by the first splitting the decoupled system (8.2.1) into separate

subsystems as

Epg-“p = Apfp + Bpu,

i’ (8.2.3)
Yp=Ckps
and
—LE) = A g, — L&, + B, (8.2.42)
¥, =Cié, (8.2.4b)

where (8.2.3) and (8.2.4) are the differential and algebraic subsystems. Then the output
equation can be reconstructed using: y = y ,+y,. Next, we derive the reduction procedure
for (8.2.3) and (8.2.4), respectively.

8.2.1 Reduction of the differential part

Consider the subsystem (8.2.3). We can use the conventional MOR methods such as
the PRIMA method to reduce this subsystem as follows. Choose an expansion point
5o € C\ o(E,, A)) and then construct an order-r Krylov subspace generated by M, and
R, given by

. _ r—1
VYV, =K.M,R,) =Span{R,, MR ,,... .M, R}, r<n,,

p p

where M, := (s)E,—A )"'E, and R, := (s,E,—A,)"'B,. Then, V, € R"»" denotes the
orthonormal basis matrix of the above subspace, so that VIT,VP = I. The reduced-order

subsystem is obtained by using the approximation §, = V pé »» leading to a reduced-order
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subsystem
EE& =A¢ +Bu,
p%p Afﬂ p (8.2.5)
¥p=Ctps
f: T N T ™r ¥ T rXm
whereE, =V, EV A =V,AV eR™7, B, =V B, eR"" and

C b= V;C , ER7P. ép € R" is the reduced state vector and §, € R’ is the approximated
output. Thus the dimension of the differential part is reduced to r < n,. The transfer
function of the reduced-order model (8.2.5) is given by ﬁp(s) = CIT,(SI:JP - Ap)_lﬁp.

8.2.2 Reduction of the algebraic part

Here, we intend to reduce the algebraic subsystem (8.2.4). Substituting &), = Vpép into
(8.2.4), we obtain

- L& = Aqvpép - L&, +Bu, (8.2.6a)
v, =Cle, (8.2.6b)

From (8.2.6a), we can observe that the reduction of the differential part induces a reduc-
tion on the algebraic part but the order of the algebraic part is unchanged. In order to
reduce the algebraic part, we need to take the following steps. We start from (8.2.6a),

which can be written as
L, =N Ly +by, (8.2.7)

where b, = Aqufp +B,u and N, = LL;I is also a nilpotent matrix with the same
index-u as L. Thus, (8.2.7) can be written as
u—1 u—1
L£,= Y Nb =" NiA,V,E0 +Bu®). (8.2.8)
k=0

k=0

We can observe that, for the algebraic variable £,, we have the restriction

L, e W, =KMN,.R),
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withR, = (B, A,V,) e R""*D" Since N, = ££,", it follows that
£, €V, =L W, =K,L,'N,,L,'R)). (8.2.9)

We denote by V, an orthonormal basis of V,, so that Vqu =L, and we write {, = quq.

Substituting £, = V £, into (8.2.6) and after simplifying, we obtain a reduced-order

algebraic subsystem given by

_LA% = Aqép - ﬁqéq + ﬁqm (8.2.10a)
9, = Coé, (8.2.10b)

. v § ™t p _ oyl ™t A _ vyl ™r p _ vl ™m
with £, = V; £V, e R™", L = V, LV, R™", A, = VJA_V,R™,B_= V]B R

and Cq = VECqRTXK. éq € R" is the reduced algebraic state vector and y, € R’ is the
approximated output. Thus the dimension of the algebraic part is reduced to 7 < n,.
The transfer function of this reduced-order model of the algebraic part (8.2.4) is given
by H(s) := CJ(L, - sL)"'[A,(sE, - A,)"'B, + B,]. Thus, combining (8.2.5) and

(8.2.10), we obtain the IIMOR reduced-order model of (8.0.1) given by

pSp pSp T Bp
~L& =A% - LE +Bau, ®8.2.11)
o _ &Tp L AT
y= Cp P + q>q°

with total dimension r + 7 < n, where r and 1 are the dimension of the reduced differen-
tial and algebraic parts, respectively. The transfer function of the IMOR reduced model
is equal to the sum of the transfer function of the differential and algebraic parts given
by H,(s) = Hpr(s) + qu(s).

Remark 8.2.1 We note that in practice the algebraic part (8.2.4a) has u algebraic sub-
systems. Thus V, can be partitioned as: V, = ((VqT,ﬂ_l, s, (V;I, (VqT,O)T, where the
length of each partition corresponds to the block sizes of algebraic subsystems given by
ki,i=p-1,...,1,0, respectively. We can then compute the orthonormal basis matrix
of each partition to build a block diagonal orthonormal matrices

V, = blkdiag[V,, 1.....V, 1,V | where V,; = orth(V,)). Although this approach
leads to a much larger reduced-order model especially for MIMO systems, but preserves

the structure of the algebraic parts.
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For comparison with other existing MOR methods, we can rewrite the IIMOR reduced-

order model in descriptor form given by
B2 = A2+ Bu

. AT: (8.2.12)
y,=C%

o o
oy &

N A AT
where E = [E” 9) A= (é” AO], B = [ ”], C = [ ") and & = ({") for DAEs with a
0-£ A, L, q q &
differential part and B = -2, A =-1I, B= B, C= C, and & = gq for DAEs
without a differential part and the transfer function of the reduced-order model can be

written as H(s) = C(SE - A)_lﬁ.

8.3 Simple examples

In order to compare IMOR and IMOR methods, we use the same examples as in Section
7.3. Thus, we use the matrices from Examples 3.2.1 and 3.2.2. These are index-2 and -3
DAE:s, respectively. In order to use the IMOR method, we first decouple these systems

using the implicit decoupling procedure derived in Chapter 6.

Example 8.3.1 In this example, we use matrices from Example 3.2.1 with both cases of
the control input matrix B. These are index-2 DAEs with the same matrix pencil (E, A).
These DAEs are solvable and they have only one finite eigenvalue, thus we expect their
decoupled systems to have a differential part.

(i) For this case, we use the control input matrix B of Example 3.2.1(i). Using the
implicit decoupling procedure this system can be decoupled in to the form (6.2.3) given
by

(8.3.1)

Before, we apply the IIMOR method on the system (8.3.1), we need to use the AE
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method which leads to a AE reduced-order model given by

2, 1
IERAR A

[ e Lo ()
-l ” o) (8.3.2)
_2541.0 = gf,, tu-— (1 1)[5:;,1 —fq,l],
2
y=36+(1 ~1)&u+&,0

We can now apply the IIMOR method as follow. This done by first rewriting system
(8.3.2) into the form (8.2.1) with system matrices given by

2 1 2

Ep:—g,Apzl,szz,szg,
0 00 -1 -1 0 0 0 1

L= 0 00|,£L=|-1 1 0f,A,=|0|.B,=|0[,C,=|-1]. (8.3.3)
-1 -10 -1 -1 -2 g 1 1

We can observe that the differential part cannot be reduced any further, thus we can just
set V,, = 1. In order to further reduce the algebraic parts, we use (8.2.9) to construct the

Krylov subspace of order u = 2 given by,

(N, R,) = Span(R,, N R},

00 000 0 0

where R, =[B, A,V,|=|0 0|.N,=£,'N,=| 0 0 0|andR,=L,'R,=| 0 0| Then the
1 8 100 -1 _4
3 2 2 3

T
orthonormal basis is given by V, = (0 0 1) . Thus, substituting (8.3.3) and orthonor-
mal basis Vq into (8.2.11). We obtain a reduced-order model which can be written in
descriptor form (8.2.12) with system matrices given by

_2 1 2
E:[ 30), A:[i 0), ]}:[é), é=[3]. (8.3.4)
00 L) g 1

Thus the dimension of the DAE is reduced from 5 to 2 using the IIMOR method. It is
easy to check that this reduced-order mode is accurate since its transfer function and out-
put solution coincides with that of the original DAE. If we compare the IIMOR reduced-

order model (8.3.4) and (7.3.3), we observe they have the same size.

(i) For this case, we use the control input matrix B of Example 3.2.1(1ii). Using the
implicit decoupling procedure this system can be decoupled in to the form (6.2.3) given
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(8.3.5)

Here, we also first apply the AE method which leads to a reduced decoupled system
given by

2

, 1
—gfp =&, + Tk

3o )
AU (8.3.6)
8. 3 ,
_qul,o = gfp - Eu _(1 1)[54,,1 _fq,l]v
2
y= ggp + (1 _l)gq,l +§q1,0’

Then, we apply the implicit IMOR method as follows. This done by first rewriting sys-
tem (8.3.6) into the form (8.2.1) with system matrices given by

2 1 2

Epz_g’AszBp:E’Cp:g!
0 00 -1 -1 0 0 0 1

L=l 0 o00|.£L=|-1 1 of.A,=|0|.B,=|-1|.C,=|-1]. (8.3.7)
-1 -10 -1 -1 =2 g -2 1

We can observe that the differential part cannot be reduced any further, thus we can also
Justset V, = 1. In order to further reduce the algebraic parts, we use (8.2.9) to construct

the Krylov subspace of order u = 2 given by

Ho(N,.R,) = Span(R,. N,R ).

00 000 10
where R, = [B, AV,|=|-10[.N,=2£,'N,=| 000| and R, = £;'R, = |-} 0]|. Then

_3 8 ~Loo 3 _4

2 3 2 4 3

the orthonormal basis is given by v, = | -

0
0|. Substituting orthonormal basis V, and
1
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(8.3.7) into (8.2.11) , we obtain a reduced-order model with system matrices given by

2 1 2
B, = -5 A, = 1B, = .G, =5,
00 0 10 L V2
Lr:( ]’A-:(]’L-:( )’B:(ﬁ]’c :[ ) (838)
00 4y % 4 0 -2 4 _% ar 1

This reduced-order model can be written in descriptor form (8.2.12) with system matrices
given by

-200 100 1 2
E=| ooof, A=fo-10|, ﬁ:[@), C={v2|. (8.3.9)
000 $02 2 1

Thus the dimension of the DAE is reduced from 5 to 3 using the IIMOR method. It is
easy to check that this reduced-order mode is accurate since its transfer function and out-
put solution coincides with that of the original DAE. If we compare the IMOR reduced-
order model (8.3.9) and (7.3.6), we observe they have the same size.

Example 8.3.2 In this example, we used system matrices from Example 3.2.2. This is
an index-3 system whose matrix pencil has at least one finite eigenvalue. Thus it can be
decoupled into the form (6.3.3) given by

1,
Egp = _gp +u,

=€ = Ofl, +u,

1 | 1,
Eé‘:q,l = O‘fp +tu+ qu,Z + Efq,Z’

i o0 0 0 (0 o) (5 (- (-

221 0 0 0 0 0 -2 -1 ! z (8.3.10)
L1og 0 0 0 0 o I 1 i s

i i 0 0 1 0 é‘:q,(): 0 §p+ 0 u+ _i §q2+ ifq,l-}_ _i gq.2+ i ‘fq,h

3 3 3 3 3 3

Lo 0 0 1 0 0 -4 5 -3 3

3 3 3 3 3 3

001 -1 -1-1 0 0 0 0 0 0

y=£&,+06,+0£,+(000001)&,

We can observe that the DAE system of dimension is decoupled into 1 differential
equation and 8 algebraic equations. Also here, we used the AE method on (8.3.10),
which reduced it to an index-2 reduced order system given by

%g;) S (8.3.11a)

-£,,=0¢, +u, (8.3.11b)
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0 1 0 0 -1 0 0
0 0 1|éo=[0f& +|-T|u+]| 01&,+]|0|&0, (8.3.11¢)
-1 -1 -1 0 2) ]

Y=&,+0,+(001)&,. (8.3.11d)

We can observe the decoupled system cannot be completely reduced by the AE method,
thus we can now apply the implicit IMOR method as follows. The AE reduced model
can be written into the form (8.2.1) with system matrices given by

1
E,=2.4,=-1.B,=1C,=1,

p

0000 -1 0 0 0 0 1 0
0000 00 1 0 0 -1 0
L= L, = A, = [.B,=| [.c,=| | (8.3.12)
0000 0 0 0 1 0 -1 0
1000 1 -1 -1 -1 0 2 1

We can observe that the differential part cannot be reduced any further, thus we can just
set V,, = 1. In order to further reduce the algebraic parts, we use (8.2.9) to construct the

Krylov subspace of order u = 2,

%,(N,,R)) = Span{R,,N R},

10 0000 10
-10 » 1000 _ » 10
where R, = [B, A,V,|= Lol N TLN= o andR, = £L,'R, = - Lol Then
20 0000O0 10
1 0 o0
0o -1 L
the orthonormal basis is given by V, = 0 V? ‘/? - Substituting orthonormal basis V,
2 72
o -1 _1
. . 2 2 . . .
and (8.3.12) into (8.2.11). We obtain a reduced-order model with system matrices given

by

1
EP,A = 5, Al’r = —1, Bpr = 1, CPr = 17
000 -1 0 0 0 1 0
— _ 2V2-1 _ _ V2-1 _|_1
L = _% 00|, £, = _% —‘{ + | A, =|0].B, =| F+|.C, =|-3| (83.13)
-1oo0 _1 o2V 0 _ M2+t _1
2 2 1 1 2 2

The reduced system can be written in descriptor form (8.2.12) with system matrices
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given by
% 000 -1 0 O 0 1 1
. loooo . [01 O 0 " 1 . |0
E= , A= vl |» B= _ C= 8.3.14
e I i R R
1 2V2+ V2+ _1
0 2 00 0 % 41 i - 21 2

Thus the dimension of the DAE is reduced from 9 to 4 using the IMOR method. It is
easy to check that this reduced-order mode is accurate since its transfer function and out-
put solution coincides with that of the original DAE. If we compare the IIMOR reduced-
order model (8.3.14) and (7.3.9), we observe that the IMOR reduced model is a much
larger reduced model.

8.4 Extension of IIMOR method to truncation methods

In this Section, we discuss how the IIMOR method can be extended to the truncation
methods especially the balanced truncation method. This approach is the same as that
discussed in Section 7.4 for the case of the IMOR method. However, for this case we
need to solve the generalized Lyapunov equations in order to compute the system con-
trollability and observability Gramians. This is done as follows. Consider a stable DAE
(8.0.1) which is decoupled into a stable implicit decoupled system in the form (8.2.1)
given by

E¢,=A¢,+Bu
—Lf; =A8, - L, +Bu, 8.4.1)
y=Ci, + Cé,.
where £ is a nilpotent matrix of index u. L, is a nonsingular lower triangular matrix

with block diagonal matrices for u > 1. £, € R™, £, € R", A, € R, B, € R""" and
C, e R"*¢, C € R"*’. Then (8.4.1) can be strictly separated obtaining,

Epgp = Apfp + Bpu,

T (8.4.2)
Yp = Ckp
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and

—L£ = A&, - L, +Bu, (8.4.32)
¥, =Cié, (8.4.3b)

where (8.4.2) and (8.4.3) are the differential and algebraic subsystems. Then the output
equation can be reconstructed using: y =y, +y,. We have already discussed that if the
DAE system is stable then the differential part must also be stable. This implies that
o(E,A,)cC.

8.4.1 Reduction of the differential part

Here, we follow the same steps as in Section 7.4.1. After applying the balancing trans-

formation &), = T £, on (8.4.2). We seek a balanced system given by

Epfp

P
~ ~T =
¥,=C.&,,

?
R

+B u,
pp (8.4.4)

< -1 z -1 5 -1 = T .
whereE, =T,'E,T,,A, =T, AT, B,=T,B,and C, =T,C,. Using the coeffi-
cient matrices of (8.4.2), we need to compute the balancing transformation nonsingular
matrix T,. This is done by solving the two generalized Lyapunov equations

EP,A +APE =-BB,, EQA +AQE,=-C,C). (8.4.5)

p7 pp p7 pp T T PpPpe ppp pptp T

for the controllability Gramian %, and observability Gramian Q,, instead of (7.4.5). We
then follow procedure (7.4.6) — (7.4.8) to derive the balancing transformation

T, € R"”" and its inverse given by
_ -1/2 -1 _ 125 Ty -1
T,=UXK,Z" and T, =5?KTU;" (8.4.6)

It can also easily be shown that T, indeed balances the system (8.4.2) that is,

-1 -T T .
Tp PPTP =2, and TprTp = X. We then truncate the balanced system (8.4.4) in
order to obtain a reduced-order model of (8.4.2). Since a transformation was defined

which transforms the system according to the Hankel singular values, now very easily a
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truncation can be defined using the partition of the diagonal matrix X, given by

zp — P ,
0 sz

where ¥, contains the largest Hankel singular values. Thus Ep, Ap, B p and Cp can be

partitioned in conformance with X ,:

EPH EPlz A =| _Pu’prn B = BP] C = CP] (8.4.7)
] P £ P B £ P C L
P21 TP P21 " TP P2 P2

and transformed variables can also be partitioned as £, = (ng,l , EEZ)T. Thus the reduced-

E,=

)
!

=
=

order model of the differential subsystem (8.4.2) is given by

E, & =A,¢, +B,u,

T (8.4.8)
Yo, = Cp,&p,

T _ i rxr D rxm _ rxl
where NEpr = Ep1,>Ap, = Apn e R ’Bpr = Bp1 e R, Cpr = Cp1 € R7™ and
&, =&, €RLy, =§,¢€ R™". The reduced-order model (8.4.8) is also stable with
Hankel singular values given by diagonal elements of £, = diag(cy,- - ,0,) with

oy 20,220, >0, where r < n, is the order of the reduced system (8.4.8). It is

P
also possible to choose r via computable error bound (7.4.12).

8.4.2 Reduction of the algebraic part

We have seen that in the previous Section, we have just reduced the differential subsys-
tem (8.4.2) but the algebraic subsystem (8.4.3) is left unreduced. However, if we make a
transformation &, = Tpé , where T, is the balancing transformation of the differential
part (8.4.2), it induces a balancing also in the algebraic part. Thus (8.4.3a) can be written

as
-LE =ATE, - LE +Bu, (8.4.9)

where éq is the approximation of £, induced by balancing of the differential subsystem

(8.4.2). Thus, we can also partition A, = A T, as A, = (Aq“ Aqlz) corresponding to
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the partition in (8.4.7). Thus, (8.4.9) can be reduced to

—LE,=A, &y — L, + B (8.4.10)
From (8.4.10), without loss of generality and using (8.2.9), we have
_ -1 -1
fq € Tq - (](N('Lq Nq’ Lq Rq), (8411)

with R, = (B . Aq”) e R"**Dm and N, = LL;l. We denote by T, an orthonormal
basis of 7, so that TgTq = I, and we write gq = T, &, - Thus, substituting Eq =Tk,
into (8.4.11) and (8.4.3b), we obtain the reduced-order model of the algebraic part (8.4.3)
given by

_Lf»g;r =A, ¢, — L&, +B,u, (8.4.12a)
¥, = Co (8.4.12b)

r

T T TXT TR Tr T Tm
where L, =T LT, L, =T LT eR™, A, =TA, €R™ B, =TB, eR
and qu = Tng € R™’. We note that the dimension of the reduced algebraic system
¢~ Thus, the IMOR reduced-order model based on the

balanced truncation method of a DAE is given by

is given by 7 = dim(7,) < n

E, &, = A8, tB,u,
_.Erf;r =A, ¢, —L, &, +B,u, (8.4.13)
Yr= CIT%é:pr + Cgrfq,’

with total dimension r + T < n, where r and 7 are the dimension of the reduced dif-
ferential and algebraic parts, respectively. We note that this reduced-order model will
also be always stable and have a computable error bound for the differential part. This is

illustrated in the next example.



8.4 Extension of IIMOR method to truncation methods 159

Example 8.4.1 For comparison, we use system matrices (7.4.19) from Example 7.4.1.
This DAE can be decoupled into the form (8.4.1) with system matrices

0000
2 -10 -02 01 0 0.1 0 0000
E,=(-1 2 0[,A,=| 0.1 -0.1 -1.0|,B,=]0 ,C,,:o,L:O000
0 01 0 1.0 0.0 0 1
0000
0 010 0 01 0 0
-1 0 00 0 00 -1 0
L, = A, = ,B, = ,C, =1 |
4 0 -1 0 q 0o 0o “ o” * |o
01 0 10 0100 0 1

We can observe that the DAE is decoupled into n, = 3 differential equations and n, = 4
algebraic equations, and the decoupled system is still stable since o°(E ,, A ) = 0 ¢(E, A).
Next, we use the balanced truncation method to reduce the dimension of the system. This
can be done as follows. We substitute matrices E > A - B » and C » into (8.4.5) to solve

for the Gramians given by

0.0169 0.0086 0.0025 25 50 025
#,=[0.0086 0.0167 0.0000f and Q,=|50 100 0.5
0.0025 0.0000 0.0250 0.25 0.5 15.025

We can then use these Gramians to construct the balancing transformation and its inverse
using (8.4.6) obtaining

0.6486 12972 4.7167 0.054218 0.12336  1095.7
T, =]2.0457 4.0913 -1.5068| and T;l =10.04379 0.16026 -547.85|. (8.4.14)
0.0007 -0.0005 -0.0001 0.19251 -0.061038 0

Substituting (8.4.14) into (8.4.4), we obtain a balanced system which can then be par-
titioned in conformance with X, to obtain a reduced-order algebraic subsystem of the

form (8.4.8) with coefficient matrices given by

_[ 0.99324 0.023928] _[—0.046022 0.82467]
- P ’

Pr = 1-0.021333 1.0755 ~0.86258 —0.024527

0.064859 0.19251
= .G, = : (8.4.15)
1020457 *(-0.061038

We observe that the reduced-order subsystem is of dimension r = 2 and the computable
error bound is given by ||[H, — H,, [, < 11.6 x 107?|jull,. We can then compute the
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orthonormal basis T, using (8.4.11) which reduces the algebraic subsystem which is

given by

-9.9504-107" 7.3880-10™* —-9.9519 . 1072
0 0 0
T, = o 5 e (8.4.16)
9.9521-1072 7.0866- 10> —9.9501 - 10

2.9859-10™> 9.9997.10~" 7.1250-1073

Substituting (8.4.16) into (8.4.12), we obtain reduced-order algebraic subsystem which
is given by

000 -2.9711-107° -0.99501  —0.0071196 -0.19156  0.060735
£,={000], £, =| 17923107 0.0078991 -1.0049 |, A, =| 0.0055639 0.012291
000 —2.844-107%  -0.099465 -0.0078694 -0.01912  0.0061623
0 2.9859 - 107
B, =|0[ and C, =]0.99997 ) (8.4.17)
0 0.007125

Thus the algebraic system is reduced to dimension 7 = 3. Substituting (8.4.15) and
(8.4.17) into (8.4.13) we obtained a IMOR reduced-order model based on balanced trun-
cation which we can write in the descriptor form with system matrices given by

0.99324  0.023928 0 0 0 0.064859 0.19251
-0.021333 1.0755 0 0 0 0.20457 —0.061038
E, = 0 0 00 0f,B, = 0 ,C,=12.9859x 1077,
0 0 000 0 0.99997
0 0 000 0 0.007125
—0.046022  0.82467 0 0 0
-0.86258 —0.024527 0 0 0
A, = 0 0 —2.9711x 107 -0.99501 -0.0071196 |. (8.4.18)
0 0 17923 x 107 0.0078991  —1.0049
0 0 —2.844 % 10°  -0.099465 —0.0078694

Hence the DAE (7.4.19) is reduced to a reduced-order model (8.4.18) of dimension
r+ 7 = 5. We note the solution and transfer function coincides with those illustrated in
Figure 7.1 and 7.2.
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8.5 Properties of the IIMOR method

The IIMOR method is an extension of the IMOR method, thus it will also inherits all the
properties of the IMOR method. The main difference between the IMOR and IIMOR
methods is that IMOR method leads to explicit decoupled reduced-order models while
IIMOR method leads to implicit decoupled reduced-order models. We note that these
two methods coincide if and only if E, = Tand £, = 1. However, the IMOR method
is computationally cheaper than the IMOR method. The IIMOR and IMOR methods
always preserves the index of the DAEs. Following the same procedure as for the case
of IMOR method in Section 7.5. The properties of the IIMOR method are discussed as
follows. From (8.2.2), the transfer function of the DAE (8.0.1) can be decomposed as

-1
sE, —A 0 B
H(s)=(C)Cl)|™ 7 7 Pl=H,(s) + H,(s), 8.5.1
(s)=(C} q)( s, Lq_u:) [Bq) H(5) + H(s) (8.5.1)
— T -1 T -1 -1
where H(s) := C} (sE,—A,)"'B, and H,(s) := C}(£,—sL)'[A,(sE,-A,)"'B,+B,]
are transfer functions corresponding to the differential part and algebraic parts, respect-
ively. We can use (8.5.1) to show that the IMOR methods also preserves the properties

of the MOR. These properties are discussed as follows.

(i) Moment matching property.
After the reduction of the differential part of the decoupled system using the block
Arnoldi process, it preserves the first » moments of the differential component
Hp(s) of the decomposed transfer function (8.5.1). This leads to the following

Theorem.

Theorem 8.5.1 IIMOR methods preserves the moment matching property if and
only if the conventional MOR method applied on the differential part preserves the

moment matching property.

Proof 8.5.1 The proof can be summarized following the same procedure as in [49].

If we choose the expansion point as s, = 0 and assume A, is nonsingular. Then the

[e9)

transfer function H,(s) of the differential part can be written as H(s) = Zhg‘)sk
k=0
where hY = (-1)YC;MyR , are the (block) moments of H,(s), M, = ~AJ'E,

and R, = —A;pr. Likewise, the transfer function of the PRIMA reduced-order
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differential part can be written as ﬁp(s) = Zflg()sk where ﬁg‘) = (—l)kC[T)Mkap,
k=0

are the moments, Mp = —A;]EP and Rp = —A;lﬁp. Then,
=~ _ T I _vT 5 _ T = (k) .
Cp = VpCp, Ap = VpApr, Bp = Vpo. We can observe that hp can be written
as

£ _ T T ~1,yT k OT ~1yT

By = —CoV, (VA V) (VLE, V[ (VoA V)V B,
By construction VPVZ is a projector onto K,.(M,,, R ). Thus it holds

Tatkp  — wk _

V,V,M)R, =M,R, k=0,1,---,r—1.
This in turn implies VIT,MIT,RP = M];Rp, hence ﬁg‘) = hg‘), k=0,1,---,r—1. Next,
we can show that the induced reduction on the algebraic part of the DAE also
preserves the first r moments of the algebraic component of the transfer function,

u—-1
H,(s), which can be written as H,(s) = Zh;j) s’ where
j=0
- /J_l .
h(q]) = CqL;IZNé[Aqu + Bq], j=0,--,u-1 N, = LL;I are the moments.
j=0
Also, by construction Vqu is a projector onto ‘K#(L;INq, L;qu), where
B . T k _ k
R, = [Bq A KM, Rp)]. Thus it h~old~s V,V,AMR, +B)=A MR, +B,.
Then, using the identity VEM;RP = MI;,RP. It is possible to show that
b =hl, k=01, ,r-1,see[4].
(ii) Passivity preservation property.

Using Theorem 7.5.2, we can also discuss the passivity preservation of IMOR

methods as follows.

H(s) = CT(sSE - A)"'B,
= H,(s) + H(s),
= CIR,(5) + Cl(L, - sO7'|AR,(5)+B,]|.
u—1

= CJR,(s) + C1L;" > NIN(s)s', since N(s) = A R, (s) + B,
=0
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p—1
; .
= CJR(5) + M(s) + D /M (s),
=1
H,(s) Z
Himpr(s)

where R,,(s) = (sE, - A,)"'B,, N, = LL,, My(s) = C;L,'N(s) and
M (s) = C[L,'N/N(s). H,,(s) is the proper part (bounded as s — c0) and H,,,,(s)
the improper part (unbounded as s — oo) of H(s). Thus, the transfer function
H,(s) = C;Rp(s) of the differential part is a strictly proper part of H(s). Based on
Theorem 7.5.2, H(s) is positive real if and only if Hp,(s) and Mj(s) are positive
real. As we mentioned in Section 7.5, a key to testing the passivity of DAEs is
to first decouple DAEs into their proper and improper parts [66]. s Hence also
the matrices coefficients of the implicit decoupled systems derived in Chapter 6,
can be used to test the passivity of the DAEs using the passivity test for DAEs
proposed in [66]. Hence the matrices coeflicients of the decoupled systems derived
in Chapter 6, can be used to test the passivity of the DAEs using the passivity test
for DAEs proposed in [66]. Following the proof for passivity preserving in [49], it
can also be proved that if the conventional MOR method applied on the differential
part is passivity preserving then the differential part of the IIMOR reduced-order
model is also passive, i.e, ﬁp,(s) is positive real. However, in order to ensure that
the IIMOR methods are passivity preserving one need to also prove that M j(s)1s
also positive real which is still an open question.

(iii) Approximation error
The approximation error of the IMOR methods can also be defined in the same
way as the IMOR methods from Section 7.5. Thus, using (8.2.2) the approximation
error of the IMOR methods can be computed using

IY(s) = Y(s)Il < [H(s) = H(s)I U]+ [P(s) = PCs)l, (8.5.2)

where [[H(s) — H(s)I| < [H,,(s) = H,(s)[| + [IH,(s) = H (s)Il. If we let

Q(0)) := L‘fq(O) to be the hidden polynomial that depends on the input data and
its derivatives at t = 0 and (£q - s.£)_1 = £q Z‘;é Né. Then,

1P(s) = Pl < 1€, Ly T2y N = Co Ly 2 NJIIQu(0)) ~ Qu(0))]l. Hence
also the output-transfer function of the IIMOR reduced-order model has a small
approximation error if and only if

(a) ||H - H| is small
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(b) and [|P(s) — P(s)|| is also very small in a suitable norm ||.||.
Thus, IIMOR reduced-order models can be validate more efficiently using the
above tools.
(iv) Stability

In Section 5.4, we already discussed that for the case of DAEs with a differ-
ential part the decoupled system inherits the stability properties of DAEs since
o-(E;]Ap) = o (E,A). Hence stability preservation of the IIMOR method also
depends on the MOR method used to reduce the differential part.



Chapter 9

Large scale problems

In this Chapter all experiments were done using Matlab2012b on a laptop of 6.00GB of
RAM with 64 bit operating system. In the next example, we illustrate the limitation of

the conventional MOR methods on higher index DAEs using a large scale example.

Example 9.0.1 This benchmark originates from [25]. Consider an RLC circuit in Figure

Figure 9.1: RLC circuit

9.1 which can modeled using the modified nodal analysis leading to a DAE of the form
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(2.4.1) given by [5]

ACAL 00 ~ARGAy —-A; A, 0
0 LO 7’; =l AT 0 o0 |[x+|0]v. 9.0.1)
0 00 Ay 0 0 -1
[ ——— ——
E B B

We can use C = B as the control output matrix and the input function u(¢) = v(¢). This
is a SISO system. We can also observe that n- = g, n; = g—1and n; = g — 1 are the
number of capacitor, inductors and resistors, respectively in the RLC circuit. It can be
checked that this RLC circuit leads to an index-2 DAE of the form (9.0.1). For our case,
weuseC; =0.1,i=1,---,9,L;=05,i=1,--- ,g—-landG=1/i,i=1,--- ,g—1as
capacitance, inductance and conductances values, respectively. Using the same constant
g = 500 as in [25] leads to an index-2 DAE of order n = 1499. Using conventional MOR
method (PRIMA method) and s, = O as the expansion point, we obtained a reduced-
order model of dimension 210. We observed that the conventional MOR reduced-order
model is an ODE. For comparison, we reduced this DAE using our newly developed
IMOR method. This is done as follows. Using the explicit and implicit decoupling
methods, we were able to decouple the DAE system into 998 and 501 differential and
algebraic equations, respectively. We then used the AE method on the algebraic parts of
both algebraic parts and we were able to reduce them to only 2 algebraic equations. Thus,
we were able to reduce both decoupled systems from dimension 1499 to 1000 exactly.
Using the same expansion point with the PRIMA method, we were able to reduce the
differential part of the explicit decoupled system from 998 to 208. Thus, the DAE system
is reduced to a IMOR reduced-order model of total dimension 210. We note the IMOR
reduced-order model is also an index-2 DAE, thus it preserves the index of the original
model. We then compared the transfer functions and the phase angles of the original and
reduced-order models. We observed the transfer function and the phase angle coincides
as shown in Figure 9.2 with small approximation error as shown in Figure 9.3. However,
the IMOR reduced-order model seems to be more accurate than the conventional MOR
model. We numerically solved the IMOR and conventional MOR reduced-order models
using as u(t) = 10cos(?), ¢t € (0,7) as the input function. We observe that the IMOR
reduced-order model leads to accurate solutions which coincides with the solution of the
original model but the conventional MOR reduced-order model leads to wrong solutions

as shown in Figure 9.4, if one used higher order implicit integration techniques. Figure
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Figure 9.2: Comparison of the transfer function and phase angle.
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9.5, shows the approximation error in the output solution. We can observe the solutions
of the conventional MOR model has large error near the initial condition. This is not

surprising to us, since in Section 7.2.2, we discussed that conventional MOR methods

fail if LB, # 0. However, if one uses the lower order implicit integration techniques

such as the backward Euler method this problem is not visible.

Approximation error
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Figure 9.3: Comparison of the approximation error.
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Figure 9.5: Comparison of the approximation error.

The above example shows how unreliable the conventional MOR methods can be.
Having a good approximation of the transfer function does not guarantee accuracy of the
output solution. Hence, the most reliable way is to use split MOR methods such as the
IMOR and IIMOR methods to reduce DAE:s.
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Next, we apply the two newly developed IMOR and [IMOR methods for DAEs on large
scale problems from real-life applications. These applications include problems from
computational fluid dynamics (CFD), multibody systems and electrical networks. How-

ever these methods can be applied to any application that leads to a linear constant DAE.

CFD problems

These are applications from computational fluid dynamics (CFD).

Example 9.0.2 In this example, we used system matrices from supersonic inlet flow
example discussed in Section 2.4.2. Consider the Euler equations modeling the unsteady
flow through a supersonic diffuser as described in [35]. Linearization around a steady-
state solution and spatial discretization using a finite volume method leads to a semi-
explicit descriptor system of the form (2.4.3) of dimension n = 11730 and the CFD
model had 3078 grid points. This is an index-1 DAE with m = 2 inputs and £ = 1 output.
According to [35], the reduced-order model must capture the dynamics of the output:
the average Mach number at diffuser throat in response to two inputs: the incoming flow
disturbance and the bleed actuation as shown in Figure 2.2. According to [35], they are
two transfer functions of interest in this problem. Thus, the problem can be viewed as 2
single input single output (SISO) subsystems and the frequencies of practical interest lie
in the range %0 =0to % = 2, where f, = %" ag is the freestream speed of sound and
h is the height of the diffuser. We decoupled this subsystems system into n,, = 11323
differential equations and n, = 407 algebraic equations using both implicit decoupling
and the explicit decoupling methods for index-1 DAEs. Figure 9.6 and 9.7 show the
sparsity of the matrix pencil of the implicit and explicit decoupled system in descriptor
form. We observe that the implicit decoupling procedure leads to a sparser matrix A
than the matrix A of the explicit decoupling procedure. Next, we compared the IMOR
and IIMOR methods on these two subsystems. We used the PRIMA method to reduce
the differential part of both decoupled systems using s, = 0 as the expansion point.
We were able to reduce the differential and algebraic parts of both subsystems to 15
differential and 16 algebraic equations, respectively. Thus both DAE subsystems were
reduced from dimension 11730 to 31. In Figure 9.8, we compare the magnitude of the

transfer function and its approximation error from bleed actuation to average throat Mach
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Figure 9.6: Sparsity of matrix pencil (E, A)

number for supersonic diffuser. We observed that all reduced-order models are accurate
in the desired frequencies but the IIMOR is more accurate than the IMOR method. In
Figure 9.10, we compare the magnitude of the transfer function and its approximation
error from the incoming flow disturbance to average throat Mach number for supersonic
diffuser. We also observed that all the reduced-order models are accurate in the desired
low frequencies. Hence, the IMOR method is more accurate than the IMOR method for

this problems.
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Figure 9.7: Sparsity of matrix pencil (E, A)
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Figure 9.8: Transfer function from bleed actuation to average throat Mach number for

supersonic diffuser.
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Figure 9.10: Transfer function from incoming flow disturbance to average throat Mach
number for supersonic diffuser.
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Figure 9.11: Approximation error of the Transfer function from incoming flow disturb-
ance to average throat Mach number for supersonic diffuser.

Example 9.0.3 In this example, we apply the IMOR and IIMOR method on the semidis-
cretized Stokes problem which we earlier discussed in Section 2.4.2. This is an index-2
DAE with system matrices of the form (2.4.5). We note that these results presented here
are also presented in [4]. We performed a spatial discretization of the Stokes equation
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(2.4.4) on a square domain Q = [0, 1] x [0, 1] by the finite volume method on a uniform
staggered grid. In order to compare the computational cost of the implicit and explicit
decoupling methods, we carried out experiments on different grid sizes as shown in Table
9.1. From Table 9.1, we can observe that as the mesh becomes finer the larger the size of
the problem. Hence solving the problem becomes computationally more expensive. We
can also observe that both methods were able to decouple the problem but the implicit
method is computationally cheaper than the explicit method as expected since it does not

involve matrix inversion of matrix E,. We then reduced the decoupled Stokes problems

Table 9.1: Comparison of the computational cost

Grid Order  Decoupled model Computational cost
n n, ky k,  Implicit method Explicit method
64x64 12159 3969 4095 4095 5521.2 -
60x60 10679 3481 3599 3599 3667.6 30653.3
56x56 9295 3025 3135 3135 5937.8 8604.0
52x52 8007 2601 2703 2703 1574.9 5569.7

using the IMOR and [IMOR methods. We applied the IMOR and IIMOR method, to
the explicit and implicit decoupled problems, respectively as shown in Table 9.2. We
used the PRIMA method and s, = 0 as expansion point to reduce the differential part of
both decoupled systems. The differential and algebraic equations are reduced to order r
and 7, respectively and r + 7 is the order of the reduced-order DAE as shown in Table
9.2. We observe that the IMOR method takes less time than the IMOR method this is
due to the inversion of lower triangular matrix £, but this is small compared to the time

it takes to generate the explicit decoupled system. We used the system matrices from

Table 9.2: Comparison of the IMOR methods
Grid Order Decoupled model IIMOR model IMOR model
n n, n, r 1t Time(s) r 1 Time(s)
64x64 12159 3969 8190 11 12 633 -
60x60 10679 3481 7198 11 12 488 11 12 13.1
56x56 9295 3025 6270 32 33 288 32 33 11.7

52x52 8007 5406 3599 22 23 19.3 22 23 6.3

grid 52 X 52 to compare the transfer function and the phase angle of the IMOR model
and IIMOR model with that of the original as shown in Figure 9.12. We can observe
that the transfer function and phase angle of the IMOR, IIMOR and original models co-
incide. However, the IMOR model is more accurate than the IIMOR model as shown

by the approximation error plot in Figure 9.13. We finally compared the solutions of the
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Figure 9.13: Comparison of the approximation error.

reduced-order models with that of the original model. From Figure 9.14, we observe that

the solutions of the reduced-order models coincides with that of the original model with

a small approximation error as shown in Figure 9.15. Both reduced-order models took

10 seconds while the original model took 148 seconds. Thus the decoupling techniques

also makes solving much cheaper.
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Multibody problems

Example 9.0.4 In this example, we consider a constrained damped mass-spring system

as described in Section 2.4.3. This is a DAE of index-3 with its matrix pencil has at

least one finite eigenvalue. Thus, we expect its decoupled system to have a differential

part. We used the same constant g = 6000 as used in [45] to generate the same system
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matrices for comparison. This generates a DAE of order n = 12001 with 1 input and 3
outputs in the form (2.4.6). We used both the explicit and implicit decoupling methods
for index-3 DAEs derived in Chapter 5 and 6, respectively. Both methods, were able
to decouple the DAE into 1198 differential and 3 algebraic equations. The explicit and
implicit methods took 60 and 54 seconds, respectively to decouple the system. Thus
the implicit decoupling method is computationally cheaper than the explicit decoup-
ling method. Then, We used the IMOR and IIMOR methods to decouple the respective
decoupled systems. For both methods, we used the PRIMA method to reduce the dif-
ferential part using s, = 107 as the expansion point. The IMOR and IIMOR methods
reduced their respective decoupled systems to 10 differential and 1 algebraic equations.
The IMOR and IIMOR methods took 17 and 15 seconds, respectively. Thus the original

DAE is reduced to a reduced-order model of order 11. In Figure 9.16, we compare the
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Figure 9.16: Magnitude and phase plots of Hj | (iw)

magnitude and phase plots of the (3, 1) components of the frequency responses for the
reduced-order models and the original model. Figure 9.17 compares the approximation
error of the IIMOR and IMOR reduced-order models. We see that the reduced-order
models approximate the original system very well at low frequencies. However the
IMOR reduced-order model is more accurate than the IMOR reduced-order model. In
Figure 9.18, we compare the output solutions y(¢) and y,(#) of the reduced-order mod-
els with that of the original model using u(f) = 10sin(n?) as the input function. We

observe that the solutions coincide with that of the original model. However the solu-
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tions of the IMOR model are more accurate than the IIMOR model as illustrated in the

approximation error curve in Figure 9.19.
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Electrical network problems

In this Section, we consider an application from the circuit community.

Example 9.0.5 In this example, we used a MNA model of dimension n = 10913. This
DAE model originates from [11]. This is a MIMO index-2 DAE with m = 9 inputs
and £ = 9 outputs. The spectrum of its matrix pencil (E,A) has at least one finite
eigenvalue. Thus its explicit and implicit decoupled systems takes the form (5.3.15) and
(6.2.3), respectively. We used both the explicit and the implicit decoupling methods
in order to split this DAE into differential and algebraic parts. We observed that both
methods lead to n, = 10790 differential equations, k; = 26 1st algebraic equations and
ko = 97 2nd algebraic equations. This means that the DAE can be decoupled into 10790
differential and 123 algebraic equations. Thus the total dimension of the system is equal
to the dimension of the DAE as expected, i.e n = n, + k; + ky = 10913 as expected. The
implicit decoupling procedure is computationally cheaper than its counter part because it
does not involves computing the inverse of E, which is very expensive. For this example

implicit and explicit decoupling methods took 306 and 1965 seconds, respectively to
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decouple the DAE.
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Figure 9.21: Approximation error

We used both the IMOR and IIMOR methods to reduce the DAE for comparison. In
both methods we used the PRIMA method to reduced the differential part. The IMOR
method lead to reduced-order model with 900 differential and 35 algebraic equations,
while the IIMOR method lead to a reduced-order model with 900 differential and 99
algebraic equations. We can observe that the IIMOR reduced-order model is much lar-

ger. The IMOR and IMOR method took 443 and 9662 seconds, respectively. Thus, the
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IIMOR method is computationally cheaper than the IMOR method. In Figure 9.20, we
can observe that the magnitude and phase of the transfer functions coincide with that of
the original model with a small approximation error as shown in Figure 9.21. However,
the IMOR reduced-order model is more accurate than the IIMOR model.



Chapter 10

Conclusions and Recommendations

In this thesis, two new model order reduction techniques for linear constant coefficient
DAEs have been proposed. These methods are: the Index-aware MOR (IMOR) and
Implicit IMOR (IIMOR) methods. They are both robust and lead to simple reduced-
order models. However the Implicit IMOR method is computationally cheaper than the
IMOR method, since the former does not involve matrix inversions. However, exper-
iments show that the IMOR method leads to more accurate reduced-order model than
the IIMOR method. Both methods have an attractive property that they preserve the in-
dex of the original DAE. Another interesting feature of our methods is the reduction of
the algebraic variables. These methods were tested on both small and large scale prob-
lems from different applications which lead to accurate reduced-order models. We have
also discussed that conventional MOR methods such as PRIMA method, may lead to
reduced-order models which are: difficult to solve numerically, lead to wrong solutions
or even unsolvable, while reduced-order models obtained by our methods do not present
numerical difficulties when applied to higher index DAEs. It was noted that they are
some special case where conventional MOR methods can lead to accurate reduced-order

model even for higher index DAEs. This happens when initial condition does not de-
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pend on the derivatives if the input function u at time r = 0. The implicit and explicit
decoupling procedure used in the IMOR and IIMOR methods are also new, they can
be used to efficiently solve DAEs numerically using the conventional ODEs integration
methods [5]. These decoupling procedures relies on the construction of projectors onto
the nullspace of singular sparse matrices, which used to be its main drawback. For some
applications with special structures they can be constructed explicitly and for general
sparse DAEs one can use the LU based routine which is a very fast way of constructing
projectors onto the nullspace of singular matrices [66]. This same routine can be used
to construct bases of these projectors. However, one has to be aware that the numerical
computation of these bases for the decoupling may involve serious difficulties because
of the accuracy sensitive rank decisions. But it is expected to be profitable if the bases
functions can be computed in a robust way, for example some applications such as the
electrical network problems which are modeled using the incidence matrices. Thus, we
recommend one to use the incidence matrices to construct these bases instead of using

singular matrices which may be ill-conditioned for the case of circuit problems.

Recommendations for future work

Proper orthogonal decomposition (POD) model order reduction method is commonly
used method to reduce nonlinear ODEs but there have been recent attempts to extend
it to nonlinear DAEs, see [53]. However, this extension heavily relies on the idea of
the balanced truncation MOR for the descriptor systems [45] which uses the Kronecker
forms of the DAE and we have already discussed that these forms are numerically in-
feasible which limits their practical use. Fortunately, our implicit and explicit decoupling
procedures are based on the matrix and projector chain [42] to decoupled DAEs, which
are numerically feasible, and can be extended to nonlinear DAEs, linear DAEs with time
varying coeflicients or parametric DAEs, see [24,34]. The decoupling strategy of nonlin-
ear DAEs involves a mixture of tractability index and strangeness index concepts, which
can be used to split the nonlinear DAEs into a differential and algebraic parts [24]. Then
the traditional proper orthogonal decomposition MOR method can be used to reduce the
differential part and as a result the algebraic part can also be reduced. Although this is
in general computationally expensive and highly sensitive with respect to perturbations,
one may exploit it in a robust manner for model order reduction if the DAE to reduce has

a time and state independent structure, i.e., if one can find bases functions that are both
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time and state independent as is the case for circuit parts without controlled sources [2].

This may be an interesting strategy to exploit in the future.

In Section 7.1 and 8.1, we proposed the Algebraic Elimination (AE) method which re-
duces the algebraic part of the decoupled system exactly by eliminating algebraic vari-
ables which do not contribute to the output solution. However, for the case of implicit
decoupled systems as presented in Section 8.1, we do not get a good reduction of the
algebraic part since it very difficult to find these algebraic variables which do not con-
tribute to the output solution by just using the traditional permutation algorithms. We
suggest if one uses the graph and matrix reordering algorithm such as the Vertex cut
algorithms [31] to find the connected graphs in the matrices. This approach may lead
to a better reduction of the algebraic part. This strategy can be used as a foundation for
the development of MOR methods for algebraic systems since it is also an undeveloped

arca.
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Summary

Index-aware Model Order Reduction Methods for DAEs

Large scale DAEs arise in a variety of applications such as modeling of constrained
multibody systems, electrical networks, aerospace engineering, chemical processes, com-
putational fluid dynamics (CFD), gas transport networks. Characteristic of such systems
is that they lead to state space descriptions of high dimension in which the coefficient of
the first order derivative is a singular matrix. In practice, applications lead to DAEs with
very large dimension compared to the number of inputs and the desired outputs. Despite
the ever increasing computational power, simulation of these systems in real time for
such large scale is very difficult because of the storage requirements and expensive com-
putations. This is an attractive feature to apply model order reduction. However, if the
initial condition is inconsistent or when the smoothness of the input does not correspond
to the index of the DAE, currently available MOR techniques may lead to inaccurate
reduced-order models. These reduced-order models may lead to wrong solutions that
do not adequately represent the hidden truly fast modes or are very difficult to solve

numerically.

The aim of this PhD project is to investigate model order reduction techniques for DAEs.
The ultimate goal of the project is to deliver fundamental mathematical knowledge and
efficient numerical tools for the next generation of MOR techniques for differential al-
gebraic equations. This thesis addresses the mathematical aspects of the reduction of
differential algebraic equations including the limitations of the conventional MOR meth-
ods. We have developed two new dedicated reduction methods for DAEs, using the un-
derlying structure of DAEs, with the aim of obtaining robust reduction methods that can

be applied to linear constant coefficient DAEs with arbitrary index. Our two new MOR
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methods for DAEs are: the Index-aware MOR (IMOR) method and its implicit version
the Implicit-IMOR (IIMOR) method. The explicit and implicit decoupling procedure
used in these two methods are also new and can be used to solve DAEs more efficiently

and effectively using conventional ODE integration methods.

This thesis begins with a brief overview of MOR methods for DAEs in Chapter 1 and
why there was need to develop new robust MOR methods for DAEs. We also briefly
explain the underlying mathematical frame work of the IMOR and IIMOR methods.

Chapter 2 introduces the theory of the DAEs and also discusses why DAEs are very
difficult both to solve and to reduce. In this thesis, we restrict ourselves to linear time
invariant DAEs or linear constant coefficient DAEs but the same applies to other types
of DAEs. In this Chapter, we also discuss the assumptions under which DAEs can
be solved as well as their mathematical properties such as stability. This is done by
first transforming the DAE into a Kronecker form in order to reveal their underlying
structure. We use the underlying structure of DAEs to discuss the index of DAEs and
how the index of DAEs affects the choice of their initial conditions. We further used this
form to discuss how the index of DAEs affects the conventional MOR methods especially
for higher index DAEs. We then discuss the reason why it is a best practice to first split
DAE:s into differential and algebraic parts before applying model order reduction. We
finally describe some of the real-life applications that lead to DAEs.

In Chapter 3, we discuss model order reduction methods in general and also illustrate
numerically the limitations of conventional MOR methods using small examples. In this
Chapter, we also give an overview of the existing MOR methods for DAEs and their
limitations. We observed that the most successful methods for DAEs are: the balanced
truncation method and Interpolatory projection methods for DAEs. Both methods lead to
accurate reduced-order models for DAEs, however they both use Kronecker canonical
forms to construct spectral projectors used in decoupling which are well known to be
numerically infeasible. This limits their application to DAEs with special structures
and cannot be used on general DAEs. These methods can not be extended to linear
DAE:s with variable coefficients since they use spectral projectors to decouple DAEs. We
finally discuss the MOR methods for algebraic systems specifically reduction methods

for resistor networks.
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In Chapter 4, we discuss the decoupling of DAEs using the matrix and projector chain
based on the definition of tractability index proposed by Méarz. We used these matrix
and projector chains to decouple DAEs into differential and algebraic parts using the
Mirz decoupling procedure. However, we found out that we cannot apply model order
reduction on these decoupled systems since the Mirz decoupling procedure leads to a
much larger decoupled system of dimension n(u + 1), where u is the index of a DAE of
dimension n, and it does not preserve stability of DAEs. We also discuss a fast way of

constructing these matrix and projector chains using an LU decomposition based routine.

In Chapter 5, we modify the Mirz decoupling procedure using projector bases. Using
this approach, we were able to remove the redundancy in the decoupled systems. The
modified decoupled system preserves both the dimension and the stability of DAEs. We
call this decoupling procedure: explicit decoupling procedure since it leads to expli-
cit differential and algebraic parts. However this modified decoupling procedure relies
on the foundation of the Mirz decoupling procedure which involves matrix inversions.
Hence the explicit decoupling procedure cannot be applied to large scale DAEs. This
motivated us, in Chapter 6, to develop another decoupling procedure which does not in-
volve matrix inversions. This procedure is an implicit version of the decoupled proced-
ure in Chapter 5. Experiments, also show that the implicit decoupling is computationally

cheaper than the explicit decoupling procedure as expected.

In Chapter 7, we developed one of our new MOR methods for DAEs which we call the
Index-aware MOR (IMOR) method. This is done by reducing the differential and algeb-
raic parts, separately of the explicit decoupled systems derived in Chapter 5. One can
use any conventional MOR method to reduce the differential part, while we developed
new methods to reduce the algebraic part. For illustration, we used the PRIMA method
and the balanced truncation method to reduce the differential part. The IMOR method
leads to simple reduced-order models which preserve the index of the original DAE and
also make it easy to solve. We also discussed the properties of the IMOR method and
observed that it depends on the conventional MOR method used to reduce the differential
part. However the IMOR method is impractical to be used to reduce large-scale DAEs
since it uses the computationally expensive explicit decoupling procedure in Chapter 5.

In Chapter 8, we developed the implicit version of the IMOR method which is based
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on the implicit decoupling procedure derived in Chapter 6, called the Implicit-IMOR
(IIMOR) method. It has the same properties as the IMOR method, but it is compu-
tationally cheaper than the IMOR method. In Chapter 9, we applied both the IMOR
and IIMOR methods on large-scale real-life applications. Experiments show that both
methods are very accurate and robust, and lead to simple reduced-order models which
are accurate and easy to solve. However, the IMOR is more accurate. Thus, one needs
to trade off between accuracy and complexity. In the final Chapter, we discussed the

conclusion and the future recommendations of the IMOR and IIMOR methods.
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