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Abstract

In this paper, popular model reduction techniques from the fields of structural dynamics, nu-
merical mathematics and systems and control are reviewed and compared. The motivation for
such a comparison stems from the fact the model reduction techniques in these fields have been
developed fairly independently. In addition, the insight obtained by the comparison allows for
making a motivated choice for a particular model reduction technique, on the basis of the desired
objectives and properties of the model reduction problem. In particular, a detailed review is given
on mode displacement techniques, moment matching methods and balanced truncation, whereas
important extensions are outlined briefly. In addition, a qualitative comparison of these meth-
ods is presented, hereby focussing both on theoretical and computational aspects. Finally, the
differences are illustrated on a quantitative level by means of application of the model reduction
techniques to a common example.

1. Introduction

An important tool in the design of complex high-tech systems is the numerical simulation
of predictive models. However, these dynamical models are typically of high order, i.e. they are
described by a large number of ordinary differential equations. This results from either the inherent
complexity of the system or the discretization of partial differential equations. Model reduction
can be used to find a low-order model that approximates the behavior of the original high-order
model, where this low-order approximation facilitates both the computationally efficient analysis
and controller design for the system to induce desired behavior.

The earliest methods for model reduction belong to the field of structural dynamics, where
the dynamic analysis of structures is of interest. Typical objectives are the identification of eigen-
frequencies or the computation of frequency response functions. Besides the mode displacement
reduction method and extensions thereof (see e.g. [1, 2]), important techniques are given by com-
ponent mode synthesis techniques [3, 4], which started to emerge in the 1960s.

The model reduction problem has also been studies in the systems and control community,
where the analysis of dynamic systems and the design of feedback controllers are of interest. Some
of the most important contributions were made in the 1980s by the development of balanced
truncation [5, 6] and optimal Hankel norm approximation [7].
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Finally, numerically efficient methods for model reduction have been developed in the field
of numerical mathematics in the 1990s. Important techniques are asymptotic waveform evalua-
tion [8], Padé-via-Lanczos [9] and rational interpolation [10]. These methods are often applied in
the design and analysis of large electronic circuits.

Despite the fact that the above techniques essentially deal with the same problem of model
reduction, the results in the fields of structural dynamics, systems and control and numerical
mathematics have largely been developed independently. This paper aims at providing a thorough
comparison between the model reduction techniques from these three fields, facilitating the choice
of a suitable reduction procedure for a given reduction problem. To this end, the most popular
methods from the fields of structural dynamics, systems and control and mathematics will be
reviewed. Then, the properties of these techniques will be compared, where both theoretical
and numerical aspects will be discussed. In addition, these differences and commonalities will be
illustrated by means of application of the model reduction techniques to a common example.

Reviews of model reduction techniques exist in literature. However, these reviews mainly focus
on methods from the individual fields, i.e. they focus on methods from structural dynamics [11, 12],
systems and control [13] or numerical mathematics [14, 15] only. Nonetheless, methods from
systems and control and numerical mathematics are reviewed and compared in [16, 17, 18], where
the comparison is mainly performed by the application of the methods to examples. In the
current paper, popular model reduction techniques from all the three fields mentioned above will
be reviewed. Additionally, both a qualitative and quantitative comparison will be provided. The
focus of this paper is on this comparison; it does not aim at presenting a full comprehensive
historical review of all method in these three domains.

In this paper, the scope will be limited to model-based reduction techniques for linear time-
invariant systems. Consequently, the data-based model reduction technique of proper orthogonal
decomposition [19, 20] will not be discussed. For an overview of proper orthogonal decomposition,
see [21, 22]. Also, reduction methods for nonlinear systems (see e.g. [23, 24]) fall outside the scope
of this paper.

The outline of this paper is as follows. First, the most important model reduction techniques
from the fields of structural dynamics, numerical mathematics and systems and control will be
reviewed in Section 2. In Section 3, a qualitative comparison between these methods will be
provided, focussing on both theoretical and numerical aspects. This comparison will be illustrated
by means of examples in Section 4, which further clarifies differences and commonalities between
methods. Finally, conclusions will be stated in Section 5.

Notation. The field of real numbers is denoted by R, whereas C represents the field of complex
numbers. Boldface letters are used to represent vectors and matrices, where the latter are printed
in upper case. For a vector x, the Euclidian norm is denoted by ‖x‖, i.e. ‖x‖2 = xTx. The H∞
norm of a system is denoted by ‖ · ‖∞.

2. Review of model reduction techniques

In this section, popular model reduction techniques from different fields are discussed. In
Section 2.1, methods from structural dynamics are discussed, whereas model reduction techniques
from the fields of numerical mathematics and systems and control are discussed in Sections 2.2
and 2.3, respectively.

2.1. Mode displacement methods

In the field of structural dynamics, the design and performance evaluation of mechanical sys-
tems is of interest. Herein, the computation of deformations, internal stresses or dynamic prop-
erties are subject of analysis. Even though the goal of analysis might differ from one specific
application to another, important objectives are the prediction of regions with high stress, predic-
tion of the eigenvalues (related to resonance frequencies) and eigenvectors (related to structural
eigenmodes) and the computation of the system’s response to a certain excitation.
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All of the above mentioned goals share a common property. Namely, the models used in the
design must, generally, contain detailed information for the precise description of the response
properties of the structure. The mathematical models are basically constructed in terms of partial
differential equations. These equations might be solved exactly only for simple problems and one
has to resort to discretization-based approaches, such as the finite element method (FEM) or
the boundary element method (BEM). In the context of this section, the finite element related
concepts are of interest.

Model reduction methodologies are efficiently used in the structural field since the 19th century.
The most common methods are mode superposition methods [1], in which a limited number of free
vibration modes of the structure is used to represent the displacement pattern [25]. There are also
improvements of the original mode superposition method by the addition of different vectors to
the expansion procedure, such as the mode acceleration or modal truncation augmentation [1, 26].
Mode superposition methods are generally considered for the complete structure. However, it is
common to partition the structure in some components, on which model reduction is performed
individually. Then, these reduced-order component models are coupled to represent the global
behavior. These methods are all together named component mode synthesis techniques. These
methods are extensions of common mode superposition methods to the partition level where the
forces on the partition boundaries replace the general forces on the whole structure. In [27] and [3],
Hurty provided a general method for component mode synthesis techniques. Craig and Bampton,
in [4], used the static deformation shapes of the structure with respect to its boundary loads and
enriched this space with the internal dynamic mode shape vectors to increase the accuracy. This
method is known as the fixed-interface reduction method because the modes of the system are
found while all the boundaries are fixed. Later on, the works of MacNeal [28] and Rubin [29]
extended these methods to a class of methods known as free-interface methods. In these methods,
the dynamic mode shape vectors used in the basis are computed without the application of any
restraints on the component boundaries, where in fixed-interface methods the boundary degrees
of freedom are all fixed. A recent general overview on dynamic substructuring methods can be
found in [12]. Another overview that summarizes the component mode synthesis approaches can
be found in [11].

Discretization-based methods, such as FEM, analyze complex engineering problems by con-
structing piece-wise approximation polynomials over the spatial domain and solve for the unknown
variables at specific locations of the discretization, known as node points [30]. This representation
might already be considered to be a model order reduction process in itself. Namely, the displace-
ment u(z, t), which is dependent on the spatial variable z and time t, is represented by the finite
expansion

u(z, t) =

N∑
j=1

Ψj(z)qj(t). (1)

Herein, Ψj(z) are linearly independent functions representing the displacement shape of the struc-
ture, where it is noted that they satisfy the essential boundary conditions of the problem. Next,
qj(t) are the unknown functions of time, whereas N represents the number of functions exploited
in the representation. Since the representation of a body consists of infinitely many points (and
therefore infinitely many degrees of freedom), the finite expansion (1) has already accomplished
the task of reducing the system to a finite number of degrees of freedom.

The discretization of the differential equations of the problem results in the equations of motion
of the system, which are typically of the following form:

Mq̈ + Kq = f , (2)

where M ∈ RN×N and K ∈ RN×N represent the mass and stiffness matrices, respectively. Fur-
thermore, q ∈ RN represents the unknown displacements of the structure and f ∈ RN is the
externally applied generalized force vector. Structural systems possess, most of the time, light
damping and the reduction typically is based on the undamped system. Therefore, undamped
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systems of the form (2) are considered in this section. However, it is stressed that this is only
suitable when the system is lightly damped and the eigenfrequencies are well separated [2].

In general, a detailed problem representation and the use of a high number of elements in
the discretization result in large matrices and, hence, in long computation times. Model order
reduction methods are used to efficiently reduce the system size and, as a consequence, achieve
acceptable computation times. Reduction methods in structural dynamics may be classified into
two classes, namely, methods related to mode superposition and methods related to component
mode synthesis techniques. In this section, the context is limited to mode superposition methods,
since they apply to the full system. This enables a comparison with methods from the fields of
numerical mathematics and systems and control. More information on component mode synthesis
can be found in [4].

Mode superposition methods share the common property that they use a small number of
free vibration modes to represent the dynamics of the structure with some reduced number of
generalized degrees of freedom. With this selection, one represents the solution vectors as a
summation of free vibration modes that form a linearly independent set. This operation therefore
reduces the system size to be solved and could result in important computational gains. However,
there are some important points to note on the expansion procedures used in practice [31], namely:

1. the used mode shape vectors do not span the complete space;

2. the computation of eigenvectors for large systems is very expensive and time consuming;

3. the number of eigenmodes required for satisfactory accuracy is difficult to estimate a priori,
which limits the automatic selection of eigenmodes;

4. the eigenbasis ignores important information related to the specific loading characteristics
such that the computed eigenvectors can be nearly orthogonal to the applied loading and
therefore do not participate significantly in the solution.

Three different main variants can be considered which are often used in structural dynamics com-
munity. These are the mode displacement method, mode acceleration method and modal trunca-
tion augmentation method. The latter two methods are enhancements of the mode displacement
method with the addition of the contribution of the omitted parts in an expansion process.

Generally, these methods do not propose the computation of an error bound for the response
studies. Consequently, the success of the methods is established on the basis of a posteriori
error comparisons. Typically, either the errors on the eigenfrequencies or the errors on the input-
output representation are used to show the success of the applied method. In the following
sections, the mode displacement method, the mode acceleration methods and the modal truncation
augmentation method will be treated in more detail.

2.1.1. Mode displacement method

The equation of motion of the structure (2) is recalled:

Mq̈ + Kq = f .

Then, the mode displacement method is based on the free vibration modes of the structure, which
can be found by using a time-harmonic representation for the displacement of the unforced system
(i.e. f = 0). This leads to the generalized eigenvalue problem(

K− ω2
jM
)
φj = 0, (3)

where φj is the mode shape vector corresponding to the eigenfrequency ωj , with j ∈ {1, . . . , N}.
Using the expansion concept along with the mode shape vectors φj , the displacement can be
represented as follows:

q =

N∑
j=1

φjηj , (4)
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where it is recalled that N is the size of the system. Here, ηj is typically referred to as a set
of modal coordinates. It is a common practice to mass-orthogonalize the mode shape vectors,
resulting in

φT
i Mφj = δij ,

φT
i Kφj = δijω

2
j , (5)

where δij denotes the Kronecker delta. These orthogonality relations are used to decouple the
coupled equations of motion (2). Using (5), the decoupled equations are represented in modal
coordinates as

η̈j + ω2
j ηj = φT

j f , j ∈ {1, . . . , N}. (6)

An important practical point on the expansion method is related to the computation of the
expansion vectors. The computation of the mode shape vectors that are used in the mode su-
perposition methods can be an expensive task and, in practice, all the computational methods
extract a limited number K of vectors of the eigenvalue problem. The general idea of the expan-
sion procedure is to keep the first K vectors in the representation, that correspond to the lowest
eigenfrequencies. This results in a truncation, namely,

q =

K∑
j=1

φjηj +

N∑
jt=K+1

φjtηjt︸ ︷︷ ︸
truncated

, (7)

where the indices j and jt represent the kept mode and the truncated mode indices, respectively.
Since the displacement is represented as a linear combination of K linearly independent vectors,

it can also be given in matrix notation, leading to the approximation

q = Φη, Φ =
[
φ1 φ2 . . . φK

]
. (8)

Using (2) and (8) and projecting the resulting equations of motion on the expansion basis Φ results
in the following reduced-order dynamics

Mrη̈ + Krη = fr, (9)

where

Mr = ΦTMΦ = I, (10)

Kr = ΦTKΦ = diag{ω2
1 , . . . , ω

2
K}, (11)

fr = ΦTf . (12)

In general, the analysts are interested in the response properties of the system for the lower
frequency range and therefore, the lowest modes are typically chosen. The reason behind this
selection is the fact that most structures are operated at low frequencies.

The importance of a mode is mostly related to two concepts. First, the orthogonality of the
mode with respect to the excitation, as given by φT

j f , is of importance. Secondly, the closeness
of the eigenfrequency of the mode with respect to the excitation spectrum is of interest.

2.1.2. Mode acceleration method

The mode acceleration method is a computational variant of the static correction method. The
static correction method aims at taking into account the contribution of the omitted modes. The
driving idea of the static correction concept is to be able to include the effects of the truncated
modes statically into the summation procedure. Namely, truncated modes have a static contribu-
tion on the response for low frequencies. This results in an improvement for the response studies
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in the lower frequency range. The response might be represented as before but with a correction
term qcor, such that

q = Φη + qcor. (13)

To obtain the static correction term qcor (with q̇cor = q̈cor = 0), the truncated representation for
the acceleration is substituted in the equation of motion (2), leading to

M

K∑
j=1

φj η̈j + Kq = f . (14)

Then, the use of the (reduced-order) dynamics in modal coordinates (6) leads to

q = K−1

f −M

K∑
j=1

φj(φ
T
j f − ω2

j ηj)

 ,

=

K∑
j=1

φjηj +

K−1 −
K∑
j=1

φjφ
T
j

ω2
j

f , (15)

where the relation imposed by the eigenvalue problem (3) is used in the latter step. When com-
paring (15) to the truncation (7), it is observed that the correction term is given as

qcor =

K−1 −
K∑
j=1

φjφ
T
j

ω2
j

f . (16)

It is noted that, by using all eigenmodes, the inverse of the stiffness matrix can be represented
as [2]

K−1 =

N∑
j=1

φjφ
T
j

ω2
j

, (17)

such that the use of (17) in (15) results in

q =

K∑
j=1

φjηj +

N∑
j=K+1

φjφ
T
j

ω2
j

f . (18)

Even though this last form is not applicable in practice, since it requires the computation of
all model vectors, it clearly shows that only the static contribution of the omitted modes φj ,
j ∈ {K + 1, . . . , N}, is taken into account in the correction term qcor.

2.1.3. Modal truncation augmentation method

The modal truncation augmentation method is an extension of the mode acceleration method.
Its main principle depends on the use of the static correction as an additional direction for the
truncation expansion [32, 33, 34]. Inclusion of the correction in a modal expansion results in the
modal truncation augmentation method, such that q is approximated as

q =

K∑
j=1

φjηj + qcorξ, (19)

where qcor is given by the mode acceleration method in (18) and ξ is an additional coordinate in
the reduced-order system. This correction vector is included in the reduction basis, such that the
new reduction basis reads

Ψ =
[
Φ qcor

]
. (20)
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Here, it is noted that Ψ is generally orthogonalized.
Modal truncation augmentation methods are mostly used when there are multiple forcing

vectors acting on the system. Therefore, these correction vectors are not used a posteriori as in
the mode acceleration method but they really become a part of the reduction space.

There exist also further extensions of the common mode superposition methods which include
higher-order correction vectors. These methods are outlined in [33] and references therein. See
Section 3.3 for further details.

2.2. Krylov subspace based model order reduction

Krylov subspace based model order reduction (MOR) methods are methods which reduce a
system with many degrees of freedom (i.e. states) to a system with few(er) degrees of freedom
but with similar input-output behavior. Typical applications are large electronic circuits with
large linear subnetworks of components (see e.g. [35, 36]) and micro-electro-mechanical systems
(MEMS). The main purpose of Krylov methods is the construction of an approximation of the
system’s transfer function which (accurately enough) describes the dependence between the input
and the output of the original system, e.g. in some range of the (input) frequency domain. Methods
of this type are based on projections onto a Krylov subspace and are (relatively) computationally
cheap compared to other reduction techniques, for instance because they can effectively exploit
parallel computing. The objective is the derivation of a smaller system with similar input-output
behavior and with similar properties such as stability, passivity or a special structure of the
matrices in the model description. The quality of the reduced-order approximation can be assessed
by studying norms of the difference between the outputs of the unreduced and reduced models
applied for the same inputs. Preservation of additional properties is of importance if the reduced
system has to exhibit some physical properties of the model; for instance, when the reduced
system has to be a (realizable) circuit consisting out of resistors, inductors and capacitors (a RLC
network), just as the original system. So far, there have been no proven a priori error-bounds for
the Krylov based reduction techniques, see [37] for more details and for alternative approaches, to
ensure a good (application domain dependent) approximation.

The first reduction method involving the usage of the Krylov subspace, called asymptotic
waveform evaluation, was described in 1990, see [8]. However, the main focus of this paper was
on finding a Padé approximation of the transfer function rather than on the construction of a
Krylov subspace. Later, in 1995, in [9] a method called Padé via Lanczos (PVL) was proposed
and the relation between the Padé approximation and Krylov subspace was shown. In 1998, a
new reduction technique, PRIMA, was introduced in [35], that uses the Arnoldi algorithm instead
of Lanczos to build the reduction bases. These and later developments of Krylov based reduction
techniques focus not only on the improvement of the accuracy of the approximation, but also on
the preservation of the properties of the system to be reduced.

In this section, the basic ideas of model reduction by projection onto the Krylov subspace
are explained and the application of some common reduction techniques based on Arnoldi and
Lanczos algorithms (see e.g. [38] for more details), is briefly discussed.

Linear time-invariant state-space systems of the form{
Eẋ = Ax+ bu
y = cTx,

(21)

are considered, with E,A ∈ Rn×n, b, c ∈ Rn, the input variable u ∈ R, the output variable y ∈ R
and x ∈ Rn being a vector of the state variables. For the sake of simplicity, SISO systems (with
scalar input and scalar output) are considered. However, the methods discussed in this section
have been extended to multi-input-multi-output (MIMO) cases (see e.g. [39]).

If the system (21) is transformed to the Laplace domain, then, for an arbitrary s ∈ C, the
dependence between its input and its output is given by a transfer function H(s) defined as
follows

H(s) = cT(sE−A)−1b. (22)
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In this section, it is assumed that the pencil (sE − A) is regular, i.e. it is singular only for a
finite number of s ∈ C. For an arbitrary s0 ∈ C, the transfer function (22) may be rewritten in a
polynomial form, using a so-called moment expansion:

H(s) =

∞∑
n=0

(−1)nMn(s0)(s− s0)n. (23)

Here, the coefficients Mn(s0), called moments of the transfer function, are calculated using the
Taylor expansion formula and given by

Mn(s0) = cT[(s0E−A)−1E]n(s0E−A)−1b. (24)

Expansion around s0 =∞ is evaluated based on Laurent series, and the moments then are called
Markov parameters (see [16] for more details). The accuracy of the moment expansion depends
on the choice of the expansion point s0. It is also possible to use a multipoint expansion choosing
multiple expansion points.

The goal of the Krylov subspace model order reduction is to find a projection-based approxi-
mation of the original transfer function, that matches the first k moments of the original transfer
function. In other words, the objective is to calculate the reduced-order transfer function Ĥ(s),
whose moment expansion is given by

Ĥ(s) =

∞∑
n=0

(−1)nM̂n(s0)(s− s0)n, (25)

with
M̂n(s0) = Mn(s0), for n = 1, . . . , k, (26)

and Mn(s0) being the moments of the original transfer function defined in (24). This is called the
moment matching property of the reduction method.

In case of the reduction methods studied in this section, the reduced-order model is calculated
using a projection Π = VWT ∈ Rn×n, with V,W ∈ Rn×k being biorthogonal matrices, i.e.
WTV = I. Application of the projection Π to the original system (21) gives{

WTEV ˙̂x = WTAVx̂+ WTbu,
ŷ = cTVx̂,

(27)

where the reduced-order state vector x̂ ∈ Rk results from the state transformation

x ≈ Vx̂. (28)

The choice of the spaces V and W depend on the goal of the reduction procedure. In case
of the Krylov subspace based methods, the aim is to approximate the input-output behavior
of the system. This is done by matching the moments of the original transfer function. This
means that the reduced-order transfer function corresponding to system (27), which results from
applying matrices V and W to the original system matrices, has the property (26). To ensure
the satisfaction of the moment matching property (26), one can choose V and W such that the
columns of these matrices span so-called Krylov subspaces. The k-th Krylov subspace induced by
a matrix P and a vector r is defined as

Kk(P, r) = span{r,Pr, . . . ,Pk−1r}. (29)

The choice of the starting matrix P and the starting vector r depends on the value s0 around
which the transfer function should be approximated. If the approximation of the transfer function
(22) around s0 = 0 is to be found, the matrices V and W are chosen as follows:

V is a basis of Kk1(A−1E,A−1b), (30)

W is a basis of Kk2(A−TET,A−Tc). (31)
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The sizes of the subspaces, k1 and k2, should assure that V and W are both of rank k. If V
and W are built in the way defined in (30-31), the model reduction method is called a two-sided
method. If only one of the projection matrices (V or W) is built in that way, the method is
called one-sided. Application of the two-sided method results in a reduced model that matches
the first 2k moments of the original transfer function. In case of one-sided methods, k moments
are matched.

The general proof of the moment matching property can be found in [10]. To illustrate the
idea behind this proof, the matching of the zeroth moment of the system (21) for s0 = 0 is shown
following [40].

According to the formula (24), the zeroth moment for s0 = 0 is equal to

M0(0) = −cTA−1b. (32)

With V chosen as in (30) and the fact that A−1b belongs to the Krylov subspaceKk1(A−1E,A−1b),
one can find a vector r0 such that Vr0 = A−1b. Then, using the reduction procedure defined in
(27), it can be shown that

M̂0(0) = −cTV(WTAV)−1WTb = −cTV(WTAV)−1WTAVr0

= −cTVr0 = −cTA−1b = M0(0). (33)

In case the approximation around s0 6= 0 or for s0 =∞ is needed, the starting matrix and vector
for building the Krylov subspace have to be modified. One can also build a subspace using different
values of s0 at the same time. More details on how to do this and suggestions for starting values
for different s0 can be found in [10].

Besides the difference in the number of moments matched, the choice to use either one- or two-
sided methods influences also some other properties of the reduced system. Two-sided methods
may lead to better approximations of the output y and deliver a reduced-order model, whose
input-output behavior does not depend on the state space realization of the original model. In
case of the one-sided techniques with W = V and V defined as in (30), for certain original models,
one can also prove the preservation of the passivity property.

The process of constructing the reduction matrices, V and W, is not straightforward and
requires the use of special techniques. Because of round-off errors, the vectors building a Krylov
subspace may quickly become linearly dependent. To avoid this problem, one usually constructs
an orthogonal basis of the appropriate Krylov subspace. This can be achieved using e.g. Arnoldi or
Lanczos algorithms (explanation of these algorithms and implementation details are given in [38]).
The classical Arnoldi algorithm generates a set V of orthonormal vectors, i.e.

VTV = I, (34)

that form a basis for a given Krylov subspace. The Lanczos algorithm finds two sets of basis
vectors, V and W, that span an appropriate Krylov subspace and have property

WTV = I. (35)

Two sets of basis vectors V and W for Krylov subspaces may also be computed using a two-sided
Arnoldi algorithm (see [40]). In this case, both V and W are orthonormal,

VTV = I, WTW = I. (36)

As a result, each of the above mentioned techniques generates a Krylov subspace. The choice
of the subspace depends on the type of algorithm and the expansion point s0 around which the
approximation is of interest. A more detailed explanation on how to choose the proper subspaces
can be found in [10].

The ideas of the Krylov subspace based reduction presented in this section can be further
modified, depending on e.g. the application or the specific criteria that the reduced-order model
should fulfill. In electronic circuit design, there exist methods especially suited for reducing specific
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types of systems that exploit the characteristic structure of the underlying matrices, see e.g. [41].
In case of coupled or interconnected systems, the goal may be to preserve the interpretation of
the different physical domains. More details on this topic can be found in [36, 42]. There exist
also modifications that aim at preserving other properties of the original system, such as stability
or passivity. In case of symmetric matrices, the algorithm SyPVL was proposed in [43] that
guarantees stability. A stability and passivity preserving technique, PRIMA, is presented in [35].

2.3. Balanced truncation

The field of systems and control focusses on the analysis of dynamical systems and design
of feedback controllers for these systems. Herein, the objective of controller design is to change
the dynamics of the system to induce desired behavior. Typical examples are the stabilization of
unstable systems, tracking of a reference trajectory or the rejection of external disturbances on a
system.

These control strategies are applied in a broad range of practical engineering problems, such
as control of mechanical or electrical systems. These applications have in common that they deal
with systems with inputs and outputs. On the one hand, a dynamical system can often only
be influenced by a limited number of actuators, which are represented as inputs. Additionally,
external disturbances, such as e.g. measurement noise, often act only locally as well. On the
other hand, only a limited number of sensors (i.e. outputs) is available in practical engineering
systems. For these systems, it is thus particularly relevant to have an accurate model for their
input-output behavior. Even though this model does not need to describe the global behavior
of a system, complex dynamics can still yield large models of orders up to O(103). To facilitate
controller design and/or analysis for these systems, model reduction is needed. Here, it is noted
that a controller needs to be implemented in real-time, which also requires a controller realization
of relatively low-order.

Model reduction procedures in the field of systems and control therefore aim at approximating
the input-output behavior of a high-order model. The quality of the reduced-order model can thus
be assessed by comparing the outputs of the high-order and reduced-order models for given inputs,
where the magnitude of the output error is measured using some signal norm.

Balanced truncation is the most popular method in systems and control addressing this model
reduction problem. It mainly owes its popularity due to the fact that it preserves stability of the
high-order model and provides an error bound, which gives a direct measure of the quality of the
reduced-order model.

The balanced truncation method was first presented by Moore [5], where results of Mullis and
Robberts [44] were exploited. Later, the stability preservation property was found by Pernebo and
Silverman [45], whereas the error bound was derived by Enns [6] and Glover [7].

. Linear dynamical models with inputs and outputs in state-space form{
ẋ = Ax+ Bu
y = Cx+ Du

(37)

are considered. Here, u ∈ Rm denotes the input whereas y ∈ Rp represents the output. The inter-
nal state is given by x ∈ Rn and the system matrices are of corresponding dimensions. Throughout
this section, it is assumed that the model (37) is asymptotically stable (i.e. all eigenvalues of A
have negative real part) and is a minimal realization, where the latter guarantees that all state
components contribute to the input-output behavior. The transfer function of (37) is given as

H(s) = C(sI−A)−1B + D, s ∈ C. (38)

In balanced truncation, a reduced-order model is obtained in two steps. First, a so-called
balanced realization is found, in which the states are ordered according to their contribution to
the input-output behavior. Second, a reduced-order model is obtained on the basis of this balanced
realization by discarding the states with the smallest influence.
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In order to find the balanced realization, the input-output behavior of the system (37) has to
be quantified. To this end, the so-called controllability and observability functions are defined.
First, the controllability function Ec(x0) gives the smallest input energy required to reach the state
x0 from the zero state in infinite time, given as

Ec(x0) = inf
u∈L2(−∞,0)

x(−∞)=0, x(0)=x0

∫ 0

−∞
‖u(t)‖2 dt, (39)

where L2(−∞, 0) denotes the space of square integrable functions, defined on the domain (−∞, 0).
Second, the observability function Eo(x0) is defined by

Eo(x0) =

∫ ∞
0

‖y(t)‖2 dt, x(0) = x0, u(t) = 0 ∀t ∈ [0,∞), (40)

and gives the future output energy of the system when released from an initial condition x0 for
zero input. It is well-known (see e.g. [5, 46]) that for linear systems as in (37) the controllability
and observability functions in (39) and (43) can be written as the quadratic forms

Ec(x0) = xT
0 P−1x0, Eo(x0) = xT

0 Qx0, (41)

where P and Q are the controllability and observability gramian, given by

P =

∫ ∞
0

eAtBBTeA
Tt dt (42)

and

Q =

∫ ∞
0

eA
TtCTCeAt dt, (43)

respectively. From (42) and (43), it is easily observed that the controllability and observability
gramians are only finite when the system is asymptotically stable, which explains the assumption
stated before. In addition, P and Q are symmetric and positive definite, where the latter is
guaranteed by the assumption that the system (37) is minimal, i.e. controllable and observable.
The controllability and observability gramian can be obtained as the unique positive definite
solutions of the respective Lyapunov equations (see e.g. [46])

AP + PAT + BBT = 0 (44)

and
ATQ + QA + CTC = 0, (45)

which makes balanced truncation computationally feasible. Nonetheless, solving the Lyapunov
equations is computationally costly, such that balanced truncation is limited to systems of orders
up to O(103).

Since both the controllability and observability gramian characterize the in- or output energy
associated to a state x0, they are dependent on the realization of the system (37). Stated dif-
ferently, a change of coordinates x̄ = Tx, with T ∈ Rn×n a nonsingular matrix, results in a
realization with system matrices

Ā = TAT−1, B̄ = TB, C̄ = CT−1, D̄ = D. (46)

Then, the new controllability and observability gramians are given as

P̄ = TPTT, Q̄ = T−TQT−1. (47)

Nonetheless, the product of P̄ and Q̄ yields

P̄Q̄ = TPQT−1, (48)
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indicating that the eigenvalues of the product of the controllability and observability gramian are
independent of the set of coordinates and thus system invariants. These eigenvalues equal the
(squared) Hankel singular values σi [7], such that

σi =
√
λi(PQ), i = 1, . . . , n, (49)

where λi(X) denotes the i-th eigenvalue of the matrix X, ordered as λ1 ≥ λ2 ≥ . . . ≥ λn > 0.
At this point, it is recalled that the observability gramian Q characterizes the output energy

associated to a given initial state x0 and thus provides a measure of the importance of state
components with respect to the output y. Hence, states generating high output energy can be
considered more important than states generating little output energy, since the former are easy
to observe. On the other hand, the controllability gramian P gives a measure of the importance of
state components x0 with respect to the input u, in the sense that states that require little input
energy to reach are more relevant than states that require high input energy. States that require
little energy to reach are thus easy to control. Clearly, the combination of the controllability and
observability gramians gives a characterization of the importance of state components from an
input-output perspective. However, in an arbitrary coordinate system, a state x̄1

0 that requires
little energy to reach might also generate little output energy. On the other hand, a different state
x̄2
0 might exist that requires a lot of energy to reach, but generates high output energy. In this case,

it is not easy to decide which of x̄1
0 and x̄2

0 is the most important component from an input-output
perspective. To facilitate this analysis, the balanced realization is introduced. Namely, there exists
a state-space realization such that the corresponding controllability and observability gramians are
equal and diagonal, where the entries on the diagonal are given by the Hankel singular values [5]:

P̄ = Q̄ = Σ :=


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn

 . (50)

In addition, the Hankel singular values are ordered as σ1 ≥ σ2 ≥ · · · ≥ σn > 0. In this balanced
realization, the controllability and observability function are given as

Ec(x̄0) = x̄T
0 Σ−1x̄0, Eo(x̄0) = x̄T

0 Σx̄0. (51)

Now, the form (51) allows for a clear interpretation. Namely, the realization is balanced in the
sense that states that are easy to control are also easily observed. In fact, due to the ordering
of the Hankel singular values, the state x̄0 = e1 := [1, 0, · · · , 0]T requires the least energy to
reach (Ec(e1) = σ−11 is small) and gives the highest output energy (Eo(e1) = σ1 is large). Stated
differently, this state is easy to control and easy to observe. Hence, x̄0 = e1 has the largest
contribution to the input-output behavior of the system. On the other hand, the state x̄0 = en :=
[0, · · · , 0, 1]T is both difficult to control and difficult to observe, such that it has the smallest
contribution to the input-output behavior.

The coordinate transformation T to obtain the balanced realization can be obtained on the
basis of the controllability and observability gramians (42-43). Thereto, the Cholesky factor U of
P is used, as well as the eigenvalue decomposition of UTQU:

P = UUT, UTQU = KSKT. (52)

In the latter, it is noted that UTQU is a positive definite symmetric matrix, such that the matrix
of eigenvectors K is orthonormal. Additionally, the eigenvalues are real and, when ordered, are
equal to the squared Hankel singular values such that S = Σ2 with Σ as in (50). Then, the
balancing transformation and its inverse are given as

T = Σ
1
2 KTU−1, T−1 = UKΣ−

1
2 (53)

as can be checked by substitution of (53) in (47), while using the relations (52). An overview of
alternative algorithms to obtain the balanced realization can be found in [16].
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. So far, a balanced realization is found, but no model reduction has been performed yet. However,
the balanced realization gives a representation in which the states are ordered according to their
contribution to the input-output behavior. Hence, a reduced-order model of order k can be
obtained by partitioning the state x̄ of the balanced realization as x̄1 = [x̄1, . . . , x̄k]T ∈ Rk

and x̄2 = [x̄k+1, . . . , x̄n]T ∈ Rn−k, such that x̄1 contains the state components with the largest
influence on the input-output behavior. When the system matrices are partitioned accordingly,

Σ =

[
Σ1 0
0 Σ2

]
, Ā =

[
Ā11 Ā12

Ā21 Ā22

]
, B̄ =

[
B̄1

B̄2

]
, C̄ =

[
C̄1 C̄2

]
, D̄ = D, (54)

a reduced-order system can be obtained by truncation, i.e. by setting x̄2 = 0. The resulting
reduced-order model (with x̂ ∈ Rk an approximation of x̄1 ∈ Rk) is given by the state-space
realization {

˙̂x = Ā11x̂+ B̄1u,
ŷ = C̄1x̂+ D̄u.

(55)

Here, it can be observed that the reduced-order state-space system (55) is itself a balanced real-
ization, with the controllability and observability gramians given by Σ1 (see [45]). In addition,
when Σ1 and Σ2 have no diagonal entries in common (i.e. when σk > σk+1), the reduced-order
system is asymptotically stable [45].

The reduced-order system thus preserves stability of the original model, and its output ŷ serves
as an approximation for the output of the high-order system y. The quality of this approximation
can be assessed by means of a bound on the error. Namely, an error bound can be expressed in
terms of the discarded Hankel singular values [6, 7] as

‖H(s)− Ĥ(s)‖∞ ≤ 2

n∑
i=k+1

σi, (56)

where H(s) and Ĥ(s) are the transfer functions of the full-order system (37) and the reduced-order
system (55), respectively. Furthermore, ‖ · ‖∞ denotes the H∞ norm defined as

‖H(s)‖∞ = sup
ω∈R

σ̄(H(jω)), (57)

with σ̄(·) the largest singular value. The error bound (56) confirms the intuitive idea that the states
corresponding to the largest Hankel singular values are the most important from the perspective
of input-output behavior. Namely, a good approximation (i.e. a low error bound) will be obtained
when the Hankel singular values in Σ2 are small. Since these Hankel singular values are only
dependent on the high-order model (37), they can be computed a priori and allow for control over
the reduction error by selection of the order k. Finally, it is noted that in (56) it is assumed that
all Hankel singular values are distinct. When Hankel singular values with multiplicity larger than
one occur, they only need to be counted once, leading to a tighter bound (see e.g. [7]).

In the model reduction procedure presented here, a reduced-order system is obtained by trun-
cation (i.e. setting x̄2 = 0) of a balanced realization. An alternative approach is given by singular
perturbation [47] of this realization. Herein, it is assumed that the dynamics describing the evo-
lution of x̄2 is very fast (and asymptotically stable). Then, this dynamics can be assumed to be
in its equilibrium position at all time, which is obtained by setting ˙̄x2 = 0 and solving for x̄2

as a function of x̄1 and u. Contrary to balanced truncation, the singular perturbation approach
guarantees that the steady-state gains of the high-order system are matched in the reduced-order
system. The reduced-order model is controllable, observable, asymptotically stable and the error
bound (56) also holds [48].

. Balanced truncation aims at approximating a high-order system by selecting the state compo-
nents that have the largest contribution in the input-output behavior, according to the energy in
the input and output signals. The entire frequency range is considered in this approach. How-
ever, in many practical applications, a good approximation is only required in a specific frequency
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range. To this end, frequency-weighted balanced truncation can be used [6], which is an extension
of the method discussed in the previous paragraphs. In frequency-weighted balanced truncation,
the objective is to find a reduced-order system such that the error

‖Ho(s)(H(s)− Ĥ(s))Hi(s)‖∞ (58)

is small, where Hi(s) and Ho(s) denote the transfer functions of an input and output frequency
weight, respectively. These weights can be designed by the user to emphasize specific regions in
the frequency domain. To obtain the frequency-weighted reduced-order model, controllability and
observability gramians are computed on the basis of the frequency weighted high-order system,
which are simultaneously diagonalized. Details can be found in [6].

When the original system is asymptotically stable, observable and controllable, and only one-
sided weighting is applied (i.e. either Hi(s) = I or Ho(s) = I), asymptotic stability of the reduced-
order system is guaranteed. However, in the case of general two-sided weighting, stability of the
reduced-order approximant can not be guaranteed. Nonetheless, when the reduced-order model is
stable, an error bound is given in [49].

. In the preceding paragraphs, the standard balanced truncation technique for asymptotically
stable systems as well as an extension to frequency-weighted balanced truncation is presented.
Several extensions of balanced truncation exists. For example, balanced truncation of the coprime
factorization applies to unstable systems [50, 51], whereas a method preserving passivity is given
in [52, 53].

Besides these methods based on balanced truncation, a popular alternative is optimal Hankel
norm approximation [7], which is also based on the balanced realization. For an overview of model
reduction in systems and control, see e.g. [16, 13].

3. Qualitative comparison on model reduction methods

In this section, the methods as discussed in Section 2 will be compared. First, the common
feature of projection is presented in Section 3.1. Then, a general comparison will be given in
Section 3.2. A close connection between moment matching and modal truncation augmentation
is discussed in Section 3.3. Computational aspects and the preservation of properties will be
discussed in Sections 3.4 and 3.5, respectively.

3.1. Projection

Before discussing differences between the methods from the fields of structural dynamics, nu-
merical mathematics and systems and control, an important similarity is discussed. Namely, the
methods discussed in Section 2 have in common that the reduced-order models are obtained by
projection. Here, the reduced-order model is obtained by application of the projection Π = VWT

to the original model. In numerical mathematics, the projection matrices might be chosen as
V = V and W = W with V and W as in (30) and (31), respectively. This specific choice ensures
moment matching around s0 = 0. For balanced truncation, as used in systems and control, the
matrices V and W are given as the first k columns of the transformation matrices T−1 and TT

as in (53), respectively. Hence, they project on the subspace of PQ corresponding to the largest
Hankel singular values (see (48)), which yields the subspace with the largest contribution in the
input-output behavior. Similarly, in the mode superposition techniques in structural dynamics,
the projection is given as Π = ΦΦT. Here, the projection basis Φ forms a basis for the space
spanned by the k most relevant eigenvectors (see (3)), which are typically chosen as the eigen-
vectors corresponding to the lowest eigenfrequencies. Here, it is noted that the state-space form
is used in the fields of numerical mathematics and systems and control, whereas a second-order
form is exploited in structural dynamics when no damping is present or when the damping can be
considered as small.
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3.2. General comparison

Besides the common feature of projection, the reduction techniques in Section 2 have important
differences, as listed below.

• First-order form versus second-order form
The most apparent distinction is the type of model under consideration. In the field of
structural dynamics, models of second-order form are usually studied, whereas first-order
models are examined in the fields of numerical mathematics and systems and control. Even
though the use of this symmetric second-order form seems limiting, it is noted that the
mechanical structures studied in this field can indeed be modeled as second-order systems.
In addition, these mechanical structures typically have little damping, which motivates the
exploitation of undamped vibration modes for model reduction. Nonetheless, due to the
specific structure of these models, the model reduction techniques from structural dynamics
can in general not be applied to other application domains. On the other hand, any model
that can be written in the first-order form can be handled by the reduction techniques from
numerical mathematics and systems and control, although asymptotic stability is assumed
in the latter.

• Input-output behavior versus global behavior
A second difference is given by the objective of the approximation. In numerical mathematics
and systems and control, a reduced-order model is sought which approximates the input-
output behavior of the original system. On the other hand, this input-output behavior is
of less relevance in the field of structural dynamics, where the approximation of the global
dynamics is of interest. Again, this results from the specific objectives in structural dynamics.
Namely, typical interest is in the identification of the regions where the highest stresses or
maximum displacements occur, whose locations are not known beforehand. Hence, the
modeling of the global dynamical behavior is the main goal. However, extensions to mode
superposition methods (see e.g. Section 2.1.2) provide techniques of incorporating the (static)
influence of input forces in the reduction basis, partially taking input-output behavior into
account.

In numerical mathematics and systems and control, the internal behavior of the model is of
little interest. In control design, the system behavior from the control input to the measured
outputs is of relevance and this directly forms the basis for the model reduction procedure.
In the analysis of large-scale electrical circuits, where moment matching methods from the
field of numerical mathematics are typically applied, interest is in the reduction of linear
subcircuits. Here, its influence on the total circuit is described by the inputs and outputs,
such that the approximation of input-output behavior is of interest. Nonetheless, input-
output behavior is only truly taken into account in the latter when two-sided projection
techniques are used. Namely, when using one-sided projection techniques, either the input
matrix B or output matrix C is discarded, such that the focus of the reduction is limited
to the state-to-output or input-to-state behavior, respectively. In this case, the number of
moments matched is independent of the choice of input or output matrix. Nonetheless, the
number of moments matched for a given reduction order k is doubled in the two-sided case,
when input-output behavior is fully taken into account.

• Interpretation of reduction space
Model reduction techniques from structural dynamics are largely based on physical properties
of mechanical systems. Therefore, the reduction space resulting from modal approximation
has a useful engineering interpretation. Namely, it consists of the modes of the system,
which represent the typical vibration pattern of a structure at a given frequency. The most
important modes and the corresponding eigenfrequencies are preserved in the reduced-order
system. Since these modes are obtained via an eigenvalue decomposition, the system in
modal coordinates is in diagonal form, as discussed in Section 2.1. Here, it is recalled that
this only holds when the system is undamped or has proportional (Rayleigh) damping or
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modal damping. In this diagonal form, the equations describing the dynamics of the modes
are uncoupled, which means that no error is introduced in the dynamics of the modes that
are kept in the reduced-order model. In fact, the reduction error is due to the deletion of
modes, rather than errors in the dynamics of the modes themselves.

In the reduction techniques from numerical mathematics and systems and control, the re-
duction space does not have a clear physical interpretation. Of course, this is largely due
to the fact that these procedures are not limited to mechanical systems and are based on
system-theoretic properties instead, as discussed in Section 2.3.

• Global versus local approximation in frequency domain
The modal truncation and moment matching model reduction techniques from structural
dynamics and numerical mathematics have in common that they can be considered as
frequency-domain-based (or Laplace-domain-based) techniques. Therefore, they give a good
approximation in some part of the frequency-domain only. This is directly apparent in
the modal reduction techniques from structural dynamics, where the modes as used in the
reduced-order model are selected by their corresponding eigenfrequency. Here, the modes are
typically selected from the lower end of the frequency spectrum. On the other hand, moment
matching in numerical mathematics is based on the Taylor series expansion of a transfer func-
tion at a specific point (or multiple points) in Laplace domain. Since the moments around
this expansion point form the basis for the reduced-order model, this approximation can only
be expected to be accurate around the expansion point, leading to a local approximation in
frequency domain.

In balanced truncation, as used in systems and control, the behavior in frequency domain
does not form the basis of the model reduction procedure. Instead, the transfer of energy from
the input to the output is used as a tool for model reduction, which can be considered as a
time-domain approach. Nonetheless, specific regions in frequency domain can be emphasized
by the extension to frequency-weighted balanced truncation, as noted in Section 2.3.

• Automatic versus user-dependent model reduction
A final general difference can be found in the level of automation of the model reduction
techniques from the different fields. Here, only the balanced truncation method in systems
and control is fully automatic when a requirement on the quality of the reduced-order model
is given. Namely, the existence of an a priori error bound (56) allows for the automatic choice
of the reduction order. The methods from structural dynamics and numerical mathematics
lack such an error bound.

Even when the reduction order is chosen beforehand, the methods from structural dynamics
and numerical mathematics are heuristic. That is, the mode superposition techniques from
structural dynamics are dependent on the frequency range of interest, which needs to be
specified a priori. Herein, typically the modes corresponding to the lowest frequencies are
chosen. Similarly, the reduction procedure in the moment matching techniques from numer-
ical mathematics is dependent on the choice of expansion points. However, the influence of
this choice on the properties of the reduced-order system is largely an open problem and
very few guidelines for this selection exists. Therefore, these expansion points are typically
chosen as s0 = 0 or s0 =∞. Of course, the computational procedure in mode superposition
and moment matching is fully automatic as soon as a choice is specified for the frequency
range of interest and the expansion point, respectively.

3.3. Moment matching and model truncation augmentation

A close link exists between modal truncation augmentation techniques used in structural dy-
namics (Section 2.1.3) and the moment matching methods (Section 2.2). This can be understood
by considering the series expansion of the (non-damped) structural equations (2) in the Laplace
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domain for s2 as

q = (K + s2M)−1f =

∞∑
i=0

(
(K + s20M)−1M

)i
(K + s20M)−1f(s2 − s20)i, (59)

where s0 is a chosen expansion point. Clearly this expansion is similar to the moment matching
expansion (23) except that here it is written for the second-order form. The reduction basis
suggested by this expansion is the Krylov series

Kk

(
(K + s20M)−1M, (K + s20M)−1f

)
(60)

In the modal truncation augmentation approach the reduction basis consists of some eigen-
modes of the system and modal truncation corrections as described in (20). Recalling the definition
(16) of the correction vectors, it can be seen that the reduction basis (20) for the modal truncation
augmentation is

span
{[

Φ qcor
]}

= span
{[

Φ K−1f
]}
, (61)

indicating that it includes the zero-order expansion term around s0 = 0. Thus, it conserves the
zero-order moment of the second-order problem around s0 = 0, which is a direct consequence of
the fact that the reduction basis includes the exact static solution. Through a similar reasoning
one could say that substructuring methods that include the interface static modes (like the Craig-
Bampton, the Rubin/MacNeal and the Dual Craig-Bamtpon methods) are matching the zero-order
moments for the interface forces.

The modal truncation augmentation form presented in Section 2.1.3 includes only the zeroth-
order correction as indicated by the basis (61). Higher-order corrections as suggested in the Krylov
sequence (60) can also be included in the reduction space as proposed in [54, 26, 55, 56, 57, 33],
which guarantees matching higher-orders moments and thus leads to an approach similar to the
moment matching technique. Higher-order correction modes have also been used in the context of
substructuring and mode component synthesis [32, 58, 59]. Note that the high-order corrections
for structural problems can be obtained as a by-product of the Lanczos algorithm used to compute
the eigenmodes [60] and that one can also consider quasi-static corrections (i.e. for s0 6= 0) in case
one is interested in a specific frequency range [61].

It is important to observe that the modal truncation augmentation uses a reduction basis that,
in addition to the moments, also includes true eigenmodes of the system. In that sense this method
differs from the usual moment matching techniques and it accounts both for the global behavior
of the system (through its eigenmodes) and for input-specific components (through the moments).

3.4. Computational aspects

A general comparison of properties of model reduction techniques from the fields of structural
dynamics, numerical mathematics and systems and control was given in Section 3.2. Computa-
tional aspects are addressed in the current section.

From a computational point of view, the methods from systems and control have the high-
est cost. In these methods, the computational complexity is mainly due to the solution of two
Lyapunov equations (see (44) and (45)), which are of the size of the original high-order model.
This seriously hinders the applicability of balanced truncation to systems of very high order. In
addition, a full eigenvalue decomposition (see (52)) is required, such that the total computational
cost associated to balanced truncation is high. Finally, a full coordinate transformation has to be
computed, before reduction can be performed by means of truncation.

The computational cost for reduction techniques from the fields of structural dynamics and
numerical mathematics is significantly lower. First, these methods do not require the computation
of a full coordinate transformation. Instead, only the reduction space is computed, which is given
by only k basis vectors. Furthermore, the computations are less costly since the matrix operations
that are required are relatively cheap when compared to those needed for the solution of Lyapunov
equations. In the mode displacement techniques from structural dynamics, only the most impor-
tant eigenvalues and eigenvectors need to be computed. Since the frequency domain of interest is

17



typically known beforehand, efficient iterative methods can be used to find the eigenfrequencies in
this range. For the Krylov-subspace based moment matching techniques from numerical mathe-
matics, the numerical cost is even less. Namely, the application of the Arnoldi or Lanczos methods
only requires the solutions of linear sets of equations or matrix-vector multiplications. Therefore,
moment matching methods by Krylov subspaces can be applied to systems of very high order.

Even though the application of balanced truncation seems limited from a computational point
of view, it is remarked that the perception of ”high-order” differs in the three different fields.
Especially, models of very low order (i.e. O(100 − 101)) are of interest in the field of systems
and control. This is mainly due to the fact that controllers have to be implemented in real-time,
which provides a limit on the order of the controller. Furthermore, low-order controllers are
preferred because of their limited complexity. Hence, even though the computation of Lyapunov
equations limits the applicability of balanced truncation to systems of orderO(103), it still provides
a solution to relevant model reduction problems in practice. On the other hand, the models
describing mechanical structures in the field of structural dynamics typically result from finite
element procedures, leading to models of orders up to O(106). Similarly, the moment matching
techniques from numerical mathematics typically find application in the analysis of large-scale
electrical circuits, leading to models of order up to O(106). From these applications, the need for
numerically efficient model reduction procedures is clear.

3.5. Preservation of properties

In model reduction, the objective is the construction of a reduced-order model that gives a
good approximation of the original high-order model. Herein, it is of crucial importance that the
reduced-order model preserves some properties of the original system, among which stability is
the most important. If the high-order system is asymptotically stable, balanced truncation (see
Section 2.3) indeed preserves this property, which is due to the fact that the (diagonal) gramians
act as Lyapunov equations. The moment matching techniques from Section 2.2 do not satisfy
such a property, such that stability of the reduced-order model can not be guaranteed in general.
Nonetheless, methods exist that preserve stability for classes of linear systems (see e.g. [35]).

In the mode superposition techniques outlined in Section 2.1, stability of the reduced-order
model can not be guaranteed when the original high-order system exhibits general damping. How-
ever, in the important cases of undamped systems or systems with positive definite symmetric
damping matrix (which includes the cases of proportional (Rayleigh) and modal damping), the
stability properties are indeed preserved. In fact, since the reduced-order model is based on the
computation of the undamped vibration modes, reduction of an undamped system leads to an un-
damped reduced-order system, where the most important eigenfrequencies are preserved. Stated
differently, the pole locations of the most important poles remain unchanged. This property does
in general not hold for balanced truncation and moment matching techniques.

Furthermore, it is obvious that modal superposition techniques preserve the second-order form
in the reduced-order model. Nonetheless, this is an important feature in the field of structural dy-
namics since it implies that the kinematic relation between displacement and velocity is preserved.
This does not hold for balanced truncation and moment matching, even if the models stem from
a second-order form.

Next, it is remarked that the existence of an error bound, as discussed in Section 3.2, is closely
related to stability preservation. Namely, a bound on the difference of solutions from the high-
order and reduced-order systems can only be expected to exist when both systems are stable,
making stability a prerequisite for the existence of an error bound.

Finally, it is often important to preserve other system properties besides stability. Herein,
passivity and bounded realness are the most notable. Even though the methods as discussed in
Section 2 do not generally preserve these properties, it is noted that extensions exist that do.
For the different fields, some references to the literature are given in the corresponding parts in
Section 2.
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Figure 1: Truss frame system.

4. Illustrative example

To illustrate the differences between methods as discussed in Section 3, the model reduction
procedures of Section 2 are applied to a common benchmark example.

. The benchmark example is chosen from the domain of structural dynamics, to allow for ap-
plication of all model reduction techniques discussed in Section 2. More specifically, the truss
frame system as depicted in Figure 1 is considered. Here, the nodes, as indicated by points, are
connected by beam elements, leading to a model of the form

Mq̈ + Dq̇ + Kq = b̃1u1 + b̃2u2, (62)

y1 = c̃T1 q, (63)

y2 = c̃T2 q, (64)

where q ∈ RN is the vector of the displacements and rotations of the nodes, with N = 714. The
truss frame is subject to forces acting (in x-direction) on the positions as shown in Figure 1, which
are modeled as the inputs u1 and u2 in (62). In addition, the displacement (in x-direction) of
the truss frame is measured at two locations, leading to the outputs y1 and y2. Finally, the truss
frame model is lightly damped, which is modeled using modal damping.

In order to apply model reduction techniques from the fields of numerical mathematics and
systems and control, the truss frame model (62) has to be written in state-space form. By choosing
the state vector as xT = [qT q̇T], the dynamics is given by

ẋ = Ax+ b1u1 + b2u2, (65)

yi = cTi x, i ∈ {1, 2}, (66)
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where it is noted that x ∈ Rn with n = 2N . The system matrices read

A =

[
0 I

−M−1K −M−1D

]
, bi =

[
0

M−1b̃i

]
, ci =

[
c̃i
0

]
, i ∈ {1, 2}. (67)

Alternatively, the moment matching methods discussed in Section 2.2 can also be applied using
system descriptions of the form

Eẋ = Ax+ b1u1 + b2u2, (68)

yi = cTi x, i ∈ {1, 2}, (69)

with matrices

E =

[
I 0
0 M

]
, A =

[
0 I
−K −D

]
, bi =

[
0

b̃i

]
, i ∈ {1, 2}, (70)

which avoids the need for inversion of the matrix M. In this form, the output vectors ci remain
unchanged.

The model reduction techniques from Section 2 are applied to this example. From the field of
structural dynamics, the mode displacement method is used. Here, it is recalled that this method
is based on the undamped system (i.e. D = 0) and the location of the inputs and outputs (i.e.
knowledge on b̃i and c̃i) is not taken into account. Nonetheless, the (static) influence of the
locations of the inputs can be taken into account by the extensions given by mode acceleration
and modal truncation augmentation (see Section 2.1) On the other hand, model reduction with
respect to input u1 and output y1 is performed using moment matching and balanced truncation.
Since these methods are based on the state-space form (66) (or (69)), damping can be included.
In moment matching, the expansion point is chosen as s0 = 0 and a one-sided projection is used,
based on the input only (see (30)). In reduction, the reduced-order size of the first-order models
k is chosen as 2K, with K the number of modes taken into account in the mode displacement
methods. This choice is motivated by the fact that the representation of a second-order model in
first-order form doubles the number of equations. Hereby, the reduced-order models in first-order
and second-order form have a similar approximation accuracy. Choosing K = 2 (k = 4) leads to
the frequency response functions, with input u1 and output y1, as depicted in Figures 2 and 3.

In the mode displacement method (MD), the K lowest eigenvectors are chosen in the reduction
basis. Therefore, the first two resonance peaks are captured by this reduced-order model. On the
other hand, the method of balanced truncation (BT) does not capture the second resonance peak.
Instead, the third resonance is approximated. This is caused by the fact that balanced truncation
takes the location of the input and output into account. Specifically, the second and third resonance
peak correspond to a bending mode around the y-axis and a torsional mode, respectively, where
the latter has a larger influence on the input-output behavior from input u1 to output y1. Finally,
the moment matching technique (MM) gives a good approximation at low frequencies, which
originates from the choice of the expansion point as s0 = 0. Therefore, for k = 4, only the first
resonance peak is captured. This is most clearly shown in the error magnitude in Figure 3, where
the moment matching techniques gives the best approximation for low frequencies. However,
moment matching gives the largest H∞ norm of the error system. The lowest norm is obtained
for balanced truncation, which outperforms the mode displacement method by the selection of the
third rather than the second resonance peak.

To illustrate the influence of the locations of the inputs and outputs on the reduced-order
model, the frequency response functions for input u2 and output y2 are depicted in Figure 4,
whereas the corresponding error is given in Figure 5. Here, the same reduction bases were used as
in Figure 2. Hence, the input u2 and output y2 are not taken into account in the model reduction
procedure. Since the mode displacement method is based on the global dynamics rather than
specific inputs and outputs, it also gives a good approximation for these new inputs. On the
contrary, balanced truncation and moment matching are dependent on the input-output behavior,
where it is recalled that reduction was based on input u1 and output y1. Therefore, they do not
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Figure 2: Comparison of the modal displacement method (MD), balanced truncation (BT) and
moment matching (MM) for reduction to K = 2 (k = 4): magnitude of the frequency response

function for input u1 and output y1.
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Figure 3: Magnitude of the error for reduction to K = 2 (k = 4) for input u1 and output y1.
Line styles as in Figure 2.
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Figure 4: Comparison of the modal displacement method (MD), balanced truncation (BT) and
moment matching (MM) for reduction to K = 2 (k = 4): magnitude of the frequency response

function for input u2 and output y2. For balanced truncation and moment matching, the
reduced-order model is based on input u1 and output y1.

xlabel

yl
ab

el

10
0

10
1

10
2

10
3

10
−10

10
−8

10
−6

10
−4

10
−2

Figure 5: Magnitude of the error for reduction to K = 2 (k = 4) for input u2 and output y2.
Line styles as in Figure 4. For balanced truncation and moment matching, the reduced-order

model is based on input u1 and output y1.
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Figure 6: Comparison of the modal displacement method (MD), balanced truncation (BT) and
moment matching (MM) for reduction to K = 2 (k = 4): magnitude of the frequency response

function for input u1 and output y2. For balanced truncation and moment matching, the
reduced-order model is based on input u1 and output y1.
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Figure 7: Magnitude of the error for reduction to K = 2 (k = 4) for input u1 and output y2.
Line styles as in Figure 6. For balanced truncation and moment matching, the reduced-order

model is based on input u1 and output y1.
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give a good approximation for the input-output behavior from input u2 to output y2, as is clear
from the large errors in Figure 5.

However, the moment matching technique used here is one-sided. Hence, only the input matrix
is taken into account and, in this case, moment matching (of k moments) can be proven for any
output. To illustrate this, the input-output behavior from input u1 to output y2 is shown in
Figures 6 and 7, again using the reduction basis generated for input u1 and output y1. As expected,
the performance obtained by moment matching is similar to that of Figure 2 (and Figure 3), where
the same input u1 was used. For the mode displacement method and balanced truncation, the
conclusions as stated before hold.

Finally, stability of the reduced-order models is checked. Since the truss frame system exhibits
modal damping, the reduced-order model obtained by the mode displacement technique is guar-
anteed to be stable. Stability is also guaranteed in the case of balanced truncation. For moment
matching, stability can not be guaranteed a priori. However, for k = 4, the reduced-order model
obtained by moment matching is stable, as follows from an a posteriori check. On the other hand,
for k = 6, stability is not preserved using moment matching.

5. Conclusions

In this paper, an overview and comparison of popular model reduction methods from the fields
of structural dynamics, numerical mathematics and systems and control are provided. A de-
tailed review is given on mode displacement techniques, moment matching methods and balanced
truncation, whereas important extensions are outlined briefly.

The differences and similarities between presented methods are discussed, both qualitatively
and quantitatively. Here, an important difference is the fact that the global dynamics is taken into
account in the mode displacement methods, whereas moment matching and balanced truncation
aim at the approximation of input-output behavior. Moreover, the computational cost of the
methods differs, which limits the application of balanced truncation to systems of moderate size.
On the other hand, balanced truncation has an a priori error bound, which is not the case for
the mode displacement and moment matching techniques. Also, balanced truncation and the
mode displacement method preserve stability of the high-order model, whereas stability is not
guaranteed when applying moment matching.

The overview of the differences and commonalities between the different reduction method
facilitates the choice of the reduction technique with the desirable properties for a given reduction
problem.

Finally, these differences are illustrated by means of application of the different methods to a
common benchmark example.
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