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1. Introduction. This paper presents a new method for reducing a pair of
large matrices {A,B}, with A ∈ Rm×n and B ∈ Rp×n, to a pair of small matri-
ces {H`+1,`,K`,`}, with H`+1,` ∈ R(`+1)×`, K`,` ∈ R`×`, and ` � min{m,n, p}, by a
generalization of Golub–Kahan bidiagonalization (also known as Lanczos bidiagonal-
ization). The method reduces to standard Golub–Kahan bidiagonalization when B
is the identity matrix and breakdown is handled appropriately. After ` steps of our
reduction method, we obtain decompositions of the form

AV` = U`+1H`+1,`,

BV` = W`K`,`,
(1.1)

where U`+1 ∈ Rm×(`+1), V` ∈ Rn×`, and W` ∈ Rp×` have orthonormal columns
with the first column of U`+1 specified, and the matrices H`+1,` and K`,` are of
upper Hessenberg and upper triangular form, respectively. Moreover, the matrices
H`+1,` and K`,` are sparse in the sense that they contain many zero entries above the
diagonal; see Section 2 for details. We assume for the moment that ` ≤ min{m,n, p}
is small enough so that breakdown in the recursion formulas does not occur. This
restriction will be removed below.

Our reduction technique is a generalized Krylov method. It is inspired by the
generalized Arnoldi method proposed by Li and Ye [17] for a pair of square matrices
{A,B}, its application to the solution of linear discrete ill-posed problems described
in [24], and by the two-sided Lanczos method for pairs of square matrices discussed
by Hoffnung et al. [14].

A reason for our interest in the decompositions (1.1) is their applicability to the
solution of large linear discrete ill-posed problems. Consider the linear least-squares
problem

min
x∈Rn

‖Ax− b‖, A ∈ Rm×n, b ∈ Rm, (1.2)
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where A is a large matrix with many singular values near zero. In particular, the
matrix A has a large condition number and may even be singular. Linear least-
squares problems with a matrix of this kind commonly are called linear discrete ill-
posed problems. One field or origin is the discretization of Fredholm integral equations
of the first kind. Throughout this paper, ‖ · ‖ denotes the Euclidean vector norm or
the associated induced matrix norm.

The vector b in the right-hand side of (1.2) usually represents available data and
is often contaminated by a noise vector e ∈ Rm, which represents measurement errors.
Let b̆ denote the unknown noise-free vector associated with b, i.e.,

b = b̆ + e. (1.3)

We are interested in computing the solution x̆ of minimal norm of the unavailable
error-free least-squares problem

min
x∈Rn

‖Ax− b̆‖.

Since the vector b̆ is not known, we seek to find an approximation of x̆ by computing
a suitable approximate solution to (1.2).

Straightforward solution of (1.2) usually does not result in a sensible approxima-
tion of x̆ since A is ill conditioned and b contains noise. For this reason, one often
applies regularization: one replaces the minimization problem (1.2) by a nearby prob-
lem that is less sensitive to the noise. Tikhonov regularization replaces (1.2) by the
least-squares problem with penalty

min
x∈Rn

{ ‖Ax− b‖2 + µ ‖Bx‖2 }, (1.4)

where B ∈ Rp×n is a regularization matrix and µ > 0 is a regularization parameter.
We say that (1.4) is in standard form if B is the identity. We are interested in the
situation when B is a fairly general matrix. Many commonly applied regularization
matrices are rectangular. Both the cases p ≤ n and p > n arise in applications.

Let N (M) denote the null space of M . We require the regularization matrix B
to satisfy

N (A) ∩N (B) = {0}.

Then the minimization problem (1.4) has a unique solution for any µ > 0. We denote
this solution by xµ. The value of µ influences the sensitivity of xµ to the noise e and
to round-off errors introduced during the computations, and determines how close xµ
is to x̆; see, e.g., Groetsch [10], Engl et al. [8], and Hansen [11] for discussions on and
analyses of Tikhonov regularization.

We are interested in determining a suitable value of µ > 0 and an approximation
of the corresponding solution xµ of (1.4). This typically requires the computation of
the solution of (1.4) for several values of µ > 0. For instance, when µ is determined
by the discrepancy principle, the L-curve criterion, or the generalized cross validation
method, the minimization problem (1.4) has to be solved for several values of µ > 0
to be able to determine a suitable µ-value; see [4, 8, 11, 16, 23] for discussions on these
and other methods for determining a suitable value of µ. The repeated solution of
(1.4) for different µ-values can be carried out fairly inexpensively when A and B are of
small to medium size by first computing the generalized singular value decomposition
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(GSVD) of the matrix pair {A,B}. However, the evaluation of the GSVD can be very
expensive when A and B are large. We are interested in this situation and propose to
first determine the decompositions (1.1) for a fairly small value of `. This yields small
matrices H`+1,` and K`,` in (1.1). We then can inexpensively compute the GSVD
of {H`+1,`,K`,`}. Substituting the computed decompositions (1.1) and the GSVD of
{H`+1,`,K`,`} into (1.4) allows us to compute approximations of xµ for many values
of µ quite inexpensively; see, e.g., [11] for a discussion on the application of the GSVD
to the solution of (1.4).

Another approach that for certain regularization matrices B may reduce the cost
of repeated solution of (1.4) is to first transform the problem to standard form. This

is achieved by substituting y = Bx into (1.4). The matrix A then is replaced by AB†A
in (1.4), where

B†A =
(
I − (A(I −B†B))†A

)
B† ∈ Rn×p

is known as the A-weighted generalized inverse of B. Here M† denotes the Moore–
Penrose pseudoinverse of the matrix M , and I is the identity matrix; see e.g., Eldén [7]
or Hansen [11, Section 2.3] for details. This transformation is attractive to use when
B is a banded matrix with small bandwidth or an orthogonal projection; see [19] for
the latter. For general large matrices B, the evaluation of matrix-vector products
with the matrices AB†A and B†A is prohibitively expensive.

We are interested in the use of regularization matrices B that do not have a
structure that permits efficient evaluation of matrix-vector products with the matrices
AB†A and B†A. Such regularization matrices arise, e.g., when A is the discretization
of a Fredholm integral operator in two or more space-dimensions. The use of the
decompositions (1.1) allows us to determine approximate solutions of (1.4) with a
general matrix B for several µ-values fairly inexpensively.

Kilmer et al. [15] describe an inner-outer method to solve of (1.4) with a general
matrix B. A disadvantage is that this method may be expensive, since a fairly large
number of inner iterations may be required. In [13], the regularization matrix is used
to select a candidate solution from a standard Krylov subspace, which is generated
by A alone. This approach works well for a variety of discrete ill-posed problems; see
illustrations in [13]. However, for some discrete ill-posed problems more accurate ap-
proximations of x̆ can be determined by letting the solution subspace depend on both
the matrices A and B; see Example 4.1 of Section 4. A generalized Krylov method for
Tikhonov regularization using both A and B is proposed in [24]. This method is based
on the generalized Arnoldi decomposition described by Li and Ye [17]. It requires that
both matrices A and B be square. Also the method described in [25], which is based
on the flexible Arnoldi process, requires A to be square. The method of this paper
allows both A and B to be rectangular. Many commonly used regularization matrices
B are rectangular; see, e.g., [11, 15] for examples. Linear discrete ill-posed problems
with a rectangular matrix A arise, e.g., in computerized X-ray tomography; see [5,
Example 4.4]. Another illustration can be found in Example 4.2 below.

This paper focuses on applications of the decompositions (1.1) to the solution
of discrete ill-posed problems. However, the method developed also can be used to
solve other problems that require simultaneous reduction of two or more matrices.
The application to computing an approximation of a partial GSVD of a pair of large
matrices already has been mentioned. A recent discussion of solution methods for
partial differential equations that may require the reduction of pairs of large matrices
can be found in [1].
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The organization of this paper is as follows. Section 2 describes our reduction
method for the matrix pair {A,B} as well as its generalization to the reduction of
matrix (q + 1)-tuplets. Application to Tikhonov regularization (1.4) and to multi-
parameter Tikhonov regularization of these reduction methods is discussed in Sec-
tion 3. Several numerical experiments can be found in Section 4. We end with
conclusions in Section 5.

2. New reduction methods for matrix pairs and (q+ 1)-tuplets. We first
review the standard Golub–Kahan bidiagonalization method, then describe our gen-
eralization to the reduction of matrix pairs, and finally discuss how the latter method
can be generalized to be applicable to the reduction of matrix (q + 1)-tuplets.

2.1. Standard Golub–Kahan bidiagonalization. We recall some properties
of partial Golub–Kahan bidiagonalization of a matrix A ∈ Rm×n; pseudocode is given
in Algorithm 2.1 below. The choice of initial vector u1 ∈ Rm determines the partial
bidiagonalization. The parameter ` specifies the number of steps. For now, we assume
` to be small enough so that breakdown is avoided. Breakdown is discussed below. It
occurs when certain vectors û or v̂ in the algorithm vanish. The superscript ∗ denotes
transposition.

Algorithm 2.1. Partial Golub–Kahan bidiagonalization of A.

1. Input: matrix A ∈ Rm×n, initial unit vector u1, and number of steps `
2. v0 := 0
3. for j = 1, 2, . . . , ` do
4. v̂ := A∗uj − hj,j−1vj−1

5. hj,j := ‖v̂‖
6. vj := v̂/hj,j if hj,j = 0 : see text
7. û := Avj − hj,juj
8. hj+1,j := ‖û‖
9. uj+1 := v̂/hj+1,j if hj+1,j = 0 : see text

10. end for

The following aspects of the above algorithm are essential. An initial unit vector
u1 is provided and the algorithm alternatingly multiplies a vector uj by A∗ fol-
lowed by orthogonalization to the most recently generated vector vj−1, and alternat-
ingly multiplies a vector vj by A followed by orthogonalization to the most recently
generated vector uj . This secures that, in exact arithmetic, all computed vectors
v1, . . . ,v` are orthonormal and all computed vectors u1, . . . ,u`+1 are orthonormal.
After ` ≤ min{m,n} steps, Algorithm 2.1 has determined the partial Golub–Kahan
decompositions

AV` = U`+1H`+1,`, A∗U` = V`H
∗
`,`,

where the matrices U`+1 = [u1, . . . ,u`+1] ∈ Rm×(`+1) and V` = [v1, . . . ,v`] ∈ Rn×`
have orthonormal columns, U` ∈ Rm×` is made up of the first ` columns of U`+1. The
columns of U`+1 form an orthonormal basis for the Krylov subspace

K`+1(AA∗,u1) = span{u1, AA
∗u1, . . . , (AA

∗)`u1} (2.1)

and the columns of V` form an orthonormal basis for the Krylov subspace

K`(A∗A,A∗u1) = span{A∗u1, (A
∗A)A∗u1, . . . , (A

∗A)`−1A∗u1}. (2.2)

The matrix H`+1,` ∈ R(`+1)×` is lower bidiagonal; its nontrivial entries are the scalars
hj,k determined by the algorithm. Finally, H`,` is the leading principal `×` submatrix
of H`+1,`.
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Breakdown of the computations with Algorithm 2.1 occurs when either hj,j = 0
in line 6 or hj+1,j = 0 in line 9. In some applications it is then appropriate to
terminate the computations, while in others we may choose to continue the method.
For instance, if breakdown occurs in line 6, then we can continue the computations
by letting vj be an arbitrary unit vector that is orthogonal to the already generated
vectors {v1, . . . ,vj−1}. Breakdown in line 9 can be handled similarly. By carrying
out ` = min{m,n} steps with Algorithm 2.1 in this manner, we see that any matrix
A ∈ Rm×n can be bidiagonalized.

Proposition 2.1. (a) For an arbitrary unit vector u1 ∈ Rm, there are orthogonal
matrices U = [u1, . . . ,um] ∈ Rm×m and V = [v1, . . . ,vn] ∈ Rn×n such that

H = U∗AV

is a lower bidiagonal matrix with nonnegative entries.
(b) The matrix H is uniquely determined if all diagonal and subdiagonal elements are
nonzero (and hence positive).
(c) Given u1, the matrices U and V are uniquely determined if A is square and all
diagonal and subdiagonal elements of H are nonzero.

We conclude this subsection with two remarks about Proposition 2.1: First, if
m > n or n < m, then the last vectors un+1, . . . ,um or vm+1, . . . ,vn are not de-
termined uniquely. Moreover, if some nontrivial element of the bidiagonal matrix H
vanishes, then the next u-vector or v-vector is not determined uniquely. Second, we
note that the Golub–Kahan bidiagonalization process is a particularly efficient way of
determining the leading entries of H when the matrix A is large and sparse, because
then the required matrix-vector products with A and A∗ are fairly inexpensive to
evaluate.

2.2. A Golub–Kahan-type reduction method for matrix pairs. We de-
scribe a generalization of partial Golub–Kahan bidiagonalization for the reduction of
two large matrices A and B to small ones; cf. (1.1). Algorithm 2.2 below presents
pseudocode for the method. In the main loop of the algorithm, matrix-vector prod-
ucts with the matrices A, B, A∗, and B∗ are evaluated in a cyclic fashion. Details of
the algorithm are discussed below.
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Algorithm 2.2. Partial Golub–Kahan-type reduction of matrix pair {A,B}.
1. Input: matrices A ∈ Rm×n, B ∈ Rp×n, unit vector u1, and number or steps `
2. v̂ := A∗u1; h1,1 := ‖v̂‖; v1 := v̂/h1,1;
3. N(u) := 1; N(v) := 1; N(w) := 0
4. for j = 1, 2, . . . , ` do vj-vector under consideration

5. û := Avj new u-vector
6. for i = 1, 2, . . . , N(u) do
7. hi,j := u∗i û; û := û− uihi,j
8. end for
9. hN(u)+1,j := ‖û‖

10. N(u) := N(u) + 1; uN(u) := û/hN(u),j if hN(u),j = 0 : see text

11. ŵ := Bvj new w-vector
12. for i = 1, 2, . . . , N(w) do
13. ki,j := w∗i ŵ; ŵ := ŵ −wiki,j
14. end for
15. kN(w)+1,j := ‖ŵ‖
16. N(w) := N(w) + 1; wN(w) := ŵ/kN(w),j if kN(w),j = 0 : see text

17. v̂ := A∗uN(u) new v-vector from u-vector
18. for i = 1, 2, . . . , N(v) do
19. hN(u),i := v∗i v̂; v̂ := v̂ − vihN(u),i

20. end for
21. hN(u),N(v)+1 := ‖v̂‖
22. N(v) := N(v) + 1; vN(v) := v̂/hN(u),N(v) if hN(u),N(v) = 0 : see text

23. v̂ := B∗wN(w) new v-vector from w-vector
24. for i = 1, 2, . . . , N(v) do
25. kN(w),i := v∗i v̂; v̂ := v̂ − vikN(w),i

26. end for
27. kN(w),N(v)+1 := ‖v̂‖
28. N(v) := N(v) + 1; vN(v) := v̂/kN(w),N(v) if kN(w),N(v) = 0 : see text
29. end for

The following observations about Algorithm 2.2 are pertinent. Some elements hi,j
are computed both in lines 7 and 19, and similarly certain entries ki,j are computed
twice. It suffices, of course, to compute each entry once in an actual implementation
of the algorithm. However, the details required to achieve this would clutter the
algorithm and therefore are omitted. The initial vector u1 is the first column of the
matrix U`+1 in the decompositions (2.3) below. We choose this vector, rather than
the first column in one of the matrices V` or W` in the decompositions (2.3), because
of the application to Tikhonov regularization described in Section 3. For now, assume
that the vector u1 is not orthogonal to the range of A, so that the vector v̂ in line 2
does not vanish. The integers N(u), N(v), and N(w) in the algorithm track the
number of vectors uj , vj , and wj generated so far during the computations. Next,
we discuss the situation when a denominator in lines 10, 16, 22, or 28 vanishes. This is
a rare event in actual computations. We consider the case when hN(u),j = 0 in line 10;
the other cases can be handled similarly. There are two main options. First, we can
skip line 10, i.e., we neither increase N(u) nor add a new u-vector. Subsequently,
we also omit lines 17–22. Differently from the situation for (standard) Golub–Kahan
bidiagonalization (Algorithm 2.1), the method does not necessarily break down when
hN(u),j = 0, because the vector wN(w) may give a new v-vector; see lines 23–28.
Finally, we note that if the vector v̂ vanishes in line 2, then we may choose v̂ to be
any unit vector. With this approach of handling vanishing denominators, we obtain
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the following result.
Proposition 2.2. Suppose that Algorithm 2.2 is applied to the matrix pair

{A,B}, where A ∈ Rm×n and B ∈ Rn×n is the identity matrix I. Omit the steps in
lines 16 and 28 when a zero element is encountered. Then the generated u-vectors
and v-vectors are the same as those determined by Algorithm 2.1, wi = vi for all i,
and the matrix K`,` is the identity.

An alternative approach to handling the situation when hN(u),j = 0 is to add
a random unit vector uN(u) that is orthogonal to the already generated vectors
{u1, . . . ,uN(u)−1}, and then continue the computations with this vector. In par-
ticular, the lines 23–28 are executed, and we are guaranteed to have a specific number
of vectors.

Proposition 2.3. If we add extra vectors in case zero denominators are encoun-
tered in lines 2, 10, 16, 22, or 28, then after line 28 (with counter j), we have

N(u) = j + 1, N(v) = 2j + 1, N(w) = j,

as long as j + 1 ≤ m, 2j + 1 ≤ n, and j ≤ p.
This latter approach is preferable for the sake of presentation. We will therefore

in the remainder of the paper assume that random orthogonal unit vectors are added
when some denominator in Algorithm 2.2 vanishes. We stress that the occurrence of
zero denominators is rare.

Execution of ` > 1 steps of Algorithm 2.2 yields the decompositions

AV` = U`+1H`+1,`, BV` = W`K`,`,

A∗U` = V2`−2 (H`,2`−2)∗, B∗W` = V2`+1 (K`,2`+1)∗,
(2.3)

where the vectors ui, vi, and wi generated by Algorithm 2.2 are columns of the
matrices Uj , Vj , and Wj , respectively, and the coefficients hi,j and ki,j determined by
the algorithm are the nontrivial entries of the matrices H and K. Here and below,
we sometimes omit the subscripts of the matrices in (2.3) for notational simplicity.
The expressions (2.3), except for the one involving A∗U`, are valid also for ` = 1. The
matrices H and K are sparse. The nontrivial entries of the first five and four rows of
H and K, respectively, are marked by × in the following depictions:

H :


×
× ×
× × ×
× × × ×
× × × × ×

 , K :


× × ×
× × × ×
× × × × ×
× × × × × ×


The sparsity patterns of the matrices H and K can be justified as follows. Since

H`,` = U∗` AV`, we have that H`,` is an upper Hessenberg matrix. Also, since H`,` =
(V ∗` A

∗U`)
∗, its elements hi,j are zero if i > 1 and j > 2i − 2, because A∗ui is

orthogonalized against {v1, . . . ,v2i−3} and yields v2i−2. Similarly, it follows from
K`,` = W ∗` BV` that K`,` is an upper triangular matrix. Additionally, ki,j = 0 if
j > 2i + 1, because B∗wi is orthogonalized against {v1, . . . ,v2i} to produce v2i+1.
Thus, both matrices H`+1,` and K`,` are upper banded with their upper bandwidths
growing linearly with `. We therefore may consider H and K as generalized bidiagonal
matrices.

It follows from the sparsity patterns of H and K that the “full” orthogonaliza-
tion in lines 6–8, 12–14, 18–20, and 24–26 is not necessary, since some of the inner
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products are guaranteed to vanish in exact arithmetic. However, some reorthogo-
nalization might be beneficial in finite precision arithmetic. For maximal stability,
we recommend to orthogonalize against the necessary vectors only (corresponding to
the elements marked by “×” in the sparsity patterns of H and K), followed by re-
orthogonalization against all previous vectors. Carrying out this procedure the full
min{m,n, p} steps, we obtain the following result.

Theorem 2.4. Let A ∈ Rm×n and B ∈ Rp×n.
(a) For an arbitrary unit vector u1 ∈ Rm, there are orthogonal matrices
U = [u1, . . . ,um] ∈ Rm×m, V = [v1, . . . ,vn] ∈ Rn×n, and W = [w1, . . . ,wp] ∈ Rp×p
such that the matrices

H = U∗AV, K = W ∗BV

have the following properties:

• H is upper Hessenberg and in addition hi,j = 0 if

{
j > 1, if i = 1,
j > 2i− 2, if i > 1.

• K is upper triangular and in addition ki,j = 0 if j > 2i+ 1.
Moreover, the elements

h1,1, hi+1,i for all i, hi,2i−2 for i > 1,

ki,i, ki,2i+1 for all i
(2.4)

are nonnegative.
(b) Given u1, the matrices H and K are uniquely determined provided that the ele-
ments (2.4) are nonzero (and hence positive).
(c) Given u1, the matrices U , V , and W are uniquely determined if the matrices A
and B are square and the elements (2.4) are nonzero.

An inspection of Algorithm 2.2 shows that span{v1, . . . ,v`} is generated from the
vectors obtained by multiplying v1 by A∗A and B∗B in a periodic fashion,

Group 0: v1,

Group 1: A∗Av1, B
∗Bv1,

Group 2: (A∗A)2v1, (B∗B)(A∗A)v1, (A∗A)(B∗B)v1, (B∗B)2v1,
...

...

(2.5)

ordered from top to bottom and from left to right; recall that v1 = A∗u1/‖A∗u1‖.
Let gK`({A∗A,B∗B},v1) denote the subspace spanned by the first ` vectors in the
sequence (2.5). This definition is compatible with those in [17, 24]. We refer to
gK`({A∗A,B∗B},v1) as a generalized Krylov subspace.

The subspace span{u1, . . . ,u`+1} is generated from the vectors u1 and Avi for
i = 1, 2, . . . , `. The latter vectors can be expressed in terms of u1. This yields

Group 0: u1,

Group 1: AA∗u1,

Group 2: (AA∗)2u1, A(B∗B)A∗u1,

Group 3: (AA∗)3u1, A(B∗B)(A∗A)A∗u1, A(A∗A)(B∗B)A∗u1, A(B∗B)2A∗u1,
...

...

Finally, span{w1, . . . ,w`} is generated from the vectors Bvi for i = 1, 2, . . . , `.
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Algorithm 2.2 evaluates matrix-vector products with the matrices A, B, A∗, and
B∗ periodically in the order indicated. It may readily be verified that interchanging
the matrices A and B (in lines 5–10 and lines 11–16) is irrelevant. Interchanging A∗

and B∗ (in lines 17–22 and lines 23–28) changes the matrices H and K as well as the
order of the v-vectors, but does not change the span of the columns of the matrices
U , V , and W .

The following result provides the relation of Algorithm 2.2 to Golub–Kahan bidi-
agonalization.

Proposition 2.5. Let the initial vector u1 ∈ Rm for Algorithms 2.1 and 2.2 be
such that breakdown does not occur in these algorithms. Let the vectors v1, . . . ,vN(v)

be determined by Algorithm 2.2 with v1 = A∗u1/‖A∗u1‖. Then for k sufficiently
small,

Kk(A∗A,A∗u1) ⊆ gKN(v)({A∗A,B∗B}, A∗u1) = span{v1,v2, . . . ,vN(v)},
Kk(B∗B,A∗u1) ⊆ gKN(v)({A∗A,B∗B}, A∗u1),

where the Krylov subspace Kk(A∗A,A∗u1) is defined by (2.1) and Kk(B∗B,A∗u1)
is defined analogously. Thus, the solution subspace Kk(A∗A,A∗u1) determined by k
steps of Golub–Kahan bidiagonalization is a subset of the solution subspace computed
by Algorithm 2.2. The dimension k of the former subspace can be chosen to be an
increasing function of N(v).

Proof. The result follows by comparing the subspaces (2.1) and (2.5).
The solution subspace determined by Golub–Kahan bidiagonalization is used by

the LSQR iterative method; see Section 4 for comments on this method.

2.3. Reduction of matrix tuplets. The reduction method described in the
above subsection can be generalized to a reduction method for matrix (q+ 1)-tuplets
{A,B1, B2, . . . , Bq}, where A ∈ Rm×n and Br ∈ Rpr×n for 1 ≤ r ≤ q. Recall that
Algorithm 2.2 generates the decompositions (2.3). An extension of this algorithm can
be devised for determining the decompositions

AV` = U`+1H`+1,`,

A∗U` = V(`−2)(q+1)+2 (H`,(`−2)(q+1)+2)∗,

BrV` = W
(r)
` K

(r)
`,` ,

B∗rW
(r)
` = V(`−1)(q+1)+r+2 (K

(r)
`,(`−1)(q+1)+r+2)∗,

(2.6)

for r = 1, 2, . . . , q. The matrices U , V , and W (r) have orthonormal columns with
the first column of U a specified unit vector. The matrix H is of upper Hessenberg
form and the matrices K(r) are upper triangular. Some entries above the diagonal of
these matrices vanish, but the number of vanishing entries typically decreases when q
increases. The following result is analogous to Theorem 2.4. Throughout this paper
e1 denotes the first axis vector.

Theorem 2.6. Let A ∈ Rm×n, and Br ∈ Rpr×n, 1 ≤ r ≤ q. (a) Given u1 ∈ Rn
of unit length, there are orthogonal matrices U ∈ Rm×m, V ∈ Rn×n, and W (r) ∈
Rpr×pr for 1 ≤ r ≤ q, with Ue1 = u1, such that the matrices

U∗AV = H ≡ [hi,j ],

(W (r))∗BrV = K
(r)
` ≡ [k

(r)
i,j ] for 1 ≤ r ≤ q,

have the following properties:
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• The matrix H is upper Hessenberg and in addition hi,j = 0 if{
j > 1, if i = 1,
j > (i− 2)(q + 1) + 2, if i > 1.

• The matrices K(r), for 1 ≤ r ≤ q, are upper triangular and in addition

k
(r)
i,j = 0 if j > (i− 1)(q + 1) + r + 2.

Moreover, the elements

h1,1, hi+1,i for all i, hi,(i−2)(q+1)+2 for i > 1,

k
(r)
i,i for all i, k

(r)
i,(i−1)(q+1)+r+2 for all i, for 1 ≤ r ≤ q,

(2.7)

are nonnegative.
(b) Given u1, the matrices H and K are uniquely determined if the elements (2.7)
are nonzero (and hence positive).
(c) Given u1, the matrices U , V , and W are uniquely determined if the matrices A
and Br are square for 1 ≤ r ≤ q, and the elements (2.7) are nonzero.

Theorem 2.6 and the associated reduction algorithm are of interest for multi-
parameter Tikhonov regularization. This application is considered in Section 3.2
below.

3. Applications to Tikhonov regularization. We first look at the application
of the decomposition (2.3) to the solution of large-scale Tikhonov problems (1.4)
and subsequently discuss how the reduction (2.6) can be applied to multi-parameter
Tikhonov regularization.

3.1. One-parameter Tikhonov regularization. Let the starting vector for
Algorithm 2.2 be

u1 = b / ‖b‖,

and choose the number of steps ` of the algorithm small enough so that exit at line 4
of Algorithm 2.2 is avoided. Then the algorithm determines the decompositions (2.3).
Let R(M) denote the range of of the matrix M . Since v1 = A∗u1/h1,1, equation
(2.5) implies that

gK`({A∗A,B∗B}, b) ⊂ R(A∗) ∪ R(B∗BA∗).

Let x ∈ gK`({A,B}, b) and let y ∈ R` be such that x = V`y. Then

‖Ax− b‖2 + µ ‖Bx‖2

= ‖AV` y − b‖2 + µ ‖BV` y‖2

= ‖U`+1H`+1,` y − b‖2 + µ ‖W`K`,`y‖2

= ‖H`+1,` y − ‖b‖ e1‖2 + µ ‖K`,`y‖2.

Therefore, solving (1.4) over the generalized Krylov subspace gK`({A,B}, b) results
in the solution of the projected small-sized problem

min
y∈R`

{ ‖H`+1,` y − ‖b‖ e1‖2 + µ ‖K`,`y‖2 }. (3.1)

We may solve this problem with the aid of the GSVD of the pair {H`+1,`,K`,`}. Since
K`,` is usually of full rank and not ill-conditioned, we also can compute the solution
avoiding the GSVD by using the QR factorization

K`,` = QR. (3.2)
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Here Q ∈ R`×` is orthogonal, and R ∈ R`×` is upper triangular and nonsingular.
When we substitute (3.2) and z = Ry into (3.1) we get a Tikhonov minimization
problem in standard form,

min
z∈R`

{ ‖H̃z − ‖b‖ e1‖2 + µ ‖z‖2 }, (3.3)

where H̃ is defined by

H̃ = H`+1,`R
−1. (3.4)

The entries of H̃, or equivalently of H̃∗, can conveniently be computed by forward
substitution with the matrix R∗. Since the size of H̃ is small, we can use its singular
value decomposition (SVD) to solve (3.3).

Let z
(`)
µ denote the solution of (3.3) for a fixed µ > 0. The corresponding approx-

imate solution of (1.4) is

x(`)
µ = V`R

−1z(`)
µ . (3.5)

The value of ` is generally modest, but sufficiently large such that the approximations

x
(`)
µ for µ-values of interest yield sensible approximations to the associated solutions

xµ of (1.4). The residual corresponding to x
(`)
µ ,

r(`)µ = b−Ax(`)
µ ,

is often called the discrepancy.
A variety of approaches can be used to determine a suitable value of the regu-

larization parameter µ, including the L-curve, generalized cross validation, and the
discrepancy principle; see, e.g., [4, 8, 11, 16, 23] for discussions and references. We
will use the discrepancy principle in the computed examples of Section 4. It requires
that a bound ε for the norm of the error e in b is available, c.f. (1.3), and determines

µ > 0 so that the solution z
(`)
µ of (3.3) satisfies

‖H̃z(`)
µ − ‖b‖ e1‖ = η ε, (3.6)

where η ≥ 1 is a user-specified constant independent of ε. Let µ` > 0 be such that

the associated solution z
(`)
µ` of (3.3) solves (3.6) with µ = µ`. The value µ` of the

regularization parameter may be computed by using the SVD of H̃. The following
proposition gives properties of the left-hand side of (3.6) as a function of ν = µ−1.

Proposition 3.1. Let the matrix H̃ be defined by (3.4) and assume that H̃∗e1 6=
0. Let PN (H̃∗) denote the orthogonal projector onto N (H̃∗). Then the function

ϕ(ν) = ‖b‖2e∗1(νH̃H̃∗ + I)−2e1, ν ≥ 0,

is strictly decreasing, convex, and

ϕ(0) = ‖b‖2, lim
ν→∞

ϕ(ν) = ‖PN (H̃∗)e1‖
2‖b‖2.

In addition,

ϕ(µ−1) = ‖H̃z(`)
µ − ‖b‖ e1‖2.
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Proof. The result can be shown with the aid of the SVD of H̃; see [6, Theorem
2.1] for details.

Generally, ‖PN (H̃∗)e1‖‖b‖ � η ε < ‖b‖. Then, by Proposition 3.1, the equation

ϕ(ν) = η2ε2 (3.7)

has a unique solution ν̂. We determine the value µ` = ν̂−1 of the regularization

parameter in (3.3) and compute the approximate solution x
(`)
µ` of (1.4) with the aid

of (3.5).
We may apply Newton’s method to solve (3.7) with a starting value ν0 < ν̃, such

as ν0 = 0. This method converges monotonically and quadratically for the function
ϕ(ν) since this function is monotonically decreasing and convex.

We conclude this subsection by noting that when B = I, the Tikhonov regular-
ization method described simplifies to the method discussed in [6], which is based on
(standard) partial Golub–Kahan bidiagonalization of A.

3.2. Multi-parameter Tikhonov regularization. We briefly discuss multi-
parameter Tikhonov regularization

min
x∈Rn

{
‖Ax− b‖2 +

q∑
r=1

µr ‖Brx‖2
}
, (3.8)

where the Br are regularization matrices and the scalars µr ≥ 0 regularization pa-
rameters. Brezinski et al. [3] consider this problem for small to moderately sized
problems. More recent treatments are provided by Gazzola and Novati [9] and Lu
and Pereverzyev [18].

With x = V`y as before, and applying the decompositions (2.6), we get similarly
as for (3.1) that (3.8) minimized over R(V`) is equivalent to the reduced minimization
problem

min
y∈R`

{
‖H`+1,` y − ‖b‖ e1‖2 +

q∑
r=1

µr ‖K(r)
`,` y‖

2
}
.

Methods for determining suitable regularization parameters for this minimization
problem are discussed in [2, 3, 9, 18].

4. Numerical examples. We present several numerical examples with the one-
parameter Tikhonov regularization method of Section 3.1. To illustrate the impor-
tance of the use of a user-chosen regularization matrix, we also report results obtained
with the LSQR iterative method, which determines an approximate solution in a
Krylov subspace of the form (2.2) with u1 = b/‖b‖. The `th iterate, x`, determined
by LSQR when applied to the approximate solution of (1.2), satisfies

‖Ax` − b‖ = min
x∈K`(A∗A,A∗b)

‖Ax− b‖, x` ∈ K`(A∗A,A∗b);

see [11, 20] for details. In all iterative methods applied in this section, the initial
iterate is chosen to be x0 = 0.

The components of the noise vector e are in all examples normally distributed
with mean zero, and e is normalized to correspond to a chosen noise level

δ = ‖e‖ / ‖b̆‖.
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Here b̆ denotes the noise-free vector associated with b; cf. (1.3). We determine the
regularization parameter µ by the discrepancy principle where η in (3.6) equals one.

The iterations are terminated as soon as the computed iterates x
(`)
µ` and the

regularization terms µ`‖Bx
(`)
µ` ‖2 do not change much. Our reason for considering the

regularization terms is that we would like to minimize (1.4) and the fidelity terms

‖Ax(`)
µ` − b‖2 are fixed since we impose the discrepancy principle. Specifically, we

terminate the iterations at step ` when for the first time

‖x(`)
µ`
− x(`−1)

µ`−1
‖/‖x(`)

µ`
‖ < γ (4.1)

and

|µ`‖Bx(`)
µ`
‖2 − µ`−1‖Bx(`−1)

µ`−1
‖2|/‖Bx(`)

µ`
‖2 < γ. (4.2)

We let γ = 1 · 10−3 in the examples.

Examples 4.1 and 4.2 illustrate the performance when our Tikhonov regularization
method is used for the solution of linear discrete ill-posed problems from Regulariza-
tion Tools [12] with rectangular regularization matrices. These problems are small
enough to allow the application of the GSVD for their solution. These examples il-
lustrate that Algorithm 2.2 can produce approximate solutions of the same or higher
quality than factorization of the matrix pair {A,B} by GSVD.

Examples 4.3-4.5 consider the restoration of blurred and noisy 2D-images. These
examples are too large to compute the GSVD of the matrix pair {A,B}. Moreover,
they use a regularization matrix, for which it is not attractive to use the A-weighted
pseudoinverse. The starting vector for Algorithm 2.2 is u1 = b/‖b‖ for all examples.
All computations were carried out in MATLAB with about 15 significant decimal
digits.
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(a) (b)

Fig. 4.1. Example 4.1. Computed approximate solutions for the test problem deriv2 with noise
level 10−3. (a) B is the bidiagonal matrix (4.4). (b) B is the tridiagonal matrix (4.5). The curves
determined with the GSVD are on top of the curves obtained with Algorithm 2.2.

Example 4.1. Consider the Fredholm integral equation of the first kind∫ 1

0

k(s, t)x(t) dt = exp(s) + (1− e) s− 1, 0 ≤ s ≤ 1, (4.3)
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B Algorithm 2.2 GSVD LSQR

Bidiagonal (4.4) 1.17 · 10−2 (` = 20) 1.23 · 10−2 9.55 · 10−1 (` = 13)
Tridiagonal (4.5) 9.93 · 10−3 (` = 22) 3.41 · 10−3

Table 4.1
Example 4.1. Relative errors in computed solutions for noise level 10−3. The parameter `

denotes the number of steps with Algorithm 2.2 and LSQR.

where

k(s, t) =

{
s (t− 1), s < t,
t (s− 1), s ≥ t.

We discretize the integral equation by a Galerkin method with orthonormal box test
and trial functions using the MATLAB code deriv2 from [12]. This yields the matrix
A ∈ R1000×1000. The function deriv2 also produces the “exact” solution x̆ ∈ R1000,
which is a scaled discrete approximation of the analytical solution x(t) = exp(t)

of (4.3). We determine the “noise-free” vector b̆ := Ax̆ to which we add an error
vector e ∈ R1000 that corresponds to the noise level 10−3; cf. (1.3). Bidiagonal and
tridiagonal regularization matrices that approximate derivatives are applied. Thus,
the bidiagonal regularization matrix is a scaled finite difference approximation of the
first derivative operator,

B =


1 −1

1 −1
. . .

. . .

1 −1

 ∈ R(n−1)×n, (4.4)

and the tridiagonal regularization matrix is a scaled finite difference approximation
of the second derivative operator,

B =


−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

 ∈ R(n−2)×n. (4.5)

We apply Algorithm 2.2 to the matrix pair {A,B} and determine the regularization
parameter with the aid of the discrepancy principle. Figure 4.1 displays the approxi-

mate solutions x
(20)
µ20 and x

(22)
µ22 of (1.2) determined by the method of Section 3.1 (red

continuous curves), the approximate solutions computed by using the GSVD of the
matrix pair {A,B} (blue continuous curves), and the desired solution x̆ (black dash-
dotted curves). The regularization parameter for the GSVD approximate solutions
is determined by the discrepancy principle using the MATLAB function discrep from
[12]. Clearly, the regularization matrix (4.5) gives the best approximation of x̆.

Table 4.1 shows numerical values for the relative errors in the computed approx-
imate solutions. The number of steps ` with Algorithm 2.2 is determined by the
stopping criteria (4.1) and (4.2). When B is defined by (4.4), Algorithm 2.2 deter-

mines the iterate x
(20)
µ20 , which is a better approximation of x̆ than the approximation

determined by GSVD. LSQR delivers solutions with a much larger relative error than
either Algorithm 2.2 or the GSVD. This illustrates the benefit of the regularization
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Fig. 4.2. Example 4.1. Relative error in computed approximate solutions x
(`)
µ` as a function

of ` ≥ 27 for the test problem deriv2 with noise level 10−3 and the tridiagonal regularization matrix
(4.5).

matrix (4.4). If instead the regularization matrix B is given by (4.5), then the stopping
criteria (4.1) and (4.2) terminates Algorithm 2.2 after 22 steps. For this regularization
matrix, GSVD delivers a more accurate approximation of x̆ than Algorithm 2.2. The
algorithm yields a more accurate approximation of x̆ when it is allowed to carry out

more iterations. For instance, the relative error in x
(37)
µ37 is only 3.38 · 10−3, which is

smaller than the relative error in the approximate solution determined by the GSVD.

Figure 4.2 shows the error in the computed approximate solutions x
(`)
µ` as a func-

tion of the number of steps ` when the tridiagonal regularization matrix (4.5) is used.
The error can be seen to drop significantly at iteration ` = 37. It is clear that for
this example it is not crucial when the iterations are terminated as long as sufficiently
many of them are carried out. The stopping criteria (4.1) and (4.2) gives quite accu-
rate approximations of x̆ for many problems, but it is an open question how to design
a stopping criterion that yields the most accurate approximation of x̆ and does not
require unnecessarily many iterations for a large variety of problems. We remark that

the relative errors in the iterates x
(`)
µ` for 1 ≤ ` < 27 are not shown in Figure 4.2,

because some of them are much larger than the errors displayed and would obscure
the behavior of the relative errors shown.
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0.06

0.08

 

 

Fig. 4.3. Example 4.1. Approximate solution x10 (continuous red curve) computed by the
method [13] for test problem deriv2 with noise level 10−3 and regularization matrix (4.5). The
dashed black curve displays x̂.
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We conclude this example with an illustration of the performance of the method
described in [13]. The method determines solution subspaces that are the union of
the null space of (4.5) and a Krylov subspace of the form (2.2) with u1 = b/‖b‖. The
regularization matrix (4.5) is projected onto the solution subspaces. The discrepancy
principle is satisfied after 10 iterations, and the relative error in the iterate x10 is 1.68·
10−2. This relative error is larger than the relative error achieved with Algorithm 2.2.
Figure 4.3 displays x10 (solid red curve) and the desired solution x̂ (dashed black
curve). 2
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Fig. 4.4. Example 4.2. Computed approximate solutions for the modified phillips test problem

with noise level 10−2. (a) Tikhonov solution x
(20)
µ20 with B defined by (4.4). (b) Tikhonov solution

x
(20)
µ20 with B defined by (4.5).

B Algorithm 2.2

Bidiagonal 1.16 · 10−2 (` = 20)
Tridiagonal 2.64 · 10−2 (` = 20)

Table 4.2
Example 4.2. Relative error in computed solutions for noise level 10−2. The parameter `

denotes the number of steps with Algorithm 2.2.

B Algorithm 2.2

Bidiagonal 6.55 · 10−3 (` = 28)
Tridiagonal 8.52 · 10−3 (` = 20)

Table 4.3
Example 4.2. Relative error in computed solutions for noise level 10−3. The parameter `

denotes the number of steps with Algorithm 2.2.

Example 4.2. Consider the Fredholm integral equation of the first kind∫ 6

−6
k(s, t)x(t) dt = g(s), −6 ≤ s ≤ 6, (4.6)

discussed by Phillips [22]. Define the function

φ(s) =

{
1 + cos(πs3 ), |s| < 3,
0, |s| ≥ 3.
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Then the kernel k, the solution x, and the right-hand side g are given by

k(s, t) = φ(s− t),
x(t) = φ(t),

g(s) = (6− |s|)
(
1 + 1

2 cos(πs3 )
)

+ 9
2π sin(π |s|3 ).

We use the MATLAB code phillips from [12] to discretize (4.6). This yields the
matrix A ∈ R1000×1000 and a discretization of a scaled solution z0 ∈ R1000. We add a
discretization of the function 1+exp ( t+6

12 ), t ∈ [−6, 6], to z0 to obtain a vector x̆ which

represents a slowly oscillatory and increasing solution. The vector b̆ := Ax̆ yields
“error-free” data to which we add a noise-vector e; cf. (1.3). The vector e is chosen
to correspond to the noise levels 10−2 or 10−3. We apply Algorithm 2.2 to determine
approximations of the desired vector x̆ using the regularization matrices (4.4) and
(4.5). The number of steps, `, is chosen in the same manner as in Example 4.1. The
results achieved are displayed by Tables 4.2 and 4.3 for the noise levels 10−2 and 10−3,
respectively, as well as in Figure 4.4.
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Fig. 4.5. Example 4.2. Computed approximate solutions for the modified phillips test problem

with Cauchy noise of level 10−3. The approximate solution x
(32)
µ32 determined by Algorithm 2.2, the

approximate solution determined by GSVD, and the desired solution x̆ are shown. The regularization
matrix B is given by (4.4).

Finally, we investigate the performance of Algorithm 2.2 when applied to the
solution of (1.4) when the matrix A has more rows than columns. Specifically, we
define A ∈ R2000×1000 by stacking two copies of the matrix obtained by discretizing
(4.6) as described above. The data vector b ∈ R2000 in (1.4) is determined by stacking

two error-free vectors b̆ ∈ R1000 defined as above and then adding 0.1% Cauchy noise.
We apply Algorithm 2.2 with regularization matrix (4.4) to determine an approximate
solution of the stacked problem. The discrepancy principle and the stopping criteria
(4.1) and (4.2) are satisfied after ` = 32 steps with Algorithm 2.2. The computed

approximate solution x
(32)
µ32 has relative error ‖x(32)

µ32 − x̆‖/‖x̆‖ = 4.77 · 10−3. We
remark that the regularization matrix (4.4) gives a more accurate approximation of x̆

than the matrix (4.5). Figure 4.5 displays x
(32)
µ32 , the approximate solution determined

by GSVD, and the desired solution x̆. The approximate solutions determined by
Algorithm 2.2 and GSVD are very close. Note that if the noise were Gaussian, the
overdetermined system could be reduced to a system with a square matrix. 2

The following examples illustrate the application of Algorithm 2.2 to the restora-
tion of 2D gray-scale images that have been contaminated by blur and noise. The
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(a) (b)

Fig. 4.6. Blur- and noise-free images for Examples 4.3 and 4.4.

images are given by an m ×m matrix of pixel values in the set {0, 1, . . . , 255}. The
pixels are ordered row-wise and stored in a vector of dimension n = m2. A blurred
but noise-free image b̆ is obtained from the original image x̆ ∈ Rn by multiplication
by a blurring matrix A ∈ Rn×n. In the first two examples below, this matrix repre-
sents Gaussian blur and is a symmetric block Toeplitz matrix with Toeplitz blocks.
In our last example the matrix models motion blur. The block Toeplitz matrix is
generated with the MATLAB function blur from [12]. This matrix depends on the
parameters band (the half-bandwidth of the Toeplitz blocks) and sigma (the variance
of the Gaussian point spread function). Increasing sigma means more blur, while
increasing band means that more storage and computational work is needed for the
matrix-vector product evaluations with A and A∗, and also (to some extent) more
blur. We obtain a blurred and noisy image b ∈ Rn by adding a noise-vector e ∈ Rn
to b̆; cf. (1.3). We assume that the noise level δ is known and seek to approximate
the original image x̆.

A measure of the quality of the approximations x
(`)
µ` determined by Algorithm 2.2

and different regularization matrices is provided by the Peak Signal-to-Noise Ratio
(PSNR),

PSNR(x(`)
µ`
, x̂) = 20 log10

(
255

‖x(`)
µ`
−x̂‖

)
dB,

where 255 is the maximal pixel-value. While a high PSNR-value indicates a good

restoration x
(`)
µ` , we also display the obtained images since PSNR-values do not always

coincide with visual judgment.
Example 4.3. Consider the restoration of a blurred and noisy 384 × 384-pixel

image. The desired noise- and blur-free image is displayed in Figure 4.6(a). We
compare three regularization matricesB: the identity, a discretization of the Laplacian

L(x) = ∆x, (4.7)

and a discretization of the Perona–Malik operator

L(x) = div(g(|∇x|2)∇x), (4.8)

where ∇x is the gradient of x viewed as a function on R2. We define the diffusivity
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(a) (b)

(c) (d)

Fig. 4.7. Example 4.3. (a) Blurred and noisy image. (b) Image restored with B = I. (c) Image
restored with B the discretized Laplacian. (d) Image restored with B the discretized Perona–Malik
operator.

by

g(s) =
ρ

ρ+ s

where ρ > 0 is small; see [21] for a discussion. We use the value ρ = 10−5 in the
computed examples. Discretizing (4.8) by finite differences yields a matrix B with
five nonzero entries per row; we refer to [24] for more details.

The regularization matrix B in (1.4) plays an important role. The discretization of
the Perona–Malik operator (4.8) often provides better restorations with sharper edges
than the discretization of the Laplacian (4.7), which usually yields over-smoothed
restorations. We determine the discretized Perona–Malik operator B from the avail-
able image.

An image with blur and noise is generated with the MATLAB function blur from
[12] as described above with band = 7 and sigma = 5. The noise level is δ = 10−1;
see Figure 4.7(a). The best restorations for the regularization matrices B = I and
B determined by (4.7) are generated with ` = 6 and ` = 7 steps of Algorithm 2.2
and have PSNR-values 25.82 and 25.68, respectively; see Figures 4.7(b) and (c). The
best restoration with B being a discretization of the Perona–Malik operator (4.8) is
obtained with ` = 15 steps of Algorithm 2.2. It has PSNR-value 28.32 and is shown
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in Figure 4.7(d). The higher PSNR-value of the latter restoration is in agreement
with visual perception. While the evaluation of matrix-vector products with B is
straightforward, the use of the inverse of B is not. This makes it attractive to apply
the method of the present paper. 2

(a) (b)

(c) (d)

Fig. 4.8. Example 4.4. (a) Blurred and noisy image. (b) Image restored with B being the
discretized Laplacian. (c) Image restored with B being the discretized Perona–Malik operator. (d)
Edge map for the restoration in (c).

Example 4.4. We apply the regularization matrices obtained by discretizing the
operators (4.7) and (4.8) to the 412 × 412-pixel image shown in Figure 4.6(b). This
image has many fine details and well-defined edges. We severely blur the image using
band = 9 and sigma = 3 in the function blur from [12], and add 30% Gaussian noise;
see Figure 4.8(a).

The discretizations of the Laplace and Perona–Malik operators (4.7) and (4.8) are
the same as in Example 4.3. For B being the discrete Laplacian, the best restoration is
obtained after ` = 1 iterations with Algorithm 2.2; for B being the discretized Perona–
Malik operator, the most accurate restoration is obtained after ` = 7 iterations.
We get the PSNR-values 12.11 and 13.56, respectively, for the restored images; see
Figures 4.8(b) and (c). We see the over-smoothing caused by the discretized Laplacian.

We also use the regularization matrix B⊗ defined by

B⊗ =

[
I ⊗B
B ⊗ I

]
, (4.9)
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where the matrix B is given by (4.4) with n = 412. The matrix B⊗ ∈ R338664×169744

has almost twice as many rows as columns. This kind of regularization matrix also
is used in [15]. It yields fairly accurate restorations for many examples. However, for
the present example, we obtain a restoration of the same quality as with the discrete
Laplace operator; the best restoration is determined after ` = 1 iteration and has
PSNR 12.11. Nevertheless, it is of interest that our iterative method can handle
regularization matrices with more rows than columns.

Figure 4.8(d) shows an edge map for the image restored with B being the dis-
cretized Perona–Malik operator. The edge map, determined with gimp, a public
domain edge detector for image processing, is accurate also in the presence of the
severe noise and blur present in the image.

In the above examples, we saved the blur- and noise-contaminated image in the
format uint8, i.e., each pixel is stored as a nonnegative integer in eight bits. It is
interesting to note that when the blur- and noise-contaminated image is saved in
“double precision”, i.e., as a real floating point numbers with 64 bits, the restored
images are of much higher quality with PSNR-values about 16. Thus, the storage
of each pixel in the uint8 format adds additional error. The latter format requires
much less computer storage than the double precision format. The choice of format
typically depends on the computer hardware and application. 2

(a) (b)

Fig. 4.9. Example 4.5. (a) Blurred and noisy image. (b) Image restored with 26 steps of
Algorithm 2.2.

Example 4.5. Our last example is concerned with the restoration of an im-
age that has been contaminated by linear motion blur and noise. The point spread
function (PSF) for motion blur is represented by a line segment of length r pixels
in the direction of the motion. The angle θ (in degrees) specifies the direction; it is
measured counter-clockwise from the positive horizontal axis. The PSF takes on the
value r−1 on this segment and vanishes elsewhere. The blurring matrix A is defined
by this PSF. The larger r, the more ill-conditioned is A, and the more difficult is
the restoration task. In this example, we let r = 15 and θ = 10, and use the same
test image as in Example 4.4. Thus, the original blur- and noise-free image, shown
in Figure 4.6(b), is represented by 412 × 412 pixels. This image is contaminated by
motion blur and by 10% Gaussian noise. Figure 4.9(a) displays the contaminated

image, which is represented by the vector b ∈ R4122 . The regularization matrix B is
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the Laplacian operator.
Algorithm 2.2 requires 26 iterations to satisfy the discrepancy principle and the

stopping criteria (4.1) and (4.2). Figure 4.9(b) shows the restoration obtained; it
has PSNR-value 14.09. The PSNR-values of the computed restorations increase with
the iteration number. For instance, 100 steps give a restoration with PSNR 14.20.
However, the latter restoration is not visually more pleasing than the restoration
shown.

We remark that there are other approaches to solve minimization problems of the
form (1.4) when the matrices A and B are square, such as iterative methods based on
the flexible Arnoldi process [25, Algorithm 2.1]. However, for the present restoration
problem [25, Algorithm 2.1] does not provide useful restorations for a variety of square
regularization matrices. This depends on that the algorithm produces an unsuitable
solution subspace; see [25, Example 5.5] for a discussion. The flexible Arnoldi pro-
cess [25, Algorithm 2.1] can be modified to yield a more suitable solution subspace;
however, the method of the present paper has the advantage of being applicable to
a large variety of problems without having to be adapted to the problem at hand by
the user. 2

5. Conclusion and extension. We have described a generalized Krylov sub-
space method for reducing a pair of large, possibly rectangular, matrices to a pair of
small matrices. An extension of this method for the reduction of a (q + 1)-tuplet of
large matrices to a (q + 1)-tuplet of small matrices also is presented. These methods
are generalizations of partial Golub–Kahan bidiagonalization of a single large matrix.
The large matrices are accessed via matrix-vector product evaluations only.

The relation between the large and reduced matrices makes our reduction methods
well suited for application to one-parameter and multi-parameter Tikhonov regular-
ization of linear discrete ill-posed problems with large, possibly rectangular, matrices.
The main reason for developing the one-parameter Tikhonov regularization method of
the present paper is to obtain a new alternative to the GSVD when the problems are
so large that the latter is expensive or infeasible to apply. We note that the numerical
examples of one-parameter Tikhonov regularization show that for problems that are
small enough to allow the evaluation of the GSVD of the matrix pair, our reduction
method and the GSVD can give computed approximate solutions of the about same
accuracy. Example 4.5 illustrates that the method of the present paper can be applied
to a larger class of problems than Algorithm 2.1 of [25].
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