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Abstract. This is an English translation of the paper “Über den Wertevorrat

einer Matrix” by Rudolf Kippenhahn, Mathematische Nachrichten 6

(1951), 193–228. This paper is often cited by mathematicians who work in the
area of numerical ranges, thus it is hoped that this translation may be useful. Some
notation and wording has been changed to make the paper more in line with present
papers on the subject written in English.

In Part 1 of this paper Kippenhahn characterized the numerical range of a ma-
trix as being the convex hull of a certain algebraic curve that is associated to the
matrix. More than 55 years later this “boundary generating curve” is still a topic
of current research, and “Über den Wertevorrat einer Matrix” is almost
always present in the bibliographies of papers on this topic.

In Part 2, the author initiated the study of a generalization of the numerical
range to matrices with quaternion entries. The translators note that in Theorem
36, it is stated incorrectly that this set of points in 4-dimensional space is convex.
A counterexample to this statement was given in 1984.[ I ] In the notes at the end
of this paper the translators pinpoint the flaw in the argument. In the opinion of
the translators, this error does not significantly detract from the overall value and
significance of this paper.

In the translation, footnotes in the original version are indicated by superscript
Arabic numerals, while superscript Roman numerals in brackets are used to indi-
cate that the translators have a comment about the original paper. All of these
comments appear at the end of this paper, and the translators also have corrected
some minor misprints in the original without comment.
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On the Numerical Range of a Matrix.1

by Rudolf Kippenhahn in Bamburg.

(Published September 13, 1951.)

Introduction

Let A = (aμν)(μ, ν = 1, . . . , n) be a square matrix with complex number entries.
The numerical range W (A) of the matrix A is defined as the set of all complex
numbers which can be assumed by the form2

(1) Φ(A, x) = x∗Ax

when the vector x with complex components x1, . . . , xn varies only over all vectors
with two-norm 1, so we must add to (1) the side condition that x∗x = 1.

The numerical range of a complex matrix is a subset of the Gaussian plane.
Since the region from which x is taken is closed, and since Φ(A, x) is a continuous
function of x, it follows that the set of points W (A) is also closed. Toeplitz [9]3

and Hausdorff [4] have proven that the region W (A) is convex.
The goal of this work is to investigate the geometric properties of the numerical

range of a matrix. Geometric and analytic methods can be applied to numerical
ranges of matrices, since for each matrix of dimension n a curve of class n can be
found explicitly, the boundary generating curve, and its convex hull coincides with
the numerical range of the matrix (§ 3). The characteristic curve is a curve without
points of inflection (§ 4). For the cases n = 2 and n = 3 each possible type of curve
can be completely described (§ 7). A general examination of curve types should be
based on a classification of the curves of class n. However, at the present day this
has not yet been completed. From the representation of the boundary generating
curve in the form of an equation one may estimate the width, diameter, and area
of the numerical range, as well as deduce the length of the boundary of a numerical
range (§ 9).

In the second part of this work the numerical ranges of matrices of dimension
n whose elements are quaternions are investigated. These numerical ranges can
be described as convex sets in a four-dimensional vector space. They always lie
rotationally symmetric with respect to the “central axis”. Their theory can be
reduced to the theory of numerical ranges of complex matrices of dimension 2n.

Part 1. Complex Matrices

1. Simplest properties of the numerical range

Theorem 1. The numerical range of a matrix A is invariant under unitary trans-
formations.

1Dissertation Erlangen 1951; Referees: Prof. Dr. Wilhelm Specht, Prof. Dr. Georg

Nöbeling. – I thank Mr. Prof. Specht for the idea for this work as well as for much essential
advice.

2To form the matrix M∗ from M , we replace each element of the transpose matrix MT by its
complex conjugate. A vector x should be considered as a matrix with one column; x∗ is therefore
a row vector.

3Numbers in square brackets refer to the bibliography.
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Proof. If U is a unitary matrix4, then

W (A) = W (U∗AU),

since if x runs over the set of all normalized n-dimensional complex vectors then
so does y = Ux. �

Theorem 2. The numerical range of a Hermitian matrix H is a closed interval
on the real axis, whose endpoints are formed by the extreme eigenvalues of H.

Proof. Since the numerical range is a unitary invariant, we may assume that the
Hermitian matrix H is in (real) diagonal form5:

H =

⎛
⎜⎜⎜⎜⎝

α1 0 · · · 0

0 α2
. . .

...
...

. . . . . . 0
0 · · · 0 αn

⎞
⎟⎟⎟⎟⎠ with α1 ≤ α2 ≤ · · · ≤ αn.

If we form Φ(H,x), then we may also assume that each component αν of x is real,
since each value which Φ(H,x) assumes for a complex x, Φ(H,x) also assumes
when the component xν in x is replaced by its absolute value ξν = |xν |, because

Φ(H,x) ≡ x∗Hx ≡
n∑

ν=1
ανxνxν . Therefore let x be the vector with real components

ξ1, . . . , ξn with
n∑

ν=1
ξ2
ν = 1. This implies

Φ(H,x) =
n∑

ν=1

ανξ2
ν .

This expression, however, can yield all values on the closed interval on the real axis
bounded by the extreme eigenvalues α1, αn of H. �

Φ(H,x) assumes the extreme eigenvalues α1, αn of the diagonal matrix H only
for the eigenvectors

x1 =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎠ , xn =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠ .

For arbitrary unitary U from the equivalence of the equations

Hx = αx, (U∗HU)U∗x = αU∗x

it follows now that the extreme eigenvalues of U∗HU are assumed only for these
eigenvectors in the function Φ(U∗HU, x). By this we have proved that the function
Φ(K,x) of an arbitrary Hermitian matrix K assumes the extreme eigenvalues only
for eigenvectors.

4A matrix U is called unitary if the equation UU∗ = U∗U = In holds with In the identity
matrix of dimension n.

5To the extent that it is possible, Latin letters (except indices) are characterized by complex
entries, Greek letters are characterized by real number entries.



4 TRANSLATED BY ZACHLIN AND HOCHSTENBACH

It is well-known that every complex matrix A can be uniquely split into two
components so that

A = H1 + iH2,

where H1 and H2 are Hermitian matrices which hold the following relation with A:

H1 =
A + A∗

2
, H2 =

A − A∗

2i
.

From this we have
Φ(A, x) = Φ(H1, x) + iΦ(H2, x),

where Φ(H1, x) and Φ(H2, x) are real for any vector x. This splitting of the matrix
A into Hermitian components corresponds to splitting the function Φ(A, x) into
real and imaginary parts.

If A is normal, i.e., AA∗ = A∗A, then A may be put into diagonal form through
a unitary transformation. The following applies to normal matrices:

Theorem 3. If A is a normal matrix with eigenvalues a1, . . . , an, then W (A) is
the convex hull of the points in the complex plane corresponding to the eigenvalues.

Proof. This theorem is a generalization of the theorem for Hermitian matrices. One
proves it in a similar fashion, by assuming that A is in diagonal form:

A =

⎛
⎜⎜⎜⎜⎝

a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 an

⎞
⎟⎟⎟⎟⎠ .

Once again the vector x can be assumed to be real, hence

Φ(A, x) =
n∑

ν=1

aνξ2
ν with

n∑
ν=1

ξ2
ν = 1.

In fact W (A) is also bounded by the smallest convex polygon which encloses the
points a1, . . . , an. �

2. Affine transformations of numerical ranges

If W (A) is the numerical range of the matrix A = H1 + iH2, then the region of
the complex plane which is the image of W (A) under an affine transformation is
once again the numerical range of a matrix. The general affine transformation of a
point z = ξ + iη in the Gaussian plane is represented by

z = ξ + iη → z′ = aξ + ibη + c (ab �= 0, ab−1 not purely imaginary).

If we denote this element of the affine group by τ = τabc, so that

τ(z) = τabc(z) = aξ + ibη + c,

and if we define an affine transformation of a matrix by

τ(A) = τabc(A) = aH1 + ibH2 + cIn,

then we have:

Theorem 4.
τ(W (A)) = W (τ(A)).
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Proof. If z = ξ + iη ∈ W (A), then z = x∗
0Ax0 for a certain vector x0 of norm one,

then we have
ξ = x∗

0H1x0, η = x∗
0H2x0

which gives us

τ(z) = ax∗
0H1x0 + ibx∗

0H2x0 + c

= x∗
0(aH1 + ibH2 + cIn)x0 = x∗

0(τ(A))x0.

�
If we say two matrices A,B are affine equivalents when there exists τ such

that A = τ(B), then the numerical ranges of affine equivalent matrices are affine
transformations of each other; however, the converse is not true in general.

Only in the special case of a Hermitian matrix we have:

Theorem 5. The numerical range W (A) of a matrix A is a line segment exactly
when A and a Hermitian matrix are affine equivalents.

Proof. When A is an affine equivalent of a Hermitian matrix, then according to
Theorems 2 and 4, W (A) is a line segment. Conversely if W (A) is a line segment,
then A is an affine equivalent of a matrix B, where the numerical range W (B) is
a segment on the real axis. If we decompose B into its real and imaginary parts:
B = H1 + iH2, then for any vector x of norm one:

x∗H2x = 0

so
H2 = 0 and H1 = B.

�
Special affine transformations are a rotation about the origin of an angle ϕ, which

we denote by τaa0 with a = eiϕ, and the parallel translation in the plane by the
vector (γ1, γ2), which is represented by the element τ11c with c = γ1 + iγ2.

The connection between unitary and affine transformations explains the following
“swapping rule”:

Theorem 6.
τ(U∗AU) = U∗(τ(A))U

Proof. Indeed, we have

U∗τ(A)U = U∗(aH1 + ibH2 + cIn)U

= aU∗H1U + ibU∗H2U + cIn = τ(U∗AU).

�
A square matrix A is said to have a unitary decomposition when by a unitary

matrix U it can be put in the form

U∗AU =
(

A1 0
0 A2

)
with square submatrices A1, A2. This property of a matrix, to have a unitary
decomposition, is invariant under affine equivalence, that is:

Theorem 7. If a matrix A has a unitary decomposition, then all of its affine
equivalents also have unitary decompositions.
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Proof. A matrix A = H1 + iH2 has a unitary decomposition6 exactly when there
exists a matrix V �= aI, such that:

AV = V A, A∗V = V A∗

or also
H1V = V H1, H2V = V H2.

Now let A have a unitary decomposition, and let V �= aI commute with H1 and
H2. This implies

V τabc(A) = aV H1 + ibV H2 + cV In = aH1V + ibH2V + cInV = τabc(A)V,

V (τabc(A))∗ = aV H1 − ibV H2 + cV In

= aH1V − ibH2V + cInV = (τabc(A))∗ V.

Therefore the matrix τabc(A) also has a unitary decomposition. �

In general an affine transformation of a matrix is not simultaneously a unitary
transformation, since in general for a matrix A no element τ of the affine group
exists such that

U∗AU = τ(A).

Nevertheless, when this situation does occur, the numerical range W (A) satisfies a
certain symmetry condition, since for each transformation of the cyclic subgroup of
the affine group generated by τ , W (A) is mapped to itself.

For example, the numerical ranges of all matrices for which

U∗AU = τ1,−1,0(A) = A

lie symmetric with respect to the real axis. Of these matrices, the class of matrices
of dimension 2n, for which7

V ∗AV = A with V = In ⊗
(

0 1
−1 0

)
holds is particularly important for the theory of quaternion matrices.

Theorem 8. If A is a unitary equivalent to both τ(A) and B, then also the matrices
B and τ(B) are unitary equivalents.

Proof. From

τ(A) = UAU∗ and B = W ∗AW (UU∗ = 1, WW ∗ = 1)

it follows
τ(B) = W ∗τ(A)W resp. τ(A) = Wτ(B)W ∗,

therefore, also
A = U∗Wτ(B)W ∗U.

On the other hand,

A = WBW ∗ and from this B = W ∗U∗Wτ(B)W ∗UW.

�

6See SPECHT [8].
7A ⊗ B means the Kronecker product of two matrices A, B.
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3. The boundary generating curve

Theorem 9. If A = H1 + iH2 with α1 ≤ α2 ≤ · · · ≤ αn the eigenvalues of
H1 and β1 ≤ β2 ≤ · · · ≤ βn the eigenvalues of H2, then the points of W (A)
lie in the interior or on the boundary of the rectangle constructed by the lines
ξ = α1, ξ = αn; η = β1, η = βn positioned parallel to the axes. The sides of
the rectangle share either one point (possibly with multiplicity > 1) or one closed
interval with the boundary of W (A).

Proof. For the proof one notices that Φ(H1, x) and Φ(H2, x) are the real and imag-
inary parts of points in W (A). The range of Φ(H1, x) is the interval [α1, αn] on
the real axis, the range of iΦ(H2, x) is the interval [iβ1, iβn] on the imaginary axis.
From this the first part of our theorem follows immediately. The second part follows
from the fact that the boundary of W (A) shares with each side of the rectangle at
least one point, since Φ(H1, x) assumes the extreme values α1, αn of the numerical
range of H1 and Φ(H2, x) assumes the extreme values β1, βn of the numerical range
of H2. �

A line in the complex plane is defined as a support line of the region W (A), if it
shares with the boundary of W (A) either one point (possibly with multiplicity > 1)
or one whole interval8. Therefore in particular the sides of the rectangle mentioned
above are support lines.

In general if we denote the largest eigenvalue of the real part of a matrix A by
g(A), then we get a support line of W (A) by

ξ = g(A).

Now if we rotate the numerical range by an angle −ϕ while we switch to the matrix
e−iϕA, then for each value ϕ

ξ = g(e−iϕA)

is a support line of W (e−iϕA). However, now g(e−iϕA) is the largest eigenvalue of
the real part of

e−iϕA = (cos ϕH1 + sin ϕH2) + i(cos ϕH2 − sin ϕH1)

and therefore the largest eigenvalue of

cos ϕH1 + sin ϕH2.

The eigenvalues of the latter matrix are obtained from the equation

| cos ϕH1 + sinϕH2 − λIn| = 0.

The largest among these is λn = g(e−iϕA). If we rotate back the numerical range
by the angle +ϕ, then W (e−iϕA) goes back to W (A), but the line

ξ = g(e−iϕA)

goes to the line

(2) ξ cos ϕ + η sin ϕ − g(e−iϕA) = 0.

Thus this line is a support line of W (A). If ϕ is varied over all values between 0
and 2π then (2) yields every support line of W (A). From this it follows:

8For all the concepts of the theory of convex regions see Bonneson-Fenchel [1].
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Theorem 10. To every complex matrix A = H1 + iH2 through the equation

fA(u, v, w) ≡ |H1u + H2v + Inw| = 0

is associated a curve of class n in homogenous line coordinates in the complex plane.
The convex hull of this curve is the numerical range of the matrix A.

Hereby we consider the points of the complex plane as finite points in the pro-
jective plane (i.e., points on the plane not lying on the line u = 0, v = 0, w = 1).[ II ]

Proof. The curve is supported by, in particular, the line (2) with line coordinates

(cos ϕ, sin ϕ,−g(e−iϕA))

for arbitrary ϕ. Thus the set of all support lines of W (A) are generating elements
of the curve. Thereby, each of these lines is characterized with respect to the
generating elements of the curve parallel to itself by the fact that it is extreme, i.e.,
it does not lie between two elements of the curve parallel to itself. From this the
proof follows immediately. �

The curve of class n associated to the matrix A in this way may be called the
boundary generating curve of the matrix A.

If the values u = 1, v = i (respectively u = 1, v = −i) are taken in the equation of
the boundary generating curve of the matrix A, then the solution which is obtained
for w is the negative eigenvalue −aν of A (respectively, the negative eigenvalue
−aν of A∗). On the other hand, the lines with line coordinates gν : (1, i,−aν)
respectively gμ : (1,−i,−aμ) (μ, ν = 1, . . . , n) represent lines through one of the
two circular points. But the points of intersection of gν with gν (ν = 1, . . . , n) are
the n real foci of the boundary generating curve. The point coordinates of these
points of intersection are

(�(aν),	(aν), 1) (ν = 1, . . . , n).

From this it follows:

Theorem 11. The real foci of the characteristic curve of the matrix A are the
eigenvalues of A.

One can say more about the position of the eigenvalues in the numerical range:

Theorem 12. If the matrix A does not have a unitary decomposition, then the
eigenvalues lie in the interior of W (A).

Proof. Through an eigenvalue a = α + iβ of A, which lies on the boundary of the
numerical range, goes a support line of the convex set W (A), which is why in the
notation before Theorem 10 for a certain angle ϕ0 the equation

α cos ϕ0 + β sin ϕ0 − g(e−iϕ0A) = 0

holds. To the eigenvalue a corresponds a normalized eigenvector x0:

Ax0 = ax0 and a = x∗
0Ax0 = x∗

0H1x0 + ix∗
0H2x0 = α + iβ.

Now if we switch to e−iϕ0A and consider only the real parts, then we have

α cos ϕ0 + β sin ϕ0 = x∗
0(H1 cos ϕ0 + H2 sin ϕ0)x0 = g(e−iϕ0A).
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Hereby α cos ϕ0+β sin ϕ0 is an extreme eigenvalue of the Hermitian matrix H1 cos ϕ0+
H2 sin ϕ0, thus x0 is also an eigenvector of H1 cos ϕ0 + H2 sinϕ0 associated to this
eigenvalue:

(H1 cos ϕ0 + H2 sinϕ0)x0 = (α cos ϕ0 + β sin ϕ0)x0.

Consequently x0 is simultaneously an eigenvector of H1 and H2. If one complements
x0 = x1 to a unitary matrix U = (x1, . . . , xn), then

U∗AU =
(

a 0
0 A1

)
contradicts the assumption that A does not have a unitary decomposition. �

Theorem 13. Each singular point a on the boundary of the numerical range W (A)
of the matrix A is an eigenvalue of the matrix, and there exists a unitary matrix U
corresponding to a, such that A may be decomposed in the form

U∗AU =
(

a 0
0 A1

)
.

Proof. If there are support lines through a = α + iβ in different directions, then
there is an entire interval [ϕ0, ϕ1](ϕ0 �= ϕ1), so that for each value ϕ in that interval

α cos ϕ + β sin ϕ − g(e−iϕA) = 0,

or, respectively

αu + βv + w = 0 with u = cos ϕ, v = sin ϕ,w = −g(e−iϕA).

Moreover,
|H1u + H2v + Inw| = 0,

from which follows an identity of the form

|H1u + H2v + Inw| ≡ (αu + βv + w)F (u, v, w),

in which F (u, v, w) is homogenous of order n − 1. If we set u = −1, v = −i, then
we find

|Inw − A| ≡ (w − (α + iβ)) F (−1,−i, w).
Therefore a = α + iβ is an eigenvalue of the matrix A. From the proof of Theorem
12 it also follows directly that for an eigenvalue which lies on the boundary of
W (A), the matrix has a unitary decomposition of the given form. �

In particular from this it follows:

Theorem 14. The boundary of the numerical range of a matrix without a unitary
decomposition is smooth.

4. Properties of the boundary generating curve

The boundary generating curve of class n associated with a matrix A of dimen-
sion n is given by the equation in line coordinates

(3) fA(u, v, w) ≡ |H1u + H2v + Inw| = 0.

From this follows one important property of the boundary generating curve:

Theorem 15. The boundary generating curve has n real tangents in each arbitrarily
given real direction.
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Proof. If a real direction is given through (cosϕ, sin ϕ), then the equation (3) yields
n real values for w, since the eigenvalues of the Hermitian matrix H1 cos ϕ+H2 sinϕ
are real. It follows that the curve possesses n real tangents in every (real) direction9.

�
From this property of the boundary generating curve can be deduced directly:

Theorem 16. The boundary generating curve does not have any real inflectional
tangents.

Theorem 17. The real points of the boundary generating curve are all finite.

Theorem 18. If the matrix τ(A) is an affine equivalent to A, then the boundary
generating curve of τ(A) is derived from the boundary generating curve of A, in the
sense that the points of the boundary generating curve of A are subject to the affine
transformation τ .

Proof of Theorem 18. Let A = H1+iH2 and a = α1+iα2, b = β1+iβ2, c = γ1+iγ2,
τ(A) = aH1 + ibH2 + cIn = (α1H1 − β2H2 + γ1In) + i(α2H1 + β1H2 + γ2In). Then
the boundary generating curve of τ(A) is given by

|(α1H1 − β2H2 + γ1In)u + (α2H1 + β1H2 + γ2In)v + Inw| = 0.

If τ is considered as a special projective transformation and also the line coordinates
u, v, w are changed under the transformation contragredient to τ , then the boundary
generating curve of τ(A) has the equation

|H1u
′ + H2v

′ + Inw′| = 0,

where u′, v′, w′ are the transformed line coordinates. But from this it follows that
the coordinates of the boundary generating curve of A are affected in the transition
to τ(A) only by the affine transformation τ . �
Theorem 19. Through each real point in the plane goes an even number or an
odd number of real lines tangent to the boundary generating curve, depending on
whether n is even or odd.

Proof. It is enough to prove that the origin w = 0 has this property, since any finite
point can be brought into the origin by a parallel translation. For points at infinity
the assertion is contained in Theorem 15. But if we set w = 0, then (3) gives us
an equation in u and v of degree n with real coefficients. The real solutions of this
equation are even in number exactly when n is an even number. �
Theorem 20. The number of real cusps of an irreducible boundary generating
curve of a matrix of dimension n is even or odd, depending on whether n is even
or odd.

Proof. The tangents in the cusps are given in line coordinates by simultaneously
solving equation (3) and the equation of the curve determined by∣∣∣∣∣∣∣∣∣∣∣

∂2fA

∂u2
∂2fA

∂u∂v
∂2fA

∂u∂w

∂2fA

∂v∂u
∂2fA

∂v2
∂2fA

∂v∂w

∂2fA

∂w∂u
∂2fA

∂w∂v
∂2fA

∂w2

∣∣∣∣∣∣∣∣∣∣∣
= 0,

9Brunn [2] has thoroughly studied unicursal curves with this property. In the following part
his theorems on curves of class n are restated.
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and dual to the Hessian curve. For an irreducible boundary generating curve there
is a finite number of points that simultaneously solve both equations, in fact the
number is 3n(n − 2). Since both equations have real coefficients, the number of
real solutions is even or odd, depending on whether n is even or not. However, the
proposition need not be true in the case where the boundary generating curve is
reducible. �

5. The singular directions of the boundary generating curve

The boundary generating curve of a matrix is given by an equation of the form

(4) fA(u, v, w) ≡ |H1u + H2v + Inw| ≡ wn + C1(u, v)wn−1 + · · · + Cn(u, v) = 0.

Line singularities are present exactly when for a pair of values u, v this equation
has multiple solutions for w. For the presence of double roots of equation (4)
it is necessary and sufficient that the discriminant D(u, v) of (4) vanishes. This
discriminant is homogeneous in u and v of order n2−n. Therefore there will be n2−n
directions in which the boundary generating curve has singular tangents. However,
there exists yet another connection with the discriminant D(u, v). Namely, we
consider the matrix H = −(H1u + H2v) and the number of matrices V which
commute with it, i.e., for which there is an equation of the form

(5) V H = HV (V = V (u, v)) .

In general the Hermitian matrix H has exactly n linearly independent matrices that
commute with it, and the number of matrices commuting with H is larger than n if
and only if H has eigenvalues of multiplicity greater than one. That is, for a given
pair of numbers u, v there are more than n matrices commuting with H exactly
when (4) has a root of multiplicity greater than one.

Equation (5) can be considered as a linear system for the n2 elements of the
matrix V . The matrix of coefficients of this system is

M = I ⊗ HT − H ⊗ I.

Therefore in general the matrix M will have rank n2 − n. The subdeterminants of
dimension n2 − n are zero if and only if H has more than n commuting matrices.
But from this it follows that the subdeterminants of dimension n2−n vanish if and
only if the discriminant D(u, v) of (4) vanishes. Since both the subdeterminants of
dimension n2−n and D(u, v) are homogeneous in u, v of order n2−n, it follows that
the subdeterminants of dimension n2 −n actually only differ from the discriminant
D(u, v) of (4) each by a constant factor.

Thus the n2 − n singular directions are also determined by the vanishing of the
subdeterminants of dimension n2 − n of the matrix I ⊗ HT − H ⊗ I.

But they may also be determined in yet another manner:
The matrix A = H1 + iH2 can be modified by a unitary transformation U1 so

that the Hermitian part D1 of

B = U∗
1 AU1 = U∗

1 H1U1 + iU∗
1 H2U1 = D1 + iK2
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is a diagonal matrix. Therefore, we have

D1 =

⎛
⎜⎜⎜⎜⎝

α1 0 · · · 0

0 α2
. . .

...
...

. . . . . . 0
0 · · · 0 αn

⎞
⎟⎟⎟⎟⎠ , K2 = U∗

1 H2U1.

Hereby α1, . . . , αn are the (real) eigenvalues of H1. Similarly the matrix A can
be changed by means of a unitary matrix U2 into another matrix C, whose skew-
Hermitian part is represented by a diagonal matrix D2. Therefore

C = U∗
2 AU2 = U∗

2 H1U2 + iU∗
2 H2U2 = K1 + iD2

with

K1 = U∗
2 H1U2, D2 =

⎛
⎜⎜⎜⎜⎝

β1 0 · · · 0

0 β2
. . .

...
...

. . . . . . 0
0 · · · 0 βn

⎞
⎟⎟⎟⎟⎠ .

Here β1, . . . , βn are the (real) eigenvalues of H2. The form

fA ≡ fA(u, v, w) ≡ |H1u + H2v + Inw|
is not changed by a unitary transformation:

fU∗AU (u, v, w) ≡ |U∗H1Uu + U∗H2Uv + U∗InUw|
≡ |U∗|fA(u, v, w)|U | ≡ fA(u, v, w).

Consequently this gives us

(6) fA ≡ fB ≡ fC .

The principal submatrices of B of order n− 1, produced by deleting the νth row
and column (for ν = 1, . . . , n), are denoted by Bν , and similarly the principal sub-
matrices of C are denoted Cν . The boundary generating curves of the submatrices
Bν and, respectively, Cν , yield two real families, B respectively C, of curves of class
n − 1 with real parameters λν :

n∑
ν=1

λνfBν
= 0 respectively

n∑
ν=1

λνfCν
= 0.

The generic curve of the family B respectively C is denoted by b(λ1, . . . , λn) respec-
tively c(λ1, . . . , λn). Then we have:

Theorem 21. The families B, C have at least one curve in common, namely

b(1, . . . , 1) = c(1, . . . , 1).

Proof. If we differentiate fA with respect to w, then it follows on account of (6)

∂fA

∂w
≡ ∂fB

∂w
≡

n∑
ν=1

fBν
and

∂fA

∂w
≡ ∂fC

∂w
≡

n∑
ν=1

fCν
.

Thus
n∑

ν=1

fBν
≡

n∑
ν=1

fCν
respectively b(1, . . . , 1) = c(1, . . . , 1).

�
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Theorem 22. Let α1, . . . , αn be the eigenvalues of H1, let β1, . . . , βn be the eigen-
values of H2, and let A = H1 + iH2. Then the singular tangents of the boundary
generating curve of A are contained in the set of lines tangent to both of the curves

b(α1, . . . , αn), c(β1, . . . , βn).

Proof. We have

∂fA

∂u
≡ ∂fB

∂u
≡

n∑
ν=1

ανfBν
,

∂fA

∂v
≡ ∂fC

∂v
≡

n∑
ν=1

βνfCν
.

For the curve to have a singular line through fA = 0 it must be true that
∂fA

∂u
= 0,

∂fA

∂v
= 0.

The assertion follows from this. �
Theorem 23. Any common tangent to the curves b(α1, . . . , αn), c(β1, . . . , βn) is
a singularity of the curve defined by fA(u, v, w) = 0, exactly when it is also an
element of the curve

b(1, . . . , 1) = c(1, . . . , 1).

Proof. For such an element we have namely
∂fA

∂u
=

∂fA

∂v
=

∂fA

∂w
= 0,

whence by Euler’s theorem for homogeneous functions it follows also that fA = 0;
thus the element belongs to the curve. But each element for which

∂fA

∂u
=

∂fA

∂v
=

∂fA

∂w
= fA = 0

holds, is singular. Conversely it follows from the singularity of an element of the
curve that

∂fA

∂u
=

∂fA

∂v
= fA = 0

holds. From this follows according to the theorem for homogeneous functions
∂fA

∂w
= 0.

�
Theorem 24. A real tangent of the boundary generating curve is singular exactly
when it is simultaneously a generating element of the curve

b(1, . . . , 1) ≡ c(1, . . . , 1).

Proof. The coordinates of a point on the boundary generating curve are of the form
∂fA

∂u
,

∂fA

∂v
,

∂fA

∂w
.

Since the boundary generating curve does not possess a real ideal point with coor-
dinates (α, β, 0), for a real element of the curve defined by fA = 0, the equation

∂fA

∂w
= 0

is always followed in turn by the equations
∂fA

∂u
= 0,

∂fA

∂v
= 0.
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Thus the real elements of the curve fA = 0, which also belong to the curve
b(1, . . . , 1) ≡ c(1, . . . , 1), are simultaneously elements of the curves b(α1, . . . , αn),
c(β1, . . . , βn) and are thereby singular. �

6. Examples

1. For the matrix

A = H1 + iH2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
1 1 0 · · · 0
0 1 1 · · · 0
· · · · · · ·
0 0 0 · 1 1 0
0 0 0 · 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

of dimension n with no unitary decomposition we have

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1
2 0 · · · 0

1
2 1 1

2 · · · 0
0 1

2 1 · · · 0
· · · · · · ·
0 0 · · 1

2 1 1
2

0 0 · · 0 1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, H2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 i
2 0 · · · 0

− i
2 0 i

2 · · · 0
0 − i

2 0 · · · 0
· · · · · · ·
0 0 · · − i

2 0 i
2

0 0 · · 0 − i
2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

Thus it follows

fA(u, v, w) ≡ fn ≡ |H1u+H2v+Inw| ≡

∣∣∣∣∣∣∣∣∣∣

u + w u+iv
2 0 · · 0

u−iv
2 u + w u+iv

2 · · 0
0 u−iv

2 u + w · · 0
· · · · · ·
0 0 0 · u−iv

2 u + w

∣∣∣∣∣∣∣∣∣∣
,

thereby the recursive formula

fn = (u + w)fn−1 − 1
4 (u2 + v2)fn−2

with
f1 = u + w, f2 = (u + w)2 − 1

4 (u2 + v2).

If we set
u + w = C1,

1
4 (u2 + v2) = C2,

then with this notation fn(u, v, w) = gn(C1, C2) = gn becomes

gn = C1gn−1 − C2gn−2

and, since because the boundary generating curve is finite for all generating ele-
ments, C2 = 1

4 (u2 + v2) is always different from zero,

g2m

Cm
2

=
C1

C2

g2m−1

Cm−1
2

− g2m−2

Cm−1
2

,

g2m+1

Cm
2

= C1
g2m

Cm
2

− g2m−1

Cm−1
2

.

Now g2m is a homogeneous polynomial of degree m in C2
1 , C2, so

g2m

Cm
2

= hm

(
C2

1

C2

)
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is a polynomial in C2
1

C2
of the same degree; likewise

g2m+1

Cm
2

= C1km

(
C2

1

C2

)
.

Let the zeros of hm(x) respectively km(x) be γ1, . . . , γm respectively δ1, . . . , δm,
thus

f2m(u, v, w) ≡ (C2
1 − γ1C2) . . . (C2

1 − γmC2),

f2m+1(u, v, w) ≡ C1(C2
1 − δ1C2) . . . (C2

1 − δmC2),

where each quadratic factor is an expression of the form

C2
1 − αC2 ≡ (u + w)2 − α(u2 + v2),

which corresponds to a circle around the point 1 with the radius
√

α.
Thus the boundary generating curve of the matrix A in the case of even dimension

n = 2m can be decomposed into m concentric circles, while in the case of odd
dimension n = 2m + 1 it can be decomposed into m concentric circles and a point.
This example shows that the boundary generating curve may be decomposable even
in the case of matrices without unitary decompositions.

2. Let

A =

⎛
⎝ 0 − 1

2 0
1
2

1√
2

− 1
2

0 1
2 − 1√

2

⎞
⎠ =

⎛
⎝ 0 0 0

0 1√
2

0
0 0 − 1√

2

⎞
⎠ + i

⎛
⎝ 0 i

2 0
− i

2 0 i
2

0 − i
2 0

⎞
⎠ .

The boundary generating curve becomes, when we set w = 1, defined by the equa-
tion

1
2

√
2uv2 − 2v2 − 2u2 + 4 = 0.

The eigenvalues of A are

zi = − 3

√
1

4
√

2
εi (i = 1, 2, 3),

where the εi are the cube roots of unity. The curve possesses two components, an
oval and a closed tricuspid curve in its interior (see Fig. 1).
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3. Let

A =

⎛
⎝ 0 − 1

2 0
1
2 0 − 1

2

0 1
2

√
2

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 0
0 0

√
2

⎞
⎠ + i

⎛
⎝ 0 i

2 0
− i

2 0 i
2

0 − i
2 0

⎞
⎠ .

For the boundary generating curve we get the equation

uv2 −
√

2v2 − 4u − 2
√

2 = 0.

The eigenvalues zi of A are the roots of the equation

z3 −
√

2z2 + 1
2z − 1

4

√
2 = 0.

The curve consists of one component and possesses one cusp (see Fig. 2).

7. The boundary generating curve of matrices of dimension 2 or 3

If the dimension n of the matrix A is two, then also the boundary generating
curve of A is a curve of class two. If A is normal, then the boundary generating
curve consists of the two points which belong to the eigenvalues. If A does not have
a unitary decomposition, then the boundary generating curve is a second order
curve, and in fact an ellipse, whose two foci coincide with the eigenvalues of A.
No other curve of second order occurs as a boundary generating curve, since the
boundary generating curve must always be finite.

If the dimension n of the matrix A is three, then also the boundary generating
curve of A is a curve of class three. It shall be investigated which types of curves
appear in this case.

First of all let A be normal. Then the boundary generating curve of A consists
of the points belonging to the three eigenvalues.

If the matrix A has a unitary decomposition, but it is not normal, then by a
unitary transformation it can be brought into the form(

α1 0
0 A1

)
,

in which A1 is a matrix of dimension 2 without a unitary decomposition. The
boundary generating curve then consists of the point a1 and the boundary gener-
ating ellipse of the matrix A1.

Now suppose A does not have a unitary decomposition. Then it is possible that
even though A does not have a unitary decomposition, the boundary generating
curve may be decomposed into a point and an ellipse (see § 6, Example 1 for
n = 3). Thereby the point itself is always an eigenvalue of the matrix, since it
corresponds to a linear factor in the left-hand side of the equation fA(u, v, w) = 0.
As was shown in the proof of Theorem 13, this factor corresponds once again to
an eigenvalue. From this it now follows that the point must lie in the interior of
the ellipse. Namely if its position were exterior, then according to Theorem 13, A
would have a unitary decomposition, contrary to the assumption. If instead the
point would lie on the ellipse, then an eigenvalue of the matrix A would lie on the
boundary of the numerical range, which on account of Theorem 12 contradicts the
fact that A does not have a unitary decomposition.

Thus the only case that remains is that where the boundary generating curve is
itself an irreducible curve. The number of real cusps of an (irreducible) class three
curve is 1 or 3. According to Theorem 17 the order of the boundary generating
curve is either 4 or 6.
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Theorem 25. The matrix A of dimension 3 can be modified through an affine
transformation so that the equation of its boundary generating curve in nonhomo-
geneous line coordinates takes the form

(7) (v − 1)2(u − 1) = αu3 + βu2 + γu + δ

with real α, β, γ, δ.

Proof. To every class three curve that is not decomposable a triangle of projective
coordinates K1 can be designated with the point coordinates x1, x2, x3 and the line
coordinates x′

1, x
′
2, x

′
3 so that in these the curve satisfies the equation10

(8) x′
1
2
x′

2 = αx′
2
3 + βx′

2
2
x′

3 + γx′
2x

′
3
2 + δx′

3
3
.

If the curve is given in the complex plane, then the triangle K1 may be acted on
by an affine transformation, in such a way that that the points which in K1 have
coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1), may be mapped into the points corresponding
to 1, i, 0 in the Gaussian plane. These three latter points form a new coordinate
triangle K2 with the point coordinates y1, y2, y3 and the line coordinates y′

1, y
′
2, y

′
3.

Now if the curve of class three is, in particular, the boundary generating curve of
a matrix A, and if A is acted on by an affine transformation so that K1 is carried
over to K2, then a new matrix is obtained, whose boundary generating curve has
the equation in K1 given by (7) through the substitution x′

j → y′
j . Between the

homogeneous line coordinates u, v, w used further above and the line coordinates
y′
1, y

′
2, y

′
3 there exists a relation of the form

�1y
′
1 = v − w, �2y

′
2 = u − w, �3y

′
3 = w

Thereby the proof of Theorem 25 is completed. �

The discussion of equation (7) now gives all possible cases, as we will now show.
Thereto we write (7) in the homogeneous form

(9) y′
1
2
y′
2 = α(y′

2 − a1y
′
3)(y

′
2 − a2y

′
3)(y

′
2 − a3y

′
3).

The particular differences become clearer when y′
1, y

′
2, y

′
3 are interpreted as homo-

geneous point coordinates. Then in each case (9) represents a curve of order three,
and now out of all curves of order three, we only have to single out the types of
curves whose dual curves correspond to boundary generating curves.

We first take a1, a2, a3 as real and distinct11:
1. a1 < a2 < a3. The dual curve has two components. They consist of an oval

and an infinite branch with three real points of inflection. Therefore the proper
curve consists of an oval and a tricuspid component in its interior. The curve is
of order six. Example 2 in § 6 showed that such a curve can indeed appear as a
boundary generating curve.

2. Exactly two of the ai (i = 1, 2, 3) are equal. In this case there are two possible
forms of curves:

a) The dual curve has an isolated point; the proper curve contains a line. There-
fore it is not finite and hence cannot be the boundary generating curve of a matrix.

10See the normal form corresponding to curves of order 3; for instance in Wieleitner [11], p.
245.

11We thereby connect closely to Newton’s classification of curves of order 3; see for instance
Wieleitner [11], p. 245.
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b) The dual curve has one component, and it has one real point of inflection
and one node. The proper curve has one real cusp and one double tangent. It is of
order four. Example 3 in § 6 showed that such a curve can appear as a boundary
generating curve of a matrix.

3. All ai are equal. The dual curve has one real cusp; the proper curve is not
the boundary generating curve of a matrix, since it has one real turning point.

Finally, there still remains the case:
4. Two of the ai are complex conjugates. Then the dual curve has one com-

ponent. In this case there is not any real point in the plane such that every line
through it three real points of intersection with the dual curve. But then the proper
curve cannot have three real generating elements in each direction and therefore
cannot be the boundary generating curve of a matrix A of dimension 3.

Thereby we have obtained:

Theorem 26. In the case n = 3 a matrix A can only possess the following types
of curves as its boundary generating curve:

1. three points,
2. a point and an ellipse,
3. a curve of order 4 with a double tangent and a cusp,
4. a proper [III] curve of order 6, consisting of an oval and a curve with three

cusps lying in its interior.

8. The minimal equation of the boundary generating curve

The equation

fA(u, v, w) ≡ |H1u + H2v + Inw| ≡ wn + C1(u, v)wn−1 + · · · + Cn(u, v) = 0

for the boundary generating curve of a matrix A = H1 + iH2 may be understood as
the characteristic equation of the polynomial matrix H = −(uH1 +vH2). The coef-
ficients Cν(u, v) are thereby in each case equal to the sum of the determinants of the
principal submatrices of H of order ν, therefore they are homogeneous polynomials
in u, v of order ν. Exactly as in the case of constant matrices we have:

fA(u, v,H) ≡ Hn + C1(u, v)Hn−1 + · · · + Cn(u, v) = 0.

For the proof 12 we consider both sides of the equation 13

(H − wIn)(n−1)(H − wIn) = |H − wIn|In

after expansion of powers of w. Then the coefficients are polynomials in u, v.
Since the corresponding coefficients on both sides of the equation are identical,
the equation remains true when we replace w by H on both sides. But then the
left-hand side is zero. Therefore it is true that fA(u, v,H) = 0.

Now let m(u, v, w) be a polynomial with complex coefficients:

m(u, v, w) = m0(u, v) + m1(u, v)w + . . . + mk(u, v)wk,

of smallest possible degree k, for which m(u, v,H) = 0 holds. Moreover, the poly-
nomials mχ(u, v) (χ = 1, . . . , k) may be taken to be relatively prime. We call such a
polynomial a minimal polynomial of H or also a minimal polynomial of the boundary
generating curve of A.

12cf. MacDuffee [3]
13The matrix M(n−1) is thereby produced from the matrix M of dimension n, so that all of

its elements are replaced by their algebraic complements.
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Then if any other polynomial p(u, v, w) is a polynomial of the same type, for
which also p(u, v,H) = 0 holds, then m(u, v, w) is a factor of p(u, v, w). In proof of
this we seek three polynomials ϕ(u, v), q(u, v, w), r(u, v, w), such that

ϕ(u, v)p(u, v, w) = q(u, v, w)m(u, v, w) + r(u, v, w),

where r(u, v, w) is smaller in the degree of w than m(u, v, w) is.If we then set w = H,
then it follows from the minimal property of m(u, v, w) that r(u, v, w) must vanish
identically. Therefore m(u, v, w) is a factor of ϕ(u, v)p(u, v, w). Since m(u, v, w)
does not contain a factor depending only on u, v, it follows that m(u, v, w) | p(u, v, w).
From this it follows immediately that the minimal polynomial of H is uniquely de-
termined.

In particular this gives us

m(u, v, w) | fA(u, v, w).

If we now decompose fA(u, v, w) into irreducible factors:

fA(u, v, w) ≡ fγ1
1 (u, v, w)fγ2

2 (u, v, w) · · · fγs
s (u, v, w),

then we can assume that the leading coefficient of each irreducible factor is 1, since
in fA(u, v, w) the coefficient of wn is equal to 1. Likewise it follows for m(u, v, w),
that mk(u, v) is a constant and may be assumed equal to 1.

In the decomposition of m(u, v, w) into irreducible factors, only such irreducible
factors which also appear in the factorization of fA(u, v, w) can appear. However,
we have, as in the case of constant matrices14:

Theorem 27. In the decomposition of m(u, v, w) into irreducible factors each ir-
reducible factor of fA(u, v, w) appears exactly once.

The proof proceeds word for word exactly as in the case of constant matrices.
If d(u, v, w) is the greatest common factor of all elements of H(n−1), then as in the

case of constant matrices we have the equation m(u, v, w) = fA(u, v, w)/d(u, v, w),
so that therefore the minimal polynomial of the boundary generating curve can
always be written as a rational curve.

In relation to this we notice:

Theorem 28. If A = H1+iH2 is a matrix of dimension n without a unitary decom-
position and if the degree k of the minimal polynomial of the boundary generating
curve of A is such that k ≤ 2, then it also is true that n ≤ 2.

Proof. For k = 1 it follows that H1 and H2 differ from the identity matrix by only
a constant factor, so that A itself is normal.

For k = 2 we have an equation of the form:

(10) (H1u + H2v)2 + a1(u, v)(H1u + H2v) + a2(u, v)In = 0.

Now we consider the ring �(H1,H2) generated by the matrices H1,H2. On account
of (10) it is possible for the terms

H2
1 ,H2

2 ,H1H2 + H2H1

to be expressed as a linear combination of the matrices In,H1,H2 with complex
constant coefficients. From this it follows immediately that it is possible for all
elements of �(H1,H2) to be represented as linear combinations of the four elements

In,H1,H2,H1H2

14See MacDuffee [3]
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with complex coefficients. Therefore �(H1,H2) is an algebra of rank four over the
field of complex numbers. On the other hand, it is the group generated by two Her-
mitian matrices, therefore the ring �(H1,H2) is fully reducible15. Therefore when
n > 2, then H1,H2 must be decomposed through the same unitary transformation
into this form, because otherwise on account of the theorem of Burnside16 the rank
of �(H1,H2) should be n2 > 4. But then A would have a unitary decomposition,
contrary to hypothesis. �

In another form we also have:

Theorem 28a. If A is a matrix of dimension n and if k ≤ 2, then A has a
unitary decomposition.

Geometrically interpreted, this theorem contains the remark that a matrix A
of dimension n always has a unitary decomposition when its boundary generating
curve consists of multiple copies of an ellipse. That is close to the hypothesis that
a matrix of dimension n always has a unitary decomposition when its boundary
generating curve contains irreducible components of multiplicity > 1, or, equiva-
lently, when the degree k of the minimal polynomial of −(H1u + H2v) is smaller
than n. [IV] However, the method of proof, with which we derived Theorem 28, fails
in the general case.

9. The length of the boundary generating curve and the area of the

numerical range

Let

(11) fA(u, v, w) ≡ |H1u + H2v + Inw| ≡ wn + C1(u, v)wn−1 + · · · + Cn(u, v) = 0

be the equation of the boundary generating curve of the numerical range W (A) of
the matrix A. For the following considerations we first assume that the trace σ(A)
of the matrix A is equal to zero: C1(u, v) = 0. This restriction is of no consequence
in this context, since it can always be accomplished through a parallel translation.
Moreover, let the common factor of the homogeneous coordinates u, v, w be selected
in such a way that

u2 + v2 = 1; u = cos ϕ, v = sin ϕ.

Now let W0 = W0(ϕ) and w0 = w0(ϕ) be the largest and respectively smallest
(real) roots of equation (11). Then

d0 = W0 − w0

represents the distance between the two support lines of the convex region W (A)
parallel to the ϕ-direction. The function d0 = d0(ϕ) can now be estimated with
the aid of a theorem from I. Schur

17:
If the polynomial f(w) of degree n has only real zeros, of which W0 is the largest,

and if W1, . . . ,Wn−1 are the largest zeros of the derivatives f (1), . . . , f (n−1) of f ,
then we have

W0 − W1 ≤ W1 − W2 ≤ · · · ≤ Wn−2 − Wn−1.

15
Specht [7]

16
Weyl [10]

17
I. Schur [6]
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Correspondingly there are inequalities for the smallest zeros w0, w1, . . . , wn−1 (Wn−1 =
wn−1) of f and its derivatives f (1), . . . , f (n−1)

−w0 + w1 ≤ −w1 + w2 ≤ · · · ≤ −wn−2 + wn−1,

from which the inequalities for the differences di = Wi − wi follow:

d0 − d1 ≤ d1 − d2 ≤ · · · ≤ dn−3 − dn−2 ≤ dn−2 (dn−1 = 0).

But from this is produced – as one can prove by induction –

d0 ≤ (χ + 1)dχ − (χ)dχ+1 (χ = 0, 1, . . . , n − 1).

For χ = n − 2, from the fact that dn−1 = 0, this yields the inequality

d0 ≤ (n − 1)dn−2.

If we apply this consequence of the theorem of Schur to the polynomial f(w) =
fA(u, v, w) of (11), then we have

f (n−2)(w) =
n!
2

w2 + (n − 2)!C2 (C2 = C2(u, v)),

therefore

dn−2 = 2

√
−2C2

n(n − 1)
.

Thereby we obtain

(12) d0 ≤ 2(n − 1)

√
−2C2

n(n − 1)
.

Now C2 is equal to the sum of the determinants of the principal submatrices of
dimension 2 of the Hermitian matrix H = −(H1u + H2v). If

h1(ϕ) ≤ h2(ϕ) ≤ · · · ≤ hn(ϕ)

are the eigenvalues of H = −(H1u + H2v), then it follows

C2 =
n∑

λ< μ=2

hλhμ,

therefore

C2 =
[σ(H)]2 − σ(H2)

2
– a relation, that holds in general because of the unitary invariance of the quantities
in it, even if H is not given in diagonal form. Since it was assumed that C1(u, v) = 0,
we have

C2 = −σ(H2)
2

;

thereby
σ(H2) = σ(H2

1 )u2 + 2σ(H1H2)uv + σ(H2
2 )v2,

from which our estimate becomes

d0 ≤ 2
√

n − 1

√
σ(H2)

n
.
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It is also possible to bound the distance d0 from below. Thereto we notice that
we have the equation

∑
χ< λ=2

(hχ − hλ)2 = 1
2

∑
χ�=λ

(hχ − hλ)2 = 1
2

⎧⎨
⎩

∑
χ

h2
χ − 2

∑
χ, λ

hχhλ +
∑

λ

h2
λ

⎫⎬
⎭

= 1
2{2nσ(H2) − 2[σ(H)]2},

so

(13)
n∑

χ< λ=2

(hχ − hλ)2 = nσ(H2).

Occurring in this expression are the differences:

h2 − h1,
h3 − h1, h3 − h2,
h4 − h1, h4 − h2, h4 − h3,

· · · · · · · · · · · ·
hn − h1, hn − h2, hn − h3, . . . , hn − hn−1.

For the elements on the main diagonal this gives

(h2 − h1) + (h3 − h2) + (h4 − h3) + · · · + (hn − hn−1) = d0,

therefore, when we notice that the expressions in parentheses are nonnegative,

(h2 − h1)2 + (h3 − h2)2 + · · · + (hn − hn−1)2 ≤ d2
0.

Out of the differences in the first diagonal parallel to the main diagonal we form

(h3 − h1) + (h5 − h3) + (h7 − h5) + · · · ≤ d0,

(h4 − h2) + (h6 − h4) + (h8 − h6) + · · · ≤ d0

and thereby we obtain

(h3 − h1)2 + (h4 − h2)2 + · · · + (hn − hn−2)2 ≤ 2d2
0.

Continuing in this manner we finally reach the second-last diagonal:

(hn−1 − h1) ≤ d0, (hn − h2) ≤ d0,

and this yields
(hn−1 − h1)2 + (hn − h2)2 ≤ 2d2

0,

whereas the last, a diagonal consisting of only a single element, yields

(hn − h1)2 = d2
0.

Thereby all of the sums appearing in (13) are estimated and hence it now becomes

nσ(H2) =
n∑

χ< λ=2

(hχ − hλ)2 ≤ (1 + 2 + 3 + · · · + 3 + 2 + 1)d2
0 =

s(n)
4

d2
0

with

s(n) =

{
n2 − 1 (n odd),
n2 (n even),

therefore

d2
0 ≥ 4n

σ(H2)
s(n)

(n > 1).
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Therefore, we have for d0 the bounds

2
√

n√
s(n)

√
σ(H2) ≤ d0 ≤ 2

√
n − 1

n

√
σ(H2),

or, when we replace s(n) by n2,

Theorem 29.

2

√
σ(H2)

n
≤ d0 ≤ 2

√
n − 1

√
σ(H2)

n
(n > 1).

For the diameter D and the width Δ of the region W (A) we then have18

2√
n

√
max(σ(H2)) ≤ D ≤ 2

√
n − 1

n

√
max(σ(H2)),

2√
n

√
min(σ(H2)) ≤ Δ ≤ 2

√
n − 1

n

√
min(σ(H2)).

Now
σ(H2) = σ(H2

1 )u2 + 2σ(H1H2)uv + σ(H2
2 )v2;

the extreme values of this form under the auxiliary condition u2 + v2 = 1 are the
eigenvalues 0 ≤ e1 ≤ e2 of the matrix

M =
(

σ(H2
1 ) σ(H1H2)

σ(H2H1) σ(H2
2 )

)
.

Thereby we have
2√
n

√
e2 ≤ D ≤ 2

√
n − 1

n

√
e2,

2√
n

√
e1 ≤ Δ ≤ 2

√
n − 1

n

√
e1.

From this it follows for the area F of W (A)

2F ≥ ΔD ≥ 4
n

√
det(M).

Since additionally
F ≤ ΔD

for a convex region, this yields

F ≤ 4
n − 1

n

√
e1e2 = 4

n − 1
n

√
det(M).

Consequently we have the estimate for F

2
n

√
σ(H2

1 )σ(H2
2 ) − [σ(H1H2)]2 ≤ F ≤ 4

n − 1
n

√
σ(H2

1 )σ(H2
2 ) − [σ(H1H2)]2.

If we also observe that

σ(A2)σ(A∗2) − [σ(AA∗)]2

= [σ(H2
1 ) − σ(H2

2 ) + 2iσ(H1H2)][σ(H2
1 ) − σ(H2

2 ) − 2iσ(H1H2)] − [σ(H2
1 ) + σ(H2

2 )]2

= [σ(H2
1 ) − σ(H2

2 )]2 + 4[σ(H1H2)]2 − [σ(H2
1 ) + σ(H2

2 )]2

= −4
{
σ(H2

1 )σ(H2
2 ) − [σ(H1H2)]2

}
,

18For the concepts and formulas from the theory of convex regions see Bonnesen-Fenchel [1].
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then the inequalities become:

Theorem 30.
1
n

√
[σ(AA∗)]2 − σ(A2)σ(A∗2) ≤ F ≤ 2

n − 1
n

√
[σ(AA∗)]2 − σ(A2)σ(A∗2).

The length

L = 1
2

∫ 2π

0

d0 dϕ

of the boundary generating curve of W (A) may be estimated because of Theorem
29 by means of

1√
n

J ≤ L ≤
√

n − 1
n

J

with

J =
∫ 2π

0

√
σ(H2) dϕ =

∫ 2π

0

√
σ(H2

1 ) cos2 ϕ + 2σ(H1H2) cos ϕ sin ϕ + σ(H2
2 ) sin2 ϕ dϕ .

The integral may be brought through an orthogonal transformation of the unit
vector (cos ϕ, sin ϕ) to the form

J =
∫ 2π

0

√
e1 cos2 ϕ + e2 sin2 ϕ dϕ.

However, this represents the length of an ellipse with the semiaxes
√

e1,
√

e2. Then
this yields for the length of the boundary of this ellipse

J ≥ 4
√

e1 + e2 = 4
√

σ(H2
1 ) + σ(H2

2 ) = 4
√

σ(AA∗) .

On the other hand, we have

J ≤
∫ 2π

0

√
e1 + e2 dϕ = 2π

√
σ(AA∗) .

It follows that

Theorem 31.

4

√
σ(AA∗)

n
≤ L ≤ 2π

√
n − 1

√
σ(AA∗)

n
.

Part 2. Quaternion Matrices

10. Quaternion matrices

The theory of matrices with complex elements may be carried over to quaternion
matrices almost word for word. We now summarize the most important facts about
them19:

A quaternion

a = α1 + α2i + β1j + β2ij (α1, α2, β1, β2 real)

may be written in the form
a = a + bj

where a = α1 + iα2, b = β1 + iβ2 are complex numbers, while j is a quaternion
which satisfies the equation

j2 = −1

19
Lee [5].
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and for which
ij = −ji

when i is the imaginary unit of the complex numbers. Since j commutes with real
numbers it follows that so does any quaternion.

α1 is said to be the real part � (a) of the quaternion a.
The conjugate quaternion a∗ of a is defined as

a∗ = a − bj.

Then aa∗ = a∗a is a positive number:

aa∗ = a∗a = α2
1 + α2

2 + β2
1 + β2

2 .

Its positive square root is called the absolute value |a| of the quaternion a. A
quaternion u of absolute value 1 is called unitary. Then we have u−1 = u∗.

The reciprocal a−1 and the conjugate a∗ of a quaternion a satisfy the relation

a∗ = a−1aa∗ = a−1|a|2.
Two quaternions a,b are called similar when a quaternion x exists such that

x−1ax = b.

If two quaternions are similar, then they are unitarily similar, i.e.,

u∗au = b, u∗u = 1

holds. Namely if x−1ax = b, then we set u = x
|x| . Then u∗au = x−1ax = b.

In particular every quaternion a = a + bj is similar to the quaternion a = a + bj,
for we have

j−1aj = j−1(a + bj)j = −j(aj − b) = a + bj = a.

If we associate to every quaternion a = a + bj the complex image matrix

(14) M(a) =
(

a b

−b a

)
,

then we get a true representation of the algebra of quaternions. The matrices A of
the form (14), can be characterized by the fact that for

M(j) =
(

0 1
−1 0

)
, M(j−1) = M(−j) = −M(j)

the equation

(15) M(j−1)AM(j) = A

holds. Each matrix A of dimension 2 which satisfies the equation (15) represents a
quaternion.

Sums and products of two quaternions correspond to sums and products of image
matrices of the form (14), and vice versa.

The real numbers correspond to real (Hermitian) diagonal matrices, the complex
numbers to (normal) diagonal matrices. The image matrices of unitary quaternions
are unitary. Furthermore,

M(a) = M(a), M(a∗) = (M(a))∗

With the help of image matrices one can directly prove the following theorem:

Theorem 32. Two quaternions a, b are similar if and only if their real parts and
their absolute values agree.
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Proof. The eigenvalues of the image matrix of a quaternion are equal to

�(a) +
√

�(a)2 − |a|2, �(a) −
√
�(a)2 − |a|2,

therefore they are equal for two image matrices precisely when both the real parts
and the absolute values of the quaternions agree. Now in the case of non-real
quaternions the elementary divisors of an image matrix are always linear, since
for non-real quaternions the eigenvalues are distinct. Consequently the elementary
divisors of two image matrices are equal precisely when both the real parts and the
absolute values of their quaternions agree. Thus this happens exactly when the two
image matrices are similar. Hence there exists a matrix P such that

P−1M(a)P = M(b).

But then we also have

Q−1M(a)Q = M(b) with Q = M(j−1)PM(j)

and from this in general

[cP + cQ]−1M(a)[cP + cQ] = M(b),

where the complex number c is chosen such that cP + cQ is regular. Since P and
Q are regular, this is always possible. But now

M(j−1)[cP + cQ]−1M(j) = cQ + cP = [cP + cQ],

so that cP + cQ = M(x) is the image matrix of a quaternion x. Consequently

x−1ax = b.

�

Now let A = (aμν) (μ = 1, . . . , m; ν = 1, . . . , n) be an m × n matrix of quater-
nions. Sums and products are defined in the usual way as in the case of complex
matrices and

A∗ = (a∗
νμ).

Then we have the well known formulas

(A ± B)∗ = A∗ ± B∗, (AB)∗ = B∗A∗.

We call a square quaternion matrix A of dimension n (m = n) Hermitian when
A = A∗, normal when AA∗ = A∗A, and unitary when AA∗ = A∗A = In, where
In denotes the unit matrix (δμν) (δμν is the Kronecker symbol). A quaternion
matrix is called regular when a matrix A−1 exists, such that AA−1 = A−1A = In.
In particular every unitary matrix is regular.

Just as we are able to split every matrix with complex components into Hermitian
parts, we are also able to decompose every quaternion matrix into a complex and
a quaternion part:

A = H1 + H2j ; H1 = 1
2 (A + A∗), H2 = 1

2 (A − A∗)j−1

Here H1,H2 are Hermitian matrices [V] . The decomposition is unique.
We now pair each quaternion matrix A = (aμν) (μ = 1, . . . , m; ν = 1, . . . , n)

with a complex image matrix M(A) of 2m rows and 2n columns through the
relation

M(A) = (M(aμν)) .
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Since the M(aμν) form a representation of the quaternions, we have the rules

M(A ± B) = M(A) ± M(B), M(AB) = M(A)M(B), M(A∗) = (M(A))∗ ,

and from this it follows directly that Hermitian, normal, and unitary quaternion
matrices have Hermitian, normal, and unitary image matrices, respectively.

A complex matrix A is an image matrix of a quaternion matrix of m rows and
n columns exactly when the equation

[Im ⊗ M(j−1)]A [In ⊗ M(j)] = A

is satisfied, in which Im, In are the identity matrices of m respectively n.
The following theorems for quaternion matrices hold:

Theorem 33. If A is a quaternion matrix of dimension n, then there exists a
unitary quaternion matrix U such that U∗AU has triangular form:

U∗AU =

⎛
⎜⎜⎜⎜⎝

a1 0 0 . . . 0
b21 a2 0 . . . 0
b31 b32 a3 . . . 0
. . . . . . . . . . . . 0
bn1 . . . . . . . . . an

⎞
⎟⎟⎟⎟⎠ .

Thereby the diagonal elements are determined up to similarity. In particular we
can arrange so that they are complex.

The similarity classes fixed by the diagonal elements can be called eigenvalue
classes of the matrix A. From Theorem 33 it follows:

Theorem 34. If the matrix A is normal, then it is possible bring it into diagonal
form through a unitary transformation. Thereby it is possible to arrange that the
diagonal elements are complex. If A is Hermitian, then it is possible to bring it
into real diagonal form.

11. The numerical range of a quaternion matrix

Let A = (aμν) be a square quaternion matrix of dimension n. The numerical
range W (A) of A may be defined as the set of all quaternions which can be assumed
by the form

Φ(A,X) = X∗AX, X∗X = 1.

Here X is an n-dimensional vector whose elements are quaternions. If we interpret
each quaternion as a point in a four-dimensional space R4 with cartesian coordi-
nates, then the numerical range of a quaternion matrix represents a set of points
in R4. The numerical range of a quaternion matrix includes with each quaternion
also all of its similar quaternions; for when the quaternion a can be represented in
the form

X∗AX = a,

then it is possible to represent all of its similar quaternions in the form

u−1au = u∗X∗AXu = Y∗AY, Y∗Y = 1 (u∗ = u−1,Y = Xu),

thus they also belong to the numerical range W (A). Since all similar quaternions
have equal real parts and equal absolute values, all of their corresponding points
lie in the hyperplane determined by the common real part, in which they form a
(two-dimensional) sphere determined by their common absolute value. The center
of each such sphere lies lies on the real axis of the quaternion space. The numerical
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range of a quaternion matrix is therefore just composed of spheres whose centers
lie on the real axis. But this means that the numerical range lies rotationally
symmetric along the real axis in R4. Because of the position of the center of
these special solids, the quaternion numerical ranges do not admit general affine
transformations, in particular the property of the numerical range of a quaternion
matrix being invariant under any rotation may be lost.

However, as in the complex case, the numerical range of a quaternion matrix is
invariant under a unitary transformation:

W (A) = W (U∗AU), U∗U = 1.

For since U is a regular matrix, UX runs with X through all vectors of norm one
with n components. Now we slice the numerical range W (A) with the complex
plane. If a is a non-real quaternion in W (A):

a = α + βi + γj + δij, (β2 + γ2 + δ2 �= 0),

then exactly two complex numbers lie in the similarity class of a,

α + i
√

β2 + γ2 + δ2, α − i
√

β2 + γ2 + δ2,

the eigenvalues of M(a); the sphere on which all of the quaternions similar to a
lie, therefore, intersects the complex plane in two complex conjugate points. This
pair of points is called the bild of the class of a or the bild of a. Hence each
class of W (A) is thus represented by a pair of complex conjugate points at the
intersection of the region W (A) with the Gaussian plane. Therefore all classes of
W (A) are mapped to a set of points in the Gaussian plane lying symmetric to the
real axis. This set of points is called the bild B(A) of W (A).[ VI ] Since the pairs of
complex conjugate points of B(A) and the classes of W (A) determine each other,
since W (A) contains only entire classes of quaternions, and since the set of real
numbers of B(A) is the same as the set of real numbers of W (A), B(A) and W (A)
determine each other uniquely. Therefore to determine the properties of W (A) it
suffices to investigate the properties of B(A).

Theorem 35. If A is a square quaternion matrix and B(A) is the bild of the
numerical range W (A), then B(A) is the (complex) numerical range of the complex
matrix M(A), thus

B(A) = W (M(A)).[ V II ]

Proof. If a ∈ W (A), then

a = X0AX0 with X0 =

⎛
⎜⎝

x01

...
x0n

⎞
⎟⎠ ,

then we also have

M(a) = M(X0)∗M(A)M(X0) = [M(x01)∗, . . . ,M(x0n)∗][M(aμν)]

⎛
⎜⎝

M(x01)
...

M(x0n)

⎞
⎟⎠ ,

therefore
M(a) =

∑
μ,ν

M(x0μ)∗M(aμν)M(x0ν).
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The eigenvalues of M(a):

c
c

}
=

a + a

2
±

√(
a + a

2

)2

− aa − bb ,

however, are exactly the points of intersection of the sphere belonging to the class
of a and the Gaussian plane.

Since the quaternion a is similar to the complex number c, there exists a unitary
quaternion u such that

u∗au = c

Now let
U = M(u).

Then this becomes

M(x0ν)U = M(x0νu), U∗M(a)U =
(

c 0
0 c

)
,

U∗M(a)U =
∑
μ,ν

(M(x0μu))∗ M(aμν)M(x0νu).

If we decompose the matrix

M(X0u) =

⎛
⎜⎝

M(x01u)
...

M(x0nu)

⎞
⎟⎠

into two columns and if we call the resulting vectors x0 and y0, each of norm one
and with 2n components, then we get

x∗
0M(A)x0 = c, y∗

0M(A)y0 = c.

However, from this it follows that W (A) contains both of the complex represen-
tations of each class of W (A), so that B(A) ⊆ W (M(A)). Now for the converse
let

x∗
0M(A)x0 = c, x∗

0x0 = 1.

The matrix M(A) has the property that20

M(j−1)M(A)M(j) = M(A).

With
y0 = M(j)x0 (y∗

0y0 = 1, x∗
0y0 = y∗

0x0 = 0)
hence this becomes

y∗
0M(A)y0 = x∗

0M(j−1)M(A)M(j)x0 = x∗
0M(A)x0 = c.

Therefore for each complex number c contained in the region W (M(A)), the com-
plex conjugate number c is also contained, so just like B(A) it lies symmetric with
respect to the real axis (see the discussion after Theorem 7). Now if we concatenate
x0 and y0 into a matrix

Z0 = (x0, y0) with Z∗
0M(A)Z0 =

(
c k

−k c

)
,

then through the equation
Z0 = M(X0)

20In what follows instead of M(jIn) and M(j−1In) we simply write M(j) and M(j−1).



30 TRANSLATED BY ZACHLIN AND HOCHSTENBACH

this defines a quaternion eigenvector X0 of n components and this becomes

X∗
0AX0 = c + kj, X∗

0X0 = 1.

Now from this it follows: if the complex number c lies in W (M(A)), then there
exists a quaternion c + kj in W (A), whose real part is equal to the real part of c,
and whose absolute value is ≥ |c|. The bild of c+kj is therefore a complex number,
whose real part agrees with the real part of c, but it has an absolute value ≥ |c|.

To prove from this that
W (M(A)) = B(A),

we prove the following:

Lemma. If the complex numbers a, a lie in B(A), then all numbers on the line
segment connecting a, a lie in B(A).[ IX ]

Proof of Lemma. Let X∗
0AX0 = a = α1 + iα2. Then M(X0) = (x0, y0), where

y0 = M(j)x0. For the complex vectors x0, y0, we have

x∗
0M(A)x0 = a, y∗

0M(A)y0 = a, x∗
0M(A)y0 = 0, y∗

0M(A)x0 = 0.

If we now form
r0 =

√
ϑx0 +

√
1 − ϑ y0 (0 ≤ ϑ ≤ 1)

and

s0 = M(j)r0 =
√

ϑ M(j)x0 +
√

1 − ϑM(j)y0 =
√

ϑ y0 −
√

1 − ϑx0,

then r0 and s0 define a quaternion vector Z0 of norm one through

(r0, s0) = M(Z0)

for which we have:

M(Z∗
0AZ0) = M(Z∗

0)M(A)M(Z0) =
(

r∗0
s∗0

)
M(A)(r0, s0)

=
(

r∗0M(A)r0 r∗0M(A)s0

s∗0M(A)r0 s∗0M(A)s0

)
.

Now we have

r∗0M(A)r0 = ϑa + (1 − ϑ)a,

s∗0M(A)s0 = ϑa + (1 − ϑ)a,

r∗0M(A)s0 = −2
√

ϑ
√

1 − ϑ α2i,

s∗0M(A)r0 = −2
√

ϑ
√

1 − ϑ α2i,

and thereby

M(Z∗
0AZ0) =

(
ϑa + (1 − ϑ)a −2

√
ϑ
√

1 − ϑα2i

−2
√

ϑ
√

1 − ϑα2i ϑa + (1 − ϑ)a

)
.

Now if we let ϑ run along the interval 0 ≤ ϑ ≤ 1, then the bild of the quaternions

Z∗
0AZ0 = ϑa + (1 − ϑ)a − 2

√
ϑ
√

1 − ϑα2ij

describes a piece of the line parallel to the imaginary axis, determined by the real
part α1 of a, on which the points a, a also lie.[ X ] For ϑ = 0 the bild coincides with
a, for ϑ = 1 the bild coincides with a.[ XI ] For reasons of continuity the bild must
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also assume every intermediate value. �

From all of the preceding arguments follows Theorem 35: in any case

B(A) ⊆ W (M(A)).

If now w ∈ W (M(A)), then there exists a complex number b ∈ B(A) which has
the same real part that w has, but also with imaginary part at least as large in
absolute value as that of the imaginary part of w. Applying the lemma to b, each
point of the line segment connecting b and b lies in B(A). But since w is a point
on this line segment, this gives us w ∈ B(A) and therefore B(A) = W (M(A)). �

Since all properties of the numerical range W (A) of a quaternion matrix A are
mirrored in its bild, the theorem just proven reduces the theory of the numerical
ranges of quaternion matrices of dimension n to the theory of the numerical ranges
of complex matrices of dimension 2n. In particular now we can directly prove:

Theorem 36. The numerical range of a quaternion matrix is represented as a
closed convex set of points in the space of quaternions.[ XII ]

Proof. That the set of points is closed is trivial. We prove the convexity and show
that with any two of its points W (U) always contains the line segment between
them. Let

a = α1 + α2i + α3j + α4ij, b = β1 + β2i + β3j + β4ij

be two quaternions in W (A). The points on the connection line between them are
then described by the quaternions

(1 − λ)a + λb (0 ≤ λ ≤ 1).

The classes of a and b may be represented by the complex numbers a, a and b, b.
We examine the complex representations

(1 − λ)a + λb

of the points a and b. The real part of the bild of these points is (1 − λ)α1 + λβ1.
The imaginary part η of both points certainly has absolute value ≤ |η0| with

|η0| = (1 − λ)
√

α2
2 + α2

3 + α2
4 + λ

√
β2

2 + β2
3 + β2

4 .

Then this yields

η2
0 − η2 = (1 − λ)2(α2

2 + α2
3 + α2

4) + λ2(β2
2 + β2

3 + β2
4)

+ 2λ(1 − λ)
√

α2
2 + α2

3 + α2
4

√
β2

2 + β2
3 + β2

4

− {
[(1 − λ)α2 + λβ2]2 + [(1 − λ)α3 + λβ3]2 + [(1 − λ)α4 + λβ4]2

}
= 2λ(1 − λ)

{√
α2

2 + α2
3 + α2

4

√
β2

2 + β2
3 + β2

4 − (α2β2 + α3β3 + α4β4)
}

,

thus η2
0 − η2 ≥ 0. Hence from this it follows that (see Fig. 3) the bild of a point on

the connection line cannot lie outside the trapezoid formed by the points a, a, b, b
and the lines connecting them. The bild of the connection line consists therefore
of two (continuous) curves symmetric to the real axis, which cannot have a point
outside the trapezoid a, a, b, b. Since B(A) is the numerical range of a complex
matrix[ XIII ] it is convex, so all points of the trapezoid a, a, b, b belong to it and
from this also the bilds of all points on the connection line from a to b are in B(A),
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therefore also all points on the connection lines between the quaternions a,b are in
W (A). �

12. The boundary generating hypersurface

The equation of the boundary generating curve of the image matrix M(A) of a
quaternion matrix A = H1+H2j of dimension n is obtained from the decomposition
of M(A) into real and imaginary parts:

M(A) = M(H1) +
(

M(H2)M(j)
i

)
i.

From this follows the equation for the boundary generating curve of M(A)∣∣∣∣M(H1)u +
M(H2)M(j)

i
v + I2nw

∣∣∣∣ = 0.

The boundary generating hypersurface of the matrix A in R4 is then produced
from the boundary generating curve M(A) by means of rotation about the real
axis. But now we have: if w1 = u, w2 = v, w3 = w4 = 0, w5 = w are the
hyperplane coordinates of a hyperplane ε of R4 in the homogenous point coordinates
x1, x2, x3, x4, x5, then the hyperplane coordinates of all hyperplanes which are
produced from ε by rotation about the axis x2 = x3 = x4 = 0, satisfy the equations

w1 = u, w2 + w3 + w4 = v2, w5 = w.

From this we get the equation for the boundary generating hypersurface of the
matrix A: ∣∣∣∣M(H1)w1 +

M(H2)M(j)
i

√
w2

2 + w2
3 + w2

4 + I2nw5

∣∣∣∣ = 0.

The real foci of the boundary generating curve of M(A) are the eigenvalues of
M(A). Now the eigenvalues of M(A) are also representatives of the eigenvalue
classes of A. With the rotation of the boundary generating curve of M(A) about
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the real axis, the foci describe precisely the spheres belonging to the eigenvalue
classes of A. From this it follows immediately:

Theorem 37. The real focal spheres of the boundary generating hypersurface of a
quaternion matrix A are the spheres which represent the eigenvalue classes of A.

Now let H = −(H1u + H2v), where u, v are real variables. Then we have

H = M(H) = −(
M(H1)u + M(H2)v

)
= −(H1u + H2v),

and since H1,H2 are Hermitian, also their image matrices are Hermitian.[ XIV ] The
boundary generating curve of the complex matrix A = M(H1)+ iM(H2), which in
general is not the image matrix of a quaternion matrix, is then obtained through
the equation

fA(u, v, w) ≡ |M(H1)u + M(H2)v + I2nw|
≡ w2n + C1(u, v)w2n−1 + · · · + C2n(u, v) = 0.

For real values of u, v the coefficients Cν(u, v) are thereby always real. But now
H = − (M(H1)u + M(H2)v) satisfies the equation

fA(u, v,H) = 0.

Since the coefficients in fA(u, v, w) are real, it follows

fA(u, v,H) = 0.

So to each arbitrary square quaternion matrix A = H1 + H2j of dimension n
can be specified an algebraic equation of order 2n, where for the Hermitian matrix
H = −(H1u+H2v) corresponding to A it suffices to consider u, v as real variables.
Now let m(u, v, w) be the minimal polynomial of H. Then m(u, v, w) is a factor
of fA(u, v, w). Just as fA(u, v, w) has only real coefficients, the same is true for
m(u, v, w), for otherwise m(u, v, w) should also be a minimal polynomial, which
contradicts the uniqueness of the minimal polynomial, unless all of the coefficients
are real. But then we also have

m(u, v,H) = 0.

Certainly H does not satisfy any algebraic equation with real coefficients lower than
the order of m(u, v, w); for then M(H) would also do the same, contradicting the
minimality of m(u, v, w).

If we define as the minimal polynomial of H = −(H1u + H2v) the polynomial
of smallest order with real coefficients depending on u and v which vanishes for H,
then we get:

Theorem 38. The minimal polynomial of the quaternion matrix H = −(H1u +
H2v) agrees with the minimal polynomial of the image matrix M(H)= −(

M(H1)u
+ M(H2)v

)
.

In contrast to the properties for complex matrices, the minimal polynomial of
H = −(H1u+H2v) is not simultaneously the minimal polynomial of the boundary
generating hypersurface.
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13. Bilinear forms of quaternion matrices

Finally we carry over some results for complex bilinear forms to the realm of
quaternions.

If A is a square complex matrix, then the totality of the points which can be
assumed by the bilinear form x∗Ay under the auxiliary condition x∗x = y∗y = 1
is a closed circular disc R(A) about the origin which contains the numerical range
W (A). If we set

max (|x∗Ax|) = ω(A) (x∗x = 1),
then this gives us for the radius �(A) of the disc R(A):

(16) 0 ≤ ω(A) ≤ �(A) ≤ 2ω(A). 21

All of this may be carried over to quaternion matrices. We define the numerical
range R(A) of the bilinear form of U to be the set of points in quaternion space
that can be assumed by the bilinear form

X∗AY under the auxiliary condition X∗X = Y∗Y = 1.

The set of points R(A) is a 4-dimensional sphere centered at the origin; for if
a ∈ R(A), so

X∗
0AY0 = a (X∗

0X0 = Y∗
0Y0 = 1),

then for any unitary quaternion u it is true that ua ∈ R(A), since

uX∗
0AY0 = Z∗

0AY0 = ua (Z0 = X0u∗, Z∗
0Z0 = Y∗

0Y0 = 1).

As for the set of points W (A) we have for R(A):

Theorem 39. If R(A ) is the numerical range of the bilinear form of A, then
R(A ) intersects the complex plane in the set of points Q(A ) for which it holds
that:

Q(A ) = R (M(A )) ,

where R (M(A )) is the (complex) numerical range of the bilinear form of the matrix
M(A ).

Proof. Suppose R(A ) contains the quaternion a:

X∗
0AY0 = a (X∗

0X0 = Y∗
0Y0 = 1).

Then there is at least one unitary quaternion u such that u∗au = c is complex;
thus

u∗X∗
0AY0u = X∗

1AY1 = u∗au = c (X∗
1X1 = Y∗

1Y1 = 1),
consequently c is a complex representative of the class of a. If we set

M(X1) = (x1,M(j)x1) , M(Y1) = (y1,M(j)y1) ,

then
x∗

1M(A)y1 = u∗au = c,

thus Q(A ) ⊆ R (M(A )) .
Conversely if a ∈ R (M(A )):

x∗
0M(A)y0 = a (x∗

0x0 = y∗
0y0 = 1),

then also

a = x∗
0M(A)y0 = x∗

0M(j−1)M(A)M(j)y0 = x∗
1M(A)y1

21
Wintner [12]
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with
x∗

1 = x∗
0M(j−1), y1 = M(j)y0; x∗

1x1 = y∗
1y1 = 1.

The matrices (x0, x1), (y0, y1) are image matrices of two quaternion vectors X0,Y0,
for which because of (

x∗
0

x∗
1

)
M(A)(y0, y1) =

(
a b

−b a

)
it follows

X∗
0AY0 = a + bj.

From this it follows if a is a complex number in R (M(A )), then there exists a
complex number in Q(A ), whose real part agrees with the real part of a, but whose
absolute value is no smaller than the absolute value of a. Since R (M(A )) and Q(A )
are discs and since Q(A ) ⊆ R (M(A )), now it follows that Q(A ) = R (M(A )). �

From the proof of this theorem it now follows that the inequality (16) may be
carried over. Thus if ω(A) is the maximum absolute value of all points of W (A)
and if �(A) is the radius of R(A), then we obtain

Theorem 40.
0 ≤ ω(A) ≤ �(A) ≤ 2ω(A).
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Notes from the Translators

[ I ] – Au–Yeung’s counterexample to Theorem 36 is the matrix A =




i 0 0
0 1 0
0 0 1


.

cf. Y.H.Au-Yeung, On the Convexity of Numerical Range in Quaternionic
Hilbert Spaces, Linear and Multilinear Algebra, 16:93-100, (1984).

[ II ] – In this section (Section 3) the words complex plane refer to C2, while the
words Gaussian plane refer to C. The projective plane here is CP2.

[ III ] – A literal translation would be “finite”, but the translators felt that “proper”
makes the discussion preceding this theorem more lucid.

[ IV ] – This hypothesis was the subject of later research, see, for example, H.
Shapiro, On a Conjecture of Kippenhahn about the Characteristic Polyno-
mial of a Pencil Generated by Two Hermitian Matrices. I, Linear Algebra
and its Applications, 43:201-221, (1982).

[ V ] – While H1 is indeed Hermitian here, H2 is not. It is true that H2j is skew-
Hermitian, i.e., (H2j)∗ = −(H2j), and it follows that M(H2j)

i is Hermitian.

[ VI ] – A direct translation of the German word“bild” is “image” or “picture”. The
translators chose to keep the German word, as was done in the English paper
F. Zhang, Quaternions and Matrices of Quaternions, Linear Algebra
and its Applications, 251:21-57, (1997).

[ VII ] – Actually, Theorem 35 is false. It is true that B(A) ⊆ W (M(A)).

[ VIII ] – Actually, here and throughout the remainder of the paper, y0 = M(j−1)x0.
Since we also have M(j)M(A)M(j−1) = M(A), we can exchange the roles
of M(j) and M(j−1) without affecting the proofs.

[ IX ] – This lemma is false, which is why Theorems 35, 36 do not hold.

[ X ] – This line was the flaw in the argument. Check that for any value of ϑ the
bild of the quaternion Z∗0AZ0 consists of the two complex numbers a, a. As
ϑ varies the bild does not trace out a segment, but it remains constant.

[ XI ] – Notice the problem with this statement, for the bild of a quaternion always
consists of a complex number and its complex conjugate, in this case a and
a.

[ XII ] – For a nice discussion of the question of convexity of the quaternionic nu-
merical range, see F. Zhang’s work mentioned in [VI] above.

[ XIII ] – Here Theorem 35 is used, but this theorem is not valid.

[ XIV ] – H2 is not Hermitian, nor is M(H2) (see [ V ] above).
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