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Abstract

Linear discrete ill-posed problems of small to medium size are commonly solved by
first computing the singular value decomposition of the matrix and then determin-
ing an approximate solution by one of several available numerical methods, such
as the truncated singular value decomposition or Tikhonov regularization. The de-
termination of an approximate solution is relatively inexpensive once the singular
value decomposition is available. This paper proposes to compute several approx-
imate solutions by standard methods and then extract a new candidate solution
from the linear subspace spanned by the available approximate solutions. We also
describe how the method may be used for large-scale problems.
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TSVD, Tikhonov regularization, discrepancy principle.

1 Introduction

We are concerned with the numerical solution of linear least-squares problems

min
x∈Rn

‖Ax− b‖ (1)

with a matrix A ∈ Rm×n with many singular values of different orders of
magnitude close to the origin. Throughout this paper ‖ · ‖ denotes the Eu-
clidean vector norm. The “clustering” of singular values at zero makes the
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matrix A severely ill-conditioned; in particular, A may be singular. Least-
squares problems with a matrix with many singular values of different sizes
close to the origin are commonly referred to as discrete ill-posed problems
because they arise, for instance, from the discretization of ill-posed problems
such as Fredholm integral equations of the first kind. The vector b ∈ Rm in
discrete ill-posed problems (1) that arise in applications represents measured
data and, therefore, typically is contaminated by an error e ∈ Rm. For nota-
tional simplicity, we will assume that m ≥ n; however, the solution methods
discussed also can be applied, after minor modifications, when m < n.

Let b̂ ∈ Rm denote the unknown error-free right-hand side vector associated
with b, i.e.,

b = b̂ + e.

We assume the linear system of equations with the unavailable error-free right-
hand side,

Ax = b̂, (2)

to be consistent, and we would like to determine an accurate approximation
of its solution x̂ ∈ Rn of minimal Euclidean norm by computing a suitable
approximate solution of the available least-squares problem (1). We remark
that due to the error e in b and the ill-conditioning of A, straightforward
solution of (1) generally does not give a meaningful approximation of x̂.

Discrete ill-posed problems (1) of small to moderate size often are solved by
first computing the singular value decomposition (SVD),

A = UΣV T , (3)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n.

The superscript T denotes transposition and the singular values are ordered
according to

σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.

Availability of the singular value decomposition makes it possible to compute
approximations of x̂, e.g., by Tikhonov regularization or truncated singular
value decomposition (TSVD), in a simple manner. The computationally most
demanding part of the solution process is the determination of the SVD. Usu-
ally the SVD is applied to compute only one approximation of x̂; see, e.g.,
Engl et al. [4] and Hansen [6] for discussions and illustrations. We propose
to first apply the SVD to determine several approximations, say x1, x2, . . .,
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xp, of x̂ and then to extract a new approximation of x̂ from the available
approximations. The extraction is carried out by forming a suitable linear
combination of x1, x2, . . ., xp. Numerical examples in Section 4 illustrate the
benefit of this approach. We remark that for small to moderate values of p, the
computational effort to determine the approximate solutions x1, x2, . . ., xp of
(1) is negligible in comparison with the arithmetic work required to evaluate
the factorization (3) of A.

This paper is organized as follows. Section 2 discusses the details of our ap-
proach to form a new linear combination of available approximations of x̂.
Some methods to determine approximations of x̂ using the SVD of A are
reviewed in Sections 3. We assume there that a bound

‖e‖ ≤ ε (4)

is available. This bound makes it possible to use the discrepancy principle
when determining approximations of x̂. Computed examples are presented in
Section 4, and a conclusion and comments on how to extend the approach of
this paper to large-scale problems can be found in Section 5.

2 A linear combination approach

Let x1, x2, . . . , xp denote computed approximations of the desired minimal-
norm solution x̂ of the error-free linear system of equations (2). Numerical
methods based on the SVD for computing these approximations are described
in Section 3. Let

m = min
i=1,2,...,p

‖xi‖, M = max
i=1,2,...,p

‖xi‖.

Introduce the linear space

W = span{x1,x2, . . . ,xp} (5)

and let the columns of W ∈ Rn×p form an orthonormal basis for W . The
number of approximate solutions, p, typically is fairly small. In the computed
examples of Section 4, we let p = 3.

We describe an approach to extract a new approximation x̃ of x̂ from W .
Thus,

x̃ = W ỹ (6)

for a certain vector ỹ ∈ Rp. We would like to choose ỹ so that the residual
norm ‖b− AW ỹ‖ is small. The residual norm is minimized by ỹ = (AW )†b,
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where (AW )† denotes the Moore-Penrose pseudoinverse of the matrix AW .
However, this vector ỹ may be of (much) larger norm than the desired vector
x̂, i.e.,

‖x̃‖ = ‖ỹ‖ = ‖(AW )†b‖ > ‖x̂‖.

This is usually undesirable, and experiments suggest that this generally ren-
ders solutions of (much) worse quality than the approach of the present paper.
Wed propose to impose constraints on ‖ỹ‖ = ‖x̃‖. For instance, we may re-
quire

m ≤ ‖ỹ‖ ≤M

for certain constants m and M . The following result shows that under a weak
condition it suffices to only consider the upper bound

‖ỹ‖ = M. (7)

Proposition 2.1 Consider the constrained least-squares problem

min
m≤‖y‖≤M

‖b− AWy‖, (8)

and assume that M ≤ ‖(AW )†b‖, where (AW )† denotes the Moore-Penrose
pseudoinverse of the matrix AW . Then the solution ỹ of (8) satisfies (7).

Proof. Consider the constrained least-squares problem

min
‖y‖=∆

‖b− AWy‖, (9)

and assume that ∆ ≤ ‖(AW )†b‖. Then using Lagrange multipliers one can
show that the solution y of (9) satisfies

(W TATAW + µI) y = W TATb (10)

for some constant µ ≥ 0. Here and throughout this paper I denotes the identity
matrix of appropriate order. It can be established, e.g., by using the SVD of the
matrix AW , that the norm of the solution y = yµ of (10) is a monotonically
decreasing function of µ with

lim
µ↘0
‖yµ‖ = ‖(AW )†b‖, lim

µ→∞
‖yµ‖ = 0.

Moreover, the norm of the residual error ‖b − AWyµ‖ is monotonically in-
creasing with µ. The proposition follows from these observations. 2

Generally, we would like to choose ∆ = M ≈ ‖x̂‖ in (8) and (9). We will
return to the choice of M in Section 3.
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The solution of (9) with the constraint (7) can be computed efficiently with
the aid of the QR factorization

AW = QR,

where Q ∈ Rm×p has orthonormal columns and R ∈ Rp×p is upper triangular.
Substituting this factorization into (10) yields

(RTR + µI) y = RTQTb.

These are the normal equations associated with the least-squares problem

min
y∈Rp

∥∥∥∥∥∥∥
 R
√
µ I

y −

QTb

0


∥∥∥∥∥∥∥ .

We solve this least-squares problem for a sequence of µ-values and apply New-
ton’s method to determine a value of µ that yields a solution y = yµ that
satisfies (7); see, e.g., [3] for details on these computations.

The following results shed some light on when the minimization problem (8)
may yield an improved approximate solution of (1).

Proposition 2.2 Let x ∈ Rn be a given approximation of x̂. Assume that
there is a vector w ∈ W such that (Ax− b)TAw 6= 0. Then there is a vector
δx ∈ W with

‖A (x + δx)− b‖ < ‖Ax− b‖.

Proof. The result follows from

‖A (x + w)− b‖2 = ‖Ax− b‖2 + 2 (Ax− b)TAw + ‖Aw‖2

and by letting δx be a sufficiently small multiple of w. 2

Proposition 2.3 Let x ∈ Rn satisfy ‖x‖ = M for some constant M . Assume
that there is a vector w ∈ W such that

(Ax− b)TAw< 0,

−γ ≤ xTw

wTw
< 0, (11)

for some γ > 0 sufficiently small. Then there is a vector δx ∈ W with

‖A (x + δx)− b‖< ‖Ax− b‖, (12)

‖x + δx‖=M. (13)
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Proof. Let δx = αw. Then by the proof of Proposition 2.2, the inequality
(12) holds for all constants α > 0 sufficiently small. We obtain from (13) that

M2 = ‖x + αw‖2 = M2 + 2αxTw + α2 wTw.

It follows that α = −2 xTw/wTw. In view of (11), we have α ≤ 2γ. Therefore,
by choosing γ sufficiently small, we can secure that (12) holds. 2

3 The choice of the search space

We first review the discrepancy principle and some solutions methods for (1)
based on the SVD (3) of A. These methods can be used to determine the
search space W . Other approaches to determine suitable components in W
are also discussed.

A vector x is said to satisfy the discrepancy principle if

‖Ax− b‖ ≤ η ε, (14)

where ε is the error bound (4) and η > 1 is a user-specified constant. The
discrepancy principle is commonly used to determine the truncation index
in the truncated SVD method or the regularization parameter in Tikhonov
regularization; see below.

Popular techniques for the solution of (1) include:

(a) The truncated SVD method using the discrepancy principle; this method
uses the singular value decomposition (3) to determine the approximate
solution

xtsvd =
k∑
j=1

uT
j b

σj
vj (15)

of (1). The truncation index k is chosen as small as possible so that xtsvd

satisfies the discrepancy principle (14). Thus, k is such that

n∑
j=k+1

(uT
j b)2 ≤ (ηε)2 ≤

n∑
j=k

(uT
j b)2.

Properties of this method are discussed in, e.g., [4].
(b) Tikhonov regularization using the discrepancy principle: Tikhonov regular-

ization in its simplest form replaces the solution of (1) by the solution

(ATA+ µI) x = ATb (16)
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for a suitable value of the regularization parameter µ > 0. Denote the
solution by xµ. Substituting the singular value decomposition (3) into (16)
shows that

xµ =
n∑
j=1

σj
σ2
j + µ

(uT
j b) vj. (17)

The parameter µ is commonly chosen as large as possible so that xµ satisfies
(14), i.e., so that

‖b− Axµ‖2 =
n∑
j=1

µ2

(σ2
j + µ)2

(uT
j b)2 = (ηε)2;

see, e.g., [4,5] for properties of this method. The desired value of µ can be
determined, e.g., with the aid of Newton’s method.

(c) Tikhonov regularization using the quasi-optimality criterion: The regular-
ization parameter µ > 0 in the Tikhonov equation (16) is determined so
that the solution, which is of the form (17), minimizes µ→ ‖µx′(µ)‖. This
criterion can be applied when no bound (4) for the norm of the error in b
is available. Properties of the quasi-optimality criterion have recently been
discussed in [1].

The mentioned methods are used to determine a search space in the com-
puted examples of Section 4; each method yields an approximate solution,
the span of which defines a search space W ; cf. (5). We would like to stress
the fact that other solution methods for (1) can also be used to determine
components of W . These include the regularized total least-squares method,
modified TSVD methods using enriched solution subspaces, generalized sin-
gular value decomposition methods, and methods that impose upper or lower
bounds on the computed solution or on the norm of the computed solution.
Large-scale problems can be handled by applying the approach of the present
paper to the reduced problems obtained by Krylov subspace methods; see,
e.g., [2,3,9,8,10,11] and references therein for discussions on a variety of the
mentioned methods. Other selection criteria for the regularization parameter
in Tikhonov regularization (16), such as the L-curve, also can be applied to
determine candidate solutions for inclusion in W .

Assume that the approximate solutions x1, x2, . . . , xp of (1) have been de-
termined by p different methods. We then propose to define the parameter M
in (7) by

M = max
i=1,2,...,p

‖xi‖.

This generally allows the computed solution to be larger than the shortest
one(s) of the candidate solutions xi; moreover, it may be viewed as a natural
choice in the light of Proposition 2.1. The computed examples of the following
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section show that this approach often yields a better approximation of x̂ than
any one of the candidate solutions xi.

4 Numerical examples

Let x1,x2, . . . ,xp be approximate solutions of (1) and define the qualities
(relative errors)

qi =
‖x̂− xi‖
‖x̂‖

, i = 1, 2, . . . , p.

Without loss of generality, we order the approximations according to increasing
quality,

q1 ≤ q2 ≤ · · · ≤ qp.

Let q̃ denote the relative error of the approximate solution x̃ defined by (6).
We define the following indicator of the quality of x̃,

ρ =
q̃ − q1

qp − q1

.

The parameter ρ is a convenient measure with:

• ρ < 0 indicating that x̃ is a better approximation of x̂ than any one of the
approximate solutions xi, i = 1, 2, . . . , p;
• ρ = 0 indicating that x̃ approximates x̂ as accurately as the best of the

approximate solutions xi;
• ρ = 1 indicating that x̃ approximates x̂ as well as the worst of the approx-

imate solutions x1, x2, . . ., xp;
• ρ > 1 indicating that all of the approximate solutions x1, x2, . . ., xp ap-

proximate x̂ more accurately than x̃.

Table 1 presents results for several test examples from [7] of dimension n = 100
with 0.1% error on b. The search space W is spanned by three standard ap-
proximate solutions of (1) computed by TSVD (15) using the discrepancy
principle to determine the truncation index, by Tikhonov regularization using
the discrepancy principle to determine the regularization parameter, and by
Tikhonov regularization using the quasi-optimal criterion to define the regu-
larization parameter; see Section 3. Once the SVD has been computed, the
solutions obtained with these three methods all can be evaluated quite rapidly.
However, we remark that any space spanned by approximate solutions may
be used.
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Each column of Table 1 represents the average over 1000 different error vectors
e with normally distributed random entries with zero mean. The table shows
that on average the approximate solution x̃ often yields better approximations
of x̂ than the best of the approximate solutions determined by the original
three methods. For two of the problems, the quality of x̃ is between the best
and the worst of first computed approximate solutions.

Table 1
Qualities of the TSVD and Tikhonov solution (both matching the discrepancy prin-
ciple), the quasi-optimal solution, and the linear combination technique, for n = 100
examples with 0.1% error and η = 1.1. The last column shows the ρ-value of the
linear combination solution. Each column represents the average over 1000 different
error vectors.

Problem Tikh (di.pr.) TSVD (di.pr.) Tikh (quasi) Lin.comb. ρ

baart 1.59 · 10−1 1.66 · 10−1 1.43 · 10−1 1.34 · 10−1 −0.44

deriv2-1 1.87 · 10−1 2.05 · 10−1 1.92 · 10−1 1.73 · 10−1 −0.82

deriv2-2 1.80 · 10−1 1.96 · 10−1 1.85 · 10−1 1.66 · 10−1 −0.91

deriv2-3 1.94 · 10−2 2.51 · 10−2 1.88 · 10−2 1.87 · 10−2 −0.0046

foxgood 2.26 · 10−2 3.11 · 10−2 1.86 · 10−2 1.29 · 10−2 −0.45

gravity 2.06 · 10−2 2.75 · 10−2 1.78 · 10−2 1.65 · 10−2 −0.13

heat 4.62 · 10−2 5.84 · 10−2 4.31 · 10−2 4.44 · 10−2 0.089

ilaplace 1.20 · 10−1 1.26 · 10−1 1.10 · 10−1 1.06 · 10−1 −0.26

phillips 1.36 · 10−2 1.90 · 10−2 1.60 · 10−2 1.23 · 10−2 −0.26

shaw 6.33 · 10−2 4.91 · 10−2 5.66 · 10−2 5.81 · 10−2 0.64

For the results of Tables 2–6, we vary the error level and the parameter η
in (14). We see that the linear combination approach frequently gives a new
approximate solution that improves on the three basis solutions, in particular
for low error levels and/or larger η-values.

5 Conclusion

The evaluation of several approximate solutions x1, x2, . . ., xp of (1) is inex-
pensive when the SVD of the matrix A is available. The computed examples
illustrate that the “linear combination” approximate solution extracted from
W = span{x1,x2, . . . ,xp} in many cases furnishes a better approximation of
the desired solution x̂ of the unavailable error-free system than any of the
approximate solutions xi. The proposed scheme provides an inexpensive ap-
proach to determine an improved solution from a set of available approximate
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Table 2
Same as Table 1, but now with 1% error, η = 1.1.

Problem Tikh (di.pr.) TSVD (di.pr) Tikh (quasi) Lin.comb. ρ

baart 2.21 · 10−1 1.69 · 10−1 1.74 · 10−1 1.72 · 10−1 0.046

deriv2-1 2.87 · 10−1 3.10 · 10−1 7.34 · 10−1 2.92 · 10−1 0.011

deriv2-2 2.77 · 10−1 2.99 · 10−1 3.77 · 10−1 2.57 · 10−1 −0.19

deriv2-3 4.89 · 10−2 4.89 · 10−2 4.46 · 10−2 4.69 · 10−2 0.53

foxgood 4.69 · 10−2 3.21 · 10−2 3.17 · 10−2 3.73 · 10−2 0.37

gravity 4.54 · 10−2 6.15 · 10−2 4.02 · 10−2 3.80 · 10−2 −0.1

heat 1.40 · 10−1 1.71 · 10−1 1.23 · 10−1 1.20 · 10−1 −0.072

ilaplace 1.59 · 10−1 1.67 · 10−1 1.48 · 10−1 1.42 · 10−1 −0.3

phillips 2.98 · 10−2 2.58 · 10−2 2.87 · 10−2 4.02 · 10−2 3.6

shaw 1.55 · 10−1 1.70 · 10−1 1.51 · 10−1 1.28 · 10−1 −1.1

Table 3
Same as Table 1, but now with 10% error, η = 1.1.

Problem Tikh (di.pr.) TSVD (di.pr.) Tikh (quasi) Lin.comb. ρ

baart 3.76 · 10−1 3.47 · 10−1 3.20 · 10−1 2.88 · 10−1 −0.57

deriv2-1 4.45 · 10−1 4.75 · 10−1 9.37 · 10−1 4.05 · 10−1 −0.081

deriv2-2 4.32 · 10−1 4.55 · 10−1 8.61 · 10−1 3.90 · 10−1 −0.098

deriv2-3 1.14 · 10−1 1.21 · 10−1 1.05 · 10−1 1.11 · 10−1 0.4

foxgood 2.22 · 10−1 2.76 · 10−1 8.83 · 10−2 9.35 · 10−2 0.028

gravity 1.25 · 10−1 1.66 · 10−1 1.65 · 10−1 1.65 · 10−1 0.98

heat 4.10 · 10−1 4.37 · 10−1 5.59 · 10−1 3.42 · 10−1 −0.46

ilaplace 2.22 · 10−1 2.36 · 10−1 2.04 · 10−1 1.97 · 10−1 −0.21

phillips 1.08 · 10−1 1.13 · 10−1 1.40 · 10−1 1.40 · 10−1 1

shaw 2.31 · 10−1 2.73 · 10−1 1.84 · 10−1 1.83 · 10−1 −0.014

solutions.

Large-scale problems can be treated by first projecting them, e.g., by a Krylov
subspace method, to a problem of small size and then proceeding as described
in the present paper to obtain several approximate solutions of this small
problem. A new solution can be extracted as described in Sections 2 and 3,
and then be projected back into the high-dimensional solution (sub)space.
This yields an approximate solution of the original (large) problem. Finally,
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Table 4
Same as Table 1, but now with 0.1% error, η = 1.2.

Problem Tikh (di.pr.) TSVD (di.pr.) Tikh (quasi) Lin.comb. ρ

baart 1.62 · 10−1 1.66 · 10−1 1.43 · 10−1 1.34 · 10−1 −0.44

deriv2-1 1.94 · 10−1 2.14 · 10−1 1.92 · 10−1 1.76 · 10−1 −0.74

deriv2-2 1.87 · 10−1 2.05 · 10−1 1.85 · 10−1 1.69 · 10−1 −0.76

deriv2-3 2.10 · 10−2 2.69 · 10−2 1.88 · 10−2 1.78 · 10−2 −0.12

foxgood 2.50 · 10−2 3.11 · 10−2 1.86 · 10−2 1.29 · 10−2 −0.46

gravity 2.25 · 10−2 2.83 · 10−2 1.78 · 10−2 1.65 · 10−2 −0.12

heat 4.90 · 10−2 6.48 · 10−2 4.31 · 10−2 4.32 · 10−2 0.008

ilaplace 1.25 · 10−1 1.27 · 10−1 1.10 · 10−1 1.06 · 10−1 −0.24

phillips 1.48 · 10−2 2.45 · 10−2 1.60 · 10−2 1.15 · 10−2 −0.33

shaw 7.23 · 10−2 4.91 · 10−2 5.66 · 10−2 5.77 · 10−2 0.37

Table 5
Same as Table 1, but now with 0.1% error, η = 1.5.

Problem Tikh (di.pr.) TSVD (di.pr.) Tikh (quasi) Lin.comb. ρ

baart 1.67 · 10−1 1.66 · 10−1 1.43 · 10−1 1.34 · 10−1 −0.42

deriv2-1 2.10 · 10−1 2.32 · 10−1 1.92 · 10−1 1.84 · 10−1 −0.19

deriv2-2 2.03 · 10−1 2.23 · 10−1 1.85 · 10−1 1.77 · 10−1 −0.2

deriv2-3 2.48 · 10−2 2.69 · 10−2 1.88 · 10−2 1.76 · 10−2 −0.15

foxgood 2.81 · 10−2 3.11 · 10−2 1.86 · 10−2 1.29 · 10−2 −0.46

gravity 2.59 · 10−2 3.61 · 10−2 1.78 · 10−2 1.73 · 10−2 −0.026

heat 5.70 · 10−2 8.52 · 10−2 4.31 · 10−2 4.25 · 10−2 −0.015

ilaplace 1.33 · 10−1 1.41 · 10−1 1.10 · 10−1 1.09 · 10−1 −0.035

phillips 1.70 · 10−2 2.47 · 10−2 1.60 · 10−2 1.13 · 10−2 −0.53

shaw 9.38 · 10−2 1.01 · 10−1 5.66 · 10−2 5.65 · 10−2 −0.001

we note that approximate solutions of (1) also can be determined by methods
that do not require the evaluation of an SVD.
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Table 6
Same as Table 1, but now with 0.1% error, η = 2.

Problem Tikh (di.pr.) TSVD (di.pr) Tikh (quasi) Lin.comb. ρ

baart 1.73 · 10−1 1.66 · 10−1 1.43 · 10−1 1.34 · 10−1 −0.33

deriv2-1 2.28 · 10−1 2.52 · 10−1 1.92 · 10−1 1.91 · 10−1 −0.019

deriv2-2 2.20 · 10−1 2.33 · 10−1 1.85 · 10−1 1.81 · 10−1 −0.066

deriv2-3 2.95 · 10−2 4.39 · 10−2 1.88 · 10−2 1.86 · 10−2 −0.0075

foxgood 3.11 · 10−2 3.11 · 10−2 1.86 · 10−2 1.29 · 10−2 −0.46

gravity 2.97 · 10−2 4.00 · 10−2 1.78 · 10−2 1.76 · 10−2 −0.008

heat 6.84 · 10−2 9.62 · 10−2 4.31 · 10−2 4.29 · 10−2 −0.0036

ilaplace 1.39 · 10−1 1.45 · 10−1 1.10 · 10−1 1.10 · 10−1 −0.014

phillips 1.93 · 10−2 2.47 · 10−2 1.60 · 10−2 1.13 · 10−2 −0.54

shaw 1.18 · 10−1 1.23 · 10−1 5.66 · 10−2 5.63 · 10−2 −0.0041
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