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Chapter 1

Introduction

This thesis focuses on the development of a model reduction methodology for coupled
multi-physical models to serve the efficient simulation-based design of the underlying
coupled systems. Examples of coupled systems are larger systems such as magnetic
resonance imaging (MRI) scanners, printers/copiers, precision motion stages, foldable
solar panels of a space-telescope, down to very small systems such as very large scale
integrated (VLSI) systems (see for instance [87] and [45]) and microelectromechanical
systems (MEMS) (see for instance [74]). Figure 1.1 shows such examples. To explain
the idea of reduction of such systems later on, we first explain the terms “system”, “mo-
del”, “multi-physics”, “coupled”, “interconnected”, and “discretization”.

The word system, which originates from the Greek word σν́στηµα and the Latin
word sustema, stands for “a set of interacting or interdependent components forming an
integrated whole”. In this thesis, the integrated whole is called the system or coupled
system and its individual components are called sub-systems.

The word model as in “physical model” stands for a “representation” for the system
under consideration, usually in terms of a set of physical quantities and relations. The
Oxford dictionary explains that a model is a noun which can mean “a simplified descrip-
tion, especially a mathematical one, of a system or process, to assist calculations and
predictions”. A coupled system’s model consists of the coupled sub-systems’ models.
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(a) Foldable solar panels (courtesy ESA) (b) A MEMS comb drive

Figure 1.1: Coupled systems

A multi-physical model is a model which is represented by multiple physical quan-
tities such as temperature, structural mechanical displacements ([32]), electro-magnetic
fields, and so forth. Simple systems in an insulated environment can often be described
with few physical quantities and relations, interacting systems frequently require more
of such quantities and relations.

This thesis is about sub-systems which interact. When the interaction takes place
inside a domain of interest or through the boundary which seperates such a domain of
interest from the outside world such a system is called a coupled system. If the physical
quantities interact through a discrete amount of inputs and outputs in space then the
system is said to be an interconnected system (see for instance [89]) rather than a coupled
system.

To explain the envisioned reduction, first note that most physical models can not be
solved exactly with contemporary computers. To calculate an approximate solution, the
involved physical quantities such as an electromagnetic field are first discretized, i.e.,
represented by a finite amount of degrees of freedom, after which the physical equations
are reformulated for the discretized physical quantities, leading to a discrete system of
equations. This process is called discretization of the model. An accurate representation
of physical quantities such as an electromagnetic field can require millions of degrees
of freedom and consume a considerable amount of data storage and computation time.
Therefore, an analysis of a coupled system’s dynamic behavior can require excessive
amounts of data storage and computation time.

In this thesis, the concept of model reduction stands for a reduction of the size of the
related discrete system which directly leads to a reduction of the amount of degrees of
freedom of the related physical quantities – but the new degrees of freedom are perhaps
no longer related to just one physical entity. We do not reduce the amount of physical
quantities nor do we simplify or reduce the amount of the relations. To indicate that
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we reduce the size of the discrete system, we write model order reduction rather than
model reduction. We aim at the reduction of the discrete system in such a manner that
we (approximately) preserve the input-output behavior which characterizes the coupled
system.

We focus on state-of-the-art reduction techniques which reduce the system as a
whole based on available reduction techniques for the individual sub-systems. Such
methods are scarcely available and mostly in development. They have as an advantage
that the individual sub-systems can be reduced in parallel (see [9]) with the method best
suited for each of them. This can save a considerable amount of data storage and com-
putational time since these systems are also smaller than the system as a whole. On
the other hand, one must figure out how to couple the individually reduced models to a
reduced model for the whole, i.e., need to figure out how to effectively deal with interior
couplings/interconnections.

Our reduction methods are primarily for coupled time-invariant linear models. Time-
dependent linear models, affine models (such as presented in [19]) and non-linear models
(see for instance [63] and [88]) require other than the presented reduction techniques.
Furthermore, we restrict ourselves to Krylov subspace projection techniques (see [42]).

More in detail, without loss of generality, we focus at systems which consist of two
coupled subsystems. We suggest a method for the parallel reduction of the individual
sub-systems, call it the Separate Bases Reduction algorithm (SBR), and show how to
create a reduced model for the whole system based on the reduced parts. Furthermore,
we show that this algorithm applied to coupled systems matches at least the same amount
of moments as a standard method applied to the whole system would (see [89] for inter-
connected systems). We establish that a large amount of internal couplings leads to large
and hence undesirable reduced models and show that this can be overcome with the use
of a generalized singular value decomposition (GSVD) based reduction of the coupling
blocks However, the use of a GSVD-based approximation leads to an approximation of
the moments – which as benchmark examples show can still be quite accurate.

The remainder of this thesis is focused on the presentation of the SBR algorithm
and the GSVD reduction of the internal couplings. It is organized as follows. First,
Chapter 2, taken from [8] presents a comparison of model reduction techniques from
structural dynamics, numerical mathematics and systems and control. An overview of
the recent history is provided and Krylov methods in Section 2.2.2 are compared with
balanced truncation in Section 2.2.3 and mode displacement methods in Section 2.2.1.

Next, Chapter 3 provides the basic mathematical tools for standard Krylov subspace
reduction techniques existing in literature. First the time-invariant linear system and
the related reduced systems are introduced, together with their transfer functions which
describe the input-output behavior, their moments (scaled derivatives), and the Krylov
subspace projection technique. Secondly, it is shown that the transfer functions and some
of their moments are identical at exactly those expansion points used for the creation of
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the Krylov subspace. Thus, it is established that a reduction of the discrete model does
not lead to different input-output behavior at a discrete (small) amount of expansion
points – more of such points invariantly leads to larger reduced models.

Chapter 4 continues with Krylov subspace techniques, but now focuses on coupled
and interconnected time-invariant linear systems. First, it shows what happens if the
standard techniques of the previous chapter would be applied to the coupled system as a
whole – it shows that the block structure is lost. Next, it introduces existing techniques
from the literature such as [25, 5, 39], still based on Krylov subspace methods for the
coupled system as a whole, which preserve the block-structure and the number of mat-
ched moments. At the end of this chapter, we show an alternative method to efficiently
calculate the second Krylov projector and extend the proof of [25] to a more general
case, under assumptions.

In Chapter 5 we assume that Krylov subspace reduction methods are already avai-
lable for the individual sub-systems and based thereon, we focus at the construction of a
reduced-order model for the system as a whole. We show that this is possible (and also
that moments are matched) in Theorem 5.6.1 and call the approach the Separate Bases
Reduction algorithm (SBR). We conclude with examples and discuss for which systems
this new algorithm is advantageous.

In Chapter 6 we show that the SBR algorithm also matches the standard double
amount of moments if one uses two Krylov subspace projectors instead of one.

Since our SBR method can create large reduced models if the sub-systems have many
internal inputs and outputs Chapter 7 focuses on the possible reduction of these internal
connections – it focuses on the coupling blocks. We show that one can approximate
the coupling blocks by a generalized singular value decomposition (GSVD) in a manner
that preserves sparsity (Corollary 7.2.1). Then, by means of example, we show that one
can approximate the coupling blocks with the use of a few most dominant modes of the
GSVD. Effectively, this reduces the amount of internal inputs and outputs and therefore
ensures that the SBR algorithm is efficient for systems composed of sub-systems with
many inputs.

In Chapter 8 we show that the replacement of the coupling blocks by an explicitly
rank-revealing GSVD based components leads to the same Krylov subspaces and hence
matched moments. Approximations based on a few of the dominant modes lead to quite
accurate moment approximation.

Finally, in Chapter 9 we apply the SBR algorithm to a benchmark system. The
system under consideration is scaled in a specific manner such that it is numerically
better conditioned. We conclude with some remarks and recommendations for further
research in Chapter 10.
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The STW project

The research presented in this thesis has been conducted within the project Model reduc-
tion for complex high-tech systems: efficient analysis of active multi-physical systems
and is financially supported by the Dutch technology foundation STW under project
number 07788.

The objective of this project is the development of model reduction procedures for
coupled systems, where the coupling results from the interaction of the dynamics in
multiple physical domains. This thesis addresses the mathematical aspect of coupled
problem’s reduction, i.e., analysis of the underlying linear systems and extension of the
Krylov subspace based reduction techniques.

A second objective of the STW project is to bridge the conceptual gap between
existing model reduction techniques in the fields of structural dynamics, numerical ma-
thematics and systems and control. A collaborative effort of the members of the project
team has led to a detailed overview and comparison of these methods, which is presented
in Chapter 2.





Chapter 2

A comparison of model order
reduction techniques

This chapter contains the paper “A comparison of model reduction techniques from
structural dynamics, numerical mathematics and systems and control”, by B. Besselink,
A. Lutowska, U. Tabak, N. van de Wouw, M. E. Hochstenbach, H. Nijmeijer, D.J. Rixen
and W.H.A. Schilders. The paper is a common work of the researchers involved in the
STW project described in Chapter 1 and gives an overview and comparison of the model
order reduction methods used in the three fields of expertise of the project sub-groups.
A more detailed overview and a theoretical introduction to model reduction techniques
based on projection onto Krylov subspaces, which are the topic of this thesis, the reader
can find in Chapters 3 and 4.

2.1 Introduction

An important tool in the design of complex high-tech systems is the numerical simulation
of predictive models. However, these dynamical models are typically of high order, i.e.
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they are described by a large number of ordinary differential equations. This results from
either the inherent complexity of the system or the discretization of partial differential
equations. Model reduction can be used to find a low-order model that approximates the
behavior of the original high-order model, where this low-order approximation facilitates
both the computationally efficient analysis and controller design for the system to induce
desired behavior.

The earliest methods for model reduction belong to the field of structural dynamics,
where the dynamic analysis of structures is of interest. Typical objectives are the identifi-
cation of eigenfrequencies or the computation of frequency response functions. Besides
the mode displacement reduction method and extensions thereof (see e.g. [67, 31]), im-
portant techniques are given by component mode synthesis techniques [44, 13], which
started to emerge in the 1960s.

The model reduction problem has also been studies in the systems and control com-
munity, where the analysis of dynamic systems and the design of feedback controllers
are of interest. The most important contributions were made in the 1980s by the deve-
lopment of balanced truncation [57, 20] and optimal Hankel norm approximation [34].

Finally, numerically efficient methods for model reduction have been developed in
the field of numerical mathematics in the 1990s. Important techniques are asymptotic
waveform evaluation [66], Padé-via-Lanczos [21] and rational interpolation [36]. These
methods are often applied in the design and analysis of large electronic circuits.

Despite the fact that the above techniques essentially deal with the same problem
of model reduction, the results in the fields of structural dynamics, systems and control
and numerical mathematics have largely been developed independently. This paper aims
at providing a thorough comparison between the model reduction techniques from these
three fields, facilitating the choice of a suitable reduction procedure for a given reduction
problem. To this end, the most popular methods from the fields of structural dynamics,
systems and control and mathematics will be reviewed. Then, the properties of these
techniques will be compared, where both theoretical and numerical aspects will be dis-
cussed. In addition, these differences and commonalities will be illustrated by means of
application of the model reduction techniques to a common example.

Reviews of model reduction techniques exist in literature. However, these reviews
mainly focus on methods from the individual fields, i.e. they focus on methods from
structural dynamics [12, 14], systems and control [38] or numerical mathematics [5, 27]
only. Nonetheless, methods from systems and control and numerical mathematics are
reviewed and compared in [3, 4, 30], where the comparison is mainly performed by the
application of the methods to examples. In the current paper, popular model reduction
techniques from all the three fields mentioned above will be reviewed. Additionally, both
a qualitative and quantitative comparison will be provided. The focus of this paper is on
this comparison; it does not aim at presenting a full comprehensive historical review of
all method in these three domains.
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In this paper, the scope will be limited to model-based reduction techniques for li-
near time-invariant systems. Data-based model reduction procedures such as proper
orthogonal decomposition [83, 7] or methods for nonlinear systems (see e.g. [69, 81])
will not be discussed.

The outline of this paper is as follows. First, the most important model reduction
techniques from the fields of structural dynamics, numerical mathematics and systems
and control will be reviewed in Section 2.2. In Section 2.3, a qualitative comparison
between these methods will be provided, focussing on both theoretical and numerical
aspects. This comparison will be illustrated by means of examples in Section 2.4, which
further clarifies differences and commonalities between methods. Finally, conclusions
will be stated in Section 2.5.

Notation The field of all real numbers is denoted by R, whereas C represents the field
of all complex numbers. Boldface letters are used to represent vectors and matrices,
where the latter are printed in upper case. For a vector x, the Euclidian norm is denoted
by ‖x‖, i.e. ‖x‖2 = xTx. TheH∞ norm of a system is denoted by ‖ · ‖∞.

2.2 Review of model reduction techniques

In this section, popular model reduction techniques from different fields are discussed.
In Section 2.2.1, methods from structural dynamics are discussed, whereas model re-
duction techniques from the fields of numerical mathematics and systems and control
are discussed in Sections 2.2.2 and 2.2.3, respectively.

2.2.1 Mode displacement methods

In the field of structural dynamics, the design and performance evaluation of mechanical
systems is of interest. Herein, the computation of deformations, internal stresses or
dynamic properties are subject of analysis. Even though the goal of analysis might
differ from one specific application to another, important objectives are the prediction of
regions with high stress, prediction of the eigenvalues (related to resonance frequencies)
and eigenvectors (related to structural eigenmodes) and the computation of the system’s
response to a certain excitation.

All of the above mentioned goals share a common property. Namely, the models
used in the design must, generally, contain detailed information for the precise des-
cription of the response properties of the structure. The mathematical models are ba-
sically constructed in terms of partial differential equations. These equations might be
solved exactly only for simple problems and one has to resort to discretization-based
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approaches, such as the finite element method (FEM) or the boundary element method
(BEM). In the context of this section, the finite element related concepts are of interest.

Model reduction methodologies are efficiently used in the structural field since the
19th century. The most common methods are mode superposition methods [67], in
which a limited number of free vibration modes of the structure is used to represent
the displacement pattern [11]. There are also improvements of the original mode super-
position method by the addition of different vectors to the expansion procedure, such as
the mode acceleration or modal truncation augmentation [67, 92]. Mode superposition
methods are generally considered for the complete structure. However, it is common
to partition the structure in some components, on which model reduction is performed
individually. Then, these reduced-order component models are coupled to represent
the global behavior. These methods are all together named component mode synthe-
sis techniques. These methods are extensions of common mode superposition methods
to the partition level where the forces on the partition boundaries replace the general
forces on the whole structure. In [43] and [44], Hurty provided a general method for
component mode synthesis techniques. Craig & Bampton, in [13], used the static de-
formation shapes of the structure with respect to its boundary loads and enriched this
space with the internal dynamic mode shape vectors to increase the accuracy. This me-
thod is known as the fixed-interface reduction method because the modes of the system
are found while all the boundaries are fixed. Later on, the works of MacNeal [54] and
Rubin [76] extended these methods to a class of methods known as free-interface me-
thods. In these methods, the dynamic mode shape vectors used in the basis are com-
puted without the application of any restraints on the component boundaries, where in
fixed-interface methods the boundary degrees of freedom are all fixed. A recent general
overview on dynamic substructuring methods can be found in [14]. Another overview
that summarizes the component mode synthesis approaches can be found in [12].

Discretization-based methods, such as FEM, analyze complex engineering problems
by constructing piece-wise approximation polynomials over the spatial domain and solve
for the unknown variables at specific locations of the discretization, known as node
points [65]. This representation might already be considered to be a model order re-
duction process in itself. Namely, the displacement u(z, t), which is dependent on the
spatial variable z and time t, is represented by the finite expansion

u(z, t) =

N∑
j=1

Ψ j(z)q j(t). (2.2.1)

Herein, Ψ j(z) are linearly independent functions representing the displacement shape
of the structure, where it is noted that they satisfy the essential boundary conditions of
the problem. Next, q j(t) are the unknown functions of time, whereas N represents the
number of functions exploited in the representation. Since the representation of a body
consists of infinitely many points (and therefore infinitely many degrees of freedom), the
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finite expansion (2.2.1) has already accomplished the task of reducing the system to a
finite number of degrees of freedom.

The discretization of the differential equations of the problem results in the equations
of motion of the system, which are typically of the following form:

Mq̈ + Kq = f , (2.2.2)

where M ∈ RN×N and K ∈ RN×N represent the mass and stiffness matrices, respecti-
vely. Furthermore, q ∈ RN represents the unknown displacements of the structure and
f ∈ RN is the externally applied generalized force vector. Structural systems possess,
most of the time, light damping and the reduction typically is based on the undamped
system. Therefore, undamped systems of the form (2.2.2) are considered in this section.
However, it is stressed that this is only suitable when the system is lightly damped and
the eigenfrequencies are well separated [31].

In general, a detailed problem representation and the use of a high number of ele-
ments in the discretization result in large matrices and, hence, in long computation times.
Model order reduction methods are used to efficiently reduce the system size and, as a
consequence, achieve acceptable computation times. Reduction methods in structural
dynamics may be classified into two classes, namely, methods related to mode superpo-
sition and methods related to component mode synthesis techniques. In this section, the
context is limited to mode superposition methods, since they apply to the full system.
This enables a comparison with methods from the fields of numerical mathematics and
systems and control. More information on component mode synthesis can be found in
[13].

Mode superposition methods share the common property that they use a small num-
ber of free vibration modes to represent the dynamics of the structure with some reduced
number of generalized degrees of freedom. With this selection, one represents the so-
lution vectors as a summation of free vibration modes that form a linearly independent
set. This operation therefore reduces the system size to be solved and could result in
important computational gains. However, there are some important points to note on the
expansion procedures used in practice [62], namely:

1. the used mode shape vectors do not span the complete space;

2. the computation of eigenvectors for large systems is very expensive and time
consuming;

3. the number of eigenmodes required for satisfactory accuracy is difficult to estimate
a priori, which limits the automatic selection of eigenmodes;

4. the eigenbasis ignores important information related to the specific loading cha-
racteristics such that the computed eigenvectors can be nearly orthogonal to the
applied loading and therefore do not participate significantly in the solution.
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Three different main variants can be considered which are often used in structural dyna-
mics community. These are the mode displacement method, mode acceleration method
and modal truncation augmentation method. The latter two methods are enhancements
of the mode displacement method with the addition of the contribution of the omitted
parts in an expansion process.

Generally, these methods do not propose the computation of an error bound for the
response studies. Consequently, the success of the methods is established on the basis of
a posteriori error comparisons. Typically, either the errors on the eigenfrequencies or the
errors on the input-output representation is used to show the success of the applied me-
thod. In the following sections, the mode displacement method, the mode acceleration
methods and the modal truncation augmentation method will be treated in more detail.

Mode displacement method

The equation of motion of the structure (2.2.2) is recalled:

Mq̈ + Kq = f .

Then, the mode displacement method is based on the free vibration modes of the struc-
ture, which can be found by using a time-harmonic representation for the displacement
of the unforced system (i.e. f = 0). This leads to the generalized eigenvalue problem(

K − ω2
jM

)
φ j = 0, (2.2.3)

where φ j is the mode shape vector corresponding to the eigenfrequency ω j, with j ∈
{1, . . . ,N}. Using the expansion concept along with the mode shape vectors φ j, the
displacement can be represented as follows:

q =

N∑
j=1

φ jη j, (2.2.4)

where it is recalled that N is the size of the system. Here, η j is typically referred to as a
set of modal coordinates. It is a common practice to mass-orthogonalize the mode shape
vectors, resulting in

φT
i Mφ j = δi j,

φT
i Kφ j = δi jω

2
j , (2.2.5)

where δi j denotes the Kronecker delta. These orthogonality relations are used to de-
couple the coupled equations of motion (2.2.2). Using (2.2.5), the decoupled equations
are represented in modal coordinates as

η̈ j + ω2
jη j = φT

j f , j ∈ {1, . . . ,N}. (2.2.6)
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An important practical point on the expansion method is related to the computation
of the expansion vectors. The computation of the mode shape vectors that are used in
the mode superposition methods can be an expensive task and, in practice, all the com-
putational methods extract a limited number of vectors K of the eigenvalue problem.
The general idea of the expansion procedure is to keep the first K vectors in the repre-
sentation, that correspond to the lowest eigenfrequencies. This results in a truncation,
namely,

q =

K∑
j=1

φ jη j +

N∑
jt=K+1

φ jt
η jt︸        ︷︷        ︸

truncated

, (2.2.7)

where the indices j and jt represent the kept mode and the truncated mode indices,
respectively.

Since the displacement is represented as a linear combination of K linearly inde-
pendent vectors, it can also be given in matrix notation, leading to the approximation

q = Φη, Φ =
[
φ1 φ2 . . . φK

]
. (2.2.8)

Using (2.2.2) and (2.2.8) and projecting the resulting equations of motion on the expan-
sion basis Φ results in the following reduced-order dynamics

Mrη̈ + Krη = fr, (2.2.9)

where

Mr = Φ
TMΦ = I, (2.2.10)

Kr = Φ
TKΦ = diag{ω2

1, . . . , ω
2
K}, (2.2.11)

fr = Φ
T f . (2.2.12)

In general, the analysts are interested in the response properties of the system for the
lower frequency range and therefore, the lowest modes are typically chosen. The reason
behind this selection is the fact that most structures are operated at low frequencies.

The importance of a mode is mostly related to two concepts. First, the orthogonality
of the mode with respect to the excitation, as given by φT

j f , is of importance. Secondly,
the closeness of the eigenfrequency of the mode with respect to the excitation spectrum
is of interest.

Mode acceleration method

The mode acceleration method is a computational variant of the static correction method.
The static correction method aims at taking into account the contribution of the omitted
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modes. The driving idea of the static correction concept is to be able to include the ef-
fects of the truncated modes statically into the summation procedure. Namely, truncated
modes have a static contribution on the response for low frequencies. This results in an
improvement for the response studies in the lower frequency range. The response might
be represented as before but with a correction term qcor, such that

q = Φη + qcor. (2.2.13)

To obtain the static correction term qcor (with q̇cor = q̈cor = 0), the truncated repre-
sentation for the acceleration is substituted in the equation of motion (2.2.2), leading
to

M
K∑

j=1

φ jη̈ j + Kq = f . (2.2.14)

Then, the use of the (reduced-order) dynamics in modal coordinates (2.2.6) leads to

q = K−1

 f −M
K∑

j=1

φ j(φ
T
j f − ω2

jη j)

 ,
=

K∑
j=1

φ jη j +

K−1
−

K∑
j=1

φ jφ
T
j

ω2
j

 f , (2.2.15)

where the relation imposed by the eigenvalue problem (2.2.3) is used in the latter step.
When comparing (2.2.15) to the truncation (2.2.7), it is observed that the correction term
is given as

qcor =

K−1
−

K∑
j=1

φ jφ
T
j

ω2
j

 f . (2.2.16)

It is noted that, by using all eigenmodes, the inverse of the stiffness matrix can be
represented as [31]

K−1
=

N∑
j=1

φ jφ
T
j

ω2
j

, (2.2.17)

such that the use of (2.2.17) in (2.2.15) results in

q =

K∑
j=1

φ jη j +

N∑
j=K+1

φ jφ
T
j

ω2
j

f . (2.2.18)

Even though this last form is not applicable in practice, since it requires the computation
of all model vectors, it clearly shows that only the static contribution of the omitted
modes φ j, j ∈ {K + 1, . . . ,N}, is taken into account in the correction term qcor
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Modal truncation augmentation method

The modal truncation augmentation method is an extension of the mode acceleration
method. Its main principle depends on the use of the static correction as an additio-
nal direction for the truncation expansion [17, 72, 16]. Inclusion of the correction in a
modal expansion results in the modal truncation augmentation method, such that q is
approximated as

q =

K∑
j=1

φ jη j + qcorξ, (2.2.19)

where qcor is given by the mode acceleration method in (2.2.18) and ξ is an additio-
nal coordinate in the reduced-order system. This correction vector is included in the
reduction basis, such that the new reduction basis reads

Ψ =
[
Φ qcor

]
. (2.2.20)

Here, it is noted that Ψ is generally orthogonalized.

Modal truncation augmentation methods are mostly used when there are multiple
forcing vectors acting on the system. Therefore, these correction vectors are not used
a posteriori as in the mode acceleration method but they really become a part of the
reduction space.

There exist also further extensions of the common mode superposition methods
which include higher-order correction vectors. These methods are outlined in [72] and
references therein. See Section 2.3.3 for further details.

2.2.2 Krylov subspace based model order reduction

Krylov subspace based model order reduction (MOR) methods are methods which re-
duce a system with many degrees of freedom (i.e. states) to a system with few(er) de-
grees of freedom but with similar input-output behavior. Typical applications are large
electronic circuits with large linear subnetworks of components (see e.g. [61, 28]) and
micro-electro-mechanical systems (MEMS). The main purpose of Krylov methods is
the construction of an approximation of the system’s transfer function which (accura-
tely enough) describes the dependence between the input and the output of the original
system, e.g. in some range of the (input) frequency domain. Methods of this type are
based on projections onto a Krylov subspace and are (relatively) computationally cheap
compared to other reduction techniques, for instance because they can effectively ex-
ploit parallel computing. The objective is the derivation of a smaller system with similar
input-output behavior and with similar properties such as stability, passivity or a special
structure of the matrices in the model description. The quality of the reduced-order ap-
proximation can be assessed by studying norms of the difference between the outputs of
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the unreduced and reduced models applied for the same inputs. Preservation of proper-
ties is of importance if the reduced system has to exhibit some physical properties of the
model; for instance, when the reduced system has to be a (realizable) circuit consisting
out of resistors, inductors and capacitors (a RLC network), just as the original system.
So far, there have been no proven a priori error-bounds for the Krylov based reduction
techniques, see [41] for more details and for alternative approaches, to ensure a good
(application domain dependent) approximation.

The first reduction method involving the usage of the Krylov subspace, called asymp-
totic waveform evaluation, was described in 1990, see [66]. However, the main focus of
this paper was on finding a Padé approximation of the transfer function rather than on
the construction of a Krylov subspace. Later, in 1995, in [21] a method called Padé via
Lanczos (PVL) was proposed and the relation between the Padé approximation and Kry-
lov subspace was shown. In 1998 the new reduction technique PRIMA was introduced
in [61]. It uses the Arnoldi algorithm instead of Lanczos to build the reduction bases.
These and later developments of Krylov based reduction techniques focus not only on
the improvement of the accuracy of the approximation, but also on the preservation of
the properties of the system to be reduced.

In this section, the basic ideas of model reduction by projection onto the Krylov
subspace are explained and the application of some common reduction techniques based
on Arnoldi and Lanczos algorithms (see e.g. [77] for more details), is briefly discussed.

Linear time-invariant state-space systems of the form{
Eẋ = Ax + bu

y = cTx,
(2.2.21)

are considered, with A ∈ Rn×n, b, c ∈ Rn, the input variable u ∈ R, the output variable
y ∈ R and x ∈ Rn being a vector of the state variables. For the sake of simplicity, SISO
systems (with scalar input and scalar output) are considered. However, the methods
discussed in this section have been extended to multi-input-multi-output (MIMO) cases
(see e.g. [26]).

If the system (2.2.21) is transformed to the Laplace domain, then, for an arbitrary
s ∈ C, the dependence between its input and its output is given by a transfer function
H(s) defined as follows

H(s) = cT(sE − A)−1b. (2.2.22)

In this section, it is assumed that the pencil (sE−A) is regular, i.e. it is singular only for
a finite number of s ∈ C. For an arbitrary s0 ∈ C, the transfer function (2.2.22) may be
rewritten in a polynomial form, using so-called moment expansion:

H(s) =

∞∑
n=0

(−1)nMn(s0)(s − s0)n. (2.2.23)
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Here, the coefficients Mn(s0), called moments of the transfer function, are calculated
using the Taylor expansion formula and given by

Mn(s0) = cT[(s0E − A)−1E]n(s0E − A)−1b. (2.2.24)

Expansion around s0 = ∞ is evaluated based on Laurent series, and the moments then
are called Markov parameters (see [3] for more details). The accuracy of the moment
expansion depends on the choice of the expansion point s0. It is also possible to use a
multipoint expansion choosing multiple expansion points.

The goal of the Krylov subspace model order reduction is to find a projection-based
approximation of the original transfer function, that matches the first k moments of the
original transfer function. In other words, the objective is to calculate the reduced-order
transfer function Ĥ(s), whose moment expansion is given by

Ĥ(s) =

∞∑
n=0

(−1)nM̂n(s0)(s − s0)n, (2.2.25)

with
M̂n(s0) = Mn(so), for n = 1, . . . , k, (2.2.26)

and Mn(s0) being the moments of the original transfer function defined in (2.2.24). This
is called the moment matching property of the reduction method.

In case of the reduction methods studied in this section, the reduced-order model is
calculated using a projection Π = VWT

∈ Rn×n, with V,W ∈ Rn×k being biorthogonal
matrices, i.e. WTV = I. Application of the projection Π to the original system (2.2.21)
gives {

WTEV ˙̂x = WTAVx̂ + WTbu,
ŷ = cTVx̂,

(2.2.27)

where the reduced-order state vector x̂ ∈ Rk results from the state transformation

x ≈ Vx̂. (2.2.28)

The choice of the spaces V and W depend on the goal of the reduction procedure. In
case of the Krylov subspace based methods, the aim is to approximate the input-output
behavior of the system. This is done by matching the moments of the original transfer
function. This means that the reduced-order transfer function corresponding to system
(2.2.27), which results from applying matrices V and W to the original system matrices,
has the property (2.2.26). To ensure the satisfaction of the moment matching property
(2.2.26), one can choose V and W such that the columns of these matrices span so-
called Krylov subspaces. The k-th Krylov subspace induced by a matrix P and a vector
r is defined as

Kk(P, r) = span{r,Pr, . . . ,Pk−1r}. (2.2.29)
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The choice of the starting matrix P and the starting vector r depends on the value s0
around which the transfer function should be approximated. If the approximation of the
transfer function (2.2.22) around s0 = 0 is to be found, the matrices V and W are chosen
as follows:

V is a basis of Kk1
(A−1E,A−1b), (2.2.30)

W is a basis of Kk2
(A−TET,A−Tc). (2.2.31)

The sizes of the subspaces, k1 and k2, should assure that V and W are both of rank k. If
V and W are built in the way defined in (2.2.30-2.2.31), the model reduction method is
called a two-sided method. If only one of the projection matrices (V or W) is built in
that way, the method is called one-sided. Application of the two-sided method results in
a reduced model that matches the first 2k moments of the original transfer function. In
case of one-sided methods, k moments are matched.

The general proof of the moment matching property can be found in [36]. To illus-
trate the idea behind this proof, the matching of the zeroth moment of the system (2.2.21)
for s0 = 0 is shown after [51].

According to the formula (2.2.24), the zeroth moment for s0 = 0 is equal to

M0(0) = −cTA−1b. (2.2.32)

With V chosen as in (2.2.30) and the fact that A−1b belongs to the Krylov subspace
Kk1

(A−1E,A−1b), one can find a vector r0 such that Vr0 = A−1b. Then, using the
reduction procedure defined in (2.2.27), it can be shown that

M̂0(0) = −cTV(WTAV)−1WTb = −cTV(WTAV)−1WTAVr0

= −cTVr0 = −cTA−1b = M0(0). (2.2.33)

In case the approximation around s0 , 0 or for s0 = ∞ is needed, the starting matrix
and vector for building the Krylov subspace have to be modified. One can also build a
subspace using different values of s0 at the same time. More details on how to do this
and suggestions for starting values for different s0 can be found in [36].

Besides the difference in the number of moments matched, the choice to use either
one- or two-sided methods influences also some other properties of the reduced system.
Two-sided methods may lead to better approximations of the output y and deliver a
reduced-order model, whose input-output behavior does not depend on the state space
realization of the original model. In case of the one-sided techniques with W = V and
V defined as in (2.2.30), for certain original models, one can also prove the preservation
of the passivity property.

The process of constructing the reduction matrices, V and W, is not straightforward
and requires the use of special techniques. Because of round-off errors, the vectors buil-
ding a Krylov subspace may quickly become linearly dependent. To avoid this problem,
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one usually constructs an orthogonal basis of the appropriate Krylov subspace. This can
be achieved using e.g. Arnoldi or Lanczos algorithms (explanation of these algorithms
and implementation details are given in [77]). The classical Arnoldi algorithm generates
a set V of orthonormal vectors, i.e.

VTV = I, (2.2.34)

that form a basis for a given Krylov subspace. The Lanczos algorithm finds two sets of
basis vectors, V and W, that span an appropriate Krylov subspace and have property

WTV = I. (2.2.35)

Two sets of basis vectors V and W for Krylov subspaces may also be computed using a
two-sided Arnoldi algorithm (see [51]). In this case, both V and W are orthonormal,

VTV = I, WTW = I. (2.2.36)

As a result, each of the above mentioned techniques generates a Krylov subspace. The
choice of the subspace depends on the type of algorithm and the expansion point s0
around which the approximation is of interest. A more detailed explanation on how to
choose the proper subspaces can be found in [36].

The ideas of the Krylov subspace based reduction presented in this section can be fur-
ther modified, depending on e.g. the application or the specific criteria that the reduced-
order model should fulfill. In electronic circuit design, there exist methods especially
suited for reducing specific types of systems that exploit the characteristic structure of
the underlying matrices, see e.g. [6]. In case of coupled or interconnected systems,
the goal may be to preserve the interpretation of the different physical domains. More
details on this topic can be found in [28, 89]. There exist also modifications that aim
at preserving other properties of the original system, such as stability or passivity. In
case of symmetric matrices, the algorithm SyPVL was proposed in [29] that guarantees
stability. A stability and passivity preserving technique, PRIMA, is presented in [61].

2.2.3 Balanced truncation

The field of systems and control focusses on the analysis of dynamical systems and
design of feedback controllers for these systems. Herein, the objective of controller
design is to change the dynamics of the system to induce desired behavior. Typical
examples are the stabilization of unstable systems, tracking of a reference trajectory or
the rejection of external disturbances on a system.

These control strategies are applied in a broad range of practical engineering pro-
blems, such as control of mechanical or electrical systems. These applications have in
common that they deal with systems with inputs and outputs. On the one hand, a dy-
namical system can often only be influenced by a limited number of actuators, which
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are represented as inputs. Additionally, external disturbances, such as e.g. measurement
noise, often act only locally as well. On the other hand, only a limited number of sensors
(i.e. outputs) is available in practical engineering systems. For these systems, it is thus
particularly relevant to have an accurate model for their input-output behavior. Even
though this model does not need to describe the global behavior of a system, complex
dynamics can still yield large models of orders up to O(103). To facilitate controller
design and/or analysis for these systems, model reduction is needed. Here, it is noted
that a controller needs to be implemented in real-time, which also requires a controller
realization of relatively low-order.

Model reduction procedures in the field of systems and control therefore aim at
approximating the input-output behavior of a high-order model. The quality of the
reduced-order model can thus be assessed by comparing the outputs of the high-order
and reduced-order models for given inputs, where the magnitude of the output error is
measured using some signal norm.

Balanced truncation is the most popular method in systems and control addressing
this model reduction problem. It mainly owes its popularity due to the fact that it pre-
serves stability of the high-order model and provides an error bound, which gives a direct
measure of the quality of the reduced-order model.

The balanced truncation method was first presented by Moore [57], where results of
Mullis and Robberts [58] were exploited. Later, the stability preservation property was
found by Pernebo and Silverman [64], whereas the error bound was derived by Enns [20]
and Glover [34].

Linear dynamical models with inputs and outputs in state-space form{
ẋ = Ax + Bu
y = Cx + Du (2.2.37)

are considered. Here, u ∈ Rm denotes the input whereas y ∈ Rp represents the out-
put. The internal state is given by x ∈ Rn and the system matrices are of corresponding
dimensions. Throughout this section, it is assumed that the model (2.2.37) is asymptoti-
cally stable (i.e. all eigenvalues of A have negative real part) and is a minimal realization,
where the latter guarantees that all state components contribute to the input-output be-
havior. The transfer function of (2.2.37) is given as

H(s) = C(sI − A)−1B + D, s ∈ C. (2.2.38)

In balanced truncation, a reduced-order model is obtained in two steps. First, a so-
called balanced realization is found, in which the states are ordered according to their
contribution to the input-output behavior. Second, a reduced-order model is obtained on
the basis of this balanced realization by discarding the states with the smallest influence.
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In order to find the balanced realization, the input-output behavior of the system
(2.2.37) has to be quantified. To this end, the so-called controllability and observability
functions are defined. First, the controllability function Ec(x0) gives the smallest input
energy required to reach the state x0 from the zero state in infinite time, given as

Ec(x0) = inf
u∈L2(−∞,0)

x(−∞)=0, x(0)=x0

∫ 0

−∞

‖u(t)‖2 dt, (2.2.39)

whereL2(−∞, 0) denotes the space of square integrable functions, defined on the domain
(−∞, 0). Second, the observability function Eo(x0) is defined by

Eo(x0) =

∫ ∞

0
‖y(t)‖2 dt, x(0) = x0, u(t) = 0 ∀t ∈ [0,∞), (2.2.40)

and gives the future output energy of the system when released from an initial condition
x0 for zero input. It is well-known (see e.g. [57, 94]) that for linear systems as in (2.2.37)
the controllability and observability functions in (2.2.39) and (2.2.43) can be written as
the quadratic forms

Ec(x0) = xT
0 P−1x0, Eo(x0) = xT

0 Qx0, (2.2.41)

where P and Q are the controllability and observability gramian, given by

P =

∫ ∞

0
eAtBBTeATt dt (2.2.42)

and

Q =

∫ ∞

0
eATtCTCeAt dt, (2.2.43)

respectively. From (2.2.42) and (2.2.43), it is easily observed that the controllability and
observability gramians are only finite when the system is asymptotically stable, which
explains the assumption stated before. In addition, P and Q are symmetric and positive
definite, where the latter is guaranteed by the assumption that the system (2.2.37) is
minimal, i.e. controllable and observable. The controllability and observability gramian
can be obtained as the unique solutions of the respective Lyapunov equations (see for
instance [94])

AP + PAT
+ BBT

= 0 (2.2.44)

and
ATQ + QA + CTC = 0, (2.2.45)

which makes balanced truncation computationally feasible. Nonetheless, solving the
Lyapunov equations is computationally costly, such that balanced truncation is limited
to systems of orders up to O(103).
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Since both the controllability and observability gramian characterize the in- or out-
put energy associated to a state x0, they are dependent on the realization of the system
(2.2.37). Stated differently, a change of coordinates x̄ = Tx, with T ∈ Rn×n a nonsingular
matrix, results in a realization with system matrices

Ā = TAT−1, B̄ = TB, C̄ = CT−1, D̄ = D. (2.2.46)

Then, the new controllability gramian and observability gramian are given as

P̄ = TPTT, Q̄ = T−TQT−1. (2.2.47)

Nonetheless, the product of P̄ and Q̄ yields

P̄Q̄ = TPQT−1, (2.2.48)

indicating that the eigenvalues of the product of the controllability and observability
gramian are independent of the set of coordinates and thus system invariants. These
eigenvalues equal the (squared) Hankel singular values σi [34], such that

σi =
√
λi(PQ), i = 1, . . . , n, (2.2.49)

where λi(X) denotes the i-th eigenvalue of the matrix X.

At this point, it is recalled that the observability gramian Q characterizes the output
energy associated to a given initial state x0 and thus provides a measure of the importance
of state components with respect to the output y. Hence, states generating high output
energy can be considered more important than states generating little output energy,
since the former are easy to observe. On the other hand, the controllability gramian P
gives a measure of the importance of state components x0 with respect to the input u, in
the sense that states that require little input energy to reach are more relevant than states
that require high input energy. States that require little energy to reach are thus easy
to control. Clearly, the combination of the controllability and observability gramians
gives a characterization of the importance of state components from an input-output
perspective. However, in an arbitrary coordinate system, a state x̄1

0 that requires little
energy to reach might also generate little output energy. On the other hand, a different
state x̄2

0 might exist that requires a lot of energy to reach, but generates high output
energy. In this case, it is not easy to decide which of x̄1

0 and x̄2
0 is the most important

component from an input-output perspective. To facilitate this analysis, the balanced
realization is introduced. Namely, there exists a state-space realization such that the
corresponding controllability and observability gramians are equal and diagonal, where
the entries on the diagonal are given by the Hankel singular values [57]:

P̄ = Q̄ = Σ :=


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σn

 . (2.2.50)
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In addition, the Hankel singular values are ordered as σ1 ≥ σ2 ≥ · · · ≥ σn > 0. In this
balanced realization, the controllability and observability function are given as

Ec(x̄0) = x̄T
0Σ
−1 x̄0, Eo(x̄0) = x̄T

0Σx̄0. (2.2.51)

Now, the form (2.2.51) allows for a clear interpretation. Namely, the realization is ba-
lanced in the sense that states that are easy to control are also easily observed. In fact,
due to the ordering of the Hankel singular values, the state x̄0 = e1 := [1, 0, · · · , 0]T

requires the least energy to reach (Ec(e1) = σ−1
1 is small) and gives the highest output

energy (Eo(e1) = σ1 is large). Stated differently, this state is easy to control and easy to
observe. Hence, x̄0 = e1 has the largest contribution to the input-output behavior of the
system. On the other hand, the state x̄0 = en := [0, · · · , 0, 1]T is both difficult to control
and difficult to observe, such that it has the smallest contribution to the input-output
behavior.

The coordinate transformation T to obtain the balanced realization can be obtained
on the basis of the controllability and observability gramians (2.2.42-2.2.43). Thereto,
the Cholesky factor U of P is used, as well as the eigenvalue decomposition of UTQU:

P = UUT, UTQU = KSKT. (2.2.52)

In the latter, it is noted that UTQU is a positive definite symmetric matrix, such that
the matrix of eigenvectors K is orthonormal. Additionally, the eigenvalues are real and,
when ordered, are equal to the squared Hankel singular values such that S = Σ

2 with Σ
as in (2.2.50). Then, the balancing transformation and its inverse are given as

T = Σ
1
2 KTU−1, T−1

= UKΣ−
1
2 (2.2.53)

as can be checked by substitution of (2.2.53) in (2.2.47), while using the relations
(2.2.52). An overview of alternative algorithms to obtain the balanced realization can
be found in [3].

So far, a balanced realization is found, but no model reduction has been performed yet.
However, the balanced realization gives a representation in which the states are ordered
according to their contribution to the input-output behavior. Hence, a reduced-order
model of order k can be obtained by partitioning the state x̄ of the balanced realization
as x̄1

= [x̄1, . . . , x̄k]T
∈ Rk and x̄2

= [x̄k+1, . . . , x̄n]T
∈ Rn−k, such that x̄1 contains

the state components with the largest influence on the input-output behavior. When the
system matrices are partitioned accordingly,

Σ =

[
Σ1 0
0 Σ2

]
, Ā =

[
Ā11 Ā12
Ā21 Ā22

]
, B̄ =

[
B̄1
B̄2

]
, C̄ =

[
C̄1 C̄2

]
, D̄ = D, (2.2.54)
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a reduced-order system can be obtained by truncation, i.e. by setting x̄2 = 0. The re-
sulting reduced-order model (with x̂ ∈ Rk an approximation of x̄1

∈ Rk) is given by the
state-space realization { ˙̂x = Ā11 x̂ + B̄1u,

ŷ = C̄1 x̂ + D̄u. (2.2.55)

Here, it can be observed that the reduced-order state-space system (2.2.55) is itself a
balanced realization, with the controllability and observability gramians given by Σ1
(see [64]). In addition, when Σ1 and Σ2 have no diagonal entries in common (i.e. when
σk > σk+1), the reduced-order system is asymptotically stable [64].

The reduced-order system thus preserves stability of the original model, and its out-
put ŷ serves as an approximation for the output of the high-order system y. The quality
of this approximation can be assessed by means of a bound on the error. Namely, an
error bound can be expressed in terms of the discarded Hankel singular values [20, 34]
as

‖H(s) − Ĥ(s)‖∞ ≤ 2
n∑

i=k+1

σi, (2.2.56)

where H(s) and Ĥ(s) are the transfer functions of the full-order system (2.2.37) and the
reduced-order system (2.2.55), respectively. Furthermore, ‖ · ‖∞ denotes the H∞ norm
defined as

‖H(s)‖∞ = sup
ω∈R

σ̄(H( jω)), (2.2.57)

with σ̄(·) the largest singular value. The error bound (2.2.56) confirms the intuitive idea
that the states corresponding to the largest Hankel singular values are the most important
from the perspective of input-output behavior. Namely, a good approximation (i.e. a low
error bound) will be obtained when the Hankel singular values in Σ2 are small. Since
these Hankel singular values are only dependent on the high-order model (2.2.37), they
can be computed a priori and allow for control over the reduction error by selection of
the order k. Finally, it is noted that in (2.2.56) it is assumed that all Hankel singular
values are distinct. When Hankel singular values with multiplicity larger than one occur,
they only need to be counted once, leading to a tighter bound (see e.g. [34]).

In the model reduction procedure presented here, a reduced-order system is obtained
by truncation (i.e. setting x̄2

= 0) of a balanced realization. An alternative approach is
given by singular perturbation [24] of this realization. Herein, it is assumed that the dy-
namics describing the evolution of x̄2 is very fast (and asymptotically stable). Then, this
dynamics can be assumed to be in its equilibrium position at all time, which is obtained
by setting ˙̄x2

= 0 and solving for x̄2 as a function of x̄1 and u. Contrary to balanced
truncation, the singular perturbation approach guarantees that the steady-state gains of
the high-order system are matched in the reduced-order system. The reduced-order mo-
del is controllable, observable, asymptotically stable and the error bound (2.2.56) also
holds [49].
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Balanced truncation aims at approximating a high-order system by selecting the state
components that have the largest contribution in the input-output behavior, according
to the energy in the input and output signals. The entire frequency range is conside-
red in this approach. However, in many practical applications, a good approximation is
only required in a specific frequency range. To this end, frequency-weighted balanced
truncation can be used [20], which is an extension of the method discussed in the pre-
vious paragraphs. In frequency-weighted balanced truncation, the objective is to find a
reduced-order system such that the error

‖Ho(s)(H(s) − Ĥ(s))Hi(s)‖∞ (2.2.58)

is small, where Hi(s) and Ho(s) denote the transfer functions of an input and output
frequency weight, respectively. These weights can be designed by the user to emphasize
specific regions in the frequency domain. To obtain the frequency-weighted reduced-
order model, controllability and observability gramians are computed on the basis of the
frequency weighted high-order system, which are simultaneously diagonalized. Details
can be found in [20].

When the original system is asymptotically stable, observable and controllable, and
only one-sided weighting is applied (i.e. either Hi(s) = I or Ho(s) = I), asymptotic
stability of the reduced-order system is guaranteed. However, in the case of general
two-sided weighting, stability of the reduced-order approximant can not be guaranteed.
Nonetheless, when the reduced-order model is stable, an error bound is given in [47].

In the preceding paragraphs, the standard balanced truncation technique for asympto-
tically stable systems as well as an extension to frequency-weighted balanced truncation
is presented. Several extensions of balanced truncation exists. For example, balanced
truncation of the coprime factorization applies to unstable systems [56, 60], whereas a
method preserving passivity is given in [15, 59].

Besides these methods based on balanced truncation, a popular alternative is optimal
Hankel norm approximation [34], which is also based on the balanced realization. For
an overview of model reduction in systems and control, see e.g. [3, 38].

2.3 Qualitative comparison on model reduction methods

In this section, the methods as discussed in Section 2.2 will be compared. First, the
common feature of projection is presented in Section 2.3.1. Then, a general comparison
will be given in Section 2.3.2. A close connection between moment matching and modal
truncation augmentation is discussed in Section 2.3.3. Computational aspects and the
preservation of properties will be discussed in Sections 2.3.4 and 2.3.5, respectively.
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2.3.1 Projection

Before discussing differences between the methods from the fields of structural dyna-
mics, numerical mathematics and systems and control, an important similarity is discus-
sed. Namely, the methods discussed in Section 2.2 have in common that the reduced-
order models are obtained by projection. Here, the reduced-order model is obtained by
application of the projection Π = VW

T to the original model. In numerical mathema-
tics, the projection matrices might be chosen as V = V and W = W with V and W
as in (2.2.30) and (2.2.31), respectively. This specific choice ensures moment matching
around s0 = 0. For balanced truncation, as used in systems and control, the matrices
V and W are given as the first k columns of the transformation matrices T−1 and TT

as in (2.2.53), respectively. Hence, they project on the subspace of PQ corresponding
to the largest Hankel singular values (see (2.2.48)), which yields the subspace with the
largest contribution in the input-output behavior. Similarly, in the mode superposition
techniques in structural dynamics, the projection is given as Π = ΦΦ

T. Here, the pro-
jection basis Φ forms a basis for the space spanned by the k most relevant eigenvectors
(see (2.2.3)), which are typically chosen as the eigenvectors corresponding to the lowest
eigenfrequencies. Here, it is noted that the state-space form is used in the fields of nume-
rical mathematics and systems and control, whereas a second-order form is exploited in
structural dynamics when no damping is present or when the damping can be considered
as small.

2.3.2 General comparison

Besides the common feature of projection, the reduction techniques in Section 2.2 have
important differences, as listed below.

• First-order form versus second-order form
The most apparent distinction is the type of model under consideration. In the field
of structural dynamics, models of second-order form are usually studied, whereas
first-order models are examined in the fields of numerical mathematics and sys-
tems and control. Even though the use of this symmetric second-order form seems
limiting, it is noted that the mechanical structures studied in this field can indeed
be modeled as second-order systems. In addition, these mechanical structures
typically have little damping, which motivates the exploitation of undamped vi-
bration modes for model reduction. Nonetheless, due to the specific structure of
these models, the model reduction techniques from structural dynamics can in ge-
neral not be applied to other application domains. On the other hand, any model
that can be written in the first-order form can be handled by the reduction tech-
niques from numerical mathematics and systems and control, although asymptotic
stability is assumed in the latter.
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• Input-output behavior versus global behavior
A second difference is given by the objective of the approximation. In numerical
mathematics and systems and control, a reduced-order model is sought which ap-
proximates the input-output behavior of the original system. On the other hand,
this input-output behavior is of less relevance in the field of structural dynamics,
where the approximation of the global dynamics is of interest. Again, this results
from the specific objectives in structural dynamics. Namely, typical interest is in
the identification of the regions where the highest stresses or maximum displa-
cements occur, whose locations are not known beforehand. Hence, the modeling
of the global dynamical behavior is the main goal. However, extensions to mode
superposition methods (see e.g. Section 2.2.1) provide techniques of incorpora-
ting the (static) influence of input forces in the reduction basis, partially taking
input-output behavior into account.

In numerical mathematics and systems and control, the internal behavior of the
model is of little interest. In control design, the system behavior from the control
input to the measured outputs is of relevance and this directly forms the basis for
the model reduction procedure. In the analysis of large-scale electrical circuits,
where moment matching methods from the field of numerical mathematics are ty-
pically applied, interest is in the reduction of linear subcircuits. Here, its influence
on the total circuit is described by the inputs and outputs, such that the approxi-
mation of input-output behavior is of interest. Nonetheless, input-output behavior
is only truly taken into account in the latter when two-sided projection techniques
are used. Namely, when using one-sided projection techniques, either the input
matrix B or output matrix C is discarded, such that the focus of the reduction is
limited to the state-to-output or input-to-state behavior, respectively. In this case,
the number of moments matched is independent of the choice of input or output
matrix. Nonetheless, the number of moments matched for a given reduction order
k is doubled in the two-sided case, when input-output behavior is fully taken into
account.

• Interpretation of reduction space
Model reduction techniques from structural dynamics are largely based on phy-
sical properties of mechanical systems. Therefore, the reduction space resulting
from modal approximation has a useful engineering interpretation. Namely, it
consists of the modes of the system, which represent the typical vibration pattern
of a structure at a given frequency. The most important modes and the corres-
ponding eigenfrequencies are preserved in the reduced-order system. Since these
modes are obtained via an eigenvalue decomposition, the system in modal co-
ordinates is in diagonal form, as discussed in Section 2.2.1. Here, it is recalled
that this only holds when the system is undamped or has proportional (Rayleigh)
damping or modal damping. In this diagonal form, the equations describing the
dynamics of the modes are uncoupled, which means that no error is introduced in
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the dynamics of the modes that are kept in the reduced-order model. In fact, the
reduction error is due to the deletion of modes, rather than errors in the dynamics
of the modes themselves.

In the reduction techniques from numerical mathematics and systems and control,
the reduction space does not have a clear physical interpretation. Of course, this is
largely due to the fact that these procedures are not limited to mechanical systems
and are based on system-theoretic properties instead, as discussed in Section 2.2.3.

• Global versus local approximation in frequency domain
The modal truncation and moment matching model reduction techniques from
structural dynamics and numerical mathematics have in common that they can
be considered as frequency-domain-based (or Laplace-domain-based) techniques.
Therefore, they give a good approximation in some part of the frequency-domain
only. This is directly apparent in the modal reduction techniques from structural
dynamics, where the modes as used in the reduced-order model are selected by
their corresponding eigenfrequency. Here, the modes are typically selected from
the lower end of the frequency spectrum. On the other hand, moment matching
in numerical mathematics is based on the Taylor series expansion of a transfer
function at a specific point (or multiple points) in Laplace domain. Since the
moments around this expansion point form the basis for the reduced-order mo-
del, this approximation can only be expected to be accurate around the expansion
point, leading to a local approximation in frequency domain.

In balanced truncation, as used in systems and control, the behavior in frequency
domain does not form the basis of the model reduction procedure. Instead, the
transfer of energy from the input to the output is used as a tool for model reduction,
which can be considered as a time-domain approach. Nonetheless, specific regions
in frequency domain can be emphasized by the extension to frequency-weighted
balanced truncation, as noted in Section 2.2.3.

• Automatic versus user-dependent model reduction
A final general difference can be found in the level of automation of the model
reduction techniques from the different fields. Here, only the balanced trunca-
tion method in systems and control is fully automatic when a requirement on the
quality of the reduced-order model is given. Namely, the existence of an a priori
error bound (2.2.56) allows for the automatic choice of the reduction order. The
methods from structural dynamics and numerical mathematics lack such an error
bound.

Even when the reduction order is chosen beforehand, the methods from structural
dynamics and numerical mathematics are heuristic. That is, the mode superposi-
tion techniques from structural dynamics are dependent on the frequency range of
interest, which needs to be specified a priori. Herein, typically the modes corres-
ponding to the lowest frequencies are chosen. Similarly, the reduction procedure
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in the moment matching techniques from numerical mathematics is dependent
on the choice of expansion points. However, the influence of this choice on the
properties of the reduced-order system is largely an open problem and very few
guidelines for this selection exists. Therefore, these expansion points are typically
chosen as s0 = 0 or s0 = ∞. Of course, the computational procedure in mode
superposition and moment matching is fully automatic as soon as a choice is spe-
cified for the frequency range of interest and the expansion point, respectively.

2.3.3 Moment matching and model truncation augmentation

A close link exists between modal truncation augmentation techniques used in structural
dynamics (Section 2.2.1) and the moment matching methods (Section 2.2.2). This can be
understood by considering the series expansion of the (non-damped) structural equations
(2.2.2) in the Laplace domain for s2:

q = (K + s2M)−1 f =

∞∑
i=0

(
(K + s2

0M)−1M
)i

(K + s2
0M)−1 f , (2.3.1)

where s0 is a chosen expansion point. Clearly this expansion is similar to the moment
matching expansion (2.2.23) except that here it is written for the second-order form. The
reduction basis suggested by this expansion is the Krylov series

Kk
(
(K + s2

0M)−1M, (K + s2
0M)−1 f

)
(2.3.2)

In the modal truncation augmentation approach the reduction basis consists of some
eigenmodes of the system and modal truncation corrections as described in (2.2.20). Re-
calling the definition (2.2.16) of the correction vectors, it can be seen that the reduction
basis (2.2.20) for the modal truncation augmentation is

span
{[
Φ qcor

]}
= span

{[
Φ K−1 f

]}
, (2.3.3)

indicating that it includes the zero-order expansion term around s0 = 0. Thus, it conserves
the zero-order moment of the second-order problem around s0 = 0, which is a di-
rect consequence of the fact that the reduction basis includes the exact static solution.
Through a similar reasoning one could say that substructuring methods that include the
interface static modes (like the Craig-Bampton, the Rubin/MacNeal and the Dual Craig-
Bamtpon methods) are matching the zero-order moments for the interface forces.

The modal truncation augmentation form presented in Section 2.2.1 includes only
the zeroth-order correction as indicated by the basis (2.3.3). Higher-order corrections as
suggested in the Krylov sequence (2.3.2) can also be included in the reduction space as
proposed in [18, 92, 48, 1, 50, 72], which guarantees matching higher-orders moments
and thus leads to an approach similar to the moment matching technique. Higher-order
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correction modes have also been used in the context of substructuring and mode com-
ponent synthesis [17, 70, 73]. Note that the high-order corrections for structural pro-
blems can be obtained as a by-product of the Lanczos algorithm used to compute the
eigenmodes [71] and that one can also consider quasi-static corrections (i.e. for s0 , 0)
in case one is interested in a specific frequency range [93].

It is important to observe that the modal truncation augmentation uses a reduction
basis that, in addition to the moments, also includes true eigenmodes of the system.
In that sense this method differs from the usual moment matching techniques and it
accounts both for the global behavior of the system (through its eigenmodes) and for
input-specific components (through the moments).

2.3.4 Computational aspects

A general comparison of properties of model reduction techniques from the fields of
structural dynamics, numerical mathematics and systems and control was given in Sec-
tion 2.3.2. Computational aspects are addressed in the current section.

From a computational point of view, the methods from systems and control have
the highest cost. In these methods, the computational complexity is mainly due to the
solution of two Lyapunov equations (see (2.2.44) and (2.2.45)), which are of the size
of the original high-order model. This seriously hinders the applicability of balanced
truncation to systems of very high order. In addition, a full eigenvalue decomposition
(see (2.2.52)) is required, such that the total computational cost associated to balanced
truncation is high. Finally, a full coordinate transformation has to be computed, before
reduction can be performed by means of truncation.

The computational cost for reduction techniques from the fields of structural dy-
namics and numerical mathematics is significantly lower. First, these methods do not
require the computation of a full coordinate transformation. Instead, only the reduction
space is computed, which is given by only k basis vectors. Furthermore, the compu-
tations are less costly since the matrix operations that are required are relatively cheap
when compared to those needed for the solution of Lyapunov equations. In the mode
displacement techniques from structural dynamics, only the most important eigenva-
lues and eigenvectors need to be computed. Since the frequency domain of interest is
typically known beforehand, efficient iterative methods can be used to find the eigen-
frequencies in this range. For the Krylov-subspace based moment matching techniques
from numerical mathematics, the numerical cost is even less. Namely, the application
of the Arnoldi or Lanczos methods only requires the solutions of linear sets of equa-
tions or matrix-vector multiplications. Therefore, moment matching methods by Krylov
subspaces can be applied to systems of very high order.

Even though the application of balanced truncation seems limited from a computa-
tional point of view, it is remarked that the perception of ”high-order” differs in the three
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different fields. Especially, models of very low order (i.e. O(100
− 101)) are of interest in

the field of systems and control. This is mainly due to the fact that controllers have to be
implemented in real-time, which provides a limit on the order of the controller. Further-
more, low-order controllers are preferred because of their limited complexity. Hence,
even though the computation of Lyapunov equations limits the applicability of balanced
truncation to systems of orderO(103), it still provides a solution to relevant model reduc-
tion problems in practice. On the other hand, the models describing mechanical struc-
tures in the field of structural dynamics typically result from finite element procedures,
leading to models of orders up to O(106). Similarly, the moment matching techniques
from numerical mathematics typically find application in the analysis of large-scale elec-
trical circuits, leading to models of order up to O(106). From these applications, the need
for numerically efficient model reduction procedures is clear.

2.3.5 Preservation of properties

In model reduction, the objective is the construction of a reduced-order model that gives
a good approximation of the original high-order model. Herein, it is of crucial impor-
tance that the reduced-order model preserves some properties of the original system,
among which stability is the most important. If the high-order system is asymptotically
stable, balanced truncation (see Section 2.2.3) indeed preserves this property, which is
due to the fact that the (diagonal) gramians act as Lyapunov equations. The moment
matching techniques from Section 2.2.2 do not satisfy such a property, such that stabi-
lity of the reduced-order model can not be guaranteed in general. Nonetheless, methods
exist that preserve stability for classes of linear systems (see e.g. [61]).

In the mode superposition techniques outlined in Section 2.2.1, stability of the reduced-
order model can not be guaranteed when the original high-order system exhibits general
damping. However, in the important cases of undamped systems or systems with positive
definite symmetric damping matrix (which includes the cases of proportional (Rayleigh)
and modal damping), the stability properties are indeed preserved. In fact, since the
reduced-order model is based on the computation of the undamped vibration modes, re-
duction of an undamped system leads to an undamped reduced-order system, where the
most important eigenfrequencies are preserved. Stated differently, the pole locations of
the most important poles remain unchanged. This property does in general not hold for
balanced truncation and moment matching techniques.

Furthermore, it is obvious that modal superposition techniques preserve the second-
order form in the reduced-order model. Nonetheless, this is an important feature in the
field of structural dynamics since it implies that the kinematic relation between displace-
ment and velocity is preserved. This does not hold for balanced truncation and moment
matching, even if the models stem from a second-order form.

Next, it is remarked that the existence of an error bound, as discussed in Sec-
tion 2.3.2, is closely related to stability preservation. Namely, a bound on the difference
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Figure 2.1: Truss frame system.

of solutions from the high-order and reduced-order systems can only be expected to exist
when both systems are stable, making stability a prerequisite for the existence of an error
bound.

Finally, it is often important to preserve other system properties besides stability.
Herein, passivity and bounded realness are the most notable. Even though the methods
as discussed in Section 2.2 do not generally preserve these properties, it is noted that
extensions exist that do. For the different fields, some references to the literature are
given in the corresponding parts in Section 2.2.

2.4 Illustrative example

To illustrate the differences between methods as discussed in Section 2.3, the model
reduction procedures of Section 2.2 are applied to a common benchmark example.

The benchmark example is chosen from the domain of structural dynamics, to allow
for application of all model reduction techniques discussed in Section 2.2. More speci-
fically, the truss frame system as depicted in Figure 2.1 is considered. Here, the nodes,
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as indicated by points, are connected by beam elements, leading to a model of the form

Mq̈ + Dq̇ + Kq = b̃1u1 + b̃2u2, (2.4.1)

y1 = c̃T
1 q, (2.4.2)

y2 = c̃T
2 q, (2.4.3)

where q ∈ RN is the vector of the displacements and rotations of the nodes, with N =

714. The truss frame is subject to forces acting (in x-direction) on the positions as shown
in Figure 2.1, which are modeled as the inputs u1 and u2 in (2.4.1). In addition, the
displacement (in x-direction) of the truss frame is measured at two locations, leading to
the outputs y1 and y2. Finally, the truss frame model is lightly damped, which is modeled
using modal damping.

In order to apply model reduction techniques from the fields of numerical mathema-
tics and systems and control, the truss frame model (2.4.1) has to be written in state-space
form. By choosing the state vector as xT

= [qT q̇T], the dynamics is given by

ẋ = Ax + b1u1 + b2u2, (2.4.4)

yi = cT
i x, i ∈ {1, 2}, (2.4.5)

where it is noted that x ∈ Rn with n = 2N. The system matrices read

A =

[
0 I

−M−1K −M−1D

]
, bi =

[
0

M−1 b̃i

]
, ci =

[
c̃i
0

]
, i ∈ {1, 2}. (2.4.6)

Alternatively, the moment matching methods discussed in Section 2.2.2 can also be ap-
plied using system descriptions of the form

Eẋ = Ax + b1u1 + b2u2, (2.4.7)

yi = cT
i x, i ∈ {1, 2}, (2.4.8)

with matrices

E =

[
I 0
0 M

]
, A =

[
0 I
−K −D

]
, bi =

[
0
b̃i

]
, i ∈ {1, 2}, (2.4.9)

which avoids the need for inversion of the matrix M. In this form, the output vectors ci
remain unchanged.

The model reduction techniques from Section 2.2 are applied to this example. From
the field of structural dynamics, the mode displacement method is used. Here, it is re-
called that this method is based on the undamped system (i.e. D = 0) and the location
of the inputs and outputs (i.e. knowledge on b̃i and c̃i) is not taken into account. No-
netheless, the (static) influence of the locations of the inputs can be taken into account
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by the extensions given by mode acceleration and modal truncation augmentation (see
Section 2.2.1) On the other hand, model reduction with respect to input u1 and output y1
is performed using moment matching and balanced truncation. Since these methods are
based on the state-space form (2.4.5) (or (2.4.8)), damping can be included. In moment
matching, the expansion point is chosen as s0 = 0 and a one-sided projection is used, ba-
sed on the input only (see (2.2.30)). In reduction, the reduced-order size of the first-order
models k is chosen as 2K, with K the number of modes taken into account in the mode
displacement methods. This choice is motivated by the fact that the representation of
a second-order model in first-order form doubles the number of equations. Hereby, the
reduced-order models in first-order and second-order form have a similar approximation
accuracy. Choosing K = 2 (k = 4) leads to the frequency response functions, with input
u1 and output y1, as depicted in Figures 2.2 and 2.3.

In the mode displacement method (MD), the K lowest eigenvectors are chosen in the
reduction basis. Therefore, the first two resonance peaks are captured by this reduced-
order model. On the other hand, the method of balanced truncation (BT) does not capture
the second resonance peak. Instead, the third resonance is approximated. This is caused
by the fact that balanced truncation takes the location of the input and output into ac-
count. Specifically, the second and third resonance peak correspond to a bending mode
around the y-axis and a torsional mode, respectively, where the latter has a larger in-
fluence on the input-output behavior from input u1 to output y1. Finally, the moment
matching technique (MM) gives a good approximation at low frequencies, which origi-
nates from the choice of the expansion point as s0 = 0. Therefore, for k = 4, only the
first resonance peak is captured. This is most clearly shown in the error magnitude in
Figure 2.3, where the moment matching techniques gives the best approximation for low
frequencies. However, moment matching gives the largest H∞ norm of the error sys-
tem. The lowest norm is obtained for balanced truncation, which outperforms the mode
displacement method by the selection of the third rather than the second resonance peak.

To illustrate the influence of the locations of the inputs and outputs on the reduced-
order model, the frequency response functions for input u2 and output y2 are depicted in
Figure 2.4, whereas the corresponding error is given in Figure 2.5. Here, the same re-
duction bases were used as in Figure 2.2. Hence, the input u2 and output y2 are not taken
into account in the model reduction procedure. Since the mode displacement method is
based on the global dynamics rather than specific inputs and outputs, it also gives a good
approximation for these new inputs. On the contrary, balanced truncation and moment
matching are dependent on the input-output behavior, where it is recalled that reduction
was based on input u1 and output y1. Therefore, they do not give a good approximation
for the input-output behavior from input u2 to output y2, as is clear from the large errors
in Figure 2.5.

However, the moment matching technique used here is one-sided. Hence, only the
input matrix is taken into account and, in this case, moment matching (of k moments)
can be proven for any output. To illustrate this, the input-output behavior from input u1
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Figure 2.2: Comparison of the modal displacement method (MD), balanced truncation
(BT) and moment matching (MM) for reduction to K = 2 (k = 4): magnitude of the
frequency response function for input u1 and output y1.

Figure 2.3: Magnitude of the error for reduction to K = 2 (k = 4) for input u1 and output
y1. Line styles as in Figure 2.2.
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Figure 2.4: Comparison of the modal displacement method (MD), balanced truncation
(BT) and moment matching (MM) for reduction to K = 2 (k = 4): magnitude of the
frequency response function for input u2 and output y2. For balanced truncation and
moment matching, the reduced-order model is based on input u1 and output y1.

Figure 2.5: Magnitude of the error for reduction to K = 2 (k = 4) for input u2 and output
y2. Line styles as in Figure 2.4. For balanced truncation and moment matching, the
reduced-order model is based on input u1 and output y1.
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Figure 2.6: Comparison of the modal displacement method (MD), balanced truncation
(BT) and moment matching (MM) for reduction to K = 2 (k = 4): magnitude of the
frequency response function for input u1 and output y2. For balanced truncation and
moment matching, the reduced-order model is based on input u1 and output y1.

Figure 2.7: Magnitude of the error for reduction to K = 2 (k = 4) for input u1 and output
y2. Line styles as in Figure 2.6. For balanced truncation and moment matching, the
reduced-order model is based on input u1 and output y1.
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to output y2 is shown in Figures 2.6 and 2.7, again using the reduction basis generated
for input u1 and output y1. As expected, the performance obtained by moment matching
is similar to that of Figure 2.2 (and Figure 2.3), where the same input u1 was used. For
the mode displacement method and balanced truncation, the conclusions as stated before
hold.

Finally, stability of the reduced-order models is checked. Since the truss frame sys-
tem exhibits modal damping, the reduced-order model obtained by the mode displace-
ment technique is guaranteed to be stable. Stability is also guaranteed in the case of
balanced truncation. For moment matching, stability can not be guaranteed a priori.
However, for k = 4, the reduced-order model obtained by moment matching is stable,
as follows from an a posteriori check. On the other hand, for k = 6, stability is not
preserved using moment matching.

2.5 Conclusions

In this paper, an overview and comparison of popular model reduction methods from the
fields of structural dynamics, numerical mathematics and systems and control are pro-
vided. A detailed review is given on mode displacement techniques, moment matching
methods and balanced truncation, whereas important extensions are outlined briefly.

The differences and similarities between presented methods are discussed, both qua-
litatively and quantitatively. Here, an important difference is the fact that the global
dynamics is taken into account in the mode displacement methods, whereas moment
matching and balanced truncation aim at the approximation of input-output behavior.
Moreover, the computational cost of the methods differs, which limits the application of
balanced truncation to systems of moderate size. On the other hand, balanced trunca-
tion has an a priori error bound, which is not the case for the mode displacement and
moment matching techniques. Also, balanced truncation and the mode displacement
method preserve stability of the high-order model, whereas stability is not guaranteed
when applying moment matching.

The overview of the differences and commonalities between the different reduction
method facilitates the choice of the reduction technique with the desirable properties for
a given reduction problem.

Finally, these differences are illustrated by means of application of the different me-
thods to a common benchmark example.



Chapter 3

Model Order Reduction

A brief introduction to the Krylov subspace projection based methods was given already
in the comparison paper presented in Chapter 2. This chapter provides all Krylov-related
theorems, i.e., all Krylov-related results which are used in the upcoming chapters. The
results themselves have been published in different works and papers, for instance in
[36, 26, 51], what we add are a uniform notation and comprehensive proofs based on the
fewest possible assumptions.

3.1 Introduction

In this section, we introduce the linear transient system, that is the subject of reduction,
and its transfer function. We also define the reduced-order linear transient system and
the reduced-order transfer function. Finally, we introduce some basic notations and
properties, that will be used in the reminder of the chapter and this thesis.

Definition 3.1.1. (The linear time-invariant system and its transfer function H)
Let k, l, n ∈ N, matrices A,E ∈ Rn×n, B ∈ Rn×k, C ∈ Rn×l, and D ∈ Rl×k. Matrices
B,C are called input map resp. output map. According to [3, (4.11), (4.12)] the linear
transient system in the time-domain

Eẋ(t) = Ax(t) + Bu(t)
y(t) = CTx(t) + Du(t)

(3.1.1)
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is (after a Laplace transform, assuming x(0) = 0) related to the system

sEX(s) = AX(s) + BU(s)
Y(s) = CTX(s) + DU(s),

(3.1.2)

which has its linear relation between input(s) U(s) and output(s) Y(s) determined by the
transfer function

H(s) = CT︸︷︷︸
l×n

(s E︸︷︷︸
n×n

− A︸︷︷︸
n×n

)−1 B︸︷︷︸
n×k

+ D︸︷︷︸
l×k

, (3.1.3)

assuming that pencil s 7→ F(s), F(s) = sE − A, is regular (only singular for a finite
number of s ∈ C ([28, below (9)]). Matrix E does not need to be non-singular.

Definition 3.1.2. (The reduced linear transient system and its transfer function Ĥ)
Let k, l, n ∈ N, matrices A,E ∈ Rn×n, B ∈ Rn×k, C ∈ Rn×l, and D ∈ Rl×k. Let V,W ⊂ Cn

be linear vector spaces and let m := dim(V) = dim(W) be the dimension of V. Assume
that V = colspanV, W = colspanW and that V and W are of full column rank.
The linear reduced transient system in the time-domain

WTEVẋ(t) = WTAVx(t) + WTBu(t)
ŷ(t) = CTVx(t) + Du(t)

(3.1.4)

is (after a Laplace transform, assuming x(0) = 0) related to the reduced Laplace system

sWTEVX(s) = WTAVX(s) + WTBU(s)
Ŷ(s) = CTVX(s) + DU(s),

(3.1.5)

which has a linear relation between input(s) U(s) and output(s) Ŷ determined by the
reduced transfer function Ĥ which depends on the linear spaces V and W:

Ĥ(s) = CTV(s WT︸︷︷︸
m×n

E V︸︷︷︸
n×m

−WTAV)−1WTB + D

= CTV︸︷︷︸
l×m

(sWTEV −WTAV︸                 ︷︷                 ︸
m×m

)−1 WTB︸︷︷︸
m×k

+D

= ĈT(sÊ − Â)−1B̂ + D̂,

V =
{
Vx : x ∈ Rm}

,

W =
{
Wx : x ∈ Rm}

,

(3.1.6)

where D̂ = D, ĈT
= CTV =⇒ Ĉ = VTC, Ê = WTEV, Â = WTAV, and B̂ = WTB,

assuming that s 7→ F̂(s), F̂(s) = sWTEV − WTAV, is non-singular for all s ∈ C,
(see remark 3.1.1 below). The space V consists of vectors in Rn. Since it is assumedly
spanned by m linearly independent column-vectors, the related matrix is V ∈ Rn×m

which implies that if v ∈ V then there exists an x ∈ Rm such that v = Vx.
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Remark 3.1.1. For F̂ to be square and nonsingular V and W need to be of the same
order and of maximal column rank: Assume that V is not of maximal column rank.
Then there exists a coordinate vector 0 , x ∈ Rm such that Vx = 0 which implies
that F̂x = WTFVx = 0 which shows that F̂ is singular. Thus, F̂ non-singular implies
V,W must be of maximal column rank which implies that at its turn m ≤ n. For a
matrix of column-vectors x = [x1, . . . , xk] ∈ Rm×k we interpret Vx as the element Vx =

(Vx1, . . . ,Vxk) ∈ Vk.

Notation and basic relations

For the remainder of this thesis, we assume, that the pencil sE − A is regular, i.e., that
it is singular only for a finite number of s ∈ C. We also assume that the matrix E is
non-singular, whenever its inverse is explicitly used.
From now on we use abbreviations F, G, F̂, and Ĝ

F ≡ F(s) = sE − A ∈ Cn×n, (3.1.7)

G ≡ G(s) = (sE − A)−1
∈ Cn×n, (3.1.8)

F̂ ≡ F̂(s) = sÊ − Â ∈ Cm×m, (3.1.9)

Ĝ ≡ Ĝ(s) = (sÊ − Â)−1
∈ Cm×m. (3.1.10)

To group the factors of a matrix product ABC we write matrix product A ◦ B ◦ C. The
operator ∂ stands for the derivative or a partial derivative.
Because later on we compare derivatives of matrix-valued functions of a scalar complex
value, we present several basic derivative relations.

Definition 3.1.3. Cd
3 x 7→ A(x) ∈ Cn×m a matrix of which each coefficient depends on

the parameters (x1, . . . , xd) = x ∈ Cd. Let p ∈ {1, . . . , d}. Then the pth partial derivative
of A is

x 7→ ∂pA(x) =


∂pa11(x) · · · ∂pa1n(x)

...
...

∂pan1(x) · · · ∂pann(x)

 ∈ Cn×m. (3.1.11)

Lemma 3.1.1. Let x ∈ Cd, and p ∈ {1, . . . , d}. Let x 7→ A(x) ∈ Cn×m be a matrix-
function and let B ∈ Ck×n and C ∈ Cm×l be independent of p. Then

∂p (B ◦ A ◦ C) = B ◦ (∂pA) ◦ C. (3.1.12)

Let x 7→ B(x) ∈ Cm×l. Then

∂p (A ◦ B) = (∂pA) ◦ B + A ◦ (∂pB). (3.1.13)
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Assume that n = m and x 7→ A(x) is non-singular for all x ∈ Cd then

∂p

(
A−1

)
= −A−1

◦ ∂pA ◦ A−1. (3.1.14)

If in addition ∂pA does not depend on variable x then

∂k
p

(
A−1

)
= (−1)k

· k! ·
(
A−1∂pA

)k
A−1. (3.1.15)

Let s ∈ C, s 7→ A(s) ∈ Cn×m be a matrix-function. Then

∂ (sA(s)) = A(s) + s∂A(s). (3.1.16)

Theorem 3.1.1. Let s 7→ A(s) ∈ Cn×n be a matrix-function of one degree of freedom s.
Then

∂k (sA) = k∂k−1A + s∂kA, k = 0, 1, 2, . . . . (3.1.17)

3.2 The moments of the transfer function H(s)

In this section, we derive formulas for the higher-order derivatives of H given by (3.1.3).
Based on these results, we define so called moments of the transfer function, which
will be used in the further sections as a measure of the approximation accuracy of the
reduced-order model. We assume that the transfer function is an analytic function, i.e.,
that (3.2.2) exists for all s in a topologically open neighborhood of s0.

Theorem 3.2.1. Let A, . . . ,H be as in (3.1.3), i.e., H(s) = CT(sE − A)−1B + D. Then
for all integer i > 0

∂iH(s) = (−1)ii! · CT (G(s)E)i G(s)B = (−1)ii! · CTG(s) (EG(s))i B (3.2.1)

and (based on a Taylor series expansion around s0 ∈ C)

H(s) =

∞∑
i=0

(s − s0)i

i!
∂iH(s0) = D +

∞∑
i=0

(−1)i(s − s0)iCT(G(s0)E)iG(s0)B, (3.2.2)

for all s in an open neighborhood of s0, which for s0 = 0 and E = I reduces to

H(s) = D −
∞∑

i=0

siCTA−(i+1)B,

for all s in an open neighborhood of 0.
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Proof. For i > 0

∂iH(s) =
(3.1.12)

CT(∂iG(s))B =
(3.1.15)

(−1)ii!CT(G(s)E)iG(s)B

as was to be shown.
Furthermore

H(s) =

∞∑
i=0

(s − s0)i

i!
∂iH(s0)

=
(3.2.1)

D +

∞∑
i=0

(s − s0)i

i!
(−1)ii! · CT(G(s0)E)iG(s0)B

= D +

∞∑
i=0

(s − s0)i(−1)i
· CT(G(s0)E)iG(s0)B,

which for s0 = 0 and E = I reduces to

H(s) =
s0≡0

D +

∞∑
i=0

(−s)iCT ((0 · E − A)−1 E)i(0 · E − A)−1B

= D +

∞∑
i=0

(−s)i(−1)i+1CTA−(i+1)EiB

=
E=I

D −
∞∑

i=0

siCTA−(i+1)B,

for all s in an open neighborhood of 0. �

Definition 3.2.1. (The ith moment of the transfer function H)
Assuming D = 0, the ith moment of H at s0 ∈ C is defined as (see [46])

Mi(s0) = CT(G(s0)E)iG(s0)B. (3.2.3)

3.3 Moments at infinity

To obtain the Taylor series expansion at infinity, one substitutes 1/s for s and calculates
the Taylor series’ coefficients at s = 0. Let T (s) = 1/s. One can not straightforwardly
apply the chain-rule to H∞(s) = H(1/s) = (H ◦ T )(s), since it leads to

∂H∞(s) = ∂(H ◦ T )(s) = ∂H(T (s)) · ∂T (s),

where the factor ∂T (s) = −1/s2
→ −∞ for s → 0. Therefore we follow an alternative

approach based on a rewritten form of H∞:

H∞(s) = H(1/s) = CTG(1/s)B+D = CT(s ·
1
s

G(
1
s

)︸  ︷︷  ︸
G∞(s)

)B+D = CTs ·G∞(s)B+D, (3.3.1)
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where

G∞(s) =
1
s

G(
1
s

) = (E/s−A)−1/s = ((E−sA)/s)−1/s = (E−sA)−1
=

(s(−A) − (−E))︸             ︷︷             ︸
F∞(s)


−1

(3.3.2)
is differentiable for s ↓ 0. This implies that for i fixed

∂iG∞(s) =
(3.1.15)

(−1)ii!
(
G∞∂F∞

)i G∞ = (−1)ii!
(
G∞ ◦ −A

)i G∞ = i!
(
G∞ ◦ A

)i G∞.

(3.3.3)
Hence for all i > 0

∂iH∞(s) =
(3.3.1)

∂iCTsG∞(s)B + ∂iD

=
(3.1.12)

CT[∂i (sG∞(s)
) ]

B

=
(3.1.17)

CT
[
i∂i−1G∞(s) + s∂iG∞(s)

]
B

=
(3.3.3)

CT
[
i(i − 1)! · (G∞(s)A)i−1G∞(s) + s · i! · (G∞(s)A)iG∞(s)

]
B

= CT
[
i!

(
(G∞(s)A)i−1G∞(s) + s(G∞(s)A)iG∞(s)

)]
B.

Let i > 0. Since G∞(0) = E−1 one obtains the derivatives of H at∞:

∂iH∞(0) = i! · CT(E−1A)i−1E−1B.

This shows that the Taylor series at infinity of H is that of H∞ at 0, which is

H∞(s) =

∞∑
i=0

(s − 0)i

i!
· ∂iH∞(0)

= D +

∞∑
i=1

si

i!
· i!CT

(
E−1A

)i−1
E−1B

= D +

∞∑
i=1

si
· CT

(
E−1A

)i−1
E−1B,

for all s in an open neighborhood of 0, i.e.,

H(s) = D +

∞∑
i=1

s−i
· CT

(
E−1A

)i−1
E−1B, s→ ∞.

Definition 3.3.1. (The ith moment of the transfer function H(s) at infinity)
Assuming D = 0, the ith moment of the transfer function H(s) at infinity is called a
Markov parameter and defined as (see [3])

M−i = CT
(
E−1A

)i−1
E−1B. (3.3.4)
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3.4 Moment matching property of the reduced-order system

As already mentioned in Section 2.2.2, the goal of the Krylov subspace model order re-
duction is to find a projection-based approximation of the original transfer function, that
matches the first k moments of the original transfer function. In other words, the objec-
tive is to calculate the reduced-order transfer function Ĥ(s), whose moment expansion
is given by

Ĥ(s) =

∞∑
i=0

(−1)iM̂i(s0)(s − s0)i, (3.4.1)

with
M̂i(s0) = Mi(s0), for i = 1, . . . , k, (3.4.2)

and Mi(s0) being the moments of the original transfer function defined in Definition 3.2.1.
This is called the moment matching property of the reduced-order system. By construc-
tion, if the moments of the original and reduced transfer function match, then also the
derivatives of these functions match. This means that the reduced transfer function inter-
polates the original transfer function, i.e., in that sense approximates the original transfer
function.
In this section, we prove, that under certain assumptions, one can create a reduced-order
model that matches a certain number of the moments of the original system. We begin
by defining the Krylov subspace.

Definition 3.4.1. (The pth Krylov subspace)
For n, k ∈ N, k ≤ n, square matrix A ∈ Rn×n, and vector B ∈ Rn×k define the pth Krylov
subspace

Kp(A,B) = colspan{B,AB,A2B, . . . ,Ap−1B}. (3.4.3)

It is possible that dim(Kp(A,B)) < pk since since some of the columns of Kp(A,B)
might be linearly dependent. Let V be as in (3.1.6). Assume m := dim(V) and let in
addition Kp(A,B) ⊂ V. One finds dim(Kp(A,B)) ≤ dim(V) = m.

Example 3.4.1. As an example where some of the columns of Kp(A,B) are bound to be
linearly dependent, consider A = I for which dim(Kp(A,B)) = dim(B) ≤ k for every
p ∈ N.

In the remainder of this chapter, when possible, we will denote the matrix G(s) by G.

Lemma 3.4.1. Let A, . . . ,H be as in (3.1.3) and Â, . . . , Ĥ,V,W be as in (3.1.6). Then

Ĝ−1
= WTG−1V, Ĝ−T

= VTG−TW. (3.4.4)
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Proof. The last result is obtained in a similar manner to the first one:

WTG−1V = WTFV = WT (sE − A) V = sWTEV −WTAV = F̂ = Ĝ−1.

�

Theorem 3.4.1 and Theorem 3.4.2 together are used to show that the moments of the
original and reduced-order transfer functions match, for instance in Theorem 3.4.3. The
first of the two Theorems shows the relation between GB and its reduced variant, the
second one the relation between a multiplication with GE and a multiplication with its
reduced variant, illustrated using the following commutative diagram:

ĜB̂ x0
ĜÊ
−−−−−→ x1

ĜÊ
−−−−−→ x2 ∈ C

m

Lem.3.4.1:V
y V

y V
y V

y
GB Vx0

The.3.4.1:GE
−−−−−−−−−−→ Vx1

GE
−−−−−→ Vx2 ∈ C

n

=⇒

(ĜÊ)iĜB̂

V
y

(GE)iGB

(in Theorem 3.4.1, by construction of the Krylov space V, there exists a y to each x such
that Vy = GEx).

Theorem 3.4.1. If A, . . . ,H are as in (3.1.3), Â, . . . , Ĥ,V,W are as in (3.1.6) and GB ∈
Vk, resp. GTC ∈ W l then

V ĜB̂︸︷︷︸
m×k

= GB ∈ Cn×k, W ĜTĈ︸︷︷︸
m×l

= GTC ∈ Cn×l. (3.4.5)

Proof. Because GB ∈ Vk there exists x ∈ Rm×k such that Vx = GB and

VĜB̂ =
(3.1.6)

VĜWTB = VĜWTG−1 GB︸︷︷︸
Vx

=
(3.4.4)

VĜ WTG−1V︸     ︷︷     ︸
Ĝ−1

x = GB.
(3.4.6)

Thus ĜB̂ are the coordinates of GB relative to the linearly independent columns of V.
Next, because GTC ∈ Wk there exists x ∈ Rm×l such that Wx = GTC and

WĜTĈ =
(3.1.6)

WĜTVTC = WĜTVTG−T GTC︸︷︷︸
Wx

=
(3.4.4)

WĜ VTG−TW︸     ︷︷     ︸
Ĝ−T

x = GTC.
(3.4.7)

�

Theorem 3.4.2. Let A, . . . ,H be as in (3.1.3) and Â, . . . , Ĥ,V,W be as in (3.1.6). Let
k ∈ N. Then (independent of W) for all x, y ∈ Rm×k

Vy = (GE) Vx =⇒ y =
(
ĜÊ

)
x (3.4.8)

=⇒ V
(
ĜÊ

)
x︸ ︷︷ ︸

y

= (GE) Vx. (3.4.9)
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Similarly (independent of V) for all x, y ∈ Rm×k

Wy = (EG)T Wx =⇒ y =
(
ÊĜ

)T
x (3.4.10)

=⇒ W
(
ÊĜ

)T
x︸   ︷︷   ︸

y

= (EG)T Wx. (3.4.11)

Proof. To prove (3.4.8) observe that

Êx = WTEVx = WTG−1(GE)Vx =
Vy=GEVx

WTG−1Vy =
(3.4.4)

Ĝ−1y, (3.4.12)

after which left-multiplication with Ĝ of the left- and right-hand side leads to (3.4.8).
Note that for the case of interest m < n the right-hand side of (3.4.8) can not be replaced
by y = VTGEVx. Note that V and W do not need to have orthogonal columns and that
this theorem holds for x, y ∈ Rm×k. To prove (3.4.10), observe that

ÊTx = VTETWx = VTG−T(EG)TWx =
Wy=(EG)TWx

VTG−TWy =
(3.4.4)

Ĝ−Ty.

The reverse implication⇐ in (3.4.8): y = ĜÊx implies

Êx = Ĝ−1y ⇐⇒
(3.4.12)

WTG−1(GE)Vx = WTG−1Vy =⇒ Vy − (GE)Vx ∈ G−TW⊥.

�

Theorem 3.2.1 showed that for all s ∈ C and i = 1, 2, . . ., the ith derivative of the
(reduced) transfer function is given by

∂iH(s) =
(3.2.1)

(−1)i
· i! · CT (G(s)E)i G(s)B

∂iĤ(s) =
(3.2.1)

(−1)i
· i! · ĈT

(
Ĝ(s)Ê

)i
Ĝ(s)B̂.

(3.4.13)

If and only if D = 0 ∈ Rl×k then these relations also hold for i = 0. Next we show that
for specific (possibly with non-orthogonal columns) choices of V and W the moments
of H and Ĥ match.

Theorem 3.4.3. Let A, . . . ,H be as in (3.1.3) and Â, . . . , Ĥ be as in (3.1.6). Assume that
V in (3.1.6) is such that Kp(GE,GB) ⊂ V. Then Ĥ matches moments 0, . . . , p − 1 for
all s ∈ C

∂iH(s) = ∂iĤ(s) ∀i = 0, . . . , p − 1. (3.4.14)
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Proof. Let V be spanned by the columns of V = [v1, . . . , vm] and let it contain the vectors
V(0)

= GB ∈ Cn×k and V(i+1)
= (GE) V(i), i = 0, . . . , p− 1. For all i = 0, . . . , p− 1 define

x(i)
∈ Rm×k by Vx(i) := V(i)

∈ Vk. Then

x(i)
=

(3.4.8),i×

(
ĜÊ

)i
x(0)

=⇒

Vx(i)
= V

(
ĜÊ

)i
x(0)

=
(3.4.9)

(GE)i Vx(0)
=⇒

x(0)
=ĜB̂,(3.4.5)

V
(
ĜÊ

)i
ĜB̂ = (GE)i GB =⇒

CTV︸︷︷︸
ĈT

(
ĜÊ

)i
ĜB̂ = CT (GE)i GB,

(3.4.15)

i.e., (3.4.14) holds due to (3.4.13). Matrix V does not need to have orthogonal columns
and D does not need to be 0. By construction Kp(GE,GB) ⊂ V . �

Let p ∈ N and let m := dim(V) be the dimension of V . Theorem 3.4.3 requires that
the linear vector space V at least contains the columns of V(i)

∈ Cn×k, i = 0, . . . , p − 1.
To construct reduced systems we do not work with V directly but instead use matrix
V = [v1, . . . , vm] whose column vectors v1, v2, . . ., vm span V . Due to this definition of
V there is little to no direct relation between column vi of V and V(i): The first one is al-
ways a vector, the latter one can consist of multiple column vectors. Also, frequently the
vectors vi are orthogonal whereas the columns of V(i) do not need to be. Furthermore,
possibly m < kp (if the columns of V(i), i = 0, . . . , p − 1 are not linearly independent
and V contains only their span) and m > kp (if in addition to the columns of V(i), V
contains sufficiently many other linearly independent directions – as happens for multi-
point moment-matching in Corollary 3.4.1).

Theorem 3.4.4. Let A, . . . ,H be as in (3.1.3) and Â, . . . , Ĥ be as in (3.1.6). Assume that
W in (3.1.6) is such that Kp(GTET,GTC) ⊂ W. Then Ĥ matches moments 0, . . . , p − 1
for all s ∈ C

∂iH(s) = ∂iĤ(s) ∀i = 0, . . . , p − 1. (3.4.16)

Proof. Let W be spanned by the columns of W = [w1, . . . ,wm] and let it contain the
vectors W(0)

= GTC ∈ Cn×l and W(i+1)
= (EG)T W(i), i = 0, . . . , p − 1. For all i =
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0, . . . , p − 1 define x(i)
∈ Rm×l by Wx(i) := W(i)

∈ W l. Then

x(i)
=

(3.4.10),i×

((
ÊĜ

)T
)i

x(0)
=⇒

Wx(i)
= W

((
ÊĜ

)T
)i

x(0)
=

(3.4.11)

(
(EG)T

)i
Wx(0)

=⇒
x(0)

=ĜTĈ,(3.4.5)

W
((

ÊĜ
)T

)i
ĜTĈ =

(
(EG)T

)i
GTC ⇐⇒

(·)T

CTG (EG)i
= ĈTĜ

(
ÊĜ

)i
WT

⇐⇒

CT (GE)i G = ĈT
(
ĜÊ

)i
ĜWT

=⇒

CT (GE)i GB = ĈT
(
ĜÊ

)i
Ĝ WTB︸︷︷︸

B̂

(3.4.17)

i.e., (3.4.16) holds due to (3.4.13). Matrix W does not need to have orthogonal columns
and D does not need to be 0. �

Theorem 3.4.5 shows that for an appropriate choice of W one can double the amount of
matched moments, and therefore better approximate the original transfer function H.

Theorem 3.4.5. Let A, . . . ,H be as in (3.1.3), Â, . . . , Ĥ be as in (3.1.6). If V,W are
(generated) as in Theorem 3.4.3 and in Theorem 3.4.4 or if A and E are symmetric,
B = C, V is generated as in Theorem 3.4.3 and W = V then Ĥ matches moments
0, . . . , 2p − 1 for all s ∈ C

∂iH(s) = ∂iĤ(s) ∀i = 0, . . . , 2p − 1. (3.4.18)

Proof. First assume that V,W are generated as in Theorem 3.4.3 and in Theorem 3.4.4.
From the one but last line of (3.4.15) resp. (3.4.17) (use index j) one obtains

V
(
ĜÊ

)i
ĜB̂ = (GE)i GB, CT (GE) j G = ĈT

(
ĜÊ

) j
ĜWT

=⇒

CT (GE) j GE (GE)i GB = ĈT
(
ĜÊ

) j
Ĝ WTEV︸  ︷︷  ︸

Ê

(
ĜÊ

)i
ĜB̂ ⇐⇒

CT (GE)i+ j+1 GB =
(3.4.4)

ĈT
(
ĜÊ

)i+ j+1
ĜB̂

for all i, j ∈ {0, . . . , p − 1}. Matrices V and W do not need to have orthogonal columns
and D does not need to be 0.

Next, assume symmetric A and E, B = C, and that V is (generated) as in Theorem 3.4.3.
Because B = C, A = AT, E = ET and X−T

=
(
XT

)−1
for every matrix X imply G = GT

W in Theorem 3.4.4 is identical to V in Theorem 3.4.3. �
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Theorems 3.4.3 and 3.4.4 can be extended to the case of multi-point moment-matching
(s ∈

{
s1, s2, . . .

}
).

Corollary 3.4.1. Let s ∈ C be fixed, write G(s) instead of G. Theorem 3.4.3 resp. Theo-
rem 3.4.4 only require the inclusionsKp(G(s)E,G(s)B) ⊂ V resp. Kp(G(s)TET,G(s)TC) ⊂
W. Hence to match the required p or 2p amount of moments at s ∈

{
s1, s2, . . .

}
one needs

to use only V and W such that⋃
i=1,2,...

Kp(G(si)E,G(si)B) ⊂ V,
⋃

i=1,2,...

Kp(G(si)
TET,G(si)

TC) ⊂ W.

Remark 3.4.1. Matching multiple moments of H at a certain points si “implies” that Ĥ
interpolates H at si (i.e., Ĥ(si) = H(si)) and perhaps approximates H accurately for s
close to si.

The case E = I below is inspired by a remark in [75, p17, -5], we write GE instead of
G, since this is the notation used therein.

Corollary 3.4.2. Let E = I and A, . . . ,H be as in (3.1.3) and Â, . . . , Ĥ be as in (3.1.6).
Then substituting the requirementKp(GTET,C) ⊂ W for requirementKp(GTET,GTC) ⊂
W in Theorem 3.4.4 ensures that Ĥ matches moments 0, . . . , 2p − 2 for all s ∈ C in
Theorem 3.4.5. In addition substituting the requirement Kp(GE,B) ⊂ V for require-
mentKp(GE,GB) ⊂ V in Theorem 3.4.3 ensures that Ĥ matches moments 0, . . . , 2p−3
for all s ∈ C.

Proof. If E = I then

Ki(G
TET,GTC) = Ki(G

T,GTC) ⊂ Ki+1(GT,C) =⊂ Ki+1(GTET,C)

for all i. Hence the requirement

Ki(G
TET,GTC) ⊂ W =⇒ Ki−1(GTET,GTC) ⊂ W

which predicts the loss of 1 moment and which can further be corroborated by an
example (numerical experiment). �

Remark 3.4.2. Numerical experiments show for E , I the proposed alternative Krylov
spaces in Corollary 3.4.2 do not need to preserve any moments.

The Lanczos biorthogonalization (see [78, Section 7.1.1]) creates the required bases V
and W simultaneously.
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3.5 Conclusions

In this chapter, we explained the general ideas behind the model reduction methods based
on the projections onto Krylov subspaces. These ideas can be also straightforwardly
applied to reduce coupled systems. However, this approach may not result in an optimal,
with respect to the matrix structure, reduced-order models. In the next chapter, we focus
on the reduction methods that are designed for the coupled or interconnected systems.





Chapter 4

Block-structure preserving Model
Order Reduction

4.1 Introduction

In the previous chapter we showed how model order reduction can be based on Krylov
subspace projections. The starting point for the reduction was a linear time-invariant
system, that in the Laplace domain is given by (3.1.2)

sEX(s) = AX(s) + BU(s)

Y(s) = CT X(s).

In this chapter we will focus on linear time-invariant systems that describe interconnec-
ted respectively coupled systems. We will present a mathematical description of such
systems and present an overview of the reduction methods that are especially tailored to
be applied to this type of models.

The left side of Figure 4.1 represents a schematic model of an interconnected system
which consists of four sub-systems and a number of interconnections. These intercon-
nections can be realized in different ways, which will be focused on in Chapter 5. The
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Figure 4.1: Modeling of a coupled system.

right side of Figure 4.1 shows the system matrix A which corresponds to the graph on
the left. The matrix A has a visible bock-structure. Each of the gray diagonal blocks cor-
responds to one sub-system. The off-diagonal blocks are related to the interconnections.
The blue dots in the off-diagonal blocks show that the two corresponding sub-systems
are interconnected. The empty off-diagonal blocks show that there is no coupling bet-
ween the corresponding two sub-systems.
Generalizing, a system of k components, can be described by a linear system

s


E11 · · · E1k
...

. . .
...

Ek1 · · · Ekk



X1
...

Xk

 =


A11 · · · A1k
...

. . .
...

Ak1 · · · Akk



X1
...

Xk

 +


B1
...

Bk

 U

Y = [CT
1 , · · · ,C

T
k ]


X1
...

Xk

 ,
(4.1.1)

where the Xi ∈ R
Ni , Ni ∈ N, i = 1, ..., k, and the corresponding sub-blocks have com-

patible dimensions. Naturally, we would like to still be able to recognize this type of
block-structure in a reduced-order system matrix Â. Unfortunately, if we apply a Krylov
subspace reduction technique from Chapter 3 to the matrix A we unavoidably loose the
block-structure and obtain a non-structured dense reduced-order matrix Â as shown in
Figure 4.2. In the next two sections, we present an overview of Krylov-subspace based
block-structure preserving reduction techniques. Such techniques applied to a structured
matrix A result in a reduced-order matrix Â like the one shown in Figure 4.3. Although
the potential sparse nature of the interconnection off-diagonal blocks is lost, one can still
recognize the system’s general block-structure. The diagonal blocks still correspond to
the reduced-order sub-systems and the zero blocks related to uncoupled sub-systems are
preserved. The reduction techniques of this type are called block-structure preserving
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Figure 4.2: Loosing of the structure in the reduced-order matrix Â.

Figure 4.3: Block structure preservation in the reduced-order matrix Â.

(BSP) methods (see for instance [39]). More information about this type of technique
the reader can find in for instance [82].

For the sake of simplicity assume that there are two coupled sub-systems (k = 2 in (4.1.1)).
Then the system matrix has the block structure[

A11 A12
A21 A22

]
We call such a system an interconnected system if A12 and A21 are explicitly defined by
means of their inputs and outputs, i.e., if for instance A12 = B3CT

4 . Elsewise, if A12 and
A21 are specified in unfactored form, we call the system a coupled system. However, it is
reasonable to assume that even for the blocks specified in unfactored form there might be
defined related input and output operators, i.e., that there can be constructed B3 and C4
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such that for instance A12 = B3CT
4 . Chapter 7 considers possible construction methods

for the input and output maps when A12 and A21 are specified in unfactored form.

4.2 Moment matching methods for the coupled formulations

We will begin with BSP methods that are directly applicable to coupled systems of the
form (4.1.1)

s


E11 · · · E1k
...

. . .
...

Ek1 · · · Ekk



X1
...

Xk

 =


A11 · · · A1k
...

. . .
...

Ak1 · · · Akk



X1
...

Xk

 +


B1
...

Bk

 U

Y = [CT
1 , · · · ,C

T
k ]


X1
...

Xk

 .
This type of methods is studied in more detail in for instance [6, 39, 28]. These me-
thods aim at the creation of a reduced-order model whose matrices exhibit the original
block-structure and whose transfer function matches a number of moments of the trans-
fer function of the original system (see Section 3.4 for details on moment matching).
As for standard Krylov methods, the moment matching property is realized by projec-
ting the original system matrices onto the appropriate input- and/or output-based Krylov
subspaces Ṽ and W̃ for a chosen expansion point s ∈ C (see Theorem 3.4.3 – Theo-
rem 3.4.5). However, to preserve the block structure of the original system, the reduction
bases also need to have a special shape. They are created by partitioning the matrices Ṽ
and W̃ into k sub-blocks (with k being the number of sub-systems)

Ṽ =


V1
...

Vk

 and W̃ =


W1
...

Wk

 ,
where the number of rows in the blocks Vi, Wi, i = 1, ..., k corresponds to the number
of rows of the diagonal blocks Aii. Next, the blocks Vi and Wi are used to build block-
diagonal reduction matrices V and W

V =


V1

. . .

Vk

 and W =


W1

. . .

Wk

 (4.2.1)

and the reduced-order system is obtained by projecting the original matrices

Â = WT AV, Ê = WT EV, B̂ = WT B, Ĉ = VT C. (4.2.2)
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Note that since the splitting of the matrices Ṽ and W̃ into sub-blocks may create linearly
dependent columns, one needs to apply a re-orthogonalization of the matrices V and W
to remove every possible linear dependence. Moreover, after re-orthogonalization, one
has to assure, that the matrices V and W have the same number of columns. This can be
done by adding the necessary number of random orthogonal columns to the matrix with
the smallest amount of columns.

For the reduction bases created in the way described above, the following theorem holds.

Theorem 4.2.1. Let Ṽ and W̃ span the input- and output-based Krylov subspaces of the
rth order around the expansion point s ∈ C for the system (4.1.1). If

colspanṼ ⊆ colspanV and colspanW̃ ⊆ colspanW,

then a reduced-order system computed as in (4.2.2) has the transfer function that matches
2p moments of the transfer function of the original system (4.1.1).

Proof. See Theorem 3.4.5. �

4.2.1 SPRIM

Paper [28] presents SPRIM, a structure preserving reduced order method for intercon-
nect macromodeling. Its author focuses on an RLC circuit application. Model order
reduction methods are of importance to microchip manufacturers since complex mi-
crochips such as processors contain many interconnected substructures. The relevant
equations are (notation as in [28])

Gx + Cx′ = Bu (4.2.3)

with

G =

[
ET

g GEg ET
l

−El 0

]
, C =

[
ET

c CEc 0
0 L

]
, B =

[
ET

i
0

]
,

where G, C, and L are symmetric positive definite (square) matrices. The matrices
Eg, Ec, El and Ei are parts of an adjacency matrix E which describes the connectivity
of the electronic circuit, the subscripts g, c, l, i stand for branches containing resistors,
capacitors, inductors and current sources. The SPRIM related Laplace domain transfer
function HSPRIM is

HSPRIM(s) = B
T (G + sC)−1

B

where B, C and G are re-written

C =

[
C1 0
0 C2

]
, G =

[
G1 GT

2
−G2 0

]
, B =

[
B1
0

]
.
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The author presents a reduction basis V of the type (4.2.1) in [28, (21)] and proves
in [28, Theorem 3] that it (W = V) preserves 2p moments, double the amount preserved
by PRIMA. He also addresses the passivity.

In this section we present an extension of [28, Theorem 3] based on the notation in
Chapter 3. We do not discuss passivity. Related to (4.2.3) the matrices A,B,C,E are
two by two block matrices with A22 = 0 (see [28, Definition of G in equation 3, p81]).
Theorem 4.2.2 below proves [28, Theorem 3, p84], i.e., that all 2p moments are matched,
even for the case where A22 is symmetric, but not necessarily zero. The preservation
of the 2p of moments is not due to Theorem 3.4.5 since in the SPRIM case A is not
symmetric and neither due to the fact that V was created by the splitting of a Krylov
space.

Theorem 4.2.2. Let A, . . . ,H be as in (3.1.3), Am, . . . ,Hm, V,W, V, W be as in (3.1.6).
In addition let n, n1, n2 ∈ N, n1 + n2 = n and assume that A,B,C,E have block structure
E,A, J ∈ R(n1+n2)×(n1+n2), V ∈ C(n1+n2)×m and B ∈ R(n1+n2)×k, and as in SPRIM satisfy

E =

[
Q

R

]
, A =

[
M N
−NT P

]
, J =

[
I
−I

]
, B =

[
U
0

]
,

and let C = B, M = MT, P = PT, E = ET (SPRIM assumes P = 0). Then

(GTET)iGTC = J(GE)iGB =⇒ Kp(GTET,GTC) = JKp(GE,GC). (4.2.4)

If V is as in Theorem 3.4.3, the columns of V span V and W is the column span of
W = JV ∈ Cn×m then Hm in (3.1.6) matches moments 0, . . . , 2p − 1. Furthermore, if V
is as in Theorem 3.4.3 and the columns of the 2 × 1 matrix V = [V1; V2] span V and

W̃ = Ṽ =

[
V1 0
0 V2

]
∈ Cn×2m (4.2.5)

then substituting Ṽ and W̃ (the column spans of Ṽ respectively W̃) for V and W in
Theorem 3.4.3 respectively in Theorem 3.4.4 also Hm also preserves 2p moments.

Proof. First note that J2
= I ∈ Rn×n, J−1

= J. Using these relations we show for all
X ∈ {A,E,F,G} that JXJ = XT:

JAJ =

[
M −N
NT P

]
=

([
MT N
−NT PT

])T

= AT, JEJ = E =
E=ET

ET

whence in addition
JFJ = sET

− AT
= (sE − A)T

= FT

and
JGJ = JF−1J = (JFJ)−1

= F−T
= GT.
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which shows that Kp(GTET,GTCT) contains

(GTET)iGTCT
=

E=ET,JB=B,C=B
(JGJE)iJGB =

EJ=JE
(JGEJ)iJGB = J(GE)iGB

which proves (4.2.4).

Secondly, let Ṽ and W̃ from (4.2.5) and assume that the columns of the unsplitted matrix
V span V which contains Kp(GE,GC). Let Ṽ and W̃ be the column spans of Ṽ and W̃.
Because Kp(GE,GC) ⊂ V ⊂ Ṽ the first p moments are preserved substituting Ṽ for V
in Theorem 3.4.3. Because

Kp(GTET,GTC) =
(4.2.4)

JKp(GE,GC)

⊂ JV = Jspan(V) = span(JV)

⊂ span(
[
V1 0
0 −V2

]
) = span(

[
V1 0
0 V2

]
)

= span(Ṽ) = span(W̃) = W̃

substituting W̃ for W in Theorem 3.4.4 shows that an additional p moments match. �

4.2.2 An alternative Krylov method for the coupled formulations

The technique proposed in [22] is motivated by the fact, that for some applications
the single-point expansion does not give a sufficient approximation accuracy in the fre-
quency range. On the other hand, using a multi-point expansion can result in excessively
large models, especially for systems with many external inputs and outputs. The me-
thod proposed in the paper mentioned above, is based on creating a reduction space that
consists of a number of sampling matrices Z j, j = 1, ..., p, computed for the system
(4.1.1) for p sampling points s j as follows

Z j = (s jE − A)−1B.

In other words, Z j, j = 1, ..., p is a vector (or a matrix) that, after projecting the system
(4.1.1) onto, will match the 0th moment around the point s j of the original transfer
function, since it consists of the input based starting matrix for the Krylov subspace for
s j as defined in Theorem 3.4.3. After computing p samples, the total sampling matrix Z
is defined as

Z = [Z1, ...,Zp].

Next, following the block-structure presented by the system matrices, matrix Z is split
row-wise into k blocks Ṽi, i = 1, ..., k

Z =


Ṽ1
...

Ṽk


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and a block-diagonal projector is created

Ṽ =


Ṽ1

. . .

Ṽk

 .
Finally, the singular value decomposition (SVD) is performed on each of the blocks
separately, to produce the orthogonal matrix V

V =


V1

. . .

Vk


where Vi, i = 1, ..., k is an orthogonal basis for Ṽi. At this point, further reduction in size
is possible, by removing from the bases Vi, i = 1, ..., k the columns that correspond to to
small singular values. Having the reduction bases V, one can project the original system
in the way defined in (4.2.2).
A noticeable advantage of the technique described above is, next to the block-structure
preservation, the possibility of reducing different sub-systems with different reduction
ratio, determined for each sub-system separately, based on the singular values related
to this sub-block as well as the importance of the considered sub-system in the total
coupled system.

4.3 Moment matching methods for the uncoupled formula-
tions

Another category of BSP model reduction techniques based on the uncoupled formu-
lation of interconnected sub-systems can be found in for instance [68] or [23]. In this
section, we explain the basic ideas based on [89] based on the notation used in this paper
(which uses C instead of CT).
The system under consideration is an linear system G(s), composed of k interconnected
sub-systems Ti(s), i = 1, ...k. Each sub-system Ti(s) is assumed to be a linear multiple-
input-multiple-output (MIMO) system and has αi inputs ai and βi outputs bi related by

bi(s) = Ti(s)ai(s). (4.3.1)

The input ai of each sub-system is a linear combination of the outputs of all sub-systems
and of the external input u(s) ∈ Rm

ai(s) = Hiu(s) +

k∑
j=1

Ki jb j(s), (4.3.2)
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where Hi ∈ R
αi×m. The external output y(s) ∈ Rp of G(s) is a linear combination of the

outputs of the sub-systems

y(s) =

k∑
i=1

Fibi(s), (4.3.3)

with Fi ∈ R
p×βi . Let

α =

k∑
i=1

αi and β =

k∑
i=1

βi.

The transfer function of the unconnected sub-systems is given by

b(s) = T(s)a(s), (4.3.4)

where

b(s) =


b1(s)
...

bk(s)

 , T(s) =


T1(s)

. . .

Tk(s)

 , a(s) =


a1(s)
...

ak(s)


are respectively in Rβ, Rβ×α, and Rα. Let F ∈ Rp×β, K ∈ Rα×β, and H ∈ Rα×m

F = [F1, ...,Fk], K =


K11 . . . K1k
...

. . .
...

Kk1 . . . Kkk

 , H =


H1
...

Hk

 . (4.3.5)

Using (4.3.5), equations (4.3.2) and (4.3.3) can be rewritten as

a(s) = Hu(s) + Kb(s) and y(s) = Fb(s). (4.3.6)

From (4.3.1) and (4.3.6), it follows that

y(s) = F[Iβ − T(s)K]−1T(s)Hu(s).

Let ni ∈ N, i = 1, ..., k be the order of Ti(s) and (Ai, Bi, Ci, Di) a minimal state space
realization of Ti(s). If we define

n =

k∑
i=1

ni,

then
T(s) = C(sIn − A)−1B + D

with

A =


A1

. . .

Ak

 , B =


B1

. . .

Bk

 , C =


C1

. . .

Ck

 , D =


D1

. . .

Dk

 .
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It implies
G(s) = F[Iβ − T(s)K]−1T(s)H (4.3.7)

and a state space realization of G(s) is given by (AG, BG, CG, DG), where

AG = A + BK(Iβ − DK)−1C, BG = B(Iα −KD)−1H,
CG = F(Iβ − DK)−1C, DG = FD(Iα −KD)−1H.

(4.3.8)

If D = 0, the state space realization (4.3.8) of G(s) reduces to

AG = A + BKC, BG = BH, CG = FC and DG = 0.

The following lemma holds:

Lemma 4.3.1. ([89, Lemma 4])
Let λ ∈ C be neither a pole of T(s) nor a pole of G(s). Define

V :=


V1
...

Vk

 ∈ Cn×r,

such that Vi ∈ C
ni×r. Assume that either

Kk
(
(λI − AG)−1, (λI − AG)−1BG

)
⊆ Im V

or
Kk

(
(λI − A)−1, (λI − A)−1B

)
⊆ Im V.

Construct matrices Zi ∈ C
ni×r, such that ZT

i Vi = Ir. Project each sub-system as follows:

(Âi, B̂i, Ĉi) := (ZT
i AiVi, ZT

i Bi, CiVi).

Define
Ĝ(s) := ĈG(sI − ÂG)−1B̂G + DG.

Then, Ĝ(s) interpolates G(s) at λ up to the first k derivatives.

Proof. See the proof of [89, Lemma 4].
�

A comparison of this approach with the model reduction techniques described in Sec-
tion 4.2, was made for instance in [68]. Some advantages are mentioned, such as the
possibility to apply the most suitable reduction method to each sub-system or to speed
up the computations using paralellism. Also some drawbacks are mentioned, such as
that the separate reduction of the sub-systems usually yields a larger approximated mo-
del than a coupled approach, and that sub-system based model reduction is restricted to
interconnected systems whose sub-systems have a small number of internal inputs and
outputs.



Chapter 5

Separate Bases Reduction
Algorithm

5.1 Introduction

Model order reduction techniques, designed especially for coupled or interconnected
systems, became a new field of research in recent years. As described in Chapter 4,
the common feature of this type of methods is the use of a special block-diagonal form
reduction basis V

V =


V1

. . .

Vk

 (5.1.1)

that results from the splitting a matrix Ṽ created by a Krylov method applied directly
to the coupled system. This approach allows for preservation of the zero-blocks in the
coupled system’s coefficient matrix. Such blocks appear when two of the sub-systems
are not coupled (interconnected) or the coupling holds only in one direction. An example
of uni-directional coupling can be a case of a vibrating structure, where the movement
of the structure causes acoustic noise, but there is no influence (feedback) of the acoustic
behavior of the system on it’s dynamics.
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Due to the fact that the zero-blocks are preserved in the reduced system, such MOR
techniques are called block structure preserving (BSP) model reduction methods. Their
application usually results in a good approximation of the original model. For most of
them one can prove the moment matching property. However, this type of methods also
has three important drawbacks:

• Though V in (5.1.1) (possibly) matches the same (amount of) moments as Ṽ it
has k times more column vectors and therefore leads to a k times larger reduced
system.

• The calculation of Ṽ requires (repeatedly) solving systems with the entire coupled
system’s coefficient matrix which can be computationally (time- and memory-
wise) expensive.

• In practice, the reduction techniques based on an uncoupled formulation of the
system (see e.g. [89]) are restricted to the case of interconnected systems with
a limited number of interconnections. Otherwise, the reduction procedure is not
very efficient, since the dimension of the reduction basis (hence, the reduced-order
model) grows very fast. Moreover, such techniques assume that the inputs B and
outputs C of the sub-systems are both explicitly available. In case of a coupled
system these are not explicitly available, only their product BC is.

In the remainder of this thesis, we will focus on the second and third issue. We present
a reduction algorithm suited for systems, coupled through a large number of couplings.
In this chapter we introduce a reduction technique based on an uncoupled formulation
of a coupled system and extend it to a two-sided method in Chapter 6. The presented
algorithm we call a Separate Bases Reduction (SBR) algorithm. It creates a reduction
basis for each sub-system separately, hence is computationally cheaper compared to the
reduction techniques that use a coupled formulation such as the BSP methods discussed
in Chapter 4. However, the algorithms presented in Chapters 5 and 6 still suffer from
the third point of the drawback list presented above. They can be easily applied to
interconnected system of a form shown in Figure 5.1, where the sub-systems are not
strongly interconnected (i.e. each sub-system exchanges information only with a small
number of other sub-systems). In Chapters 7 and 8 we suggest a way to relax this
limitation. We also show how to apply the SBR algorithm to strongly coupled systems,
i.e. to the systems, where many degrees of freedom of one sub-system are coupled to
many degrees of freedom of other sub-systems and where the internal input and output
matrices are not explicitly given in the system formulation. Examples of these types of
coupled problems are shown in Figure 5.2. Figure 5.2(a) presents a coupled system, that
consists of two sub-structures, for instance a solid body and a fluid. The coupling occurs
at the interface, where all degrees of freedom of one sub-domain which are sufficiently
close to the interface influence similar degrees of freedom of the second sub-domain
and vice versa. A different type of strong coupling is shown in Figure 5.2(b). This
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Figure 5.1: Schematic representation of the interconnected system S

picture shows a situation, where all degrees of freedom related to both physical quantities
u and e are located inside the same domain. Such situations appear for instance in
case of modeling of systems, where the dynamics of the structure is influenced by an
electromagnetic field (and vice versa). In the depicted case the change of the velocity of
the node u(xi) influences the electromagnetic field x 7→ e(x) at the node xi, and at many
nodes in the neighborhood of xi.
In the next sections of this chapter, we will introduce the linear system describing the
situation shown in Figure 5.1 and describe the reduction methodology for this case.
Coupled systems of the form as shown in Figure 5.2 will be tackled in Chapters 7 and 8.

5.2 Interconnected system – system definition

In this section we introduce the family of linear interconnected systems to which the
reduction algorithm is to be applied. For the sake of simplicity we focus on a system of
two-subsystems where one sub-system’s output is used as a part of the other sub-system’s
input and vice versa (see for instance Figure 5.3). However, the proposed method can
easily be extended to systems composed of an arbitrary number of sub-systems.

5.2.1 The uncoupled formulation

The time domain behavior of each of the sub-systems S 1 and S 2 is modeled by a system
of first order differential-algebraic equations after which the frequency domain behavior
is obtained via Laplace transformation (see Chapter 3 for more details). For the two
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(a) An interface coupling. (b) A strong coupling between different physical domains.

Figure 5.2: Different types of strong coupling

Figure 5.3: Schematic representation of the interconnected system

sub-system example in Figure 5.3, this procedure leads to the Laplace domain systems

S 1 :


sE11x1 = A11x1 + B1u1 + B3u3,

y1 = CT
1 x1,

y3 = CT
3 x1,

S 2 :


sE22x2 = A22x2 + B2u2 + B4u4,

y2 = CT
2 x2,

y4 = CT
4 x2.
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For sub-system i, i = 1, 2, let

• Ni ∈ N be the number of degrees of freedom of system i;

• mi ∈ N be the number of its external inputs of system i;

• m2+i ∈ N be the number of its internal inputs of system i;

• pi ∈ N be the number of its external outputs of system i;

• p2+i ∈ N be the number of its internal outputs of system i.

Then based thereon

• Aii,Eii ∈ R
Ni×Ni , i = 1, 2;

• Bi ∈ R
N1×mi , i = 1, 3;

• Bi ∈ R
N2×mi , i = 2, 4;

• Ci ∈ R
N1×pi , i = 1, 3;

• Ci ∈ R
N2×pi , i = 2, 4;

• ui ∈ R
mi , i = 1, . . . , 4;

• yi ∈ R
pi , i = 1, . . . , 4.

Using matrix notation, the system S 1 and system S 2 can be described as

S 1 :


sE11x1 = A11x1 + [B1 B3]

[
u1
u3

]
[
y1
y3

]
=

[
CT

1
CT

3

]
x1,

(5.2.1)

S 2 :


sE22x2 = A22x2 + [B2 B4]

[
u2
u4

]
[
y2
y4

]
=

[
CT

2
CT

4

]
x2.

(5.2.2)



68 5 Separate Bases Reduction Algorithm

5.2.2 The coupled system

When the output of S 1 is used as an input of S 2 and the output of S 2 is used as an input
of S 1, equations (5.2.1) and (5.2.2) reduce to an interconnected Laplace domain system.
Due to the design of the system depicted in Figure 5.3 one has u3 = y4 = CT

4 x2

u4 = y3 = CT
3 x1,

(5.2.3)

which in addition implies {
m3 = p4
m4 = p3.

Using relation (5.2.3), the interconnected system (5.2.1) can be represented as a single
coupled system S of equations

S :


sE11x1 = A11x1 + B1u1 + B3CT

4 x2,

sE22x2 = A22x2 + B2u2 + B4CT
3 x1,

y1 = CT
1 x1,

y2 = CT
2 x2

and in matrix form

S :


s
[
E11 0
0 E22

] [
x1
x2

]
=

[
A11 B3CT

4
B4CT

3 A22

] [
x1
x2

]
+

[
B1 0
0 B2

] [
u1
u2

]
[
y1
y2

]
=

[
CT

1 0
0 CT

2

] [
x1
x2

]
.

(5.2.4)

Let N = N1 + N2, m = m1 + m2, p = p1 + p2 and define

E =

[
E11 0
0 E22

]
, A =

[
A11 B3CT

4
B4CT

3 A22

]
, B =

[
B1 0
0 B2

]
, C =

[
C1 0
0 C2

]
, (5.2.5)

where A,E ∈ RN×N , B ∈ RN×m, C ∈ RN×p. The matrices defined in (5.2.5) show
a special block structure. The sub-systems’ matrices A11 and A22 form the diagonal
blocks of the system matrix A of S . The off-diagonal blocks are the products B3CT

4 and
B4CT

3 of the internal input and output matrices of the sub-system. Similarly, the input
and output matrices B and C are block structured, as well as in the matrix E.

5.3 Transfer functions of the uncoupled and coupled systems

One of the questions arising at this point is the relation between the transfer functions of
the sub-systems 1 and 2, and the transfer function of the coupled system. In this section
we will study this issue.
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Let us begin with the uncoupled sub-systems. At s ∈ C the transfer function of sub-
system 1 defined in (5.2.1) is given by

H(s) =

[
CT

1
CT

3

]
(sE11 − A11)−1[B1 B3]

=

[
CT

1 (sE11 − A11)−1B1 CT
1 (sE11 − A11)−1B3

CT
3 (sE11 − A11)−1B1 CT

3 (sE11 − A11)−1B3

]
=

[
H11(s) H12(s)
H21(s) H22(s)

]
.

(5.3.1)

For the sub-system 2 defined in (5.2.2), similarly

G(s) =

[
CT

2
CT

4

]
(sE22 − A22)−1[B2 B4]

=

[
CT

2 (sE22 − A22)−1B2 CT
2 (sE22 − A22)−1B4

CT
4 (sE22 − A22)−1B2 CT

4 (sE22 − A22)−1B4

]
=

[
G11(s) G12(s)
G21(s) G22(s)

]
.

(5.3.2)

At s ∈ C the transfer function of the coupled system (5.2.4) is

Z(s) = CT (sE − A)−1B =

[
CT

1 0
0 CT

2

] (
s
[
E11 0
0 E22

]
−

[
A11 B3CT

4
B4CT

3 A22

] )−1 [
B1 0
0 B2

]
=

[
Z11(s) Z12(s)
Z21(s) Z22(s)

]
.

(5.3.3)

Based on definitions eqs. (5.3.1) to (5.3.3) we wil express the components of the trans-
fer function Z(s) in terms of the components of the transfer functions H(s) and G(s)
in two manners. First we follow the typical approach used in the field of systems and
control (more details can be found in for instance [84]). Secondly we use the Sherman-
Morrison-Woodbury formula.

The systems and control approach

The starting point of this approach are two transfer functions H(s) and G(s) of the sub-
systems 1 and 2, respectively. For each sub-system, its transfer function relates its inputs
to outputs: [

y1
y3

]
=

[
H11(s) H12(s)
H21(s) H22(s)

] [
u1
u3

]
,

[
y2
y4

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
u2
u4

]
and [

y1
y2

]
=

[
Z11(s) Z12(s)
Z21(s) Z22(s)

] [
u1
u2

]
. (5.3.4)
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Systems (5.3.1) and (5.3.2) in combination with relation (5.2.3) lead to

y1 = H11(s)u1 + H12(s)y4 (5.3.5)

y3 = H21(s)u1 + H22(s)y4 (5.3.6)

y2 = G11(s)u2 + G12(s)y3 (5.3.7)

y4 = G21(s)u2 + G22(s)y3. (5.3.8)

Substituting y4 of (5.3.8) for y4 in (5.3.6) we obtain

y3 = H21(s)u1 + H22(s)y4 = H21(s)u1 + H22(s)[G21(s)u2 + G22(s)y3]

and hence
y3 = [I −H22(s)G22(s)]−1[H21(s)u1 + H22(s)G21(s)u2]. (5.3.9)

With this result and (5.3.8), we can also express y4 in terms of u1 and u2

y4 = G21(s)u2 + G22(s)y3 = G21(s)u2
+ G22(s)[I −H22(s)G22(s)]−1[H21(s)u1 + H22(s)G21(s)u2].

(5.3.10)

Using (5.3.9) and (5.3.10) in (5.3.5) and (5.3.7), we arrive at

y1 = H11(s)u1 + H12(s)y4 = H11(s)u1

+H12(s)
(
G21(s)u2 + G22(s)[I −H22(s)G22(s)]−1[H21(s)u1 + H22(s)G21(s)u2]

)
=

(
H11(s) + H12(s)G22(s)[I −H22(s)G22(s)]−1H21(s)

)
u1

+

(
H12(s)G21(s) + H12(s)G22(s)[I −H22(s)G22(s)]−1H22(s)G21

)
u2

and

y2 = G11(s)u2 + G12(s)y3 = G11(s)u2 + G12(s)[I −H22(s)G22(s)]−1[H21(s)u1
+H22(s)G21(s)u2] = G12(s)[I −H22(s)G22(s)]−1H21(s)u1

+

(
G11(s) + G12(s)[I −H22(s)G22(s)]−1H22(s)G21(s)

)
u2.

This shows that the components of Z(s), as defined in (5.3.4), are

Z11(s) = H11(s) + H12(s)G22(s)[I −H22(s)G22(s)]−1H12(s) (5.3.11)

Z12(s) = H12(s)G21(s) + H12(s)G22(s)[I −H22(s)G22(s)]−1H22(s)G21(s) (5.3.12)

Z21(s) = G12(s)[I −H22(s)G22(s)]−1H21(s) (5.3.13)

Z22(s) = G11(s) + G12(s)[I −H22(s)G22(s)]−1H22(s)G21(s). (5.3.14)
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Computing the transfer function of the coupled system using the Sherman-
Morrison-Woodbury formula

The evaluation of the transfer function of the coupled system, as defined in (5.3.3), re-
quires a computation of an inverse of a block matrix. For a system consisting of an arbi-
trary number of sub-systems, a suitable tool towards this end is the Sherman-Morrison-
Woodbury formula (see for instance [40] and references therein). This formula allows
for a computationally cheap matrix inversion, as long as the considered matrix can be
easily expressed as a sum of a matrix for which an inverse is known (or easy to com-
pute) and a (low rank) correction. Let L be non-singular and let matrices J, M, N be of
compatible size. Then the formula of K = L + MJNT is (after [40])

K−1
= (L + MJNT )−1

= L−1
− L−1M(J−1

+ NT L−1M)−1NT L−1, (5.3.15)

In our case, the matrix to be inverted can be decomposed into

K = s
[
E11 0
0 E22

]
−

[
A11 B3CT

4
B4CT

3 A22

]
=

[
sE11 − A11 −B3CT

4
−B3CT

3 sE22 − A22

]
=

[
sE11 − A11 0

0 sE22 − A22

]
−

[
0 B3CT

4
B4CT

3 0

]
= L −

[
0 B3CT

4
B4CT

3 0

]

where L is a block-diagonal matrix, whose inverse can be calculated by computing the
inverses of each sub-block separately and the correction matrix can be factored

[
0 B3CT

4
B4CT

3 0

]
=

[
0 B3

B4 0

]
I
[
CT

3 0
0 CT

4

]
= MJNT .

Abbreviate Gi(s) = (sEii − Aii)
−1, Pi(s) = Gi(s)Eii and Ri(s) = Gi(s)[Bi B2+i], i = 1, 2

and omit the argument s when possible. Note that Ri = [Ri1,Ri2] = [GiBi,GiB2+i]
consists of two blocks. Substituting the formulas for L,M, J and N into the the Sherman-
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Morrison-Woodbury formula, we get(
s
[
E11 0
0 E22

]
−

[
A11 B3CT

4
B4CT

3 A22

] )−1

=

( [
sE11 − A11 0

0 sE22 − A22

]
−

[
0 B3

B4 0

] [
CT

3 0
0 CT

4

] )−1

=

[
G1 0
0 G2

]
+

[
G1 0
0 G2

] [
0 B3

B4 0

]
◦(

I −
[
CT

3 0
0 CT

4

] [
G1 0
0 G2

] [
0 B3

B4 0

] )−1 [
CT

3 0
0 CT

4

] [
G1 0
0 G2

]
=

[
G1 0
0 G2

]
+

[
0 R12

R22 0

]
◦(

I −
[

0 CT
3 R12

CT
4 R22 0

] )−1 [
CT

3 G1 0
0 CT

4 G2

]
,

(5.3.16)
where the entries of G and R depend on s. Using this result and eqs. (5.3.1) to (5.3.3),
one can find the formula for the transfer function of the coupled system

Z(s) =

[
CT

1 0
0 CT

2

] ( [
G1 0
0 G2

]
+

[
0 R12

R22 0

]
◦(

I −
[

0 CT
3 R12

CT
4 R22 0

] )−1 [
CT

3 G1 0
0 CT

4 G2

] ) [
B1 0
0 B2

]
=

[
CT

1 R11 0
0 CT

2 R21

]
+

[
0 CT

1 R12
CT

2 R22 0

]
◦(

I −
[

0 CT
3 R12

CT
4 R22 0

] )−1 [
CT

3 R11 0
0 CT

4 R21

]
=

[
H11(s) 0

0 G11(s)

]
+

[
0 H12(s)

G12(s) 0

] (
I −

[
0 H22(s)

G22(s) 0

] )−1 [
H21(s) 0

0 G21(s)

]
.

(5.3.17)
It is easy to show, that the formulation (5.3.17) is equivalent to the formulation given
by eqs. (5.3.11) to (5.3.14). Moreover, (5.3.17) provides an elegant relation between the
components of the transfer functions of the sub-systems and the coupled system, that
reveals the symmetry and the structure of the coupled system. In addition it shows that
the relation between the transfer functions is not straightforward. Since several sub-
expressions such as (sEii − Aii)

−1 reoccur frequently, we will introduce abbreviations in
the upcoming sections.

Formula (5.3.17) reveals a structure which is more difficult to find in (5.3.11) – (5.3.14)
and can be used to calculate the transfer function of the coupled system if the transfer
functions of the individual sub-systems are available. The involved inverse is of a small
matrix which means that calculation of the transfer function of the coupled system is
relatively cheap.
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5.4 Standard block structure preserving reduction

In this section we will recall the general ideas of the standard block-structure preserving
methods.

As explained in Chapter 3, a typical block structure preserving (BSP) model reduction
method applied to the system (5.2.4) consists of the following three steps:

1. Create the matrix Ṽ whose columns span the nth Krylov subspace around s0 ∈ C

Ṽ = Kn(P(s0),R(s0)),

where P(s0) and R(s0) are

P(s0) = (s0E − A)−1E ∈ RN×N and R(s0) = (s0E − A)−1B ∈ RN .

2. Build a the block-diagonal reduction matrix V with N1 + N2 = N rows

V =

[
V1 0
0 V2

]
,

where V1 and V2 contain the first N1 respectively last N2 rows of the matrix Ṽ.

3. Project the original system onto a lower-dimensional space

Ê = VT EV, Â = VT AV, B̂ = VT B, Ĉ = VT C.

When possible we write P and R rather than P(s0) respectively R(s0). The model reduc-
tion methods based on this idea are widely applied and popular due to a good accuracy
of the reduced-order systems that they deliver. However, as already mentioned in Sec-
tion 5.1, they have a few drawbacks, one of them being the high cost of the construction
of the reduction basis. The main computational cost of this type of methods is related to
evaluation of x 7→ (s0E − A)−1x, which involves solving a system of equations with a
large coefficient matrix. In the next section we introduce an alternative structure preser-
ving method which for some cases can significantly reduce the computational costs.

5.5 Separate Bases Reduction algorithm

In Section 5.4, the reduction basis is built using the coupled formulation of the system
(5.2.4). The construction of this basis requires repeated evaluations of x 7→ (s0E−A)−1x
where s0E − A is an N × N matrix. For large N this procedure can be computationally
very expensive or even unfeasible. In such cases one can try to make use of a natural
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block structure of the coupled system and for instance replace the evaluations involving
(s0E − A)−1 by evaluations involving (s0E11 − A11)−1 and (s0E22 − A22)−1, i.e., by
evaluations involving only the coefficient matrices of both sub-systems. If N is large
and for instance N1 = N2 = N/2 then the serial computation of (s0E11 − A11)−1 and
(s0E22 − A22)−1 may be much faster that of (s0E − A)−1. Further acceleration can be
achieved through parallelism.

Following this idea, we introduce a new model reduction algorithm, called Separate
Bases Reduction (SBR) algorithm. Here the Krylov subspaces that create the reduction
bases correspond to the uncoupled sub-systems (as defined in (5.2.1) and (5.2.2)) rather
than to the coupled system (5.2.4). The procedure is as follows:

1. Create two matrices V1 and V2, one for each sub-system:

• For the sub-system S 1, build a matrix V1, whose columns span the n1th Kry-
lov subspace around s0 ∈ C

V1 = Kn1
(P1(s0),R1(s0)),

where P1(s0) and R1(s0) are

P1(s0) = (s0E11 − A11)−1E11 and R1(s0) = (s0E11 − A11)−1[B1 B3].

Matrix V1 has N1 rows.

• For the sub-system S 2, build a matrix V2, whose columns span the n2th Kry-
lov subspace around s0 ∈ C

V2 = Kn2
(P2(s0),R2(s0)),

where P2(s0) and R2(s0) are

P2(s0) = (s0E22 − A22)−1E22 and R2(s0) = (s0E22 − A22)−1[B2 B4].

Matrix V2 has N2 rows.

2. Build the block-diagonal reduction matrix V with N1 + N2 = N rows

V =

[
V1 0
0 V2

]
.

3. Project the original system onto a lower-dimensional space

Ê = VT EV, Â = VT AV, B̂ = VT B, Ĉ = VT C.

In the sequel, when possible without causing confusion, we omit the argument s0 of Pi
and Ri, i = 1, 2. In the next section, we will compare the SBR algorithm with a standard
BSP reduction method, by examining their most important properties.
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5.6 Separate Bases Reduction algorithm – properties

In this section we will discuss the differences and similarities between Separate Bases
Reduction algorithm and standard block structure preserving model reduction methods
(see Chapter 3).

Block-structure preservation

As described in Section 5.5, the SBR algorithm uses reduction matrices of the block-
diagonal form

V =

[
V1 0
0 V2

]
.

Therefore, its application preserves the block structure of the coupled system matrices.

Rank and orthogonality

The sub-blocks V1 and V2 of the projector V are constructed separately, using one of
the Krylov basis building algorithms. Hence, both of them have a full column rank and,
as a result, the matrix V also has a full column rank. If the sub-blocks V1 and V2 have
orthogonal columns then also matrix V has (automatically) orthogonal columns, i.e., no
explicit orthogonalization has to be applied.

Computational cost

The difference between the computational costs for a standard block structure preserving
method and the Separate Bases Reduction algorithm comes from the fact, that the SBR
algorithm computes the reduction bases for the set of uncoupled systems instead of using
the coupled formulation of the system. This approach can significantly reduce the com-
putational time and storage requirements needed during the model reduction process.
The main cost of the Krylov basis construction lies in the evaluation of the matrix pen-
cil inverse function x 7→ (s0E − A)−1x. For coupled models with many degrees n of
freedom this evaluation may be unfeasible. But for sub-problems of smaller size eva-
luation may be possible. The amount of computational work required for the solution
of (s0E − A)x = d depends on the employed solution method which at its turn relies
on specific properties of the matrix s0E − A (symmetry, monotone, positive definite,
etc.). Different methods lead to different amounts of computational work: The minimal
amount of work of O(n) operations is usually achieved by multigrid methods (see [91]),
other methods such as GMRES, PCG, CGS and BiCGstab(l) (see [79], [85], and [33])
are more expensive. Classical fixed point methods such as Jacobi, Gauss-Seidel and
matrix-splitting based methods are usually the slowest.
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Size of the reduction space

Another difference with respect to the standard BSP reduction methods is the size of the
reduction matrix V and, as a result, dimension of the reduced order model.
Let us consider the coupled system (5.2.4) and assume, for simplicity, that there is no
need for deflation (all columns turn out to be linearly independent) while building the
matrix V. We will apply a typical reduction procedure like described in Section 5.4
and the SBR algorithm. In both cases, we will build a Krylov subspace of order n and
estimate the size of the reduction space and reduced order model.

We begin with the analysis of the standard structure preserving algorithm. The nth Kry-
lov subspace built for the coupled system for the starting matrices as defined in Sec-
tion 5.4 will be of the form

Ṽ = Kn

(
P,R

)
= colspan{R, . . . , Pn−1R}

where P = (s0E−A)−1E and R = (s0E−A)−1B. Since B ∈ RN×m, each of the components
P jR of the matrix Ṽ has m columns. Thus, for a degree n Krylov space, assuming no
deflation, the size of Ṽ is N×(nm).Next, the block-diagonal reduction matrix V is created
by splitting the rows of Ṽ according to the dimensions of the sub-problems. In our case,
the coupled system consists of two sub-systems, so the final size of the reduction matrix
V is N × (2nm). This leads to a reduced model of order 2nm.

Next, we will focus on the SBR algorithm. In this case two matrices V1 and V2, are
built separately and we assume that each of them corresponds to an nth degree Krylov
subspace based on the appropriate matrices (for i = 1, 2 define Gi(s0) = (s0Eii − Aii)

−1,
Pi(s0) = GiEii and Ri(s0) = Gi[Bi B2+i] and observe that Ri = [Ri1,Ri2] where Ri1 and
Ri2 are GiBi, respectively GiB2+i). For the sub-system S 1, we create the matrix V1

V1 = Kn

(
P1, R1

)
.

Here, R1, [B1 B3] ∈ RN1×(m1+m3), so each component P j
1R1 of the matrix V1 has (m1+m3)

columns whence V1 has n × (m1 + m3) columns.
For the sub-system S 2, we create

V2 = Kn

(
P2, R2

)
.

Similarly, since R2, [B2 B4] ∈ RN2×(m2+m4), every component P j
2R2 of the matrix V2 has

(m2 + m4) columns, and matrix V2 has n × (m2 + m4) columns.

Next, matrices V1 and V2 are used as diagonal blocks of the reduction matrix V, resulting
in a reduced model of order

n × (m1 + m3) + n × (m2 + m4) = n × (m + m3 + m4).
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This result shows that the SBR algorithm creates a smaller reduced order model than
standard BSP methods if (m3 + m4) < m. This is for instance the case for coupled
systems for which the number of internal inputs is not larger than the number of external
inputs. If there are many more internal inputs than external ones, the size of the SBR
algorithm based reduction matrix will grow very fast compared to the size of the BSP
reduction matrix. However, this problem can be avoided for the category of systems for
which the internal input matrices B2 and B4 can be approximated by only a small number
of dominant components. This approach will be explained in more detail in Chapters 7
and 8.

The moment matching property

In order to assess the SBR moment matching properties we compare the column-spaces
of the BPS and SBR reduction matrices. For simplicity, without loss of generalization,
we focus at the SISO case (the coupled system is SISO) where in addition Bi, Ci, i =

1, . . . , 4 related to the sub-systems are column-vectors which implies that all products
CT

i (. . .)B j, i, j = 1, . . . , 4, are scalars. A similar analysis is possible for the MIMO case
(a MIMO coupled system with sub-system matrices Bi, Ci).

Theorem 5.6.1. Let the coupled system be as in Figure 5.3, described by (5.2.1) and (5.2.2).
Assume that all inputs and outputs are column-vectors, i.e., mi = pi = 1, i = 1, 2, 3, 4.
Then the SBR reduced-order model transfer function matches at least the same (number
of) moments as the BSP reduced-order model transfer function.

Proof. First, we examine the reduction space built by a standard BSP method. To match
the first k moments at s ∈ C, of the coupled system of the form (5.2.4), one has to
construct the Krylov space

Ṽ = Kk(P,R),

where
P = (sE − A)−1E and R = (sE − A)−1B.

The ith Krylov step for the BSP method adds to the reduction basis the column span of
the following matrix V(i)

BSP

V(i)
BSP =

V(i)
11 V(i)

12 0 0
0 0 V(i)

21 V(i)
22

 (5.6.1)

with blocks of the form

Ṽ(i)
BSP =

V(i)
11 V(i)

12
V(i)

21 V(i)
22


=

Pi−1
1 R11 +

∑i−1
j=0 α jP

j
1R12

∑i−1
j=0 γ jP

j
1R12∑i−1

j=0 β jP
j
2R22 Pi−1

2 R21 +
∑i−1

j=0 δ jP
j
2R22

 (5.6.2)
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By (5.3.16) there exist scalars a, b, c, d and by construction (induction) there exist
coefficient vectors α = [α1, . . . , α j] ∈ R

i−2, β, γ, δ ∈ Ri−2 such that

Ṽ(i)
BSP = PṼ(i−1)

BSP

=

(
s
[
E11 0
0 E22

]
−

[
A11 B3CT

4
B4CT

3 A22

] )−1 [
E11 0
0 E22

]
Ṽ(i−1)

BSP

(5.3.16)
=

induction

( [
G1 0
0 G2

]
+

[
0 R12

R22 0

] [
a b
c d

] [
CT

3 G1 0
0 CT

4 G2

] ) [
E11 0
0 E22

]
Ṽ(i−1)

BSP

=

( [
P1 0
0 P2

]
+

[
0 R12

R22 0

] [
a b
c d

] [
CT

3 P1 0
0 CT

4 P2

] )
Pi−2

1 R11 +
∑i−2

j=0 α jP
j
1R12

∑i−2
j=0 γ jP

j
1R12∑i−2

j=0 β jP
j
2R22 Pi−2

2 R21 +
∑i−2

j=0 δ jP
j
2R22


=

Pi−1
1 R11 +

∑i−1
j=1 α jP

j
1R12

∑i−1
j=1 γ jP

j
1R12∑i−1

j=1 β jP
j
2R22 Pi−1

2 R21 +
∑i−1

j=1 δ jP
j
2R22

 +[
0 R12

R22 0

] [
a b
c d

] [
CT

3 P1 0
0 CT

4 P2

]
Pi−2

1 R11 +
∑i−2

j=0 α jP
j
1R12

∑i−2
j=0 γ jP

j
1R12∑i−2

j=0 β jP
j
2R22 Pi−2

2 R21 +
∑i−2

j=0 δ jP
j
2R22


=

CT
i (...)B j∈C

Pi−1
1 R11 +

∑i−1
j=1 α jP

j
1R12

∑i−1
j=1 γ jP

j
1R12∑i−1

j=1 β jP
j
2R22 Pi−1

2 R21 +
∑i−1

j=1 δ jP
j
2R22

 +[
0 R12

R22 0

] [
a b
c d

] [
∗ ∗

∗ ∗

]
=

Pi−1
1 R11 +

∑i−1
j=1 α jP

j
1R12

∑i−1
j=1 γ jP

j
1R12∑i−1

j=1 β jP
j
2R22 Pi−1

2 R21 +
∑i−1

j=1 δ jP
j
2R22

 +[
0 R12

R22 0

] [
µ1 µ2
µ3 µ4

]
=

Pi−1
1 R11 +

∑i−1
j=1 α jP

j
1R12

∑i−1
j=1 γ jP

j
1R12∑i−1

j=1 β jP
j
2R22 Pi−1

2 R21 +
∑i−1

j=1 δ jP
j
2R22

 +[
µ1R12 µ2R12
µ3R22 µ4R22

]
=

Pi−1
1 R11 +

∑i−1
j=0 α̂ jP

j
1R12

∑i−1
j=0 γ̂ jP

j
1R12∑i−1

j=0 β̂ jP
j
2R22 Pi−1

2 R21 +
∑i−1

j=0 δ̂ jP
j
2R22


(5.6.3)

where α̂ = [µ1, α], β̂ = [µ3, β], γ̂ = [µ2, γ] and δ̂ = [µ4, δ]. It is easy to see that the
column span of the matrix constructed from the matrix Ṽ(i)

BSP by splitting its rows, has
the same column span as the matrix defined in (5.6.1). Finally, the reduction basis VBSP
after k steps of the BSP algorithm has the following form

VBSP = [V(1)
BSP, . . . ,V

(k)
BSP]. (5.6.4)

Now we will examine the SBR reduction space algorithm. Let Pi,Ri = [Ri1,Ri2], i =
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1, 2 be as defined before. For s ∈ C SBR builds two Krylov subspaces

V1 = Kk(P1,R1), and V2 = Kk(P2,R2).

One can easily prove, that the ith step of the Krylov iteration within the SBR algorithm
adds to the reduction basis the column span of the following matrix V(i)

SBR

V(i)
SBR =

V(i)
1 0
0 V(i)

2

 , (5.6.5)

where
V(i)

1 =
[
Pi−1

1 R11,P
i−1
1 R12

]
and

V(i)
2 =

[
Pi−1

2 R21,P
i−1
2 R22

]
.

Finally, the reduction basis VSBR after k steps of the SBR algorithm has the following
form

VSBR = [V(1)
SBR, . . . ,V

(k)
SBR]. (5.6.6)

Comparing (5.6.2) and (5.6.5), we observe that

colspanVBSP ⊂ colspanVSBR.

Because the dimensions of the spaces are equal for our case (SISO external and column-
vectors Bi,Ci for the sub-systems) one finds that in addition

colspanVBSP = colspanVSBR. (5.6.7)

Because colspanVBSP ⊂ colspanVSBR the SBR reduced-order model transfer function
matches (at least) the same (number of) moments as the BSP reduced-order model trans-
fer function which at its turn (Theorem 2, [25]) matches the same (number of) moments
as the original coupled system’s transfer function. For the more general case where
Bi, Ci, i = 1, . . . , 4 are matrices one should also obtain

colspanVBSP ⊆ colspanVSBR (5.6.8)

which is sufficient to prove the moment matching property of the SBR reduced-order
system. �

5.7 Numerical examples

In this section we will compare the performance of the SBR algorithm and a standard
BSP method using two variants of the same test problem.
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Figure 5.4: A linear beam subject to mechanical vibrations

Figure 5.5: Schematic representation of the linear beam-controller system

Our test problem consists of an interconnected system which consists of two sub-systems.
One sub-system is a linear beam subject to mechanical vibrations shown in Figure 5.4
and the other one is a controller. The system’s schematic representation is shown in Fi-
gure 5.5. The controller sub-system is a part of a closed loop because its only inputs and
outputs are connected to the beam’s sub-system. Hence, the sub-systems are described
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by the following equations: The beam’s system S 1 is given by equations:

S 1 :


sI11x1 = A11x1 + [B1 B3]

[
u1
u3

]
[
y1
y3

]
=

[
CT

1
CT

3

]
x1.

(5.7.1)

The controller’s system S 2 is described by equations:

S 2 :
{

sI22x2 = A22x2 + B4u4
y4 = CT

4 x2.
(5.7.2)

Combined, the interconnected system is:

S :


s
[
I11 0
0 I22

] [
x1
x2

]
=

[
A11 B3CT

4
B4CT

3 A22

] [
x1
x2

]
+

[
B1
0

]
u1

y1 = [CT
1 0]

[
x1
x2

]
.

(5.7.3)

Using the notation introduced in (5.2.5) we have

I =

[
I11 0
0 I22

]
, A =

[
A11 B3CT

4
B4CT

3 A22

]
, B =

[
B1
0

]
, C =

[
C1
0

]
. (5.7.4)

The examples which follow differ in both number of degrees of freedom and number of
internal input/output connections.

Example 5.7.1. The interconnected system has 120 degrees of freedom, 60 for each
sub-system. There is one external input and one external output, and each of the sub-
systems has one internal input and one internal output. Hence, Aii, Iii ∈ R

60×60, i = 1, 2
and Bi,Ci ∈ R

60×1, i = 1, 3, 4. For both BSP and SBR, multi-point expansion was used,
i.e., the Krylov spaces were accumulated for the same set of two frequencies s1, s2 ∈ C.

Let P and R be defined as in Section 5.4, Pi and Ri be defined as in Section 5.5, all
related to the interconnected system (5.2.4) shown in Figure 5.5. The difference bet-
ween the latter system and the interconnected system of the general form studied in this
section (see Figure 5.3), leads to small differences in the required Krylov spaces. For
instance, in stead of SBR space K4(P2(s1),R2(s1)) we only need and therefore create
K4(P2(s1),R22(s1)).

For the BSP method, Krylov bases K6(P(s1),R(s1)) and K6(P(s2),R(s2)) are construc-
ted. The columns are combined into the column span [K6(P(s1),R(s1)),K6(P(s2),R(s2))]
(which turns out to contain 12 linearly independent vectors) which is split into the BSP
block-diagonal projector (which turns out to consist of 24 linearly independent vectors).



82 5 Separate Bases Reduction Algorithm

Note that the combination of Krylov spaces as well as the row-based splitting of the
combined span can lead to linearly dependent columns.

For the SBR method, K4(P1(s1), [R11(s1)),R12(s1)] and K4(P1(s2), [R11(s2),R12(s2)]),
respectively K4(P2(s1),R22(s1)) and K4(P2(s2),R22(s2)) are constructed which leads to
2 · 8 + 2 · 4 = 24 linearly independent columns.

Figure 5.6 shows the magnitude plots with respect to the frequency of the frequency
response functions of the original and the reduced-order systems. The dashed vertical
lines mark the expansion points for which the reduction bases were computed. It can be

Figure 5.6: Magnitude plots of the frequency response functions of the original and
reduced-order systems

observed, that both of the reduction algorithms give reduced-order models with related
reduced-order frequency response functions that exactly match the original frequency
response function at the expansion points and approximate the original one well in the
expansion points’ neighborhood. For the frequencies away from this neighborhood, the
accuracy of the reduced-order models deteriorates. This is an expected result, since Kry-
lov subspace based methods only match locally good based on the underlying Taylor
series approximation. This fact can be also noticed in Figure 5.7, that shows the magni-
tude plots of the relative errors of the reduced-order frequency response functions with
respect to the original frequency response function as a function of frequency. Observe
that SBR performs almost as well as the standard BSP method, its relative error is at
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Figure 5.7: Magnitude plots of the relative errors of the reduced-order frequency res-
ponse functions with respect to the original frequency response function

most 2% around the expansion points. That SBR performs a bit less than BSP is pro-
bably due to the fact that BSP in addition matches the moments 5 and 6 – SBR did not
have to match these moments due to Theorem 5.6.1 and indeed does not.

Let VBSP denote the block-diagonal reduction basis built by the standard BSP method
and VSBR denote the block-diagonal reduction basis built by the SBR algorithm. With
the use of these, define the reduced system’s components:

Êk = VT
k Vk, Âk = VT

k AVk, B̂k = VT
k B, Ĉk = VT

k C, k = BSP,SBR. (5.7.5)

Based on (3.2.1), the formula for the ith derivative at point s of the transfer function H(s)
of the system defined by (5.7.3) and (5.7.4) is

∂iH(s) = (−1)ii!CT
(
(sE − A)−1E

)i
(sE − A)−1B, (5.7.6)

and those for the reduced-order systems (5.7.5) are

∂iHi(s) = (−1)ii!ĈT
k

(
(sÊk − Âk)−1Êk

)i
(sÊk − Âk)−1B̂k, k = BSP,SBR. (5.7.7)

Tables 5.1 and 5.2 tabulate the values of the first 10 derivatives (i = 0, . . . , 9) at s1
respectively s2 of the transfer functions H, HBSP and HSBR in eqs. (5.7.6) to (5.7.7).
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Table 5.1: Derivatives of the original and reduced-order transfer functions for the first
expansion point s1 for the first example, multiplied by 106

i ∂iH(s1) ∂iHBSP(s1) ∂iHSBR(s1)
0 -0.839024819103714 -0.839024819105314 -0.839024819033797
1 0.024749951224057 0.024749951223572 0.024749951222262
2 -0.000439271234399 -0.000439271234405 -0.000439271234414
3 0.000006748103698 0.000006748103700 0.000006748103699
4 -0.000000102481958 -0.000000102481959 -0.000000102061233
5 0.000000001588268 0.000000001588268 0.000000001565032
6 -0.000000000025086 -0.000000000025076 -0.000000000024532
7 0.000000000000401 0.000000000000379 0.000000000000406
8 -0.000000000000008 -0.000000000000077 -0.000000000000005
9 0.000000000000004 0.000000000000071 0.000000000000005

Table 5.2: Derivatives of the original and reduced-order transfer functions for the second
expansion point s2 for the first example, multiplied by 106

i ∂iH(s2) ∂iHBSP(s2) ∂iHSBR(s2)
0 -0.384563353001982 -0.384563353003402 -0.384563353367612
1 0.002782774780907 0.002782774781066 0.002782774785200
2 -0.000023735573604 -0.000023735573635 -0.000023735573609
3 0.000000317217673 0.000000317217674 0.000000317217672
4 -0.000000006002628 -0.000000006002628 -0.000000006004274
5 0.000000000140000 0.000000000140000 0.000000000138146
6 -0.000000000003777 -0.000000000003777 -0.000000000003671
7 0.000000000000118 0.000000000000118 0.000000000000117
8 -0.000000000000004 -0.000000000000004 -0.000000000000005
9 0.000000000000000 0.000000000000000 0.000000000000000

Recall that for the BSP approximation, Krylov spaces of degree 6 were constructed.
Tables 5.1 and 5.2 show that the six first derivatives (i = 0, . . . , 5) indeed match the first
six derivatives of the original transfer function, modulo some round-off errors. The tables
show that the higher derivatives (i = 6, . . . , 9) also happen to be well approximated.

For the SBR approximation, Krylov spaces of degree 4 were constructed. Tables 5.1 and
5.2 show that the first four derivatives (i = 0, . . . , 3) match the first four derivatives of
the original transfer function, modulo some round-off errors. Also for the SBR approxi-
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mations, the tables show that the higher order derivatives (i = 4, . . . , 9) are quite well
approximated.

Finally, consider the computational times involved with the construction of VBSP res-
pectively VSBR. Because of the relatively small size of the considered system, mentio-
ned/measured times are for 1000 repeated runs: The constructing VBSP and VSBR takes
17 respectively 7 seconds. For systems of higher dimensions, the differences in compu-
tational times will be significantly larger.

Example 5.7.2. However, competitive or better performance of the SBR algorithm rela-
tive to the BSP algorithm can not always be assured. By construction, the standard BSP
method will give much better results than SBR when the number of internal inputs is
much greater than the number of external inputs and relatively large with respect to the
total number of degrees of freedom of the coupled system.

Figure 5.8 shows the magnitude plots with respect to the frequency of the original and
reduced-order frequency response functions of the system, for which the application of
the SBR algorithm does not give satisfactory results. The dashed vertical line marks the
expansion point for which the reduction bases were computed. Here, the fully coupled

Figure 5.8: Magnitude plots of the frequency response functions of the original and
reduced-order systems

system has 80 degrees of freedom, 40 for each sub-system. There is one external input
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and one external output, and each of the sub-systems has ten internal inputs and ten inter-
nal outputs. Hence, Aii, Iii ∈ R

40×40, i = 1, 2, B1,C1 ∈ R
40×1, and B j,C j ∈ R

40×10, j =

3, 4. The reduction bases are based on a single expansion point s ∈ C.

For the BPS method, we constructed Krylov basis K21(P(s),R(s)) (42 columns) and re-
lated VBSP (as in Section 5.4) of rank 42 (no linearly dependent columns after splitting).

For the SBR method, based on matrices Pi and Ri defined earlier, we constructed Kry-
lov basis K2(P1(s), [R11(s),R12(s)]) (22 columns) and Krylov basis K2(P2(s),R22(s))
(20 columns) and related VSBR (as in Section 5.5) of rank 42 (also here no linearly de-
pendent columns as was to be expected).
Figure 5.9 shows the magnitude plots of the relative errors of the reduced-order fre-
quency response functions with respect to the original frequency response function as a
function of frequency. In this case, the standard BSP method performs much better than
the SBR method, although both reduced-order systems have the same dimension. The
reason for it is that the coupled system has only 1 external input but 10 internal inputs.
Hence, every Krylov iteration step adds 1 vector to the basis (which results in adding 2
columns to the split block-diagonal reduction matrix) in case of the standard BSP me-
thod, while in case of the SBR algorithm, every Krylov step for the sub-system 1 adds
11 new vectors and for the sub-system 2 there are 10 new vectors created – so every step

Figure 5.9: Magnitude plots of the relative errors of the reduced-order frequency res-
ponse functions with respect to the original frequency response function
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Table 5.3: Derivatives of the original and reduced-order transfer functions for the expan-
sion point s for the second example, multiplied by 107

i ∂iH(s) ∂iHBSP(s) ∂iHSBR(s)
0 -0.349984611544531 -0.349984598976983 -0.349984603422285
1 0.000580754070987 0.000580754084250 0.000580754105948
2 -0.000001928114532 -0.000001928114520 -0.000005770673504
3 0.000000012770698 0.000000012770698 0.000000013683621
4 -0.000000000067912 -0.000000000067912 -0.000000000098227
5 0.000000000000859 0.000000000000859 0.000000000001220
6 -0.000000000000014 -0.000000000000014 -0.000000000000011
7 0.000000000000000 0.000000000000000 0.000000000000000
8 -0.000000000000000 -0.000000000000000 -0.000000000000000
9 0.000000000000000 0.000000000000000 0.000000000000000

adds in total 21 columns to the block-diagonal reduction basis).
Again, compare the first 10 derivatives of the original and approximated transfer func-
tions. Table 5.3 shows the values of the derivatives at the expansion point. Also in this
case the reduced-order transfer functions match at least as many moments as the degree
of the respective Krylov spaces. However, in this example, the standard BSP method
created a Krylov space of degree 21, whereas the SBR method could afford a Krylov
space of degree only 2, which explains the difference in accuracy.

5.8 Conclusions

In this chapter, we introduced a new reduction method called Separate Bases Reduc-
tion algorithm. It is a block-structure preserving algorithm, since it uses a reduction
basis of a block-diagonal form. The difference between our method and other com-
mon BSP methods is that the SBR algorithm exploits the uncoupled formulation of the
coupled/interconnected system. This makes our method potentially computationally fas-
ter than BSP methods. It also allows for different order of reduction for different sub-
systems. The SBR algorithm is the most beneficial if the number of the internal inputs
and outputs is relatively small compared to the number of external inputs and outputs,
as well as compared to the dimensions of the system, since the growth of the reduction
bases is proportional to the number of internal inputs/outputs. In Chapters 7 and 8 we
will show how this disadvantage can be reduced. We have shown that SBR matches at
least the (amount of) moments that BSP does. It is easy to see that the application of
the SBR method requires a special structure of the coupled system matrix A, namely,
the coupling blocks A12 and A21 need to be of the form BCT . However, in industrial
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applications the components B and C of the product may not be given explicitly. The
way to overcome this problem will be presented in Chapter 8.

In the next chapter we present an improved version of the SBR algorithm that uses a two-
sided projection, i.e. reduces the system by projecting it onto two Krylov subspaces, one
based on the input information, and another based on the sub-systems’ output space.



Chapter 6

Two-sided Separate Bases
Reduction Algorithm

6.1 Introduction

For the Separate Bases Reduction algorithm, this chapter shows that one can double the
number of matched moments by using two-sided projection as shown in Theorem 3.4.5.
Afterwards numerical results are presented.

As explained in Section 5.4 a standard BSP method constructs a basis for the Krylov
subspace

Kn

(
(s0E − A)−1E, (s0E − A)−1B

)
,

for s0 ∈ C where (using Definition(5.2.5)) where

(s0E − A)−1B =
(
s0

[
E11 0
0 E22

]
−

[
A11 B3CT

4
B4CT

3 A22

] )−1
[
B1 0
0 B2

] )
(6.1.1)
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depends on the external inputs but not on the external outputs C1,C2. Similarly, as in
Section 5.5, the SBR algorithm constructs bases for the Krylov spaces

Kn1

(
(s0E11 − A11)−1E11, (s0E11 − A11)−1[B1 B3]

)
and

Kn2

(
(s0E22 − A22)−1E22, (s0E22 − A22)−1[B2 B4]

)
,

for s0 ∈ C which neither involve the external outputs C1 and C2 (nor internal outputs
C3 and C4). In this chapter we propose a two-sided SBR algorithm which exploits the
external and internal outputs.

6.2 Two-sided structure preserving methods

In this section we will explain how the two-sided projection idea can be implemented in
case of the block-structure preserving methods. A detailed explanation of the two-sided
methods one can find for instance in [37]. Generally speaking, the use of a two-sided
reduction method means, that the system is projected onto two subspaces, V and W,

based on input and output matrices, respectively. In case of the coupled system (5.2.4),
the reduction matrices V and W, for an expansion point s0 ∈ C, are built according to
the following algorithm:

1. Create matrix Ṽ, whose columns span the nth Krylov subspace around s0 ∈ C

Ṽ = Kn(P(s0),R(s0)),

where P(s0) and R(s0) are

P(s0) = (s0E − A)−1E and R(s0) = (s0E − A)−1B.

2. Create matrix W̃, whose columns span the nth Krylov subspace around s0 ∈ C

W̃ = Kn(S(s0),T(s0)),

where S(s0) and T(s0) are

S(s0) = (s0E − A)−T ET and T(s0) = (s0E − A)−T C.

3. Build the block-diagonal reduction matrix V with N1 + N2 = N rows

V =

[
V1 0
0 V2

]
,

where V1 and V2 contain the first N1 respectively last N2 rows of the matrix Ṽ.
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4. Build the block-diagonal reduction matrix W with N1 + N2 = N rows

W =

[
W1 0
0 W2

]
,

where W1 and W2 contain the first N1 respectively last N2 rows of the matrix W̃.

5. Project the original system onto the lower-dimensional space

ÊBSP = WT EV, ÂBSP = WT AV, B̂BSP = WT B, ĈBSP = VT C.

Different algorithms lead to Ṽ and W̃ (and hence V and W) with different specific pro-
perties (such as orthogonality or bi-orthogonality). Some properties and their advantages
and disadvantages are discussed in [80].

The described BSP algorithm results in a block-structured reduced order system and uses
all of the inputs and outputs. Consequently, the BSP-based reduced order system’s trans-
fer function matches twice as many moments of the original system’s transfer function
as the only inputs based one in Section 5.4.

6.3 Two-sided Separate Bases Reduction algorithm

The two-sided projection technique introduced in the previous section can be adapted
to similarly improve the moment matching properties of the SBR algorithm. With the
uncoupled formulation (5.2.1) and (5.2.2) in mind we define the reduction algorithm as
follows.

1. For the sub-system S 1, create two matrices:

• Matrix V1, whose columns span the n1th Krylov subspace around s0 ∈ C

V1 = Kn1
(P1(s0),R1(s0)),

where P1(s0) and R1(s0) are

P1(s0) = (s0E11 − A11)−1E11 and R1(s0) = (s0E11 − A11)−1[B1 B3].

Matrix V1 has N1 rows.
• Matrix W1, whose columns span the n1th Krylov subspace around s0 ∈ C

W1 = Kn1
(S1(s0),T1(s0)),

where S1(s0) and T1(s0) are

S1(s0) = (s0E11 − A11)−T ET
11 and T1(s0) = (s0E11 − A11)−T [C1 C3].

Matrix W1 has N1 rows.
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2. For the sub-system S 2, create two matrices:

• Matrix V2, whose columns span the n2th Krylov subspace around s0 ∈ C

V2 = Kn2
(P2(s0),R2(s0)),

where P2(s0) and R2(s0) are

P2(s0) = (s0E22 − A22)−1E22 and R2(s0) = (s0E22 − A22)−1[B2 B4].

Matrix V2 has N2 rows.

• Matrix W2, whose columns span the n2th Krylov subspace around s0 ∈ C

W2 = Kn2
(S2(s0),T2(s0)),

where S2(s0) and T2(s0) are

S2(s0) = (s0E22 − A22)−T ET
22 and T2(s0) = (s0E22 − A22)−T [C2 C4].

Matrix W2 has N2 rows.

3. Build two block-diagonal reduction matrices V and W with N1 + N2 = N rows

V =

[
V1 0
0 V2

]
and W =

[
W1 0
0 W2

]
.

4. Project the original system onto the lower-dimensional space

ÊSBR = WT EV, ÂSBR = WT AV, B̂SBR = WT B, ĈSBR = VT C.

Again, different algorithms lead to V1, V2 and W1, W2 with different properties. Also
the above SBR algorithm results in a block-structured reduced order system and uses all
of the inputs and outputs. Consequently, also the above SBR-based reduced order sys-
tem’s transfer function matches twice as many moments of the original system’s transfer
function as the only inputs based one in Section 5.4.

6.4 Numerical examples

In this section we compare the two-sided SBR reduction algorithm from Section 6.3
to the two-sided BSP method from Section 6.2. The test cases are the two examples
introduced in Section 5.7. For better comparison of the performance of the two-sided
algorithms the one-sided numerical results are added to the pictures.
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Example 6.4.1. The interconnected system is as in Example 5.7.1. It has 120 degrees
of freedom, 60 for each sub-system. There is one external input and one external output,
and each of the sub-systems has one internal input and one internal output. Hence,
Aii, Iii ∈ R

60×60, i = 1, 2 and Bi,Ci ∈ R
60×1, i = 1, 3, 4. The reduced-order models

computed for this example have 24 degrees of freedom, obtained after using expansion
around two points si, i = 1, 2. Let P, R, S and T be defined as in Section 6.2, Pi, Ri,
Si and Ti be defined as in Section 6.3, all related to the interconnected system (5.2.4)
shown in Figure 5.5.

To obtain 24 degrees of freedom for BSP we create bases for the four linear spans
K6(P(si),R(si)) andK6(S(si),T(si)), i = 1, 2, after which we construct the block-diagonal
reduction matrices VBSP and WBSP as described in Section 6.2. The latter matrices turn
out to consist of 24 linearly independent columns each.

For the SBR method we create bases for the linear spansK4(P1(si),R1(si)),K4(P2(si),R22(si))
and K4(S1(si),T1(si)), K4(S2(si),T22(si)), i = 1, 2, and create the block-diagonal reduc-
tion matrices VSBR, WSBR, which turn out to consist of 24 linearly independent columns
each.

Figure 6.1 shows the magnitude plots with respect to the frequency of the frequency res-
ponse functions of the original and the reduced-order systems. The dashed vertical lines
mark the expansion points for which the reduction bases were computed. Figure 6.2
shows the magnitude plots of the relative errors of the reduced-order frequency response
functions with respect to the original frequency response function as a function of fre-
quency. Note that the two-sided version of the SBR algorithm produces considerably
better results than the one-sided SBR algorithm. In this example the two-sided SBR is
still less accurate than the two-sided standard BSP method around the expansion points
but it approximates the original system better for higher frequencies. It also performs
better than the one-sided standard BSP method.

Next we consider the two-sided SBR moment matching property. Tables 6.1 and 6.2
show the values of the first 10 derivatives i = 0, ..., 9 of the transfer functions of (1)
the original system (H); (2) the system reduced using two-sided BSP (HBSP); and (3)
the system reduced using the two-sided SBR method (HSBR) – all based on the two
expansion points s1 and s2.

For the two-sided BSP method, the values in the table agree with the expectations
based on theory – the number of derivatives matched is equal to the double number of
columns contained by one of the reduction bases. In this case, the number of columns
was 6, so the reduced-order model should match 2 · 6 derivatives. In the table we limited
the number of compared derivatives to 10 and it is clear, that the first 10 values match the
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Figure 6.1: Magnitude plots of the frequency response functions of the original and
reduced-order systems

Table 6.1: Derivatives of the original and reduced-order transfer functions using the
two-sided method for the first expansion point s1 for the first example, multiplied by 106

i ∂iH(s1) ∂iHBSP(s1) ∂iHSBR(s1)
0 -0.839024819103714 -0.839024819103787 -0.839024819123461
1 0.024749951224057 0.024749951224058 0.024749951225162
2 -0.000439271234399 -0.000439271234399 -0.000439271249222
3 0.000006748103698 0.000006748103698 0.000006748084130
4 -0.000000102481958 -0.000000102481958 -0.000000102470683
5 0.000000001588268 0.000000001588268 0.000000001573684
6 -0.000000000025086 -0.000000000025086 -0.000000000028534
7 0.000000000000401 0.000000000000401 0.000000000003063
8 -0.000000000000008 -0.000000000000008 -0.000000000001525
9 0.000000000000004 0.000000000000004 0.000000000001877

values of the original system. In case of the SBR algorithm, one can also see that for the
expansion point s2 the number of matched derivatives equal double number of columns
contained by the basis (2 · 4). Moreover, the last two derivatives are also equal to the last
two derivatives of the original transfer function. On the other hand, for the expansion
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Figure 6.2: Magnitude plots of the relative errors of the reduced-order frequency res-
ponse functions with respect to the original frequency response function

Table 6.2: Derivatives of the original and reduced-order transfer functions using two-
sided method for the second expansion point s2 for the first example, multiplied by 106

i ∂iH(s2) ∂iHBSP(s2) ∂iHSBR(s2)
0 -0.384563353001982 -0.384563353001980 -0.384563352994440
1 0.002782774780907 0.002782774780906 0.002782774780961
2 -0.000023735573604 -0.000023735573604 -0.000023735573638
3 0.000000317217673 0.000000317217673 0.000000317217674
4 -0.000000006002628 -0.000000006002628 -0.000000006002628
5 0.000000000140000 0.000000000140000 0.000000000140000
6 -0.000000000003777 -0.000000000003777 -0.000000000003777
7 0.000000000000118 0.000000000000118 0.000000000000118
8 -0.000000000000004 -0.000000000000004 -0.000000000000004
9 0.000000000000000 0.000000000000000 0.000000000000000

point (s1) only the first 7 derivatives can be considered as matched, probably due to the
exploited software (since theoretically 8 moments should match). We have not been able
to track down the cause (yet) but have observed that this “mismatch” rarely occurs. In



96 6 Two-sided Separate Bases Reduction Algorithm

this example, for most (other) expansion points s the 8 moments match.

Example 6.4.2. Here, the fully coupled system is as in Example 5.7.2. It has 80 degrees
of freedom, 40 for each sub-system. There is one external input and one external output,
and each of the sub-systems has ten internal inputs and ten internal outputs. Hence,
Aii, Iii ∈ R

40×40, i = 1, 2, B1,C1 ∈ R
40×1, and B j,C j ∈ R

40×10, j = 3, 4. The reduction
matrices are based on a single expansion point s ∈ C and the reduced-order model has
42 degrees of freedom.

To obtain 42 degrees of freedom for BSP method we create bases for the two linear
spans K21(P(s),R(s)) and K21(S(s),T(s)) after which we construct the block-diagonal
reduction matrices VBSP and WBSP as described in Section 6.2. The latter matrices turn
out to consist of 42 linearly independent columns each.

For the SBR method we create bases for the linear spansK2(P1(s),R1(s)),K2(P2(s),R22(s))
andK2(S1(s),T1(s)),K2(S2(s),T22(s)), i = 1, 2, and create the block-diagonal reduction
matrices VSBR, WSBR, which turn out to consist of 42 linearly independent columns
each.

Figure 6.3 shows the magnitude plots with respect to the frequency of the frequency
response functions of the original and the reduced-order systems. The dashed vertical
line marks the expansion point for which the reduction bases were computed. Figure 6.4
shows the magnitude plots of the relative errors of the reduced-order frequency response
functions with respect to the original frequency response function as a function of fre-
quency. In this case, the use of the two-sided version of the SBR algorithm neither gives
satisfactory results. However, the accuracy of its approximation around the expansion
point is noticeably higher for the two-sided version than for the one-sided. This can
be explained if we again look at the first 10 derivatives of the original transfer function
and the transfer functions of the reduced-order models computed using two-sided BSP
method (HBSP) and using the two-sided SBR method (HSBR), for the expansion point s,
presented in table 6.3. As expected, HBSP matches all first 10 derivatives. Also for the
two-sided SBR algorithm the double number of derivatives 2 · 2. Moreover, also several
higher derivatives are accurately approximated.

6.5 Conclusions

In this chapter, we proposed a two-sided variant of the SBR algorithm introduced in
Chapter 5. As shown by numerical experiments, this variant increases the amount of
matched moments. The numerical tests corroborated that HSBR matches twice as many
derivatives of the original transfer function H at the expansion points as the dimension
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Figure 6.3: Magnitude plots of the frequency response functions of the original and
reduced-order systems

Table 6.3: Derivatives of the original and reduced-order transfer functions using two-
sided method for the expansion point s for the second example, multiplied by 107

i ∂iH(s) ∂iHBSP(s) ∂iHSBR(s)
0 -0.349984611544531 -0.349984611562807 -0.349984611962056
1 0.000580754070987 0.000580754070958 0.000580754070360
2 -0.000001928114532 -0.000001928114532 -0.000001928114560
3 0.000000012770698 0.000000012770698 0.000000012770698
4 -0.000000000067912 -0.000000000067912 -0.000000000071351
5 0.000000000000859 0.000000000000859 0.000000000000934
6 -0.000000000000014 -0.000000000000014 -0.000000000000015
7 0.000000000000000 0.000000000000000 0.000000000000000
8 -0.000000000000000 -0.000000000000000 -0.000000000000000
9 0.000000000000000 0.000000000000000 0.000000000000000

of smallest reduced-order sub-system. The results obtained by application of the two-
sided variant of the SBR technique seem to be very competitive with (and for some cases
even considerably better than) the results obtained by standard one-sided BSP methods.
However, the standard two-sided BSP techniques still perform better, since for a good
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Figure 6.4: Magnitude plots of the relative errors of the reduced-order frequency res-
ponse functions with respect to the original frequency response function

match with the original transfer function not only moment matching is important, but
the whole space spanned by the reduction bases. On the other hand, it should be stressed
that usually the SBR algorithm is considerably cheaper computationally than standard
BSP reduction techniques, which implies that one has a choice between larger but faster
to compute or smaller but slower to compute reduced-order models.
In case of the two-sided SBR algorithm the same limitation holds as for the one-sided
variant. The algorithm is most beneficial for a system with a small number of internal
inputs and outputs, compared to the number of the external inputs and outputs as well as
to the dimension of the system. For other systems the two-sided SBR algorithm is not
recommended.



Chapter 7

Low-rank Approximations of
Couplings

7.1 Introduction

In Chapters 5 and 6 we introduced the structure preserving separate bases reduction
(SBR) model order reduction method which is suited for the reduction of coupled linear
systems. Although the SBR method can conceptually be applied to an arbitrary coupled
system it turns out to be efficient mainly if the sub-systems are weakly coupled. In
the case of many interconnected internal inputs and outputs the SBR reduction bases
will quickly reach very large dimensions while only matching a minimal (not sufficient)
number of moments.
In this chapter, we study the couplings in more details. We introduce a singular value
decomposition (SVD) and a generalized singular value decomposition (GSVD) as tools
to determine whether all of the information about the coupling that is contained in the
system description is relevant, or whether it is possible to neglect part of it and still have
a good accuracy of the coupled problem’s solution. For more information on the use of
GSVD see also [53].
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In this chapter we focus on a linear system of equations of the form[
A11 A12
A21 A22

] [
x1
x2

]
=

[
b1
b2

]
, (7.1.1)

where Aii ∈ R
Ni×Ni , i = 1, 2, A12 ∈ R

N1×N2 , A21 ∈ R
N2×N1 , xi,bi ∈ R

Ni , N1 + N2 = N
and Ni ∈ N, i = 1, 2.
Here, the blocks A12 and A21 describe the coupling between the two sub-domains in
which the degrees of freedom x1 and x2 are defined. We are interested in finding low-
rank approximations Ã12 and Ã21 of the coupling matrices A12 and A21, respectively,
that solve the system [

A11 Ã12
Ã21 A22

] [
x̃1
x̃2

]
=

[
b1
b2

]
, (7.1.2)

where [x̃T
1 , x̃T

2 ]T is a good approximation of the solution of the system (7.1.1).
In this chapter we use methods that approximate the coupling blocks A12 and A21 by
matrices of lower rank. The main two reasons for this choice are:

• If the coupling blocks Ã12 and Ã21 of the system (7.1.2) are of sufficiently low
rank, then the system (7.1.2) can be solved efficiently by applying the Sherman-
Morrison-Woodbury formula (5.3.15) introduced in Section 5.3

K−1
= (L + MJNT )−1

= L−1
− L−1M(J−1

+ NT L−1M)−1NT L−1;

• If the matrix [
A11 A12
A21 A22

]
is the system matrix A of the coupled system (5.2.4), then the dimensions of the
internal input and output matrices B3, B4, C3 and C4 are directly related to the
rank of the coupling blocks A12 and A21. If it is possible to find a good low-rank
approximation of the coupling blocks, then the approximated internal input and
output matrices B̃3, B̃4, C̃3 and C̃4 with

Ã12 = B̃3C̃T
4 and Ã21 = B̃4C̃T

3

will have smaller sizes than the original ones.

In the next sections, we introduce the singular value decomposition and its generalized
version as the tools to find the low-rank approximations of the coupling blocks. We are
especially interested in low-rank approximations of the form BCT or BDCT where B,C
are of low rank (only have a few linearly independent columns) and D is a diagonal
matrix (with a non-negative diagonal) since such approximations are suited for the ap-
plication of the Sherman-Morrison-Woodbury formula (5.3.15). Both the SVD and the
GSVD provide factorizations of the form BDCT . The difference is that the SVD can be
applied to only one block such as A12 and the GSVD must be applied to two blocks such
as A11 and A12 simultaneously. The latter method turns out to better take into account
the couplings.
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7.2 SVD and GSVD

This section presents the standard SVD and in more detail the GSVD . Standard defacto
GSVD-documentation such as [55] states that each matrix can be factored into UCXT

where U is orthogonal (unitary), C is diagonal with entries in decreasing or increasing
order and X is non-singular. Here, we stick to the notation used in the literature. Note
that this matrix C differs from our output matrix C. Wherever the difference between
output matrix and the GSVD-component matrix may be not clear, we make an explicit
remark which of them is meant. Reference works such as [35, Theorem 2.5.2] provide
a bit more information but not all possibly needed details. We will present the GSVD
from [2] and describe it in full detail. Let us start with the SVD.

Theorem 7.2.1. (The SVD of A ∈ Rn×m)
There exists orthogonal matrices U ∈ Rn×n, V ∈ Rm×m and a diagonal matrix Σ =

diag(σ1, . . . , σp, 0, . . .) ∈ R
n×m, 0 ≤ p = rank(A) ≤ min(n,m) such that

A = UΣVT (7.2.1)

and σ1 ≥ . . . ≥ σp > 0.

Proof. See for instance [35, Theorem 2.5.2]. �

Below we provide our definition of explicit rank-revealing and show its relation to a
property called rank-revealing in the QR literature (see for instance [10]).

Definition 7.2.1. A factorization A = BCT is called explicitly rank-revealing if both B
and C have full column rank.

Our definition of explicit rank-revealing is more strict than the one of rank revealing in
the QR literature, since we in addition require both B and C to be of full column rank
(our factorization reveals the rank of A as is shown by Theorem 8.3.1 in Chapter 8).
In the QR literature a QR method is called rank-revealing if it ‘reveals’ the rank of the
matrix A – and not necessarily if Q and RT have full column rank. For our applications
later on we expect A to be singular. Note that implementations of factorizations of such
a matrix

A =

1 1 1 1
0 1 1 1
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 0 1

︸     ︷︷     ︸
B


1 1 1 1
0 1 1 1
0 0 0 0
0 0 0 1

︸     ︷︷     ︸
CT
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can lead to factors B, CT which have zero columns, respectively zero rows. If one deletes
each zero column k in B (here column k = 3) and simultaneously row k in CT then

A =

1 1 1 1
0 1 1 1
0 0 0 1

 =

1 0 0
0 1 0
0 0 1


1 1 1 1
0 1 1 1
0 0 0 1

 =

1 0 0
0 1 0
0 0 1

︸  ︷︷  ︸
B




1 0 0
1 1 0
1 1 0
1 1 1

︸  ︷︷  ︸
C



T

where both factors B, C have full column rank. Another, mainly QR-bound, rank-
revealing definition exists in the literature: One can use a permutation P to (swap) the
third and fourth column:

AP =

1 1 1 1
0 1 1 1
0 0 1 0

 P =

1 0 0
0 1 0
0 0 1

︸  ︷︷  ︸
Q


1 1 1 1
0 1 1 1
0 0 1 0

 P

︸          ︷︷          ︸
R

to obtain a matrix Q of full column rank (preferably orthogonal or unitary) and a block
matrix R of the form

R =

[
R1 R2
0 0

]
with non-singular square R1 and with or without the zero blocks. For our example,
R = CT has no zero-blocks. But for square singular A[

A 0
0 0

]
=

[
B 0
0 0

] [
CT 0
0 0

]
would produce such blocks and lead to B and C which are not of full column rank. In
such case, one should consider an alternative factorization[

A 0
0 0

]
=

[
B
0

] [
C
0

]T

where B and C are taken to be of full column rank. The proof that one can construct
such factors depends on the factorization algorithm under consideration. Below we will
show that the SVD and the GSVD (just as standard Househoulder reflections and other
algorithms) can produce explicitly rank-revealing factorizations.

Theorem 7.2.2. (The explicitly rank-revealing SVD variant rSVD of A ∈ Rn×m)
There exist, possibly non-square, matrices U ∈ Rn×p, V ∈ Rm×p with orthogonal columns
and a diagonal matrix Σ = diag(σ1, . . . , σp) ∈ Rp×p, 0 ≤ p = rank(A) ≤ min(n,m) such
that

A = UΣVT (7.2.2)
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and σ1 ≥ . . . ≥ σp > 0, i.e., the diagonal matrix Σ does not contain rows or columns
which are the zero vector. Furthermore there exist matrices X ∈ Rn×p, Y ∈ Rm×p of full
column rank such that

A = XYT . (7.2.3)

Proof. Observe that the diagonal of Σ in Theorem 7.2.1 contains p non-zero and min(n,m)−
p zeros, and that therefore Σ can be written as a block matrix:

Σ =

( p m − p
p Σ11 0
n − p 0 0

)
where Σ11 = diag(σ1, . . . , σp) ∈ Rp×p. This partition into blocks induces a similar
partition of U and V into 1 × 2 block-matrices:

U =
( p n − p

n U1 U2

)
, V =

( p m − p
m V1 V2

)
whence

A = UΣVT
=

[
U1 U2

] [Σ11 0
0 0

] [
VT

1
VT

2

]
= U1Σ11VT

1 .

The last claim follows straightforward: Because the singular values are non-negative

A = UΣVT
= UΣ

1/2
Σ

1/2VT
= UΣ

1/2︸︷︷︸
X

(
VΣ

1/2
)T︸    ︷︷    ︸

YT

.

The matrices X = UΣ
1/2 and Y = VΣ

1/2 are of full column rank because Σ
1/2 is of full

column rank. This implies colspan UΣ
1/2

= colspan U and because U is of full column
rank (is orthogonal) therefore also X is. We call the columns of U and V the principal
components or dominant components. �

Similarly we need to show that there exists and use an explicitly rank-revealing variant
rGSVD of the GSVD. The factorization [35, Theorem 8.7.4] and the one employed by
MATLAB can return zeros on the diagonal of C and S and are not straightforwardly suited.
The reason that there can be zeros on the diagonals is that MATLAB does not return the
ranks l and k as computed for instance by LAPACK but defines C and S in terms of
the dimensions of the input matrices A and B. First, consider the standard GSVD as
presented in the reference work [35].
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Theorem 7.2.3. (The standard GSVD as presented in [35, Theorem 8.7.4])
Let A ∈ Rm×n and B ∈ Rp×n and let q = min(p, n). Then there exist orthogonal matrices
U ∈ Rm×m, V ∈ Rp×p, and a square non-singular matrix X ∈ Rn×n and diagonal matrices
C = diag(c1, . . . , cn), S = diag(s1, . . . , sq) such that

A = UCXT

B = VSXT ,
(7.2.4)

such that C2
+ S2

= I.

Proof. See [35, Theorem 8.7.4]. This theorem and its proof do not mention that if
rank([A; B]) > m then C is not necessarily a diagonal matrix, but has a non-zero upper
diagonal p = rank([A; B]) − m,i.e., there exists a natural number p such that matrix C
has only possible non-zero entries ci j when j− i = p. Online GSVD-documentation [55]
mentions that it is possible that C is a matrix with only one non-zero upper diagonal, but
does not specify which diagonal it would be. �

In Theorem 7.2.4 we present a GSVD based on LAPACK version 3.3.1 which creates C,S
with positive diagonals. An alternative would be the GSVD presented in [90] based
on a CS factorization as in [86]. The dimensions m, n, p below are as defined in [35,
Theorem 8.7.4] and [2], and the ranks k, l are as defined in [2].

Because MATLAB and [35, Theorem 8.7.4] use the input-matrices’ dimensions instead of
the ranks k and l in some cases zeros are added to S, even for the “economy-sized SVD”
version, which increases the amount of columns of V and or U. For large problems
where as little as possible computer memory should be used to calculate a GSVD, we
developed the explicitly rank-revealing version for B in Theorem 7.2.5. It uses the least
amount of memory possible and is based on [2].

Theorem 7.2.4. (A GSVD based on [2])
Let A ∈ Rm×n and B ∈ Rp×n and let 0 < l := rank(B), q := rank([A; B]), k = q − l.
Then there exist orthogonal matrices U ∈ Rm×m, V ∈ Rp×p, and Q ∈ Rn×n, non-singular
upper-triangular matrix R ∈ Rn×q, diagonal matrix D2 = diag(s1, s2, . . . , smin{p,q}) ∈
Rp×q and matrix with one non-zero diagonal D1 = diag(c1, c2, . . .) ∈ R

m×q such that

A = UD1 (QR)T ,

B = VD2 (QR)T .
(7.2.5)

Proof. For the proof of the existence of this factorization see [35, Theorem 8.7.4]. The
definition of the dimensions l and k can be found in LAPACK version 3.3.1, source code
file dggsvd.f. The related LAPACK documentation [2] states: There exist (1) orthogonal
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matrices U,V,Q; (2) matrices D1,D2 with one non-zero diagonal; and (3) an upper block
triangular matrix R̂ such that

A = UD1XT , B = VD2XT ,

where X = (QR)T can be non-square and is of full (column) rank. In full detail, if
m − q ≥ 0 then

( n
m A

)︸  ︷︷  ︸
A

=
( q m − q

m U1 U2

)︸               ︷︷               ︸
U

◦

( q
q Ĉ
m − q 0

)
︸        ︷︷        ︸

D1

◦
( n − q q

q 0 R
)︸            ︷︷            ︸

R̂

◦

( n
n − q QT

1
q QT

2

)
︸         ︷︷         ︸

QT

( n
p B

)︸ ︷︷ ︸
B

=
( l p − l

p V1 V2

)︸             ︷︷             ︸
V

◦

( k l
l 0 Ŝ
p − l 0 0

)
︸           ︷︷           ︸

D2

◦

( n − q q
k 0

[
R11 R12

]
l 0

[
0 R22

] )
︸                         ︷︷                         ︸

R̂

◦

( n
n − q QT

1
q QT

2

)
︸         ︷︷         ︸

QT

where the upper-triangular R is written as a 2 × 2 block matrix and

Ĉ =

( k l
k I 0
l 0 C

)
, Ŝ = S,

with

C = diag(c1, . . . , cl), 1 > c1 ≥ c2 ≥ . . . ≥ cl, S = diag(s1, . . . , sl), 0 < s1 ≤ s2 ≤ . . . ≤ sl,

and
C2

+ S2
= I.

If m − q < 0 then

( n
m A

)︸  ︷︷  ︸
A

= U︸︷︷︸
Rm×m

◦
( m q − m

m Ĉ 0
)︸             ︷︷             ︸

D1

◦


n − q q

m 0
[
R11 R12 R13
0 R22 R23

]
q − m 0

[
0 0 R33

]
︸                                    ︷︷                                    ︸

R̂

◦

( n
n − q QT

1
q QT

2

)
︸         ︷︷         ︸

QT

( n
p B

)︸ ︷︷ ︸
B

=
( l p − l

p V1 V2

)︸             ︷︷             ︸
V

◦

( k l
l 0 Ŝ
p − l 0 0

)
︸           ︷︷           ︸

D2

◦


n − q q

k 0
[
R11 R12 R13

]
l 0

[
0 R22 R23
0 0 R33

] ︸                              ︷︷                              ︸
R̂

◦

( n
n − q QT

1
q QT

2

)
︸         ︷︷         ︸

QT
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where the upper-triangular R is written as a 3 × 3 block matrix and

Ĉ =

( k m − k
k I 0
m − k 0 C

)
, Ŝ =

( m − k q − m
m − k S 0
q − m 0 I

)
with

C = diag(c1, . . . , cm−k), 1 > c1 ≥ c2 ≥ . . . ≥ cm−k,

S = diag(s1, . . . , sm−k), 0 < s1 ≤ s2 ≤ . . . ≤ sm−k,

and
C2

+ S2
= I.

To obtain the MATLAB-style output where the entries in C are ascending and the entries
in S are descending, the order of the columns and rows in S (and likewise in C) needs to
be reversed: Let k > 0 and

Rk =

0 0 · · · 1
0 1 · · · 0
1 0 · · · 0

 ∈ Rk×k

and observe that R−1
k = RT

k = Rk. Hence, if m − q ≥ 0 then

A =

(
U

[
Rq 0
0 Im−q

])
◦

([
Rq 0
0 Im−q

]
D1Rq

)
◦
(
RqR̂QT

)
=

(
U

[
Rq 0
0 Im−q

])
◦

[
RqĈRq

0

]
◦
(
RqR̂QT

)
B =

(
V

[
Rl 0
0 Ip−l

]) [
RlŜRl 0

0 0

] (
RqR̂QT

)
.

If m − q < 0
A =

(
URm

)
◦
[
0 RmĈRm

]
◦
(
RqR̂QT

)
B =

(
V

[
Rl 0
0 Ip−l

]) [
RlŜRl 0

0 0

] (
RqR̂QT

)
.

can be worked out similarly. In this case [0,RmĈRm] contains only non-zero entries at
its diagonal q − m and RlŜRl only on its main diagonal. �

Theorem 7.2.5. (An explicitly rank-revealing GSVD variant based on Theorem 7.2.4,
denoted rGSVD)
Let A ∈ Rm×n and B ∈ Rp×n and let 0 < l := rank(B), q := rank([A; B]), k = q − l.
Then there exist orthogonal matrices U ∈ Rm×m, Q ∈ Rn×n, matrix V ∈ Rp×l with or-
thogonal columns, non-singular upper-triangular matrix R ∈ Rn×q, diagonal matrix S =

diag(s1, s2, . . . , sl) ∈ R
l×l and matrix with one non-zero diagonal D1 = diag(c1, c2, . . .) ∈

Rm×q such that
A = UD1 (QR)T ,

B = VS
(
Q̂R̂

)T (7.2.6)
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where S does not contain zeros, Q̂ consists of columns of Q and R̂ is a diagonal block of
R which is non-singular.

Proof. Note that due to Theorem 7.2.4

RqR̂QT
=

[
0

[
0 RlR22

]
0

[
RkR11 RkR12

]] [QT
1

QT
2

]
=

[ [
0 RlR22

]
QT

2[
RkR11 RkR12

]
QT

2

]
.

This shows that there exists a explicitly rank-revealing GSVD (rGSVD) B = XS̃YT

B =

(
V

[
Rl 0
0 Ip−l

]) [
RlŜRl 0

0 0

] [ [
0 RlR22

]
QT

2[
RkR11 RkR12

]
QT

2

]
=

[
(VRl)(RlŜRl) 0

] [ [
0 RlR22

]
QT

2[
RkR11 RkR12

]
QT

2

]
= (VRl)(RlŜRl)(

[
0RlR22

] [QT
21

QT
22

]
)

= (VRl)(RlŜRl)(RlR22QT
22)

= XS̃YT

with X,Y of full column rank and S̃ a diagonal matrix with positive diagonal entries.
Note that by construction QT

2 = [QT
21; QT

22], the columns of Q22 are columns of the
orthogonal matrix Q, i.e., Q22 is orthogonal. The columns of X and Y we call the
(GSVD-based) principal components or dominant components. Note that both RqĈRq

and RlŜRl only contain entries on their main diagonal. Also, rank(X) = rank(B) and ob-
viously, multiplications with Rl are only to ensure that the entries of S are in descending
order. �

Now we show that if B has all its non-zero entries in a sub-block then also V has:

Corollary 7.2.1. (The rGSVD preserves the block structure (zero blocks) of matrix B)
Assume that B ∈ Rn×m is a sparse matrix which only contains non-zero entries in a
window (i1, . . . , i2) × ( j1, . . . , j2) (i.e., in a sub-block of size n1 × m1). Then there is
an explicitly rank-revealing factor V of B = VSXT which also only contains non-zero
entries in window of size n1 × m1.

Proof. Since B = VSXT there is a relation between the column spans of B and V:
The latter column span must contain the former. By construction of the explicitly rank-
revealing variant V at the end of the proof of Theorem 7.2.4 its rank is the rank of B.
This implies that also V can only have non-zeros in a similarly sized window, i.e., it has
a similar (non-zero) block structure as B. �
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Corollary 7.2.2. (The relation between the GSVD of A, B and GSVD of AM, BM)
If A = USXT, B = VCXT is the GSVD of A, B and M is a (compatible) non-singular
matrix then AM = USXTM, B = VCXTM is the GSVD of AM, BM.

Proof. The result is straightforward since the proposed GSVD fits all requirements of a
GSVD. �

Corollary 7.2.3. (GSVD(A, B) applied to a non-singular matrix A results in diagonal S
and diagonal C)
In the case of a block matrix

A =

[
A11 A12
A21 A22

]
∈ R(m+p)×(m+p)

where A11 is of full column rank the GSVD leads to a diagonal matrix C and S.

Proof. Follows from q = rank([A11; A21]) = m. �

7.3 The GSVD of the coupling blocks

In this section we propose the application of the GSVD to the sub-blocks of the system
matrices that describe the coupling between two sub-systems or physical sub-domains.
Based on this we are able to determine how much of the coupling information contained
in the system description is relevant and necessary to obtain an accurate solution of the
approximated coupled system. We propose the GSVD instead of the SVD since with the
GSVD we obtain dominant modes of the couplings relative to the individual systems.

First we describe how to apply the GSVD from Section 7.2 to the coupled system (7.1.1)[
A11 Ã12
Ã21 A22

] [
x̃1
x̃2

]
=

[
b1
b2

]
.

This system consists of two sets of equations

A11x1 + A12x2 = b1 (7.3.1)

A21x1 + A22x2 = b2. (7.3.2)

Equation (7.3.1) describes the behavior of the variable x1 (related to one of the sub-
systems, sub-structures or physical sub-domains) and the way it is coupled to the variable
x2. Similarly (7.3.2) describes the behavior of the variable x2 and the way it depends on
variable x1. As stated in the GSVD Theorem 7.2.3 one of the necessary conditions for
applying the GSVD to a pair of the matrices (A, B) is that the matrices A and B have
the same number of columns. In case of the system (7.1.1), the obvious pairs would be
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(A11, A21) and (A22, A12). However, this is not the most optimal choice from a practical
point of view. In industrial applications, it is often the case, that the software suited
to generate or reduce the coupled system (7.1.1) is not available. However, there may
exist software able to deal with the sub-problem (7.3.1) and software that can deal with
the sub-problem (7.3.2). Figure 7.1 shows the schematic representation of the coupled

Figure 7.1: Schematic representation of the potential solution (reduction) strategy for
the coupled system consisting of thermal and mechanical sub-systems

thermo-mechanical system, where the system matrices of the mechanical sub-problem M
and thermal sub-problem T are generated by two different types of software. Frequently,
the matrix MT that determines how the mechanical sub-problem M is influenced by
the thermal sub-problem T, is delivered by the same tool that generates the mechanical
system matrix M, which allows for further analysis (solution, reduction) of the system
consisting of both of the matrices. Similarly for the thermal sub-problem T. Hence, the
preferred way of choosing the pairs of matrices for the GSVD is the equation-wise one.
Unfortunately, in general the matrix pairs (A11, A12) and (A22, A21) involve matrices
with different number of columns whence GSVD can not be applied to them. On the
other hand, since the matrix pairs are chosen row-wise, they have the same number of
rows and creating pairs

(AT
11, AT

12) and (AT
22, AT

21) (7.3.3)

assures that the components have the same number of columns.

Observe that the GSVD in Theorem 7.2.3 ensures a factorization XST VT where S is a
diagonal matrix only for matrix B, and not for A. Because later on we assume S to be
diagonal, we apply GSVD to the ordered pair (AT

11, AT
12) and not to (AT

12, AT
11).
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Some systems are of the form(
s
[
E11

E22

]
−

[
A11 A12
A21 A22

]) [
x1
x2

]
=

[
b1
b2

]
, (7.3.4)

rather than (7.1.1). In such cases one needs to consider not the GSVD of blocks of A but
for instance the GSVD related to blocks of E−1A. The latter matrix has block structure[

E−1
11 A11 E−1

11 A12
E−1

22 A21 E−1
22 A22

]
.

It turns out that the GSVD of (E−1
11 A11)T and (E−1

11 A12)T is straightforwardly related to
the one of GSVD (AT

11 and AT
12):

AT
11 = USXT

AT
12 = VCXT =⇒

(E−1
11 A11)T

= AT
11E−T

11 = USXTE−T
11 ,

(E−1
11 A12)T

= AT
12E−T

11 = VCXTE−T
11

based on Corollary 7.2.2.

In the remainder of this thesis, we will always apply the GSVD to the pairs as defined
in (7.3.3). In the next section, we show how the components obtained after application
of the GSVD to the pairs given by (7.3.3) can be used to find low-rank approximations
of the coupling blocks.

7.4 Low-rank approximations of the couplings

In the previous section we suggested and motivated a manner of the selection of the
pairs of the system sub-matrices for the GSVD application. Here we will explain how to
obtain low-rank approximations of the coupling-blocks of the system matrix.

Definition 7.4.1. Let k be an integer and define 1 : k by 1 : k = [1, 2, . . . , k] be a positive
integer vector. Assume that index vectors I ∈ Nm and J ∈ Nm only contain positive
integer entries. Let A be a matrix with columns ai and define A(:, J) to be the column
matrix [a j1

, a j2
, . . . , a jm

]. Similarly let A be a matrix with rows ai and define A(I, :) to
be the row matrix [ai1

; ai2
; . . . ; aim

]. Finally, let A(I, J) be B(I, :) where B = A(:, J). For
the remainder of this thesis define X(k), S(k) and V(k) by X(:, 1 : k), (S(1 : k, 1 : k))T and
(V(:, 1 : k))T , and similarly X(k)

i , S(k)
i and V(k)

i , i = 1, 2.

Following the notation of GSVD Theorem 7.2.3, decomposing the pairs given by (7.3.3),
one obtains {

AT
11 = U1C1XT

1 ,

AT
12 = V1S1XT

1
,

{
AT

22 = U2C2XT
2 ,

AT
21 = V2S2XT

2 ,
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which results in coupling blocks factorizations

A12 = X1ST
1 VT

1 (7.4.1)

A21 = X2ST
2 VT

2 . (7.4.2)

Assuming that we applied an explicitly rank-revealing version of the GSVD algorithm
7.2.3, based on (7.4.1) and (7.4.2) we define coupling block A12 low-rank approximation
Ã12 of rank k1 and coupling block A21 low-rank approximation Ã21 of rank k2 by

Ã12 = X(k1)
1 S(k1)

1 V(k1)
1 (7.4.3)

Ã21 = X(k2)
2 S(k2)

2 V(k2)
2 . (7.4.4)

Finally we use Ã12 and Ã21 for the approximation (7.1.2) of the coupled system (7.1.1).
In the next section we will show the results of applying this approximation strategy to a
model of a coupled thermo-mechanical system.

7.5 Numerical example

The test example consists of a linear system of equations which describes a stationary
coupled thermo-mechanical problem: A(n offline calculated) current heats up a three-
dimensional two-layered bar which deforms due to its layers’ different expansion coef-
ficients. The beam’s movement is constrained – one of its ends is fixed. The imposed
boundary conditions are:

1. Temperature: prescribed at the fixed end – adiabatic heating on surfaces;

2. Displacements: zero (x, y, z) displacements at the bar’s fixed end.

The dimensions of the beam are 0.1m × 1m × 0.02m.

The linear system

The temperature and displacements are discretized with finite elements on a hexahedral
mesh. After elimination of the degrees of freedom on the Dirichlet boundary (prescribed
temperature and zero displacements) one obtains a block-matrix A ∈ R1200×1200. The
temperature vector x1 ∈ R

300 and nodal displacements vector x2 ∈ R
900 solve[

A11 0
A21 A22

] [
x1
x2

]
=

[
b1
b2

]
(7.5.1)
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Figure 7.2: Numbering of the nodes of the discretized beam model

where A11 ∈ R
300×300, A21 ∈ R

900×300, and A11 ∈ R
900×900. Let us define

A =

[
A11 0
A21 A22

]
, x =

[
x1
x2

]
, b =

[
b1
b2

]
. (7.5.2)

The numbering of the nodes is presented in Figure 7.2. Figure 7.3 and Figure 7.4 show
the solution’s temperature and displacement parts, respectively. Observe that the displa-
cement is more dominant in the z than in the x, y directions.

The unscaled linear system

Because we intend to construct an approximation based on available “industrial” soft-
ware, we work with the system of equations as it is given. It turns out that the matrix A is
badly scaled, most likely due to not scaling/non-dimensionalizing the physics equations
by the software. The spectral condition number κ2(A) is κ2(A) ≈ 3.1566 × 1014 which
implies that for double precision IEEE arithmetic A is numerically singular – the matlab
rank(A) command returns 1195 , 1200. The same command shows that A11 and A22
are of full column rank.

Scaled version of the linear system

Next, we scale the system of equations based on the values of the diagonal entries of
A such that the scaled system has entries 1 at the diagonal, i.e., we apply a diagonal
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Figure 7.3: Temperatures (in kelvin) along the beam (courtesy of Fabio Freschi, Torino
University)

scaling. Both row and column scaling is performed (matrix A is multiplied from the left
and right side) which implies that we both scale the equations and “non-dimensionalize”
the degrees of freedom: Using

D = diag(
√

a−1
ii ) (7.5.3)

we solve

D
[

A11 0
A21 A22

]
D

[
v1
v2

]
= D

[
b1
b2

]
, (7.5.4)

where v = D−1x. Let E = DAD. Then by construction

E =

[
E11 0
E21 E22

]
(7.5.5)

and has diagonal entries equal to 1. After the scaling, numerical test shows that E has full
column rank and that κ2(E) ≈ 1.4456 × 108. Figure 7.5 and Figure 7.6 show plots of the
solution vectors v1 and v2, respectively. If the matrix had been even worse conditioned,
one could have scaled the x, y and z components of the solution independently, since the
displacement in z direction is several orders of magnitudes larger than those in x and y
direction.
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Figure 7.4: Displacements (in meters) along the beam (courtesy of Fabio Freschi, Torino
University)

Low-rank approximation of the scaled system

Finally, the original system was approximated by a system obtained by replacing the
exact coupling block by a GSVD-based one. In this case, the thermo-mechanical cou-
pling is defined by the E21 block of the scaled matrix. To compute the GSVD, this block
was used together with the E22 block. To assure correct dimensions required in the
GSVD algorithm, transposed versions of these matrices were employed. The decompo-
sed system has the following form  ET

22 = UCXT ,

ET
21 = VSXT .

(7.5.6)

A plot of the generalized singular values of the matrix E21, diagonal values of S, is shown
in figure 7.7. The approximation of the coupling sub-block Ẽ21 ≈ E21 is obtained by
taking into account only a number of dominant components computed by the GSVD

Ẽ21 = X(k)S(k)V(k), (7.5.7)

where k is the rank of the approximation. Next the approximated system[
E11 0
Ẽ21 E22

] [
ṽ1
ṽ2

]
= D

[
b1
b2

]
(7.5.8)
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Figure 7.5: The scaled system’s solution temperatures (in scaled kelvin) vector v1 with
respect to the temperature degrees of freedom

is solved. In case of the thermal part of the problem, the approximated solution ṽ1 is
equal to the exact one v1. This is due to the fact, that in the considered problem the
coupling is uni-directional (the temperature affects the shape of the beam but not the
other way round) and the values of the thermal variables are not influenced by the values
of the displacements. Let us examine the accuracy of the displacement variable ṽ2. Since
ṽ2 describes the displacement of the nodes in three different spatial directions and the
magnitudes of the displacements are different for each of the directions, the good way of
judging the final result seems to be by comparing the approximated total displacement
vector of the node with the exact one. Hence, we define the exact and approximated
displacement vectors for a node i, i = 1, ..., 300, r and r̃ respectively, as follows

ri =

√
x2

i + y2
i + z2

i and r̃i =

√
x̃2

i + ỹ2
i + z̃2

i , (7.5.9)

where xi, yi, zi, x̃i, ỹi, z̃i are the entries of the vectors v2 and ṽ2 corresponding to the
displacements of the node i in the x, y, and z direction. The relative approximation errors
are estimated for each node according to the formula

εi =
|ri − r̃i|

|ri|
. (7.5.10)

Table 7.1 shows εi for the solution of the approximated system, where the coupling block
E21 was approximated using k = 15 dominant components. Each column of the table
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Figure 7.6: The scaled system’s solution nodal displacements (in scaled meters) vector
v2 with respect to the displacement degrees of freedom

Figure 7.7: Generalized singular values C of the matrix E21
T
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shows the error for one of the 15 discretization lines along the beam. Every line consists
of 20 nodes, numbered from 1 at the top (node at the fixed end of the beam) to 20 at
the bottom (node at the free end of the beam). Figure 7.8 illustrates how the lines are
defined. As shown in the table 7.1, the highest relative error for the displacements is

Figure 7.8: Discretization lines along the beam

computed for the nodes that are close to the fixed end of the beam. This can be explained
by the fact, that the displacements of the nodes, that are located close to the fixed end,
are small (very close to zero). On the other hand, looking at the displacements close
to the free end of the beam, one can see, that already a rank 15 approximation results
in a relative error around 2%. This makes the approximation procedure valuable, since
the evaluation of the unknown displacements for nodes at the free side of the beam is of
interest. The displacements of nodes at the fixed end of the beam are pre-described and
do not need to be computed.

7.6 Conclusions

In this chapter, we focused on the coupling blocks of a linear system of equations. We
introduced the singular value decomposition (SVD), the generalized singular value de-
composition (GSVD), and their explicitly rank-revealing variants as tools to evaluate the
importance of the couplings. We showed that the explicitly rank-revealing GSVD of a
pair of matrices (A, B) preserves a block-structure of the matrix B. Finally, we pre-
sented numerical results of application of the GSVD to the coupling block of a thermo-
mechanical problem.
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In the next chapter, we propose a way of combining the GSVD idea with the SBR algo-
rithm, to make the latter one more efficient for strongly coupled systems.
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Chapter 8

Low-rank approximations based
SBR algorithm

8.1 Introduction

In Chapters 5 and 6 we presented the Separate Bases Reduction algorithm – a block-
structure preserving model reduction method for coupled systems. As discussed in these
chapters, one of the SBR method’s disadvantages is that the sizes of the its Krylov sub-
spaces increase very fast for systems with a large number of internal inputs and outputs.
Hence, the use of the SBR algorithm was recommended for the cases, in which the num-
ber of internal inputs and outputs was considerably smaller than the dimension of the
system or comparable to the number of the external inputs and outputs. In this chapter,
we approximate the internal inputs (outputs) by their GSVD-based dominant parts. This
improves the efficiency of the SBR method. In addition we will prove that both the SBR
algorithm and its low-rank based variant can be applied to coupled systems for which
the internal input and output operators B and C are not explicitly availabe.



122 8 Low-rank approximations based SBR algorithm

8.2 Implicitly defined couplings

In Chapter 5, we introduced the interconnected system of the form

S :


s
[
E11 0
0 E22

] [
x1
x2

]
=

[
A11 B3CT

4
B4CT

3 A22

] [
x1
x2

]
+

[
B1 0
0 B2

] [
u1
u2

]
[
y1
y2

]
=

[
CT

1 0
0 CT

2

] [
x1
x2

]
.

(8.2.1)

as a result of the coupling of the two sub-systems, (5.2.1) and (5.2.2). Here, the coupling
blocks are given by the explicit products of the internal inputs and outputs of the two
sub-systems, namely B3CT

4 and B4CT
3 . Having such a formulation at our disposal, we

can apply the SBR algorithm in a straightforward way. However, for some applications
it may be impossible to obtain matrices B3, B4, C3 and C4. In the following sections
we propose a way of transforming an interconnected system with implicitly defined cou-
plings of a form

S :


s
[
E11 0
0 E22

] [
x1
x2

]
=

[
A11 A12
A21 A22

] [
x1
x2

]
+

[
B1 0
0 B2

] [
u1
u2

]
[
y1
y2

]
=

[
CT

1 0
0 CT

2

] [
x1
x2

] , (8.2.2)

with

E =

[
E11 0
0 E22

]
, A =

[
A11 A12
A21 A22

]
, B =

[
B1 0
0 B2

]
, C =

[
C1 0
0 C2

]
(8.2.3)

into a form that can be reduced using the SBR algorithm. Our goal is to find decompo-
sitions (factorizations) of the two coupling blocks

A12 = B̃3C̃T
4 and A21 = B̃4C̃T

3 (8.2.4)

that provide a good (with respect to the corresponding Krylov subspaces) approximation
of the original internal inputs and outputs of the coupled system (8.2.2). A factorization
of the type A = BC is not be unique. The next section shows how to deal with this.

8.3 Decomposition theorem

In this section, related to (8.2.2), first we show that a factorization A = BC is not
unique and next we prove that if A12 = B1C1 and simultaneously A12 = B2C2 then
Kp(A11,B1) = Kp(A11,B2) if C1 and C2 are of full column rank. The proofs will be
for the input-based Krylov subspaces. Similar theory applies to the output-based Krylov
subspaces.
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First, a factorization of the type A = BC is not unique since A = IA and A = AI
are two different factorizations. Even a QR factorization A = QR is not unique since if
A = QR then A = (QS)(SR) for all complex valued diagonal matrices S with unit-length
diagonal elements (S denotes the complex conjugate of S). Also other factorizations such
as Gaussian-elimination based A = LU exist.

Since we aim at the use of B for the generation of a Krylov subspace Kp(A11,B1) we
will next show that the non-uniqueness does not need to be an issue. To this end we
prove the following Lemma 8.3.1 and Theorem 8.3.1.

Lemma 8.3.1. Let B ∈ Rn×p, C ∈ Rp×m, m, n, p ∈ N. Then

rank(C) = p =⇒ colspan BC = colspan B.

Proof. Matrix C has rank p which implies p ≤ m and that C has p linearly independent
columns of length p. Thus based on

colspan C = {Cx : x ∈ Rm
} (8.3.1)

one finds
colspan C =

(8.3.1)
{Cx : x ∈ Rm

} =
p≤m
Rp (8.3.2)

whence

colspan BC =
(8.3.1)

{BCx : x ∈ Rm
} =

(8.3.2)
{By : y ∈ Rp

} =
(8.3.1)

colspan B.

Note: The condition that C has full column rank is sufficient but not necessary. It can be
relaxed: If for instance B has only 2 ≤ p linearly independent columns, e.g. the ith and
the jth column, then a sufficient condition is colspan C = colspan {ei, e j} ⊂ R

p. �

Theorem 8.3.1. Let B1,B2 ∈ R
n×p, C1,C2 ∈ R

p×m and m, n, p ∈ N.
If

rank(C1) = rank(C2) = p and B1C1 = B2C2

then
colspan B1 = colspan B2.

Proof. Observe that

colspan B1 =
Lem.8.3.1

colspan B1C1 = colspan B2C2 =
Lem.8.3.1

colspan B2.

�
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Next we prove that certain Krylov subspaces are identical.

Theorem 8.3.2. Let A ∈ Rn×n is non-singular and B1,B2 ∈ R
n×m, n,m ∈ N. Then

colspan B1 = colspan B2 =⇒ Kp(A,B1) = Kp(A,B2).

Proof. Note that
colspan B1 = colspan B2 ⇐⇒{

B1x : x ∈ Rm}
=

{
B2x : x ∈ Rm}

⇐⇒{
AB1x : x ∈ Rm}

=
{
AB2x : x ∈ Rm}

⇐⇒

colspan AB1 = colspan AB2,

which, repeatedly applied, shows that colspan AkB1 = colspan AkB2 for all k ≥ 0
whence Kp(A,B1) = Kp(A,B2). �

Theorem 8.3.1 in combination with Theorem 8.3.2 show that every factorization of an
off-diagonal block of the form A12 = BCT with C of full column rank leads to the same
krylov space Kp(A11,B). The following sections show how to use this property for the
application of the SBR method to an arbitrary coupled system (8.2.2).

8.4 Decomposition theorem – numerical example

In Section 8.3 we showed that the Krylov space does not depend on the factors of the
decomposition A12 = BCT when these factors are of maximal column rank. To illustrate
this numerically, we calculate these factors of A12 with different factorization techniques,
based on a QR factoration and LU factorization. For simplicity, we use a one-sided
variant of the SBR method. The system used for the test is a linear beam coupled to
a controller, like 5.7.3 in Section 5.7. Only the beam system has an external input and
external output. Hence, the considered system is of a form

S :


s
[
I11 0
0 I22

] [
x1
x2

]
=

[
A11 B3CT

4
B4CT

3 A22

] [
x1
x2

]
+

[
B1
0

]
u1

y1 = [CT
1 0]

[
x1
x2

]
.

(8.4.1)

Let A12 = B3CT
4 and A21 = B4CT

3 . Here, the full coupled system has 80 degrees of
freedom, 40 for each sub-system. Both of the sub-systems have 5 internal inputs and 5
internal outputs. It means, that the coupling blocks A12 and A21 are of rank 5. For all
cases, the same number of Krylov iterations is performed and the reduced-order systems
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are of the order 55 (originally 80). The first sub-system was reduced from order 40 down
to 30 and the second from order 40 down to 25.

To reduce the original system, we will build three reduction matrices involving an nth-
order Krylov sub-space as follows:

• Reduction matrix based on the original internal input blocks
The diagonal sub-blocks of the reduction matrix span the Krylov subspaces

V1 = Kn(P1,R1),

where

P1 = (sI11 − A11)−1 and R1 = (sI11 − A11)−1[B1 B3]

and
V2 = Kn(P2,R2),

where
P2 = (sI22 − A22)−1 and R2 = (sI22 − A22)−1B4.

The block-diagonal reduction matrix V is of the form

V =

[
V1 0
0 V2

]
.

• Reduction matrix based on a QR decomposition of the coupling blocks
Based on a QR decomposition of the coupling matrices A12 and A21, we get

A12 = Q1R1 and A21 = Q2R2.

We use an rank-revealing version of the QR algorithm, i.e., Q1, Q2, RT
1 , RT

2 are
of full column rank. Hence, the matrices Q1 and Q2 used to build the Krylov
subspaces have the same rank (and most likely amount of columns) as B3 and B4.
Next, the reduction sub-blocks are created

VQR
1 = Kn(PQR

1 ,RQR
1 ),

where

PQR
1 = (sI11 − A11)−1 and RQR

1 = (sI11 − A11)−1[B1 Q1]

and
VQR

2 = Kn(PQR
2 ,RQR

2 ),
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where

PQR
2 = (sI22 − A22)−1 and RQR

2 = (sI22 − A22)−1
Q2.

The block-diagonal reduction matrix VQR is of the form

VQR
=

[
VQR

1 0
0 VQR

2

]
.

• Reduction matrix based on the LU decomposition of the coupling blocks
Based on the LU decomposition of the coupling matrices A12 and A21, we get

A12 = L1U1 and A21 = L2U2.

We use a rank-revealing version of the LU algorithm, i.e., L1, L2, UT
1 and UT

2
are of full column rank. Hence, the matrices L1 and L2 used to build the Krylov
subspaces have the same rank (and most likely amount of columns) as B3 and B4.
Next, the reduction sub-blocks are created

VLU
1 = Kn(PLU

1 ,RLU
1 ),

where

PLU
1 = (sI11 − A11)−1 and RLU

1 = (sI11 − A11)−1[B1 L1]

and
VLU

2 = Kn(PLU
2 ,RLU

2 ),

where

PLU
2 = (sI22 − A22)−1 and RLU

2 = (sI22 − A22)−1
L2.

The block-diagonal reduction matrix VLU is of the form

VLU
=

[
VLU

1 0
0 VLU

2

]
.

Figure 8.1 shows the magnitude plots with respect to the frequency of the frequency
response functions of the three reduced-order systems, created using original, QR-, and
LU-decomposition based input matrices. The plots are almost identical, which is confir-
med in Figure 8.2, that shows the relative errors between the reduced-order frequency
response function of the original system and the frequency response functions compu-
ted based on both decompositions. The small differences between the three frequency
response functions should be caused by round-off errors.

The next section shows how Theorems 8.3.1 and 8.3.2 in combination with GSVD
can be used to improve the performance of the SBR algorithm applied to coupled systems
with a high number of couplings (or interconnections).
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Figure 8.1: Magnitude plots of the frequency response functions of the reduced-order
systems based on different decompositions of the coupling blocks

Figure 8.2: Magnitude plots of the relative errors of the reduced-order frequency res-
ponse functions based on different decompositions of the coupling blocks with respect
to the reduced-order frequency response function based on the original input and output
matrices
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8.5 Low-rank approximations based SBR algorithm

As shown in Chapter 7 in Sections 7.4 and 7.5 for some coupled systems it is not always
necessary to take into account all of the coupling components. Sometimes only a small
number of them determines the behavior of the system and the rest can be neglected wi-
thout much loss of accuracy. This section extends the application of the SBR algorithm
to coupled (or interconnected) systems characterized by a high number of couplings of
which only a small percentage is relevant to obtain an accurate solution.
Chapters 5 and 6 pointed out that the standard SBR method should be applied only
for the systems with a relatively small number of internal inputs and outputs. That is,
only for coupled systems where few degrees of freedom of one sub-system (related to
one physical domain or to a physcial quantity) are coupled/connected to the other sub-
system, which implies that the coupling blocks A12 and A21 of the system (8.2.2) are of
low rank. Otherwise, the SBR method produces reduction bases which increase in size
too fast with respect to the number of Krylov iterations. However, if only a part of the
components of the high rank coupling blocks is relevant, we can decrease the growth
speed of the reduction bases. To do so, we first need to determine, which components of
the coupling are important and should be kept, and which ones can be neglected. One of
the ways to make this decision, is to apply the generalized singular value decomposition
(GSVD) of Theorem 7.2.3 to the coupling matrices A12 and A21. As explained in Sec-
tion 7.3, for (8.2.2), the GSVD should be applied to the pairs (AT

11,A
T
12) and (AT

22,A
T
21).

Following the notation of Theorem 7.2.3 one has

AT
11 = U1C1XT

1
AT

12 = V1S1XT
1

and
AT

22 = U2C2XT
2

AT
21 = V2S2XT

2

which results in the expressions for the coupling blocks

A12 = X1ST
1 VT

1 (8.5.1)

A21 = X2ST
2 VT

2 . (8.5.2)

Note, that here the matrices C1 and C2 are not used to denote external output matrices,
but components of the GSVD. Assuming that the coupling blocks are of the form (8.2.4),
since S1 and S2 are real-valued non-negative diagonal, we can define the input and output
matrices as following products

B̃3 = X1S1/2
1 , C̃4 = V1S1/2

1 (8.5.3)

B̃4 = X2S1/2
2 , C̃3 = V2S1/2

2 . (8.5.4)

Since S1 and S2 are diagonal matrices with non-negative entries their square roots are
diagonal matrices with entries

√
[S1]ii and

√
[S2]ii. Constructing the inputs and outputs

as in (8.5.3) and (8.5.4), all of Bi and Ci, i = 3, 4 are scaled by
√

S1 or
√

S2.
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According to the Theorems 8.3.1 and 8.3.2, Kp(A11,B3CT
4 ) = Kp(A11, B̃3C̃T

4 ) and
Kp(A22,B4CT

3 ) = Kp(A11, B̃4C̃T
3 ). Moreover, using a type of the decomposition that

orders the components with respect to their importance has an additional benefit. It
makes it possible to approximate the inputs and outputs leaving only the most relevant
components and, as a result, reduces the dimensions of the blocks. In some cases, this
reduction is sufficient to allow for an efficient application of the SBR algorithm.
Let us now compare the procedures of building the standard and GSVD-based Krylov
subspaces. Here, we will limit the discussion to the case of creation of a Krylov space
based on inputs of the sub-system (5.2.1), but a similar analysis applies to all the other
cases, i.e. input-based Krylov subspace for (5.2.2) and output-based Krylov subspaces
for both sub-systems, (5.2.1) and (5.2.2). As defined in Chapter 5, matrices A11 ∈

RN1×N1 , B1 ∈ R
N1×m1 and B3 ∈ R

N1×m3 . Assume, that B3 has full column rank m3
and that application of GSVD to the pair (AT

11,A
T
12) leads to

B̃3 = X1S1/2
1 = [b̃1, .., b̃m3

] ∈ RN1×m3 .

where both X1 and S1 in (8.5.3) are of full column rank. Next, let B̂3 = X(k)
1 (S(k)

1 )1/2

approximate B̃3 with the use of k dominant components. Then

B̂3 = [b̃1, .., b̃k] ∈ RN1×k. (8.5.5)

For simplicity, we assume that m1 +m3 is a multiple of m1 +k, so there exists λ ∈ N such
that

m1 + m3 = λ(m1 + k). (8.5.6)

The pth Krylov subspace created by the SBR algorithm for the sub-system (5.2.1) for
s0 ∈ C is

Kp(P1,R1) = colspan{R1,P1R1, ...,P
p−1
1 R1},

where
P1 = (s0E11 − A11)−1E11 and R1 = (s0E11 − A11)−1[B1 B3]

and consists of p(m1 + m3) columns (assuming that no linear dependence occurs).
Likewise,

Kλp(P1, R̂1) = colspan{R̂1,P1R̂1, ...,P
λp−1
1 R̂1}, (8.5.7)

where
P1 = (s0E11 − A11)−1E11 and R̂1 = (s0E11 − A11)−1[B1 B̂3]

consists also of p(m1 + m3) columns, but approximately matches λ as many moments of
the original transfer function.

Projecting system (5.2.1) onto a subspace Kλp(P1, R̂1) in (8.5.7) does not preserve the
moments of the transfer function of this sub-system. However, if the column span of
the matrix B̂3 gives a good approximation of the column span of the matrix B3 we can
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expect that the reduced-order system obtained by projection onto the space (8.5.7) will
give an accurate approximation of the appropriate number of moments of the transfer
function of the original system. Moreover, if the matrix B3 can be approximated by B̂3
with a significantly smaller number of columns, λ times more steps may be used during
the Krylov procedure (to approximate a higher number of moments) or one can use more
expansion points, keeping the reduced-order model still relatively small.

In the next section, we present the results of a numerical test that show the advantage
of using the low-rank approximation based SBR algorithm for a system with high order
of coupling.

8.6 The low-rank approximation based SBR algorithm – nu-
merical example

In this section, we consider Example 5.7.2 which was already discussed in Section 5.7
and is identical to Example 6.4.2 in Section 6.4. The difficulty of this test case is that
here the coupling blocks of the system (5.7.3) are of rank 10 (the coupled system has
10 internal inputs and 10 internal outputs), while each of the sub-systems contains only
40 degrees of freedom (80 degrees of freedom in total). As shown in Example 5.7.2
and Example 6.4.2 the standard SBR algorithm generates to many columns to be com-
petitive. However, the use of low-rank approximations makes the SBR algorithm more
competitive. Figure 8.3 shows the magnitude plots with respect to the frequency of the
original and reduced-order frequency response functions. In case of the two-sided BSP
method and the two-sided SBR algorithm based reduced-order systems, the reduction
bases were created in the same manner as described in Example 6.4.2 in Chapter 6 and
the original system was reduced to 42 degrees of freedom. The low-rank approximation
based two-sided SBR algorithm created the reduction bases for rank 3 approximations of
the coupling blocks, i.e. the internal input and output matrices Bi,Ci ∈ R

40×10, i = 3, 4
were approximated by B̂i, Ĉi ∈ R

40×3, i = 3, 4. Hence, every Krylov step was adding
4 new columns to the reduction basis (3 corresponding to B̂3 or Ĉ4 and 1 correspon-
ding to B1 or C1) in case of the sub-system S 1 and 3 new columns (corresponding to
B̂4 or Ĉ3) in case of the sub-system S 2. To construct the reduced-order system of di-
mension 42, the low-rank approximation based SBR algorithm performed 6 iterations
for each sub-system (for both, input and output related bases). Figure 8.4 shows the
magnitude plots of the relative errors of the reduced-order frequency response functions
with respect to the original one. Note that the two-sided SBR algorithm based on low-
rank approximations of the internal inputs and outputs leads to much better results than
the SBR algorithm applied to the original coupling blocks. The two-sided low-rank ba-
sed reduced-order transfer function Hlow−rank−SBR approximates H less accurate than the
standard two-sided BSP transfer function but in the neighborhood of the expansion point
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Figure 8.3: Magnitude plots of the frequency response functions of the original and
reduced-order systems

s the relative error is still below 2%. Table 8.1 shows that not only the first 6 derivatives
are matched but also the 7th one is well approximated.

Table 8.1: Derivatives of the original and low-rank approximation based reduced-order
transfer functions for the expansion point (s) for the second example, multiplied by 107

i ∂iH(s) ∂iHlow−rank−SBR(s)
0 -0.349984611544531 -0.349975323605725
1 0.000580754070987 0.000580770193275
2 -0.000001928114532 -0.000001928787960
3 0.000000012770698 0.000000012766510
4 -0.000000000067912 -0.000000000068062
5 0.000000000000859 0.000000000000859
6 -0.000000000000014 -0.000000000000014
7 0.000000000000000 0.000000000000000
8 -0.000000000000000 -0.000000000000000
9 0.000000000000000 0.000000000000000
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Figure 8.4: Magnitude plots of the relative errors of the reduced-order frequency res-
ponse functions with respect to the original frequency response function

8.7 Conclusions

In this chapter we proposed a solution to the limitation of the SBR algorithm which is
that it is mainly applicable to slightly coupled (or interconnected) systems. Using GSVD
introduced in Chapter 7 we showed how to find and use the most relevant coupling
components with respect to each sub-system. Just using the relevant couplings (prin-
cipal components) we were able to efficiently apply the SBR algorithm to an example
for which the standard SBR algorithm (due to the high number of interconnections) in
Chapters 5 and 6 was not competitive. In addition we showed how the SBR method can
be efficiently used for a small coupled system since we need to add (many) fewer co-
lumns per Krylov space iteration. This approach gives us the freedom to apply the SBR
algorithm to any coupled system, as long as the couplings can be well approximated by
a relatively low number of their dominant components. The advantage is in the possi-
bility of using the uncoupled formulation of the coupled system, which, in some cases,
can be computationally very beneficial. However, this type of reduction technique does
not anymore ensure the exact matching of the moments of the original system’s transfer
function. Instead, we can expect an approximation of the moments which depends on
the quality of our approximations of the inputs and outputs, see also [52].



Chapter 9

The OCE benchmark

9.1 Introduction

The benchmark system treated in this chapter is a model of a printhead delivered by Océ
Technologies B.V. in the Netherlands. It is a MEMS (micro-electro-mechanical-system)
based design, containing a large number of individual channels integrated into a single
chip. A schematic overview of a single channel (a side and bottom view) is shown in
Figure 9.1. The dotted line depicts the ink flow; the ink, coming from the reservoir, en-
ters through a restriction (1), from which it flows into the actuation chamber (2). Below
the actuation chamber, a 300 µm long feed-through is placed (3), after which the nozzle
plate is reached. The nozzle plate is 75 µm thick and consists of a pyramid shaped funnel
(4) and a nozzle (5) with a radius of 11 µm.
The main goal is to suppress acoustic pressure waves, which can be generated in a num-
ber of ways, such as the non-continuous ink supply by many thousands of ink channels,
residual vibrations at the inlet of the ink channels, fast movement of the printhead, reso-
nance of the whole structure, etc.
The models of such devices used for simulations can reach large dimensions, hence ap-
plication of the model order reduction techniques is often required, to decrease the simu-
lation time. In this chapter, we study the application of the GSVD based approximations
for the coupling blocks in the model of the printhead.
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Figure 9.1: A schematic overview of a single channel (courtesy of Herman Wijshoff)

9.2 The second and first order system

The related system of equations is a second order system. Let n1, n2 ∈ N and n = n1 +n2.
The second order system of interest is{

Mx′′ + Kx = b
y = cx (9.2.1)

with (n1 + n2) × (n1 + n2), 2 × 2 block-matrices

M =

[
M11 0
M22 M22

]
, K =

[
K11 K12

0 K22

]
(9.2.2)

and M21 = −ρKT
12. The first sub-system corresponds to the displacement of the struc-

ture and the second sub-system describes the pressure of the fluid. The related Laplace
transformation {

w̃2Mx + Kx = b
y = cx

leads to transfer function

H(w) = c(K + w̃2M)−1b, w̃ ∈ C.
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Searching for purely oscillatory modes implies that the related w̃ is purely imaginary,
i.e., that one is interested in positive real values w of:

H(w) = c(K − w2M)−1b, w ∈ R. (9.2.3)

Let x2 = x′1. Then the first order system reformulation of (9.2.1) is{
x2 = x′1

Mx′2 + Kx1 = b =⇒

{
x′1 − x2 = 0

Mx′2 + Kx1 = b

which implies 

[
I

M

]
︸︷︷︸

E

[
x1
x2

]′
=

[
I

−K

]
︸  ︷︷  ︸

A

[
x1
x2

]
+

[
0
b

]
︸︷︷︸

B[
y1
y2

]
=

[
c 0
0 0

]
+

[
x1
x2

]
.

Its related transfer function is

H(s) = C(sE − A)−1B. (9.2.4)

Solution of FX = B:{
sx1 − x2 = 0

sMx2 + Kx1 = b =⇒

{
sx1 − x2 = 0

s2Mx1 + Kx1 = b
=⇒

 x1 =
(
s2M + K

)−1
b

x2 = sx1.

This implies that
y1 = c

(
s2M + K

)−1
b

is identical to y if and only if s = iw, w ∈ R.

In the sequel we will examine the second order system.

9.3 Sparsity patterns and magnitudes of the blocks of M, K

There are three available discretizations for the OCE application: coarse: 1188 1050,
medium: 4752 5304 and fine: 20748 35775. The numbers relate to the amount of
degrees of freedom as follows: Case 4752 5304 implies n1 = 4752 and n2 = 5304. Ex-
tracted from ANSYS, the blocks M11,M21,M22,K11,K12,K22 in (9.2.2) are very dif-
ferently scaled: For instance, for the medium case their absolute value greatest resp.
smallest entries (magnitude) are of the order

M = O(
[
10−10 0
10−5 10−18

]
), K = O(

[
10+8 10−8

0 10−4

]
),

M = O(
[
10−12 0
10−6 10−20

]
), K = O(

[
10−12 10−9

0 10−6

]
).

(9.3.1)



136 9 The OCE benchmark

For the calculation of the transfer function furthermore note that w ∈ [0, 2π1500]. Thus
approximately, w2

∈ [0, 108]. The use of the standard MATLAB ’\’ operations to solve
(K − w2M)x = b leads to error messages and abortions, not to solutions. An alter-
native, the use of the MATLAB package Factorize, alleviates this problem, but (too)
severe round-off remains. Furthermore, the ’\’ operation turns out to be very slow
for this poorly scaled problem. Investigation shows that that K11 contains entries in
[10−12, 10+8]. The use of standard double precision floating point IEEE arithmetic in-
volved in matrix operations such as matrix multiplication is bound to round-away contri-
butions of the smaller entries.

Further investigation shows that all diagonal blocks but K11 are symmetric. For the
results shown in this thesis the slightly non-symmetric ANSYS block K11 has been used
as is. The results would be the same if one had instead used its symmetric part (K11 +

KT
11)/2 (tested). It has also been shown that indeed M21 = −ρKT

12 for all three examples,
where ρ = 1090.

Observe that the determination of the smallest absolute value positive entry of a sparse
MATLAB matrix with MATLAB is not trivial: The smallest entry of a sparse matrix usually
is zero (since the default entry has value zero), MATHWORKS and other sources do not
provide an on-the-shelf solution. To obtain the smallest non-zero entry we have written
a MATLAB function vfilter which for a full or sparse matrix X writes all entries Xi j
such that |Xi j| > ε ≥ 0 column-wise into a full vector. The use of this function applied to
matrix X and ε = 0 in combination with min provides the smallest absolute value entry
of X.

Naturally, small entries should only be discarded if they are not relevant to the system of
interest, i.e., if the the system is properly scaled, which is the topic of discussion of the
next section.

9.4 Scaling the second order system

We need to scale the matrices K and M (E and A) to obtain a numerically robust solution
of the system

F(w)x = b ⇐⇒ (K − w2M)x = b ⇐⇒
[
K11 − w2M11 K12
ρw2KT

12 K22 − w2M22

]
x = b,

which depends on w. For the problem of interest we expect symmetric blocks M11,M22,K11
and K22, and M21 = −ρKT

12. This implies that this system could be scaled (preconditio-
ned) into a symmetric one (symmetry scaling), for which efficient linear solvers exist.
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(a) M11 (b) M22

(c) K11 (d) K22

(e) K12

Figure 9.2: Sparsity pattern of matrix blocks.
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This can be done as follows: Observe that for a two by two matrix

A =

[
a d
c b

]
, D1 =

[
1
√

c/d

]
=⇒ D−1

1 AD1 =

[
a
√

cd
√

cd b

]
can be scaled to a symmetric one. Hence, based on c = ρw2 and d = 1, define

D1 =

In1 √
ρw2In2

 .
Furthermore, to better scale the entries inside and between blocks (create diagonal ele-
ments of magnitude 1), define

D2 = diag(1/
√

[D−1
1 FD1]11, . . . , 1/

√
[D−1

1 FD1]nn).

We now scale with a diagonal scaling:

M̂ := D2D−1
1︸ ︷︷ ︸

Q

M D1D2︸︷︷︸
P

,

K̂ := QKP, b̂ := Qb, ĉ := cP,

which, by invariance under inputs and outputs transformations means that

Ĥ(w) := c(K̂ − w2M̂)−1b̂

is identical to H in (9.2.3) for all w. Obviously D1 is non-singular except for w = 0 and
D2 exists and is non-singular when all diagonal entries of D−1

1 FD1 are non-zero.

The factors P = P(w) and Q = Q(w) depend on w. This is fine for the construction of
Krylov spaces to match moments. However, to plot the transfer function H one needs
to evaluate c(K − w2

kM) for many wk ∈ [0, 108]. Repeated calculation of P(wk) and
Q(wk) would be (too) costly, so we decided to use the w-independent factors P := P(ŵ)
Q := Q(ŵ) for all w where ŵ is the average of all wk. For the OCE example, to plot the
transfer functions, we sample the provided region of interest: wk = 5π ·k, k = 0, . . . , 600.
The value of ŵ turns out to be w301 which is close to but not too close to a pole of H and
such that all diagonal entries of D−1

1 FD1 are non-zero.

9.5 The structure and the GSVD of K12

Here we briefly comment on the GSVD of the scaled KT
12. Figure 9.2 and numeri-

cal investigation show that K12 ∈ R
1188×1050 is a sparse matrix which contains a small

non-zero sub-block of size 295 × 175 (window (3, . . . , 297) × (561, . . . , 735)). This is
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typical for applications where the different physical quantities are defined in bordering
sub-domains and are coupled via the mutual boundary – if one numbers the degrees of
freedom on the mutual boundary consecutively. Since KT

12 has this structure it is of the
type as required for Corollary 7.2.1. This means that also V has all its non-zero entries
in the same sub-block, i.e., it only has possible non-zero entries from row 561 to 735.
This information is of importance, because the standard GSVD implementations such
as MATLAB’s do not use this information and generate V which contains round-off (non-
zero) entries outside the window, as can be seen in Figure 9.3. For the medium test case
the results are worse, as to be expected: For p = 5 and ε = 0, K(p)

12 (see below) is a full
matrix.

To work around this problem we have written a MATLAB function spfilter which for a
full or sparse matrix X copies all entries Xi j such that |Xi j| > M(X)·ε into a sparse matrix
Y, where M(X) := max{|X|i j}i, j. This way, using ε = 10−11, both K12 = XSTVT and all
of its dominant parts K(p)

12 := X(p)S(p)V(p) (for some p ≤ n) (based on Definition 7.4.1)
have similar sparsity patterns.

In MATLAB there are different but equivalent manners for the filtering of entries from a
matrix. However, most of them do not terminate or lead to out of memory errors even
for the small case. Functions vfilter and spfilter contain information on manners
which somehow do not lead to the desired result.

Explicit multiplication with factors X(p), S(p) and V(p) for the multiplication with x 7→
Kx is likely to be the more efficient then the use of multiplication with K(p)

12 .

9.6 A GSVD-based approximation of K12

In this section we analyse how the GSVD based approximation of K12 influences the
solution of the static problem [

K11 K12
0 K22

] [
x1
x2

]
=

[
b1
b2

]
(9.6.1)

Based on the definition of K(p)
12 the approximation leads to system[

K11 K(p)
12

0 K22

] y(p)
1

y(p)
2

 =

[
b1
b2

]
. (9.6.2)

We intend to estimate
||
(
|xi − y(p)

i |/|xi|
)
i
||∞ (9.6.3)
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(a) p = 5, ε = 0 (b) p = 5, ε = 10−14

(c) p = 5, ε = 10−12 (d) p = 5, ε = 10−10

Figure 9.3: Entries of K(p)
12 greater than ε · M(K(p)

12 ), small case
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Table 9.1: Relative errors due to use of the GSVD approximation
p |||x(i) − y(p)(i)|/|x(i)|||∞
1 3.750080647e-008
2 1.427208120e-007
3 1.119493657e-007
4 1.468582269e-007
5 1.500944068e-007

over the set of indices i for which xi is non-zero (outside round-off region). To deter-
mine this set, we first solved (9.6.1) and made a log-plot of its sorted entries, shown in
Figure 9.4. Based on this plot we decided to omit all entries smaller than 10−7 and ob-

Figure 9.4: Entries of x in (9.6.1), sorted

tained the results in Table 9.1. The accuracy does not seem to be (very) sensitive to the
amount of principal components used, which is due to the fact that the scaled K12 block
is still of magnitude 105 smaller than the scaled diagonal blocks K11 and K22. However,
Section 9.7 shows that different amounts of principal components do have a remarkable
effect on the related transfer function.

9.7 The K(p)
12 GSVD-approximation based transfer function

The aim is to determine a principal component analysis (PCA) based rank-revealing fac-
torization K12 � BCT where B and C are constructed with the use of the first p ≤ n
principal components, based on the scaled versions of K (and if needed M) as construc-
ted above.

To the scaled matrix K (which depends on ŵ) we apply a GSVD to KT
11 and KT

12 such
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that KT
11 = UCXT and KT

12 = VSXT. Hence,

K12 = XSTVT
= X

√
ST︸ ︷︷ ︸

B

√
STVT︸   ︷︷   ︸
CT

.

Figure 9.5 shows all of the diagonal values of the matrix S and Figure 9.6 shows the first
1000 of them. Next, for p = 1, . . . , 5 we approximate K12 by the contribution of its p

Figure 9.5: Diagonal elements of S .

Figure 9.6: First 1000 diagonal elements of S .

most dominant modes

K(p)
= (X(p)

√
S(p))(

√
S(p)V(p))

and plot the related transfer functions, together with the transfer function related to K12
(blue) in Figure 9.7 One can observe that the transfer function related to K(p) closely
approximates p peaks of the original transfer function (the one for K12).
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(a) rank 1 approx. of K12 (b) rank 2 approx. of K12

(c) rank 3 approx. of K12 (d) rank 4 approx. of K12

(e) rank 5 approx. of K12

Figure 9.7: Low-rank approximations of block K12.
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9.8 The GSVD approximation of M−1
11 K12

In fact, we need to apply the GSVD to M−1
11 K12 rather than K12. Fortunately, there is

a straightforward relation between the GSVD of (K11,K12) and (M−1
11 K11,M

−1
11 K12), as

explained by Corollary 7.2.2. To see this, abbreviate K := K12 and M := M11 and
observe that

KT
= VSXT

=⇒

K = XSTVT
=⇒

M−1K = M−1XSTVT
=⇒

M−1K = (M−1X)
√

ST︸          ︷︷          ︸
Y

√
STVT︸   ︷︷   ︸

Z

which leads to the principal component based approximation:

M−1K � M−1X(p)S(p)V(p).

One first rewrites (9.2.4) to produce the term sI, for instance as follows:

H(w) = c(K − w2M)−1b =⇒

H(w) = c(M−1K − w2I)M−1b =⇒

H(w) = −c(w2I −M−1K)M−1b.
(9.8.1)

Observe that the inverse of block-matrix M in (9.2.2) is

M−1
=

[
M−1

11 0
−M−1

22 M21M−1
11 M−1

22

]
whence

M−1K =

[
M−1

11 K11 M−1
11 K12

−M−1
22 M21M−1

11 K11 −M−1
22 M21M−1

11 K12 + M−1
22 K22

]
Now, SBR applied to the first row of this system leads to the approximation

M−1K �

[
M−1

11 K11 M−1
11 X(p)S(p)V(p)

−M−1
22 M21M−1

11 K11 −M−1
22 M21M−1

11 K12 + M−1
22 K22

]
which shows that one can use the GSVD-based approximation

H(w) � c(K(p)
− w2M)−1b

where

K =

[
K11 X(p)S(p)V(p)

0 K22

]
.
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9.9 Conclusions

In this chapter, we applied the GSVD based low-rank approximation idea to the indus-
trial case of an inkjet printhead. We proposed a way of scaling of a badly conditioned
dynamical system. We explained the relations between the first and the second order for-
mulation of the model. The recovery of the sparsity patterns in the components created
by the GSVD was treated in more detail. Moreover, the stiffness matrix of the dynami-
cal system, with the low-rank approximation of the coupling block, was studied in the
context of solving a linear system and computing a transfer function, giving promising
results. Finally, we investigated the GSVD of the product of two system sub-matrices,
namely M−1

11 K12.
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Chapter 10

Conclusions and Recommendations

We proposed a new model order reduction technique for coupled systems. Our method,
called the Separate Bases Reduction (SBR) algorithm, belongs to the family of block-
structure preserving (BSP) reduction techniques based on the uncoupled formulation of
the coupled problem. However, unlike other reduction approaches dealing with the sepa-
rate sub-system representation, the SBR algorithm can be applied to a wide category of
coupled systems, including strongly coupled systems and interconnected systems with
many interconnections. This is due to the fact that for such cases we avoid a too fast
growth of the reduction bases and related reduced-order model, as long as the coupling
can be well approximated by a relatively small number of GSVD principal components.
Examples of such strongly coupled systems are systems with an interface coupling, for
instance systems describing interactions between a fluid and a solid wall, or systems
which for instance describe an electromagnetic-structural coupling in an electronic de-
vice. Another advantage of the proposed technique is that it is computationally cheaper
than the more common BSP reduction methods which deal with the coupled formulation
of the system.
For the initial version of the SBR algorithm (without low-rank approximations of the
couplings), we proved the moment matching property. The GSVD based approximation
of the couplings only approximates the moments, but numerical experiments show that
taking a sufficient number of dominant components still results in accurately approxi-
mated moments. What makes the SBR algorithm universal, is the fact, that it can be
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applied even if the internal input and output matrices are not known explicitly. We show,
that having at our disposal only the coupled system’s matrices, external inputs and out-
puts, and the dimensions of the sub-systems, we are able to create appropriate Krylov
subspaces for each sub-system. This property of the reduction method is desirable when
dealing with industrial problems for which the separate sub-systems’ information may
not be available.
The SBR method has been designed keeping in mind the practical use in an industrial
environment. It is fairly straightforward to adapt existing software modules and make
them suitable for application of SBR. This is certainly not the case for the BSP type me-
thods. Although the reduced-order models obtained by application of the BSP methods
frequently show a bit better approximation accuracy, the SBR algorithm is much more
beneficial from the point of view of the computational time. This property is especially
valuable in case of large industrial applications.

Recommendations for future work

The application of the low-rank approximation based SBR algorithm to several test cases
resulted in reduced-order models that accurately approximated the original systems. To
make the SBR algorithm more efficient and reliable, some topics should be studied fur-
ther.
First of all, our GVSD-based reduction version only approximately matches the mo-
ments of the reduced system. An a priori approximation error estimate would be helpful
to a priori determine the amount of GSVD based components.
Furthermore, it should be examined how to apply the SBR method when the system ma-
trix E is not block-diagonal.
Badly scaled coupled systems strongly influence the moments’ numerical accuracy. The
relation between the GSVD of the scaled and unscaled system should be examined.
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[31] M. Géradin and D. Rixen. Mechanical vibrations: theory and application to struc-
tural dynamics. John Wiley & Sons, 1997.
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Summary

Model Order Reduction for Coupled Systems using Low-rank Approxima-
tions

This thesis presents the result of a study on model order reduction (MOR) methods,
that can be applied to coupled systems. The goal of the research was to develop reduc-
tion techniques, that preserve special properties of coupled or interconnected system,
e.g. block-structure of the underlying matrices. On the other hand, the new techniques
should also be able to benefit from the knowledge, that the system they are applied to,
consists of two (or more) sub-systems or describes some phenomena in different physi-
cal domains. As a result of this study, two main approaches are proposed. Their general
description is given in the following paragraphs.
First, the Separate Bases Reduction (SBR) algorithm is developed, which is a projection
based MOR technique that uses Krylov subspaces as reduction bases. The novelty of this
method is that SBR algorithm, unlike standard reduction methods designed for coupled
problems, uses an uncoupled formulation of the system. In other words, an appropriate
Krylov subspace is built for each of the sub-system constituting the interconnected sys-
tem. As a result, the computational costs of application of the SBR algorithm, with
respect to time and memory storage needed for calculations, are lower than in case of
MOR methods that use the coupled formulation of the system. Moreover, the block-
diagonal form of the reduction matrices allows for preservation of the block-structure
of the system matrices and keeps the sub-systems (or different physical domains) still
recognizable in the reduced-order model. The SBR algorithm was successfully applied
to a few test cases, resulting in the reduced systems that approximate the original ones
with accuracy comparable to the accuracy of systems reduced by means of other block-
structure preserving MOR methods.
The second topic of the research focuses on the couplings between the sub-systems.
Here, the off-diagonal blocks of the system matrices that correspond to the couplings,
are approximated by matrices of lower rank. As a main tool, a generalized singular value
decomposition (GSVD) is used, which is used to determine the most important compo-
nents of a coupling block with respect to one of the sub-systems. Although this method
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does not reduce the dimension of the considered problem, it gives benefits if used before
application of a MOR technique. First of all, the use of low-rank approximations of
the coupling blocks can decrease the computational costs of the the Krylov subspaces
construction needed for reduction. If the couplings can be approximated by sufficiently
low-rank blocks, the necessary matrix inverse calculation can be performed cheaper,
by application of the Sherman-Morrison-Woodbury formula. Moreover, the undesired
growth of the reduction bases, in case of use of the SBR algorithm to sub-systems with
many inputs (outputs), can be lowered by using only dominant components of the input
(output) space. The conducted experiments showed, that for some cases, the number of
the components used to define the couplings can be significantly reduced.



Samenvatting

Model orde reductiemethoden voor gekoppelde systemen met behulp van
lage-rang benaderingen

Dit proefschrift presenteert de resultaten van een onderzoek naar model orde reductie-
(MOR) methoden die kunnen worden toegepast op gekoppelde of met elkaar verbon-
den systemen. Het onderzoek richtte zich op technieken die speciale eigenschappen van
zulke systemen behouden, zoals de blokstructuur van de onderliggende matrices. Ander-
zijds dienen de nieuwe technieken te profiteren van de kennis dat ze worden toegepast op
een systeem waarvan de subsystemen verschijnselen in verschillende fysische domeinen
beschrijven. Het proefschrift suggereert twee benaderingen die worden beschreven in de
volgende alinea’s.
Ten eerste is het gescheiden bases reductie (SBR) algoritme ontwikkeld, een op projec-
tie gebaseerde MOR techniek die Krylov deelruimten gebruikt als reductiebases. Het
nieuwe van deze methode is dat het SBR algoritme, in tegenstelling tot standaard reduc-
tiemethoden voor gekoppelde systemen, gebruikt maakt van de ontkoppelde subsyste-
men. Met andere woorden, SBR bouwt een Krylov deelruimte voor elk van de subsyste-
men onafhankelijk, dusdanig dat men het gekoppelde probleem kan oplossen. Hierdoor
behoeft SBR minder rekentijd en computergeheugen dan standaard MOR methoden voor
gekoppelde systemen. Bovendien zorgt de blokdiagonale vorm van de reductiematrix
voor het behoud van de blokstructuur van het systeem. Daardoor blijven de subsystemen
(gerelateerd aan de verschillende fysische domeinen en grootheden) herkenbaar in het
gereduceerde model. Het SBR algoritme is met succes toegepast op enkele test-cases.
De resulterende gereduceerde systemen hebben een nauwkeurigheid die vergelijkbaar is
met die van andere blokstructuurbehoudende MOR methoden.
Het tweede aandachtspunt van het onderzoek was de koppelingen tussen de subsyste-
men, gerepresenteerd door de matrixblokken buiten de hoofddiagonaal. Deze matrix-
blokken worden benaderd met lage-rang matrices afkomstig uit een gegeneraliseerde
singuliere waarde decompositie (GSVD). Deze decompositie bepaalt de belangrijkste
componenten van een koppelingsblok ten opzichte van de subsystemen die het koppelt.
Deze methode reduceert de afmeting van het beschouwde systeem niet maar leidt tot
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voordelen wanneer gebruikt vóór het toepassen van een MOR methode. In de eerste
plaats kan het gebruik van de lage-rang benadering leiden tot een vermindering van de
rekentijd en geheugenopslag. Als de koppelingen kunnen worden benaderd met blokken
van voldoende lage rang dan kan de benodigde matrix inverse door toepassing van de
Sherman-Morrison-Woodbury formule goedkoper worden uitgerekend. Bovendien kan
de ongewenste groei van de reductiebases die voorkomt bij het toepassen van het SBR
algoritme op subsystemen met veel ingangen of uitgangen worden geremd. Experimen-
ten hebben aangetoond dat in sommige gevallen de koppelingsblokken kunnen worden
benaderd met blokken van zeer lage rang.
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