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Abstract. Straightforward solution of discrete ill-posed least-squares problems with error-

contaminated data does not, in general, give meaningful results, because propagated error destroys
the computed solution. Error propagation can be reduced by imposing constraints on the computed
solution. A commonly used constraint is the discrepancy principle, which bounds the norm of the
computed solution when applied in conjunction with Tikhonov regularization. Another approach,
which recently has received considerable attention, is to explicitly impose a constraint on the norm
of the computed solution. For instance, the computed solution may be required to have the same
Euclidean norm as the unknown solution of the error-free least-squares problem. We compare these
approaches and discuss numerical methods for their implementation, among them a new implemen-
tation of the Arnoldi–Tikhonov method. Also solution methods which use both the discrepancy
principle and a solution norm constraint are considered.
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1. Introduction. Minimization problems with a solution norm constraint,

min
‖Lx‖≤∆

‖Ax−b̃‖, A ∈ Rm×n, L ∈ Rp×n, x ∈ Rn, b̃ ∈ Rm, m ≥ n ≥ p, (1.1)

where ‖ ·‖ denotes the Euclidean vector norm, the matrix L is of full row rank, and ∆
is a user-specified constant, arise in a variety of applications, including data smoothing
[21, 22, 26], approximation by radial basis functions [30], and in ill-posed problems
[3, 4, 16, 24, 25]. These references describe several numerical methods; further solution
techniques are presented by Gander [7], Golub and von Matt [8], and Lampe, Rojas,
Sorensen, and Voss [13].

This paper is concerned with the solution of least-squares problems (1.1) with
a matrix A with many singular values of different orders of magnitude close to the
origin. This makes the matrix severely ill-conditioned; in particular, A may be sin-
gular. Least-squares problems with such a matrix are referred to as discrete ill-posed
problems. They arise, for instance, from the discretization of ill-posed problems, such
as Fredholm integral equations of the first kind with a smooth kernel. The vector b̃
represents available measured data, which is assumed to be contaminated by an error
ẽ ∈ Rm. The latter may stem from measurement and discretization errors. We refer
to the vector ẽ as “noise.”

In many applications, the matrix L is the identity matrix I, a discrete approx-
imation of a differential operator, or a projection operator. In the latter cases, the
minimization problem (1.1) often can be transformed to standard form, i.e., to an
equivalent minimization problem with L = I; see, e.g., [6, 17, 20], as well as [10, Sec-
tion 2.3] for discussions and examples. Therefore many minimization problems (1.1)
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of interest can be investigated by studying problems in standard form. We henceforth
will assume that the problem (1.1) has been transformed to standard form, i.e., that
L = I.

It is convenient to introduce the unknown noise-free vector b ∈ Rm associated
with b̃, i.e.,

b̃ = b + ẽ.

We would like to determine the minimal-norm solution, x̂ ∈ Rn, of the unavailable
noise-free minimization problem

min
‖x‖≤∆

‖Ax− b‖

by computing a suitable approximate solution of the available noise-contaminated
least-squares problem (1.1) (with L = I). We are particularly interested in the situa-
tion considered in [4, 13, 16, 24] when

∆ = ‖A†b‖, (1.2)

where A† denotes the Moore–Penrose pseudoinverse of A. Then x̂ = A†b. Thus, we
are interested in the situation when ‖x̂‖ is known, but the x̂ is not. More generally,
our investigation sheds light on regularization by explicitly bounding the norm of the
computed solution.

The minimal-norm solution of the unconstrained noise-contaminated least-squares
problem

min
x∈Rn

‖Ax− b̃‖ (1.3)

can be expressed as

x̃ = A†b̃ = A†(b + ẽ) = x̂ +A†ẽ.

Due to the severe ill-conditioning of A, the solution x̃ is typically dominated by
propagated error A†ẽ of norm much larger than ‖x̂‖. We therefore may assume that
‖x̃‖ > ∆. Thus, we are concerned with the solution of the constrained minimization
problem

min
‖x‖=∆

‖Ax− b̃‖. (1.4)

The purpose of the constraint is to reduce the amount of propagated noise in the
computed solution. The constrained problem (1.4) is equivalent to the penalized
unconstrained minimization problem

min
x∈Rn

{‖Ax− b̃‖2 + µ ‖x‖2} (1.5)

for a suitable Lagrange multiplier µ > 0; see Section 2 for details. This minimization
problem also is obtained when applying Tikhonov regularization to the unconstrained
problem (1.3). The minimization problem (1.5) has the solution

xµ = (ATA+ µI)−1AT b̃, (1.6)

where AT denotes the transpose of A.
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Discrete ill-posed problems are effectively underdetermined. Therefore it can be
beneficial to impose known properties of the desired solution x̂ on the computed
solution during the solution process. In particular, it may be beneficial to require the
computed solution to be of norm (1.2), when the latter quantity is available.

The discrepancy principle furnishes another approach to reduce the propagated
error in the computed solution. Assume that a bound ε for the norm of ẽ is available,
i.e.,

‖ẽ‖ ≤ ε, (1.7)

and that b ∈ R(A), where R(A) denotes the range of A. The discrepancy principle
then prescribes that the parameter µ in (1.5) be chosen so that

‖Axµ − b̃‖ = ηε, (1.8)

where η > 1 is a user-specified constant independent of ε. With µ = µ(ε) determined
by (1.8), one can show that

xµ → x̂ as ε↘ 0; (1.9)

see, e.g., [9, 12] for proofs in a Hilbert space setting. The constant η is required in
these proofs.

We note that the vector (1.6) determined by Tikhonov regularization (1.5), with
µ chosen so that (1.8) holds, satisfies

min
x∈Rn

‖x‖ with constraint ‖Ax− b̃‖ = ηε.

This can be shown with the aid of Lagrange multipliers. We conclude that Tikhonov
regularization may be applied to compute the solution of either (1.4) or (1.8), depend-
ing on the choice of the regularization parameter µ.

The equivalence of the least-squares problems (1.4) and (1.5) implies that the
discrepancy principle can be implemented by solving (1.4) for a suitable ∆ = ∆(µ),
where µ = µ(ε); see Section 2 for details. When ε > 0, the discrepancy principle
corresponds to a value ∆ = ∆(µ(ε)) that is smaller than (1.2). Nevertheless, numer-
ical examples of Section 5 show the constraint (1.2) often to give about as accurate
approximations of x̂ as the discrepancy principle (1.8).

This paper has several aims. Section 2 discusses properties of the minimiza-
tion problem (1.4) and describes solution methods based on the standard and range-
restricted Arnoldi processes. In particular, the section considers an application of the
range-restricted Arnoldi decomposition method described in [18] to Tikhonov regu-
larization. This decomposition requires the computed approximate solution of (1.4)
to live in R(A). The Arnoldi–Tikhonov method so obtained improves on the scheme
described in [15]. Section 3 discusses how both the constraint ‖x‖ = ∆, with ∆ given
by (1.2), and the constraint (1.8) can be applied simultaneously. A sensitivity analy-
sis is provided in Section 4, and numerical examples are presented in Section 5. We
compare a Tikhonov regularization method based on the standard Arnoldi process
and a scheme based on the LSTRS method recently described by Lampe et al. [13] for
problems (1.4) with m = n and an error-free vector b̃, i.e., b̃ = b. The LSTRS-based
method uses the nonlinear Arnoldi process presented by Voss [29]. We also compare
with a scheme by Li and Ye [16]. None of the iterative methods in our comparison
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require the evaluation of matrix-vector products with AT . This feature is impor-
tant for problems for which it is difficult to evaluate these matrix-vector products.
For instance, in large-scale nonlinear minimization problems when A is the Jacobian
matrix, the evaluation of matrix-vector products with A may be much cheaper than
the evaluation of matrix-vector products with AT ; see, e.g., [5]. We are interested
in iterative methods that are based on the Arnoldi process, because they can be ap-
plied when AT is not available, and they may require fewer matrix-vector product
evaluations than iterative methods that require matrix-vector products with both the
matrices A and AT ; see, e.g., [2, 15] for illustrations. The requirement of iterative
methods based on the Arnoldi process that the matrix A be square can be circum-
vented by zero-padding. This is practical at least when m and n in (1.1) are of about
the same size. The computed examples of Section 5 illustrate the benefit of using
range-restricted Arnoldi methods when b̃ contains a nonnegligible amount of noise.
Concluding remarks can be found in Section 6.

This paper extends the approach advocated by Lampe et al. [13] for the solution
of ill-posed problems (1.4) with a square matrix A in several ways: i) the vector b̃
is allowed to be contaminated by noise, ii) a range-restricted Arnoldi decomposition
is applied, and iii) the constraints in (1.4) and (1.8) are applied simultaneously. Nu-
merical experiments illustrate that the constraint that the computed solution be of
norm ‖x̂‖ may yield a better approximation of x̂ than the discrepancy principle. This
observation is believed to be new. The analysis of Section 4 shows how sensitive the
computed solution is to the value of ∆ in (1.4).

We conclude this section with some comments on alternative solution methods
for (1.4). When the least-squares problems (1.4) or (1.5) are of small to moderate
size, they can be solved conveniently by the use of the singular value decomposition
(SVD) of A. Large-scale problems can be solved by application of a few steps of
Lanczos bidiagonalization; see, e.g., [4, 8]. The latter approach requires evaluation
of matrix-vector products with both the matrices A and AT . An application of the
LSTRS method, which does not use the nonlinear Arnoldi process, is described in
[24].

This paper blends linear algebra and ill-posed problems, areas in which Heinrich
Voss over the years has made numerous important contributions; see, e.g., [13, 14, 28,
29]. It is a pleasure to dedicate this paper to him.

2. Solution norm constraint. We first establish the connection between the
constrained minimization problem (1.4) and the penalized unconstrained minimiza-
tion problem (1.5). This connection implies that methods developed for Tikhonov
regularization of linear discrete ill-posed problems can be adapted to solve (1.4). The
following result can be shown with the aid of Lagrange multipliers.

Proposition 2.1. Assume that 0 < ∆ < ‖A†b̃‖. Then the constrained mini-
mization problem (1.4) has a unique solution xµ∆ of the form (1.6) with µ∆ > 0.

We turn to the dependence of ‖xµ‖ on µ. It is convenient to introduce the function

ψ(µ) = ‖xµ‖2, µ > 0. (2.1)

Proposition 2.2. The function (2.1) can be written as

ψ(µ) = b̃
T
A(ATA+ µI)−2AT b̃, (2.2)

Let AT b̃ 6= 0. Then ψ(µ) is strictly decreasing and convex for µ > 0. Moreover, the
4



equation

ψ(µ) = τ (2.3)

has a unique solution 0 < µ <∞ for any 0 < τ < ‖A†b̃‖2.
Proof. Substituting (1.6) into (2.1) yields (2.2). The stated properties of ψ(µ)

and of equation (2.3) can be shown by substituting the singular value decomposition
of A into (2.2).

We also are interested in the function

φ(µ) = ‖b̃−Axµ‖2, µ > 0. (2.4)

Proposition 2.3. The function (2.4) allows the representation

φ(µ) = b̃
T

(µ−1AAT + I)−2 b̃. (2.5)

Assume that AT b̃ 6= 0. Then φ(µ) is strictly increasing for µ > 0, and the equation

φ(µ) = τ (2.6)

has a unique solution 0 < µ <∞ for ‖PN (AT )b̃‖2 < τ < ‖b̃‖2, where PN (AT ) denotes
the orthogonal projector onto N (AT ), the null space of AT . In particular, if A is of
full rank, then ‖PN (AT )b̃‖ = 0.

Proof. Substituting (1.6) into (2.4) and using the identity

I −A(ATA+ µI)−1AT = (µ−1AAT + I)−1, µ > 0,

shows (2.5). The properties of equation (2.6) follow by substituting the singular value
decomposition of A into (2.5).

Proposition 2.3 shows that when ε is increased in (1.8), the corresponding value
of µ, such that xµ satisfies (1.8) also increases. By Proposition 2.2 the norm ‖xµ‖
then decreases. Indeed, for any ηε > 0, the solution xµ of (1.8) satisfies ‖xµ‖ < ‖x̂‖;
see, e.g., [12, Section 2.5] for a proof in Hilbert space. In particular, the solution of
(1.4) with ∆ defined by (1.2) is of larger norm than the solution xµ of (1.8) for any
ηε > 0.

Δ

δ

||x||

||r
||

discrepancy principle

norm constraint
small μ

Fig. 2.1. Example 2.1: The relation between δ, ∆, µ, ‖xµ(δ)‖, ‖xµ(∆)‖, and the residual error.
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Example 2.1. Let ∆ be given by (1.2) and µ = µ(∆) be such that ‖xµ(∆)‖ = ∆.
Similarly, let µ = µ(δ) be determined by (1.8) with δ = ηε. Then for δ > 0, we have

µ(∆) < µ(δ), ‖xµ(∆)‖ > ‖xµ(δ)‖. (2.7)

Further, let rµ(∆) = b̃ − Axµ(∆) and rµ(δ) = b̃ − Axµ(δ). Then ‖rµ(∆)‖ < ‖rµ(δ)‖.
This situation is illustrated by Figure 2.1. In particular, xµ(∆) does not satisfy the
discrepancy principle (1.8). �

Henceforth, we consider methods that do not make use of AT for reasons outlined
in Section 1, and we assume for notational simplicity that A ∈ Rn×n. Application of
` steps of the Arnoldi process with initial vector b̃ yields the Arnoldi decomposition

AV` = V`+1H̄`, (2.8)

where V`+1 = [v1,v2, . . . ,v`+1] ∈ Rn×(`+1) has orthonormal columns, which span the
Krylov subspace

K`+1(A, b̃) = span{b̃, Ab̃, . . . , A`b̃},

and v1 = b̃/‖b̃‖. The matrix V` ∈ Rn×` is made up of the first ` columns of V`+1. We
assume that ` is chosen sufficiently small so that H̄` ∈ R(`+1)×` is an upper Hessenberg
matrix with nonvanishing subdiagonal entries. In the rare event that for some ` ≥ 1
the last subdiagonal entry of H̄` vanishes, the computations simplify. We will not
dwell on this situation. Further details on the Arnoldi process can be found in, e.g.,
[27].

The range-restricted Arnoldi decomposition, as described in [18], is of the form

AV` = W`+2H̄`, (2.9)

where the columns of W`+2 = [w1,w2, . . . ,w`+2] ∈ Rn×(`+2) form an orthonormal
basis of K`+1(A, b̃) with w1 = b̃/‖b̃‖, the columns of V` ∈ Rn×` form an orthonormal
basis of K`(A,Ab̃), and H̄` ∈ R(`+2)×` vanishes below the sub-subdiagonal. Thus,
R(V`) ⊂ R(A). Tikhonov regularization based on the range-restricted Arnoldi de-
composition (2.9) tends to yield more accurate approximations of the desired solution
x̂ than Tikhonov regularization based on the standard Arnoldi decomposition (2.8)
when the data b̃ is contaminated by noise. This is illustrated in Section 5. We
remark that the decomposition (2.9) has better numerical properties than the range-
restricted Arnoldi decomposition used in [15]. A comparison of these decompositions
can be found in [18]. Typically, the parameter ` in the decompositions (2.8) and (2.9)
is quite small and much smaller than n; see Section 5 for examples.

Let the matrix V` be defined by the decompositions (2.8) or (2.9). Substituting
x = V`y into (1.5) and using (2.8) or (2.9) gives a minimization problem of the form

min
y∈R`

{‖H̄`y − e1‖b̃‖ ‖2 + µ ‖y‖2}

with solution

yµ,` = (H̄T
` H̄` + µI)−1H̄T

` e1‖b̃‖,

where e1 = [1, 0, . . . , 0]T ∈ Rk+1 denotes the first axis vector. Let

xµ,` = V`yµ,` (2.10)
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and define the function

ψ`(µ) = ‖xµ,`‖2, µ > 0. (2.11)

The following results are analogous to those of Propositions 2.2 and 2.3, and can be
shown in similar ways.

Proposition 2.4. Let H̄` be defined by the Arnoldi decompositions (2.8) or (2.9),
and assume that H̄T

` e1 6= 0. Then the function (2.11) can be expressed as

ψ`(µ) = ‖b̃‖2eT1 H̄`(H̄T
` H̄` + µI)−2H̄T

` e1,

which shows that ψ`(µ) is strictly decreasing and convex for µ > 0. Furthermore, the
equation

ψ`(µ) = τ

has a unique solution 0 < µ <∞ for any 0 < τ < ‖H̄†`e1‖2‖b̃‖2.
Let xµ,` be given by (2.10) and introduce the function

φ`(µ) = ‖b̃−Axµ,`‖2, µ > 0, (2.12)

analogous to (2.4).
Proposition 2.5. The function (2.12) can be expressed as

φ`(µ) = ‖b̃‖2eT1 (µ−1H̄`H̄
T
` + I)−2e1,

where the matrix H̄` is given by the Arnoldi decompositions (2.8) or (2.9). Assume
that H̄T

` e1 6= 0. Then φ`(µ) is strictly increasing for µ > 0, and the equation

φ`(µ) = τ

has a unique solution 0 < µ <∞ for any τ with

‖PN (H̄T
` )e1‖2‖b̃‖2 < τ < ‖b̃‖2,

where PN (H̄T
` ) denotes the orthogonal projector onto the null space of H̄T

` .

3. Combining solution norm and discrepancy constraints. We consider
the situation when both the norm of x̂ and of the error ẽ are available and describe
how this information can be applied when solving problems of small to medium size.
As pointed out in Section 2, the discrepancy principle yields approximate solutions
of norm smaller than (1.2). Moreover, the solution xµ(∆) of (1.4) with ∆ defined by
(1.2) satisfies ‖Axµ(∆) − b̃‖ < ηε; see Example 2.1. However, the desired solution x̂
does not satisfy this inequality. This indicates that xµ(∆) may be contaminated by
propagated error.

The deficiencies of xµ(∆) and of the approximate solution determined with the
aid of the discrepancy principle leads us to investigate whether requiring that the
computed solution satisfies (1.8) and is of norm (1.2) can yield more accurate approx-
imations of x̂. Numerical examples reported in Section 5 show that this, indeed, can
be the case.

Let xd satisfy (1.5) with the parameter µ > 0 chosen so that xd satisfies (1.8),
and solve the minimization problem

min
x∈Rn

‖x− xd‖ with constraints ‖x‖ = ∆, ‖Ax− b̃‖ = ηε. (3.1)
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The solution of (3.1) is of larger norm than xd. Geometrically, we seek to determine
a closest point to xd on the intersection of a sphere and an ellipsoid. Any solution is
satisfactory.

Introduce the Lagrange function

ζµ1,µ2(x) = ‖x− xd‖2 + µ1 (‖x‖2 −∆2) + µ2 (‖Ax− b̃‖2 − η2ε2). (3.2)

Differentiation with respect to x, µ1, and µ2 yields the nonlinear system of equations
for x, µ1, and µ2:

(µ2A
TA+ (µ1 + 1)I) x = xd + µ2A

T b̃,

‖x‖2 = ∆2,

‖Ax− b̃‖2 = η2ε2.

(3.3)

For small to medium-sized problems, we solve this system with the aid of the singular
value decomposition

A = Ŭ Σ̆V̆ T ,
Ŭ = [ŭ1, ŭ2, . . . , ŭm] ∈ Rm×m, ŬT Ŭ = I,

Σ̆ = diag[σ̆1, σ̆2, . . . , σ̆n], σ̆1 ≥ σ̆2 ≥ . . . ≥ σ̆n ≥ 0,
V̆ = [v̆1, v̆2, . . . , v̆n] ∈ Rn×n, V̆ T V̆ = I.

(3.4)

Substituting this decomposition into (3.3) and letting y = V̆ Tx yields
(µ2Σ̆T Σ̆ + (µ1 + 1)I) y = V̆ Txd + µ2Σ̆T ŬT b̃,

‖y‖2 = ∆2,

‖Σ̆y − UT b̃‖2 = η2ε2.

Introduce γj = (ŬT b)j and ξj = (V̆ Txd)j for j = 1, . . . , n. We are interested in
computing a zero of the function

F (µ1, µ2) =


n∑
j=1

(
σ̆jγjµ2 + ξj
µ2σ̆2

j + µ1 + 1

)2

−∆2

n∑
j=1

(
σ̆2
jγjµ2 + ξj σ̆j

µ2σ̆2
j + µ1 + 1

− γj

)2

− η2ε2

 .

This may be done, e.g., by Newton’s method.
Large-scale problems may be reduced by substituting one of the Arnoldi decom-

positions (2.8) or (2.9), or a partial Lanczos bidiagonalization of A, into (3.2). The
reduced problem so obtained can be solved with the aid of the singular value decom-
position as described above.

An alternative approach to combine the discrepancy principle and a solution norm
constraint for large-scale problems is to use the Arnoldi method with solution norm
constraint (as described in the previous section), and terminate the iterations with the
Arnoldi method as soon as the discrepancy principle is satisfied. The performances
of this approach, as well as of the other methods discussed in this and the previous
sections, are illustrated in Section 5.
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4. Sensitivity analysis. This section studies the sensitivity of the regulariza-
tion parameter µ in (1.5) to changes in ∆, defined by (1.2), and to perturbations in
the bound ε for the norm of the noise (1.7). This analysis is motivated by the fact
that only approximations of the bound (1.7) and of (1.2) may be available.

Let δ = ηε. It is convenient to let µd denote the value of the regularization
parameter for which (1.8) is satisfied and to define xd = xµd . Similarly, let µn be the
value of the regularization parameter such that ‖xµn‖ = ∆ and introduce xn = xµn .
Moreover, we denote the residual by

r = b−Ax ;

in particular, rd = b−Axd. Using this notation, the discussion following Proposition
2.3 can be summarized as

µn < µd, ‖xd‖ < ‖xn‖ for δ > 0.

We are interested in the sensitivity of µn = µn(∆) and µd = µd(δ) to perturbations
in ∆ and δ, respectively. The bounds below provide some insight.

Proposition 4.1. We have

µn

∆
≤ |µ′n(∆)| ≤ ‖A‖

2 + µn

∆
(4.1)

and

max
{

δ

‖xd‖2
,
δ µ2

d

δ2
−

}
≤ µ′d(δ) ≤ ‖A‖

2 + µd

µd ‖xd‖2
δ, (4.2)

where

δ2
− =

r∑
j=1

µ2
d

(σ̆2
j + µd)2

(ŭTj b̃)2

and r is the rank of A. Thus, δ2
− ≤ δ2, with equality when A is square and nonsingu-

lar.
Proof. We first show the inequalities (4.1). For this purpose, we express the

relation between µn and ∆ in terms of the singular value decomposition (3.4) and
obtain

‖xn‖2 =
r∑
j=1

σ̆2
j

(σ̆2
j + µn)2

(ŭTj b̃)2 = ∆2. (4.3)

Considering µn = µn(∆) as a function of ∆ and differentiating (4.3) with respect to
∆ gives

µ′n(∆) = −∆

 r∑
j=1

σ̆2
j

(σ̆2
j + µn)3

(ŭTj b̃)2

−1

. (4.4)

Therefore, µ′n(∆) < 0 and

|µ′n(∆)| ≤ ∆ (σ̆2
1 + µn)

 r∑
j=1

σ̆2
j

(σ̆2
j + µn)2

(ŭTj b̃)2

−1

=
‖A‖2 + µn

∆
. (4.5)
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Moreover,

|µ′n(∆)| ≥ ∆µn

 r∑
j=1

σ̆2
j

(σ̆2
j + µn)2

(ŭTj b̃)2

−1

=
µn

∆
. (4.6)

We turn to (4.2) and first show the lower bounds. The regularization parameter
µd = µd(δ) is such that

‖rd‖2 =
r∑
j=1

µ2
d

(σ̆2
j + µd)2

(ŭTj b̃)2 +
m∑

j=r+1

(ŭTj b̃)2 = δ2, (4.7)

where δ = ηε. Differentiating (4.7) with respect to δ yields

µ′d(δ) =
δ

µd

 r∑
j=1

σ̆2
j

(σ̆2
j + µd)3

(ŭTj b̃)2

−1

. (4.8)

It follows from the inequality

σ̆2
j

(σ̆2
j + µd)3

≤ 1
(σ̆2
j + µd)2

that

µ′d(δ) ≥ δ µd

 r∑
j=1

µ2
d

(σ̆2
j + µd)2

(ŭTj b̃)2

−1

=
δ µd

δ2
−
. (4.9)

When, instead, substituting the inequality σ̆2
j + µd ≥ µd into (4.8), we obtain

µ′d(δ) ≥ δ

 r∑
j=1

σ̆2
j

(σ̆2
j + µd)2

(ŭTj b̃)2

−1

=
δ

‖xd‖2
.

The upper bound of (4.2) follows by substituting

σ̆2
j

(σ̆2
j + µd)3

≥ 1
‖A‖2 + µd

σ̆2
j

(σ̆2
j + µd)2

into (4.8).
We remark that also other bounds than in Proposition 4.1 can be derived by

analogous techniques. Elementary computations give the sensitivity of the solution
norm and residual norm to perturbations in µ; cf. Propositions 2.2 and 2.3.

Corollary 4.2. We have

∆
‖A‖2 + µn

≤ |∆′(µn)| ≤ ∆
µn

and

µd ‖xd‖2

(‖A‖2 + µd) δ
≤ δ′(µd) ≤ min

{
‖xd‖2

δ
,
δ2
−

δ µd

}
.
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Now let us study the effect of a perturbation of µ on the approximate solution
xµ given by (1.6). Using the singular value decomposition (3.4) of A, we obtain

xµ =
r∑
j=1

σ̆j
σ̆2
j + µ

(ŭTj b̃)v̆j ,

which shows that

xµ̃ − xµ = (µ− µ̃)
r∑
j=1

σ̆j
(σ̆2
j + µ)2

(ŭTj b̃)v̆j +O((µ− µ̃)2),

where we have assumed that |µ− µ̃| � µ. Therefore,

‖xµ̃ − xµ‖ ≤
|µ− µ̃|
µ

‖xµ‖+O((µ− µ̃)2).

Now applying the triangle inequality,

| ‖xµ̃‖ − ‖xµ‖ | ≤ ‖xµ̃ − xµ‖,

gives the following results.
Proposition 4.3. Let µ > 0. Then

d

dµ
‖xµ‖ ≤

‖xµ‖
µ

.

Corollary 4.4. Let µ = µ(β) > 0 be a continuously differentiable function of
the parameter β, and denote µ0 = µ(β0). Then

lim
β→β0

‖xµ(β) − xµ0‖
|β − β0| ‖xµ0‖

≤ |µ
′(β0)|
µ0

.

Corollary 4.4 in combination with Proposition 4.1 may be used to provide sensi-
tivity bounds for xµ for the Tikhonov approaches based on the discrepancy principle
and solution norm constraint. From (2.7) we know that µd > µn for δ > 0; in ex-
periments in Section 5, the ratio µd/µn was typically between 3 and 100. On the
other hand, assuming modest (approximately O(1)) values for ‖A‖, ‖∆‖, ‖δ‖, and
‖xd‖, both the upper and lower bounds for µ′(∆) in Proposition 4.1 generally will
be smaller than those for µ′(δ). We will show a related experiment in the following
section.

5. Numerical experiments. We will provide several examples of the behavior
of the various methods described in this paper and compare the results with known
approaches. All our test problems are from Hansen’s Regularization Tools [11]. The
matrices in all examples are square, i.e., m = n. Unless stated otherwise, we use
the following parameters in the examples: ε = 0.01 ‖b‖ in (1.7) (corresponding to
1% noise), and η = 1.01 in (1.8). As a measure of the quality of the approximations
we tabulate the relative error ‖x− x̂‖/‖x̂‖. Subsections 5.1-5.3 consider problems of
small size, which we solve with the aid of the SVD of A.
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5.1. A comparison of three methods for small-scale examples. We first
consider small-scale examples (n = 100), and compare in Table 5.1 the qualities
(relative errors) of the approximate solutions given by three approaches:

• Tikhonov regularization with the discrepancy principle (columns 2 and 5);
• Tikhonov regularization with solution norm constraint (columns 4 and 7);
• and the combination of discrepancy principle and solution norm constraint;

see (3.3) (columns 3 and 6).
Two noise levels are considered: 1% and 10%. For the lower noise level, the entries
of the columns “Tikhonov” and “‖x‖” behave as one may expect. The solutions
determined with the solution norm constraint are of larger norm than the solutions
obtained with the discrepancy principle. The convergence property (1.9) of solutions
determined with the discrepancy principle leads us to expect that the discrepancy
principle will often yield more accurate approximations of x̂ than the solution norm
constraint. A comparison of columns 2 and 4 of Table 5.1 shows that this is indeed
the case, although not for all test problems; see also Section 5.2. The third column
illustrates that for most problems further accuracy can be achieved by applying both
the discrepancy principle and the solution norm constraint as in (3.3).

The situation changes when the noise in b̃ is increased to 10%. Now the discrep-
ancy principle gives higher accuracy than the solution norm constraint in only half the
experiments. Thus, for large noise levels the use of the solution norm constraint can
be effective. For a few problems the best approximation of x̂ is obtained by applying
both the discrepancy principle and the solution norm constraint as in (3.3).

Table 5.1
Comparison of Tikhonov regularization based on the discrepancy principle (“Tikhonov”),

Tikhonov regularization with solution norm constraint (“‖x‖”), and the combination technique of
(3.3), for n = 100 examples with 1% (columns 2–4) and 10% (columns 5–7) noise, respectively.

1% noise 10% noise
Problem Tikhonov (3.3) ‖x‖ Tikhonov (3.3) ‖x‖
baart 1.68 · 10−1 1.63 · 10−1 6.19 · 10−2 3.01 · 10−1 2.48 · 10−1 1.50 · 10−1

deriv2-1 2.55 · 10−1 2.60 · 10−1 3.18 · 10−1 3.68 · 10−1 3.38 · 10−1 4.24 · 10−1

deriv2-2 2.41 · 10−1 2.43 · 10−1 2.97 · 10−1 3.73 · 10−1 3.30 · 10−1 4.30 · 10−1

deriv2-3 2.96 · 10−2 2.96 · 10−2 4.17 · 10−2 5.17 · 10−2 6.09 · 10−2 9.51 · 10−2

foxgood 3.27 · 10−2 3.21 · 10−2 3.41 · 10−2 7.65 · 10−2 6.17 · 10−2 4.01 · 10−2

gravity 2.35 · 10−2 2.34 · 10−2 2.04 · 10−2 6.83 · 10−2 7.01 · 10−2 6.79 · 10−2

heat 1.46 · 10−1 1.40 · 10−1 2.02 · 10−1 3.73 · 10−1 3.21 · 10−1 4.65 · 10−1

ilaplace 1.47 · 10−1 1.34 · 10−1 1.76 · 10−1 1.99 · 10−1 1.99 · 10−1 1.93 · 10−1

phillips 2.90 · 10−2 2.90 · 10−2 5.49 · 10−2 6.91 · 10−2 1.01 · 10−1 1.50 · 10−1

shaw 1.32 · 10−1 8.80 · 10−2 1.08 · 10−1 1.72 · 10−1 1.77 · 10−1 1.67 · 10−1

In Figure 5.1 we consider two specific examples of size n = 500, 1% noise, and
η = 1.1 (in contrast to η = 1.01 in Table 5.1). Figure 5.1(a) shows shaw: true solution
(solid line), Tikhonov regularization matching the discrepancy principle (relative error
0.15; dotted graph), and Tikhonov regularization with solution norm constraint ‖x‖ =
‖x̂‖ (relative error 0.096; dashed graph). Thus, the solution norm constraint gives
higher accuracy than the discrepancy principle. It was the other way in Table 5.1. The
significance of the noise level and the parameter η are further illustrated in following
subsections. We note that truncated singular value decomposition (TSVD), with the
truncation index k chosen to be as large as possible so that the computed approximate
solution, xk, satisfies the discrepancy principle ‖Axk − b̃‖ ≤ ηε, yields the relative
error ‖xk − x̂‖/‖x̂‖ = 0.17. This error is larger than for Tikhonov regularization.
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Fig. 5.1. Two n = 500 examples with 1% noise. (a) shaw: true solution (solid), Tikhonov
based on the discrepancy principle ‖r‖ = ηε‖b‖ (dotted graph), Tikhonov based on a norm solution
constraint ‖x‖ = ∆ (dashed graph). (b) Same for foxgood.

Figure 5.1(b) displays foxgood. Here, Tikhonov regularization with the discrep-
ancy principle yields the relative error 0.044, while Tikhonov regularization with the
(exact) norm constraint gives the relative error 0.022. The TSVD method yields an
approximate solution with relative error 0.031. Similarly as in Table 5.1, the solution
norm constraint gives higher accuracy than the discrepancy principle.

5.2. The influence of the noise level. Next, we compare for various noise
levels the quality of approximate solutions determined by Tikhonov regularization
based on the discrepancy principle and Tikhonov regularization with solution norm
constraint. In Figure 5.2 we plot the relative error of the approximations obtained
with the discrepancy principle (‖b̃−Ax‖ = 1.1 · ε, where ε varies from 10−4‖b‖ (very
little noise) to 10−1‖b‖ (much noise); marked in the figure by “‖r‖”) and the relative
error of the approximations obtained with a solution norm constraint (‖x‖ = ‖x̂‖,
marked by “‖x‖”). We consider four different test problems of dimension n = 500.

Figure 5.2 shows the discrepancy principle to yield computed solutions of foxgood
and gravity that approximate x̂ more accurately than approximate solutions deter-
mined with the solution norm constraint when there is little noise. However, this is
not the case for deriv2-1 and phillips. We conclude that imposing a solution norm
constraint may be a valuable alternative to Tikhonov regularization based on the
discrepancy principle.

5.3. Sensitivities as function of ∆ and δ. We return to the situation of
1% noise, and study what happens for both Tikhonov regularization methods if the
estimates concerning the residual norm or solution norm are inaccurate. For the
discrepancy principle, we impose the requirement ‖r‖ = ηε for ε = 0.01‖b‖ and
varying η. The cases η < 1 and η > 1 may be viewed as underestimation and
overestimation of the noise, respectively. For the solution norm approach, we use the
estimate ‖x‖ = η ‖x̂‖. Here, η < 1 and η > 1 may be seen as underestimation and
overestimation of the norm of the true solution, respectively.

In Figure 5.3 we let η vary from 0.1 to 10 for two of the examples of Figure 5.2. As
we clearly see, both methods perform the best for η close to unity. For the approach
based on the solution norm constraint, it seems important that ‖x‖ not be underesti-
mated. However, if both ‖x‖ and ‖r‖ (the discrepancy principle) are overestimated,
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Fig. 5.2. The qualities (relative errors) of Tikhonov regularization based on the discrepancy
principle (dotted graph) versus Tikhonov based on a solution norm constraint (dashed graph) for
500×500 examples deriv2-1 (top-left), foxgood (top-right), gravity (bottom-left), and phillips (bottom-
right) for various noise levels.
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Fig. 5.3. The qualities (relative errors) of Tikhonov based on the discrepancy principle (dot)
versus Tikhonov based on a solution norm constraint (dash) for gravity (a) and phillips (b) for 1%
noise and various qualities of the residual norm or solution norm estimate (η between 0.1 and 10,
corresponding to underestimations and overestimations, respectively).
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then the method based on the solution norm constraint is clearly superior. This im-
plies that the quality of the computed approximate solutions, when using the solution
norm constraint, may be fairly insensitive to incorrect estimates of the solution norm,
as long as this estimate is larger than the norm of the true solution. We recall from
Section 2 that an approximate solution determined with ∆ larger than (1.2) also can
be computed by imposing the discrepancy principle (1.8) for some η > 0.

5.4. Noise-free problems: solution norm matching Arnoldi–Tikhonov
versus LSTRS and generalized Arnoldi. In this subsection we use the norm-
matching Arnoldi–Tikhonov method based on the standard Arnoldi decomposition
(2.8) to solve noise-free problems. We make a comparison with results reported by
Lampe et al. [13] for the LSTRS method. Table 5.2 shows the relative error in the com-
puted approximate solutions and the number of matrix-vector multiplications (MV)
for various test problems considered in [13]. The parameter ` in the decomposition
(2.8) is one smaller than the number of matrix-vector multiplications. The norm-
matching Arnoldi–Tikhonov method matches the norm ‖x`‖ = ‖x̂‖ for increasing
values of ` until the relative change in x` or in µ` is less than 10−4.

For the new method we test two approaches: ε = 0 in (1.7), which corresponds
to no noise. As we see, the norm-matching Arnoldi–Tikhonov is superior to LSTRS
with the exception of the heat and deriv2-2 examples. The method does not converge
for the latter case since the norms of the rendered solutions in each iteration are too
small. Therefore, as an alternative, we also give the performance of the method when
we pretend that there is relative noise of level 10−6 in the right-hand side, i.e., we set
ε = 10−6 in (1.7) but let b be error-free. The method then terminates when the above
mentioned criteria or the discrepancy principle are satisfied. This reduces the number
of iterations. It may or may not improve the accuracy in the computed solution, but
the results are again better than for LSTRS apart from the heat examples.

Table 5.2
Norm-matching Arnoldi–Tikhonov compared to LSTRS; with noise-free data b̃, for n = 1000.

The last two columns are taken from [13].

‖x‖, ε = 0 ‖x‖, ε = 10−6 LSTRS
Problem quality MV quality MV

baart 2.8 · 10−5 8 1.5 · 10−5 7 8.6 · 10−2 18
deriv2-1 3.9 · 10−8 161 5.7 · 10−2 37 5.8 · 10−1 217
deriv2-2 – – 5.5 · 10−2 36 3.4 · 10−1 148
foxgood 2.6 · 10−4 7 8.6 · 10−4 6 3.7 · 10−2 18
heat (κ = 5) 1.7 · 10−2 61 1.7 · 10−2 61 5.0 · 10−3 68
heat (κ = 1) 3.9 · 10−1 88 1.0 · 100 40 8.1 · 10−3 112
ilaplace-1 1.3 · 10−1 76 2.2 · 10−1 21 3.3 · 10−1 137
ilaplace-3 1.5 · 10−3 35 4.7 · 10−3 30 6.7 · 10−2 52
phillips 2.7 · 10−3 10 1.2 · 10−3 17 9.9 · 10−3 92
shaw 5.9 · 10−5 21 3.2 · 10−2 10 5.9 · 10−2 36

Results reported in [16, Table 2] for the generalized Arnoldi method make it
possible to compare this method with Arnoldi–Tikhonov for heat(1000), phillips(1000),
and shaw(1000). The generalized Arnoldi method performs better for heat(1000), but
not for the other problems.

5.5. Arnoldi–Tikhonov: solution norm matching vs. the discrepancy
principle. We turn to experiments with Arnoldi–Tikhonov methods when the data
are noisy. Two different situations for solution norm matching Arnoldi–Tikhonov are
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considered. First, we assume that there is a bound (1.7) so that we also can use
the discrepancy principle (1.8). Tables 5.3 and 5.4 show the results for various test
problems of dimension n = 1000. We test two flavors: the standard (columns 2–3)
and the range-restricted Arnoldi (columns 4–5) methods based on the decompositions
(2.8) and (2.9), respectively. These norm-matching Arnoldi–Tikhonov methods match
the norm ‖x`‖ = ‖x̂‖ for increasing values of the parameter ` in (2.8) and (2.9).1 The
computations are terminated if, additionally, the discrepancy principle (1.8) also is
satisfied.

Columns 6–9 show the performance of the standard and range-restricted Arnoldi–
Tikhonov methods. The computations are terminated as soon as the parameter ` in
(2.8) and (2.9) is large enough so that the discrepancy principle can be satisfied.
Tables 5.3 and 5.4 differ in the noise level (1% and 10%, respectively).

Table 5.3
Columns 2–5: norm-matching Arnoldi–Tikhonov (stopping if the discrepancy principle is satis-

fied) for n = 1000 examples with 1% noise in the right-hand side. Columns 6–9: Arnoldi–Tikhonov
based on the discrepancy principle.

‖x‖, K(A, b) ‖x‖, K(A,Ab) ‖r‖, K(A, b) ‖r‖, K(A,Ab)
Problem quality MV quality MV quality MV quality MV

baart 3.4 · 10−2 4 3.3 · 10−2 3 2.9 · 10−1 3 5.3 · 10−2 3
deriv2-1 3.7 · 10−1 6 2.7 · 10−1 10 4.3 · 10−1 5 2.4 · 10−1 6
deriv2-2 3.5 · 10−1 6 2.3 · 10−1 8 4.2 · 10−1 5 2.2 · 10−1 6
deriv2-3 4.7 · 10−2 4 2.0 · 10−2 4 9.8 · 10−2 2 2.6 · 10−2 3
foxgood 7.6 · 10−2 2 2.9 · 10−2 4 7.6 · 10−2 2 3.3 · 10−2 2
gravity 4.8 · 10−2 7 3.4 · 10−2 8 1.4 · 10−1 5 2.9 · 10−2 6
heat 1.6 · 10−1 120 1.6 · 10−1 256 7.2 · 108 63 2.8 · 1010 91
ilaplace 2.5 · 10−1 11 2.5 · 10−1 10 1.7 · 100 7 1.6 · 100 8
phillips 3.2 · 10−2 5 3.4 · 10−2 8 9.6 · 10−2 4 2.5 · 10−2 4
shaw 1.5 · 10−1 6 5.7 · 10−2 6 1.1 · 10−1 6 1.1 · 10−1 5

Table 5.4
Columns 2–5: norm-matching Arnoldi–Tikhonov (stopping if the discrepancy principle is sat-

isfied) for n = 1000 examples with 10% noise in the right-hand side (standard and range-restricted
Arnoldi). Columns 6–9: Arnoldi–Tikhonov based on the discrepancy principle.

‖x‖, K(A, b) ‖x‖, K(A,Ab) ‖r‖, K(A, b) ‖r‖, K(A,Ab)
Problem quality MV quality MV quality MV quality MV

baart 5.7 · 10−1 3 3.2 · 10−1 4 5.0 · 10−1 3 5.1 · 10−1 2
deriv2-1 5.2 · 10−1 4 4.1 · 10−1 6 7.1 · 10−1 3 3.8 · 10−1 3
deriv2-2 4.7 · 10−1 4 3.4 · 10−1 5 7.6 · 10−1 3 3.5 · 10−1 3
deriv2-3 1.7 · 10−1 2 4.9 · 10−2 3 1.2 · 10−1 2 6.7 · 10−2 2
foxgood 1.1 · 10−1 3 8.6 · 10−2 3 4.3 · 10−1 2 1.2 · 10−1 2
gravity 1.9 · 10−1 4 1.1 · 10−1 6 3.8 · 10−1 3 7.7 · 10−2 4
heat 5.1 · 10−1 58 5.1 · 10−1 91 6.7 · 107 38 1.4 · 107 54
ilaplace 2.3 · 10−1 9 2.6 · 10−1 9 2.3 · 100 6 1.8 · 100 6
phillips 1.3 · 10−1 4 3.8 · 10−2 4 3.5 · 10−1 3 8.4 · 10−2 3
shaw 2.2 · 10−1 5 1.1 · 10−1 5 3.2 · 10−1 4 1.7 · 10−1 4

The conclusion here is that the solution norm matching Arnoldi–Tikhonov method
performs better than the Arnoldi–Tikhonov method based on the discrepancy princi-
ple for many of the test problems. As one specific example, we show the approximate

1In this section, we refer to the computed solution (2.10) as x`.
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solution given by the Arnoldi–Tikhonov method with solution norm constraint for
baart with 1% noise in Figure 5.4. The method stops after 4 iterations when ‖r‖ ≤ ηε;
the relative error in x is 0.034 (cf. the top-left entry of Table 5.3).
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Fig. 5.4. Example baart, n = 1000, 1% noise. True solution (solid graph) and Arnoldi–
Tikhonov solution based on a solution norm constraint (dashed graph).

Now assume instead that we have an estimate for the solution norm but that an
error bound (1.7) is not available. In this situation, methods based on the discrep-
ancy principle cannot be applied. In Table 5.5, we give the results for the Arnoldi–
Tikhonov approach that satisfies the solution norm constraint for increasing values
of the parameter ` in (2.8) and (2.9). The computations are terminated as soon as
two consecutive approximations x` or µ` differ by less than 10−4 relatively (the same
stopping criterion as for the noise-free examples in Table 5.2). We see that for several
test problems satisfactory approximations are computed without the knowledge of
a bound for the norm of the noise (1.7) (and, consequently, without the use of the
discrepancy principle).

Table 5.5
Norm-matching Arnoldi–Tikhonov for n = 1000 examples without use of the discrepancy prin-

ciple (stopping if two consecutive approximations x` or µ` differ by less than 10−4 relatively) for
n = 1000 examples with 1% noise in the right-hand side.

‖x‖, K(A, b) ‖x‖, K(A,Ab)
Problem quality MV quality MV

baart 2.1 · 10−1 13 2.1 · 10−1 12
deriv2-1 2.8 · 10−1 18 2.8 · 10−1 17
deriv2-2 2.5 · 10−1 16 2.5 · 10−1 15
deriv2-3 3.0 · 10−2 9 3.0 · 10−2 8
foxgood 2.9 · 10−2 7 2.9 · 10−2 6
gravity 3.6 · 10−2 11 3.6 · 10−2 10
heat 7.3 · 10−1 50 7.6 · 10−1 79
ilaplace 2.5 · 10−1 45 2.5 · 10−1 42
phillips 4.2 · 10−2 14 4.2 · 10−2 13
shaw 5.4 · 10−2 10 5.4 · 10−2 9

6. Conclusions. We have presented several approaches that exploit a solution
norm constraint. For small-scale problems we described a solution norm matching
Tikhonov-type method, as well as a technique that yields an approximate solution
that satisfies both a solution norm constraint and the discrepancy principle. We
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also discussed an Arnoldi–Tikhonov-type technique for large-scale problems. Our
numerical examples lead us to the following observations:

• For some small-scale problems, the solution norm constraint may yield more
accurate approximate solutions than the discrepancy principle.

• If it is important that the computed solution be of a particular norm and the
discrepancy principle can be applied, then the methods of Section 3 may be
attractive.

• Arnoldi–Tikhonov with a solution norm constraint may be used for noise-free
and noise-contaminated problems, with and without the use of the discrep-
ancy principle.

• Arnoldi–Tikhonov with a solution norm constraint performs better than the
other methods in our comparison for many noise-free problems.

• Arnoldi–Tikhonov using both a solution norm constraint and the discrep-
ancy principle yields more accurate approximate solutions than when only
the discrepancy principle is applied.

In summary, methods that use a solution norm constraint may be helpful for
computing accurate approximate solutions. The numerical examples show the use of
both a solution norm constraint and the discrepancy principle to yield particularly
accurate approximations of the desired solution.

Acknowledgments: We thank a referee for very helpful suggestions.
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1990.
[27] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[28] M. Stammberger and H. Voss, On an unsymmetric eigenvalue problem governing free vibrations

of fluid-solid structures, Electron. Trans. Numer. Anal., 36 (2010), pp. 113–125.
[29] H. Voss, An Arnoldi method for nonlinear eigenvalue problems, BIT, 44 (2004), pp. 387–401.
[30] H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2005.

19


