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Abstract. We discuss variants of the Jacobi–Davidson method for solving the generalized
complex symmetric eigenvalue problem. The Jacobi–Davidson algorithm can be considered as an
accelerated inexact Rayleigh quotient iteration. We show that it is appropriate to replace the Eu-
clidean inner product in Cn with an indefinite inner product. The Rayleigh quotient based on this
indefinite inner product leads to an asymptotically cubically convergent Rayleigh quotient iteration.
Advantages of the method are illustrated by numerical examples. We deal with problems from
electromagnetics that require the computation of interior eigenvalues. The main drawback that we
experience in these particular examples is the lack of efficient preconditioners.
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1. Introduction. In this paper we consider variants of the Jacobi–Davidson
(JD) algorithm [27] for computing a few eigenpairs of

Ax = λx,(1.1)

where the large, sparse matrix A is complex symmetric: A = AT ∈ C
n×n, where

AT denotes the transpose of A. Eigenvalue problems of this type, and of the related
generalized complex symmetric eigenvalue problem

Ax = λBx, B invertible,(1.2)

where both A and B are complex symmetric, are becoming increasingly important in
applications, most notably in the field of electromagnetic simulations. High-quality
particle accelerators can be modeled by the time-independent Maxwell equations,
assuming perfectly conducting cavity walls. This approach leads to a generalized real
symmetric eigenvalue problem [2]. However, in cases where the damping of higher
modes is more important than the high efficiency of a cavity, and for cavities with
ferrite inserts for tuning purposes, the currents produced in the walls or in the ferrite
lead to a damping of the eigenmodes. In this situation these surfaces are treated as
lossy material, which introduces a complex permittivity that in turn leads to complex
symmetric matrices in the form of (1.1) or (1.2).

Open cavities are often modeled on bounded domains. Lossy perfectly matched
layers (PMLs) along the boundary are introduced to prevent reflection of waves.
PMLs, also called absorbing boundary conditions, are again modeled by complex
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permittivities [32]. The PML scheme has the potential to extend the range of appli-
cations for these eigenvalue solvers to the wide field of antenna design.

Notice that complex symmetric matrices are not Hermitian. So, they do not pos-
sess the favorable properties of Hermitian matrices. In particular, complex symmetric
matrices have complex eigenvalues in general and can be arbitrarily nonnormal. In
fact, every matrix is similar to a complex symmetric matrix [10, 16], whence it may
be arbitrarily difficult to solve (1.1) or (1.2), respectively. Nevertheless, complex sym-
metric matrices do have special properties. If x is a right eigenvector of A, Ax = λx,
then it is also a left eigenvector, in the sense that xTA = λxT . Eigenvectors x,y
corresponding to different eigenvalues λ �= µ are complex orthogonal ; i.e., they satisfy
(x,y)T = 0, where

(x,y)T := yTx(1.3)

is called an indefinite inner product [12]. If A is diagonalizable, then the diagonaliza-
tion can be realized by a complex orthogonal matrix Q, QTQ = I [10, 16]. A vector
x is called quasi-null if (x,x)T = 0.

When treating the generalized eigenvalue problem (1.2), it is natural to use the
indefinite bilinear form

[x,y]T := (x, By)T = yTBx.(1.4)

The matrix B−1A is then complex symmetric with respect to [x,y]T , as A is complex
symmetric with respect to (x,y)T . We therefore restrict ourselves to the special eigen-
value problem (1.1) whenever there is no loss of generality. The numerical examples
that we will discuss later are all generalized eigenvalue problems of the form (1.2).

A number of algorithms have been designed for solving complex symmetric linear
systems of equations. Van der Vorst and Melissen [33] modified the biconjugate
gradient algorithm to obtain the complex conjugate gradient algorithm COCG. The
crucial idea here is to set the initial shadow vector equal to the initial residual. (If
one works with the Euclidean inner product, the shadow vector has to be the complex
conjugate of the initial residual; see [33].) With regard to the relation between right
and left eigenvectors mentioned before, this choice of the shadow vector is very natural.
Freund used the same idea to adapt the quasi-minimal residual (QMR) algorithm to
the complex symmetric case [9]. In COCG and QMR, the same Krylov subspaces are
generated. However, the approximate solutions are extracted differently from these
subspaces. A comparison of the two methods can be found in [11], where the authors
are in favor of QMR for its smooth behavior.

A few algorithms for solving complex symmetric eigenvalue problems have been
proposed. Eberlein adapted the classical Jacobi algorithm (for full matrices). Cullum
and Willoughby [6, Chapter 6] proposed a Lanczos-type eigensolver employing the
bilinear form (1.3). The same authors suggested a complex symmetric tridiagonal QR
algorithm [7]. Recently, Luk and Qiao [20] introduced a fast O(n2 log n) eigensolver
for complex Hankel matrices that is based on the works of Cullum and Willoughby
and on the fast Fourier transform.

In this paper we present a JD-type algorithm for computing a few eigenpairs of a
complex symmetric matrix that exploits this structure. For the original JD algorithm
see [27, 25, 8]. Our method is a modification of the two-sided JD algorithm [15] with
properly chosen left and right vectors, using the bilinear form (1.3). In contrast to the
complex symmetric methods mentioned before, our JD algorithm can be transcribed
quite easily into a solver for the generalized eigenvalue problem (1.2).
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The paper is organized as follows. In section 2 we show that for complex sym-
metric eigenvalue problems it is a good idea to replace the usual Rayleigh quotient
with the Rayleigh quotient based on the indefinite inner product (1.3). In section 3
we adapt a variant of the two-sided JD algorithm to this problem and discuss its ap-
plication to the generalized complex symmetric eigenvalue problem. The convergence
behavior of exact and inexact variants of the JD algorithm is investigated in section 4.
Numerical experiments are presented in section 5. A discussion and some conclusions
can be found in section 6.

2. A Rayleigh quotient for complex symmetric matrices. Let us first
introduce some notation. Throughout the paper, λ denotes a simple eigenvalue of the
complex symmetric n× n matrix A, with x its corresponding eigenvector. Since λ is
simple, it has a finite condition κ(λ). Because

∞ > κ(λ) = |xTx|−1 = |(x,x)T |−1,(2.1)

an eigenvector corresponding to a simple eigenvalue is not quasi-null, whence we can
assume that it is “normalized” such that (x,x)T = 1. Let u ≈ x be an approximate
eigenvector. If u is close enough to x, then u also is not quasi-null, and we “normalize”
u such that (u,u)T = 1.

Given u, the corresponding eigenvalue is usually approximated by the Rayleigh
quotient

ρ = ρ(u) :=
u∗Au

u∗u
.(2.2)

Alternatively, with regard to the indefinite inner product (1.3), we also can define the
Rayleigh quotient by

θ = θ(u) :=
uTAu

uTu
.(2.3)

One may check that, for complex symmetric A, the latter definition has the desirable
property (cf. [23, p. 688] and [15])

θ(u) is stationary ⇐⇒ u is an eigenvector of A.(2.4)

(Recall that stationary means that all directional derivatives are zero.) By writing

u = (xxT )u +
(
I − xxT

)
u,

we see that u can be written in the form

u = αx + δd,(2.5)

where α2 + δ2 = 1, (d,d)T = 1, and x ⊥T d = 0. Direct computation shows that

λ− θ = δ2 dT (λI −A)d.

So, we conclude that

|λ− θ| = O(δ2),(2.6)

while |λ− ρ| is in general “only” O(δ). (The reason for the last statement is that in
general the eigenvectors are no stationary points of ρ(u).) Therefore, the Rayleigh
quotient θ is asymptotically (i.e., when u converges to x) more accurate than the
usual Rayleigh quotient ρ.
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3. JD for complex symmetric matrices. In this section we introduce a
JD method for complex symmetric matrices that we denominate JDCS. A subspace
method typically consists of two ingredients: extraction and expansion. Suppose we
have a k-dimensional search space U , where typically k � n. The crucial observation
is that if U is the search space for the (right) eigenvector, then, with regard to the
indefinite inner product (1.3), U forms a search space for the left eigenvector of equal
quality. So, the fundamental difference with the two-sided JD algorithm [15] is that,
as we build up a right search space (i.e., a search space for the right eigenvector),
we get a good left search space for free. We do not have to (approximately) solve a
left correction equation as in the two-sided JD algorithm. This saves roughly half the
computational and storage costs.

3.1. Extraction. We first study the subspace extraction for complex symmetric
matrices. Given a search space U , we would like to get an approximate eigenpair (θ,u),
where u ∈ U . Let the columns of U form a basis for U , and define the residual r by

r := Au − θu.

In view of (2.4) and (2.6), we take, instead of the usual Ritz–Galerkin condition on
the residual r = Au − θu ⊥ U , the same condition but with respect to the indefinite
inner product (1.3)

r = Au − θu ⊥T U .(3.1)

Writing u = Uc, c ∈ C
k, we find that (θ, c) must be a solution of the projected

eigenproblem

UTAUc = θ UTUc.(3.2)

Thus, a Ritz pair (θ,u) = (θ, Uc) is obtained by backtransforming an eigenpair of the
projected pencil (UTAU,UTU). In particular, if (θ,u) is a Ritz pair, we have

θ = θ(u) :=
uTAu

uTu
and r ⊥T u.

3.2. Expansion. Let us now examine the subspace expansion for JDCS: Having
an approximate eigenpair (θ,u) to (λ,x), how do we expand the search space U in
order to get an even better approximation? JD-type methods look for a correction s
such that

A(u + s) = λ(u + s),(3.3)

i.e., such that u + s is a multiple of the eigenvector x. This equation can be rewritten
in two different ways, depending on whether we wish that s ⊥T u or s ⊥ u. Let us
start with s ⊥T u. Write (3.3) as

(A− θI)s = −(A− θI)u + (λ− θ)u + (λ− θ)s.(3.4)

In view of (2.6), the term (λ− θ)s is asymptotically of third order. When we neglect
this term, we still have cubic convergence; see Theorem 4.1. During the process, λ and
hence also (λ−θ)u are unknown. Therefore it is interesting to consider the projection
of this equation that maps u to 0 and keeps r = (A−θI)u fixed. Because r ⊥T u, this
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projector is I − uuT , the oblique projection onto u⊥T . The result of projecting (3.4)
is (

I − uuT
)
(A− θI)s = −r.

Using the constraint (
I − uuT

)
s = s,

we derive the first possibility for the JDCS correction equation:(
I − uuT

)
(A− θI)

(
I − uuT

)
s = −r, where s ⊥T u.(3.5)

The operator in this equation is complex symmetric. First, we try to solve (3.5) by
a linear solver that is especially designed for complex symmetric systems, such as
complex symmetric QMR [9], COCG [33], or CSYM [5]. We remark that CSYM
is not a Krylov subspace method, which may explain the disappointing convergence
behavior often experienced in practice; see [5]. Therefore, we do not use this algorithm
for our numerical examples.

Second, we investigate the situation where we wish to have an orthogonal update
s ⊥ u. We rewrite (3.3) as

(A− θI)s = −(A− ρI)u + (λ− ρ)u + (λ− θ)s.

Again neglecting the last term and noting that

r̃ := (A− ρI)u ⊥ u,

this leads to an alternative JDCS correction equation:(
I − uu∗

u∗u

)
(A− θI)

(
I − uu∗

u∗u

)
s = −r̃, where s ⊥ u.(3.6)

Unless A is Hermitian, this operator does not have any particular properties; we could
try to (approximately) solve the equation by, for instance, GMRES, standard QMR,
or BiCGSTAB. In practice, a correction equation is often solved only approximately
(or inexactly). The approximate solution is used to expand the search space U ; this
is called subspace acceleration.

Next, we mention that JDCS can be viewed as an accelerated inexact Newton
method for the eigenvalue problem. For the correction equation (3.6) such a result
has been given in [28]. For the correction equation (3.5), we define

F (u) = Au − aTAu

aTu
u;

then one may check that a Newton step DF (u)s = −F (u), with a = u, becomes(
I − uuT

)
(A− θI)s = −r.

Algorithm 3.1 summarizes our algorithm JDCS as developed so far. In step 2,
MGS-CS stands for any numerically stable form of Gram–Schmidt used to expand a
complex orthogonal basis for the search space: the last column of Uk is a multiple of
(I−Uk−1U

T
k−1)s, computed in a stable way. This implies that the matrix on the right-

hand side of (3.2) is the identity, whence we only have to solve a standard eigenvalue
problem in step 4. In step 5 and elsewhere in the paper, ‖·‖ denotes the Euclidean
norm. In step 8 of the algorithm the correction equation (3.5) could be replaced
with (3.6). The following three practical issues have been omitted in Algorithm 3.1
for ease of presentation:
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Algorithm 3.1. The JDCS algorithm for the computation of an eigenpair
of a complex symmetric matrix closest to a target τ .

Input: a device to compute Ax for arbitrary x, a starting vector u1,
and a tolerance ε.

Output: an approximation (θ,u) to an eigenpair satisfying ‖Au − θu‖ ≤ ε‖u‖.
1. s = u1.

for k = 1, 2, . . .
2. Uk = MGS-CS (Uk−1, s).
3. Compute kth column of Wk = AUk.

Compute kth row and column of Hk = UT
k Wk.

4. Compute the eigenpair (θ, c) of UT
k AUk that is closest to the target τ ,

where (c, c)T = 1.
5. u = Ukc.
6. r = (A− θI)u / ‖u‖ = (Wkc − θu) / ‖u‖.
7. Stop if ‖r‖ ≤ ε.
8. Solve (approximately) for s ⊥T u(

I − uuT
)
(A− θI)

(
I − uuT

)
s = −r.

(1) In our actual computations we replace the shift θ in the correction equation of
step 8 in the first couple of iterations with a fixed target τ , which we know (or
hope) is close to the desired eigenvalue. This is reasonable, as the correction
equation, if solved exactly, amounts to one step of shift-and-invert. As the
Ritz value θ initially is far from the desired eigenvalue, using θ as shift does
not give any benefit. We switch the shift from τ to θ as soon as the residual
‖r‖ is below some threshold, such as 0.1.

(2) To restrict the memory consumption of our algorithm, we limit the dimension
of the search space U . If this limit is reached, we restart, i.e., we replace U
with a given number of the “best” Ritz vectors contained in U (for instance,
those with Rayleigh quotient closest to the target, or refined Ritz vectors; see
section 3.3).

(3) If we need to compute several eigenpairs, we apply the algorithm repeatedly.
Hereby, we use the search space of the previous iteration as our initial search
space. Furthermore, the correction equation (3.5) is replaced with

(I − Ũ ŨT )(A− θI)(I − Ũ ŨT )s = −r, ŨT s = 0.(3.7)

Here, Ũ = [u,x1, . . . ], scaled such that Ũ has complex orthogonal columns,
contains, in addition to the Ritz vector u, the eigenvectors xi that have been
computed previously. Notice that Ũ may contain some further orthogonality
constraints; see section 5.1.

Now we consider the correction equation for the generalized eigenproblem. In this
case, (3.4) becomes

(A− θB)s = −(A− θB)u + (λ− θ)Bu + (λ− θ)Bs.(3.8)

One may check that with the Galerkin condition r = Au − θBu ⊥T U , leading to

θ =
uTAu

uTBu
,
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the last term on the right-hand side of (3.8) is of third order. The projector I −
Bu(uTBu)−1uT annihilates the term (λ − θ)Bu. So, when u is scaled such that
uTBu = 1, the correction equation for the generalized eigenvalue problem corre-
sponding to (3.5) is

(I −BuuT )(A− θB)(I − uuTB)s = −(A− θB)u, s ⊥T Bu.(3.9)

Notice that the operator is complex symmetric. By analogous manipulations, (3.7)
becomes

(I −BŨŨT )(A− θB)(I − Ũ ŨTB)s = −r, s ⊥T BŨ,(3.10)

with ŨTBŨ = I.

3.3. Harmonic Ritz vectors. It is well known that Ritz–Galerkin extraction
(see section 3.1) works out nicely for exterior eigenvalues but may give poor approxi-
mations to interior eigenvalues. For these eigenvalues, we can apply a harmonic Ritz
approach, just as in the standard JD method [22, 4]. Suppose that we are interested in
one or more interior eigenpairs near the target τ . One idea is to consider a (“complex
symmetric”) Galerkin condition on (A− τI)−1:

(A− τI)−1ũ − (θ̃ − τ)−1ũ ⊥T Ũ , ũ ∈ Ũ .(3.11)

With Ũ := (A− τI)U and ũ = Ũ c̃ this condition becomes

UT (A− τI)2U c̃ = (θ̃ − τ)UT (A− τI)U c̃.(3.12)

The solutions (θ̃, U c̃) to this small complex symmetric eigenvalue problem are called
harmonic Ritz pairs. If we are to compute interior eigenvalues of A, then the common
procedure is to replace the eigenvalue problem in step 4 of Algorithm 3.1 with (3.12)
and extract the harmonic Ritz pair closest to the target value τ . We can multi-
ply (3.12) from the left by c̃T to obtain [26]

((A− τI)U c̃, (A− τI)U c̃)T = (θ̃ − τ)((A− τI)U c̃, U c̃)T .

In contrast to the case where A is Hermitian, the expression on the left is not a
residual norm, whence a small value of θ̃ − τ does not necessarily imply that U c̃ is a
good eigenvector approximation; the harmonic Ritz vector does not necessarily have
a small residual norm.

Therefore, it is more promising to use the harmonic approach that is based on the
usual Euclidean inner product. This approach leads to the generalized eigenproblem
(see, for instance, [31, p. 296])

U∗(A− τB)∗(A− τB)U c̃ = (θ̃ − τ)U∗(A− τB)∗BU c̃.(3.13)

This extraction has the mathematical justification that

‖(A− τB)U c̃‖ ≤ |θ̃ − τ |‖BU‖,

but the reduced system (3.13) is not complex symmetric.
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3.4. Refined Ritz vectors. A second approach to computing interior eigenval-
ues is through refined Ritz vectors. Let (θ,u) be a Ritz pair, i.e., a solution of (3.1).
The Ritz value θ may “by coincidence” be close to an interior eigenvalue of A al-
though the corresponding Ritz vector is a linear combination of eigenvectors that are
not close to the particular eigenvector. In this situation, which is common when com-
puting interior eigenvalues, the computed Ritz vectors are of no use as approximate
eigenvectors in the correction equation. A remedy suggested in [17] (see also [31,
p. 289]) is to refine the Ritz vectors. A refined Ritz vector is defined to be a solution
of the problem

minimize ‖Ax̂ − θx̂‖ subject to x̂ ∈ U , ‖x̂‖ = 1.(3.14)

Let x̂ = U ĉ be a solution of (3.14). Then ĉ is a right singular vector corresponding
to the smallest singular value of the matrix

(A− θI)U.(3.15)

In order to extract a refined Ritz vector we modified steps 4 and 5 of Algorithm 3.1
in the following way:

4. Compute the eigenpair (θ, c) of UT
k AUk that is closest to the target τ .

Determine a right singular vector ĉ corresponding to the smallest
singular value of (A− θI)U , where (ĉ, ĉ)T = 1.

5. u = Ukĉ, θ = uTAu/uTu.

It is straightforward to adapt (3.14)–(3.15) to the generalized eigenvalue problem.

4. Convergence of (inexact) JD for complex symmetric matrices. The
convergence theory developed in this section is an adaptation of the theory for the
two-sided Rayleigh quotient and the two-sided JD in [15] to the complex symmetric
situation.

When we solve either of the two correction equations (3.5) or (3.6) exactly, we
find (see, e.g., [27])

s = −u + α (A− θI)
−1

u,

where α is such that s ⊥T u or s ⊥ u. JDCS uses s to expand the search space U .
Since already u ∈ U , we get the same subspace expansion using s̃ = (A− θI)

−1
u.

Here we recognize a step of the Raleigh quotient iteration (RQI), and we conclude
that exact JDCS (i.e., JDCS where we solve the correction equation exactly) can also
be interpreted as (subspace) accelerated RQI.

Therefore, we first define an RQI for complex symmetric matrices and show that
this RQI has asymptotically cubic convergence for eigenpairs of which the vector is
not quasi-null; see Algorithm 4.2.

Theorem 4.1 (locally cubic convergence of the RQI for complex symmetric ma-
trices). Suppose that uk = αkx + δkdk (cf. (2.5)) converges to x, where x is not
quasi-null, as k → ∞. Then θk → λ, and we have

δk+1 = O(δ3
k).

Proof. The proof goes along the same lines as the proof of [15, Theorem 3.1]; see
also [23, p. 689]. The main argument is that

uk+1 = αk+1(x + δk(λ− θk) (A− θkI)
−1

dk).
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Algorithm 4.2. Rayleigh quotient iteration for complex symmetric ma-
trices.

Input: An initial vector u1, not quasi-null.
Output: an eigenpair of A (or failure).
for k = 1, 2, . . .

1. Compute θk := θk(uk) =
uT

k Auk

uT
k uk

.

2. If A− θkI is singular, then solve (A− θkI)x = 0.
3. Solve (A− θkI)uk+1 = uk.
4. If (uk+1,uk+1)T = 0, then method fails.

else “normalize” uk+1 such that (uk+1,uk+1)T = 1.

Now, a combination of (2.6) and the fact that (A − λI)−1 exists on x⊥T (A − λI :
x⊥T → x⊥T is a bijection) proves the theorem.

Now, as a corollary, the asymptotically cubic convergence of JDCS follows. (See
[30, p. 652] for a discussion about the term “asymptotic convergence” for subspace
methods.) As noted in [15], the constant of O(δ3

k) may be considerable in practice,
which reduces the significance of the cubic convergence.

Apart from this, JD- and RQI-type methods are in practice often very expensive
when we accurately solve the linear systems occurring in the methods. We therefore
consider inexact variants, where the linear systems are solved to a certain precision
(minimal residual approach).

First consider the situation where we solve the linear system of the complex
symmetric RQI method inexactly, by which we mean that we are satisfied with a
uk+1 if

‖(A− θkI)uk+1 − uk‖ ≤ ξ < 1.(4.1)

Notice that it may become increasingly difficult to satisfy (4.1) as θk tends to λ
because A− θkI is almost singular.

The following two theorems can be proved by similar methods as in [15,
Lemma 5.1, Theorems 5.2 and 5.3], exploiting the fact that the right eigenvector
x is a left eigenvector as well.

Theorem 4.2 (locally quadratic convergence of inexact RQI for complex sym-
metric matrices). Let the iterates of the inexact RQI uk = αkx + δkdk satisfy (4.1)
with an accuracy ξ such that ξ · |(x,x)T | < 1. Then

δk+1 = O(δ2
k).

Consider the situation where we inexactly solve the correction equation (3.5)
or (3.6) of the complex symmetric JD method, by which we mean that we are satisfied
with s̃ ⊥T uk, where ∥∥(I − ukuk

T
)
(A− θI)s̃ + rk

∥∥ ≤ η ‖rk‖(4.2)

for some 0 < η < 1.
Theorem 4.3 (locally linear convergence of inexact JD for complex symmetric

matrices). Let uk = αkx + δkdk be the iterates of inexact JDCS satisfying (4.2).
Then

δk+1 ≤ γδk + O(δ2
k),
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where γ = η · κ((A− λI)|x⊥T →x⊥T ).
We remark that for the variant where s̃ ⊥ uk we have a similar statement, now

with γ = κ((A− λI)|x⊥→x⊥T ). So, for η small enough, we expect linear convergence.
However, in practice we may have one of the following situations:

• Although the condition number γ in Theorem 4.3 is bounded, it can be large,
for instance, if the gap between λ and the other eigenvalues is small. This is
a situation that we encounter in our numerical examples.

• We may choose η not small, say 0.5.
• For the correction equation, we may perform a fixed number of iterations

with a linear solver, rather than focusing on a fixed norm reduction.
In all these cases, the previous theorem has little or nothing to say. Yet, we often
experience linear convergence in practice.

As also discussed in [15], we cannot conclude from the theorems that inexact RQI
is faster than inexact JD. The theorems only say something on the local, not the
global, rate of convergence (note that JD has subspace acceleration); moreover, (4.2)
is potentially easier to satisfy than (4.1), as

(
I − ukuk

T
)
(A − θI) considered as a

mapping from u⊥T into itself has a bounded inverse.

5. Numerical experiments. In this section we discuss the applicability of our
algorithm to three test problems from electromagnetics. All tests have been executed
with Matlab 6.5 (Release 13).

5.1. A dispersive waveguide structure. We consider first the generalized
eigenvalue problem dwg961 that is available from the Matrix Market [21]. It originates
from a finite element discretization of a waveguide problem with conductors of finite
cross section in a lossy dielectric medium. The eigenvalue problem has the form

Ax =

[
A11 O
O O

] [
x1

x2

]
= λ

[
B11 B12

B21 B22

] [
x1

x2

]
= λBx.(5.1)

These matrix structures are obtained if the Maxwell equations are discretized by finite
edge elements. The order of the overall problem is 961. The order of A11 is 705. The
matrix B, as well as the submatrix A11, is nonsingular. Thus, (5.1) has 256 zero
eigenvalues. The corresponding eigenspace is

N (A) = R(Y ), Y =

[
O
I256

]
.

Here, N (·) and R(·) denote nullspace and range of the respective matrices. Similarly,
as in the real symmetric case [1] it may be advantageous to prevent the iterates from
converging to eigenvectors corresponding to the zero eigenvalue by forcing them to be
complex orthogonal to R(BY ). Technically, this can be achieved by incorporating Y

into the set of found eigenvectors Ũ in the correction equation (3.10). In the examples
discussed in this paper this precaution was unnecessary.

In Figure 5.1 the spectrum of the matrix pencil (A;B) of (5.1) is plotted. In
addition to the 256 zero eigenvalues, there are 362 eigenvalues with negative real
part and 343 with positive real part. Although there is no eigenvalue with real part
between −2500 and 100, the two sets are, in a relative sense, not well separated.
From Figure 5.1(a) we see that the eigenvalues with positive real part are much more
clustered than those with negative real part. The smallest of the former are about 0.5
to 1 apart. The largest eigenvalue (in modulus) is about 1.4 · 106. Thus, the relative
gap is quite small and the condition number of the correction equation is about 106.
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Fig. 5.1. (a) complete spectrum of dwg961 and (b) portion of the spectrum close to τ = 100.
The plot shows imaginary versus real parts of the eigenvalues.

We determine the six smallest eigenvalues with positive real part by the JD al-
gorithm, Algorithm 3.1, for computing interior eigenvalues close to the shift τ = 100
employing refined Ritz vectors. The practical considerations (1)–(3) mentioned after
Algorithm 3.1 apply.

The efficient solution of the correction equation (3.10) requires preconditioning.
We employ complex symmetric preconditioners of the form

(I −BŨŨT )M(I − Ũ ŨTB),

where M approximates A − τB, and we hope that solving systems with M will be
(much) cheaper than with A − τB. The computation of the preconditioned residual
t from the residual r amounts to solving

(I −BŨŨT )M(I − Ũ ŨTB)t = r, ŨTBt = 0.(5.2)

The solution of (5.2) is given by

t = (I −M−1BŨ(ŨTBM−1BŨ)−1ŨTB)M−1r.(5.3)

Note that we keep the preconditioner fixed throughout the computation. As we
compute only a few close eigenvalues, a constant preconditioner turns out to be good
enough. In the course of the computation, the quality of the preconditioner may
deteriorate if many eigenpairs are desired. Then the preconditioner may have to be
updated by techniques like those suggested in [29].

The special solvers discussed in the previous sections can be employed for solv-
ing (3.10) only if the preconditioner in (5.2), and thus M , is complex symmetric. We
assume M to be of the form M = LDLT , where D is a diagonal and L is a unit lower
triangular matrix. We show experiments with the following:

• LDLT factorization preconditioning. Here, M = A− τB. L and D are obtained
by ordinary Gaussian elimination of A− τB with pivoting suppressed, i.e., with
diagonal pivoting. This is the preconditioner that engineers often use because of
the bad condition of the correction equation [32]. As real and imaginary parts
of A− τB are not positive definite, this factorization is potentially unstable [14].

• Incomplete (complex symmetric) LDLT factorization preconditioning with drop
tolerance ζ, ILDLT (ζ). This factorization is computed in the same manner as
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the LDLT factorization except that, after each column of L has been calculated,
all entries in that column which are smaller in magnitude than ζ times the
norm of this column are dropped from L [24, section 10.4]. Again, pivoting is
suppressed.

Diagonal and symmetric Gauss–Seidel (SSOR(ω=1)) preconditioners were found to
be insufficient. Notice that we always permute the matrices according to the minimum
degree algorithm applied to A − τB to reduce fill-in. Using symmetric approximate
minimum degree permutations hardly made any difference. Reordering the matrices
considerably reduces consumption of memory and time to compute the (incomplete)
factorizations and enhances the quality of the resulting preconditioners.

We compute the six eigenvalues closest to the target τ = 100,

λ1 ≈ 111.153 + 0.188i, λ4 ≈ 113.158 + 1.135i,
λ2 ≈ 111.717 − 0.084i, λ5 ≈ 114.440 − 0.016i,
λ3 ≈ 112.787 − 0.150i, λ6 ≈ 115.963 − 0.231i.

The convergence criterion for the outer iteration (JDCS) is ‖(A − θ(x)B)x‖ < ε‖x‖
with ε = 10−5. The JD algorithm is restarted as soon as the search space has
dimension jmax = 20. The iteration is continued (restarted) with the jmin = 10 best
refined Ritz vectors available.

The inner iteration (QMR, COCG, or GMRES) is considered converged if the
norm of the relative residual is smaller than max{2−1−j , ε}, where j is the iteration
count of the JD algorithm. As suggested in [8], j is set to zero at the beginning
of the computation and when an eigenpair has been found. The strategy to only
gradually enforce high accuracy in the inner iteration is one of the major reasons for
the efficiency and success of the JD algorithm. The maximally allowed steps for the
inner iteration was set to 100. This limit was hardly ever hit except for ζ ≥ 10−3.

The shift in the correction equation is set equal to the target τ as long as the
residual norm ‖(A− θ(xj)B)xj‖ ≥ 0.1‖xj‖. If the relative residual norm drops below
0.1, then the shift θ(xj) is chosen. The value 0.1 was found to be satisfactory by
experimentation.

Table 5.1

Statistics for the test problem dwg961 of order n = 961.

JDCS/ JDQZ/
Preconditioner nnz(L) QMR COCG GMRES GMRES

nitjd nprec nitjd nprec nitjd nprec nitjd nprec

LDLT 20740 36 237 34 223 35 239 35 218
ILDLT (10−5) 16396 36 223 36 222 36 213 47 278
ILDLT (10−4) 13590 37 353 37 326 39 315 43 304
ILDLT (10−3) 10444 43 2517 42 2469 38 1611 74 986
ILDLT (10−2) 7871 — — — — (43) (2660) 52 1657

In Table 5.1 we give some statistics on our experiments with the smallest test
problem dwg961. Ten tests were run with varying random starting vectors. The
numbers given in Table 5.1 are averages of these tests. The correction equations
were solved with QMR, COCG, or GMRES using the LDLT or incomplete LDLT

preconditioner with varying drop tolerances ζ. The numbers for ILDLT (10−2) in
column JDCS/GMRES are given in parentheses, as only eight out of the ten runs
computed all six desired eigenpairs. These numbers are the averages of the eight
best runs. (In the two unsuccessful runs only four eigenpairs were found within a
reasonable number of steps.)
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The column “nnz(L)” indicates the number of nonzero elements of the triangular
factor L of the respective preconditioner. Of course, the bigger ζ is, the sparser L is.
The number of nonzeros of the lower triangle of A− τB is 5776.

In Table 5.1 the number nitjd of steps of the (outer) JD iteration and the total
number nprec of calls of the preconditioner are given. The execution of the precondi-
tioner is the most expensive portion of the code. The total number of inner iteration
steps is approximately nprec − nitjd. The correction equations are thus solved on
average in about nprec/nitjd − 1 steps.

As a comparison we also give corresponding numbers for the general purpose JD
algorithm, JDQZ, for computing some interior eigenvalues close to the target τ [4,
p. 242]. This algorithm computes a partial QZ decomposition for the matrix pencil
(A;B). It does not take into account any structure of A or B. The correction equa-
tions are solved by GMRES. GMRES does not exploit the structure of our problem
either. While COCG and QMR implicitly build (nonorthogonal) bases for the un-
derlying Krylov subspace by means of three-term recurrences, GMRES constructs an
orthonormal basis for the Krylov subspace. This gain in stability comes at a high
price in that as many auxiliary vectors must be stored as iteration steps are needed
to solve the system. The computational complexity even grows quadratically in this
number.

JDQZ/GMRES consistently needs more outer iteration steps than the JDCS al-
gorithms. So, the search spaces it builds are not better than those the latter build. To
some extent this is due to the fact that in this implementation of JDQZ/GMRES only
one iteration step is executed for approximately solving the correction equation in the
initial jmin iteration steps. Nevertheless, the number of times the preconditioner is
called grows more slowly in JDQZ/GMRES.

The poorer the preconditioner is, the higher is the number of iteration steps
needed to solve the correction equation. From Table 5.1 we see that an incomplete
LDLT preconditioner with very low drop tolerance ζ is as powerful as the LDLT

preconditioner; this is not surprising since the number of nonzeros is still quite high.
As the drop tolerance increases, the number of nonzeros of the triangular factors de-
creases substantially—as does the quality of the resulting preconditioner. Thus, nprec

grows rapidly. The iteration count to solve a single correction equation is below 30
for ζ ≤ 10−5, below 60 for ζ ≤ 10−4, and below 90 for ζ ≤ 10−3. For COCG and
QMR this simply means that investing less memory space in the preconditioners for
solving a certain system is done at the expense of higher iteration counts. However,
with GMRES increasing iteration counts entail more memory space for the search
space. In this particular example, the search space that is built inside JDCS/GMRES
consumes much more memory space than the LDLT preconditioner. The common
remedy to save memory by restarting GMRES does not work here. The initial phase
of the Krylov subspace methods when the residual norm decreases only slowly is very
long such that the restart dimension in GMRES would have to be very big.

Matlab’s eigs needs 43 iteration steps to compute the desired six eigenvalues.
This function is an implementation of the implicitly restarted Arnoldi algorithm [19].
We applied eigs with the shift-and-invert spectral transformation. The shift was
chosen to be τ . The Arnoldi iteration was restarted every 20 iteration steps. The
spectral transformation implies that a system of equations with the matrix A − τB
has to be solved in each iteration step of the implicitly restarted Arnoldi algorithm.
These systems could be solved iteratively. But, as the Arnoldi relation has to be
established accurately, the number of (inner) iteration steps would be much higher
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Fig. 5.2. (a) complete spectrum of toy2 and (b) portion of the spectrum close to target τ =
0.057. The target is indicated by ×. The plot shows imaginary versus real parts of the eigenvalues.

than those reported in Table 5.1; see, e.g., [2].
We do not provide execution times, as the Matlab implementations of our codes

do not have comparable quality. nprec gives some indication of the execution time, as
the invocation of the preconditioner is the most expensive portion of the algorithm.
Also A− τB is applied to a vector as many times. If GMRES is used as the system
solver, then the orthogonalizations can contribute considerably to the execution time.

5.2. A radiating dielectric cavity problem. Our second test example, toy2,
is a one-dimensional layered dielectric cavity with six distributed Bragg reflector
(DBR) pairs at the top and the bottom, and an active quantum well region sand-
wiched between the two DBR pairs. A PML lining terminates the one-dimensional
structure at the two ends. This structure has no practical significance for vertical
cavity surface emitting lasers (VCSEL) design. Nevertheless, the treatment of an
open cavity using PML can be illustrated. Here, A and B are sparse nonsingular
matrices of order 6243. We are looking for six interior eigenvalues close to the real
axis in the neighborhood of a real target value that is determined by the laser de-
signer analytically. On the left of Figure 5.2 the whole spectrum is depicted. On the
right the vicinity of the spectrum near the target value 0.0569545 (×) is shown. The
eigenvalues that we search are

λ1 ≈ 0.05713 + 0.00132i, λ4 ≈ 0.05476 + 0.00285i,
λ2 ≈ 0.05792 − 0.00107i, λ5 ≈ 0.06140 − 0.00090i,
λ3 ≈ 0.05519 − 0.00065i, λ6 ≈ 0.06091 + 0.00320i.

The plots indicate that the condition number of the correction equation is at least
106. In this example the ratio of imaginary and real parts of the computed eigenvalues
is largest.

We proceed just as in the first problem. The results that we obtained are summa-
rized in Table 5.2. Here, we can observe convergence with a drop tolerance as large as
ζ = 10−3. The inner iteration does not converge for ζ = 10−2 within the maximally
allowed steps. Notice that for ζ = 10−3 the number of nonzeros of L is 75,472, which
is still 70% of that for the LDLT preconditioner. The number of nonzeros of a triangle
of A− τB is 43,038.

In this example the various solvers behave quite differently. Only JDCS/COCG
solves all the problems smoothly and quickly. The numbers in parentheses indi-
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Table 5.2

Statistics for the test problem toy2 of order n = 6243.

JDCS/ JDQZ/
Preconditioner nnz(L) QMR COCG GMRES GMRES

nitjd nprec nitjd nprec nitjd nprec nitjd nprec

LDLT 94399 (20) (86) 19 86 (22) (86) 14 85
ILDLT (10−5) 90861 (21) (102) 21 114 (29) (114) 21 130
ILDLT (10−4) 85497 (30) (207) 29 183 (33) (197) 30 239
ILDLT (10−3) 75472 (29) (184) 30 184 34 199 41 273
ILDLT (10−2) 52740 — — — — — — — —

cate that some of the ten test runs did not succeed. With JDCS/GMRES seven
(LDLT ), eight (ILDLT (10−5)), and nine (ILDLT (10−4)) runs computed all six de-
sired eigenpairs. In the runs that failed, GMRES could not solve the correction
equation sufficiently accurately. The low-quality approximate solutions in turn pre-
vented JDCS from converging. With JDCS/QMR only four, three, four, and two runs
properly succeeded with the preconditioners LDLT , ILDLT (10−5), ILDLT (10−4),
and ILDLT (10−3), respectively. In the failed runs, QMR diverged at least once. We
did not take failed runs into account. Thus, numbers in parentheses are averages of
the successful runs.

Taking only successful runs into account, the JDCS solvers behave quite simi-
larly. They often need less inner iteration steps than JDQZ to compute the desired
quantities. It must be stressed, however, that JDCS/QMR has troubles converging
without a look-ahead strategy; cf. [11]. For all solvers the number of outer iterations
increases slowly as the quality of the preconditioner decreases. The average number
of inner iteration steps is small for all solvers.

Matlab’s eigs needs 100 iterations to compute the six eigenpairs with the mem-
ory requirements of JDCS with the LDLT preconditioner.

5.3. A waveguide problem with PML. In the third example we deal with
a two-dimensional optical waveguide problem. The cross section of the waveguide
is considered. The waveguide is designed such that the fundamental optical mode
experiences considerably lower losses by leakage into the substrate compared with
the higher order optical modes. In this way more reliable single/fundamental mode
operations can be achieved in practice. A PML lining terminates the two-dimensional
structure on the boundary. The PML is used to render the effect of leakage into the
substrate [13]. The order of A and B is n = 32,098. As in the first example, A has a
2 × 2 block structure, where only the block A11 is nonzero; cf. (5.1). The dimension
of the null space is now m = 10,680.

We are looking for the eigenvalues with small imaginary parts closest to the real
target value τ = 5.4412. These are

λ1 ≈ 5.441307 − 0.000001i, λ4 ≈ 5.440369 − 0.007041i,
λ2 ≈ 5.441331 − 0.005197i, λ5 ≈ 5.442366 − 0.007212i,
λ3 ≈ 5.438328 − 0.004531i, λ6 ≈ 5.448426 − 0.003837i.

All parameters were set as in the previous two problems. We obtained the results
summarized in Table 5.3.

The incomplete LDLT preconditioners work with drop tolerances ζ ≤ 10−3. The
correction equations were not solved until the required accuracy within 100 steps with
ζ = 10−2. All successful ILDLT preconditioners consume at least 60% of the memory
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Table 5.3

Statistics for the test problem wg of order n = 32,098.

JDCS/ JDQZ/
Preconditioner nnz(L) QMR COCG GMRES GMRES

nitjd nprec nitjd nprec nitjd nprec nitjd nprec

LDLT 2595054 (24) (115) 26 181 (24) (119) 22 120
ILDLT (10−5) 1759300 (25) (112) 25 157 (24) (100) 27 157
ILDLT (10−4) 1652157 (27) (306) 32 431 (24) (284) 32 184
ILDLT (10−3) 1459440 (36) (1305) 38 1365 (26) (715) 64 481
ILDLT (10−2) 1099434 — — — — — — — —

space of the LDL preconditioner. The lower triangle of A− τB has 264,194 nonzeros.
JDCS/QMR completed three, nine, seven, and six out of the ten runs with precon-

ditioners LDLT , ILDLT (10−5), ILDLT (10−4), and ILDLT (10−3), respectively. The
corresponding numbers for JDCS/GMRES are four, eight, seven, and seven. As with
the previous problem only the successful runs of JDCS/QMR and JDCS/GMRES
contributed to the statistics in Table 5.3. JDCS/COCG solved all the problems,
although some of the inner iterations did not converge within 100 iteration steps.

In this example the outer, and additionally the inner, iteration counts of
JDCS/QMR and JDCS/COCG grow more quickly than those of JDCS/GMRES.
Here, we notice the stabilizing effect of the orthonormal basis in GMRES.

Similarly as in the other test problems, nitjd is smallest for JDQZ/GMRES with
the LDLT preconditioner but grows more rapidly than with the other solvers. How-
ever, nprec is clearly smallest for the weak preconditioners.

For solving this example, Matlab’s eigs needs 32 steps until convergence.
We summarize our experiments as follows. The JDCS algorithm combined with

complex symmetric system solvers performs best in example 2 (toy2) in almost all
cases. In the other two examples both perform similarly to the JD variants that do
not exploit structure as long as the quality of the preconditioner is high. Exploiting
the matrix structure saves memory and computing time such that in this situation the
JDCS/COCG or JDCS/QMR is to be preferred. If the quality of the preconditioner
decreases, JDCS combined with GMRES as the solver for the correction equation, or
even JDQZ/GMRES, often performs better in terms of inner iteration count. QMR
and COCG need more iterations than GMRES to solve the correction equation to the
required accuracy. The latter consumes more memory space, however.

6. Discussion and conclusions. We have suggested an algorithm, JDCS, for
finding a few eigenvalues and corresponding eigenvectors of special and generalized
eigenvalue problems with complex symmetric matrices. JDCS is a natural general-
ization of standard and two-sided JD for complex symmetric matrices. Most of the
techniques known in JD (such as preconditioning the correction equation, using a
target, restarting, and computing interior eigenvalues) easily carry over to JDCS.

Exact JDCS has asymptotically cubic convergence for simple eigenvalues of com-
plex symmetric matrices. To get this high convergence rate it is crucial to replace the
Euclidean inner product x∗y with the bilinear form xTy. We have shown that the
Rayleigh quotient θ based on this indefinite inner product is asymptotically closer to
the exact eigenvalue λ than the Rayleigh quotient ρ derived from the Euclidean inner
product.

Compared with the Lanczos algorithm for complex symmetric matrices [6], JDCS
is more flexible in that we can restart with any vectors we like and add some extra
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vectors to the search space. JDCS also is more stable than Lanczos in the following
sense. It is well known that Lanczos may break down; look-ahead versions try to
deal with this problem. In JDCS we may have two difficulties, but they can be
easily solved. First, the linear solver for the correction equation may break down;
in this case we can just use the residual for the subspace expansion. Second, it may
be impossible to expand the search space in a complex orthogonal manner (such that
UTU = I). In this case, we may restart or expand the search space by the residual or a
random vector. In various cases in our experiments, JDCS is superior to JDQZ. While
its convergence behavior is similar, it takes the particular structure of the problem
into account, which reduces flop count and memory requirements. In the discussed
problems, JDCS also converged in fewer iteration steps than Matlab’s eigs.

Of course, JDCS can have disadvantages. We may expect problems when we
try to approximate an eigenvector x that is (approximately) quasi-null: the oblique
projections and the Rayleigh quotient (1.3) may affect the accuracy and stability. A
standard JD algorithm that computes a partial Schur form could be better suited
to such a situation. JDCS does not have the short recurrences that the Lanczos
algorithm has. Notice, however, that the implicitly restarted Lanczos algorithm in
eigs performs complete reorthogonalization among the Lanczos vectors, which entails
the same recurrence length as JDCS.

The success of JDCS depends very much on the quality with which the correction
equations are solved. Furthermore, much of the advantage of JDCS would be lost if
the system solver did not exploit the complex symmetry of the problem.

With our most powerful preconditioners, a complex symmetric complete or in-
complete LDLT factorization of A − τB with a very restrictive drop tolerance, we
observe little differences in the iteration counts obtained with COCG, complex sym-
metric QMR, or GMRES. As the quality of the preconditioners decreases, the number
of iterations to solve the correction equation to the desired accuracy increases. In this
situation GMRES builds better, namely orthonormal, bases for the underlying Krylov
subspace and extracts a different solution from the space. Therefore, fewer iteration
steps are needed to solve the correction equations.

In our numerical problems where we are looking for interior eigenvalues we get
convergence only when we set the drop tolerance ζ below or equal to 10−3. With such
a choice of ζ, the preconditioners require about two thirds of the memory space of a
direct solver. In many practical situations such preconditioners will be too memory
consuming. It is therefore of paramount importance to find effective complex sym-
metric preconditioners that, on the one hand, approximate well A − τB and, on the
other hand, do not consume so much memory space. Because the eigenvalues given in
the examples have a much bigger real than imaginary part, one may think that a good
approximation of the real part of A− τB would be a good choice. However, the real
and imaginary parts of the eigenvectors are in general not much different in norm,
and the real part of A − τB does not have additional properties other than being
symmetric. We therefore think that a multilevel approach taking all of A − τB into
account will be more promising [3, 18]. This will be the subject of future research.
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