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Abstract. Tikhonov regularization is one of the most popular approaches to solve discrete
ill-posed problems with error-contaminated data. A regularization operator and a suitable value
of a regularization parameter have to be chosen. This paper describes an iterative method, based
on Golub-Kahan bidiagonalization, for solving large-scale Tikhonov minimization problems with a
linear regularization operator of general form. The regularization parameter is determined by the
discrepancy principle. Computed examples illustrate the performance of the method.
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1. Introduction. We are concerned with the solution of large minimization
problems

min
x∈Cn

‖Ax − b‖, A ∈ C
m×n, b ∈ C

m, (1.1)

where ‖ · ‖ denotes the Euclidean vector norm and the matrix A is assumed to have
many singular values of different orders of magnitude close to the origin. In particular,
the ratio between the largest and smallest singular values is very large and therefore
the solution of (1.1) is very sensitive to perturbations in the vector b. Minimization
problems with matrices of this kind arise, for instance, from the discretization of
ill-posed problems, such as Fredholm integral equations of the first kind. They are
commonly referred to as discrete ill-posed problems. For ease of notation, we will
assume that m ≥ n; however, the method described also may be applied, mutatis
mutandis, when m < n.

The vector b in discrete ill-posed problems (1.1) that arise in science and engineer-
ing represents available data and typically is contaminated by a measurement error
e, which we also will refer to as “noise.” Thus,

b = b̂ + e, (1.2)

where b̂ denotes the unknown error-free vector associated with b. We will assume that
a bound for the norm of the error,

‖e‖ ≤ δ, (1.3)

is explicitly known and that the linear system of equations associated with the error-
free right-hand side,

Ax = b̂, (1.4)

is consistent.
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We would like to determine an approximation of the solution of minimal least-
squares norm, x̂, of the unavailable linear system of equations (1.4). This is accom-
plished by computing a suitable approximate solution of the available least-squares
problem (1.1). Note that the minimal-norm solution of (1.1) generally is a poor
approximation of the desired vector x̂ due to the error e in b and the severe ill-
conditioning of A.

Tikhonov regularization replaces the minimization problem (1.1) by the solution
of a penalized least-squares problem

min
x∈Cn

{ ‖Ax − b‖2 + µ ‖Lx‖2 } (1.5)

with regularization operator L ∈ Cp×n and regularization parameter µ > 0. For
future reference, we note that the normal equations associated with (1.5) are given
by

(A∗A + µ L∗L)x = A∗b, (1.6)

where A∗ and L∗ denote the adjoints of A and L, respectively. We will assume that

N (A) ∩N (L) = {0}, (1.7)

where N denotes the null space. Then (1.5) has a unique solution, x(µ), for all µ > 0.
The component of x(µ) in N (L) is independent of µ. We remark that for many
commonly used regularization operators L, such as approximations of differential
operators, the restriction of A to N (L) is quite well conditioned.

The vectors x(µ) for µ > 0 are less sensitive to the error e in b than the solution
of (1.1). The sensitivity of x(µ) to e and the difference x(µ) − x̂ depend on both the
value of µ and the choice of regularization operator L. We would like x(µ) − x̂ to be
small.

The available bound (1.3) for the error e allows us to determine a suitable value
of µ by the discrepancy principle, which prescribes that µ = µ(δ) be chosen so that

‖Ax(µ) − b‖ = ηδ, (1.8)

where η > 1 is a user-specified constant independent of δ. Then

lim
δց0

x(µ(δ)) = x̂;

see, e.g., Engl et al. [10] and Groetsch [12] for proofs in Hilbert space settings. Hence,
the numerical solution of (1.5) entails both the determination of a value of µ and
the computation of an approximation xk of the solution x(µ) of (1.5), such that xk

satisfies (1.8).
We remark that the minimization problem (1.5) with the constraint (1.8) can be

formulated as

min
x

‖Lx‖ such that ‖Ax − b‖ = ηδ, (1.9)

which shows that the regularization parameter µ determined by (1.8) is the Lagrange
multiplier for (1.9).

When the matrices A and L are of small to moderate size, the minimization
problem (1.5) conveniently can be solved with the aid of the generalized singular
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value decomposition (GSVD) of the matrix pair {A, L}; see, e.g., [13]. The present
paper is concerned with the situation when A and L are too large to compute their
GSVD.

The Tikhonov minimization problem (1.5) is said to be in standard form when L
equals the identity operator I. Substituting y = Lx into (1.5) yields the standard-form
problem

min
y∈Cn

{ ‖AL†
Ay − b̄‖2 + µ ‖y‖2 }, (1.10)

with solution y(µ), where

b̄ = b − Ax̄, x̄ = (A(I − L†L))†b, (1.11)

and

L†
A =

(

I − (A(I − L†L))†A
)

L† ∈ R
n×p (1.12)

is the A-weighted generalized inverse of A. Here L† denotes the Moore-Penrose pseu-
doinverse of L. The solution of (1.5) is given by

x(µ) = L†
Ay(µ) + x̄;

see, e.g., Eldén [9] or Hansen [13, Section 2.3] for details.
An attraction of Tikhonov regularization problems in standard form is that the

computations required for determining a suitable value of the regularization param-
eter, say, by the discrepancy principle or the L-curve, are fairly simple; see [5, 6] for
illustrations. However, iterative methods applied to the the solution of the standard
form problem (1.10) require matrix-vector product evaluations with the matrices L†

A,

AL†
A, and possibly also with (L†

A)∗ and (AL†
A)∗. Only regularization operators L with

particular simple structure allow for the efficient evaluation of these matrix-vector
products. This includes regularization operators with a small bandwidth, circulant
matrices, orthogonal projections, and sparse nonsingular matrices that permit fast LU
factorization as well as fast forward and back substitution; see [7, 9, 13, 18, 21, 22] for
some examples. Moreover, efficient evaluation of (A(I − L†L))† in (1.11) and (1.12)
requires that N (L) be explicitly known and of low dimension.

The method for the solution of (1.5) proposed in Section 2 of this paper can be ap-

plied when matrix-vector products with L†
A and AL†

A cannot be evaluated efficiently,
and when N (L) is not explicitly known. The method is based on partial Golub-Kahan
bidiagonalization of A and requires only matrix-vector product evaluations with the
matrices A and L, as well as with their adjoints. This makes the method suitable for
the solution of large-scale Tikhonov minimization problems (1.5) with fairly general
linear regularization operators L. Section 3 discusses zero-finders for the determina-
tion of a value of the regularization parameter, so that (1.8) is approximately satisfied.
A few computed examples are presented in Section 4, and concluding remarks can be
found in Section 5.

There are not many efficient methods available for the solution of large-scale
Tikhonov minimization problems (1.5) with a general linear regularization operator.
One of the most interesting such methods is the inner-outer iterative scheme recently
proposed by Kilmer et al. [16]. This scheme is inspired by an iterative method due to
Zha [23] for computing a partial GSVD of the matrix pair {A, L}. The scheme [16]
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can be expensive for problems that require a large number of inner iterations. There-
fore we believe it to be worthwhile to explore alternative approaches. We remark that
the “obvious” solution method is to apply the conjugate gradient or preconditioned
conjugate gradient method to the normal equations (1.6). However, this approach
often is computationally expensive when a suitable value of the regularization pa-
rameter µ is not know a priori, because in this situation several systems (1.6) with
different values of µ have to be solved. The inner-outer method proposed by Jacobsen
et al. [15] requires L∗L to be nonsingular. Many regularization operators of interest
do not satisfy this requirement. The recently proposed scheme in [20] can be applied
when both A and L are square matrices.

We conclude this section by noting that when the matrix A stems from the dis-
cretization of a compact integral operator, discretization implies regularization. When
the integral operator is discretized coarsely enough, i.e., when m and n are small, the
ratio between the largest and smallest singular values of A may not be very large
and we can solve the minimization problem (1.1) in a straightforward manner with-
out Tikhonov regularization. Regularization by discretization is investigated, e.g., by
Natterer [19]. The difficulty with this approach is that the appropriate discretiza-
tion, i.e., a suitable choice of m and n, depends on the error e in b and generally
is not known a priori. Tikhonov regularization makes it possible to decouple the
discretization from the error in the data b and therefore often is simpler to use.

2. An iterative method. We evaluate an approximate solution of the Tikhonov
minimization problem (1.5) by first computing a partial Golub-Kahan bidiagonaliza-
tion of the matrix A. This yields a Krylov subspace in which the approximate solution
is sought. Typically this Krylov subspace contains a fairly accurate approximation of
x̂. The regularization operator L is projected into this Krylov subspace. The purpose
of the regularization operator L is to steer the method towards a suitable approximate
solution in the Krylov subspace.

Throughout this paper ej denotes the jth axis vector of appropriate dimension.
Application of k steps of Golub-Kahan bidiagonalization to the matrix A with initial
vector b yields the matrices Uk+1 ∈ Cm×(k+1) and Vk ∈ Cn×k with orthonormal
columns, and the bidiagonal matrix C̃k ∈ C

(k+1)×k, such that

AVk = Uk+1C̃k, A∗Uk = VkCk, Uk+1e1 = b/‖b‖, (2.1)

where Uk ∈ Cm×k is made up of the k first columns of Uk+1, Ck ∈ Ck×k consists of
the first k rows of C̃k, and the columns of Vk span the Krylov subspace

Kk(A∗A, A∗b) = span{A∗b, (A∗A)A∗b, . . . , (A∗A)k−1A∗b}; (2.2)

see, e.g., Björck [3] for details.
We will use the QR factorization

LVk = QkRk, (2.3)

where Qk ∈ Cp×k has orthonormal columns and Rk ∈ Ck×k is upper triangular. In
applications of interest k ≪ p.

The computational effort to determine the decompositions (2.1) when m and n
are large is dominated by the k matrix-vector product evaluations required with each
one of the matrices A and A∗. The matrix L generally is very sparse. Therefore, the
computational effort needed to evaluate LVk typically is much smaller than the effort
required for the evaluation of k matrix-vector products with A.

4



We require the computed kth approximation, xk, of the solution of (1.5) to live in
the Krylov subspace (2.2). It can be expressed as xk = Vkyk for some vector yk ∈ Ck.
Substituting x = Vky into (1.5) and using the properties (2.1) and (2.3) yields the
reduced minimization problem

min
y∈Ck

∥

∥

∥

∥

[

C̃k√
µ Rk

]

y −
[

e1‖b‖
0

]∥

∥

∥

∥

. (2.4)

Since the subspace dimension k typically is quite small, this least-squares problem
can be solved efficiently by a direct method. For instance, we may first transform
the matrix in (2.4) into upper triangular form by application of a judiciously chosen

sequence of Givens rotations. Due to the assumption (1.7), the solution y
(µ)
k of (2.4)

is unique for all µ > 0.

We determine µ by requiring that yk = y
(µ)
k satisfies

‖C̃kyk − e1‖b‖ ‖ = ηδ. (2.5)

Let µk denote the solution µ of (2.5). The computation of µk requires that a sequence
of least-squares problems (2.4) with different µ-values be solved. More details on the
computation of µk and yk are provided in Section 3.

Proposition 2.1. Let µk solve (2.5), denote by yk = y
(µk)
k the associated solution

of (2.4), and let xk = Vkyk be the corresponding approximate solution of (1.5). Then

‖Axk − b‖ = ηδ.

Proof. We have

‖Axk − b‖ = ‖AVkyk − b‖ = ‖C̃kyk − e1‖b‖ ‖.

The proposition now follows from (2.5).
When increasing the number of bidiagonalization steps k, the QR factorization

of LVk, see (2.3), has to be updated. Formulas for updating a QR factorization are
described by Daniel et al. [8]; see also [11, Section 12.5]. Note that only the upper
triangular matrices Rk, k = 1, 2, . . . , are required, but not the associated matrices
Qk with orthonormal columns.

This paper focuses on the determination of a suitable regularization parameter µ
for Tikhonov regularization. However, the number of bidiagonalization steps, k, also
may be regarded a regularization parameter. It restricts the (sub)space in which the
computed approximation of x̂ is sought to k dimensions. We comment on the choice
of k further in Sections 3 and 4.

The null space N (L) can be important for achieving an accurate approximation
x(µ) of x̂ by Tikhonov regularization (1.5). Since the component of x(µ) in N (L) is
independent of µ > 0, we may choose L so that N (L) represents important known
features of the desired solution x̂. However, the reduced regularization operator Rk in
(2.4) typically is nonsingular also when L has a nontrivial null space. We now describe
a splitting of the minimization problem (1.1), such that Tikhonov regularization is
not applied to the solution component in R(W ), where W ∈ C

n×ℓ is a user-supplied
matrix and R(W ) denotes its range. This splitting has previously been applied in
iterative and direct methods for ill-posed problems in [2, 4, 17].

Let the matrix W ∈ Cn×ℓ have orthonormal columns and introduce the QR
factorization AW = Q̆R̆, where Q̆ ∈ Cn×ℓ has orthonormal columns and R̆ ∈ Cℓ×ℓ is
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upper triangular. We may assume that W is chosen so that R̆ is nonsingular. Define
the orthogonal projectors

PW = WW ∗, P⊥
W = I − WW ∗, P

Q̆
= Q̆Q̆∗, P⊥

Q̆
= I − Q̆Q̆∗.

Then (1.1) can be written as

min
x∈Cn

‖Ax − b‖2 = min
x∈Cn

{‖P
Q̆

Ax − P
Q̆

b‖2 + ‖P⊥
Q̆

Ax − P⊥
Q̆

b‖2}

= min
x∈Cn

{‖P
Q̆

APW x − (P
Q̆

b − P
Q̆

AP⊥
W x)‖2 + ‖P⊥

Q̆
AP⊥

W x − P⊥
Q̆

b‖2},

where we have used that I = PW + P⊥
W and P⊥

Q̆
APW = O. Let y = W ∗x. Then

‖P
Q̆

APW x − (P
Q̆

b − P
Q̆

AP⊥
W x)‖ = ‖Ry − (Q̆∗b − Q̆∗AP⊥

W x)‖. (2.6)

Since R is nonsingular, we may for any P⊥
W x choose y so that the expression in the

right-hand side of (2.6) vanishes. This choice of y shows that

min
x∈Cn

‖Ax − b‖ = min
x∈Cn

‖P⊥
Q̆

AP⊥
W x − P⊥

Q̆
b‖. (2.7)

We solve the projected problem in the right-hand side of (2.7) by the method of the
present paper and then determine y so that the right-hand side of (2.6) vanishes.
Since P⊥

Q̆
AP⊥

W = P⊥
Q̆

A, we may omit the projector P⊥
W in the projected problem.

This splitting is applied in Examples 4.2 and 4.3 below. Generally, the number of
columns, ℓ, of the matrix W is quite small, say, ℓ ≤ 3.

3. Determining the regularization parameter. This section discusses the

computation of µ = µk so that yk = y
(µk)
k satisfies (2.5). Introduce the function

φ(ν) = ‖C̃kyk − e1‖b‖ ‖2, µ = 1/ν, 0 < ν < ∞, (3.1)

where yk = y
(µ)
k is the solution of (2.4). Then equation (2.5) can be expressed as

φ(ν) = η2δ2. (3.2)

We first describe an approach that can be applied when the matrix Rk in (2.3)
is not ill-conditioned and C̃∗

ke1 6= 0. These conditions typically are satisfied. For
instance, the latter condition holds when A∗b 6= 0. The following proposition is
formulated in terms of the QR factorization

C̃k = Q̃kR̃k,

where Q̃k ∈ C(k+1)×k has orthonormal columns and R̃k ∈ Ck×k is upper triangular.
Proposition 3.1. Assume that the matrix Rk in (2.3) is nonsingular and that

C̃∗
ke1 6= 0. Let R̂ = R̃kR−1

k . Then the function (3.1) can be expressed as

φ(ν) = ‖b‖2e∗1Q̃k(νR̂R̂∗ + I)−2Q̃∗
ke1 + ‖b‖2e∗1(I − Q̃kQ̃∗

k)e1. (3.3)

Consequently, φ(ν) is strictly decreasing and convex, and equation (3.2) has a unique

solution 0 < νk < ∞, provided that

‖PN (C̃∗

k
)e1‖‖b‖ < ηδ < ‖b‖, (3.4)
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where PN (C̃∗

k
) denotes the orthogonal projector onto N (C̃∗

k ).

Proof. The representation (3.3) follows from

I − R̂(R̂∗R̂ + ν−1I)−1R̂∗ = (νR̂R̂∗ + I)−1

and shows that φ is decreasing and convex. Moreover, it follows from (3.3) that

lim
νց0

φ(ν) = ‖b‖2.

Since the function φ is decreasing, the upper bound of (3.4) has to be satisfied in order
for equation (3.2) to have a positive solution. The lower bound of (3.4) corresponds
to µ = 0 in (2.4). Therefore,

lim
ν→∞

φ(ν) = min
y∈Ck

‖C̃ky − e1‖b‖ ‖2 = ‖PN (C̃∗

k
)e1‖2‖b‖2.

Since φ is decreasing, the lower bound of (3.4) has to be satisfied in order for equation
(3.2) to have a bounded solution. Therefore, when the bounds (3.4) hold, equation
(3.2) has a unique bounded solution.

We remark that ‖PN (C̃∗

k
)e1‖ is decreasing when k is increasing. This follows from

the observations that I = PN (C̃∗

k
) + PR(C̃k), PN (C̃∗

k
) and PR(C̃k) are orthogonal, and

‖PR(C̃k)e1‖ is increasing with k. Therefore, to satisfy the left-hand side inequality in

(3.4), k has to be sufficiently large. In actual computations, it generally suffices to
choose k fairly small. This is illustrated in Section 4.

Using (3.3), the function φ(ν) can be evaluated by solving a least-squares problem
related to (2.4). The derivative φ′(ν) can be computed by solving another least-
squares problem with the same matrix. This allows for efficient implementation of
Newton’s method for the solution of (3.2); see, e.g., [6].

When the matrix Rk is ill-conditioned, the GSVD of the matrix pair {C̃k, Rk}
can be used. Substituting the GSVD into (2.4) and (3.1) gives a simple expression
for the evaluation of φ(ν). However, each increase of k requires the computation of
the GSVD of a new matrix pair {C̃k, Rk}. Thus, typically GSVDs of several matrix
pairs have to be computed and the computational effort is larger than if the approach
of Proposition 3.1 is used.

4. Numerical examples. The right-hand sides in the examples below are con-
taminated by an error e with normally distributed entries with zero mean. The entries
are scaled to correspond to a specified relative error,

ε = ‖e‖/‖b̂‖. (4.1)

The constant η in the discrepancy principle (1.8) is set to 1.1 in all examples, and we

let δ = ε ‖b̂‖ in (1.8).
Example 4.1. We discretize the integral equation

∫ π

0

exp(s cos(t))x(t) dt = 2
sinh(s)

s
, 0 ≤ s ≤ π

2
,

discussed by Baart [1] by a Galerkin method with piecewise constant test and trial
functions using the MATLAB code baart from [14]. This yields the nonsymmetric
matrix A ∈ R1000×1000 of ill-determined rank. The code also furnishes the “exact”
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Fig. 4.1. Example 4.1: (a) Computed approximate solution with tridiagonal regularization
operator (4.2) (continuous graph) and solution x̂ of the error-free problem (1.4) (dashed graph), (b)
computed approximate solution with regularization operator L = I (continuous graph) and solution
x̂ of the error-free problem (1.4) (dashed graph).

solution x̂, which represents a scaled sine function. We determine the error-free right-
hand side of (1.4) as b̂ = Ax̂. The associated contaminated vector b in (1.1) is

obtained by adding 0.1% normally distributed zero mean “noise” e to b̂; cf. (1.2).
Thus, ε = 1 · 10−3 in (4.1).

We compare approximations of x̂ determined with the tridiagonal regularization
operator

L =











−1 2 −1
−1 2 −1
. . .

. . .
. . .

. . .

−1 2 −1











∈ R
(n−2)×n, (4.2)

which is a scaled approximation of a second derivative operator, with approximations
obtained with L = I. The number of bidiagonalization steps k in (2.1) has to be large
enough so that (2.5) can be satisfied. In the present example, we let k = 5. The
computed approximate solution x5 has relative error ‖x5 − x̂‖/‖x̂‖ = 1.6 · 10−1 when
L = I, and relative error ‖x5 − x̂‖/‖x̂‖ = 1.0 · 10−1 when L is given by (4.2). Thus,
the former choice yields an increase of 60% of the error in the computed approximate
solution. The computed approximate solutions are displayed in Figure 4.1.

We remark that the Krylov subspace K5(A
∗A, A∗b) contains a fairly accurate

approximation V5V
∗
5 x̂ of x̂. We have ‖x̂ − V5V

∗
5 x̂‖/‖x̂‖ = 5.3 · 10−2. The purpose

of the regularization operator L is to help determine an accurate approximation of
V5V

∗
5 x̂. The present example shows the regularization operator (4.2) to yield a better

approximation of x̂ than L = I.
We note that the particular operator (4.2) allows the application of the A-weighted

generalized inverse L†
A of L; cf. (1.12). The purpose of this example is to show that

an improvement of the quality of the computed approximate solution also can be
achieved without applying L†

A.
The small dimension k = 5 of the solution would appear to contributes signifi-

cantly to the regularization of the present problem. However, k = 10 bidiagonalization
steps yields the computed approximate solutions x10 with ‖x10 − x̂‖/‖x̂‖ = 1.6 · 10−1

for L = I and x10 with ‖x10 − x̂‖/‖x̂‖ = 1.0 · 10−1 for L defined by (4.2). Thus, the
difference in the quality of the computed approximate solutions for k = 5 and k = 10
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is negligible. We conclude that the subspace dimension, when larger or equal to 5,
only has a minor influence on the computed solutions in this example. �
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Fig. 4.2. Example 4.2: (a) Computed approximate solution with tridiagonal regularization
operator (4.2) and splitting of the problem based on R(W ) with W given by (4.3) (continuous
graph) and solution x̂ of the error-free problem (1.4) (dashed graph), (b) computed approximate
solution with regularization operator L = I without splitting (continuous graph) and solution x̂ of
the error-free problem (1.4) (dashed graph).

Example 4.2. Consider the Fredholm integral equation of the first kind

∫ 1

0

k(s, t)x(t) dt = exp(s) + (1 − e)s + 1, 0 ≤ s ≤ 1,

where

k(s, t) =

{

s(t − 1), s < t,
t(s − 1), s ≥ t.

We discretize the integral equation by a Galerkin method with orthonormal box func-
tions as test and trial functions using the MATLAB program deriv2 from Regulariza-
tion Tools [14] and obtain the symmetric indefinite matrix A ∈ R1000×1000 and the
solution x̂ of the error-free linear system (1.4). The vector x̂ is a scaled discrete ap-

proximation of the exponential function. The error-free right-hand side b̂ of (1.4) and
the associated noise-contaminated vector b are determined similarly as in Example
4.1. In particular, ε = 1 · 10−3 in (4.1).

We first compute an approximate solution x10 with L = I and 10 bidiagonalization
steps. Figure 4.2(b) displays x10. The relative error ‖x10 − x̂‖/‖x̂‖ = 1.7 · 10−1 is
fairly large. Our first attempt to reduce this error by instead using the regularization
operator (4.2) was not successful; we obtained, again with 10 bidiagonalization steps,
an approximate solution with the larger relative error 1.8 · 10−1.

A more accurate approximation of x̂ can be computed by splitting the problem as
described in Example 2.1. Let the columns of W ∈ Rn×3 form an orthonormal basis
for the subspace

W = span





























1
1
...
1











,











1
2
...
n











,











1
22

...
n2





























. (4.3)
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The columns of W can represent quadratic growth of the solution. The component
of the computed solution in R(W ) is not affected by regularization. We solve the
minimization problem

min
x∈Cn

‖P⊥
Q̆

Ax − P⊥
Q̆

b‖

by Tikhonov regularization. The regularization operator (4.2) and 5 bidiagonalization
steps yield the approximate solution x5 shown in Figure 4.2(a) with relative error
‖x5 − x̂‖/‖x̂‖ = 2.4 · 10−3. If we instead use the regularization operator L = I, then
we obtain an approximate solution with relative error 3.7 · 10−3. Thus, splitting the
problem based on the matrix (4.3) and using the regularization operator (4.2) yields
the most accurate approximation of x̂. �

(a) (b)

Fig. 4.3. Example 4.3: (a) Restoration obtained with L defined by (4.5), (b) restoration obtained
with L defined by (4.5) and splitting determined by (4.3).

Example 4.3. We consider a 91 × 91-pixel test image, which shows the super-
position of a Gaussian and a linear function. The available image is contaminated by
blur and 0.5% noise. The pixel values of this image, ordered column wise, determines
the vector b ∈ R8281. The blurring operator is represented by the symmetric block
Toeplitz matrix with Toeplitz blocks,

A = (2πσ2)−1T ⊗ T, (4.4)

where T is a 91 × 91 symmetric banded Toeplitz matrix, whose first row is given by
[exp(-((0:band-1).^2)/(2*sigma^2)); zeros(1,n-band)]. The parameter band
is the half-bandwidth of the matrix T . The parameter σ controls the effective width
of the underlying Gaussian point spread function

h(x, y) =
1

2πσ2
exp

(

−x2 + y2

2σ2

)

,

which models blurring. We let band = 16 and σ = 1.5. The matrix A so obtained is
numerically singular.
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Following Kilmer et al. [16], we use the regularization operator

L =

[

I ⊗ L1

L1 ⊗ I

]

, L1 =











1 −1
1 −1

. . .
. . .

1 −1











∈ R
90×91, (4.5)

where L1 is a discrete approximation of the first derivative operator on a regular grid.
The A-weighted generalized inverse of L, which is of size 16380× 8281, is unwieldy to
use in an iterative method. However, the method of the present paper is quite easy
to apply when L is of the form (4.5).

Figure 4.3(a) shows the restoration x20 obtained with k = 20 bidiagonalization
steps and the regularization operator (4.5). It has relative error ‖x20 − x̂‖/‖x̂‖ =
2.36·10−2. The best approximation of x̂ in K20(A

∗A, A∗b) has relative error 2.28·10−2.
Thus, the approximation x20 of x̂ is close to the best possible in the Krylov subspace.
Nevertheless, the background “ringing” is not pleasing. We first seek to determine
a more accurate restoration by increasing the dimension of the Krylov subspace.
Increasing the number of bidiagonalization steps to 30 and 40, indeed, yields more
accurate restorations; we have ‖x30 − x̂‖/‖x̂‖ = 2.31 · 10−2 and ‖x40 − x̂‖/‖x̂‖ =
2.30 · 10−2. However, the restorations x30 and x40 are visually indistinguishable from
x20.

A better approach to obtain a more accurate restoration is to split the problem
using the matrix (4.3), similarly as in Example 4.2. This splitting, the regularization
operator (4.5), and 20 bidiagonalization steps, give the restoration x20 with relative
error ‖x20 − x̂‖/‖x̂‖ = 1.26 · 10−2. The restoration is depicted in Figure 4.3(b). It
displays much less “ringing” than the restoration of Figure 4.3(a). We remark that
the approximation of x̂ obtained with the splitting determined by (4.3), 20 bidiag-
onalization steps, and L = I is less accurate than the one shown in Figure 4.3(b).
�

Example 4.3 illustrates that the splitting described in Example 2.1 can be benefi-
cial for image restoration. However, the success of the particular splitting used in the
above example depends on the image. For instance, this splitting does not improve
the restoration of the image of the following example.

Example 4.4. We apply the regularization operator (4.5) to restore the 91× 91-
pixel image groetsch, which has been contaminated by blur defined by (4.4) and by
0.1% noise. The contaminated image is shown in Figure 4.4(a). The restored image,
x50, determined with 50 bidiagonalization steps and the regularization operator (4.5)
is displayed in Figure 4.4(b). It has relative error ‖x50 − x̂‖/‖x̂‖ = 6.91 · 10−2. �

5. Conclusion. We have presented a new iterative method for the solution of
Tikhonov-regularized large-scale discrete ill-posed problems, which allows the linear
regularization operator L to be of general form; neither the GSVD of the matrix pair
{A, L} nor the A-weighted generalized inverse of L are required. Only the evalua-
tion of matrix-vector products with the matrices A, A∗, and L is demanded. The
regularization parameter is determined during the iterations.

Acknowledgment. The authors would like to thank the referees for helpful
comments. LR would like to thank MH for making an enjoyable visit to TU/e possible,
during which work on the present paper was initiated.

11



(a) (b)

Fig. 4.4. Example 4.4: (a) Blur- and noise-contaminated image, (b) restored image.
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