
Simplifying Process Model Abstraction:
Techniques for Generating Model Names

Henrik Leopolda, Jan Mendlingb, Hajo A. Reijersc, Marcello La Rosad

aHumboldt-Universität zu Berlin, Germany
bWU Vienna, Austria

cEindhoven University of Technology, Netherlands
dQueensland University of Technology and NICTA, Australia

Abstract

The increased adoption of business process management approaches, tools, and practices has led organizations

to accumulate large collections of business process models. These collections can easily include from a

hundred to a thousand models, especially in the context of multinational corporations or as a result of

organizational mergers and acquisitions. A concrete problem is thus how to maintain these large repositories

in such a way that their complexity does not hamper their practical usefulness as a means to describe and

communicate business operations. This paper proposes a technique to automatically infer suitable names

for business process models and fragments thereof. This technique is useful for model abstraction scenarios,

as for instance when user-specific views of a repository are required, or as part of a refactoring initiative

aimed to simplify the repository’s complexity. The technique is grounded in an adaptation of the theory

of meaning to the realm of business process models. We implemented the technique in a prototype tool

and conducted an extensive evaluation using three process model collections from practice and a case study

involving process modelers with different experience.

Keywords: Business process model, model name, process model repository, refactoring, model abstraction

1. Introduction

Recent years have seen a substantial increase in business process modeling initiatives. While process

modeling was utilized in the 1990s mainly as a technique for facilitating single process re-engineering

efforts [1, 2, 3, 4, 5], many companies have turned to a more encompassing and evolutionary approach to

Business Process Management (BPM). This development has led to the establishment of BPM expert teams,

competence centers, and consulting departments within organizations. These units typically manage a central

repository of business process models capturing various aspects of an organization’s business operations.

Email addresses: henrik.leopold@wiwi.hu-berlin.de (Henrik Leopold), jan.mendling@wu.ac.at (Jan Mendling),
H.A.Reijers@tue.nl (Hajo A. Reijers), m.larosa@qut.edu.au (Marcello La Rosa)

Preprint submitted to Information Systems June 10, 2013

Process modeling is an ongoing activity in a setting that is interwoven with strategic management, quality

assurance, controlling, and the specific functional areas of a company. As a result, companies that model

business processes often maintain repositories containing hundreds if not thousands of models at a remarkable

level of detail [6].

The mass of documentation stored in a process model repository poses considerable challenges for

efficient and effective use of these models. At various stages, different stakeholders require individual views

on these models for getting an overview, receiving support during their modeling efforts, and for quality

assurance purposes. For example, abstract views are a good vehicle for achieving a cognitive fit between the

representation of the process and the task at hand, cf. [7, 8]. Moreover, they offer a suitable aggregation of

process information, which has been found to be crucial for process improvement initiatives [9].

A survey on how process models are used in practice reveals no less than fifteen different use cases for

abstracting and compressing a detailed, fine-granular model towards a smaller model capturing the essential

information a stakeholder is after [10]. These use cases clearly motivate the development of techniques that

facilitate such transformations, e.g., [11, 12, 13]. These techniques, however, do not address the problem of

how to automatically generate a proper name for an abstract model. This puts the burden on the stakeholder

to come up with a meaningful reference for each new abstract model that is derived. This is a task that

cannot be ignored, since much of the meaning of a process model can only be derived from what its elements

stand for. It is also potentially a highly repetitive task: abstractions for a single process model may be

dynamically generated requiring a name proposal each time they are viewed by a stakeholder. The same

problem occurs when searching for similar or identical model fragments in large process model repositories.

Such “(approximate) clones” can be automatically found [14, 15, 16, 17], but then need to be stored with a

meaningful name. An automatic technique for determining the name of a process model clone is not yet

available, thus hindering the wider adoption of clone detection in practice.

In this paper, we address the problem of defining names for process models and process model fragments

that, for instance, result from applying abstraction or clone identification. Our contribution is an approach

that will ease the naming task for users who are interested in creating more abstract views on process models

than are readily available to them. Specifically, our approach builds on techniques that analyze the activity

labels of a process model, and returns a ranked list of names from which the top ranked name is provided. To

this end, we build on insights from theories of meaning and exploratory research to devise naming strategies

for process models. As we will argue, the quality of the generated naming suggestions is comparable to those

that would be generated by humans; however, in the proposed approach these suggestions are generated

in only a fraction of the time a human modeler would need to inspect the underlying (fine-grained) model

elements and their interrelations.

We implemented the naming approach in a prototype tool based on natural language processing techniques,

and, in order to demonstrate the flexibility of our approach, we configured the tool to detect names for

2

process models specified in two languages: English and German. Next, we validated the approach in various

directions. First, we measured the performance and accuracy of our approach using three large datasets from

practice. Second, we conducted a case study involving process modelers with varying expertise to evaluate

the usefulness and appropriateness of the approach in practice.

The rest of the paper is structured as follows. Section 2 reviews the essential concepts of business process

modeling, presents a taxonomy of naming strategies grounded in theories of meaning, and highlights an

exploratory study on process model names. Section 3 introduces the approach for automatically deriving

process model names. Section 4 discusses the results of the evaluation while Section 5 summarizes achievements,

and suggests implications for research and practice. Section 6 concludes the paper with an outlook on future

research.

2. Background

In this section, we discuss background work required for our research. First, we present the essential

aspects of business process modeling. Next, we identify different techniques for finding a process model name.

These techniques form the basis for the approach that is proposed in this paper.

2.1. Business Process Modeling

A business process is a collection of inter-related events, activities and decision points that involve a

number of actors and objects, and that collectively lead to an outcome that is of value to at least one

customer [18]. Business process models capture the essential elements of a business process by means of a

diagram. A business process modeling language typically includes elements for defining activities, events and

their relationships. Activities define units of work which usually take time to be completed, such as filling

out a purchase order, while events describe things that happen atomically, i.e., they have no duration, such

as the receipt of an invoice.

Throughout this paper, we use Event-driven Process Chains (EPCs) as a process modeling language

to illustrate our approach. EPCs are a widely used language that captures a process in a graph-based

notation [19, 20]. In EPCs, activities are called functions and are depicted as rounded boxes. Each activity

has a short name, such as “write proposal” or “send invoice.” These names typically use a verb and a

corresponding business object. Events are visualized as hexagons in EPCs. There are start events to specify

when a process starts, end events showing the outcomes that can be achieved upon process completion, and

intermediate events that signal that something happens during the business process, e.g., “invoice is received,”

or that certain conditions are met, e.g., “loan amount is greater than 10,000 EUR.”

Finally, the routing elements between activities and events are called connectors in EPCs. Routing

elements are drawn as circles. An XOR-Split represents an either-or decision, which can be merged by an

3

Capacity
Evaluation

Capacity
situation is to
be evaluated

X

Maintenance
order is
released

V

Capacity is
available

Capacity is
not available

Sequencing
to be carried

out

V

Capacity
Dispatching and

Leveling

Capacity
leveling or
planning is
performed

End Event

Intermediate Event

Start Event

AND-Join

XOR-Split

OR-Join

Function

Figure 1: EPC Model “Capacity Planning” from the SAP Reference Model

XOR-join. Both are shown as circles containing an × symbol. An AND-split defines the point where parallel

processing is triggered. The corresponding AND-join synchronizes the concurrent branches. AND elements

are depicted as circles with a ∧ symbol. An OR-Split can be used for describing an inclusive choice. The

selected branches are synchronized by an OR-join. The symbol of OR elements is a circle with a ∨ symbol.

The arcs of an EPC connect these different types of nodes, defining the control flow. While we use EPCs

in this article to illustrate our concepts, it must be noted that all ideas can also be applied to other process

modeling languages such as BPMN [21], YAWL [22] or UML Activity Diagrams [23].

Figure 1 shows an EPC named “Capacity Planning” from the SAP Reference Model. The process is

triggered as soon as the capacity situation needs to be evaluated and the maintenance order is released.

After the capacity is evaluated, we observe two possible outcomes. If the capacity is available, the process

terminates; otherwise, the capacity is dispatched and leveled again. Once the capacity leveling and planning

has been performed, the process is completed.

2.2. Names and Content of Business Process Models

The goal of this section is to clarify the relationship between the content of a business process model

and its name. Such a discussion helps to understand the reasons behind naming a process model such as

4

Change in
Material Price

Batch input
has been

created for
price change

Material price
has been
changed

Revaluation
Document
has been
created

V

Activate Future
Material Price

Future
Material Price

must be
activated

Dominating Element
Material Price

Main Activity
Change Material Price

End Event
Change Material Price

End Event
Create Revaluation

Document

Start Event
Activate Future
Material Price

Conjunction
Activate and Change

Material Price

Figure 2: EPC Model “Change in Material Price”

“Capacity Planning.” This is a prerequisite in order to able to automatically suggest names for process models

or process model fragments.

When humans name complex conceptual entities, such as process models, an intuitive approach seems to

point to the core aspect of that entity. However, it is not a priori clear what a core aspect is supposed to be.

If we can use the meaning of the name of a process to understand its content, there is potentially a way to

infer the name from the content. Meaning has become a subject of discourse in philosophy and linguistics

with initial work by Lady Welby at the end of the 19th century [24]. A theory of meaning is a concept which

tries to determine the meaning of a term or sentence from natural language [25, pp. 1-3]. The benefits of

such theories for information systems research have recently been demonstrated by Evermann [26], who

clarifies the foundations of schema matching.

In the frame of theories of meaning, we have to ask the question why a person might judge a name such

as “Capacity Planning” to capture the meaning of the process model shown in Figure 1. There are two kinds

of theories of meaning that approach this question differently [27]: semantic theories defining meaning based

on a system references and foundational theories of meaning focusing on the intention of the speaker. In this

paper, we refer to both kinds of theories, and focus on those aspects that can be related to process models.

In particular, we discuss five perspectives, which are grounded in the feature theory of meaning, prototype

theory of meaning, early and late pragmatist theory of meaning, and knowledge-based theory of meaning.

For this discussion, we focus on a process model as a composite ‘thing’ [28], of which we know its start

and end events as much as the activities composing it. We relate each theory to naming strategies. We will

5

use the “Change in Material Price” process model from Figure 2 to illustrate how the different theories of

meaning are related to process names.

Feature theory of meaning. The feature theory of meaning relates to the classical view of meaning as a

semantic theory on how propositions are evaluated [29, 30, 31]. In this context, terms can be resolved

stepwise from their syntactical form to a reference to something in the real world. The way of resolution

can be expressed using logical operators, predicates, and referents. A term can then be defined based on

a sufficient number of propositions that are true to distinguish it from other ones. For instance, if we aim

to distinguish the term “Asset Activation” from “Plant Maintenance” as process names, we might have to

consider propositions such as “involves year closing operations” or “involves maintenance order printing.”

This means that a model would acquire its meaning through those events and activities which sufficiently

describe its overall semantics. Thus, the verbs and business objects used in the activities and events’ labels

should be closely related to the name of the process model. In previous work [32] we have observed that this

type of naming is used in practice in two variants: either a repeatedly mentioned business object or verb is

used to build the name (dominating element) or a conjunction of several activities (conjunction of activities).

Following these strategies, our example process model from Figure 2 would carry a name that includes the

dominating business object “Material Price.” In the more specific case of the conjunction strategy, it would

be accordingly named as “Activate and Change Material Price.”

Prototype theory of meaning. The feature theory of meaning has certain weaknesses in dealing with atypical

sub-categories. For example, an amphibious vehicle can swim, while a vehicle in general cannot. Rosch

[33, 34] approached this issue by stating that a term can best be defined based on one prototypical instance.

In line with this argument, the term “cooking” often stands for a set of activities that includes preparing

and mixing the ingredients. However, in many cases cooking is chosen to represent the overall process. Such

a strategy would be applicable to process models where one particular activity represents the core of the

process. Other activities may have the character of preparatory or closing activities which contribute to this

core activity. This naming strategy is apparent from the discussion in [35]. Here, the authors describe the

notion of a ‘core of a process.’ This core process covers the essence of a process in terms of those steps that

are relevant for an external party to interact with it. In the example model, a main activity is given by the

“Change in Material Price” function, which could be used to name the model according to this strategy.

Early pragmatist theory of meaning. The above mentioned theories are rooted in propositional concepts.

Pragmatist theories, by contrast, put an emphasis on observable effects of words and sentences [36, pp. 5-10],

[37, pp. 184-186]. For instance, the meaning of a stop sign is more centrally related to its ability to create

a certain effect than to its features of being red. We would thus expect that the effect of a process model

6

called “Asset Activation” or “Plant Maintenance” would be that “asset activation is completed” or “plant

maintenance is completed,” respectively.

When we apply this perspective to process models in general, we have to focus on those parts where

effects of executing the process are explicitly mentioned. These are typically the process model’s end events.

Indeed, this line of thinking is found in existing work that is related to the problem at hand. For example,

Sharp and McDermott [38, p.80] suggest identifying a process from its outcomes. Applying this idea to the

example model, we could use the left end event to name the process model. From this event, we could then

derive the name “Change in Material Price.”

Late pragmatist theory of meaning. There are certain issues with the early pragmatist view of meaning. To

illustrate this with respect to an example used earlier, one can imagine that a driver does not always obey

a stop sign. If this actual effect is essential to its meaning, it might not be considered to be a stop sign

anymore. This problem is resolved by the late pragmatist theory. It states that the meaning of a word or

phrase is not its actual but its intended effect in the real world [39, pp. 67-82], [40, pp. 213-224]. Accordingly,

a stop sign is still a stop sign even if it is not obeyed, because it intends to make one stop. This perspective

implies that we have to identify places in a process model that might potentially point to its intention. Such

an intention may be made explicit in the label of start events. For example, a label like “Future Material

Price must be activated” used for the start event of the model in Figure 2 suggests what the process model

is going to be about, i.e., the activation of the future material price. From this label we can thus infer the

“Activate Future Material Price” for the process model at hand. Such an approach would be consistent with

modeling approaches that closely relate processes to achieving business goals [41, 42].

Knowledge-based theory of meaning. The knowledge-based theory of meaning emphasizes that terms cannot

be fully understood with the theories mentioned above. A knowledge theory builds on a causal network that

relates different concepts. Via an act of baptism [43], an a-priori arbitrary term is associated with a concept.

Later on, the usage of the term becomes historical and embedded. For instance, the term “photosynthesis” is

a composite term that refers to the process of converting carbon dioxide into organic material that requires

sunlight and produces oxygen. Knowledge-based names are also used for business processes. Often, they

cannot be directly traced back to terms appearing in a process model. Such cases can be partially related to a

process being a composite thing, which as a system possesses emergent properties [28]. This phenomenon may

be present in production processes when the to-be-constructed entity is not explicitly mentioned. For instance,

the approach by Reijers et al. [44] suggests deriving process models from a product-based decomposition

model. In this case, all activities of the process model refer to sub-components of the to-be-constructed

object. For instance, if we introduced the name “Adjustment in Selling Price” for the model in Figure 2,

the name would still reflect the contents of the model but only partially refer to the terms appearing in the

model’s labels.

7

Table 1: Mapping of Naming Strategies to Automated Sub-Approaches

Theory of Meaning Information Source
Feature Theory of Meaning Multiple Activities
Prototype Theory of Meaning Main Activity
Late Pragmatist Theory of Meaning Start Event
Early Pragmatist Theory of Meaning End Event
Knowledge-based Theory of Meaning Model Semantics

3. Derivation of Name Proposal

The different theories of meaning exhibit relative strengths and weaknesses. Semantic theories are typically

subject to a context of utterance reflecting the circumstances of evaluation, and to modes of presentation.

Foundational theories emphasize the importance of: the speakers’ meaning and intentions, beliefs, and social

norms. Thus, names of process models will have different meanings in different settings, just as the process of

registering a new-born child will hardly be exactly the same in two municipalities, cf. [45]. While the content

can differ, it may also be the case that synonymous process names are used. In this vein, many authors

emphasize the importance of naming conventions [46, 47, 6]. The most dramatic statement to reflect this

fact is made by a process modeler cited by Recker et al. [48] saying “Certainly naming, naming is one of our

horrible, horrible challenges.”

The aim of this section is to define an automatic approach for the derivation of a name proposal that

is consistent with the content of a process model. We align our approach with an informal concept for

name derivation described in [32]. First, we identify the requirements for the definition of an approach for

automatic name generation. Next, we present the algorithms we defined for automatically naming process

models, after which we present the approach for ranking the name proposals from the generated list.

3.1. Requirements for Generating Process Names

As pointed out in the previous section, most naming concepts directly refer to the textual information

captured in the process model labels. Hence, in order to automatically generate names for process models, it

is necessary to adequately infer this information from the process model labels. Table 1 provides an overview

of the introduced theories of meaning and the associated information source within the process model.

The label analysis and the related extraction of textual information is impeded by two particular properties

of activity labels. First, activity labels are very short and typically do not contain proper grammatical

sentences. Hence, they provide very limited information about the grammatical role of individual words.

Further, many activity labels suffer from the zero-derivation phenomenon [49]. While some English verbs

are transformed into a noun by adding suffixes as “ize” or “(i)fy”, many words represent verbs and nouns

without any syntactical changes. As an example, consider the noun “the order” and the verb “to order.”

This zero-derivation property is a significant challenge in the context of label analysis. A a result of these

8

properties, the standard application of natural language processing tools such as the Stanford Parser is not

applicable in the context of activity labels.

In order to overcome these challenges, we employ the label parsing technique proposed in [50]. This

approach builds on the insight that the majority of activity labels follow regular structures, so-called activity

label styles [51]. Based on this observation, labels containing an action are classified into three different label

styles: verb-object style, action-noun style, and the descriptive style. In verb-object labels, the action is

given as an imperative verb in the beginning, followed by a business object. Examples are “Sign Contract”

or “Order Materials.” Action-noun labels do not contain a verb since the action is provided as a noun, as in,

for example,“Creation of Invoice and “Contract Verification.” In descriptive labels, the task is described

from a third person perspective. Many of these labels start with the role executing the activity. The role is

followed by the action in the third person form and the business object. Examples of descriptive labels are

“Customer signs Contract” and “Checks Invoice.” Once a given label is assigned to one of these label styles,

the structure of the corresponding label style can be used to infer the action and the business object from

the label.

Utilizing the structural insights from these label structures, the context of the activity is considered to

assign it to one of these label styles. Thereby, the context is structured into four levels: 1) activity label itself,

2) process model containing the activity, 3) process model collection, and 4) knowledge on word frequencies.

The strategy of the algorithm is to first use the most local context in order to classify the considered label.

Once the previous context level turns out to be insufficient, the scope is broadened. As a result, each label

can be classified, and the action and business object for each function can be reliably determined. Having

the textual information from the process model at hand, we can then use this information for automatically

generating process names.

3.2. Automatic Approach to Generate Process Names

In this section, we present our automatic technique for generating process model names. It builds on the

theoretical concepts discussed in Section 2.2 and the labeling practices from Section 3.1. The fundamental idea

of the approach is the generation of a set of potentially useful names for a given process model. Afterwards,

the name proposals are ranked according to their appropriateness.

Our technique is organized in three phases, as illustrated in Figure 3. Phase 1 serves as a preparation

step. We make use of the analysis technique introduced in Section 3.1 in order to automatically annotate all

activities and events with their action and business object. We extended this technique with respect to its

ability to analyze start and end events as defined in [52]. The second phase represents the main step of our

approach, consisting of a set of different techniques to generate name proposals. In the middle part of Figure

3 each technique is depicted as a rectangle. Finally, in the third phase, the single best (or the k-best) name

proposals are selected and transformed to the verb-object style in order to present an understandable and

9

Phase 1 Phase 2 Phase 3

Subordinate
Element Extraction

Logical Conjunction

Lexical Conjunction

Dominating
Element Extraction

Annotation

Process
Model

Ranking

Label ProposalLabel Repository

Event Extraction

Main Activity Extraction

Figure 3: Overview of the Name Generation Approach

Algorithm 1: Dominating Element Extraction
1: extractDominatingElements(ProcessModel model, String type)
2: List elementCount = new List();
3: List elements = model.getElements(type);
4: for all elements elem in model do
5: currentCount = elementCount.get(elem);
6: elementCount.set(elem,currentCount+1);
7: maxCount = elementCount.getMax();
8: if amount of elements elem with count maxCount=1 then
9: return elem with count = maxCount;

10: else
11: return “”;

unambiguous name.

In the remainder of Section 3.2, we introduce each of the name generation techniques from Phase 2 in

greater detail and explain their interdependencies.

3.2.1. Dominating Element Extraction

The Dominating Element Extraction builds on the insights from the feature theory of meaning. The goal

of this technique is to identify whether the given process model includes a dominating action or a dominating

business object. Therefore, the occurrence of each action and business object among all activities in the

model is determined. Due to the activity annotation from Phase 1, this step is straightforward.

Algorithm 1 formalizes the details of the dominating element extraction. It requires two input parameters:

the considered process model and the variable type, which determines whether the algorithm is supposed to

search for a dominating action or a dominating business object. The main part of the algorithm scans the

activities and checks the occurrence of each action or business object (lines 4-7). If one action or business

object has a higher occurrence than do all other elements, it is saved as the dominating element (lines

8-9). If the process model contains such a dominating term, it can be used as input for the Subordinate

10

Algorithm 2: Subordinate Element Extraction
1: extractSubordinateElements(List activityList, String dominatingElem, String type)
2: List subordinateElements = new List();
3: for all activities a in activitiyList do
4: if a contains dominatingElem then
5: if type = “Action” then
6: subordinateElements.add(a.getBusinessObject());
7: else
8: subordinateElements.add(a.getAction());
9: return subordinateElements;

Element Extraction technique. Otherwise, the approach moves on to the Event Extraction and the Main

Activity Extraction techniques, as they do not require the input of a dominating element. As an example of a

dominating element, we reconsider the process model “Change in Material Price” from Figure 2. In this

process model, both activities contain the business object “Material Price.” Accordingly, this business object

is determined as the dominating element.

3.2.2. Subordinate Element Extraction

The Subordinate Element Extraction derives a list of terms which is processed in the context of two further

techniques: the Lexical Conjunction and the Logical Conjunction. More specifically, the Subordinate Element

Extraction identifies all terms which co-occur with the dominating element. If, for instance, the dominating

action “confirm” was derived from the two activities “Order Confirmation” and “Contract Confirmation,”

the subordinate elements are given by the business objects “order” and “contract.” Clearly, if the dominating

element is an action, all subordinate elements will be business objects and vice versa.

Algorithm 2 illustrates this procedure. The algorithm requires three parameters: a list of all activities

from the considered process model, the corresponding dominating element, and the type variable, which

determines whether the dominating element is an action or a business object. As a result, it returns a

list of subordinate elements. Therefore, each label in the activity list is inspected whether it contains the

dominating element (line 4). If this is the case, the relevant subordinate element is extracted and stored in

the result list subordinateElements (lines 6,8). After all activities have been investigated, the result list is

returned (line 9).

3.2.3. Lexical and Logical Conjunction

Based on the concept of the feature theory of meaning, we introduce two different conjunction techniques:

Lexical Conjunction and Logical Conjunction. The general goal of these techniques is to find an adequate

composition of the dominating element and the derived subordinate elements.

The Lexical Conjunction implies the replacement of the subordinate elements with a newly introduced

term derived from the lexical relations among these elements. In our context, we may make use of two

lexical relations: holonyms (a word representing the whole of a part-of relation) and hypernyms (a more

11

Algorithm 3: Lexical Conjunction
1: getLexicalConjunctions(List subordinateElems, String dominatingElem, String type)
2: lexicalConjunctions = new List();
3: subordinateElemsClean = new List();
4: for all elements elem in subordinateElems do
5: if WordNet contains entry for elem as type then
6: subordinateElemsClean.add(elem);
7: if subordinateElemsClean.length > 1 then
8: holonyms = subordinateElemsClean.get(1).getHolonyms();
9: hypernyms = subordinateElemsClean.get(1).getHypernyms();

10: for i=2 to subordinateElemsClean.getLength() do
11: holonyms = getCommonElems(holonyms, subordinateElemsClean.get(i).getHolonyms());
12: hypernyms = getCommonElems(hypernyms, subordinateElemsClean.get(i).getHypernyms());
13: lexicalConjunctions.add(holonyms);
14: lexicalConjunctions.add(hypernyms);
15: returnList = new List();
16: for all conjunctions c in lexicalConjunctions do
17: returnList.add(new ProcessName(dominatingElem, c, type));
18: return returnList;

general word). Hence, we employ WordNet to identify common holonyms and hypernyms for the given

subordinate elements. If such a word is found, a process name is composed using the dominating element

and the identified holonym or hypernym. As an example, consider the actions “check” and “review.” Using

the WordNet database, we can identify the hypernym “analyze” which semantically covers both words and

can hence be employed for replacing them.

Algorithm 3 illustrates the details of this technique. It requires three input parameters: a list of subordinate

elements, the dominating element and the type variable, which determines whether the dominating element

is an action or a business object. The algorithm returns a list of process names, as constructed from the

identified holonyms or hypernyms and the dominating element.

In the beginning of the algorithm, the original subordinate element list is reduced to those elements which

can be found in the WordNet dictionary (lines 4-6). As we use WordNet for deriving lexical relations between

words, this is an inevitable step. In case more than one single element is left, the common hypernyms and

holonyms for these elements are identified. Therefore, the set of all hypernyms and holonyms for the first

element in the subordinateElementsClean is determined (lines 8-9). Subsequently, these two sets are reduced

to those hypernyms and holonyms which are shared by all considered subordinate elements (lines 10-12).

In this way, those holonyms and hypernyms are identified which all subordinate elements have in common.

Afterwards, for each identified holonym and hypernym, a process name with the dominating element is

constructed. The resulting process names are stored in a list (lines 15-17). Finally, the name list is returned.

As opposed to the Lexical Conjunction, the Logical Conjunction does not rely on an existing lexical

relationship among the subordinate elements. The Logical Conjunction simply uses the logical operators

“and” or “or” to connect the subordinate elements. As a result, business objects belonging to semantically

different domains such as “Contract” and “Information System” can also be combined in a process name,

complemented by the dominating action.

12

Algorithm 4: Derivation from Label Repository
1: deriveFromLabelRepository(List repository, String dominatingElem, String type, Integer maxCount)
2: List candidates = new List();
3: List candidateCount = new List();
4: for all activities a in repository do
5: if a.getElement(type) = dominatingElement then
6: if candidates contains a then
7: currentCount = candidateCount.get(a);
8: candidateCount.set(a,currentCount+1);
9: else

10: candidates.add(a);
11: candidateCount.add(a.toProcessName(),1);
12: order candidates by candidateCount;
13: if candidates.getLength() > maxCount then
14: candidates = candidates.getFirstElements(maxCount);
15: return candidates;

3.2.4. Label Repository

The Label Repository approach aims to generate process names that include information from other

process models. Thus, this technique is related to the knowledge-based theory of meaning. However, as it also

relies on the identified dominating elements, it is associated with the feature theory of meaning as well. In

order to generate process names the Label Repository approach employs the activities of all available process

models to construct a so-called label repository, a huge list of activities. Using a dominating element, this

repository can be consulted to find complementing elements that are likely to co-occur with the dominating

element. This strategy is based on the observation that some actions are regularly associated with a typical

set of business objects and vice versa.

As an example, consider the process “Capacity Planning” from the SAP Reference Model depicted in

Figure 1. Now assume that we would like to find a name for this process. Using the Dominating Element

Extraction, we can identify the dominating business object “Capacity.” As this is apparently not a very

comprehensive name, we employ the Label Repository approach to find the most frequent terms in the

repository which are related to the dominating element. We then compose the dominating element with

these terms to generate according process model names. From the SAP Reference Model we can build a

considerable label repository containing 2,433 activities. By looking up the business object “Capacity,” we

obtain, amongst others, the process name “Capacity Planning,” which completely matches the SAP process

name. Thus, the Label Repository approach can be used to turn a non-comprehensive proposal from the

Dominating Element Extraction into an appropriate process name.

Algorithm 4 provides a formal description of the Label Repository approach. The algorithm requires four

input parameters: a list of activities which is used as the label repository, the dominating element of the

considered process model, the type of the dominating element, and the maximum number of elements which

may be returned. The output of the algorithm is a list of name proposals. At the start of the algorithm the

two lists candidates and candidateCount are created (lines 2-3). In this way, the list candidates serves as a

13

Algorithm 5: Event Extraction
1: extractFromEvents(List eventList, String eventType)
2: returnList = new List();
3: for all events e in eventList do
4: if eventType = “Start Event” then
5: if e contains “required” or “is necessary” or “must be” or “needs to be” or “to be” then
6: returnList.add(e);
7: if eventType = “End Event” then
8: if e contains “executed” or “carried out” or “performed” or “was” or “were” then
9: returnList.add(e);

10: for all events e in eventList do
11: returnList.add(e.toProcessName()));
12: return returnList;

storage for the identified candidate activities and the list candidatesCount is employed for saving the count

of each of these candidates. In the subsequent loop all activities are scanned for the dominating element

(lines 4-5). If the dominating element is found, it is looked up in the candidate list. In case it already exists

in the list, the index is determined and the count in candidateCount is increased accordingly (lines 7-8).

Otherwise, if the activity is not already stored, it is saved to the candidate list and its count is set to 1 (lines

10-11). Once all activities in the repository have been investigated, the candidates are ordered with respect

to their count (line 12). If the number of candidates exceeds the maximum size, given by maxCount, the list

is shortened to the first and thus most frequent elements (lines 13-14). Finally, the candidate list is returned

(line 15).

3.2.5. Event Extraction

The goal of the Event Extraction technique is the generation of process names from start and end events.

Hence, it builds on the early and late pragmatist theories of meaning. The generation of names from start and

end event consists of three steps. First, start and end events must be automatically recognized. Therefore,

all events are anaylzed with regard to their position in the model. If an event has no predecessor, it is

categorized as a start event. If an event has no successors, it is categorized as an end event. Second, the

identified start and end events are analyzed with regard to their merit to provide useful information about

the process model. For instance, the term “was” in the start event “Asset was found” is more likely to

represent a condition for triggering the process than actually indicating what the process is dealing with. By

contrast, in the start event “Asset is to be created” the term “is to be” clearly points to an action which

is covered by the process. Hence, “Create Asset” may represent a suitable process name. We derived an

extensive classification of these signalizing terms from the investigated process model collections. As a result,

this decision can be made in an automated fashion. As a last step, process names are derived from actions

and business objects of the relevant events.

Algorithm 5 formalizes this approach. It requires a list of events of the considered process model and the

corresponding event type. As a result, the algorithm provides a list of potentially useful process names. In

14

Algorithm 6: Main Activity Extraction
1: extractMainActivities(List activityList)
2: returnList = new List();
3: for all activities a in activityList do
4: precedingEvents = a.getPredecessors();
5: firstActivity = true;
6: for all events e in precedingEvents do
7: if e.getPredecessors().getLength() > 0 then
8: firstActivity = false;
9: if firstActivity = false then

10: succeedingEvents = a.getSuccessors();
11: lastActivity = true;
12: for all events e in succeedingEvents do
13: if e.getSuccessors().getLength() > 0 then
14: lastActivity = false;
15: if firstActivity = true or lastActivity = true then
16: returnList.add(a.toProcessName());
17: return returnList;

order to obtain a high number of useful process names, all events in the eventList are scanned for signal

constructs. Accordingly, it is differentiated between start and end events (lines 4,7). As illustrated in the

example in the preceding paragraph, start events are checked for constructs indicating that something is

going to be performed (line 5) and end events are inspected for constructs indicating that something was

conducted during the process (line 8). If one of these constructs is found, the event is added to the resultList

(lines 6,9), which is subsequently used for constructing process names (lines 10-11). In the last step, these

names are returned (line 12).

3.2.6. Main Activity Extraction

By referring to the prototype theory of meaning, this technique tries to automatically identify main

activities. As this requires determining the role of activities in the process model, this is a complex task. In

order to overcome this problem, we utilize the insights of a comprehensive analysis of three industry process

model collections. From this analysis we learned that approximately 85% of all main activities are positioned

either at the start or at the end of a process. For example, imagine a process handling the shipping of a

good. Such a process would typically include a set of preparatory steps before the last activity eventually

asks for the actual shipping. Presuming the existence of a main activity, our approach uses the first and last

activities of a process to generate corresponding name proposals.

Algorithm 6 illustrates the required steps. The algorithm expects a list of all activities from the process

model and returns a list of process names derived from the potential main activities. As the algorithm assumes

the existence of main activities, the core task is the identification of first and last activities. Therefore, all

activities from the activityList are investigated as follows. First, the preceding events of the considered

activity a are determined and the variable firstActivity is set to true (lines 4-5). Subsequently, all identified

events are checked for predecessors (lines 6-7). In case preceding activities are found for any of these events,

15

Algorithm 7: Main Algorithm Phase 2
1: performMainAnalysis(ProcessModel model, List repository)
2: returnList = new List();
3: dominatingAction = extractDominatingElements(model, “Action”);
4: dominatingBusinessObject = extractDominatingElements(model, “Business Object”);
5: if dominatingAction.hasValue() and dominatingBusinessObject.hasValue() then
6: returnList.add(new ProcessName(dominatingAction, dominatingBusinessObject));
7: if dominatingAction.hasValue() then
8: dominatingElem = dominatingAction;
9: subElems = extractSubordinateElements(model.getActivities(), dominatingElem, “Action”);

10: returnList.add(performLexicalConjunction(subElems, dominatingElem, “Action”));
11: returnList.add(performLogicalConjunction(subElems, dominatingElem, “Action”, “and”));
12: returnList.add(deriveFromLabelRepository(repository, dominatingElem, “Action”, 5));
13: if dominatingBusinessObject.hasValue() then
14: dominatingElem = dominatingBusinessObject;
15: subElems = extractSubordinateElements(model.getActivities(), dominatingElem, “BO”);
16: returnList.add(performLexicalConjunction(subElems, dominatingElem, “BO”));
17: returnList.add(performLogicalConjunction(subElems, dominatingElem, “BO”, “and”));
18: returnList.add(deriveFromLabelRepository(repository, dominatingElem, “BO”, 5));
19: returnList.add(extractFromEvents(model.getEvents(), “Start Event”));
20: returnList.add(extractFromEvents(model.getEvents(), “End Event”));
21: returnList.add(extractMainActivities(model.getActivities()));
22: return returnList;

the activity a cannot be a first activity of the process model. Hence, firstActivity is set to false (line 8).

By contrast, if none of these events has preceding activities, firstActivity accordingly remains true. If the

activity did not turn out to be a first activity, the analogous steps are performed for determining whether a

is a last activity (lines 10-14). Finally, if the considered activity was identified to be a last or a first activity,

it is added to the result list (line 16) which is subsequently returned (line 17).

3.2.7. Combining the Naming Techniques

In order to obtain a single but all-encompassing approach, we combine all techniques presented in the

previous section illustrated in Figure 3. The execution order of the different techniques is given by their

interdependencies. Hence, the Dominating Element Extraction must be executed prior to the Subordinate

Element Extraction since the latter requires the dominating element as input. Accordingly, the Subordinate

Element Extraction must be performed before the Lexical and Logical Conjunction techniques can be applied.

However, as the Main Activity Extraction and the Event Extraction are acting independently of other

techniques, they can be performed at any time.

Algorithm 7 illustrates the composition of the main approach. It requires an annotated process model

from Phase 1 and the label repository list as input, after which it returns a list of name proposals. The first

step of the algorithm is the determination of a dominating action and a dominating business object (lines 3-4).

In case both dominating elements exist, a name proposal is derived from their combination (lines 5-6). The

subsequent steps are dependent only on one dominating element. However, if both dominating elements exist,

the proposals for both types are generated. The algorithm proceeds by checking for a dominating activity

(line 7). If a dominating activity exists, it is stored in a variable (line 8). Subsequently, the subordinate

16

elements are extracted (line 9). On the basis of these, the Lexical Conjunction, the Logical Conjunction

and the Label Repository techniques are performed (lines 10-12). In order to limit the number of names

returned by the label repository technique, its threshold is determined with five. This number can be

adjusted accordingly, depending on the application scenario. In case a dominating business object exists, the

introduced steps are executed accordingly (lines 13-18). Then, the three independent techniques, the Main

Activity as well as the Start and End Event Extraction are executed (lines 19-21). Once all techniques have

been employed, the ranking of the name proposals in Phase 3 is triggered.

3.3. Ranking of Name Proposal

This section introduces our approach for automatically ranking the name proposals. In order to accomplish

this, it is necessary to quantify the appropriateness of the names in the proposal list. As we aim for ranking the

names according to how well they reflect the semantics of the model, we introduce an approach for computing

the semantic closeness between a name proposal and a process model. The rationale of this approach is the

semantic comparison of the components, i.e., action, business object and additional information fragment of

a name proposal and the considered process model. To calculate the semantic similarity, we make use of

the taxonomy WordNet. A variety of different proposals for calculating the similarity between two concepts

based on taxonomies have been introduced in the past [53, 54, 55]. Here, we employ the similarity measure

introduced by Lin, as it has been shown to correlate well with human judgements [56].

For calculating the semantic closeness between a name proposal label ln and a process model m, we

introduce four functions: a component similarity function simc, a coverage function cov, a label similarity

function siml, combining the latter two to label similarity result, and a semantic closeness function sc, which

uses the function siml to determine the overall semantic closeness.

The function simc calculates the semantic similarity between a component of the process name label lnc

and a process model label lmc . In general, the function returns the result of the Lin measurement. In case

neither of the two labels contains the component, the value is set to zero.

simc(lnc , lmc) =

 0 if lnc = ∅ ∨ lmc = ∅

Lin(lnc , lmc) if lnc 6= ∅ ∧ lmc 6= ∅
(1)

The coverage function cov is used to determine the number of components in a label l. Assuming that a

label at least refers to an action, the result of cov ranges from 1 to 3. Note that the index a in the definition

denotes the action, bo the business object and add the additional information fragment.

cov(l) =

1 if la 6= ∅ ∧ lbo = ∅ ∧ ladd = ∅

2 if la 6= ∅ ∧ (lbo 6= ∅ Y ladd 6= ∅)

3 if la 6= ∅ ∧ lbo 6= ∅ ∧ ladd 6= ∅

(2)

17

In order to combine the individual component similarity results, we introduce the function siml. This

function calculates the arithmetic mean of the similarity values for action, business object and the additional

information. This is accomplished by dividing the sum of sima, simbo and simadd by the maximum coverage

among lnc and lmc . As a result, we obtain the overall semantic similarity between a name label and a process

model label.

siml(ln, lm) =
sima(ln, lm) + simbo(ln, lm) + simadd(ln, lm)

arg max
l ∈ {ln,lm}

cov(l)
(3)

By calculating the average value of siml using the set of all element labels Lm comprised in the process

model m, we obtain the overall semantic closeness sc of a considered process name ln.

sc(ln, m) =

∑
lmi ∈Lm

siml(ln, lmi)

|Lm|
(4)

Comparing the semantic closeness of all generated name proposals, we rank the name proposals according

to their score. In scenarios where a single best name has to be shown automatically, only the best ranked

proposal is returned. In more interactive scenarios, a list of k-best proposals can be shown.

4. Evaluation

To demonstrate the capability of our approach to find appropriate process model names, we conducted a

two-part evaluation. First, we conducted an experiment using our prototype implementation and different

process model collections from practice in order to demonstrate the efficiency of the implementation and the

semantic closeness of the proposed model names to the original names. Second, we ran a case study with

a large insurance company to reflect on the usefulness and appropriateness of the approach in a business

context. In both settings, we configured our technique to return the top-ranked proposal only.

4.1. Experiment

For the experiment, we used three process model collections from practice with different characteristics

including: domain, model size, naming strategies, and the natural language used in the labels. These

collections are:

• The SAP Reference Model: The SAP Reference Model is a model collection capturing the business

processes supported by the SAP R/3 system in its version from the year 2000 [57, pp. 145-164]. The

collection contains a total of 604 EPCs organized in 29 functional branches of an enterprise such as

sales and accounting.

18

Table 2: Characteristics of the three process model collections

Property SAP CH IM
Process Models 604 328 88
Activies 2433 4414 293
Events 6948 10292 584
Average No. of Activities per Model 4.0 13.5 3.3
Average No. of Events per Model 11.5 31.4 6.6
Language English English German
Dominating Element Naming 22% 2% 0%
Main Activity Naming 22% 29 % 51%
Start / End Event Naming 9% 22% 40%
Dominating Element + Semantic Naming 12% 9% 9%
Semantic Naming 35% 38% 10%

• The Claims Handling Model Collection: The second model collection contains 328 EPCs dealing

with the claims handling (CH) activities of an insurance company. In comparison to the other collections,

the insurance model set contains rather large processes with a high density of events.

• The Incident Management Collection: This model collection contains the incident management

(IM) processes from a large IT service provider. It consists of three abstraction layers and contains in

total 88 EPCs. As opposed to the other model collections, the models are generally small and labeled

in German.

Table 2 summarizes the main characteristics of the three collections.

With respect to the differences between the three collections, we particularly emphasize three dimensions:

model size, naming strategies, and labels language. Considering EPCs with the intention of finding a suitable

name, the model size is reflected by the number of activities and events in the model. As our approach mostly

relies on information which is explicitly given in the model, the number of these elements is an important

factor. In case too little information is given it is difficult to provide good proposals. However, if a model

contains too many activities or events it becomes challenging to generate a single appropriate proposal. Thus,

in order to show the capability of the approach to cover both cases, we included model collections with

significantly different average model sizes.

Naming process models is undoubtedly a subjective task which can be conducted in arbitrary ways and

may thus lead to varying quality. In order to avoid building on a model set with a specific and homogeneous

usage of naming strategies, we included model collections with a differing naming style distribution. Thus,

both risks, the possibility of encountering alternative naming strategies and the positive or negative effect of

one particular naming strategy are mitigated.

Although English is the predominant business language, many companies still tend to model processes in

their local language. Recognizing this tendency, we aim at showing that our approach is not restricted to

19

Table 3: Computation Performance

Figure SAP CH IM
Total Computation Time (ms) 12024 6253 1786
Average Computation Time per Model (ms) 19.91 52.55 20.30
Maximum Computation Time for One Model (ms) 957 312 323

process models with English labels, but also works for other languages. Thus, we included a model collection

with German labels.

4.1.1. Performance Measurements

Our naming technique was designed to provide support during the modeling process in the context of a

modeling tool. Hence, the name proposals should be computed adequately fast. Therefore, we measured the

computation times for each of the process models in the considered model collections including the selection

of the best candidate. We tested the name proposal generation on a MacBook Pro with a 2.26 GHz Intel

Core Duo processor and 4GB RAM, running on Mac OS X 10.6.7 and Java Virtual Machine 1.5. In order to

exclude one-off setup times, we ran the technique twice and considered the second run only.

Table 3 summarizes the results of the performance measurement by showing the total computation time

for each model collection, the average computation time per model, and the maximum computation time

measured for a single model. From these numbers we can draw the following conclusions. First, the results

illustrate the applicability of our approach in terms of run-time. Even the longest run for a process from

the SAP Reference Model took less than one second. However, considering the average values, this case

can be clearly seen as an exception. Second, especially the average computation time for each model shows

a clear correlation between run-time and the model size. However, if we take the details of the technique

into consideration, it becomes clear that the existence of a dominating element significantly influences the

computation effort. Once a dominating element is identified, several other steps - as for instance complex

dictionary lookups for lexical relations - are triggered by the conjunction based approaches and the repository

consultation. Nevertheless, the observed computation times are very short, hence making our approach

suitable for practical applications.

4.1.2. Semantic Closeness and Model Size

We quantify the accuracy of a generated name by measuring its closeness to process model elements.

However, as the isolated consideration of the semantic closeness is not sufficient for assessing the quality

of the generated names, we compare the generated names with the original names from the process model

collections. Accordingly, we employ the semantic closeness function introduced in Section 3.3 to compute

the metric scgn representing the semantic closeness between the generated name and the model, as well

as the metric scon representing the semantic closeness between the original name and the model. Table 4

20

V

Cost planning
in WBS
required

Easy cost
planning
required

Cost Planning in
Work Breakdown

Structure

Costs planned

Cost Planning in
Networks Easy Cost Planning

Cost planning
using existing price
/quantity structure

required

(a) Model named as Plan costs

Purchase
Requisition
Processing

Requirement
for material
has arisen

Source of
supply

assigned

Requisition
flagged for

issue of RFQ

Purchase
requisition

created

Purchase
Requisition
Assignment

X

Purchase
requisition

released for
purchase order

Requisition
released for

SA/ SA
release

Release
Purchase

Requisition

X

(b) Model named as Handle purchase requisition

Figure 4: Two SAP models with suitable names but different scgn values

summarizes the results.

The results show that the proposed name generation approach computes names which have, on average,

a higher semantic closeness than do the original names. The significant differences in the semantic closeness

values between the model collections suggest that the semantic closeness metric is dependent on particular

model characteristics. Considering the average number of activities and events per model, it becomes clear

that the names of bigger models tend to have a lower semantic closeness. As a single process name cannot

fully reflect the semantics of a huge number of model elements, this is an expected result.

The observations concerning model size and heterogeneity is further supported by the data presented in

Figure 5. The figures show the connection between the semantic closeness of the generated process names

Table 4: Experiment Results

Model
Collection

Models with
scgn > scon

Models with
scgn = scon

Models with
scgn < scon

Avg.
scgn

Avg.
scon

SAP 501 69 34 0.49 0.21
CH 309 17 2 0.37 0.06
IM 25 57 6 0.93 0.75

21

0
10
20
30
40
50
60
70
80
90

100

0.0 0.2 0.4 0.6 0.8 1.0

Size

Semantic
Closeness

(a) SAP Reference Model

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.0 0.2 0.4 0.6 0.8 1.0

Size

Semantic
Closeness

(b) Claims Handling Collection

0

10

20

30

40

50

60

70

80

0.0 0.2 0.4 0.6 0.8 1.0

Size

Semantic
Closeness

(c) Incident Management Collection

Figure 5: Disaggregated Naming Results

and the size of the process models for each model collection. The figures reveal that there is an obvious

tendency for smaller models to have higher semantic closeness. However, we can also see that this cannot be

the only influencing factor, as there are also many small models yielding comparably low closeness values.

Investigating the models in detail, it turns out that especially names of models with many different business

objects have a small semantic closeness. That, in turn, emphasizes that the semantic closeness value needs

to be assessed in light of these model attributes and cannot be assessed independently.

It is now interesting to investigate those cases where the approach works well and where it faces problems.

Figure 4 shows two example models with suitable names but different values for scgn. Figure 4(a) shows a

typical example of a model with semantic closeness of 1. All elements of the models contain the business

object “cost” and the action “to plan.” Accordingly, the dominating element extraction technique derives

these components and combines them to the process name “Plan costs.” Figure 4(b) shows a model with

more heterogeneously labeled elements. However, as the model contains the dominating business object

“purchase requisition,” the dominating element extraction technique accordingly identifies this business object

as such. Due to the heterogeneity of the comprised actions, the lexical conjunction technique derives the

action “handle” as suitable abstraction for the actions of the process model elements. As a result, the name

“Handle purchase requisition” is generated. The semantic closeness scgn for this model is 0.51.

As an example where the proposed approach fails to generate an appropriate name, let us consider

the process model in Figure 6. The interesting characteristic of this model is the handling of two aspects,

both described in detail. The main part of the model deals with the long-term planning of the company.

Afterwards, once the planning has been conducted, the resulting data are distributed to different departments.

Due to the fact that both aspects are mentioned multiple times, the results of the dominating element

extraction technique compete with those from the end event extraction technique. In the end, the semantic

closeness for Transfer data is 0.16, which is slightly higher than that of the name “Long-term planning.”

However, this case also illustrates that multiple name proposals would help to adequately solve this problem.

In summary, the semantic closeness comparison indicates that the approach generates useful names which

are semantically closer to the models than are the manually created names.

22

Planned
order created
automatically

MRP is
created

Planning
scenario is
processed

Planning Scenario
Processing

Demand
program
created

Demand
program to be

planned in
simulation mode

V

V

Long-Term
Planning – Total

Planning

Long-Term
Planning – Single-

Item

V

V

Planning results
or stock reqmts

situation is
processed

Long-Term
Planning:
Evaluation

V

Demand
program
created

Demand
program to be

planned in
simulation mode

Demand
program
created

Data transferred
to inventory
controlling

Transfer of Stock
Requirement Data

to Inventory
Controlling

Data transferred
to cost

accounting

Transfer Activity
Type

Requirement to
Cost Accounting

Data transferred
to purchasing
info system

Transfer of External
Procurement Data to

Purchasing
Information System

Figure 6: SAP model with non optimal name Transfer data

4.2. Case Study

In order to gain insights into the business value of the naming approach, we investigated its usefulness

and appropriateness in the context of a case study with a large Australian insurance company. The overall

objective was to learn whether experts consider the generated names to be appropriate and how they assess

the overall value for their company.

The case study involved four business analysts with modeling experience ranging from two to more than

ten years. The case study consisted of two parts. For the first part, we selected ten process model fragments

with varying characteristics from the process model collection of this company, and automatically generated

process name proposals. These process models had between 3 and 17 activities (7 on average) and between

10 and 21 events (14.1 on average). Based on the results, we designed a report containing the models and

the generated names. The participants were asked to review the process models and the generated names

and to record their impressions concerning usefulness and appropriateness. They spent approximately 45

minutes for studying the provided report.

In the second part we sought more detailed feedback in the context of an open discussion, which also

23

took about 45 minutes. The main goal was to clarify the following questions:

• How do the participants assess the business value of an approach for automatically proposing names

for process models and which use cases do they see?

• Which challenges do the participants perceive in terms of appropriateness and usefulness of the generated

names?

• Do the participants have concerns about the approach or do they have recommendations to improve it?

In order to guarantee a proper analysis of the discussion, we audio-recorded the discussion. Altogether,

all participants agreed on the effort associated with naming processes or process fragments and confirmed

that a tool could greatly ease this task:

“It is a laborious exercise to read through the process model, so [this tool] provides a smart

way of assessing what are the salient terms of a process.”

The participants were also positive about the business value of the tool and confirmed the use cases we had

in mind. They saw the potential of using the approach for naming process model views and abstractions and

also sub-processes that have been extracted from their repository in the context of clone detection. Further,

they mentioned the possibility of identifying inconsistent naming in their model collection. In particular,

they pointed out:

“The tool would be very useful in our company.”

In terms of appropriateness and usefulness, the participants were generally very positive. However, they

identified a specific challenge regarding specific terminology. This challenge is due to the company-specific

use of certain terms. Discussing the case of a process model named “Manage Variations” by the naming

approach, one participant stated:

“It does depend on your exposure to that terminology before, because throughout my time in

claims everybody has talked about ‘handling a claim’ so for me that one [’Manage Variations’]

actually didn’t go that far off.”

The participants did not have any particular concerns, but provided some suggestions for improvement. First,

they suggested generating not only one name but several name proposals to choose from:

“If we could have 6-7 terms [name proposals] that would be very useful.”

24

Our approach works with a ranking based on semantic closeness. While we configured the tool to show the

best proposal only for the case study, the selection can be easily extended towards the top three or top five

name proposals. As a second point, the experts suggested accompanying the name proposals with a set of

key words to ‘tag’ the process fragment, very similar to tag clouds. One participant stated that he liked:

“... the concept of creating a tag cloud similar to a website, for a process model.”

The information that we extract from activities and events can be easily reused for such an exercise, leading

to an automatic annotation of the process model. Using the variety of naming approaches which are already

implemented in the context of our approach, such a tag cloud could be easily created. The cut-off has to be

simply increased from one to any appropriate k to get the k-best proposals as tags. If desired, for instance,

only the business objects of these k-best proposals can be used as tags.

The participants also pointed out that considering the context of the repository might have helped to come

up with terms not included in the model. For instance, one model did not contain the business object “claim.”

However, by looking at the context, a human reader would have been able to include that word in the process

name.

In general, the findings of the case study showed that experts in the case of the insurance company

do not only considered our name proposals to be appropriate, but they also emphasized its usefulness in

a business setting. They confirmed the suitability of the proposed approach for the use cases of naming

fragments resulting from abstraction or clone identification. We received valuable improvement suggestions

along different aspects. As the creation of multiple proposals and a tag cloud is closely related to the naming

approach, these suggestions can easily be implemented. The consideration of context in the naming strategy

is a valuable direction for future work.

5. Implications

In this section we discuss the implications of our research for research and practice.

5.1. Implications for Research

The findings of this research have implications for process model abstraction, semantic analysis of process

models, quality assurance of conceptual models and the management of large process model repositories.

Business process model abstraction is an emerging field in process modeling research that investigates

operations on a model that preserve its essential characteristics. There are two basic abstraction operations:

elimination and aggregation [58]. Existing approaches typically focus on the question of how the control flow

structure can be aggregated, e.g., [59, 11, 12, 13, 60, 61]. Semantic aspects have been taken into account for

finding sets of activities which are presumably good candidates for aggregation [62, 63, 64, 65]. A critical

25

assumption of this whole stream of research is that the name for a set of aggregated activities can be easily

found. The assumed ease comes with two problems. First, finding a proper name by inspecting a process

model is not an instantaneous activity. We know from experiments on process model comprehension, e.g.

[66], that reading a model is time-consuming. Second, the assumption ignores the fact that aggregation is

relevant to hundreds of process models in process model collections from practice. Browsing process models

and obtaining abstracted views is a highly repetitive, but contextual operation [10]. The technique developed

in this paper is essential to making process model abstraction work in a practical setting. In this way, it has

strong implications for future research in this area.

Semantic analysis of activity labels is a valuable technique for process model matching. This area of

research is a sub-discipline of ontology matching [67] requiring automatic techniques for finding correspon-

dences between semantically related activities in two different process models. The identification of such

correspondences is a preprocessing step for merging process models [68, 69, 70]. Corresponding techniques take

the structure, the behavior and the semantic content of process models into account [71]. Some approaches

utilize ontologies for matching labels [72, 73, 74]. Semantic annotations are used as well [75, 76, 77, 78]. The

key challenge of process model matching relates to different levels of granularity. Some approaches exist for

finding 1:n matches between fine-granular parts in one model and semantically equivalent activities defined

at a coarse-granular level in the second model [79, 80, 32]. The technique defined in this paper has the

capability of aggregating parts of a fine-granular model, such that matches could more easily be found on a

corresponding level of detail. This characteristic might prove beneficial to process model matching, opening

up a new direction for tackling the 1:n match problem by translating it into a 1:1 match problem at different

levels of abstraction.

The quality of business process models has been recognized as a key factor for process improvement

initiatives [81]. Several guidelines and frameworks have been proposed to structure quality assurance [82,

47, 83, 84]. Some of them work on the semantic content of the activity labels in order to check whether the

models are compliant with naming conventions such as the verb-object style [51]. Grammar parsers are used

to this end by Delfmann et al. [85]. Label analysis is used for finding semantic inconsistencies [86] and for

identifying terminological problems [87]. The technique reported in this paper provides the basis for further

automatic quality checks. By comparing the derived name with the manually set name, our technique can

help to spot inconsistencies between the name of the process and its content. This is highly relevant to

conceptual process modeling. To-date, there are various formal analysis techniques available for conducting

verification in terms of correctness of a process model. In practice, validation, i.e. checking the consistency

between model and reality, is even more relevant, but no automatic techniques exist. Inconsistency between

the name of a model and its content might be an indication that the model is incomplete, which would

provide at least some support for the validation of process models.

The management of large process model repositories has many facets which are strongly connected with

26

the quality of business process models in general [88]. However, one point which is specifically concerned

with repositories is the identification of identical or similar process model fragments. Being able to identify

such (approximate) clones and factoring them into separate sub-processes reduces the overall complexity

and can greatly ease the overall maintenance. Accordingly, different techniques for the identification of such

model fragments have been proposed [16, 14, 17, 15]. The approach presented in this paper complements

such techniques by generating a name for each identified fragment. Since fragments have the same properties

as complete process models, our approach can be equally applied to process model fragments. Due to the

fact that huge model repositories may contain hundreds of identical or similar fragments, the automated

naming can effectively support users to quickly assess the content of such fragments.

5.2. Implications for Practice

The results of this research have multiple implications for practice. The developed concepts provide

the foundation for corresponding tool support. Our approach has been implemented in a prototype tool

and can be integrated in existing process model repository tools such as Apromore [89].1 As our approach

requires start and end events only as much as activities do in order to infer a name, the approach can be used

on models defined in other process modeling languages beyond EPCs, such as BPMN. Such a tool feature

is of particular importance to companies that have to manage large process model collections. Moreover,

automatic quality assurance and customized view techniques are highly relevant for a typical industry setting

of process modeling. As Rosemann [6] emphasizes, there are several practical challenges given the low level

of modeling expertise that many team members of process modeling projects have. Our technique could help

(novice) modelers by providing a basis for the automatic derivation of abstract models and extraction of

sub-processes.

6. Conclusion

In this paper, we addressed the problem of automatically finding suitable process model names. Based on

insights from theories of meaning, we defined a novel approach for proposing a name for a business process

model. This approach takes the labels of activities and events of the model into account, and does not

depend upon external knowledge provided by the user. We implemented the approach in a prototype tool

and evaluated it with different sets of process models from practice. The results show that on average we

achieve a higher semantic closeness than do the original names, and that this result is not limited to small

models. In addition, we conducted a case study with a large Australian insurer. The results confirm the

usefulness and appropriateness of the generated names and highlight the potential business value of our

approach.

1www.apromore.org

27

When reading the results of the evaluation, we need to consider that companies often tend to use specific

terms, and create new ones when labeling process modeling elements. This relates to two aspects: creating

company-specific meaning for existing terms or creating completely new terms. In the first case, our technique

is not capable of adapting to the company-specific interpretation of terms. As we rely on WordNet, any

meaning not captured cannot be considered by our technique. In the second case, WordNet might not

even contain the domain-specific term in question. A way to obviate this problem is to combine the use of

WordNet with a company-specific thesaurus.

Our findings have implications for process model abstraction, matching of process models, and the

automatic quality assurance of process models and process model repositories. In future research we aim to

apply our technique for process model matching. Based on name proposals, we are able to describe parts of

a process model on an aggregated level. In this way, our technique can potentially help to compare process

models specified at different levels of granularity.

References

[1] T. Davenport, J. E. Short, The New Industrial Engineering: Information Technology and Business Process Redesign, Sloan

Management Review 31 (4) (1990) 11–27.

[2] M. Hammer, Reengineering work: Don’t automate, obliterate, Harvard Business Review 68 (4) (1990) 104–112.

[3] M. Earl, J. Sampler, J. Short, Strategies for business process reengineering: evidence from field studies, Journal of

Management Information Systems 12 (1) (1995) 31–56.

[4] W. Kettinger, J. Teng, S. Guha, Business process change: a study of methodologies, techniques, and tools, MIS quarterly

(1997) 55–80.

[5] K. Altinkemer, Y. Ozcelik, Z. D. Ozdemir, Productivity and performance effects of business process reengineering: A

firm-level analysis, J. of Management Information Systems 27 (4) (2011) 129–162.

[6] M. Rosemann, Potential pitfalls of process modeling: part a, Business Process Management Journal 12 (2) (2006) 249–254.

[7] I. Vessey, S. A. Conger, Learning to specify information requirements: The relationship between application and methodology,

J. of Management Information Systems 10 (2) (1993) 177–202.

[8] R. Agarwal, A. P. Sinha, M. Tanniru, Cognitive fit in requirements modeling: A study of object and process methodologies,

J. of Management Information Systems 13 (2) (1996) 137–162.

[9] T. Davenport, M. Beers, Managing information about processes, Journal of Management Information Systems (1995)

57–80.

[10] S. Smirnov, H. Reijers, T. Nugteren, M. Weske, Business process model abstraction: A definition, catalog, and survey,

Distributed and Parallel Databases 30 (1) (2012) 63–99, to appear.

[11] D. K. W. Chiu, S. C. Cheung, S. Till, K. Karlapalem, Q. Li, E. Kafeza, Workflow View Driven Cross-Organizational

Interoperability in a Web Service Environment, Information Technology and Management 5 (3–4) (2004) 221–250.

[12] R. Bobrik, M. Reichert, T. Bauer, View-based process visualization, in: BPM 2007, Vol. 4714 of LNCS, Springer, Berlin,

2007, pp. 88–95.

[13] A. Polyvyanyy, S. Smirnov, M. Weske, Process model abstraction: A slider approach, in: Proceedings of the 12th

International Conference on Enterprise Distributed Object Computing (EDOC), 2008.

[14] C. C. Ekanayake, M. Dumas, L. Garćıa-Bañuelos, M. L. Rosa, A. H. M. ter Hofstede, Approximate clone detection in

repositories of business process models, in: BPM, 2012, pp. 302–318.

28

[15] M. Dumas, L. Garćıa-Bañuelos, M. L. Rosa, R. Uba, Fast detection of exact clones in business process model repositories,

Inf. Syst. 38 (4) (2013) 619–633.

[16] R. Uba, M. Dumas, L. Garćıa-Bañuelos, M. L. Rosa, Clone detection in repositories of business process models, in: BPM,

2011, pp. 248–264.

[17] J. M. Fabian Pittke, Henrik Leopold, G. Tamm, Enabling reuse of process models through the detection of similar process

parts, in: 3rd International Workshop on Reuse in Business Process Management, 2012.

[18] M. Dumas, M. L. Rosa, J. Mendling, H. A. Reijers, Fundamentals of Business Process Management, Springer, 2013.

[19] A.-W. Scheer, Business Process Engineering: Reference Models for Industrial Enterprises, Springer-Verlag, 1994.

[20] J. Mendling, Metrics for Process Models: Empirical Foundations of Verification, Error Prediction, and Guidelines for

Correctness, Springer Publishing Company, Incorporated, 2008.

[21] Object Management Group, Business Process Modeling Notation (BPMN) Specification, Final Adopted Specification,

dtc/06-02-01, Object Management Group (February 2006).

[22] W. Aalst, A. Hofstede, YAWL: Yet Another Workflow Language, Information Systems 30 (4) (2005) 245–275.

[23] OMG, ed., Unified Modeling Language, Version 2.0, Object Management Group (2004).

[24] V. Welby, What is meaning?, Benjamins, 1983.

[25] M. Dummett, The Seas of Language, Oxford University Press, 1996.

[26] J. Evermann, Theories of meaning in schema matching: A review, Journal of Database Management (JDM) 19 (3) (2008)

55–82.

[27] J. Speaks, Theories of meaning, in: E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy, summer 2011 Edition,

2011.

[28] Y. Wand, R. Weber, On the deep structure of information systems, Information Systems Journal 5 (1995) 203–223.

[29] G. Frege, On sense and reference, Philosophical Review 57 (1948/1892) 209–230.

[30] B. Russell, On denoting, Mind 56 (1905) 479–493.

[31] B. Russell, Logic and Knowledge: Essays 1901-1950, Allen and Unwin, London, 1956, Ch. Descriptions and incomplete

Symbols.

[32] H. Leopold, J. Mendling, H. Reijers, On the Automatic Labeling of Process Models, in: CAiSE 2011, Vol. 6741 of LNCS,

Springer, 2011, pp. 512–520.

[33] E. Rosch, Cognitive representations of semantic categories, Journal of Experimental Psychology: General 104 (3) (1975)

192–233.

[34] E. Rosch, Family resemblances: Studies in the internal structure of categories, Cognitive Psychology 7 (4) (1975) 573–605.

[35] A. Tahamtan, J. Eder, View driven federation of choreographies, in: N. T. Nguyen, R. Katarzyniak, S.-M. Chen (Eds.),

Advances in Intelligent Information and Database Systems, Vol. 283 of Studies in Computational Intelligence, Springer,

2010, pp. 145–156.

[36] L. Wittgenstein, Philosophical Investigations, The German Text with an English Translation, 4th Edition, Basil Blackwell,

Oxford, 2009.

[37] J. Dewey, Experience and Nature, Dover Publications, 1958.

[38] A. Sharp, P. McDermott, Workflow Modeling: Tools for Process Improvement and Application Development, Artech House,

2001.

[39] J. L. Austin, How to do things with words, Harvard University Press, 1975.

[40] H. P. Grice, Studies in the Way of Words, Harvard University Press, Cambridge, Massachusetts, 1989.

[41] P. Soffer, Y. Wand, Goal-driven analysis of process model validity., in: A. Persson, J. Stirna (Eds.), Advanced Information

Systems Engineering, 16th International Conference, CAiSE 2004, Riga, Latvia, June 7-11, 2004, Proceedings, Vol. 3084 of

Lecture Notes in Computer Science, Springer, 2004, pp. 521–535.

29

[42] M. Weske, Business Process Management: Concepts, Languages, Architectures, 1st Edition, Springer Verlag, 2007.

[43] S. Kripke, Naming and necessity, Wiley-Blackwell, 1981.

[44] H. A. Reijers, S. Limam, W. M. P. van der Aalst, Product- based workflow design, J. of Management Information Systems

20 (1) (2003) 229–262.

[45] F. Gottschalk, Configurable process models, Ph.D. thesis, Eindhoven University of Technology, The Netherlands (December

2009).

[46] H. Krasner, J. Terrel, A. Linehan, P. Arnold, W. H. Ett, Lessons learned from a software process modeling system, Commun.

ACM 35 (9) (1992) 91–100.

[47] J. Becker, M. Rosemann, C. Uthmann, Guidelines of Business Process Modeling, in: W. van der Aalst, J. Desel, A. Oberweis

(Eds.), Business Process Management. Models, Techniques, and Empirical Studies, Springer, Berlin et al., 2000, pp. 30–49.

[48] J. Recker, M. Indulska, M. Rosemann, P. Green, An exploratory study of process modelling practice with bpmn, Tech. rep.,

BPM Center Report (2008).

[49] R. Dixon, Deriving verbs in english, Language Sciences 30 (1) (2008) 31–52.

[50] H. Leopold, S. Smirnov, J. Mendling, On the refactoring of activity labels in business process models (accepted for

publication), Information Systems.

[51] J. Mendling, H. A. Reijers, J. Recker, Activity Labeling in Process Modeling: Empirical Insights and Recommendations,

Information Systems 35 (4) (2010) 467–482.

[52] G. Decker, J. Mendling, Process instantiation, Data Knowl. Eng. 68 (9) (2009) 777–792.

[53] J. H. Lee, M. H. Kim, Y. J. Lee, Information retrieval based on conceptual distance in is-a hierarchies., Journal of

Documentation 49 (2) (1993) 188–207.

[54] R. Rada, H. Mili, E. Bicknell, M. Blettner, Development and application of a metric on semantic nets, IEEE Transactions

on Systems, Man, and Cybernetics 19 (1) (1989) 17–30. doi:10.1109/21.24528.

URL http://dx.doi.org/10.1109/21.24528

[55] P. Resnik, Using information content to evaluate semantic similarity in a taxonomy, in: Proceedings of the 14th international

joint conference on Artificial intelligence - Volume 1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995,

pp. 448–453.

URL http://dl.acm.org/citation.cfm?id=1625855.1625914

[56] D. Lin, An information-theoretic definition of similarity, in: Proc. 15th International Conf. on Machine Learning, 1998, pp.

296–304.

[57] G. Keller, T. Teufel, SAP(R) R/3 Process Oriented Implementation: Iterative Process Prototyping, Addison-Wesley, 1998.

[58] M. L. Rosa, P. Wohed, J. Mendling, A. H. M. ter Hofstede, H. A. Reijers, W. M. P. van der Aalst, Managing process model

complexity via abstract syntax modifications, IEEE Trans. Industrial Informatics 7 (4) (2011) 614–629.

[59] D. Liu, M. Shen, Workflow modeling for virtual processes: an order-preserving process-view approach, Information Systems

28 (6) (2003) 505–532.

[60] A. Polyvyanyy, S. Smirnov, M. Weske, The triconnected abstraction of process models, in: BPM 2009, Vol. 5701 of LNCS,

Springer, 2009, pp. 229–244.

[61] S. Smirnov, R. Dijkman, J. Mendling, M. Weske, Meronymy-based aggregation of activities in business process models, in:

ER 2010, Vol. 6412 of LNCS, Springer, 2010, pp. 1–14.

[62] H. A. Reijers, J. Mendling, R. M. Dijkman, On the Usefulness of Subprocesses in Business Process Models, BPM Center

Report BPM-10-03, BPMcenter.org (2010).

[63] M. Weidlich, A. Barros, J. Mendling, M. Weske, Vertical Alignment of Process Models - How Can We Get There?, in:

BPMDS 2009, Vol. 29 of LNBIP, Springer, 2009, pp. 71–84.

[64] C. Di Francescomarino, A. Marchetto, P. Tonella, Cluster-based Modularization of Processes Recovered from Web

30

Applications, Journal of Software Maintenance and Evolution: Research and Practice.

[65] S. Smirnov, H. A. Reijers, M. Weske, A Semantic Approach for Business Process Model Abstraction, in: CAiSE 2011, Vol.

6741 of LNCS, Springer, 2011, pp. 497–511.

[66] H. A. Reijers, T. Freytag, J. Mendling, A. Eckleder, Syntax highlighting in business process models, Decision Support

Systems 51 (3) (2011) 339–349.

[67] J. Euzenat, P. Shvaiko, Ontology Matching, Springer, 2007.

[68] G. Preuner, S. Conrad, M. Schrefl, View integration of behavior in object-oriented databases, Data & Knowledge Engineering

36 (2) (2001) 153–183.

[69] A. Basu, R. W. Blanning, Synthesis and Decomposition of Processes in Organizations, Information Systems Research 14 (4)

(2003) 337–355.

[70] M. La Rosa, M. Dumas, R. Uba, R. Dijkman, Business process model merging: An approach to business process

consolidation, ACM Transactions on Software Engineering and Methodology 22 (2).

[71] R. M. Dijkman, M. Dumas, B. F. van Dongen, R. Käärik, J. Mendling, Similarity of Business Process Models: Metrics and

Evaluation, Information Systems 36 (2) (2011) 498–516.

[72] M. Ehrig, A. Koschmider, A. Oberweis, Measuring similarity between semantic business process models, in: J. Roddick,

A. Hinze (Eds.), Conceptual Modelling 2007, Proceedings of the Fourth Asia-Pacific Conference on Conceptual Modelling

(APCCM 2007), Vol. 67, Australian Computer Science Communications, Ballarat, Victoria, Australia, 2007, pp. 71–80.

[73] D. Grigori, J. Corrales, M. Bouzeghoub, A. Gater, Ranking BPEL Processes for Service Discovery, IEEE Transactions on

Services Computing 3 (3) (2010) 178–192.

[74] M. Lincoln, M. Golani, A. Gal, Machine-assisted design of business process models using descriptor space analysis, in:

R. Hull, J. Mendling, S. Tai (Eds.), Business Process Management - 8th International Conference, BPM 2010, Hoboken, NJ,

USA, September 13-16, 2010. Proceedings, Vol. 6336 of Lecture Notes in Computer Science, Springer, 2010, pp. 128–144.

[75] M. Born, F. Dörr, I. Weber, User-Friendly Semantic Annotation in Business Process Modeling, in: WISE 2007 Workshops,

Vol. 4832 of LNCS, Springer, 2007, pp. 260–271.

[76] C. Francescomarino, M. Rospocher, L. Serafini, P. Tonella, Semantically-Aided Business Process Modeling, in: ISWC 2009,

Vol. 5823 of LNCS, Springer, Berlin, Heidelberg, 2009, pp. 114–129.

[77] Y. Lin, H. Ding, Ontology-based Semantic Annotation for Semantic Interoperability of Process Models, in: CIMCA 2005,

IEEE Computer Society, Los Alamitos, CA, USA, 2005, pp. 162–167.

[78] C. Francescomarino, P. Tonella, Supporting Ontology-Based Semantic Annotation of Business Processes with Automated

Suggestions, in: BMMDS/EMMSAD 2009, Vol. 29 of LNBIP, Springer, 2009, pp. 211–223.

[79] M. Weidlich, R. Dijkman, J. Mendling, The ICoP Framework: Identification of Correspondences between Process Models,

in: CAiSE 2010, Vol. 6051 of LNCS, Springer, 2010, pp. 483–498.

[80] S. Smirnov, R. Dijkman, J. Mendling, M. Weske, Meronymy-based aggregation of activities in business process models, in:

Proceedings of the 29th International Conference on Conceptual Modeling, Springer, Vancouver, BC, Canada, 2010.

[81] N. Kock, J. Verville, A. Danesh-Pajou, D. DeLuca, Communication flow orientation in business process modeling and its

effect on redesign success: results from a field study, Decision Support Systems 46 (2) (2009) 562–575.

[82] O. I. Lindland, G. Sindre, A. Sølvberg, Understanding quality in conceptual modeling, IEEE Software 11 (2) (1994) 42–49.

[83] J. Krogstie, G. Sindre, H. Jørgensen, Process models representing knowledge for action: a revised quality framework,

European Journal of Information Systems 15 (1) (2006) 91–102.

[84] J. Mendling, H. A. Reijers, W. M. P. van der Aalst, Seven Process Modeling Guidelines (7PMG), Information and Software

Technology 52 (2) (2010) 127–136.

[85] A. Delfmann, S. Herwig, L. Lis, A. Stein, Supporting Distributed Conceptual Modelling through Naming Conventions - A

Tool-based Linguistic Approach, Enterprise Modelling and Information Systems Architectures 4 (2) (2009) 3–19.

31

[86] V. Gruhn, R. Laue, Detecting Common Errors in Event-Driven Process Chains by Label Analysis, Enterprise Modelling

and Information Systems Architectures 6 (1) (2011) 3–15.

[87] N. Peters, M. Weidlich, Automatic Generation of Glossaries for Process Modelling Support, Enterprise Modelling and

Information Systems Architectures 6 (1) (2011) 30–46.

[88] R. M. Dijkman, M. L. Rosa, H. A. Reijers, Managing large collections of business process models - current techniques and

challenges, Computers in Industry 63 (2) (2012) 91–97.

[89] M. L. Rosa, H. A. Reijers, W. M. P. van der Aalst, R. M. Dijkman, J. Mendling, M. Dumas, L. Garćıa-Bañuelos, Apromore:

An advanced process model repository, Expert Syst. Appl. 38 (6) (2011) 7029–7040.

32

