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a b s t r a c t

Despite the industrial need for the improvement of information-intensive business

processes, few scientifically grounded approaches exist to support such initiatives. In

this paper, we propose a new approach that builds on concepts that are part of a

product-oriented view on process optimization. Essentially, this approach allows end

users to flexibly decide on the best possible way to create an informational product

within the limits that are imposed by regulations and logical dependencies. We argue

that this provides various benefits in comparison to earlier work. To support end users

in making sensible decisions, we describe two alternative approaches to provide them

with recommendations to this end. We formalize these alternatives and discuss their

relative strengths and weaknesses. The feasibility of the overall approach, which we

refer to as Product-Based Workflow Support, is demonstrated by a workflow system

that is realized using ProM and DECLARE.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Contemporary management concepts such as ‘‘opera-
tional excellence,’’ ‘‘lean management,’’ and ‘‘business
process redesign’’ all stress the importance of smoothly
running business processes. It seems a natural angle from
which to consider processes – complete chains of operations
that are needed to produce certain products or services – to
make organizations perform better. Unsurprisingly, market
analyses consistently identify the improvement of business
processes as the top business priority for CIO’s [22–24].

Given the importance of business processes and their
tight relation to organizational performance, it may come
as a surprise that few scientific approaches are available
that address the issue of how to actually design a process
or, since in many contexts the processes are already in
place, how to redesign one. The best-known references are
situated in the domain of the popular management

literature, e.g., [11,14,17]. Understandably, it is often
said that process design is ‘‘more art than science’’ [44,45].

One of the notable exceptions is Product-Based Work-
flow Design (PBWD) [37]. PBWD has been developed in
close cooperation between academic and industrial
parties to arrive at a method for process redesign that is
repeatable, objective, and effective. Its focus is on the
design of processes that deliver informational products,
the so-called workflow processes. Since its conception,
PBWD has been adopted by consultancy and service
companies to improve the performance of various busi-
ness processes in the services domain [35,36].

Highly characteristic for PBWD is that it aims first and
foremost at developing a deep understanding of the
characteristics of the informational product that is to be
delivered, e.g., a particular type of decision, proposal,
permit, etc. which is laid down in a product data model.
This is subsequently used by the designer to determine
the best process structure to create and deliver that
product. Given that there are generally alternative ways
to produce an informational product, PBWD discloses all
the opportunities to produce a product.

At this stage, considerable experience has been gained
with the application of PBWD in practice. Aside from the
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tangible business benefits that PBWD has delivered, it has
become apparent that the ‘‘product’’ notion is an extre-
mely viable concept to reason about workflow processes.
The shift of attention to what is the desired outcome of a
workflow process without directly discussing how this is
achieved leads to an interaction with stakeholders that
quickly converges. This sharply contrasts with the
problems that are often associated with process improve-
ment projects, such as the confusion about what actions
in the current process are really necessary and which ones
are merely motivated by tradition [14,41]. Interestingly,
IBM’s recent artifact-centric approach takes a similar
indirect route by first considering the objects that are
manipulated in a process before the focus moves to the
actual process design [6].

At the same time, it must be acknowledged that the
translation of the product data model to a favorable
workflow is a critical step. In the first applications of
PBWD this derivation was done manually [36, pp. 256–
273]. Since this is time-consuming and error-prone, we
have been developing IT tools to support the administra-
tion of a product data model, as well as algorithms that
automatically generate workflow designs on the basis of a
product data model [46]. Still, business users find it
difficult to consider and compare all the options that are
available for the final workflow design. The reasons for
this are that, in general, there are many of these that may
differ in subtle ways: While some options may work well
for some cases, they may not do so for others.

This paper presents an entirely new outlook on the use of
the product data model. Instead of aiming at the derivation
of a workflow design that is generally the best possible way
to generate an informational product, the product data
model itself is proposed as the vehicle to steer a workflow’s
execution. In other words, the need to translate a product
data model into a workflow design disappears. Instead, a
business user determines on a case-by-case basis the best
possible way to create an informational product in
accordance with the relevant product data model. This
approach addresses the difficulty for business users to
compare many alternative workflow designs, while it still
relies on the product data model with its attractive proper-
ties. In addition, this approach allows for a highly dynamic
and case-specific execution of workflows, as will be
illustrated in the remainder of this paper.

The proposed approach builds on two pillars. First, we
exploit the wide industrial proliferation of ‘‘process-
aware’’ or ‘‘process-oriented’’ information systems
[13,26]. We will assume the existence of such type of
system to support the proposed approach and, along the
way, show the feasibility of this idea in the form of a
prototype workflow system. Second, the offered solution
rests on the idea that it is easier for a business user to
determine the best possible action in the context of
processing a single case versus a general case. To guide the
business user in this respect, we present two alternative
approaches to provide her with recommendations: one
that is optimal in relation to a dominant performance
criterion but rather computing-intensive, and another
that is computationally lightweight but based on
heuristics.

Our contribution can be summarized as follows. We
present a rigorous approach for business process improve-
ment, which addresses the need for guidance in this
respect from practice. The innovative aspect is that we do
not aim at the design of an underlying generic process;
instead, we provide a business user with direct support
for delivering an informational product in a performative
way. To do so, we build on the successful notions from
PBWD, in particular the product data model, in order to
arrive at a method that we coin ‘‘Product-Based Workflow
Support’’ (PBWS). In this approach, the product data
model specifies the elements to assemble a particular
product, while a process-aware information system
suggests how a business user should use these to deliver
the product in the best possible way.

The structure of this paper is as follows. Section 2
contains background information, a running example and
the motivation for PBWS. Next, Sections 3 and 4 present
the two alternative realizations of the envisioned support.
A comparison of these two approaches is given in Section
5, followed by a description of a workflow system (based
on ProM and DECLARE) to support the overall approach
provided in Section 6. The paper ends with related work
and conclusions.

2. Background and motivation

This section provides information that is essential as
background for the remainder of the paper. In particular,
the product data model is explained and illustrated with
an example. We also provide motivation for the idea
of PBWS.

2.1. Workflow products

The product of a workflow process is an informational

product, e.g., a decision on an insurance claim, the
allocation of a subsidy, or the approval of a loan. Based
on the input data provided by the client or retrieved from
other systems, the process constructs the end product
step-by-step. In each step new information is produced
based on the specific data present for the case.

In this paper, we use a financial workflow process as a
running example. The workflow process deals with the
calculation of the maximum amount of mortgage a bank
is willing to loan to a client. The bank has three alternative
ways to decide on the maximum mortgage. First of all, if
the client has a negative registration in the central register
for credits (e.g., the client has a history of non-payment),
the bank may directly deny this person a mortgage
(leading to a maximum amount of zero). The central
credit register keeps track of all loans a person has and
helps providers of loans in their assessment of the
creditworthiness of such a person.

Second, if the client has previously requested a
mortgage offer and the term of the validity of this offer
is not yet expired, this may determine the amount of the
mortgage. Typically, the percentage of interest changes
over time, and a mortgage offer is valid for some months.
In case the interest has increased since the previous offer,
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the valid offer might be better than a new one which is
based on the higher interest percentage.

Finally, if the credit register shows a positive credit
history, the bank needs more information on the client’s
situation (e.g., gross income, type of mortgage) in order to
decide on the maximum mortgage. To a certain extent, a
bank defines its own internal rules and policies to decide
on how high a risk a mortgage applicant is to their
business if they approve a mortgage. Therefore, each bank
uses a percentage of the gross income of the client to
calculate how much money the client is allowed to spend
on the house. With this rule, a bank ensures that the client
can afford the costs of food and recurring expenses, and
that the probability is high that he will meet the monthly
payment liabilities with the bank. However, this percen-
tage is not fixed and can vary, based on the bank’s current
situation as well as that of the client’s.

In this example the maximum amount of mortgage is
the end product of the workflow process. In other words,
this is the piece of information that is ‘‘produced.’’ A
graphical representation of the structure of this workflow
product is given in Fig. 1 and is explained below.

2.2. The product data model

The structure of a workflow product is captured by a
Product Data Model (PDM). The PDM is described by a tree-
like structure similar to a Bill-of-Materials [27]. The
information that is processed in the workflow process is
described by the so-called data elements of the PDM. For
each specific case a data element can have a different
value. Data elements are depicted as circles in the PDM, as
can be seen in the example of Fig. 1.

The actions that can be taken on the data element
values are called operations and are represented by
(hyper)arcs. Each operation may have zero or more input

data elements and produce exactly one output data

element. The arcs are ‘‘knotted’’ together when values for

a set of data elements are needed to execute the particular
operation. Fig. 1 shows a comparison of the arcs from B, C,
and D leading to A, on the one hand, and the arc leading
from E to A, on the other hand. In the latter case, only one
data element value is needed to determine the outcome of
the process, while in the case of B, C, and D, all three data
element values are needed to produce A. An operation is
said to be executable for a case when values relating to
that case are available for all of the operation’s input
elements.

Several operations can have the same output element
while having a different set of input elements. Such a
situation represents alternative ways to produce a value
for that output element. For example, a value for the end
product A in Fig. 1, can be determined in three alternative
ways: (i) based on a value for E, (ii) based on a value for H,
and (iii) based on values for B, C, and D.

The top element of the PDM, i.e., the end product, is
called the root of the PDM. The leaf elements are the
elements that are provided as inputs to the process. They
are produced by operations with no input elements (e.g.,
the operations with output elements B, D, E, F, G, and H).
The operations producing values for the leaf elements are
denoted as leaf operations or input operations. An
operation can be identified by a tuple consisting of the
output element and a set of input elements, e.g., (A, {B, C,
D}) for the operation producing a value for A based on
data elements B, C, and D. Throughout this paper,
operations are also referred to by identifiers, such as Op01.

The construction of a PDM is a manual task. However,
the information needed to construct a PDM can be
obtained from e.g., rules and regulations, work instruc-
tions, forms, textual product descriptions, jurisprudence,
information systems and the knowledge on the workflow
product that is present with stakeholders.

Fig. 1 expresses the PDM for the mortgage example. It
shows that the maximum mortgage (element A in Fig. 1) is
dependent either on a previous mortgage offer (E), or on
the registration in the central credit register (H), or on

Maximum mortgage

Percentage of interest

Annual budget to be spent on
the mortgage

Term of mortgage

Previous offer (within the period
of validity of the offer) 

Percentage of income to be
spent on the mortgage 

Gross income per year

Credit registration

A

B

C

D

E

F

G

H

Fig. 1. The PDM of the maximum mortgage calculation.
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the combination of the percentage of interest (B), the annual
budget to be spent on the mortgage (C), and the term of the
mortgage (D). The annual budget (C) is determined by the
gross income of the client per year (G), the credit
registration (H), and the percentage of the income the client
is allowed to spend on paying the mortgage (F).

2.3. Motivation

According to the PBWD method, the PDM is used as the
basis for designing a process that, on the one hand,
respects the dependencies between the various data
elements, and, on the other hand, provides a performative
‘‘walk through’’ along the various operations that need to
take place [37]. It is important to stress that with PBWD
such a process is proposed as a generally attractive way to
deal with all thinkable instances of the product that the
PDM relates to.

Both for the derivation of a general process (in
accordance with PBWD) and for Product-Based Workflow
Support (as proposed in this paper) the availability of
various alternatives to achieve a particular outcome is
exploited. Operations that create new values for data
elements can take on different forms (e.g., an automatic
calculation, an assessment by a human, or a rule-based
decision), but all will consume time and money. In
general, an operation can have a number of attributes
associated with it that describe the characteristics of the
operation in more detail:

� Execution cost: The cost associated with executing the
operation (given by a probability distribution and its
parameters).
� Processing time: The time that is needed to complete

the operation (given by a probability distribution and
its parameters).
� Execution conditions: Conditions on the value of the

input data elements that restrict the execution of the
operation. If the condition is not satisfied, the opera-
tion is not executable, even if a value for all of its input
data elements is available.
� Failure probability: The probability that the operation is

not performed successfully, i.e., the probability that
the output data element is not produced.
� Resource class: The resource class or role that is

required to perform the operation.

If we again consider our example, it could occur, for
instance, that the cost of executing alternative operations
differs. The involved bank has to pay for receiving a copy
of the client’s registration in the credit register. Thus, the
cost for this operation is higher than, for example, the cost
of determining the gross income, since the information on
income is provided by the client. The same holds true for
the processing time of these operations: Since an external
party is consulted, it may take more time to retrieve the
credit registration than to ask the client for her gross
income.

To illustrate the notion of PBWS, we present with Fig. 2
a step-by-step execution of the operations that occur in a

PDM.1 Suppose that the values for the leaf elements B, D,
F, G, and H (i.e., the interest percentage, term of mortgage,
percentage of income to be paid in rent) are available at
the start of the process for one particular case (see
Fig. 2(b)).2 The operations that are now enabled for
execution for this specific case are Op02 and Op03, since a
value for all of their input elements is available (Fig. 2(c)).
Operation Op01 is not executable because a value for data
element C is not available yet, and Op04 is not executable,
since there is no value for E present. We now have to
choose between the two executable operations (Op02,
Op03). Suppose we select Op02. Then, a value for data
element C is produced (Fig. 2(d)). The executable opera-
tions are calculated again, i.e., Op01 and Op03, and one of
these two operations is to be selected next. Suppose we
select Op01 (Fig. 2(f)). Then, the value for the end product
A is determined and the process ends.

The example illustrates that more than one operation
may be executable at a certain point in time. For example,
in the first step of this example we could have chosen for
Op03 instead of Op02. This would have led to the end
product (A) immediately, but it could also have generally
resulted in a different execution of the process with e.g.,
different total cost, throughput time, etc. For example,
suppose we take the execution cost and processing time
for the operations of the mortgage example, as given in
Table 1. If we focus on the cost of execution, it seems best
to choose Op02 since the execution cost for Op02 is lower
than the execution cost for Op03 (5.0 vs. 9.0). However, if
we consider the processing times for the operations,
selecting Op03 as a next step would perhaps be a better
decision (4.0 for Op02 vs. 3.0 for Op03). It would be
extremely valuable if at any point during the execution of
operations these insights were to be available.

The idea of Product-Based Workflow Support can now
be described as follows. An end user is supported on a case-

by-case basis with recommendations on the most suitable

way to carry out the available operations in a PDM. A
recommendation takes into account what type of perfor-
mance is pursued for each case and how the various
alternative executions differ from each other with respect
to that performance criterion. Note that the general
process model (most suitable to deal with the average
case) as prescribed by the PBWD method, becomes
superfluous when using PBWS. As an alternative, the
end user is guided through the operations of the PDM in a
way that is both flexible and performative.

The remainder of the paper deals with the question of
how to determine proper recommendations, i.e., how to
select in each possible situation the best operation to
proceed with from a set of executable operations. It

1 For reasons of simplicity, we abstract here from the execution

conditions on the operations. Moreover, in Fig. 2 we assume that all leaf

operations have already been executed in the initial state, i.e., a value is

available for the output data elements of all successfully executed leaf

operations.
2 Note that for this case not all leaf operations have been executed

successfully. Because the execution of Op07 has failed, there is no value

for data element E available, i.e., there is no valid previous offer

available.
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should be stressed that we define ‘‘best’’ in the context of
a single case, i.e., the performance goal (e.g., total cost,
total processing time) of the case in isolation is optimized.
Two main solution approaches for selecting candidate
operations are presented in the next two sections.

3. Global decision strategies

The first solution approach aims at creating guaranteed
optimal walkthroughs of the PDM by using global decision
strategies. A global decision strategy takes into account the

Fig. 2. The step-by-step execution of the PDM for the mortgage example. Bold circles represent available data element values for the case under

consideration; bold arrows indicate executable operations. (a) The PDM for the mortgage example. (b) The values for some of the leaf data elements

(B, D, F, G, H) are available (indicated by bold circles). Throughout this paper, we refer to this situation as the initial state. (c) Executable operations in

the first step: Op02 and Op03. (d) The value for data element C is produced by operation Op02. (e) Executable operations in step two: Op01 and Op03.

(f) The value for the end product (A) is determined by executing operation Op01.
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effect of the current decision on future decisions, i.e., the
overall performance of the case. For example, in the first
step of the mortgage case, choosing Op02 enables Op01 in
the next step and determines an alternative path to the path
containing only Op03 in order to produce the end product A.
This effect is considered when determining a recommenda-
tion for the current situation. A global decision strategy
takes the complete, alternative path to the end product into
account to optimize the overall performance of the case.

The technique we use to determine a walkthrough of the
PDM using a global perspective is based on the theory of
Markov Decision Processes (MDPs) [33,43]. A Markov Decision

Process (MDP) extends the notion of a Markov chain with
decisions. Markov chains are mathematical models of
stochastic processes, i.e., systems that evolve over time
[43]. They are widely used in, e.g., operations research,
biology, and computer science. MDPs provide a means for
modeling decision making in situations that are partly
random and partly under the control of a decision maker.
In an MDP, several decisions can be taken in each state of the
Markov chain. The state transitions in the Markov chain are
dependent on these decisions, and are given by the transition
matrix. Each decision has associated costs which depend on
the state of the system. The goal of an MDP is to find a
strategy that specifies which decision to take in each state in
order to minimize the overall cost [43]. Note that an
important characteristic of a Markov chain is that it is
memoryless, i.e., the probability of being in a certain state at
time n+1, is only dependent on the state at time n and not
on earlier states ðonÞ. Also note that the formalism of a
Markov chain is highly similar to the concept of a
(probabilistic) Markov state machine [18,21]. Markov state
machines may in fact be used to represent Markov chains.
This means that they have the same expressive power as
Markov chains. For our application, however, the specifica-
tion of probabilities on the state transitions in the Markov
chain or Markov state machine is not sufficient. We also
would like to model the decisions that can be made by the
user as special cases of the state transitions. Therefore, we
use the MDP formalism.

3.1. Formulation of the Markov decision process

The execution of a PDM can be described as a
memoryless stochastic process with decisions. We now

present the formulation of an MDP based on the PDM to
elaborate on this mapping. In general, an MDP is defined
by: (i) the state space, (ii) the time space, (iii) the decision
space, (iv) the transition function, and (v) the cost
functions. A definition of these components is given in
Definition 3.1.

Definition 3.1 (Markov decision process). An MDP is
represented by a tuple (S, T, A, P, c, q) where

� S is the finite state space (S={0,1,2,y,M}).
� T is the set of discrete time points with a finite horizon

(T={0,1,2,y,N}).
� A is the finite decision space. In each state, i 2 S, the set

of decisions that can be taken (Ai) is a subset of the
decision space (i.e. AiDAÞ.
� P is the transition function: pij(a) is the probability that

decision a in state i leads to state j at the next
time point.
� c is the immediate cost function such that ca(i) is the

immediate cost received in state i when decision a is
taken:

caðiÞ :¼ siþ
X
j2S

pijðaÞ � cstaði,jÞ,

where si denotes the sojourn cost of being in state i for
one time step and csta(i,j) represents the cost whenever
the process is in state i, decision a is taken and the
process moves to state j.
� q is the final cost function. q(i) denotes the final cost

when the process finishes in state i at the time horizon
t=N.

At each time point ðn 2 TÞ the process is in one of the
states ði 2 SÞ. Then, a decision from the set Ai has to be
taken and the process moves to another state ðj 2 SÞ. We
are interested in choosing the decisions that should be
taken in a specific state at a specific point in time, such that
the expected total cost over a finite period is minimized. A
prescription for taking decisions is called a strategy.

To show that the decision problem in the execution of
a PDM can be translated into an MDP, we describe for
each component of the MDP the corresponding part in a
PDM. Furthermore, a simple example, based on the
mortgage process, is used to clarify this mapping.

State space: The state space (S) describes the states the
process can be in. The states of the execution of a PDM can
be described by the operations that have been executed
(either successfully or unsuccessfully) together with the
data elements for which a value is available. A state in the
state space is therefore represented by a tuple consisting
of three sets: (i) the successfully executed operations,
(ii) the unsuccessfully executed operations, and (iii) the
data elements for which a value is available.3 In Fig. 3(b),

Table 1
Operations and their attributes for the mortgage example.

Output Input Cost Time Prob. Conditions

Op01 A B, C, D 5.0 1.0 0.05 –

Op02 C F, G, H 5.0 4.0 0.05 –

Op03 A H 9.0 3.0 0.05 Value(H) =

‘‘negative’’

Op04 A E 2.0 2.0 0.00 –

Op05 B – 0.0 0.0 0.00 –

Op06 D – 0.0 0.0 0.00 –

Op07 E – 1.0 1.0 0.50 –

Op08 F – 0.0 0.0 0.00 –

Op09 G – 0.0 2.0 0.00 –

Op10 H – 3.0 10.0 0.15 –

3 Note that the set of available data elements in a state actually gives

redundant information, since the set of available data elements can also

be determined based on the set of successfully executed operations.

However, this information is added for reasons of clarity and under-

standability of the examples.
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for example, the state in the mortgage example in which a
value for each of the leaf elements B, D, F, G, and H is
available (cf. Fig. 2(b)) is denoted by ({Op05, Op06, Op08,
Op09, Op10}, {Op07}, {B, D, F, G, H}). Thus, SDPðOÞ �
PðOÞ� PðDÞ. The state space of the MDP is finite since the
number of operations is finite, and we assume that each
operation can only be executed once, either successfully
or unsuccessfully.

Time space: The time space describes the time points at
which a decision is taken and at which a state transition
occurs (also called decision epochs). The times used in our
MDP are discrete and can be represented by the number
of executed operations ðT ¼ f0,1,2,3, . . . , jOjgÞ, i.e., time is
indicated by t 2 T indicating the number of executed
operations. The times are not necessarily equidistant, but
since there is a finite number of operations in a product
data model and we assume no concurrency, the time
space is bounded by this number, i.e., the MDP problem
has a finite time horizon.

Decision space: In each state a number of decisions can
be made. For the execution of a PDM, these decisions are
described by the set of operations that are executable in
the current state of execution (i.e., those operations of
which the input elements are available and that have not
yet been executed).4 Moreover, if there are no executable
operations for a certain state, there is only one decision
possible, i.e., to stop. Thus, the decision space A is equal to
the set of operations plus the decision to stop, i.e.,
A¼ ðO [ fstopgÞ. Furthermore, the decision space in a
particular state Ai is a subset of ðO [ fstopgÞ. Note that
the decision space in a certain state is time-independent,
i.e., given a state, at any point in time, the same decisions
can be made.

Transition probabilities: The transition probabilities are
given by a matrix P that describes the probabilities that
the system moves from the current state to any of the
other states in the system. These transition probabilities
are dependent on the decision that was made. For our
application, a decision a in state i can lead to two new
states: j1 (for a successful execution of the operation given
in decision a) and j2 (for a failed execution of the
operation given in decision a), each with their own

probabilities. The two transition probabilities under
decision a always add up to 1. For example, recall the
execution of the mortgage example in Fig. 2. If we start in
the state with available values for data elements B, D, F, G,
and H, there are two decisions which can be taken, i.e.,
fOp02,Op03gDO. Each of these two operations can either
fail or be successfully executed. This leads to four new
states (Fig. 4). The transition probabilities correspond to
the probabilities of failure or successful execution of an
operation (see Table 1):

p1,3ðOp02Þ ¼ 0:95, p1,2ðOp03Þ ¼ 0:95,

p1,5ðOp02Þ ¼ 0:05, p1,4ðOp03Þ ¼ 0:05:

Thus, the probability of moving from state 1 to 3 under
decision Op02 is 0.95.

Immediate and final cost: The immediate cost of a
transition from states i to j under decision a is the cost of
executing operation a. In our model there are no costs
associated with residing in a state, i.e., costs are associated
with decisions. Depending on the performance objective
of the process, e.g., minimization of cost or processing
time, the immediate costs are defined as the cost or the
processing time of the operation. Suppose we want to
minimize the execution cost of the process, then the
immediate costs in state 1 are (see Table 1):

cOp02ð1Þ ¼ 5:0, cOp03ð1Þ ¼ 9:0:

The final cost incurred at time jOj, when no decisions can
be made anymore, in state i is zero, i.e., q(i)=0.

By using the mapping presented above, the process of
executing a PDM can be translated to a time-homogenous
MDP with a finite horizon. Note that the optimal strategy
for the MDP results in a Markov chain with some special
properties. First, the state space is finite, i.e., there is a finite
number of states. Second, each operation can be executed
at most once. Thus, each decision can also be taken at most
once during any execution. Moreover, at each point in time
an operation is selected until there are no executable
operations anymore. The only decision that can be made
then is to stop, and the system stays in the same state.
These end states are absorbing states. The Markov chain is a
transient chain since each closed class has exactly one
absorbing state. Apart from the absorbing end states, there
are no cycles in the Markov chain, i.e., it is not possible to
return to a state that was previously visited.

3.2. The mortgage example as an MDP

We have used a small part of the mortgage example to
illustrate the mapping from a PDM to an MDP (see Fig. 4).
Below, this example is used to demonstrate how a
stationary Markov decision strategy (f) is determined for
the complete mortgage example.

The initial situation (see Fig. 2(b)) in which there is
already a value for data elements B, D, F, G, and H is used
again because in this case the decision space is rather small.
Therefore, the state space for this MDP problem stays small
and readable. The state space is depicted in Fig. 4 and
describes all possible execution steps from the initial state.
The decision space per state can also be derived from the
figure, e.g., in state 3 two alternative decisions exist: Op01

{}
{}
{}

{Op05,Op06,Op08,Op09,Op10}
{Op07}

{B,D,F,G,H}

Fig. 3. A state in the state space is described by three sets: (i) the

operations that have been executed successfully so far, (ii) the

operations that have been executed unsuccessfully, and (iii) the data

elements for which a value is available. (a) The state in which no data

element values are available yet, cf. the initial state shown in Fig. 2(b).

(b) The state in which the values for data elements B, D, F, G, and H are

available, cf. Fig. 2(b).

4 Throughout this paper we abstract from concrete values of data

elements and conditions based on these values. Incorporating data are

possible if the number of possible values is small. If many values are

possible, the state space will be too large to allow for any form of

analysis.
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and Op03. Because the execution of both operations can
either be successful or unsuccessful, state 3 has four
outgoing arcs to four new states. If operation Op01 is
executed successfully, the system moves from state 3 to 6.
Confronted with an unsuccessful execution of Op01, the
system moves to state 7. Similarly, upon execution of Op03,
the system moves to state 8 or 9. For this example we focus
on minimizing the total cost for a case. The cost for
executing an operation can be found in Table 1.

The optimal decision strategy for this MDP can be
calculated using a value iteration algorithm [43]. The
algorithm is defined as follows:

Definition 3.2. Let V0(i):¼q(i), and Vt(i), t=1,2,y be recur-
sively given by

VtðiÞ :¼ min
a2Ai

caðiÞþ
X
j2S

pi,jðaÞ � Vt�1ðjÞ

2
4

3
5:

Then, any decision rule ft determined by

ftðiÞ ¼ arg min
a2Ai

caðiÞþ
X
j2S

pi,jðaÞ � Vt�1ðjÞ

2
4

3
5

gives the optimal decision for each state in the state space
and achieves the minimal cost over t periods to the time
horizon.

The value iteration algorithm uses backward induction
to derive the decision rules step-by-step. First, the cost at
the time horizon (see Fig. 5) is determined. The time
horizon is the point in time at which the process ends and
no decisions can be made anymore. Then, a decision rule
(f1) is calculated for the last decision step in the process,
i.e., the situation in which one decision can be made (t=1).
This calculation is based on the expected cost at t=0.
Subsequently, the decision rules for t = 2,3,y can be
determined. Below, the first steps of this algorithm are
elaborated upon for our MDP. Vt(i) denotes the total
expected cost at decision epoch t and state i. The cost at
decision epoch t=0 is equal to the final cost, i.e.

V0ðiÞ ¼ 0, 8i 2 S:

Next, the values for t=1 can be calculated based on all
V0(i) values. For instance, two decisions can be made in
state 3: Op01 and Op03. The expected cost for choosing
Op01 is dependent on the immediate cost for choosing
Op01 in state 3, and the expected cost and transition

Fig. 4. The state space of the mortgage example. Note that there areQ2 .eight end states: {2, 6, 8, 10, 11, 12, 13, 14, 15}.

1 90 8765432

8 09 1234567

time (n)

number of decisions
to be taken (t)

to
ta

l c
os

t

Time horizon
(n = 9)

A
B

C D

E

G
H

I

Decision 
points

F

Fig. 5. This figure describes a time line of an MDP with a finite time horizon. The process ends at time n=9. This point is either represented by the time,

i.e. n=9, or by the number of decision epochs to the end of the process, i.e. t=0.
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probabilities for the states the process can move to under
decision Op01:

cOp01þp3,6ðOp01Þ � V0ð6Þþp3,7ðOp01Þ � V0ð7Þ

¼ 5:0þ0:95 � 0:0þ0:05 � 0:0¼ 5:0:

Similarly, the expected cost in state 3 for decision Op03
can be calculated:

cOp03þp1,2ðOp03Þ � V0ð2Þþp1,4ðOp03Þ � V0ð4Þ

¼ 9:0þ0:95 � 0:0þ0:05 � 0:0¼ 9:0:

Since decision Op01 has the lowest expected total cost, it is
the best decision. Thus, if the process is in state 3 and there is
only one decision to be taken until the end of the process, the
best decision is Op01, i.e., f1(3) = Op01, with expected total
cost of 5.0, i.e., V1(3) = 5.0. In the same way, the expected cost
and best decisions for all other states at time t=1 can be
calculated. Tables 2 and 3 show that if there is only one time
period left, it is best to choose Op02 in state 1 since V1(1) has
the minimal value of 5.0 (vs. 9.0) for its argument Op02. Also,
Op02 should be chosen in state 4 (V1(4)=5.0 for Op02), etc. In
states 2, 6, 8, 10, 11, 12, 13, 14, and 15 the only decision that
can be made is to stop since these states are end states in the
state space. Thus, the decision rule f1 (for time t=1) is

f1 ¼ fð1,Op02Þ, ð2,stopÞ, ð3,Op01Þ, ð4,Op02Þ, ð5,Op03Þ, ð6,stopÞ,

ð7,Op03Þ, ð8,stopÞ, ð9,Op01Þ, ð10,stopÞ, ð11,stopÞ, ð12,stopÞ,

ð13,stopÞ, ð14,stopÞ, ð15,stopÞg:

In a similar way, the values and decision rules for all time
points can be calculated. The details can be found in Tables 2
and 3. These tables show that the decision rules become
stationary for sufficiently large t (i.e., tZ3 for this case), since
the Markov chain does not contain any cycles other than the
absorbing end states. This results in the following global
decision strategy:

f ¼ fð1,Op03Þ, ð2,stopÞ, ð3,Op01Þ, ð4,Op02Þ, ð5,Op03Þ, ð6,stopÞ,

ð7,Op03Þ, ð8,stopÞ, ð9,Op01Þ, ð10,stopÞ, ð11,stopÞ, ð12,stopÞ,

ð13,stopÞ, ð14,stopÞ, ð15,stopÞg:

Note that the best decision for the first state (describing the
initial situation) has changed from Op02 at t=1 to Op03 at
tZ2. Thus, by looking at the complete state space and
decision space, the algorithm calculates a global strategy that
gives the best decision for each state in the MDP.

3.3. Computability of the decision strategy

In the previous section we have elaborated on the
computation of an optimal decision strategy for an example
with a small state space. Such a computation is done in two
steps: (i) building the state space, and (ii) computing the
decision strategy. In this section, we elaborate on our
experiences with the computability for larger, realistic
PDMs, since both steps make a substantial contribution to
the overall time complexity of this approach.

Table 2
The minimal cost values obtained by the value iteration algorithm, i.e. Vt(i).

t i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 5.0 0.0 5.0 5.0 9.0 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

2 9.25 0.0 9.25 9.75 9.0 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

3 9.49 0.0 9.25 9.75 9.0 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

4 9.49 0.0 9.25 9.75 9.0 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

5 9.49 0.0 9.25 9.75 9.0 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

6 9.49 0.0 9.25 9.75 9.0 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

7 9.49 0.0 9.25 9.75 9.0 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

8 9.49 0.0 9.25 9.75 9.0 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

9 9.49 0.0 9.25 9.75 9.0 0.0 9.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0

Note that the values become stable, i.e. they do not change anymore, for tZ3.

Table 3
The rows in this table denote the decision rule (ft) for each point in time (t).

t i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Op02 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –

2 Op03 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –

3 Op03 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –

4 Op03 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –

5 Op03 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –

6 Op03 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –

7 Op03 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –

8 Op03 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –

9 Op03 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –

10 Op03 – Op01 Op02 Op03 – Op03 – Op01 – – – – – –
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As mentioned earlier, the state space of our MDP
problem is finite. Nevertheless, the state space can
become extremely large. For instance, if we use an initial
situation in the mortgage example in which none of the
operations have been executed yet and no value is
available for any of the data elements, i.e., the initial
state with ({}, {}, {}) of Fig. 3(a), the state space contains
2218 states and, as such, is much larger than in our
example of Fig. 4 with 15 states. This is because the six
leaf operations can be executed in an arbitrary order. All
possible combinations are then explicitly represented in
the state space.

Generally, an upper bound for the size of the state space
can be given in terms of the number of operations of the
PDM. Each operation can be either (i) successfully executed,
(ii) unsuccessfully executed (failed), or (iii) not yet executed.
Thus, there are 3jOj possible combinations of operations,
which is an upper bound for the size of the state space.
However, most state spaces will be smaller since not all
combinations of executed operations are possible. For
instance, the state space for the mortgage example will
never contain the state ({Op02,Op07}{Op 09}{C,G}), since
Op02 can never be executed before both Op08 and Op10 are
executed.

We have experimented calculating the state space for one
of the industry cases in which PBWD was applied. The PDM
of the UWV-case (described in [36]) contains 45 data
elements and 50 operations, which is significantly larger
than our running example but still reasonably small for a
practical case. During our experiments we experienced that a
normal PC5 was not able to process the complete state space
of this case. Therefore, we tried to limit the amount of states
in the state space based on a number of restrictions
described in [46]. One of the main design objectives for the
redesign project of the case was a minimum number of
contacts with the client (see [36]). This requirement was
realized in the design by requesting all input information
from the client at once at the start of the case. Therefore, the
restriction of using an initial state in which all leaf operations
have been (successfully) executed is quite realistic. Calculat-
ing the first 300,000 states of the state space with only this
restriction took more than 60 days, and we failed to gain the
complete state space. Furthermore, it also seems realistic to
assume that all operations are executed successfully, since
the failure probabilities for the operations in the PDM are
typically very low. With these two restrictions, the state
space for the social benefits case was calculated in 2.5 days.
The state space contained 66,581 states. Based on this partial
state space, a decision strategy can be computed. However,
this decision strategy may not be optimal because of the
assumptions that were made to limit the state space.

For the second step in the computation of the optimal
decision strategy, we have used a standard value iteration
algorithm for the example in Section 3.2. Other algorithms
such as policy iteration and dynamic programming [43] may
be used as well and may decrease the computation time
needed to find an optimal strategy given the state space, the

time space, the decision space, the transition function, and
the cost functions of the MDP. However, improving the time
complexity of this step by using a faster algorithm will not
have a huge impact on the total computation time, since
building the state space (step 1) may still be the bottleneck.

The experiments, described in this section, show that it
is theoretically possible to find globally optimal recom-
mendations for executing the PDM, but for real-life
applications it may be intractable to compute the optimal
solution. Typically, PDMs may be even larger than the one
for the UWV-case, e.g., containing hundreds of data
elements. Therefore, the MDP may become unsolvable in
practice. Note that the selection of the next operation
needs to be done at real time and repeated after every step.
Hence, a more pragmatic way of determining recommen-
dations would be desirable. As a second solution approach,
we now describe a number of local decision strategies that
focus on the selection of the candidate operation for
execution within the set of executable operations.

4. Local decision strategies

The issue of unsolvable MDPs due to large state spaces
also exists in other application areas of MDP theory. In the
field of production planning, simpler heuristics have been
developed that perform well and approximate the optimal
solution of the decision problem. These heuristics aim for
a local instead of a global optimization. They do not
consider the effects of a decision on the next steps in the
execution, but merely look at the currently available set of
possible decisions and take the best one out of it. For
instance, in the initial situation of Fig. 2(b), two operations
are executable. When deciding on the next operation to be
executed, only those two operations are considered
without looking at the further, possible effects of the
choice for one of the two. Based on the characteristics of
the two operations, the best performing one with respect
to the selected criterion is selected.

Based on production planning heuristics, we have
developed some local decision strategies for the direct
execution of a PDM. We have drawn inspiration from
sequencing and scheduling rules in the field of logistics and
production planning [28,42]. Short-range production
planning is a method to decide, a priori, which resource
is going to perform which jobs in which order for
production systems with a shop structure (i.e., flow
shop, job shop, or open shop) [42]. Production planning
problems are usually too large to be solved mathemati-
cally, and researchers therefore have developed pragmatic
ways (e.g., heuristics) that approximate the desired
solution to a scheduling problem. Many different strate-
gies or rules exist to schedule jobs that have to be
performed by a machine [28,42]. Well-known strategies
are, for instance, First Come First Served (FCFS) or Earliest
Due Date (EDD) [42]. The following decision strategies can
be applied to our selection problem of finding the next
operation in the execution of a PDM:

� Random: The operation is randomly selected from the
set of executable operations (cf. [28]).

5 A normal PC at the time of writing this paper is e.g. an Intel

Pentium 4 with a 3.8 GHz processor and 3 GB of RAM.
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� Lowest cost: The operation with the lowest cost is
selected.
� Shortest processing time: The operation with the short-

est duration is chosen (cf. SPT defined in [28]).
� Lowest failure probability: The operation with the

lowest probability of not being performed successfully
is chosen.
� Shortest distance to root element: The operation with

the shortest distance to the root element (measured in
the total number of operations) is selected. The
distance of an operation to the root element is the
‘‘shortest path’’ from this operation to an operation
that produces the root element. The distance to the
root element can be measured as the total number of
operations to the root element (cf. FOPNR defined in
[28]).
� Shortest remaining processing time: The operation with

the shortest remaining processing time is chosen. The
shortest remaining processing time is another form of
the distance to the root element. In this case, the
processing times of the operations on the path to the
root element are added up (cf. SR defined in [28]).

If, for example, a lowest cost strategy was used for
decision making on the initial situation of the mortgage
example in Fig. 2(b), then Op02 would have been selected,
since the cost for Op02 is lower than that for Op03 (i.e., 5.0
vs. 9.0). If a shortest processing time strategy was used,
Op03 would have been selected, and with a shortest
distance to root element strategy Op03 would also have
been chosen.

The above strategies present ways to select the next
step based on a single strategy, i.e., only one performance
goal is considered. A more advanced way to use these
simple selection strategies is by combining them. With a
single strategy there may be several candidates available
for selection with the same value for the performance
goal. To distinguish between the operations that all have
an optimal value based on the first strategy, one can use
another strategy to complement the first one. For

instance, if the lowest cost strategy leads to three
operations with the same minimal execution cost, another
strategy (e.g., lowest failure probability) may be used to
rank these three operations and find the best one among
the three. Additionally, weighted criteria can be used. For
instance, if the processing time and the execution cost are
equally important for the selection of an operation, the
selection strategy can be based on an equal weight (0.5 vs.
0.5) for both performance criteria.

Using the strategies presented above, the selection of
the next candidate for execution is optimized locally (i.e.,
within the set of currently executable operations); the
effect of the selected operation on future steps is not taken
into account.6 Such a local optimization may lead to a less
desirable situation if we consider the overall performance
of the case. Consider, for instance, the execution steps for
the mortgage example with respect to the total execution
cost. The first execution sequence contains Op02 followed
by Op01. The total cost of this execution is: 5.0+5.0=10.0.
The total cost of the alternative execution path containing
only Op03 is 9.0. Thus, the cost of the second execution
path is lower. Selecting the best candidate based on the
lowest cost selection strategy in this case does not lead to
the best overall decision for the case considering the total
cost of execution (see Fig. 6). However, many of these
pragmatic heuristics are proven to reach a near-optimal
solution [28,34]. To assess our approaches, a comparison
between some local strategies and the global decision
strategy is made in the next section.

5. Evaluation

In this section, we evaluate the two proposed
approaches based on the mortgage example. In order to
assess the performance of the global and local decision
strategies, we compare their results using two perfor-
mance criteria. We consider a situation in which the goal

Fig. 6. Two different execution paths leading to the end product of the PDM. The cost of executing an operation is presented in Table 1. (a) Total cost:

5.0+5.0=10.0. (b) Total cost: 9.0.

6 Note that this is comparable to a situation in the MDP in which

there is only one decision left to the end of the process, i.e. t=1.
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is to minimize cost as well as a situation in which the
processing time is minimized.

For the global decision strategy, an expected value of
each of these performance criteria can be calculated based
on the MDP (see also Definition 3.2). Since the mortgage
example is small enough, we are able to compute a
complete state space7 and decision strategy for the MDP
derived from the PDM. To do so, we used the prototype
workflow system presented in Section 6.

The performance of the local decision strategies is
measured through simulation. In this simulation study we
have executed several simulation runs per local decision
strategy. A simulation run corresponds to one complete
execution of the PDM of the mortgage example. For each
execution the total execution cost and total processing
time were determined. Per strategy, we collected 300
samples (i.e., n=300) and constructed 90%-confidence
intervals [25]. In the next section, the simulation model is
explained, and then the simulation results are compared
to the results of the global selection strategies.

5.1. Simulation model

The simulation model for executing a PDM describes
the functional design of a tool supporting the direct
execution of a PDM based on a local decision strategy. The
simulation model is represented by a Colored Petri Net
(CPN, [16]) and has been developed using CPN Tools [10].
The model takes care of a correct step-by-step execution
of the PDM as illustrated in Fig. 2. This means that the
functional design ensures that only executable operations
are executed, that no duplicate data element values are
produced, and that only one operation at a time is
performed. It does not deal with performance and the
selection of the best operation for the next step. The
structure of the model is generic since the model does not
need to be changed for a different PDM or a different
selection strategy. The PDM is added to the model as a
variable and the selection strategy as a function. This
section describes the CPN model on a high level.

The main level of the CPN model is depicted in Fig. 7. It
contains eight places and three transitions. All three
transitions are sub-processes in which the actions to be
taken are described in detail. The main execution stream
in the model is indicated by thick lines: First, the

Op01, Op04, Op07

Op02, Op03

B,D,F,G,H

4 13

Fig. 7. The main level of the simulation model, represented by a Colored Petri Net (CPN). The main execution stream of the simulation model is indicated

by thick lines. Also, the initial situation of Fig. 2(b) is depicted by tokens in the model.

7 We take the initial situation in which no input data element values

are available, i.e., ({}, {}, {}).
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executable operations are determined, and one of the
executable operations is selected based on the local
decision strategy that was chosen. The selected operation
is then executed. If the execution of the operation is
successful, the data element and its value are stored in the
place available data elements, and the execution cost and
execution time for this operation are added to the total
cost and duration of the process. If the execution is not
successful, only cost and duration are increased; no data
element is added to the set of available data elements.
Next, the executable operations can be executed again;
this procedure is then repeated until the end product is
produced or no executable operations remain.

5.2. Comparison of decision strategies

The results of the simulation study are shown in Fig. 8.
The first diagram shows the results for the cost perfor-
mance criterion. Confidence intervals of the total cost
resulting from executions under a lowest cost and a
random decision strategy are given. According to the
simulation results, the lowest cost strategy has a mean of
8.11. The 90%-confidence interval has a lower bound of

7.55 and an upper bound of 8.67. The total cost under a
random strategy has a mean of 10.71 (between 10.21 and
11.22 according to the 90%-confidence interval). Since
these confidence intervals do not overlap, we may
conclude that a lowest cost strategy leads to a lower total
cost than does a random selection strategy. Apart from the
comparison of the local strategies, we can also compare
the outcome of the local strategies to the optimal solution
resulting from the MDP as a benchmark. The total
expected cost for executing the PDM of the mortgage
example is 7.54 (see horizonal line in Fig. 8(a)). Fig. 8
shows that a lowest cost strategy closely approaches the
optimal solution of the MDP.

The second diagram depicts the results for the
processing time performance criterion. The confidence
intervals for the total processing time under a shortest
processing time strategy and under a random strategy are
given. The total processing time under a shortest proces-
sing time strategy has a mean of 9.75, a lower limit of 9.13
and an upper limit of 10.37. The random strategy has a
mean of 13.94, a lower limit of 13.48 and an upper limit of
14.40. Clearly, the shortest processing time strategy
performs better than does a random strategy to minimize
the total processing time. The results of the local decision

7.54
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total cost
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Fig. 8. Some results of the simulation study. (a) Total cost. (b) Total processing time.
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strategies can again be compared to the expected
processing time achieved by the global decision strategy
obtained by the MDP: 8.58 (see horizonal line in Fig. 8(b)).
The shortest processing time strategy approaches the
optimal solution compared to a minimal processing time
decision strategy in the MDP.

We conclude from this simulation study that (i) using a
heuristic (e.g., a lowest cost strategy to minimize cost)
leads to better results than does random selection of
operations, and (ii) the outcomes of the heuristics closely
approximate the optimal solution calculated by an MDP.

6. System support

This section describes the workflow system that we
have developed for Product-Based Workflow Support. It
allows for the direct execution of a PDM by guiding the
user through all steps to the end product. The system
presents execution recommendations to the user based on
the selected decision strategy and the current state of a
case. Section 6.1 explains the architecture of our workflow
system. Next follows an explanation of how the global and
local strategies are supported by this system.

6.1. Architecture

Our approach builds on ProM and DECLARE.8 ProM
[2,12] was initiated as a framework for process mining, but
in recent years it has evolved into a broad and powerful
process analysis tool supporting all kinds of analyses
related to business processes [12]. ProM has a plug-able
architecture. ProM 5.2 has 286 plug-ins, each realizing a
particular type of functionality, e.g., the a miner plug-in is
able to discover a process model from event logs, and the
conformance checker plug-in is able to measure the
quality of a model in relation to an event log. DECLARE
is a workflow management system [29–31]. DECLARE is
based on a declarative approach to business process
modeling and execution, and therefore provides more
flexibility than do conventional workflow management
systems. While the mainstream workflow management
systems use a procedural approach where every activity
needs to be triggered, DECLARE starts from the viewpoint
that ‘‘anything is allowed unless explicitly forbidden.’’

To realize a workflow system for Product-Based Work-
flow Support, we use DECLARE as-is, and added several
plug-ins to ProM. DECLARE is used to offer work to end
users and could be replaced by another workflow system.
However, we selected DECLARE because it is easy to specify
workflow models that do not impose any control-flow
constraints, i.e., from the viewpoint of the process, any
sequence of activities is possible (unless explicitly forbid-
den). Another reason for selecting DECLARE is the connec-
tion to ProM which allows combining ProM’s analysis and
reasoning capabilities with the flexibility of DECLARE.
DECLARE does not know about data and dependencies
between data elements, i.e., the PDM is only known to ProM.

ProM uses a so-called recommendation service, the PDM, and
knowledge about the history of cases to inform DECLARE
about recommended operations. Such a recommendation
service (that is driven by a PDM and the availability of data)
replaces the conventional control-flow oriented workflow
engine. Two recommendation services have been realized
using ProM’s plug-able architecture: one using the global
MDP approach and one using local decision strategies.

An overview of the architecture of our system is shown
in Fig. 9. As a first step in the use of the PDM-based
workflow system, a PDM is loaded into the ProM frame-
work and exported to a DECLARE model. This DECLARE
model solely contains the operations of the PDM as
activities and their input and output data elements. Thus,
no control flow is added to the DECLARE model, i.e., the
DECLARE activities are not related to each other in any
way. Next, the ProM PDM recommendation service is
started and a strategy is selected by the user. Actual cases
can be handled after the DECLARE model has been loaded
into the DECLARE framework, and the DECLARE worklist
has been started. The DECLARE framework communicates
with the ProM recommendation service by sending
queries. Such a query contains the current state of the
case in terms of executed activities and available data
element values. Based on this information, the PDM
recommendation service calculates which operation is
the best candidate to be executed for the case with
respect to the selected decision strategy. The result of this
calculation is sent back to the DECLARE framework as a
recommendation. Finally, this recommendation is shown
to the user in the worklist of DECLARE. The user may then
follow up on the recommendation and execute the
recommended operation. When the operation is executed,
a new query is sent to the ProM recommendation service.

Two different implementations of the PDM recom-
mendation services have been developed. The first one is
based on the global decision strategies introduced in
Section 3. The second implementation uses the local
decision strategies, as described in Section 4, to generate
recommendations for a query. Both implementations are
described in greater detail in the next sections.

6.2. Global decision strategies

In case a global decision strategy based on an MDP is
chosen for generating recommendations, the user first has
to calculate the state space and the optimal decision
strategy in ProM (see Figs. 10 and 11). Next, the
recommendation service in ProM can be started. Also, the
DECLARE framework and the DECLARE worklist are started,
and the user fills out the values for the leaf data elements
in DECLARE. Suppose we take the same initial situation for
the mortgage example as before (i.e., values for B, D, F, G,
and H are available and E is not available). A query
containing the set of executable operations (i.e., Op02,
Op03) and a set of available data elements and their values
is then sent to ProM. ProM determines a recommendation
based on the calculated global decision strategy (i.e., Op03
under a minimize cost strategy) and sends it to DECLARE.
In the DECLARE worklist, the recommendations are

8 ProM can be downloaded from www.processmining.org. DECLARE

can be downloaded from http://www.win.tue.nl/declare/.
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presented (see Fig. 12). The first one is the recommended
activity according to the calculated strategy. The others are
second best options. Each recommendation also has a field
called ‘‘rationale’’ in which the total expected cost or
processing time to finish the process is shown.

6.3. Local decision strategies

In the PDM recommendation service based on local
decision strategies, the user can immediately select one of
the strategies introduced in Section 4 via a drop-down

PDM
PDM 

recommendation
service

Framework

ProM DECLARE

Recommendation

Query

DECLARE process model

Worklist

Fig. 9. An overview of the architecture of the workflow system based on ProM and DECLARE.

Fig. 10. This screenshot of ProM shows the user interface of the PDM recommendation service before computing the state space for the MDP. A number of

options may be selected to restrict the state space as presented in Section 3.3. For example when the checkbox ‘‘all input elements available’’ is checked it

reflects the situation in which all leaf data elements are available at the start of the process, or when ‘‘failure of operations possible’’ is checked the

possibility of unsuccessful execution of operations (failure) is taken into account.
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menu. Once the strategy has been selected, the recom-
mendation service can be started. The execution of the
process based on these recommendations is similar to the
execution based on the global strategies described above.
Given the state of the case, the recommendation service
determines which operations are executable and which
one of these is the best choice considering the selected
local decision strategy. A list of all executable operations
is presented with the best next step listed first. The user
may decide whether or not to follow the recommenda-
tion and execute a next step. In any case, the recommen-
dation service will again calculate a recommendation for
the new state of the process until the end product is
produced.

Note that it is possible to change a local decision
strategy during the execution of a case. This is useful; for
example, if a company decides to switch from a low cost
strategy to a strategy focusing on a short throughput time
to be able to deal with extra case arrivals as quickly as
possible. In contrast to this, changing a global strategy
during the execution of a case is not allowed, since this
would force the system to recalculate the complete
strategy. Recalculation may take some time and therefore
is not acceptable at run-time.

7. Related work

Most of the workflow approaches described in the
literature and supported by commercial systems and
academic prototypes assume a procedural approach [3].
Although there are huge differences in the expressiveness
and the suitability of procedural languages ranging from
YAWL and BPMN to BPEL and ADEPT, the starting point of all
these languages is the modeling of control-flow dependen-
cies among tasks. Few alternative approaches have been
proposed. For example, the DECLARE system supports a
more declarative style of modeling grounded in LTL [29–31].
However, also DECLARE focuses on control-flow dependen-
cies among tasks. This paper proposes starting from data and
dependencies between data elements. The PDM has a similar
role as the Bill-of-Materials (BOM) in production planning.
This relation has been explored in the nineties [1,32].
However, no concrete workflow support has been provided
thus far. In our earlier work [1,36,37,46], we showed that in
some cases the PDM could be converted into a procedural
model. However, as indicated in this paper, this has the
drawback that logical dependencies and performance related
concerns get mixed, and it becomes impossible to dynami-
cally change the strategy.

Fig. 11. On the right hand side, this screenshot of ProM shows the complete state space that was computed for the mortgage example. In the lower left

corner the user can select the performance objective to be optimized (e.g. minimize cost, or minimize processing time) via a drop-down menu. Next, the

decision strategy is calculated.
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Also related is the work on case handling, as it is
supported by systems such as BPMjone [5]. In the case
handling paradigm the availability of data also plays a
dominant role. However, hard-coded control-flow depen-
dencies need to be added to steer the user. The case
handling paradigm is one of many approaches aimed at
providing flexibility in workflows. Clearly, the direct
execution of a PDM also offers flexibility. However, most
of the literature focusing on workflow flexibility assumes
a procedural language and changes of the underlying
model. See for example, [39,47] for related work and
typical flexibility mechanisms.

Recently, there has been a revival of approaches that
balance data and process aspects, cf. the artifact-centric
approach [7] and the proclets approach [4]. However,
these approaches do not use the data dependencies as a
way to replace control-flow.

Most related to our work is the work by Kress, Melcher
and Seese on Executable Product Models [19,20]. This
approach is based on our definition of a PDM [1,36,37] and
the authors also propose to directly execute the PDM. Kress
et al. combine this with multi-agent systems, reinforcement
learning, and genetic algorithms. The core idea is to learn
how to best execute the PDM to reach an optimal resource
allocation with respect to a certain goal (e.g., the earliest
completion time of a task). In contrast to this, our approach
looks at the overall optimization of a case with respect to the
total throughput time or processing cost. Also, Kress et al.
assume that all executable operations in the PDM will be
executed eventually (possibly leading to extra, unnecessary
work), while our approach only selects those operations to
be executed that really contribute to the end product.

The workflow solution presented in this paper com-
bines DECLARE [30] and ProM [2,12]. The core idea is that
a recommendation service in ProM provides guidance to
users of the DECLARE system. Such a recommendation-
based approach was proposed in [40], and our current
system is using this idea. However, the recommendation
approach presented in [40] is not using a PDM. Instead a
model is learned and it is assumed that all logical
dependencies and other constraints are handled outside
of the recommendation service. Hence, this approach is
not data driven and serves as an add-on rather than as a
full-fledged workflow engine. The recommendation
approach presented in [40] is closely linked to recommen-

der systems [8,9,38]. Recommender systems are widely
used in other domains such as information filtering. They
are used to recommend items (films, television, video on
demand, music, books, news, images, web pages, pro-
ducts, etc.) that are likely to be of interest to the user.
These systems typically do not consider a process, i.e., the
creation of a product using a sequence of operations. The
broader area of Web mining, i.e., the application of data
mining techniques to discover patterns by observing users
of the Web [15], has the same characteristic. Therefore,
these techniques cannot be applied to workflow manage-
ment. Moreover, these approaches aim at analysis rather
than execution support involving data and processes.

8. Conclusion

This paper has presented a new approach to workflow
execution on the basis of a product description, named the
Product Data Model. Instead of aiming at the derivation of

Fig. 12. Two recommended activities are shown for the process which is in the state where all leaf operations have been executed and the values for data

elements B, D, F, G, and H are available. Based on the global decision strategy calculated by using the MDP, Op03 is recommended as the next operation to

be executed (cf. Vn(3) and fn(3), for nZ2, in Tables 2 and 3). Note that all executable operations are ranked with respect to the performance objective: the

second best next step is Op02. Other operations are not executable.
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a workflow design that is in general the best possible way
to generate an informational product, the Product Data
Model itself is proposed as the vehicle to steer a
workflow’s execution. Based on data element values
readily available for a specific case, on the one
hand, and a selected strategy, on the other hand, this
approach recommends the next step that should be
performed for the case. There is a clear separation of
concerns at work here: the product data model is based
on functional requirements, while the selected strategy
focuses on performance (e.g., minimizing costs or time).
Therefore, the execution of one case can still be dynamic
and flexible, i.e., the strategy can be changed during
execution and will take the actual data values into
consideration.

We have introduced two types of strategies to
calculate the recommendations: (i) a global decision
strategy, which takes into account the effect of the
current decision that is made on future decisions, and
(ii) a number of local decision strategies, which only look
at the set of directly available, executable steps. The first
approach is computationally demanding and may be
infeasible for large decision problems, but generates the
overall best decision for a case. The second approach is
much faster and more flexible, but may result in sub-
optimal solutions. We have assessed the performance of
several strategies by a simulation study, showing that the
local decision strategies indeed reach a near-optimal
solution to the global decision strategy for a realistic
case. Finally, the feasibility of the presented ideas is
demonstrated by the description of a fully operational
prototype that supports the approach presented in
this paper.

A limitation to this work is that the different decision
strategies presented in this paper all focus on improving
performance while considering a case in isolation. The
best decisions are defined in terms of the performance
objective on the case level, e.g., the minimization of
throughput time or cost for a single case. Further research
may consider how optimization can take place on the
process level with respect to e.g., the utilization of the
process, or the optimal distribution of work among
resources.

Also, the presented decision strategies are not yet able
to deal with parallel execution of operations. Concurrency
would lead to difficulties with different values being
available for the same data element. In general, data
updates are an issue for the use of PDMs and other data-
driven approaches. Noteworthy is that current data-
driven workflow management systems, e.g., the case-
handling system FLOWer, prevent parallel executions for
the same case by blocking the whole case as soon as
someone is working on it. However, we can imagine less
restrictive mechanisms that will still allow some level of
parallelism to be incorporated.

Currently, we plan to cooperate with our industrial
partners to incorporate the direct execution of a PDM and
the decision strategies in a commercial tool. The avail-
ability of such a tool will certainly enhance the practical
applicability of the ideas, which will be useful to further
evaluate the approach in practice.
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