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Abstract

Business processes models easily become large and difficult to understand. Busi-
ness process model abstraction has proven to be effective to generate readable,
high-level views on business process models showing coarse-grained activities
and leaving out irrelevant details. Yet, it is an open question how to perform
abstraction in the same skillful way as experienced modelers combine activities
into more abstract tasks. This article presents an approach that uses semantic
information of a process model to decide on which activities belong together. The
approach extends beyond the existing work that merely exploits the structural
characteristics of a process model. The contribution of this article is twofold:
we design a novel activity aggregation method and suggest how to discover the
activity aggregation habits of human modelers. In an experimental validation,
we use an industrial process model repository to compare the developed activity
aggregation method with actual modeling decisions, and observe a strong cor-
relation between the two. The presented work is expected to contribute to the
development of modeling support for the application of effective process model
abstraction, in this way improving the usability of business process models in
practice.

Keywords: business process modeling, process model management, business
process model abstraction

1. Introduction

Business process models are used within a range of organizational initia-
tives [20]. However, human readers are limited in their cognitive capabilities to
make sense of large and complex business process models [2, 37]. One well-known
way to address this issue is by applying business process model abstraction. This
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is the act of retaining essential properties of a process model on a particular
level of analysis, while simultaneously hiding insignificant process details from
that level. Indeed, in a recent empirical investigation into the need for business
process model abstraction [36], we found that its most prominent use case is
the need to gain a so-called quick overview of the process. In such a situation,
the user wants to familiarize herself in a short amount of time with a business
process although what she has at her disposal is a large process model that
consists of dozens of fine-grained activities. To address this use case, the process
model can be displayed as a partially ordered set of coarse-grained activities,
each of which aggregates a number of lower-level activities. As an example,
an abstraction of a relatively fine-grained process model, which captures the
creation of a forecasting report, is shown in Figure 1. This figure presents three
process models formalizing the process at different levels of abstraction: model
m is detailed, ma is more abstract, while m′a is the most abstract. We use the
color coding to visualize how coarse-grained activities of model ma are refined
by activities in model m. For instance, activity Perform quick analysis is refined
by activities Prepare data for quick analysis and Perform quick data analysis.

While it has been empirically established that abstraction can significantly
improve the sense-making of large process models [29], a limited insight exists
into the criteria that experienced modelers use to decide on which activities
to aggregate into new ones. A number of techniques has been proposed that
exploit structural properties of a process model to arrive at a more abstract
one [7, 28]. Yet, it seems likely that experienced process modelers take a wider
range of properties into account than just a model’s control flow. For example,
the fact that two activities use the same document and are executed by the same
role may suggest that these can be conveniently clustered into one aggregated
activity. This situation applies, for example, to the activities Prepare data for
quick analysis and Perform quick data analysis of model m in Figure 1.

In this paper, we complement the existing streams of work with respect to
process model abstraction by proposing an abstraction technique that incor-
porates semantic aspects contained within a process model. We rely on the
observation that industrial process models are often enriched with elements that
transcend control-flow information. Examples are: data that is being processed
within an activity, IT systems invoked within particular activities, and roles
assigned to activities. The central idea in this paper is that activities that are
associated with the same non-control flow elements are semantically related
and, therefore, are more appropriate candidates to be aggregated into the same
activity than activities that do no share such elements.

A number of contributions has recently emerged that considers semantic
aspects for aggregation, e.g., [9, 35]. However, their assumptions, e.g., the
existence of an activity ontology [35], seem too strict for generic use. Our
approach is based on the reuse of the frequently employed vector space model.
This is an algebraic model, which is very popular in information retrieval [32].
As will be discussed in this paper, the use of vector spaces allows for determining
the degree of similarity between activities according to several information types
available in process models. We have validated the proposed technique by
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Figure 1: Motivating example: initial model and its abstract counterpart

applying it to a process model repository that is in use by a large European
telecommunication organization. On the one hand, the repository incorporates
hierarchical relations between high-level activities and the activities that they
aggregate, which provides a view on how aggregation is given shape in a real
situation. On the other hand, the contained process models contain various
types of semantic information, which allows us to experiment with exploiting
similarities between activities to come up with decisions on how to cluster these
into more abstract tasks. The performed validation suggests that the developed
approach closely approximates the decisions of the involved modelers to cluster
activities according to their semantic similarities.

The contribution of this paper is twofold. First, we develop a novel method
for activity aggregation analyzing activity environment within a process model.
This method discovers sets of related activity, where each set corresponds to
one coarse-grained activity of an abstract process model. Second, the arti-
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cle suggests a technique that mimics the abstraction decisions of experienced
modelers as discovered from sets of related, existing models. The technique
allows to reuse the principles behind activity aggregation decisions for future
aggregation decisions. As such, it can support novice process modelers that
wish to make abstractions of complex, fine-grained process models. Since the
lack of experienced process modelers is a noted issue in many large modeling
projects [30], this is a valuable asset to improve the usability of process models
in real-life applications. Furthermore, the proposed technique can also be of
value to more experienced modelers when it is applied to enable those process
model abstraction decisions that comply with their specific abstraction style. In
this way, experts can accelerate their modeling routine while staying in control
over the modeling outcome. Finally, the technique can also be used to safeguard
a particular “fingerprint” of a process model collection by enforcing mutually
consistent abstraction decisions.

The article is structured as follows. In Section 2, we provide the foundational
concepts for our approach. Section 3 explains how activity aggregation can be
interpreted as a cluster analysis problem. In Section 4 we discuss how the style
of a business process designer making abstraction decisions can be discovered
and captured. Section 5 empirically validates the proposed approach by using
the industrial set of process models. Finally, Section 6 contrasts our contribution
with the related research, while Section 7 concludes the article.

2. Foundations

This section introduces the key concepts of the developed activity clustering
approach. We begin formally defining an environment of activities within process
models, i.e., non-control flow elements. Further, we provide our notion of a
process model establishing a link between activities and their environment.
Finally, we postulate the idea of a process model collection with a subprocess
refinement.

The designed aggregation algorithm inspects an activity environment, i.e.,
process model elements that are related to activities in a process model. Examples
of such elements are data objects accessed by activities and roles supporting
activity execution, e.g., see model in Figure 1. The list of such model element
types varies depending on the process modeling language, the tool at hand,
modeling procedures taken into account, and the modeler’s style. Each of the
model element types may be considered as an activity property that has a specific
value. Definition 1 formalizes this concept.

Definition 1 (Activity Property Value and Activity Property Type).
Let P be a finite nonempty set of activity property values. Alongside, T is a
finite nonempty set of activity property types. The mapping type : P → T
assigns a type to each value.

The process model in Figure 1 illustrates Definition 1. Raw data, FA data and
Analyst are examples of activity property values. The process model presents
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two activity property types: Role and Data object. For instance, type(Raw data)
= Data object, type(FA data) = Data object, and type(Analyst) = Role. Further,
we define a process model as follows.

Definition 2 (Process Model). A tuple mi = (Ai, Gi, Fi, Pi, propsi) is a
process model, where:
• Ai is a finite nonempty set of activities;
• Gi is a finite set of gateways;
• Ni = Ai∪̇Gi is the set of nodes, where ∪̇ denotes a disjoint union of sets;
• Fi ⊆ Ni ×Ni is the flow relation;
• Pi ⊆ P is a set of activity property values;
• propsi : Ai → 2Pi is a mapping that assigns property values to an activity.

Definition 2 does not make a distinction between different gateway types since
the future discussion does not make use of such a distinction. Mapping props
assigns activity property values to model activities. Referring to model m
in the motivating example of Figure 1, mapping props can be illustrated as
props(Collect data) = {Clerk, Raw data}. Notice that Definitions 1 and 2 allow
to manage the considered activity property types in a flexible fashion: It is
sufficient to introduce a new activity property type to set T , the values to P,
and respectively update mapping type. Thereafter, new activity properties can
be easily considered within the activity aggregation. Finally, we postulate the
concept of a process model collection.

Definition 3 (Process Model Collection). A tuple c = (M,A,P, σ) is a
process model collection, where:
• M is a nonempty finite set of n process models with elements
mi = (Ai, Gi, Fi, Pi, propsi), where i = 1, 2, . . . , n;

• A = ∪̇i=1,2,...,nAi is a set of activity collections;
• P = ∪i=1,2,...,nPi is a set of sets of activity property values;
• σ ⊆M×M is a subprocess relation refining a process model with subprocess

models, such that ∀mi,mj ∈ M , where j = 1, 2, . . . , n and i 6= j, if
(mi,mj) ∈ σ then (mj ,mi) /∈ σ+, where σ+ is a transitive reflexive closure
of σ.

Definition 3 explicitly enumerates the model collection activities and property
value types. The relation σ formalizes the subprocess relation that exists between
models. Note that according to the definition, σ enables only a process model
hierarchy without loops. Without loss of generality we discuss abstraction of
process models in the remainder of this paper within a process model collection.
Indeed, a single process model mi can be seen as a trivial process model collection
c = ({mi}, Ai, Pi, ∅).

3. Activity Aggregation

This section presents the first core contribution of the article—an activity
aggregation method based on cluster analysis. We start explaining how activity
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aggregation can be interpreted as a cluster analysis problem in Section 3.1.
Section 3.2 advocates several methods for the definition of activity distance
measures.

3.1. Activity Aggregation as Cluster Analysis Problem

In this paper we interpret activity aggregation as a problem of cluster
analysis. Consider process model mi = (Ai, Gi, Fi, Pi, propsi) from process
model collection c = (M,A,P, σ). The set of objects to be clustered is the set of
activities Ai. The objects are clustered according to a distance measure: Objects
that are “close” to each other according to this measure are put together. The
distance between objects is evaluated through an analysis of activity property
values P . The cluster analysis’ outcome, activity clusters, correspond to coarse-
grained activities within the abstract process model. While cluster analysis
provides a large variety of algorithms, e.g., see [33], we focus on one algorithm
that suits the business process model abstraction use case in focus.

In the considered scenario, the user demands control over the number of
activities in the abstract process model. For example, a popular practical
guideline is that five to seven activities are displayed on each level in the process
model [34]. Provided such a fixed number, e.g., 6, the clustering algorithm
has to ensure that the number of clusters equals the request by the user. We
turn to the use of the k-means clustering algorithm: It is simple to implement
and typically exhibits good performance [17]. K-means clustering partitions an
activity set into k clusters. The algorithm assigns an activity to that cluster of
which the centroid is the closest to this activity. To evaluate an activity distance,
we analyze activity property values P . Since a number of alternative activity
distance measures can be foreseen, we elaborate on these in the next section.

3.2. Activity Distance Measures

To introduce the distance measure among activities we represent activities
as vectors in a vector space. Such an approach is inspired by algebraic models
that are widely used in information retrieval [3]. Section 3.2.1 discusses the
adoption of a simple algebraic model, the vector space model (VSM) [32]. While
the VSM facilitates an activity distance evaluation, it does not allow to capture
semantic relations between activity property values. The advanced vector space
models described in Section 3.2.2 overcome this limitation. Finally, Section 3.2.3
provides an alternative classification of vector space models based on types of
activity property values.

3.2.1. Vector Space Model

In information retrieval, the VSM allows to compare documents with respect
to the words they contain. Two documents containing significantly overlapping
word sets are highly similar, while documents with a small intersecting word set
have a low similarity. The VSM assumes no linguistic relation between words, e.g.,
no synonymy, meronymy, or hyponymy is considered. This assumption allows to
formalize distinct words as the dimensions of the vector space. To adapt the VSM
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Figure 2: Example of a vector space formed by dimensions FA data, QA data, Raw data

to activity clustering, we assume that any two distinct activity property values
are independent: There is no semantic relation between them. For instance, the
roles analyst and senior analyst have nothing in common. Due to this, the space
dimensions correspond to activity property values P and the vector space can
be captured as a vector (p1, . . . , p|P |), where pj ∈ P for j = 1, . . . , |P |. Consider
an example set of property values P ′ = {FA data, QA data, Raw data} and the
corresponding vector space presented in Figure 2. A vector ~va representing an
activity a ∈ Ai in process model mi = (Ai, Gi, Fi, Pi, propsi) is constructed as
follows. If activity a is associated with a property value pj ∈ Pi, the corresponding
vector dimension πj( ~va) has value 1; otherwise, the dimension πj( ~va) has value
0:

πj( ~va) =

{
1, if pj ∈ propsi(a);

0, otherwise.

For the process model m in Figure 1, activities Prepare data for quick analysis
and Prepare data for full analysis respectively correspond to vectors ~v1 = (0, 1, 1)
and ~v2 = (1, 0, 1) in the vector space with dimensions FA data, QA data, Raw
data, see Figure 2.

The similarity of two vectors in the space is defined by the angle between
these vectors: The larger the angle, the more distant the activities are. Typically,
the cosine of the angle between two vectors is used as a vector similarity measure:

sim(a1, a2) = cos( ~va1
, ~va2

) =
~va1
· ~va2

‖ ~va1
‖ ‖ ~va2

‖
.

Then, the distance between the two activities is:

dist(a1, a2) = 1− sim(a1, a2).

By construction, the vector dimension values are non-negative. Hence, the
activity similarity and activity distance measures vary within the interval [0, 1].
Returning to the example with activities Prepare data for full analysis (a1) and
Prepare data for quick analysis (a2) we observe the following similarity value:
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sim(a1, a2) =
~va1 · ~va2

|| ~va1
|| · || ~va1

||
=

1√
2 ·
√

2
=

1

2
.

In this case, the distance has the according value:

dist(a1, a2) = 1− sim(a1, a2) = 1− 1

2
=

1

2
.

3.2.2. Advanced Vector Space Models

The previous section argued how the VSM, the simple algebraic model, realizes
an activity distance measure. Recall that the VSM assumes the independence of
activity property values. To reflect this fact the VSM models activity property
values as the dimensions of the space, i.e., activity property values are modeled
by orthogonal vectors. However, in practice activity property values are often
related. For instance, data objects of the business process can be bound by is-a
and part-of relations. UML 2.0 class diagrams allow to express such relations [27].
Figure 3(a) provides an example of the UML class diagram organizing Analysis
data, FA data, and QA data by a generalization (is-a) relation. In the diagram
Analysis data is the most generic concept refined by two concepts: FA data
and QA data. In the described setting, FA data and QA data are related by a
common parent Analysis data. Obviously, the VSM does not reflect this relation.

To overcome the limitation of the VSM we consider advanced algebraic models,
like the generalized vector space model (GVSM) [40], the topic vector space model
(TVSM) [5], and the enhanced topic vector space model (eTVSM) [24]. These
models build on the basic idea behind the VSM, but reflect the relations between
activity property values. We choose to use the eTVSM to model the semantic
relations between activity property values. The advantage of the eTVSM is that
it addresses activity property value relations and specifies how to capture them
in a vector space. The key concept of the eTVSM is a topic. In our setting, topics
correspond to activity property values. For instance, data objects FA data, QA
data, and Analysis data are topics. The topics are organized into a hierarchy by
a relation. The eTVSM names such a hierarchy a topic map. Figure 3(a) shows
the class diagram containing three data objects and the generalization relation
between them. This class diagram can be read as a topic map, since it organizes
elements into a hierarchy. We formalize a relation between the topics in a topic
map by a super topic function S : P → 2P . S maps an activity property value
to its direct parent in the topic map. Note that the definition of a super topic
function S allows for multiple parents of one topic. As an example, we observe
in Figure 3(a):

• S(FA data) = {Analysis data},

• S(QA data) = {Analysis data}.

Following [24] we extend the mapping S to a transitive super topic mapping
for the k-th level Sk : P → 2P that maps an activity property value to the set
containing its parents at the k higher level:
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Sk(pi) =

{
S(pi), if k = 1;⋃

pj∈Sk−1(pi)
S(pi), if k > 1.

We also postulate an unbounded transitive super topic mapping S∗ : P → 2P so
that:

S∗(pi) =

n⋃
j=1

Sj(pi)

where n is the height of the topic map. We require the mappings S, Sk, and S∗

to be irreflexive. The mapping S distinguishes the set of leaves among activity
property values PL = {pi ∈ P | 6 ∃pk ∈ P, pi ∈ S(pj)}. In Figure 3(a) FA data
and QA data are leaves.

The eTVSM represents topics in the vector space as topic vectors and
prescribes a construction method for them. A topic vector pi ∈ PL is defined as
follows:

~pi = [(p∗i,1, p
∗
i,2, . . . , p

∗
i,|P |)]1, where

p∗i,d =

{
1, if pd ∈ S∗(pi) ∨ i = d;
0, else.

According to this definition a vector has the dimensionality of the topic set size,
|P |, since each topic corresponds to a dimension. A vector that models topic
pi has a length of 1 along a dimension if one of the two conditions holds. First,
this dimension corresponds to the topic pj that is the super topic of pi. Second,
the dimension corresponds to the topic pi. In any other case, the vector has the
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Analysis data FA data QA data

Analysis data 1.00 0.87 0.87
FA data 0.87 1.00 0.50
QA data 0.87 0.50 1.00

Table 1: Similarities between topic vectors corresponding to Analysis data, FA data, and QA
data derived according to the topic map in Figure 3(a)

length of 0 along the dimension. For the example in Figure 3(a) the activity
property values are modeled as the following vectors:

~p1 = [(1, 0, 0)]1 = (1, 0, 0)
~p2 = [(1, 1, 0)]1 = ( 1√

2
, 1√

2
, 0)

~p3 = [(1, 0, 1)]1 = ( 1√
2
, 0, 1√

2
)

Table 1 presents the similarity measure of the three activity property values
Analysis data, FA data, and QA data found using the eTVSM. In contrast to
the VSM, the eTVSM allows activity property values with a similarity different
from zero. Finally, a vector modeling an activity in the space is defined as the
sum of topic vectors. The sum is over those topic vectors that correspond to
activity property values associated with the activity a:

~va =
∑

p∈propsi(a)

~p.

To complete the illustration of the eTVSM we return to the example with
activities Prepare data for quick analysis and Prepare data for full analysis. We
evaluate the similarity of two activities given the process model m in Figure 1
and the topic map in Figure 4. First, we derive topic vectors:

~p1 = [(1, 0, 0, 0, 0)]1 = (1, 0, 0, 0, 0)
~p2 = [(1, 1, 0, 0, 0)]1 = ( 1√

2
, 1√

2
, 0, 0, 0)

~p3 = [(1, 0, 1, 0, 0)]1 = ( 1√
2
, 0, 1√

2
, 0, 0)

~p4 = [(1, 0, 1, 1, 0)]1 = ( 1√
3
, 0, 1√

3
, 1√

3
, 0)

~p5 = [(1, 0, 1, 0, 1)]1 = ( 1√
3
, 0, 1√

3
, 0, 1√

3
)

The vectors ~a1 and ~a2 capturing, respectively, activities Prepare data for quick
analysis and Prepare data for full analysis are found as follows:

~a1 = ~p2 + ~p4 = [(2, 1, 1, 1, 0)]1 = ( 2√
7
, 1√

7
, 1√

7
, 1√

7
, 0)

~a2 = ~p2 + ~p5 = [(2, 1, 1, 0, 1)]1 = ( 2√
7
, 1√

7
, 1√

7
, 0, 1√

7
)

Having the two vectors modeling activities we use them to evaluate the activity
similarity according to the eTVSM:

sim(a1, a2) = cosα =
~va1 · ~va2

|| ~va1
|| · || ~va1

||
=

6√
7 ·
√

7
=

6

7
.
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Figure 4: A class diagram capturing is-a relation between data objects of the process model

Note that the similarity measure for the activities Prepare data for quick analysis
and Prepare data for full analysis varies in two vector spaces: While in the VSM
the similarity is 1

2 , in the eTVSM the similarity measure increases to 6
7 . In this

way the semantic relations existing between the data objects have an impact on
the similarity measure. For instance, the closer proximity of activities Prepare
data for quick analysis and Prepare data for full analysis allows to achieve
aggregation shown in model m′a in Figure 1. Both activities are aggregated to
one coarse-grained activity Perform analysis.

3.2.3. Vector Space Model Types

For a process model collection c = (M,A,P, σ) we distinguish two types of
vector spaces. On the one hand, a vector space can be formed by the dimensions
corresponding to the activity property values while disregarding their type, i.e.,
all elements of P . We refer to such spaces as heterogeneous vector spaces. An
example of a heterogeneous vector space is a space with 6 dimensions Analyst,
Clerk, FA data, QA data, Raw data, and Senior analyst. On the other hand,
a vector space can be formed by the dimensions corresponding to the activity
property values of a particular type. Given an activity property type t, such a
space is formally defined by the set Pt = {∀p ∈ P : type(p) = t}. We refer to
such spaces as homogeneous vector spaces. Figure 2 provides an example of a
homogeneous vector space formed by activity properties of type Data object. We
denote the activity distance in a homogeneous space with disth(a1, a2) and in a
heterogeneous vector space with distt(a1, a2), where t is the respective activity
property type. Both distance measures can be employed for activity aggregation.
If the user wants to make use of one activity property type t only, the distance
is defined by distt. To cluster activities according to several activity property
types, disth can be employed. In addition, we introduce an alternative distance
measure distagg that aggregates multiple homogeneous distance measures distt:

distagg(a1, a2) = 1− 1

|T |
∑
∀t∈T

wt · distt(a1, a2) (1)

In Equation 1, the set T corresponds to the activity property types that appear
in process model collection c. Then, function distagg is the weighted average
value of distance measures in the vector spaces corresponding to the available
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activity property types. Coefficient wt is the weight of distt indicating the
impact of the activity distance according to property type t. We reference all
the weights in Equation 1 as ~W = (wt1 , . . . , wtn), where n = |T |. In the next

section we will explain the role of vector ~W .

4. Process Model Collection Abstraction Fingerprint

The application of different abstraction operations to one process model
leads to various abstract representations of the modeled business process. The
differences between abstraction operations are explained by their pragmatics,
i.e., various abstraction purposes. If the abstraction is realized by a human,
the modeling habits of the designer are reflected in the abstraction operation
as well. Hence, abstraction pragmatics and modeling habits of the designer are
inherent properties of the abstraction operation and together form an abstraction
style. This section explains how to use vector ~W in Equation 1 to capture an
abstraction style.

From the user perspective, vector ~W is the tool to express the desired
abstraction style. We can imagine two scenarios on how vector ~W can be
obtained. In the first scenario, the user explicitly specifies ~W . This approach is
useful if the user wants to introduce a new abstraction style. However, coming
up with an appropriate value for ~W may be challenging. Hence, the second
scenario implies that vector ~W is mined from a process model collection that
is enriched with a subprocess relation (formalized with σ in Definition 3). The
discovered vector can be seen as a “fingerprint” of the process model collection
with respect to the used abstraction style. We will now describe an approach to
discover vector ~W from such a process model collection.

The discovery of a model collection’s abstraction fingerprint is driven by the
following argumentation. Activities of a process model collection are aggregated
into more abstract activities, i.e., subprocess placeholders, by the model designer.
We aim to achieve an activity clustering algorithm that approximates this
aggregation behavior by a human. This is possible if an activity distance
measure employed by the algorithm resembles the criteria that a human designer
uses to aggregate activities into a subprocess. In general, these criteria are not
exactly known. Yet, for each pair of activities we can observe the outcome: Either
the activities belong to the same subprocesses or to different ones. For a process
model collection c = (M,A,P, σ) function diff formalizes this observation:

diff(ak, al) =

{
0, if ak, al ∈ Ai;

1, otherwise.
(2)

To mine the process model collection fingerprint ~W we select its value in such
a way that the behavior of function distagg approximates the behavior of diff.

The discovery of vector ~W is realized by means of linear regression. In our
setting, the values distt are considered as independent variables and the value
of function diff as the dependent variable; the components of vector ~W are the
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regression coefficients. The standardized coefficients indicate the impact of each
activity property type on the abstraction style. This is a way to approximate the
criteria that are employed by the human designer during abstraction decisions.
Furthermore, the regression’s coefficient of determination R2 allows to judge
how well the obtained statistical model explains the observed behavior. For our
purposes, a high R2 suggests that the discovered statistical model can indeed be
used for business process model abstraction.

5. Empirical Validation

The proposed activity aggregation mechanism calls for validation. The goal
of the validation is to learn how well the proposed activity aggregation methods
approximate the abstraction style of human modelers. First, we evaluate the
quality of activity aggregation delivered by the clustering approach. Second, we
check whether a process model collection’s abstraction fingerprint can be used
to capture the abstraction style of model designers. We empirically validate
the approaches by empirically exploring a real world business process model
collection. This section provides a detailed discussion of the validation; it
describes in detail the used process model collection, explains the experiment
design, and discusses the validation results.

5.1. Experiment Setting

As a research object we chose a set of business process models from a large
telecommunication service provider. This organization is currently in the process
of setting up a repository with high-quality process models, which are brought
together for the purpose of consultation and re-use by business users. The model
set includes 30 elaborate models, enriched with activity properties of the following
types: roles, responsible roles, IT systems and data objects. In addition, a special
type of roles, i.e., responsible roles, is also distinguished within these models.
Next to these non-control flow types of information, we also study the impact
that the activity labels and the proximity between model elements with respect to
the control flow relation have on the decision to aggregate activities into the same
subprocess. To compare activities with respect to their labels, the corresponding
vector space is formed by the words that appear in the labels. Against this
background, finding the distance between activities becomes an information
retrieval task since labels can be treated as documents in information retrieval.
The comparison of activities with respect to their control flow proximity shows
whether the neighborhoods of two activities intersect, i.e., contain the same flow
elements. Table 2 outlines the relevant properties of the process models. In the
existing repository, the models are hierarchically organized using a subprocess
relation. Within the model set, we have identified 8 subprocess hierarchies. Each
hierarchy contains a root process model refined with subprocesses, allowing for
several hierarchical levels of refinement.
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Nodes Activities Role Responsible role IT system Data object

Average 15.5 6.3 2.1 0.76 1.5 0.76
Minimum 5 1 0 0 0 0
Maximum 48 20 5 2 7 17

Table 2: Properties of business process models used in the validation

5.2. Similarity Measure Validation

Section 3 has demonstrated how cluster analysis can be used for activity
aggregation. However, the practical utility of the proposed solutions has not
been determined. This section validates the usefulness of the designed activity
aggregation based on K-means clustering. Section 5.2.1 describes the setting of
the empirical validation, while the observed results are presented in Section 5.2.2.

5.2.1. Validation Setup

To evaluate the usefulness of the advocated cluster analysis method we
compare the automatically delivered activity aggregations (retrieved activity
aggregations) with the aggregations specified by humans (relevant activity ag-
gregations). As quantitative measures, we use the notions of precision, recall,
and F-score [3]. Precision indicates the share of retrieved aggregations that are
relevant, while recall is the fraction of relevant aggregations that are retrieved.
An F-score is the harmonic mean of the precision and the recall.

Precision, recall, and F-score allow for the comparison of retrieved and
relevant activity aggregations. The reader may note that activity aggregations
differ in sizes, often containing more than two activities. This fact complicates
the comparison of activity aggregations. Consider an example of two activity
aggregations, one with a size of five and the other with a size of six. The two
aggregations may actually share four common activities. If we compare the two
aggregations as sets, we learn that the aggregations are unequal. Yet, the two
activity aggregations are highly similar, as they have a relatively large number
of activities in common. To consider the intersection of activity aggregations,
we compare activity pairs only. Given an activity aggregation we decompose
it into a set of all its subsets of size two. In this context, the comparison of
two activity aggregations turns into the comparison of two sets of activity pairs.
Consider, for instance, the set {a, b, c}, where activity c is weakly related to a
and b. This set can be decomposed into pairs {a, b}, {a, c}, {b, c}. The fact
that c is weakly related to a and b can be easily pointed out by claiming (a, c)
and (b, c) to be irrelevant. Against this background, we evaluate the similarity
of two activity aggregation sets by comparing each pair from the first activity
pair set with each pair in the second activity pair set. We claim that two pairs
coincide if they contain the same elements.

5.2.2. Observed Results

In our validation, we have varied two parameters: the distance value and the
vector space type. The distance value varies between 0 and 1 with incremental
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Figure 5: Precision, recall, and F-score observed within the validation of activity aggregation

15



steps of 0.2. As the vector space types, we have explored homogeneous spaces
with the types Responsible role, IT system, and Label, as well as the heterogeneous
vector space. The obtained precision, recall, and F-score values are plotted in
Figure 5. Note that Figure 5 does not consider the spaces with activity property
types Role and Data object since the observed precision, recall, and F-score
values fluctuate around zero in these spaces. The shown precision value varies
between 0.00 and 0.37, the recall is between 0.00 and 0.98, and the F-score
varies between 0.00 and 0.53. We can make several observations with respect to
the obtained data. First, we notice that the values moderately depend on the
distance value. This observation does not align with a theoretical assumption
that precision, recall, and F-score vary with the distance increase. The graphs
vividly illustrate the large difference in the performance of clustering in the
homogeneous vector space with the type label and the rest vector spaces. To
summarize the evaluation of the activity aggregation we conclude with the key
observations:

Recall vs. precision The recall dominates the precision.

F-score Activity aggregation exhibits high consistency fluctuating around the
value of 0.50.

Possible applications If the application context implies that the recall is more
significant, activity aggregation based on clustering is preferable. If the
application requires high precision, meronymy-based aggregation outper-
forms aggregation based on clustering [35]. Finally, the obtained precision,
recall, and F-score values witness that the developed aggregation method
cannot be used in fully automatic fashion. Against this background, we
propose to use the method to support the user with suggestions on activity
aggregations.

5.3. Abstraction Fingerprint Validation

Section 4 proposed a method to discover process model abstraction fingerprint
in a collection. At this point we provide an empirical evidence illustrating the
possibility of abstraction fingerprint extraction. Applying the method to an
industrial process model set we discuss the obtained results. Section 5.3.1 briefly
presents the validation setup, while Section 5.3.2 elaborates on the observed
results.

5.3.1. Validation Setup

To formally validate how well the designed activity aggregation approximates
the behavior of modelers clustering a set of activities into the same subprocess,
we came up with the following approach. For each pair of activities that belong
to the same process hierarchy, we have evaluated two values in the process model
collection: diff and dist. Here, diff describes the human abstraction style, which
indicates whether the activities have been placed in the same subprocess or
not. The value of dist represents the vector space distance between the two
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All models 0.70 0.61 0.60 — 0.34 0.58 0.74 0.65 0.77
Test1 0.79 0.76 0.75 — 0.42 0.60 0.79 0.69 0.79
Test2 0.64 0.56 0.56 — 0.43 0.62 0.68 0.70 0.70
Test3 0.68 0.58 0.58 — 0.53 0.64 0.68 0.72 0.71
Test4 0.61 0.47 0.45 — 0.20 0.48 0.70 0.56 0.52
Average1−4 0.68 0.59 0.58 — 0.39 0.59 0.71 0.67 0.68

Table 3: Correlation values observed in the K-fold cross validation

activities in accordance with our approach. To discover if the two approaches
yield similar results, we study the correlation between the two variables. A
strong correlation of two variables suggests that dist would be a good distance
measure in the clustering algorithm. In this case, the inclusion of two activities
within the same subprocess is mirrored by a similar, close positioning of the
corresponding vectors in the vector space. Given the nature of the observed
variables, we employ Spearman’s rank correlation coefficient.

In the following, we first investigate the human abstraction style in the model
collection as a whole. Then, we verify the results organizing a K-fold cross
validation. We partition the model sample into 4 subsamples, i.e., k = 4 and
perform four tests. In each test, three subsamples are used to discover vector ~W ,
while the fourth subsample is used to evaluate the correlation values between the
diff and dist measures in different vector spaces. In this way, an obviously more
reliable insight is developed into the question whether the human abstraction
style can be mimicked than by using the whole process model collection for both
the discovery and the evaluation of this correlation.

5.3.2. Observed Results

Table 3 outlines the validation’s results. The columns in the table correspond
to distance measures. While the first 6 columns correspond to distances in
homogeneous spaces, the last three columns reflect the distance measure taking
into account multiple activity properties. All three distance measures make use
of the activity property types in columns 1–6. The distance disth is measured
in heterogeneous vector space, where dimensions are activity property values
of types listed in columns 1–6. The distance measure distavg is the average
value of distances in columns 1–6. The distance measure distagg is evaluated

according to Equation 1. Vector ~W used in distagg is obtained using linear
regression as described in the previous section. Rows of Table 3 correspond to
experiments. The first row describes the study of the whole model collection.
Rows 2–5 describe the results of 4 tests along the K-fold cross validation we
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explained earlier, while the last row provides the average correlations observed
in the 4 separate tests.

The correlation values that are presented in Table 3 are all significant using
a confidence level of 99%, i.e., all p values are lower than 0.01. However, no
statistically significant results were obtained for the distance in the homogeneous
vector space that corresponds to Data objects. Overall, the presented correlation
values range around 0.7. This level is generally considered to indicate a strong
correlation [12, 13], even more so in situations where human decision making is
involved. Therefore, we can speak of a strong relation between the dist and diff
measures.

Among the distance measures in homogeneous spaces, one can point out the
distance in the Role space that overall displays the highest correlation values
for the different studies (0.61–0.79). In contrast, correlation values for Label
are the lowest (0.20–0.53). Another observation is that distances taking into
account multiple activity property types tend to have higher correlations. From
these, distagg outperforms all other distance measures with a value arriving
at 0.77 when all models are considered. For the average values of the K-fold
cross validations, however, disth, distavg, and distagg demonstrate a similar
performance, with correlation values of 0.71, 0.67, and 0.68 respectively. This
observation can be explained by the fact that distagg is parameterized by vector
~W , the abstraction fingerprint of a particular model set. Thus, the distance
measure distagg “trained” on one model set may never excel distavg, once the
set of models is changed. Tests 1–4 support this argumentation. Note that this
result does not restrict the applicability of the approach: In a real world setting,
the goal is to transfer the abstraction style from one model set to another. The
average values in the lower row should, therefore, be seen as most important
among the ones displayed.

A careful inspection of the linear regression results associated with parame-
terizing vector ~W provides additional insights. In particular, we are interested
in the observed R2 values and the beta coefficients (also known as ‘standardized
coefficients’). The R2 for the whole model set, as well as the average value
for the K-fold cross validation is 0.52. This value shows the explained level
of variation in abstraction style as explained by the various distance measures
under consideration and can be considered as moderately strong. The beta
coefficients of the distance measures in various spaces reveal their impact on
the activity aggregation. The beta coefficients for activity property types Role
and Responsible role have average values of 0.55 and 0.37, respectively. At the
same time, the standardized coefficients of Neighbor and Label property types
fluctuate around 0. The average value for IT systems is somewhere in between,
with a beta coefficient of 0.19. The provided numbers illustrate that the activity
property types Role and Responsible role have a big impact on the abstraction
style of the considered process model collection. IT systems does contribute to
the activity aggregation as well, but the influence of activity labels and activity
neighborhood is insignificant. Clearly, such insights may differ from one process
model collection to the other.
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The validation indicates that the suggested distance measures can be used
to closely approximate the abstraction style of human modelers. Among the
introduced measures, distagg is of particular interest as it takes into account
the abstraction style of a specific process model collection. Furthermore, the
empirical validation revealed activity property types, Role and Responsible role,
that have the highest impact on the abstraction style for this particular collection.

6. Related Work

The topic of business process model abstraction can be related to several
research streams. We discuss these streams looking both from the perspective of
the software engineering and business process management disciplines.

Model properties and relations are thoroughly investigated in the software
engineering area. For instance, in [22, 23] Kühne elaborates on the concepts of
model, metamodel, model types, and model relations. These works systematically
describe and organize relations, e.g., generalization and classification, which
are seminal to the problem of model abstraction. Closely related are also the
studies that cover model granularity. In [18], the authors investigate model and
metamodel granularity. The authors compare several metamodels and come up
with best practices with respect to granularity. One can observe that the relation
between a coarse-grained activity in an abstract model and its counterparts in the
initial model is the meronymy, or part-of, relation. Meronymy has been studied
in depth in the software engineering domain [4, 14]. Although the referenced
papers do not provide concrete techniques for the implementation of abstraction
within process models, they facilitate a better problem understanding and help
to identify the main concepts in this domain.

Business process management is the discipline concerned with using methods,
techniques, and software to design, enact, control, and analyze operational
processes. A large body of knowledge corresponds to the topic of process
model analysis based on model transformations. Model transformations can
be reused in the context of the abstraction problem. An example of such a
transformation consists of reduction rule sets for Petri nets, e.g., see [6, 26, 31].
Each reduction rule explicitly defines a structural fragment to be discovered in
the model and a method of this fragment transformation. Hence, reduction rule
sets enable process model abstraction through an iterative application of rules.
As the transformed process fragments are explicitly defined, each reduction
rule set handles only a particular model class. Thereby, each reduction rule set
requires an argument about the model class reducible with the given rules. The
model class limits the application of abstraction approaches based on reduction
rules [7, 11]. Process model decomposition approaches are free of this limitation:
They seek for process fragments with particular properties. An example of such
a decomposition is presented in [38], where single entry single exit fragments are
discovered. The result of process model decomposition is the hierarchy of process
fragments according to the containment relation, i.e., the process structure
tree. Such a tree can indeed be used for abstraction in process models [28].
Finally, one can distinguish model transformations that preserve process behavior
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properties. In [1], van der Aalst and Basten introduce three notions of behavioral
inheritance for WF-nets and study inheritance properties. The paper suggests
model transformations, such that the resulting model inherits the behavior of
the initial model. An approach for process model abstraction can exploit such
transformations as basic operations. While the outlined model transformations
can support solving the general problem of process model abstraction, they all
focus on structural and behavioral aspects of models and model transformations,
leaving the semantic aspect out of scope.

Many tasks in the management of large process model collections can be
traced back to the problem of activity matching, which is closely related to the
problem of business process model abstraction. Examples of such management
tasks are: the search for a particular process model over a process model set or
ensuring the consistency of models capturing one and the same process from
different perspectives. Activity matching is realized through analysis of activity
properties: activity labels, referenced data objects and neighboring activities.
In [10, 39] the authors suggest activity matching algorithms and evaluate them.
While the named works explore the existing process models and do not directly
address the problem of process model abstraction, their results have a potential
of being applied in business process model abstraction. Semantic aggregation of
activities relates to research on semantic business process management. Notice
that process models enriched with semantic information facilitate many process
analysis tasks, see [19]. Along this line of research, several authors argue how
to use activity ontologies to realize activity aggregation [8, 25]. It should be
noticed, however, that such works imply the existence of a semantic description
for model elements and their relations, which is a restriction that rarely holds in
real world settings.

Establishing an activity’s granularity level is also a recurrent challenge in
process mining, where logs contain records that are often very fine-granular. As
such, the process models directly mined from the logs can be overloaded with
information making them hard to comprehend. Activity clustering is an efficient
means to raise the abstraction level for the mined models. In [15, 16] Günther
and van der Aalst propose activity aggregation mechanisms based on clustering
algorithms. The mechanisms extensively use information present in process logs,
but which are less common for process models, i.e., timestamps of activity starts
and stops, activity frequencies, and transition probabilities. Thus, in contrast
to the activity aggregation approach proposed in this paper, process mining
considers other activity property types for clustering and utilize other clustering
algorithms.

7. Conclusions and Future Work

Despite the fact that the topic of business process model abstraction has
been addressed in a number of research endeavors, this paper proposes a novel
approach in this area. Specifically, it exploits semantic aspects—beyond the
control-flow perspective—to determine the similarity between different activities
for the purpose of abstracting from overly complex process models. As shown,
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the relevant levels for evaluating such similarities can be determined on the basis
of an existing collection of process models to which abstraction has already been
applied.

Our main contribution is a method to discover sets of related activities, where
each set corresponds to a coarse-grained activity in an abstract process model.
As a second contribution, we propose an approach to discover the abstraction
style that is inherent to a given process model collection, which is reusable for
new abstraction operations. Both contributions are of high practical interest
since they addresses model management issues recurrently appearing in process
modeling projects. The experimental validation provides strong support for the
applicability and effectiveness of the presented ideas.

Our approach is characterized by a number of limitations and assumptions.
First of all, we build on the assumption that all kinds of semantic information,
such as data objects, roles, and resources, can be observed within the descriptions
of process models in industrial collections. The process model collection we
obtained through our cooperation with a large telecommunication company
indeed confirms this idea, just as this seems to be the case for other industrial
repositories that are often referenced, e.g., the SAP Reference Model [21]. Clearly,
we cannot make a universal claim about the validity of our assumption. Secondly,
in our validation we have merely focused on the appearance—or lack thereof—of
two activities within the same subprocess or process model. It can certainly be
imagined that a more fine-grained correspondence measure would yield different
and perhaps even more useful results.

These and other limitations guide our future research plans. The direct next
step for us is to consider other clustering algorithms and compare their results
with the solution introduced in this paper. From a more practical perspective, it
is important to come up with suggestions for names of coarse-grained activities
that form the product of activity aggregation. Finally, we would like to improve
the validation method for activity aggregation. In particular, a validation that
would involve human modelers and stakeholders who can provide qualified
feedback would further strengthen the confidence in and practical use of the
proposed activity aggregation approach.
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