
Integrating Business Process Reengineering with
Application Development under Architecture

H.A. Reijers1 and R.A. van der Toorn2,3

1Eindhoven University of Technology, Department of Technology Management,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

 h.a.reijers@tue.nl
2Eindhoven University of Technology, Department of Mathematics and Computing Science,

P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands
 r.a.v.d.toorn@tue.nl

3 Deloitte & Touche Management and ICT Consultants,
P.O. Box 23103, NL-1100 DP, Amsterdam, The Netherlands

 rvandertoorn@deloitte.nl

Abstract
Business process reengineering (BPR) is one of a company's major instruments to achieve
improved performance. BPR projects almost always include major efforts on developing and
integrating information technology. This paper addresses how BPR and application
development may be methodologically integrated, building on a product-based design of
business processes and a component-based IT development. An architectural framework
inspired on Zachman's is used as a frame of reference. The need for a closer integration
between BPR and application development is shown by a case study, which involves an
actual BPR project for a large Dutch bank. The paper also includes an example to illustrate
the presented methodology.

Keywords:
BPR, application development, systems architecture, formal modeling, case description.

Introduction
At the beginning of the 21st century, process thinking and Business process reengineering
(BPR) (Hammer and Champy, 1993) have become mainstream thinking for business people
and systems people alike. At the same time, methodologies for application development have
matured and substantial standardization is taken place in the field of modeling techniques, e.g.
UML (Kruchten, 2000). However, little attention has been paid so far how application
development should be aligned with the new design of a business process. It is not difficult to
imagine the consequences of such a lack of alignment. It is shown in this paper that these
consequences are indeed encountered in practice.

The contribution of this paper is that it presents a methodology which links the redesign of a
business process to the development of information systems that support such a design. The
tightness of this link is accomplished by showing how the different proposed models used
during the phases of a BPR project are related to each other. Models are placed within an
architectural framework, which is a variant on that of Zachman (1999). The heart of the
methodology is the Product Based Design (PBD) approach, which can be used to create
efficient and effective business process designs (Reijers and Voorhoeve, 2000; Aalst, Reijers

and Limam, 2001). The part of the methodology which is concerned with the actual
application development can be classified as component based (CB) (Booch, 1994; Garlan
and Shaw, 1993; Szyperski, 1998). A CB approach in systems development has several
advantages over more traditional ones, such as a clearer separation of concerns and an
increased control of the development project.

Considerable attention within the presented methodology is paid to formal correctness of the
derived models and their validation with end users. This is to ensure as much as possible that
a new process – once supported by its aligned information systems – will indeed render the
performance as envisioned at the start of the BPR project.

The structure of the paper is as follows. First, we will give a frame of reference for the
presented methodology. Then, our practical experience with BPR and application
development in a recent project for a Dutch bank is described. The methodology is given in
some detail, distinguishing several steps and, for each step, its intent and its deliverables. We
have included a non-trivial example of developing a new business process in a financial
environment and an overview of related work. Finally, we present a summary and the
intended extensions of the presented methodology.

Frame of reference

Product Based Design
Product Based Design (PBD) is an approach to derive business process designs in
administrative settings. PBD is a prescriptive design method which basically translates a
manufacturing concept to the world of administrative processes, such as found in banking,
insurance, government, etc. Material Requirements Planning, often referred to as MRP-I,
determines the production schedule based on the ordered quantifies, current stock, and the
composition of a product as specified in a so-called Bill-of-Material (Orlicky, 1972). In other
words, production is driven by the structure of the product. With PBD the structure of an
informational product, such as a mortgage loan or a social insurance permit, is decomposed
into a structure of informational elements which are used to derive a process design. Actual
information elements of an administrative product may be related to each other in several
ways.

Aalst et al. (2001) describe strategies for the derivation of an optimal process design on basis
of the information element structure. The problem of deriving such a design is to select a
proper set of production rules and subsequently order them in such a way that an optimal
performance with respect to the optimization goals may be expected.

Actual application of PBD has rendered process designs that are radically different from the
existing processes they replaced and render flow time reductions of up to 35 % and cost
reductions of up to 75 % (Reijers and Voorhoeve, 2000; Crom and Reijers, 2001). Note that
an important difference between PBD and traditional approaches is that PBD does not take
the existing process as the starting point of the BPR initiative. Rather, it focuses on the very
legitimization of the process: the products it should deliver.

An architectural framework
To discuss the use of the PBD deliverables in a system development effort it is useful to
distinguish the architecture of an information system first. System architectures focus on the
structure of a system, which comprises smaller components, the externally visible properties
of those components, and the relationships among these components (Shaw and Garlan,

1996). An architecture can be defined as the fundamental organization of a system embodied
in its components, their inter-relationships, the relations to their environment, and the
principles guiding its design and evolution (IEEE, 2000). System architectures are important
because they provide descriptions of the system at various levels of abstraction. Hence,
system architectures enable various stakeholders to deal effectively with the complexity of a
system and to reason about it at various levels of abstraction. Moreover, architectures are a
means to integrate the various views of a system (Kruchten, 1995).

We will use an architectural framework that is a variant of the popular information systems
architecture of Zachman (1999). Zachman defines an information systems architecture as a set
of architectural representations (or models) placed within two dimensions: the perspective and
the description type. The distinguished perspectives agree with the interests of different
stakeholders in a system development effort. A manager's view on the system differs from
that of an designer, a programmer's view may be completely different from both. Each of the
participant's views is, however, relevant to develop the system successfully. We distinguish
the following perspectives:

• the business perspective distinguishes the purpose of the system in terms of the
objectives of the company,

• the logical perspective focuses on a logical description of the information system (its
functionality) to support the business goals,

• the technical perspective is concerned with the software that realizes the desired
functionality of the information system,

• the infrastructural perspective involves the hardware and general software required for
the business-specific software to be executed.

Note that in distinguishing these perspectives we condensed Zachman's original five layers
into merely four. In our consultancy practice we experienced that these layers are better
recognized by all stakeholders than the complete Zachman framework, which is often too
complex for the problem class.

The second dimension of the framework involves the different types of descriptions one can
make of an information system. These types are applicable for each of the distinguished
perspectives. Zachman proposes the universal 'what', 'how' and 'where' questions as the
important types. At the same time, he admits that the 'who', 'when' and 'why' question may be
just as important, but dismisses them from his framework. We believe that distinguishing the
data, the functions, and the process type of descriptions on the one hand and components on
the other hand can capture a comprehensive treatment of the most important issues:

• a data model involves a description of the relevant entities or objects,
• a function model focuses on a description of the involved functions or services,
• the process model expresses how data and functions are integrated into an ordered

network,
• the component model introduces hierarchy and encapsulation and is therefore a mean

to reduce and divide the complexity of a system.
Note that unlike the data, functional, and process model that focus on a single aspect of the
entire system, a component integrates all aspects of a particular part of the system in its
environment. Also note the similarities with the ARIS framework (IDS Scheer, 2001).

The complete framework is depicted in Table 1. For each combination of a certain perspective
and a type of description, examples of common representations or types of models are given.

 Data Function Process Component

Business Lists of

- customers

- suppliers

- resources

Lists of

- products

- services

Business processes
overview (purchasing
customer care, support
processes, etc.)

Company structure:

departments

(back, mid and front
office)

Logical - class diagram
(data)

- ER-diagram

- product structures

- constraints

- messages

- class diagram
(methods)

- data flow
diagram

- functional
specifications

- detailed process
model

- use case
descriptions

- logical
component model

- logical interaction
model

Technical - database model

- file descriptions

- message structures
(XML / Custom)

- software
specifications

- component
configurations

- technical
frameworks

Workflow Management
System specifications
and configurations

- software
component model
with interactions

- interface
specifications

- distinctions of
Software
Packages (CRM,
ERP, HEM, etc)

Infra-
structure

storage capacity - processor speed

- network
functionality

- I/O-access

- performance
issues

operating system Hardware model
including

- computers

- network
infrastructure

Table 1. An Architectural Framework

Practical experience
The development methodology as presented and illustrated in the following sections is based
on our experiences in a large BPR project. During the years 2000 and 2001, we participated in
a project to redesign a major bank's process for handling credit applications of commercial
parties. The group to which the bank belongs is a global financial institution of Dutch origin,
active in the field of banking, insurance, and asset management in 65 countries with more
than 100,000 employees. The process that was redesigned is executed at all its Dutch offices
and handles on a yearly basis some 25,000 applications for loans and credit facilities. The
project also involved the development of new applications, systems integration with existing
applications, and the introduction of a Workflow Management System to support the process
execution.

At the start of the project in the beginning of 2000, the PBD methodology was selected for the
technical redesign of the process. Simultaneously, the choice was made for a particular
software development method. Directly from the start, two project teams were formed that
respectively concerned themselves with the process design (the process team) and application
development/systems integration (the IT team). Both teams started off simultaneously. The IT
team started to analyze the existing situation with respect to the existing systems and

architecture, while the process team tried to understand the process that was to be redesigned.
Subsequent activities of both teams focused on analyzing information requirements within the
process, modeling found data dependencies, defining required services of applications, etc.
These activities clearly overlapped, although the relations between the delivered models of the
separate teams was unclear.

After four months, the process team finished its design and handed it over to the IT team.
Some inconsistencies became directly obvious between the needs of the proposed business
process on the one hand and the proposed services to be delivered by the new applications on
the other. The IT team was given the responsibility of exactly finding and sorting out all the
differences. However, the IT team found it difficult to break away from the form and the
content of their initial models. As suspicion continued about the correctness and consistency
of the various models, members of both teams proposed to build a prototype of the new
process, including the rough functionality of the new applications. The general management
could, however, not be convinced of the cost-effectiveness of such a prototype. Application
development then took off without a clear point of understanding between the involved
parties. After half a year of development, applications were build that could not support the
needs of the new business process from the perspective of the process team. In response, a
different development methodology was selected but this did not improve the quality of the
delivered applications.

We identified the following two major issues that caused the troublesome course of the
project:

• the lack of alignment between the process redesign and application development
From the start of the project, it was unclear how the activities and the deliverables of
the project teams were linked to each other. Although their perspectives are inevitably
different, it was not clear how the various models were related during the entire course
of the project.

• the lack of validation and verification activities early in the project.
No points were introduced early in the project to test and assess the models rendered so
far against the expectations of the various stakeholders.

In the next section, we present a methodology that counters these issues.

A development methodology on basis of PBD
The development methodology we propose is outlined in Figure 1. On the left-hand side of
the figure from the top to the bottom of the page, the six main steps are listed as boxes with
rounded corners. Some of these steps are elementary, while other steps are more complex
(i.e., steps two, three, and four). Control steps to verify and validate the deliverables of the
main steps are depicted in the middle of the figure as smaller boxes. They are assumed to
directly follow up the main step they refer to.

At the right-hand side of the figure, the architectural framework as introduced in Table 1 is
depicted several times. For each main step, the shaded boxes in the respective framework
representation indicate which aspects and architectural levels are covered by the deliverables
of the particular development step. The shaded boxes in Figure 1 illustrate that the presented
design methodology involves all architectural levels and aspects that were introduced in Table
1.

Clearly, the emphasis of the methodology is on the design-phase. We will know discuss of the
main and control steps of Figure 1 their intent and deliverables.

3. Design
Logical User

Interface

3a. Validate by
Prototyping or

Gaming

Business
Data

Infrastructure
Technical
Logical

Function Process Component

4. Componentize
Business and
Create Class

Model

4a. Check
Correctness by

Component Theory

Business
Data

Infrastructure
Technical
Logical

Function Process Component

Architect
Logics

D
ES

IG
N

IM
PL

EM
EN

T
5. Technical

Design Configure
Develop & Buy
Components

Architect
Technics

Business
Data

Infrastructure
Technical
Logical

Function Process Component

Architect
Business

2. Redesign
Process with PBD

2b. Simulate for User
Validation

2c. Analyse
Performance

2a. Check
 Correctness by
Process Theory

Business
Data

Infrastructure
Technical
Logical

Function Process Component

1. Determine
Existing

Architecture

Business
Data

Infrastructure
Technical
Logical

Function Process Component

6. Determine
Infrastructure and
Deploy Software

Determine
Infrastructure

Business
Data

Infrastructure
Technical
Logical

Function Process Component

STEPS FRAMEWORK

Figure 1. Architectural Design Methodology based on PBD

1. Determine Existing Architecture.
• Intent: The challenge of this first step is to analyze the current situation and to describe

it in a number of consistent architectural models.
• Deliverables: The deliverable of this step is a complete architectural description of the

information systems that needs to be changed, as well as its environment.

2. Redesign Process with PBD
• Intent: In the second step, a process redesign project is carried out. The goal is a new or

an improved business process design. In this methodology, we propose the use of PBD.
• Deliverables: Applying PBD requires results in two detailed deliverables: (i) an

information element structure including production rules and (ii) a process design. Both
models relate directly to the business needs, but are also of interest from information
system designers.

2c. Analyze Performance
• Intent: The performance of the design is determined with respect to performance

indicators such as throughput time, service time, waiting time, occupancy rate, etc.
Simulation or analytical approaches may be used for this purpose (see e.g. Desel and
Erwin, 2000).

• Deliverables: If the design is satisfactory, then there are no new deliverables. In case
the design is unsatisfactory, the design is altered. Another possibility is that a choice
between various alternative designs is made after this step.

3. Design Logical User Interface
• Intent: In the third step of the methodology, the logical user interfaces of the systems

that will support the process execution are defined.
• Deliverables: The design of logical user interfaces may result in an adapted process

model, with tasks that are either fused or split up in sub-tasks. Moreover, for each task
a logical user-interface is defined that can be used by GUI designers as starting point
for further development.

3a. Validate by Prototyping or Gaming
• Intent: The purpose of this control step is the user validation of the content of the tasks

within the process design. This validation step is done by prototyping the new system
or by gaming (Guha, Kettinger and Teng. 1993). A methodical way of doing this on
basis of PBD is presented by Crom and Reijers (2001), as well as a case description.

• Deliverables: The validation step renders an improved process model with respect to
the content of the tasks. Also, different grouping of information elements on the user
interface may be determined.

4. ‘Componentize’ Business and Create Class Model
• Intent: This main step aims at creating component and class models for the system

development effort. They cover the data and function aspects in detail on the logical
level.

• Deliverables: The specific deliverables of this step are a component model, a class
model, a component interaction model, and a cross-reference table. In the first two
models, the business data and services are structured into logical entities. A component
and class model at the business level define the relation between business components
and classes on the one side and all the business processes on the other. The component
models contain the following parts: a component structure, a class model, and a life
cycle of the component itself (or of its principal class). In the third model – the cross-
reference table – the interaction between these structures is described. Also, the relation
between the redesigned process and the components is specified. In a cross-reference
table, the tasks of the process are listed on the horizontal axis and the methods of the
components are listed on the vertical axis. An intersection point of two elements from
the list, indicates the usage of the method provided by the component in the respective
task.

4a. Check Correctness by Component Theory
• Intent: The final control step within the proposed methodology aims at checking the

interaction of logical components within their environment. First, the individual

component models that have been created are placed in a global model. In such a model
the problem of the coordination of the processes or life cycles among components is
addressed. Aalst, Hee, and Toorn (2002) have effectively solved this problem.
Secondly, interaction scenarios, i.e., use cases, between components can be executed
manually. This gives an insight in the collaboration of components. these steps may
lead to improvement of the components and the business process design.

• Deliverables: The deliverables of this step are an improved component model, an
improved class model, an improved component interaction model and, finally, an
improved cross-reference table.

At the end of the fourth phase the design of the system is complete, consistent, and validated
by all stakeholders. In the fifth step, the logical components and the process specifications are
translated into a technical design. As a final step, hardware and network issues need to be
addressed. The contents of both phases depend highly on the technical solutions that are
selected. These issues are not within the scope of this article.

A credit facility example
We will illustrate the methodology as presented in the previous section with an example. The
example concerns a Credit Facility process which is inspired by an actual application of the
methodology. A Credit Facility is a product for existing customers of an imaginary bank.
Analysis of documents, systems, and daily work of employees that have to deal with the
credit facility process determine the existing architecture (Step 1). The deliverables are at all
levels of the model introduced in Figure 1. At the business level, we have a precise product
definition which unambiguously defines the scope of the credit limit service of the bank, a
description of the credit facility process, a description of the customers that are served by this
process, a description of the services, and a list of departments, persons, roles and functions
involved in the credit facility process. At the logical level we have Business Class models
with classes concerning important business objects, Data Models including constraints, a
detailed process description of the current credit facility process such as currently used within
the bank, and descriptions of supportive processes. The technical models are not discussed for
reasons of space.

The step 'Redesign Process with PBD' (Step 2) is an interesting part since it is the key of our
development methodology. Figure 2 graphically depicts an information element structure
(IES) of a Credit Facility. From the IES we learn that customers ought to have a salary
account to obtain a credit facility at this bank. In a more formal sense, it specifies e.g. a value
for information element 22.type can be used to determine a value for 10.credit limit, but that is
also used (among other information elements) to determine 6.credit proposal. In Figure 3 the
corresponding Credit Facility Process is depicted; this is the other deliverable that results
from applying PBD. The process is depicted with the Petri net modeling technique as a
workflow net (Aalst, 1998). Milestones are depicted as circles and tasks as boxes. In each task
of the process model a link is made to the information elements that are used in that particular
task. In each task, the values of a set of information elements are used to produce values for a
number of other information elements. In Figure 3, the respective production rules are
depicted alongside the tasks. For example, the task creditability check incorporates a
production rule that determines an outcome of the 12.creditability check on basis of
29.customer information. Note that this production rule exists in the IES of Figure 2. The
production rule is applicable because the intake task has provided the required customer
information.

1.credit facility

2.credit
agreement

3.credit
card

29.
customer

9.signed product
conditions

26.salary
account

10.credit
limit

11.credit
compensation

12.creditabili-
ty check8.credit id

19.date
expiry

17.signature
customer

13.automatic
collection

4.fiat and
release

16.product
conditions

27.salary
account nr

28.minimal
income
month

23.
base

24.sur-
charge

25.rcf start
date

18.
intrest

6.credit
proposal

20.collection
amount

21.collection
expiry date

7.employee

14.employee
name

15.employee
function

30.
name

31.
address

32.house
number

33.
ZIP

34.
place

35.
tel.

36.day
of birth

37.birth
place

5.card expiry
date

22.type

Figure 2. The Information Element Structure of the Credit Facility

The designed process is optimal in the sense that service and response times are minimized.
This optimization is obtained by smartly ordering so called knock-outs, i.e., decision points
between direct termination of the process or continuation (Aalst, 1998). The knock-outs in
Figure 3 are just after the salary and creditability check and just after the execution of the fiat.
These points are ordered in such a way that early termination of the process at the lowest
possible cost is most likely.

Typically a PBD process specification is situated in the architectural model in Table 1 on both
the business and the logical level. It is present in the business level since it is easy to interpret
from it the flow of the business process at a high level. It is recognizable by end-users and
managers. The logical level is involved since each task also contains the production rules for
the information elements. Therefore, the process specification can be used to communicate
the new process to managers, end-users and business analysts, but also with system analysts
and architects. For the latter group not only the process specification but also the IES is of
interest, as it is the starting point for the integration of the respective data and functions into a
system architecture.

With respect to the logical user interface (Step 3), a single logical window could be made with
which an end user could determine the credit limit, the collection amount, collection expiry
date, automatic collection, interest date expiry, credit compensation, and the card expiry date.
Note that if information elements of different tasks can be satisfactorily grouped together in

one window, then the structure of the IES tree must still be respected within the window.
Grouping of information elements of several small tasks that are either causally independent
or are placed in succession can now be fused in the process design. A detailed treatment of
deriving logical user interfaces on basis of the PBD deliverables is described by Crom and
Reijers (2001).

determine credit
limit

det automatic
collection

det collection
amount

check salary
account

start dcl

finished dac

finished dcl

finished dca

start check salary account

finished check salary account

intake

execute fiat and
release

create and
show credit
proposal

create new
credit agreement

create and send
credit card

checks OK give
credit ID

determine type

join

det collection
expiry date

start credit facility process

end credit facility process

second knock out place

contract created

credit proposal ready

first knock out place

Continue

start dced

finished dced

creditability
check

determine intrest

start creditability check

finished creditability check

start di

finished di

det card expiry
date

determine credit
compensation

fiat not OK

finished dcc

finished card

determine date
expiry

finished dde

start dde

checks not OK

16,17 →9
30,31 →29
Account Manager →24
Customer →25

27,28,29 → 26 29 → 12

system → 8

28 → 22

22 → 10 23,24
→ 18

25 → 19

22 → 20

20,21 → 13

25
→
21

18,19 → 11

25 → 5

8,9,29,26,22,10,11,25,12,13 → 6

6,7 → 4

6,4 → 2

4,8,5,30 → 3

Figure 3: The Credit Facility Process

CS
customer

remove
customer

add customer

get customer
accounts

get customer
data

update
customer data

customer

+get customer data(name : string, address : string) : customer_and_address
+get customer accounts(name : string, address : string) : account
+add customer(new cust : customer) : customer
+remove customer(name : string, address : string) : customer
+update customer data(old data : customer, new date : customer) : customer
+add customer account(customer name : string, customer address : string, new account number : number, product type : string) : account
+remove customer account(account number : number) : account

-name : string
-nationality : string
-date of birth : date
-place of birth : string
-social security number : number

address

+get current address() : address
+change address(old address : address, new address : address, change date : date) : address

-address : string
-house number : string
-ZIP code : string
-place : string
-telephone number : number
-description : string
-valid from : date
-valid to : date

1..n

customer account

+get customer account() : account
+add account(new account : account) : account
+remove account(account number : number) : account

-product type : string
-account ID : string

1..n

add cust
account

change
address

remove cust
account

i

remove customer

add customer

get customer
accounts

get customer
data

update customer
data

add customer
account

change address

remove customer
account

o

Figure 4. The Customer Component Specification

A component model, such as presented in Figure 4, is created in Step 4 from the deliverables
obtained by the previous steps in the following way:

• Firstly, all information elements are mapped onto the necessary business components.
The necessity of these components depends on the scope and environment of the
information system of which the process is a part. There are two possibilities: (1)
business components may already exist, since they are already used for other
information systems or (2) they have to be invented.

• Secondly, inside these components these information element are clustered in classes.
If necessary, new classes are created.

• Thirdly, operations that are carried out in the tasks of the process model are introduced
in the component model and its classes. If possible they linked to already existing
methods, otherwise new methods are defined. A method should always be present
when there is an information element that occurs in both the task and the class.

An example of the component and class model is given by Figure 4. This figure depicts the
CS Customer, i.e., the component specification of the customer component. At the left-hand
side of the figure the methods of the component are depicted. These methods are called
directly from tasks within the designed business processes. Therefore, they also occur in the
task-component cross-reference table. (This table is important but straightforward; therefore
an example is omitted.) Clearly, the methods present at the component interface may be
services used by more than one business process alone. Furthermore, each interface method is
also attached to a class inside the component. Vice versa, not all methods of classes are
methods of the component. Note that there is a distinction between private and public
methods, which we will not discuss for the lack of space.

Consider for instance the process task intake of the process design in Figure 3. The
information element 29.customer is retrieved by calling the method get customer data of the
CS customer component with the parameters 30.name and 31.address. The inner working of
the get customer data method is hidden for the outside of the component, however the method
get customer data of the customer class uses its link to the address class to retrieve from that
class the address data of a customer.

Clearly, the inner structure of a component comprises a number of business classes. Typically
these classes capture the static structure of the component and a number of operations upon
them. Apart from the list of methods components typically have an interface protocol. Such a
protocol is an abstraction of the life cycle of a component or of its principal class and is the
observable behavior of a component from the outside. In Figure 4 this life cycle is depicted at
the right-hand side of the component. Obviously, this life cycle is very basic: a customer can
be created and deleted. Only between creation and deletion of a customer object a number of
operations can be executed. Including the life cycle of a component into the design can avoid
many mistakes.

Related work
On a general level, the relation between information technology and BPR is much
investigated. An important distinction in this respect is the one between change technologies
and support technologies (Childe, Maull and Mills, 1996). Change technologies support the
analysis, modeling, and mapping of existing processes, assessing their efficiency and
effectiveness, measuring performance, and providing structured support for the change
project's management and associated planning and control functions. Support technologies
relate to implementing information systems to support the process configuration needed.
Obviously, support technologies are linked to application development; we refer to change
technologies when mentioning tools such as ExSpect (Aalst et al., 2000) and Woflan
(Verbeek and Aalst, 2000). Various advantages of applying IT within the setting of BPR are
recognized, such as cost reduction, time elimination, and error minimization (see e.g. Al-
Mashari and Zairi, 2000; Sharp and McDermott, 2001). Gunasekaran and Nath (1997) and
Lyons (1997) present overviews of the various types of IT typically applied in a redesigned
business processes. Several IT issues are seen to be of influence on the success or failure of a
BPR projects, such as an effective IT infrastructure (Al-Mashari and Zairi, 1999; Broadbent,
Weill, and St. Clair, 1999) and sufficient technical IT competence (Teng, Fiedler and Grover,
1998).

With respect to the separate topic of business process reengineering, several methodologies
exist (e.g. Hammer and Champy, 1993; Manganelli and Klein, 1994)). As we mentioned
earlier, few BPR approaches exist (e.g. Aldowaisan and Gaafar, 1999; Hofacker and
Vetschera, 2001) that are comparable with PBD in aim and depth. The sheer absence of
prescriptive methodologies for redesigning business processes is also recognized by Gerrits
(1994) and Sharp and McDermott (2001). With respect to application development an
abundance of methodologies exist (e.g. Martin (1991); Kruchten (2000).

The main issue of this paper, the lack of synchronization between the application of BPR and
IT, is also identified as problematic by Donovan (1994) and Murray and Lynn (1997). Bond
(1999) recognizes similarities between models for BPR on the one hand and systems
development on the other, without addressing their combined development. Sharp and
McDermott, 2001 give an approach that does treat BPR and application development in an
integrated manner. However, the relations between the various proposed models is only
superficially discussed. Furthermore, it gives no attention to validation and verification. A

more formal treatment of the same subject is given by Hee (1994) and Bruno and Torchiano
(1999). Similar to the methodology presented in this paper, formal models are discussed, as
well as their relations in defining business processes and mapping them to information
systems. In contrast to our proposal, the actual redesign of a business process is not treated.
Bruno and Torchiano (1999) take the process design as one of the various views – the
function view – on an enterprise. Just as it is possible to take an organization, information, or
resource view. (Note that these views are similar to the aspects of Zachman). Because Bruno
and Torchiano (1999) do not make the redesign the start point of developing these models,
there is also no obvious flow of creation for the various models which we feel is a strength of
our proposed methodology. The relations between the formal models as put forward by Hee
(1994) are the inspiration for the methodology presented in this paper.

Conclusion
The incorporation of the PBD approach in a component-based systems development
methodology enhances the link between a redesigned business process on the one hand and
the applications that have to support this process on the other. We have experienced the need
for such a methodology in an actual BPR project, but we think that the need is more general.
However, we do not think that a tighter formal link will effectively solve all thinkable design
and development problems. This is why we emphasize ample room for verifying and
validating designs during a BPR effort. The application of verification techniques and the
generation of validation instruments is strongly simplified by taking a formal design
approach.

Future practical work will be aimed at developing tools that integrate with the presented
methodology, to be used for validation purposes. An interesting research direction is the
development of standard process and component constructions to facilitate correctness-by-
construction. This will considerably reduce verification efforts.

References
Aalst, W.M.P. (1998): The Application of Petri Nets to Workflow Management, The Journal
of Circuits, Systems and Computers, Vol. 8, No. 1, pp.21-66.

Aalst, W.M.P. (2000): Reengineering Knock-out Processes, Decision Support Systems, Vol.
30, No. 4, pp.:451-468.

Aalst, W.M.P., P. de Crom, R. Goverde, K.M. van Hee, W. Hofman, H.A. Reijers, and R.A.
van der Toorn (2000): ExSpect 6.4: An Executable Specification Tool for Hierarchical
Colored Petri Nets, in Application and Theory of Petri Nets 2000, Lecture Notes in Computer
Science 1825, pp.455-464.

Aalst, W.M.P., K.M. van Hee, and R.A. van der Toorn (2002): Component-Based Software
Architectures: A Framework Based on Inheritance of Behavior, Science of Computer
Programming, Vol. 42, No. 2-3, pp.129-171.

Aalst, W.M.P., H.A. Reijers and S. Limam (2001): Product-driven Workflow Design. In
Proceedings of the Sixth International Conference on Computer Supported Cooperative Work
in Design - Ontario, Canada, pp.397-402.

Aldowaisan, T.A. and L.K. Gaafar (1999): Business Process Reengineering: an Approach for
Process Mapping, Omega: International Journal of Management Science, Vol. 27, No. 5,
pp.515-524.

Al-Mashari, M. and M. Zairi (1999): BPR Implementation Process: an Analysis of Key
Success and Failure Factors, Business Process Management Journal, Vol. 5, No. 1, pp.87-
112.

Al-Mashari M. and M. Zairi (2000): Creating a Fit Between BPR and IT Infrastructure: A
Proposed Framework for Effective Implementation, International Journal of Flexible
Manufacturing Systems, Vol. 12, No. 4, pp.253-274.

Bond, T.C.(1999): Systems Analysis and Business Process Mapping: a Symbiosis, Business
Process Management Journal, Vol. 5, No. 2, pp.164-178.

Booch, G. (1994): Object Oriented Analysis and Design with Applications,
Benjamin/Cummings.

Broadbent. M., P. Weill, and D. St. Clair (1999): The Implications of Information Technology
Infrastructure for Business process reengineering, MIS Quarterly, Vol. 23, No. 2, pp.159-182.

Bruno, G. and M. Torchiano (1999): Making CIMOSA Operational: the Experience with the
PrimeObjects Tool, Computers in Industry, Vol. 40, No. 2-3, pp. 279-291.

Childe, S., R. Maull, and B. Mills (1996): UK Experience in Business Process Reengineering.
URL: http://bprc.warwick.ac.uk/rc-rep-9.html.

Crom, P.J.N. and H.A. Reijers (2001): Using Prototyping in a Product-driven Design of
Business Processes, in Proceedings of the Open Enterprise Solutions: Systems, Experiences,
and Organizations Conference, Rome, pp.41-47.

DeMarco, T. (1979): Structured Analysis and Systems Specification, Prentice Hall.

Desel, J. and T. Erwin (2000): Modeling, Simulation and Analysis of Business Processes, in
Business Process Management: Models, Techniques, and Empirical Studies, Lecture Notes in
Computer Science 1806, pp.129-141.

Donovan, J.J. (1994): Business Re-engineering with Information Technology. Prentice Hall.

Garlan, D. and M. Shaw (1993): An Introduction to Software Architecture, in Advances in
Software Engineering and Knowledge Engineering, Singapore, pp.1-39.

Gerrits, H. (1994): Business Modeling Based on Logistics to Support Business Process Re-
Engineering, in B.C. Glasson, et al., editors, Business Process Re-engineering: Information
Systems Opportunities ad Challenges, pp.279-288..

Guha, S., W. Kettinger, and J.T.C. Teng (1993): Business Process Reengineering: Building a
Comprehensive Methodology, Information Systems Development, summer, pp.13-22.

Gunasekaran, A. and B. Nath (1997): The Role of Information Technology in Business
Process Reengineering, International Journal of Production Economics, Vol. 50, No. 2-3,
pp.91-104.

Hammer, M. and J. Champy (1993): Reengineering the Corporation: a Manifesto for
Business Revolution, HarperBusiness.

Hee, K.M (1994): Information Systems Engineering: A Formal Approach, Cambridge
University Press.

Hofacker, I. and R. Vetschera (2001): Algorithmical Approaches to Business Process Design,
Computers & Operations Research, Vol. 28, No. 13, pp.1253-1275.

IDS Scheer (2001): Broad Spectrum of Solutions for the E-organization: ARIS 6. URL:
http://www.ids-scheer.com/sixcms_upload/media/169/aris_6_produkt_wp_en.pdf.

IEEE (2000): Recommended Practice for Architectural Description of Software-Intensive
Systems, IEEE Standard 1471., The Institute of Electrical and Electronics Engineers.

Kruchten, P. (1995): The 4+1 View Model of Architecture, IEEE Software, Vol. 12, No. 6,
pp.42-50.

Kruchten, P. (2000): The Rational Unified Process: An Introduction, Addison Wesley.

Lyons, G. (1997): The Role of Information Technology in Enterprise Re-engineering,
Knowledge and Process Management, Vol. 4, No. 4, pp.268-277.

Manganelli, R. and M. Klein (1994): The Reengineering Handbook: a Step-by-step Guide to
Business Transformation, American Management Association.

Martin, J. (1991): Rapid Application Development, MacMillan.

Murray, M.A. and M.P. Lynn (1997): Business Process Re-engineering/Information System
Development to Improve Customer Service Quality, Business Process Management Journal,
Vol. 3, No. 1, pp.9-16.

Orlicky, A. (1972): Structuring the Bill of Materials for MRP, Production and Inventory
Management, December, pp.19-42.

Reijers, H.A. and K. Voorhoeve (2000): On the Optimal Design of Processes and Information
Systems: a Manifesto for Product Focus, Informatie, Vol. 42, No. 12, pp.50-57 (in Dutch).

Szyperski, C. (1998): Component Software: Beyond Object-Oriented Programming, Addison-
Wesley.

Sharp, A. and P. McDermott (2001): Workflow Modeling: Tools for Process Improvement
and Application Development, Artech House.

Shaw, M. and D. Garlan (1996): Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall.

Teng, J.T.C., K.D. Fiedler, and V. Grover (1998): An Exploratory Study of the Influence of
the IS Function and Organizational Context on Business Process Reengineering Project
Initiatives, Omega: International Journal of Management Science, Vol. 26, No. 6, pp.679-
698.

Verbeek, H.M.W. and W.M.P. van der Aalst (2000): Woflan 2.0: A Petri-net-based Workflow
Diagnosis Tool, in Application and Theory of Petri Nets 2000, Lecture Notes in Computer
Science 1825, pp. 475-484.

Zachman, J.A. (1999): A Framework for Information Systems Architecture, IBM Systems
Journal, Vol. 38, No. 2-3, pp.454-470.

	Abstract
	Keywords:
	Introduction
	Frame of reference
	
	Product Based Design
	An architectural framework

	Practical experience
	A development methodology on basis of PBD
	A credit facility example
	Related work
	Conclusion
	References

