
Human and Automatic Modularizations of Process
Models to Enhance their Comprehension

xxa

axx

Abstract

Modularization is a widely advocated mechanism to manage a business process
model’s size and complexity. However, the widespread use of subprocesses in
models does not rest on solid evidence for its benefits to enhance their compre-
hension, nor are the criteria clear how to identify subprocesses. In this paper,
we describe an empirical investigation to test the effectiveness of using subpro-
cesses in real-life process models. Our results suggest that subprocesses may
foster the understanding of a complex business process model by their “infor-
mation hiding” quality. Furthermore, we explored different categories of criteria
that can be used to automatically derive process fragments that seem suitable
to capture as subprocesses. From this exploration, approaches that consider
the connectedness of subprocesses seem most attractive to pursue. This insight
can be used to develop tool support for the modularization of business process
models.

Keywords: Business Process Modeling, Modularity, Empirical test,
Automated discovery

1. Introduction

In the design and production of complex technology, modularity is recognized
as a key principle. For example, it has been argued that the computer industry
has dramatically increased its rate of innovation by adopting modular design
[1]. In contexts such as these, modularity is commonly interpreted as the design
principle of having a complex system composed from smaller subsystems that
can be managed independently, yet function together as a whole [2].

Modularization is also applied in business process models using subprocesses.
Most popular process modeling techniques support this concept, e.g. UML Ac-
tivity Diagrams [3], EPCs [4], BPMN [5], and YAWL [6]. Various advantages are
attributed to the use of subprocesses in process models, in particular when they
grow large. At build-time, subprocesses support a modeling style of stepwise
task refinement, stimulate reuse of process models, and potentially speed up the
(concurrent) development of the overall process model [7, 8]. At run-time, i.e.
when a process model is enacted by an automated system, subprocesses allow

Preprint submitted to Elsevier December 28, 2010

for scaling advantages: Each subprocess, for example, may be executed on a dif-
ferent workflow server [8]. Finally, when a process model is used to facilitate the
understanding of complex business processes among various stakeholders, sub-
processes are supposed to ease the understanding of the model [9, 10]. The latter
advantage is particularly noteworthy, because in most business applications it
is the primary purpose of a process model to act as a means of communication
[11, 12]. This paper will be concerned with this particular advantage of using
subprocess in process models, i.e. the enhancement of their comprehension by
human readers.

It should be noted that the way in which modularity is currently utilized
in modeling practice raises some questions about its actual benefits from the
perspective of human comprehension. First of all, there are no objective cri-
teria to establish the right level of granularity for a subprocess. Accordingly,
there is no absolute guideline if a particular subprocess should be on level X or
X + 1 in a model hierarchy [13]. Neither is there a unique way to modularize a
process model [13]. As a consequence, modularity is often introduced in an ad-
hoc fashion. Furthermore, there are clearly drawbacks when the process logic is
fragmented across models. In particular, it “becomes confusing, less visible, and
tracking [...] paths is tiring” [14] if a subprocess is decomposed in further sub-
processes. The fact that the semantic check in ARIS Toolset mainly addresses
consistency issues between events in the subprocess and around the refined func-
tion illustrates the seriousness of this problem. Finally, even if modularization
is useful for maintenance purposes, by making it easier to understand which
aspects must be changed, it is questionable whether advantages materialize in
practice: Many organizations fail to keep their models up to date [15].

In this paper, our interest is with two research problems. The first problem
is that solid indications are missing for benefits of modularization in process
models, i.e. the use of subprocesses, to ease their interpretation. Our interest is
to discover whether subprocesses can be useful to improve the understandability
of real-life process models. For this issue, we will build on an empirical investi-
gation of two complex process models from practice, both in modular and “flat”
form, and their comprehension by a group of 28 experienced process modelers.
The contribution of our work is to provide tangible support for the usefulness of
subprocesses in process models. We also provide an insight into the underlying
causes for this effect.

The second problem we address is the lack of dedicated approaches to sup-
port process modelers with modularizing a given process model into a group of
related, understandable subprocesses. We explore three attractive directions for
the automated discovery of subprocesses, apply them to a real-life and complex
process model, and evaluate the results against the modularization that experi-
enced process modelers provided for the same model. Our contribution in this
respect consists of providing concrete indications for the further development of
automated discovery algorithms.

In the presentation of our contributions, we will build on some of our earlier
work [16]. In comparison with this publication, we significantly extended the
presentation and discussion of the experiment that was conducted to investigate

2

the effect of subprocess usage and updated the review of related literature.
Beyond that, the use and evaluation of the automated discovery algorithms
that is included in the current paper is completely new.

Against this background, the structure of this paper is as follows. In the
next section, we will give a broader background for the concept of modularity,
in particular with respect to process modeling. In Section 3 we will present the
setup of our empirical test along with its results and a discussion. Section 4
presents our proposals for automatic support for subprocess discovery with a
corresponding evaluation. Section 5 compares our contribution to related re-
search. Section 6 concludes the paper.

2. Theoretical Background

In this section we discuss the theoretical background of our research. In
Section 2.1 we present the essential concepts related to modularity in conceptual
modeling. Section 2.2 revisits contributions on the modularity of process models.
Section 2.3 takes a cognitive research perspective on process model modularity,
and derives hypotheses on its costs and benefits.

2.1. Modularity in System Design and Conceptual Modeling

Often, the terms modularity, decomposability, and hierarchy are used inter-
changeably. However, according to [2], a modular system is not automatically
decomposable in the sense that the modules can be easily managed indepen-
dently. After all, it is possible to break a system into modules whose workings
remain highly interdependent with the internal workings of other modules. Fur-
thermore, as Parnas points out in his seminal paper on “information hiding”,
a modular system is not necessarily hierarchical [17]. To clarify these notions,
consider Figure 2. In this figure, three abstract modular designs can be seen. In

Figure 1: Examples of modular designs

each of these, a module is represented as a rectangle and each arrow represents
a “uses” relation between two modules. Design (a) is hierarchical, since the

3

dependencies form a partial ordering. This is, however, not the case for design
(b): A cyclic dependency exists between a subset of the modules. Such a design
is called non-hierarchical. Furthermore, designs (a) and (b) may well be decom-
posable, considering the limited number of dependencies between the modules.
In contrast, this is less obvious for design (c) with its numerous interdependen-
cies. Note that the hierarchy notion can be mathematically pinned down, where
decomposability refers to a qualitative notion. For this paper we consider the
general phenomenon of “modularity” as the main subject of interest.

In many settings, “the real issue is normally not to be modular but how
to be modular” [2]. Modular systems are much more difficult to design than
comparable interconnected systems [1]. Beyond that, problems with incomplete
or imperfect modularization tend to appear only when the modules come to-
gether and work poorly as an integrated whole. It has been argued that many of
the most attractive and durable systems are developed through an “unselfcon-
scious” design process [18]. In such a design process, used design rules are not
explicit; inconsistencies and interdependencies are revealed by trial and error.
However, it is by no means obvious that unselfconscious design must always, or
even usually, result in modularity [2].

Quality criteria to consciously decompose a system into modules have been
discussed by Wand and Weber on a general level [19, 20]. The authors identify
five criteria. The first three are absolute criteria that are either met or not
and focus on the content of the modular model, not its structure. Minimality
requires that there is no redundant state information in the modular model. In
data models this basically matches normalization requirements. Determinism
requires that a state change is clearly identified to be triggered by an internal or
an external event. If that is not the case the behavior of a module can only be
understood by knowing the state of another subsystem. Losslessness demands
that emergent properties are not lost in a modularization. Furthermore, the two
criteria coupling and cohesion should be optimized, cf. [21]. Coupling should be
minimal such that the sum of inputs of each subsystem is less or equal to the
sum of inputs in any other modularization. Cohesion should be maximal such
that all output affected by input variables are contained in the same set, and
adding another output does not extend the set of input variables on which they
depend.

Wand and Weber’s criteria had a strong influence on the object-oriented
design metrics proposed by Chidamber and Kemerer [22]. The usefulness of the
five criteria has been demonstrated for UML class diagrams and state charts in
an experimental setting [23].

2.2. Modularization in Process Models

The area of related research in the context of process models is huge cover-
ing works on process modularization, e.g. [24, 25, 26], process inheritance, e.g.
[27, 28], and reduction rules, e.g. [29, 30, 31]. Since the latter two categories
are mainly utilized for the purpose of process model analysis, i.e. the decom-
position is non-persistent, we will focus on the first category. Furthermore, we
do not consider modular design of process-aware information systems such as

4

in [32, 33]. In the context of process model modularization, three aspects can
be distinguished: modularization operations, modularization prerequisites, and
modularization selection.

Modularization Operations: The idea that basic operators should facilitate
modularization was already proposed in the 1980s for data flow diagrams
[24]. Refinement operations have also been defined for Workflow Nets [34].
Recently, the ability to extract a subprocess from a process model has been
described as a change pattern for process-aware information systems [26].
This pattern must be implemented reflecting the syntactic requirements
of the modeling language. In ARIS there are two ways to extract a sub-
process: by modularization (refining function with subprocess) and by
segmentation (cutting a model in different parts) [13]. Both these options
are tailored to yield syntactically correct EPCs.

Modularization Prerequisites: There are some recommendations regarding
the conditions whether at all a process model should be considered for
modularization. Some of the practitioners books state that modularization
should be introduced in a model with more than 5–15 [35] or 5–7 activities
[10], yet without giving any support for this rule. Recently, it has been
recommended based on empirical findings that process models with more
than 50 elements should be decomposed [36]. Depending on the process
modeling language the amount of activities can vary for 50 elements, e.g.
EPCs use connectors for routing and events to separate functions while
YAWL essentially only uses tasks. Still, up to now no objective criteria
has been proposed for identifying which subprocess should be on which
level in the model hierarchy [13].

Modularization Selection: There are some guidelines on how to select parts
of process models for modularization. Good candidates for subprocesses
are fragments of a model that are components with a single input and a
single output control flow arc [37, 25, 38]. Furthermore, long and thin
process models should be preferred to square models [13, p.278]. This
argument points to the potential of metrics to guide the modularization.
The idea here would be to use quality metrics like the ones proposed in
[36, 39] to assess which modularization should be preferred. An application
of metrics to compare design alternatives is reported in [40]. Yet, there is
no dedicated approach to guide modularization based on metrics.

Overall, the main focus of research on process modularization is of a concep-
tual nature. Clearly, there are no objective and explicit guidelines that modelers
in practice can rely on. The aim of our research as reported in the following sec-
tions is to contribute to a better understanding of the effects of modularization
as a stepping stone towards such guidelines.

2.3. Cost and Benefit of Process Model Modularity

The modularity of a process model can have two major effects in terms of
understanding: a benefit of information hiding and browsing costs. We discuss

5

them based on the Cognitive Dimensions Framework. This framework covers a
set of aspects that have empirically been proven to be significant for the compre-
hension of computer programs and visual notations [41]. While the framework
has been developed for notations, we can also use it to discuss comprehension
of models in general or any other information artifact. There are two major
findings that the framework builds upon: A representation always emphasizes
a certain information at the expense of another one, and there has to be a fit
between the mental task at hand and the notation [42, 43]. The implications of
these insights for process models and their modularity can be discussed along the
lines of those cognitive dimensions that are relevant for process model reading.

- Abstraction Gradient refers to the grouping capabilities of a notation.
Most process modeling languages do not provide concepts for logically
grouping activities from a single process model, although there are excep-
tions like BPEL [44], in which the scope concept can be used to logically
group activities, and BPMN [45], in which the group concept can be used
to logically group activities. In general, flow languages can be considered
abstraction-hating [41]. As a consequence, the more complex the model
gets the more difficult it becomes for the model reader to identify those
parts that closely relate to one another.

- Hidden Dependencies refer to interdependencies that are not fully visi-
ble. In modular process models such hidden dependencies might exist
between process model parts that are spread over different modules. This
observation points to the potential danger that a more fragmented process
model could imply a greater share of browsing costs, and therefore affect
understanding.

Both these considerations result in the hypothesis that subprocesses are
likely to increase a reader’s understanding of a model due to information hiding.
This assumption is measurable in terms of a suitable experimental design with
understanding performance as the dependent dimension. Yet, it is up until
now not clear to which degree additional costs in terms of browsing through
different subprocesses might actually counter-balance the performance gain. We
will discuss these issues in detail in the following section on our experimental
design.

3. Experimental Design and Findings

This section presents an experimental design to test the effects of modularity
(Section 3.1) along with its findings (Section 3.2) and a discussion (Section 3.3).

3.1. Research Design

In the previous sections we discussed that the ad-hoc way in which modular-
ity is currently introduced in modeling practice raises doubts about its benefits,
but that theoretical indications exist for the benefits of using subprocesses. In

6

developing a test for the presumed connection between modularity and under-
standing, several challenges must be met.

First of all, the question is how to pursue results that have the potential
to provide insights that are meaningful, in the sense that they relate to the
real-life application of subprocesses. For example, it would be unsatisfactory to
test the effects of modularity in small or artificial process models. To achieve
a realistic background for our research, we set up a collaboration with Pallas
Athena Solutions1 in the Netherlands, a specialized provider of BPM services.
In our cooperation with this company, we gathered real-life, complex models as
study objects. What is more, a large number of experienced process modelers
from this company participated in our investigation.

The second issue relates to the organization of an empirical test in a rigor-
ous manner. In lack of specific literature on empirical research with respect to
process modeling, we build on approaches and classifications used in the field of
software experimentation [46, 47]. In particular, we use an experimental design
that is comparable to what was applied in a recent study to evaluate various
types of BPM technology [48]. To test the hypothesis we carried out a so-called
single factor experiment. In general, this design is suitable to investigate the
effects of one factor on a common response variable. This design also allows to
analyze variations of a factor: The factor levels. The response variable is deter-
mined when the participants of the experiment (who are also called subjects)
apply the factor or factor levels to a particular object. The overall approach in
our experiment is visualized in Figure 2. We will address each of the mentioned
elements in our design in more detail now.

Participant 1

Participant n/2

Participant n/2+1

Participant n

Factor level:
modularization

present

Factor level:
modularization

absent

Process Model
A with

subprocesses

Process Model
A without

subprocesses

n participants 1 factor 2 objects

First Run

Participant 1

Participant n/2

Participant n/2+1

Participant n

Factor level:
modularization

absent

Factor level:
modularization

present

Process Model
B without

subprocesses

Process Model
B with

subprocesses

n participants 1 factor

Second Run

2 objects

Completion of first
applied factor level

Overall experiment

Figure 2: Experiment design

Object. The basic objects that were evaluated by the participants in our

1http://www.pallas-athena.com

7

test were two process models taken from practice. The models were used in the
experiment both in their original form – displaying modularity – and in their
“flattened version” where modularity is completely removed. The flattening
involved the removal of all dependencies between model elements such that
they all arrived at the same level of abstraction. Note that for any particular
process model the absence or presence of modularity does not affect the business
logic in a semantic sense.

The two process models were selected from a little over 80 process models
that were created and delivered by our partner organization for its clients. We
focused our search for suitable objects by the use of three criteria: (1) the
presence of modularity in the process model, (2) the size of the model, and (3)
access to the original creators of the model. The process models we looked for
needed to display modularity as consciously applied by the modeler to deal with
the complexity of a large model. We only considered models of more than 100
tasks, which can be considered as very large using the process size classification
provided in [49]. Our line of reasoning here is that if modularity does not help
to understand very large models, it will not help to distinctively understand
smaller models either. Finally, we needed access to the modelers of the model
to validate questions on the content of the model.

From our search, four candidate models emerged. One of these models was
specifically developed for automated enactment and was not further considered.
After all, the understandability of the model for human readers is generally not
a prime issue in this context; the process model is automatically interpreted. Of
the remaining three, which were all developed for the support of stakeholders in
a process improvement project, the two process models were selected that were
most similar to each other in terms of process size, number of subprocesses, and
modularity depth. Both models had been modeled with the Protos tool [50], of
which the underlying technique is similar to Workflow Nets [34]. The flattened
versions of process models A and B can be seen in Figures 3 and 4 respectively.

Model A describes the procedure in use by an organization that is responsible
for granting driver’s licences. The process in question deals with clients that
cannot directly obtain their driver’s license because of physical or psychological
disabilities that can influence their driving. Model B captures how a subcategory
of unemployed citizens is coached and receives advice in finding a job. Note that
the labels in Figures 3 and 4 have been removed to protect the confidentiality of
the involved organizations; they were available to the participants in our test.1

Factor and factor levels. In our experiment, the use of modularity is
the considered factor, with factor levels “present” and “absent”. Note that
we deliberately collected real process models from practice already exhibiting
modularity and derived flattened versions from it, instead of doing it the other
way around. In this way, we could build on a real-life application of modularity.

Response variable. The response variable in our experiment is the level of
understanding that the respondents display with respect to the process models,

1A modular version of model A is available at http://bit.ly/emYyTX.

8

Geen reactie ontvangen

Figure 3: Flattened version of process model A

9

Figure 4: Flattened version of process model B

10

both in their modularized and flattened form. To measure the response vari-
able, a specific set of questions was developed for each of the two models to be
answered by the subjects. This approach is similar to the one we applied in
a previous study into model understandability [39]. An example question for
model A is: “If an AA-investigation is required, then a number of alternative
settlements is possible. How many of these settlements exist?”. For model B an
example question is: “If a client does not appear on an appointment, is it always
so that a new appointment is scheduled?”. The questions were formulated in
Dutch, the same language used by the creator of the modeler to name model
elements, and also being the native language for all involved participants. The
model-specific questions were preceded by a general introduction to the exper-
iment, a specific explanation of each of the models, and a number of general
questions with respect to the participants’s background.

Subjects. The participants in this experiment were 28 experienced consul-
tants from Pallas Athena. They were randomly assigned to the two groups used
in our set-up (block design). Each group was presented two models: One model
that displayed modularity and the other model in the flattened version. This
way each participant received two different processes and two different styles.
Participation in the experiment was voluntary; the single reward offered for
participation was access to the research results.

Instrumentation. The participants were provided with the process models
on paper, together with the questions; an alternative would have been to show
the models on a computer display, e.g. using the software that was used to create
the models. However, the involved company indicated that paper is the mostly
used form to interact with their clients and that in the contexts in which the two
models were used, this was also the case. Recall that the original versions of the
models were divided into subprocesses by their respective authors. These models
could therefore be presented to the respondents as a set of A4-sized papers, one
for each subprocess. The alternative, flattened versions for both models were
presented on A3 paper format, which allowed for reading the various labels with
a normal effort.

Prior to the actual experimentation, all questions and correct answers were
discussed with and approved by the creators of the models. They validated
that the question sets could be used as a proper and representative way to test
someone’s understanding of the models. As a next step, five graduate students
from Eindhoven University of Technology were involved in a pre-test. This led
to the reformulation of 10 questions to remove ambiguities and the removal of 3
questions. The latter was explicitly required to ensure that the experiment could
be carried out within a reasonable time frame. For both models, 12 questions
were included in the final version of the experiment.

Data collection procedure. During the experiment, the subjects were
asked to spend at most 25 minutes per model for answering its related questions.
This limit was imposed to keep the time spent on the entire questionnaire under
one hour and to prevent an imbalance in time spent on the two different models.
Both at the start and at the end of answering a set of questions for each model,
subjects were asked to write down the time to allow for time comparisons.

11

Table 1: Average percentages of correct answers for the model variants.

Flattened Modular
Model A 38.54% 42.36%
Model B 37.50% 58.33%

From the description of all the above elements it can be inferred that the
experiment is balanced, which means that all factor levels are used by all par-
ticipants of the experiment. In general, such an approach enables repeated
measurements and the collection of more precise data: Every subject generates
data for every treated factor level. As can be seen in Figure 2, we went through
two runs, so this experiment displays a repeated measurement. However, in
contrast to the approach in [48], two objects instead of one were used (process
models A and B) to repeat the experiment in a second run. This setup enabled
us to avoid the presentation of the same model content to the same group of
subjects more than once, which limited learning effects.
In the next section, the results are presented of testing our hypothesis.

3.2. Results

For our data analysis, well-established statistical methods and standard met-
rics were applied, as provided by statistical software packages STATGRAPHICS

XV.II and SPSS 15.0. In this section, we will first present our main analysis
results, after which we will explore various alternative explanations for these to
decide on our hypothesis.

Our main analysis focuses on the comparison between the group performance
in terms of correctly answered questions for the modularized version and the
flattened version of each of the models. In other words, does it matter whether
someone sees a modularized or a flattened version of a process model? To
determine the answer to this question, we calculated for each of the subjects
the percentage of correct answers given for each model. Recall that each subject
saw a modular model for one process and a flattened version of a model for the
other process. The averages values are shown in Table 1.

As can be seen from this table, the modular version generates a higher av-
erage percentage of correct answers for both models, which suggests a better
understandability. To determine whether the differences are statistically signif-
icant, it is important to select and apply the proper statistical test. Therefore,
we first explored for each of the models the distribution of correct answers for
each of its variants, i.e. the modular and flattened version. Because the stan-
dardized skewness and standardized kurtosis are within the range of -2 to +2,
for each model the correctly answered questions can be assumed to be normally
distributed. Additionally, F-tests indicated that with a 95% confidence the stan-
dard deviations of the samples for each of the models are also the same. These
two conditions justify the application of Student’s t-test [51].

Application of the t-test assuming a 95% confidence level results in the fol-
lowing results:

12

- For model A, there is no significant difference between the modular and
the flattened version in terms of the average percentage of correctly an-
swered questions (P=0.562).

- For model B, there is a significant difference between the modular and the
flattened version in terms of the average percentage of correctly answered
questions (P=0.001).

Even though these results – in particular the difference for model B – seem
to support our hypothesis we must explore some alternative explanations to
properly decide on its acceptance or rejection.

The most important alternative explanation for the differences between the
results for model B is that – rather than whether the model is modular or
not – differences between the experimental groups are the deeper cause. We
analyze this argument in detail. Recall from Section 3 that our experiment
is characterized by a block design, i.e. subjects are randomly assigned to the
two experimental groups. If the subjects from the two groups were to differ
in a characteristic feature that influences one’s ability to understand process
models, then this would offer a better explanation for the noted differences. A
second, alternative explanation would be that the group of respondents that
produced a higher average of correct answers for model B simply spent more
time on answering the questions. After all, it is reasonable to expect that more
answering time fosters a higher response quality.

To determine these alternative explanations, we analyzed the characteristics
as shown in Table 2. Each entry in the table lists an investigated factor, the
considered factor levels, and the P-value resulting from a statistical test. Note
that we applied a standard t-test to determine a statistical difference between
the groups with respect to each factor, unless its basic requirements were not
met with respect to the underlying normal distribution and variance equality.
If these requirements were not met, we used the non-parametric Mann-Whitney
W test to compare the medians across both groups [51].

As can be seen from the P-values in this table, which are all greater than
0.05, none of the investigated factors signals a statistical difference between the
groups at a 95% confidence level. Therefore, in lack of knowledge on other
plausible influences, we conclude that modularity appears to have a positive
connection with process understanding.

3.3. Discussion

For our discussion of the results presented in the previous section, we single
out two questions:

- Why does modularity matter for understanding model B, but not for A?

- How exactly does modularity influence the understanding of model B?

We will address these one at a time, after which we will discuss the limitations
of our experiment.

13

Table 2: Group comparison.

Factor Factor levels P-value

Domain knowledge Knowledgeable with the process context or not 0.386
Company experience Actual number of years within company 0.411
Field experience Actual number of years working as process

consultant
0.726

Education University degree or not 0.453
Job type Business consultant or technical consultant 1.000

Modeling amount Estimated number of process models created 0.504
Modeling size Estimated average size of process models cre-

ated (nodes)
0.764

Time experiment Actual time spent on entire experiment 0.948
Time B Actual time spent on model B in the experi-

ment
0.417

Model differences At this stage, we recall that we selected models A and
B from a wide range of models by using a set of criteria (see Section 3.2). From
the four models that met these, models A and B were most similar, notably
with respect to the number of tasks they contain and their depth. To determine
why modularity plays a bigger role in understanding model B, we carried out a
further analysis of both models by using the metrics shown in Table 3. At the
top of the table, some basic metrics are given, followed by metrics that have
been proposed as indicators for process model complexity in general, and at the
bottom some metrics that are explicitly proposed for assessing modular process
models.

Two metrics display values that differ more than a factor 2 for the models
under consideration, i.e. Subprocesses and FanIn-Out. According to [54], the
relatively high value of the latter metric for model B (33.42) would suggest a
poorer structuring of model B compared to model A. However, an additional
test to determine whether a difference exists in model understandability between
the modular version of model A and the modular version of model B does not
show a higher average percentage of correct answers for the former. In lack of
other empirical support for the use of this metric, the relatively high number of
subprocesses (20) in model B seems more relevant: It suggests that the difference
between the modular and flattened version of this model is more distinct than
for model A.

For the remaining factors, models A and B display quite similar character-
istics, even though model B is the slightly larger one. There is no general trend
that suggests that one model is considerably more complex than the other and
none of the metrics display large differences – other than the number of subpro-
cesses. So, the most reasonable answer to the question why modularity has an
impact on one model but not on another is that B’s original version displayed

14

Table 3: Complexity metrics.

Metric Description Source Model A Model B

Tasks Total number of tasks – 105 120
Nodes Total number of nodes – 130 175
Arcs Total number of arcs – 171 248

Subprocesses Total number of subprocess in
original model

– 9 20

To Average number of outgoing arcs
from transitions (tasks)

[52] 0.81 1.03

Po Average number of outgoing arcs
from places (milestones)

[52] 3.42 2.24

Cycn McCabe’s cyclomatic number
(adjusted for Petri nets)

[52] 43 75

Connectivity Number of arcs divided by the
number of nodes

[53] 1.32 1.42

Density Number of arcs divided by the
maximal number of arcs

[53] 0.020 0.016

AvgConDeg Average number of input and
output arcs per routing element

[53] 1.10 1.21

Fan-In Average number of modules call-
ing a module

[54] 1.25 2.26

Fan-Out Average number of modules
called by a module

[54] 1.5 2.26

FanIn-Out ((Fan-In) ∗ (Fan-Out))2 [54] 3.63 33.42
Depth Degree of nesting within the pro-

cess model
[53] 3 3

15

a much higher degree of modularization than model A. This may have helped
subjects in understanding the model better. This would suggest that from a
cognitive perspective, that model would show a better abstraction gradient and
better information hiding.

The influence of modularity In search for an explanation of how mod-
ularity increases model understanding, we re-examined the questions we used
in our experiment. Recall that these questions were validated by the original
creators of the model (see Section 3): The questions were considered to be to
the point and representative to test someone’s understanding of the model.

In the post-hoc analysis of our results, we investigated the contention that
by using a modular model certain types of question would be answered better
than other ones. In particular, we categorized our questions as being of a
local or global type. We characterized the difference such that an answer for a
local question can be found within the confinements of a single subprocess in
the modular version, where the examination of more subprocesses is required
to answer a global question. As it turned out, model B contained 2 global
questions and 10 local questions. In a comparison between the group that used
the modular model and the group that used the flattened model, we found
that for local questions, a significant difference exists in terms of the average
percentage of correctly answered questions of model B (P=0.002). However,
too few global questions were used to determine whether there is a difference in
terms of the average percentage of correctly answered questions between using
the modular or the flattened version of model B. Therefore, the cognitive effect
of hidden dependencies do not show up distinctly.

From this analysis, we cautiously infer that modularity may be helpful for
understanding a process model because it shields the reader from unnecessary
information. Where the reader of a flattened model always sees the entire
context, the reader of the modular version is confronted with a limited set of
information when the proper subprocess is selected. This is especially helpful
when such a reader is looking for local information. In this sense, the use of
subpropcess in process models may generate an effect that is also achieved by
Parnas’ “information hiding” concept in software development[17]: Program-
mers are most effective if shielded from, rather than exposed to, the details of
construction of system parts other than their own.

Whether there is also an opposite effect, i.e. that the correct answer for
a global question can be easier found with a flattened model, could not be
established for model B. Our suspicion is that this is not very likely; an analysis
of the results for model A did not show such an effect.

Limitations Only 28 subjects were involved in this experiment and only
2 process models were considered. Both aspects are threats to the internal
validity of this experiment, i.e. whether our claims about the measurements
are correct. At the same time, these small numbers result from our choices to
(1) involve real process modelers, as well as (2) process models from industrial
practice. From all the modelers working in our partner company, more than half
of them participated in the experiment and it was not feasible to involve them
in a larger experiment, e.g. to have them consider more models. The choices

16

for real modelers and models clearly positively affect the external validity of our
study, i.e. the potential to generalize our findings. Therefore, our experiment
is another illustration of how “internal and external validity can be negatively
related” [55].

Another aspect worth mentioning is the choice of displaying the process
models on paper. It is by no means certain that findings that are similar to ours
would result from an experimental set-up where models are shown on a computer
display. Depending on the features of the modeling tool used, “information
hiding” could also be achieved in other ways than applying modularity. For
example, the Protos tool that was used to create the models also allows to
zoom in on part of the model, while other tools may be able to print sub-graphs
of process models or collapsed activity groups.

A third point for consideration is that the involved models were very large. It
seems likely that the effects of the use of subprocesses in smaller process models
are absent or at least less prominent. This is an observation that is probably
comparable to the use of modularity in other technological domains.

Fourth, it is noteworthy that the process models without subprocesses that
our subjects studied are flattened versions of once modular process models. If
an experienced modeler were to capture the underlying processes without being
allowed or being able to use subprocesses, we cannot rule out that the resulting
process models would be different from these flattened versions. If this were
true, it would be interesting to evaluate the understandability of such models
in comparison with modularized versions thereof. At this stage we do not have
access to large, industrial process models without any subprocess usage.

Finally, the lay-out of a process model may affect the understandability of
a process model, as we hypothesized before [39]. As there is a limited under-
standing of such an effect for process models, we are restrained in properly
controlling this variable. Note that we used the same modeling elements, the
same top-down modeling direction, and a roughly similar breadth and width for
both models to limit this effect (compare Figures 3 and 4).

4. Criteria for Subprocess Discovery

The results of the experiments we presented point to the usefulness of mod-
ularization to improve the understandability of a process model. An open ques-
tion at this point is how to select parts of the process model for modularization?
We referred to this issue in Section 2.2 as modularization selection and noted
that no dedicated approaches for this issue are available. Clearly, a process
analyst would benefit from a tool that assists in the discovery of subprocesses,
i.e. collections of nodes that should be put together into a subprocess. As an
explorative study towards the development of such a tool, we investigate crite-
ria that are suitable for deciding whether nodes should be put together into a
subprocess. We investigate three types of criteria:

- the block-structuredness of the subprocess,

- the connectedness of nodes in the subprocess, and

17

- the similarity of the labels of the nodes in the subprocess.

We explore the applicability of these criteria in a case study, in which we au-
tomatically divide model B from Figure 4 into subprocesses. The motivation
to select this model is that it was developed by experienced process model-
ers and that their modularization showed tangible benefits for understanding
it (see Section 3.2). We investigate both quantitatively and qualitatively how
well the result from the automatic modularization approaches the subprocess
division made by the human modelers in question. We first explain the three
criteria in detail, next we explain the setup of an empirical evaluation of their
appropriateness and finally, we discuss the results of the evaluation.

4.1. Block-Structuredness

A (sub-)process is called block-structured if it has a single entry and a single
exit. For that reason, these blocks are often referred to as Single Entry Single
Exit (SESE) components. The entry is the node through which the flow of
control enters the block and an exit is the node through which the flow of
control leaves the block. The requirement that a business process has a single
entry and a single exit is quite common. For example, so-called block structured
languages, such as BPEL [?], enforce this requirement by construction. It is
also used as an additional requirement for other languages [34, 4]. Therefore,
we consider this requirement a good basis for detecting subprocesses.

More precisely, let G be a directed graph with a single source and a single
sink. A source is a node with outgoing arcs only and a sink is a node with
incoming arcs only. Let F be a connected subgraph of G. A node is a boundary
node of F if and only if it is either both connected to nodes in F and to nodes
outside of F , or it if it is the source or the sink of the process. A boundary
node is an entry if and only if all its incoming arcs are outside of F or all its
outgoing arcs are inside of F . A boundary node is an exit if and only if all its
incoming arcs are inside of F or all its outgoing arcs are outside of F . F is a
SESE component if and only if it has a single entry and a single exit.

A SESE component is canonical if and only if its set of edges does not
overlap with the set of edges of another SESE component. Since canonical
SESE components do not overlap, they are either nested or disjoint. Therefore,
we can form a tree structure of canonical components. The root of the tree is
the entire process, the branches of a component in the tree are the components
that are nested in that component. The resulting tree is called the Refined
Process Structure Tree (RPST) [56, 57]. For this first approach of automatic
modularization, we consider the RPST to form the subdivision of a process into
subprocesses.

For example, Figure 5 shows a business process model that represents activ-
ities and control-flow relations between those activities. We abstract from the
precise semantics of the notational elements. The process as a whole is a SESE
component. Within the process, two SESE components can be recognized, one
consisting of the vertices 3, 4, 5, 6 and 7 and one consisting of the vertices 9,
10, 11 and 12. Both of these components again consist of two components; the

18

first one consists of the components 3, 4, 7 and 3, 5, 6, 7; and the second one
consists of the components 9, 10, 12 and 9, 11, 12. Hence, a tree structure is
formed with the complete process as root, the components 3, 4, 5, 6, 7 and
9, 10, 11, 12 as branches and the sub-components of those components as fur-
ther branches. Each of the SESE components can be marked as a potential
sub-process. Figure 6 shows the RPST that is formed by these components.

 /Hoofdproces

Send Approval
Decision

Check Data
with Mandate

Make Decision

Collect Data

Send Rejection

Complete
Data

Check
Correctness

Receive
Request

1

2

3

4 5

6

7

8

9

10 11

12

Decision

Figure 5: Example Process Model for Automatic Decomposition

1,2,3,4,5,6,7,8,9,10,11,12

3,4,7 3,5,6,7 9,10,12 9,11,12

3,4,5,6,7 9,10,11,12

Figure 6: Example RPST

An algorithm for computing the RPST can be found in [56, 57].

19

4.2. Connectedness

A collection of nodes is connected if the nodes in the collection are more
strongly connected by arcs to each other than to nodes outside this collection.
Note that this definition implies that for an automatic discovery of subprocesses
a parameter is involved that should express how strong the connection between
nodes in a collection must be.

We use graph cluster analysis [58] to establish collections of nodes in a busi-
ness process that are strongly connected to each other; in cluster analysis these
collections are called clusters and they will be used as subprocesses. More pre-
cisely, we cluster a process as follows. Given a graph G = (V,E, l) with vertices
V , edges E and a function l : V → S that labels vertices and the number of
clusters n > 1 that we aim to discover, our clustering technique partitions the
set of vertices V into n clusters C1, C2, . . . , Cn, such that the number of edges
that cross clusters, defined as |{(n,m)|(n,m) ∈ E,n ∈ Ci,m ∈ Cj , i 6= j}|, is
minimal.

For example, if we decide to identify 2 subprocesses in Figure 5, vertices 3, 4,
5, 6, 7 would never be put into separate clusters, because that would cause a cut
of at least 2 edges (while the minimum-cut consists of only 1 edge). Similarly,
9, 10, 11, 12 would never be put into separate clusters. However, which two
clusters are identified in the end is not deterministic, because as long as the
nodes mentioned before are not put into separate clusters all other separations
lead to a cut of 1 edge. For example, one possible separation distinguishes
clusters 1, 2, 3, 4, 5, 6, 7 and 8, 9, 10, 11, 12. Another possible separation
distinguishes clusters 1 and 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. These clusters can
be marked as potential sub-processes.

Algorithm 1 shows the pseudo code of the algorithm that performs the clus-
tering. It consists of four basic steps. In the first step (lines 3 to 10), a ‘point’
is created for each vertex. The set of points is the set Ps. Each point exists
in a k-dimensional space, where each dimension corresponds to a vertex (and
consequently k is the number of vertices in the graph). A point has the value
1 in a dimension in case the dimension represents the vertex itself or represents
another vertex to or from which there is an edge. In the second step (line 11)
an initial clustering is created at random. The set of clusters, Cs, is a partition
of the points in the set Ps. The number of clusters equals the parameter n.
In the third and fourth step, the set of clusters is improved, until it does not
change anymore. In the third step (lines 13 to 16) the center of each cluster
is computed. The center of a cluster is the point that has, for each dimension,
the mean of the values that the cluster members have. CCs is the set of cluster
centers. In the fourth step (lines 17 to 24), the set of clusters is then recom-
puted, by re-assigning each point to the cluster with the center that is closest
to it.

4.3. Label Similarity

The third criterion we will use for the automatic modularization builds on
the idea that nodes that have more similar labels can be considered to have a

20

Algorithm 1: Clustering Algorithm

1 input: G = (V,E, l), n

2 begin
3 m := {1 . . . |V |} ↔ V
4 for i := 1 to |V | do
5 rv := R|V |

6 for j := 1 to |V | do
7 rvj := 1, if j = i or (m(i),m(j)) ∈ E or (m(j),m(i)) ∈ E

8 end
9 Ps := Ps ∪ {(m(i), rv)}

10 end
11 Cs : P(Ps), such that

⋃
c∈Cs c = Ps,∀c1, c2 ∈ Cs : c1 ∩ c2 =

∅, and |Cs| = n
12 repeat
13 foreach c ∈ Cs do

14 for i := 1 to |V | do cci :=
Σ(v,rv)∈crvi

|c|
15 CCs := CCs ∪ {cc}
16 end
17 Cs := ∅
18 foreach cc ∈ CCs do
19 c := ∅
20 foreach (v, rv) ∈ Ps do
21 if ¬∃cc′ ∈ CCs : d(cc′, rv) < d(cc, rv) then c := c ∪ (v, rv)
22 end
23 Cs := Cs ∪ {c}
24 end

25 until Cs is unchanged

26 end

higher probability of belonging to the same subprocess than nodes that have
very different labels. This idea is based on the assumption that subsprocesses
can be developed to address a certain ‘topic’ in the process, like a phase or
the processing of a particular information object, and that the node labels are
chosen to reflect this topic. For example, it is more likely that the nodes labeled
‘receive request’ and ‘judge request’ belong to the same subprocess than the
nodes ‘receive request’ and ‘bill client’. In previous work [59, 60], we investigated
several metrics to measure the similarity of two labels. In this paper we use the
notion of syntactical similarity, which is based on string-edit distance. This
is a rough metric that does not take complex relations between words, such
as synonymy, into account. Its usage in this context can be defended because
people who work on the same business process model can be expected to align
their terminology and not use synonyms or homonyms. Consequently, we do not

21

expect more advanced metrics that take synonyms and homonyms into account
to make a difference in performance. Metrics that consider ‘relatedness’ of
labels can be expected to make a difference. We address such metrics in related
work [61].

For clustering based on label similarity, control nodes are ignored, because
their labels often do not provide information that can be used for clustering.
For example, they can be labeled ‘AND’, ‘OR’ or ‘XOR’ to indicate their type.
This does not provide us with information to relate them to other nodes in the
process model.

The string edit distance is defined as follows. Let s and t be two strings.
The string edit distance of s and t, denoted ed(s, t), is the minimal number of
atomic string operations needed to transform s into t or vice versa. The atomic
string operations are: inserting a character, deleting a character or substituting
a character for another. For example, the string edit distance between ‘Verify
invoice’ and ‘Verification invoice’ is 7; substitute ‘y’ for ‘i’ and insert ‘cation’.

Clustering can be used to determine clusters that are similar with respect to
their labels in much the same way as it can be used to determine clusters that
are well connected. This is done by minimizing the total similarity of labels
between the clusters instead of the total number of edges between the clusters.
More precisely, given a set of strings S, a preferred number of clusters n and
a graph G = (V,E, l) with vertices V , edges E and a function l : V → S that
labels vertices, our label clustering technique partitions the set of vertices V into
n clusters C1, C2, . . . , Cn, such that the total similarity of vertices from different
clusters, defined as Σn∈Ci,m∈Cj ,i6=j

1
ed(l(n),l(m)) , is minimal.

For example, using clustering to identify 2 clusters in Figure 5, forms the
cluster 2, 4, 5, 6 (in which all nodes have ‘data’ and/or ‘check’ in their label) and
the cluster 1, 8, 10, 11 (because 8, 10 and 11 all have ‘send’ and/or ‘decision’ in
their label and ‘receive request’ is just most similar to ‘send rejection decision’).
These clusters can be marked as potential sub-processes.

Note that label similarity and connectedness can also be combined easily
by only considering the similarity of labels in case the corresponding vertices
are connected, i.e. we minimize: Σ(n,m)∈E,n∈Ci,m∈Cj ,i6=j

1
ed(l(n),l(m)) . We can

incorporate label similarity into the clustering algorithm, by assigning rvj =
1

ed(l(m(i)),l(m(j))) in line 6. As will be discussed, we will also include this hybrid

form of clustering in our evaluation.
For example, using a combination of label similarity and connectedness to

identify 2 clusters in this case would consider the disconnectedness of nodes 1
and 11 and would produce the clusters 1, 2, 4, 5, 6 and 8, 10, 11. These clusters
can be marked as potential sub-processes.

4.4. Evaluation Setup

We evaluated the applicability of the criteria by applying the criteria to
automatically obtain a subprocess decomposition of the flattened process model
B from Figure 4. We evaluated the decomposition both quantitatively and
qualitatively.

22

For the quantitative analysis, we compared the following characteristics for
the decomposition done by humans and the decomposition that was done auto-
matically using the metrics: Subprocesses, Fan-In, Fan-Out, FanIn-Out and
Depth, as they are defined in Table 3. The values for the other metrics do not
differ for different decompositions. Therefore, we do not have to include them
again. In addition to that, we compared the number of nodes per subprocess
and the precision, recall, overshoot and undershoot, which we will explain in
more detail.

Precision and recall are common measures in information retrieval, used to
compare the performance of automated information retrieval to human infor-
mation retrieval. In our case that is retrieval of subprocesses. In this context
precision and recall compare the subprocesses that are found automatically to
the processes that have been identified by humans, where we define a subpro-
cess as a collection of nodes. Precision is commonly defined as the fraction of
‘true positives’ (i.e. the number of subprocesses that is both found and exist-
ing according to humans, divided by the number of subprocesses that is found)
and recall is defined as the fraction that represents the ‘completeness’ (i.e. the
number of found existing subprocesses divided by the number of existing sub-
processes).

For this context, we consider the way that precision and recall are determined
on the basis of exact matches as too strict. Recall that subprocesses are defined
by the set of nodes of which they consist. We argue that a subprocess that
is automatically retrieved, but from which some relevant nodes are missing as
compared to the subprocess determined by human modelers, is not a completely
missed match. For example, suppose that we consider that the set of nodes
{‘receive request’, ‘fill out request’, ‘complete request’, ‘accept request’, ‘file
request’} constitutes a subprocess. If the set of nodes {‘receive request’, ‘fill
out request’, ‘complete request’, ‘accept request’} is returned automatically,
then this is not an exact match, but it does provide useful information to the
process analyst that is determining the subprocesses. The process analyst can
easily investigate the subprocess and manually complete it; he or she is much
better off than when no information was returned at all. Therefore, we define
precision and recall in terms of the number of matched nodes that constitute
the subprocesses, rather than in terms of the number of (exactly) matched
subprocesses.

In addition to the notions of precision and recall, we also introduce overshoot
and undershoot to give a measure of how (im)perfect a subprocess match is.
Overshoot is the fraction of found nodes that does no belong in a subprocess;
conversely, undershoot is the fraction of nodes that do belong but that were not
found. For example, in the example used above the overshoot is 0% (no nodes
were found that did not belong) and the undershoot is 20% (the element ‘file
request’ was not found but did belong in the subprocess).

More precisely, we measure precision, recall, overshoot and undershoot as
follows. Let N be the set of all nodes in a process (including its subprocesses).
Let PM ⊆ PN be the set of all subprocesses that were determined manually by
humans and let PA ⊆ PN be the set of all subprocesses that were determined

23

automatically. Furthermore, let PM ∈ PM be a subprocess that was determined
manually by humans and let PA ∈ PA be a subprocess that was determined
automatically. The overlap between PA and PM is:

Overlap =
|PA ∩ PM |

max(|PA|, |PM |)

We say that PA is the most relevant match for PM if its overlap with PM

is greater than 0 and there is no other automatically determined subprocess
P ′
A ∈ PA with a higher overlap than PA. Let the function match : PM → PN

return the most relevant match for each manually determined subprocess, or
the empty set if no such match exist.

Precision and recall can then be defined as follows.

Precision =
ΣPM∈PM |PM ∩match(PM)|

ΣPA∈PA |PA|

Recall =
ΣPM∈PM |PM ∩match(PM)|

ΣPM∈PM |PM |
The F Score is the harmonic mean of the precision and the recall

2 · precision · recall

precision + recall

Overshoot and undershoot are defined as follows.

Overshoot =
ΣPM∈PM |match(PM)− PM |

ΣPA∈PA |PA|

Undershoot =
ΣPM∈PM |PM −match(PM)|

ΣPM∈PM |PM |

4.5. Evaluation Results

Table 4 and Figure 7 show the results of the evaluation. The figure shows how
the subprocess division, using a certain criterion, scores in terms of each of the
metrics. The ‘combined’ criterion is the combination of the ‘connectedness’ and
‘label similarity’ criteria as explained in Section 4.3. In the ‘original’ column,
the scores of the original model are repeated to simplify the comparison. If a
criterion is parameterized (this holds for the connectedness, label similarity and
combined criteria), the results are shown for the parameter-value that leads to
the highest F-Score.

The F-Score is the most important metric, because it provides an indication
of how well a subprocess division approximates the original manual subprocess
division. This metric shows that the connectedness criteria can be used best
to approximate a manual division into subprocesses. Interestingly, combining
information about connectedness with information about label similarity leads
to slightly inferior results, although Figure 7 shows that it leads to a distribution

24

Table 4: Results of Empirical Evaluation of Subprocess Criteria.

Metric B
lo

ck
S

tr
u

c
tu

re
d

n
e
ss

C
o
n

n
e
c
te

d
n

e
ss

L
a
b

e
l

S
im

il
a
ri

ty

C
o
m

b
in

e
d

O
ri

g
in

a
l

Subprocesses 68 49 39 47 20
Nodes per Subprocess (avg) 5.12 4.73 5.95 4.94 8.75
Nodes per Subprocess (min) 1 1 2 1 2
Nodes per Subprocess (max) 103 54 80 57 27

Fan-In 2.95 3.33 6.21 3.83 2.26
Fan-Out 3.32 3.33 6.21 3.83 2.26
FanIn-Out 96.11 122.45 1482.53 215.13 33.42
Depth 5 2 2 2 3

Precision 0.13 0.34 0.22 0.32 –
Recall 0.5 0.37 0.25 0.36 –
F-Score 0.21 0.35 0.24 0.34 –
Overshoot 0.19 0.25 0.68 0.21 –
Undershoot 0.4 0.57 0.72 0.59 –

20

30

40

50

60

70

O
cc
ur
re
nc
es
 (n

um
be

r)

Block Structuredness

Connectedness

Label Similarity

Combined

0

10

20

30

40

50

60

70

1‐5 6‐10 11‐15 16‐20 >20

O
cc
ur
re
nc
es
 (n

um
be

r)

Subprocess size (number of nodes)

Block Structuredness

Connectedness

Label Similarity

Combined

Manual

Figure 7: Distribution of Subprocess Sizes

25

in subprocess size that is significantly better than the one produced by the
connectedness criteria.

All of the metrics have high overshoot and undershoot, meaning that for each
automatically determined subprocess a large number of nodes is superfluous
or missing. For the connectedness criteria, on average 25% of the nodes in
an automatically determined subprocess are superfluous and 57% of the nodes
are missing. The block structuredness criterion relatively leads to the lowest
overshoot and undershoot.

The most striking differences between the automatically and manually de-
rived subprocesses are the number of subprocesses that are created and the sizes
of those subprocesses in terms of the number of nodes. The number of auto-
matically determined subprocesses is for all used criteria at least twice that of
the number that is created manually. Figure 7 shows the difference between the
subprocess sizes’ in more detail. For each of the criteria it shows the distribu-
tion of the subprocess’ sizes, using classes of subprocesses containing between
1 and 5 nodes, 6 and 10 nodes, 11 and 15 nodes, 16 and 20 nodes, and more
than 20 nodes. From the table and the figure, we can conclude that under each
of the criteria one (very) large subprocess is created and many (very) small
subprocesses, while in the manual subdivision mainly mid-sized (6 to 10 nodes)
subprocesses exist.

From these results we can point towards (combinations of) criteria that seem
attractive to be investigated further for the automated support of dividing a pro-
cess into subprocesses. Connectedness is the most promising criterion, although
it suffers from a high undershoot, which is caused by the fact that it produces
a large number of very small subprocesses. Consequently, the results that are
produced by this criterion can be improved by merging small subprocesses (i.e.
subprocesses containing in the 1 to 5 nodes). Interestingly, label similarity does
not present a good criterion for subprocess division; apparently, labels from
nodes in the same subprocess are not more similar than labels from nodes in
different subprocesses.

These results suggest that there is potential for supporting designers in mod-
ularizing their process models. In order to achieve nicely understandable sub-
processes the effects of information hiding and additional information costs have
to be balanced. Automatic techniques are suitable for proposing candidates of
subprocesses for a given model. Yet, the expertise of the designer is required in
the end to assess the suitability of a specific modularization.

5. Related Work

The contribution of our work can be related to three streams of research,
namely, quality metrics, process model abstraction, and modular workflow exe-
cution.

The metrics and criteria that are used in this paper are related to metrics and
criteria that are used in software engineering to determine properties of software
modules. The dominant metrics that are used in this domain are coupling and

26

cohesion [22]. Coupling measures the extent to which a module has links with
other modules and cohesion measures the extent to which elements within a
module are linked. A survey of different classes of those metrics can be found
in [62]. Alternative metrics and criteria have been proposed, including the
change dependency of module elements [63] and the number and distribution of
elements over the modules [64]. Similar to the work described in this paper, work
exists that uses clustering techniques to modularize a software system [65]. The
work described in this paper is strongly related to the work on modularization
in the area of software engineering, and adapts it to the domain of process
models. In this way, we also contribute to the area of process model metrics [66].
This research area investigates factors of process model comprehension such as
different measures of size and complexity [67, 68, 69, 70]. Ideas of modularity
are partially considered in these works, but only for flat process models [71,
72, 73, 38, 74, 75]. Our work extends this research towards a consideration of
subprocesses.

Work on process model abstraction relates to our automatic modularization
techniques. This work is partially inspired by techniques for matching activities
[76], finding similar process models [59], and checking consistency [77]. The
algorithm by Polyvyanyy et al. builds on using specific criteria for aggregat-
ing activities [78], for instance, if the relative effort of an activity is below a
certain threshold. By varying this threshold, the degree of aggregation can be
adjusted to the needs of the user. An abstraction approach based on behav-
ioral profiles is presented in [79]. The modeler selects a set of activities that is
supposed to be aggregated. Based on the control flow relations of the behav-
ioral profile, this approach generates the control flow of the aggregated model.
A different approach based on meronymy relations is presented in [61]. This
approach inspects meronymy relations between activity labels to find aggrega-
tion candidates. It integrates the problems of finding aggregation candidates
and aggregation names. We build on these works to automatically suggest a
modularization of the process.

On the execution level, modularity has been shown to be a requirement
for distributing the execution of a workflow on different sites. Many of the
works in this domain study performance and transactional properties of such
a modular and distributed workflow process, e.g. [80, 81, 8]. Recent work on
workflows distributed via the internet [82], workflows in a grid environment [83],
and workflows in the cloud [84] take a similar perspective. Our research com-
plements these works by demonstrating comprehension benefits of modularity.
Yet, it is unlikely that a modular design, which is beneficial from a performance
perspective, necessarily leads to better comprehension. It is an open question
in how far an easily understandable design relates to good modularity in terms
of execution performance.

6. Conclusion

We set out with this paper to address two research problems. The first
problem related to the lack of evidence for the usefulness of modularization

27

through the use of subprocesses in business process models. The results from
the controlled experiment that we described in this paper point at the presence
of positive effects of subprocesses on the understandability of the model in which
they are used. However, the effect may only manifest itself in situations where
subprocesses are used on an extensive scale. The most likely explanation that
we can present for the additional question why modularization works is that
the comprehension of local parts of a process models seems to be improved;
subprocesses hide information that is not relevant.

The second problem we addressed related to the lack of theoretically grounded
guidelines or dedicated approaches for modularizing a given process model into
subprocesses. We compared in an explorative fashion the automated use of three
distinctively different types of criteria and one hybrid form for this purpose. A
criterion that minimizes the number of edges between subprocesses emerged as
the most promising candidate to investigate further.

The results we presented should be considered within the limitations of the
experimental and explorative nature of our research approach. Nonetheless, we
find it reassuring that positive effects of subprocess usage have been established
in an experiment that involved experienced process modelers. In various re-
search, modeler expertise has been established as a critical issue for process
modeling projects [85]. Petre observed in her research that expert modelers fo-
cus on relevant graphical elements, recognize patterns and disregard irrelevant
information [86]. In contrast, novices tend to lack reading and search strategies
which result from modeling experience and extensive learning. In that sense,
the value of subprocesses is arguably of even greater value in settings where
people with low modeling expertise aim to make sense of process models. We
aim to follow up on this conjecture in our future research.

Another line of future research relates to the further development of pro-
cess modularization approaches. At this point, we identified several attractive
ingredients for such an approach, in particular with respect to the use of struc-
tural characteristics of a process model. Yet, in consideration of the difficulty of
finding good modular designs in other domains, it does not seem plausible that
a satisfactory, fully automated approach is feasible. Therefore, it seems sensi-
ble to get a process modeler “in the loop” in further evaluations of automated
approaches, in this way moving the focus from automated modeling towards
modeling guidance. This direction would also fit the wider stream of research
in the process modeling domain that aims at advanced tools to support process
modelers beyond the features that ordinary modeling tools provide, e.g. [87, 88].

References

[1] C. Baldwin, K. Clark, Managing Modularity, Harvard Business Review
75 (5) (1997) 84–93.

[2] R. Langlois, Modularity in Technology and Organization, Journal of Eco-
nomic Behavior and Organization 49 (1) (2002) 19–37.

28

[3] R. Eshuis, R. Wieringa, Tool support for verifying uml activity diagrams,
IEEE Trans. Software Eng. 30 (7) (2004) 437–447.

[4] W. Aalst, Formalization and Verification of Event-driven Process Chains,
Information and Software Technology 41 (10) (1999) 639–650.

[5] R. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business
process models in BPMN, Information and Software Technology 50 (12)
(2008) 1281–1294.

[6] W. Aalst, A. Hofstede, YAWL: Yet Another Workflow Language, Informa-
tion Systems 30 (4) (2005) 245–275.

[7] W. Aalst, K. Hee, Workflow Management: Models, Methods, and Systems,
MIT press, Cambridge, MA, 2002.

[8] F. Leymann, D. Roller, Workflow-based Applications, IBM Systems Jour-
nal 36 (1) (1997) 102–123.

[9] M. Dong, F. Chen, Petri Net-Based Workflow Modelling and Analysis of the
Integrated Manufacturing Business Processes, The International Journal of
Advanced Manufacturing Technology 26 (9) (2005) 1163–1172.

[10] A. Sharp, P. McDermott, Workflow Modeling: Tools for Process Improve-
ment and Application Development, Artech House, 2001.

[11] A. Lindsay, D. Downs, K. Lunn, Business processesattempts to find a def-
inition, Information and Software Technology 45 (15) (2003) 1015–1019.

[12] M. Ould, Business Processes: Modelling and Analysis for Re-engineering
and Improvement, Wiley, 1995.

[13] R. Davis, Business Process Modelling With Aris: A Practical Guide,
Springer, 2001.

[14] N. Damij, Business Process Modelling Using Diagrammatic and Tabular
Techniques, Business Process Management Journal 13 (1) (2007) 70–90.

[15] B. Weber, M. Reichert, Refactoring process models in large process repos-
itories, Lecture Notes in Computer Science 5074 (2008) 124–139.

[16] H.A. Reijers, J. Mendling, Modularity in process models: Review and ef-
fects, in: BPM, Springer, 2008, pp. 20–35.

[17] D. Parnas, On the Criteria for Decomposing Systems into Modules, Com-
munications of the ACM 15 (12) (1972) 1053–1058.

[18] C. Alexander, Notes on the Synthesis of Form, Harvard University Press,
1970.

[19] Y. Wand, R. Weber, On the deep structure of information systems, Infor-
mation Systems Journal 5 (1995) 203–223.

29

[20] R. Weber, Ontological Foundations of Information Systems, Coopers &
Lybrand and the Accounting Association of Australia and New Zealand,
Melbourne, Australia, 1997.

[21] E. Yourdon, L. Constantine, Structured Design, Prentice Hall, 1979.

[22] S. Chidamber, C. Kemerer, A metrics suite for object oriented design.,
IEEE Transaction on Software Engineering 20 (6) (1994) 476–493.

[23] A. Burton-Jones, P. Meso, How good are these uml diagrams? an empirical
test of the wand and weber good decomposition model, in: L. Applegate,
R. Galliers, J. DeGross (Eds.), Proceedings of the Twenty-third Interna-
tional Conference on Information Systems (ICIS), 2002, pp. 101–114.

[24] M. Adler, An algebra for data flow diagram process decomposition, IEEE
Trans. Software Eng. 14 (2) (1988) 169–183.

[25] A. Basu, R. Blanning, Synthesis and Decomposition of Processes in Orga-
nizations, Information Systems Research 14 (4) (2003) 337–355.

[26] B. Weber, S. Rinderle, M. Reichert, Change patterns and change sup-
port features in process-aware information systems, in: J. Krogstie, A. L.
Opdahl, G. Sindre (Eds.), Advanced Information Systems Engineering,
19th International Conference, CAiSE 2007, Trondheim, Norway, June 11-
15, 2007, Proceedings, Vol. 4495 of Lecture Notes in Computer Science,
Springer, 2007, pp. 574–588.

[27] T. Basten, W. Aalst, Inheritance of Behavior, Journal of Logic and Alge-
braic Programming 47 (2) (2001) 47–145.

[28] T. Malone, K. Crowston, J. Lee, B. Pentland, Tools for Inventing Orga-
nizations: Toward a Handbook for Organizational Processes, Management
Science 45 (3) (1999) 425–443.

[29] J. Desel, J. Esparza, Free Choice Petri Nets, Vol. 40 of Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, Cambridge,
UK, 1995.

[30] W. Sadiq, M. Orlowska, Analyzing Process Models using Graph Reduction
Techniques, Information Systems 25 (2) (2000) 117–134.

[31] M. Wynn, H. Verbeek, W. Aalst, A. Hofstede, D. Edmond, Reduction rules
for yawl workflow nets with cancellation regions and or-joins, BPMCenter
Report BPM-06-24, BPMcenter.org (2006).

[32] S. Jablonski, MOBILE: A Modular Workflow Model and Architecture, in:
Proceedings of the International Working Conference on Dynamic Mod-
elling and Information Systems, 1994.

[33] F. Leymann, D. Roller, Production Workflow - Concepts and Techniques,
Prentice Hall, 2000.

30

[34] W. Aalst, Verification of Workflow Nets, in: P. Azéma, G. Balbo (Eds.),
Application and Theory of Petri Nets 1997, Vol. 1248 of Lecture Notes in
Computer Science, Springer Verlag, 1997, pp. 407–426.

[35] N. Kock Jr, Product Flow, Breadth and Complexity of Business Processes:
An Empirical Study of 15 Business Processes in Three Organizations, Busi-
ness Process Re-engineering & Management Journal 2 (2) (1996) 8–22.

[36] J. Mendling, G. Neumann, W. Aalst, Understanding the occurrence of
errors in process models based on metrics, in: R. Meersman, Z. Tari (Eds.),
OTM Conference 2007, Proceedings, Part I, Vol. 4803 of Lecture Notes in
Computer Science, Springer, 2007, pp. 113–130.

[37] F. Leymann, Workflows Make Objects Really Useful, EMISA Forum 6 (1)
(1996) 90–99.

[38] J. Vanhatalo, H. Völzer, F. Leymann, Faster and more focused control-
flow analysis for business process models through sese decomposition, in:
B. Krämer, K.-J. Lin, P. Narasimhan (Eds.), Service-Oriented Computing
- ICSOC 2007, Fifth International Conference, Vienna, Austria, September
17-20, 2007, Proceedings, Vol. 4749 of Lecture Notes in Computer Science,
Springer, 2007, pp. 43–55.

[39] J. Mendling, H.A. Reijers, J. Cardoso, What Makes Process Models Under-
standable?, in: G. Alonso, P. Dadam, M. Rosemann (Eds.), International
Conference on Business Process Management (BPM 2007), Vol. 4714 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2007, pp. 48–
63.

[40] I. Vanderfeesten, H.A, Reijers, W. van der Aalst, Evaluating workflow pro-
cess designs using cohesion and coupling metrics, Computers in Industry
59 (5) (2008) 420–437.

[41] T. Green, M. Petre, Usability analysis of visual programming environments:
A ’cognitive dimensions’ framework, J. Vis. Lang. Comput. 7 (2) (1996)
131–174.

[42] T. Green, Conditional program statements and their comprehensibility to
professional programmers, Journal of Occupational Psychology 50 (1977)
93–109.

[43] I. Vessey, Cognitive Fit: A Theory-Based Analysis of the Graphs Versus
Tables Literature*, Decision Sciences 22 (2) (1991) 219–240.

[44] T. A. et al., Business process execution language for web services, version
1.1, Tech. rep., Microsoft, IBM, Siebel Systems, SAP, BEA (2003).

[45] Object Management Group, Business Process Modeling Notation (BPMN)
Specification, Final Adopted Specification, dtc/06-02-01, Object Manage-
ment Group (February 2006).

31

[46] N. Juristo, A. Moreno, Basics of Software Engineering Experimentation,
Kluwer Academic Publishers, 2001.

[47] L. Prechelt, Kontrollierte Experimente in der Softwaretechnik: Potenzial
und Methodik, Springer, 2001.

[48] B. Mutschler, B. Weber, M. Reichert, Workflow management versus case
handling: Results from a controlled software experiment, in: L. Liebrock
(Ed.), Proceedings of the 2008 ACM Symposium on Applied Computing,
Volume I, ACM, 2008, pp. 82–89.

[49] J. Cardoso, Poseidon: A Framework to Assist Web Process Design Based on
Business Cases, International Journal of Cooperative Information Systems
15 (1) (2006) 23–55.

[50] H. Verbeek, M. van Hattem, H.A, Reijers, W. de Munk, Protos 7.0: Sim-
ulation made accessible, in: G. Ciardo, P. Darondeau (Eds.), Proceedings
of the 24th International Conference on Application and Theory of Petri
Nets, Springer, 2005, pp. 465–474.

[51] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Proce-
dures, CRC Press, 2004.

[52] G. Lee, J. Yoon, An Empirical Study on Complexity Metrics of Petri Nets,
Microelectronics and reliability 32 (9) (1992) 1215–1221.

[53] J. Mendling, Detection and Prediction of Errors in EPC Business Process
Models, Ph.D. thesis, Vienna University of Economics and Business Ad-
ministration, Vienna, Austria (May 2007).

[54] R. Laue, V. Gruhn, Complexity metrics for business process models, in:
W. Abramowicz, H. C. Mayr (Eds.), 9th International Conference on Busi-
ness Information Systems (BIS 2006), Vol. 85 of Lecture Notes in Infor-
matics, 2006, pp. 1–12.

[55] T. Cook, W. Shadish, D. Campbell, Experimental and Quasi-Experimental
Designs for Generalized Causal Inference, Houghton Mifflin, 2002.

[56] J. Vanhatalo, H. Völzer, J. Koehler, The refined process structure tree, in:
Proceedings of BPM 2008, Vol. 5240 of Lecture Notes in Computer Science,
Springer, 2008, pp. 100–115.

[57] J. Vanhatalo, H. Völzer, J. Koehler, The refined process structure tree,
Data & Knowledge Engineering 68 (9) (2009) 793–818.

[58] S. Schaeffer, Graph clustering - survey, Computer Science Review 1 (2007)
27–64.

[59] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, J. Mendling, Similarity
of business process models: Metrics and evaluation, Information Systems
36 (2010) 498–516.

32

[60] B. van Dongen, R. Dijkman, J. Mendling, Measuring similarity between
business process models, in: Springer (Ed.), Proceedings of the 20th
International Conference on Advanced Information Systems Engineering
(CAiSE), Vol. 5074 of Lecture Notes in Computer Science, 2008, pp. 450–
464.

[61] S. Smirnov, R. Dijkman, J. Mendling, M. Weske, Meronymy-based Aggre-
gation of Activities in Business Process Models, Conceptual Modeling–ER
2010 (2010) 1–14.

[62] J. Eder, G. Kappel, M. Schrefl, Coupling and cohesion in object-oriented
systems, Tech. rep., University of Klagenfurt (1994).

[63] G. Gui, P. Scott, Coupling and cohesion measures for evaluation of com-
ponent reusability, in: Proceedings of the 2006 international workshop on
Mining software repositories (MSR ’06), ACM, 2006, pp. 18–21.

[64] F. B. e Abreu, M. Goulao, Coupling and cohesion as modularization drivers:
are we being over-persuaded?, in: Proceedings of the European Conference
on Software Maintenance and Reengineering, 2001, pp. 47–57.

[65] F. B. e Abreu, G. Pereira, P. Sousa, A coupling-guided cluster analysis
approach to reengineer the modularity of object-oriented systems, software
maintenance and reengineering, in: Proceedings of the European Confer-
ence on Software Maintenance and Reengineering, 2000, pp. 13–22.

[66] J. Mendling, Metrics for Process Models: Empirical Foundations of Verifi-
cation, Error Prediction, and Guidelines for Correctness, Vol. 6 of Lecture
Notes in Business Information Processing, Springer, 2008.

[67] G. Lee, J.-M. Yoon, An empirical study on the complexity metrics of petri
nets, Microelectronics and Reliability 32 (3) (1992) 323–329.

[68] M. Nissen, Redesigning reengineering through measurement-driven infer-
ence, MIS Quarterly 22 (4) (1998) 509–534.

[69] S. Morasca, Measuring attributes of concurrent software specifications in
petri nets, in: METRICS ’99: Proceedings of the 6th International Sym-
posium on Software Metrics, IEEE Computer Society, Washington, DC,
USA, 1999, pp. 100–110.

[70] J. Cardoso, Process control-flow complexity metric: An empirical valida-
tion, in: Proceedings of IEEE International Conference on Services Com-
puting (IEEE SCC 06), Chicago, USA, September 18-22, IEEE Computer
Society, 2006, pp. 167–173.

[71] G. Canfora, F. Garćıa, M. Piattini, F. Ruiz, C. Visaggio, A family of exper-
iments to validate metrics for software process models., Journal of Systems
and Software 77 (2) (2005) 113–129.

33

[72] E. R. Aguilar, F. Garćıa, F. Ruiz, M. Piattini, An exploratory experiment
to validate measures for business process models, in: First International
Conference on Research Challenges in Information Science (RCIS), 2007.

[73] I. Vanderfeesten, H.A. Reijers, J. Mendling, W. Aalst, J. Cardoso, On a
Quest for Good Process Models: The Cross-Connectivity Metric, Lecture
Notes in Computer Science 5074 (2008) 480–494.

[74] W. Aalst, K. Lassen, Translating unstructured workflow processes to read-
able BPEL: Theory and implementation, Information and Software Tech-
nology 50 (3) (2008) 131–159.

[75] J. Mendling, H. Verbeek, B. Dongen, W. Aalst, G. Neumann, Detection
and Prediction of Errors in EPCs of the SAP Reference Model, Data &
Knowledge Engineering 64 (1) (2008) 312–329.

[76] M. Weidlich, R. M. Dijkman, J. Mendling, The icop framework: Identi-
fication of correspondences between process models, in: B. Pernici (Ed.),
Advanced Information Systems Engineering, 22nd International Confer-
ence, CAiSE 2010, Hammamet, Tunisia, June 7-9, 2010. Proceedings, Vol.
6051 of Lecture Notes in Computer Science, Springer, 2010, pp. 483–498.

[77] M. Weidlich, J. Mendling, M. Weske, Efficient consistency measurement
based on behavioural profiles of process models, IEEE Transactions on
Software Engineering (TSE)To appear.

[78] A. Polyvyanyy, S. Smirnov, M. Weske, Process model abstraction: A slider
approach, in: Proceedings of the 12th International Conference on Enter-
prise Distributed Object Computing (EDOC), 2008.

[79] S. Smirnov, M. Weidlich, J. Mendling, Business process model abstrac-
tion based on behavioral profiles, in: Proceedings of the 8th International
Conference on Service Oriented Computing (ICSOC), San Francisco, USA,
2010.

[80] H. Schuster, S. Jablonski, P. Heinl, C. Bussler, A general framework for
the execution of heterogenous programs in workflow management systems,
in: CoopIS, 1996, pp. 104–113.

[81] J. Puustjärvi, H. Tirri, J. Veijalainen, Reusability and modularity in trans-
actional workflows, Inf. Syst. 22 (2/3) (1997) 101–120.

[82] M. B. Blake, M. N. Huhns, Web-scale workflow: Integrating distributed
services, IEEE Internet Computing 12 (1) (2008) 55–59.

[83] O. Ezenwoye, M. B. Blake, G. Dasgupta, S. M. Sadjadi, S. Kalayci, L. L.
Fong, Managing faults for distributed workflows over grids, IEEE Internet
Computing 14 (2) (2010) 84–88.

34

[84] K. S. Shams, M. W. Powell, T. Crockett, J. S. Norris, R. Rossi, T. Söder-
ström, Polyphony: A workflow orchestration framework for cloud com-
puting, in: 10th IEEE/ACM International Conference on Cluster, Cloud
and Grid Computing, CCGrid 2010, 17-20 May 2010, Melbourne, Victoria,
Australia, IEEE, 2010, pp. 606–611.

[85] W. Bandara, Factors and measures of business process modelling: model
building through a multiple case study, European Journal of Information
Systems 14 (2005) 347–360.

[86] M. Petre, Why looking isn’t always seeing: readership skills and graphical
programming: Cognition and software development, Communications of
the ACM 38 (6) (1995) 33–44.

[87] F. Gottschalk, W. van der Aalst, M. Jansen-Vullers, M. L. Rosa, Config-
urable workflow models, International Journal of Cooperative Information
Systems 17 (2) (2008) 177–221.

[88] A. Koschmider, M. Song, H. A. Reijers, Social software for business process
modeling, Journal of Information Technology 25 (3) (2010) 308–322.

35

