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Abstract. Stochastic workflow nets, a special class of stochastic Petri nets, are used for 
modelling and analysing business processes. For a specific class of stochastic workflow nets, a 
marginal allocation strategy of resources is presented that minimizes the mean sojourn time of 
individual cases. A popular allocation strategy as advocated by Goldratt is shown to be sub-
optimal. 
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1. INTRODUCTION 

A business process can be seen as a set of logically related tasks. Each task can be performed by 
a number of resources, being either machines or humans. Individual cases (also known as jobs), 
e.g. insurance claims and credit applications, arrive more or less regularly at the process. They 
are routed through the business process along the tasks that should be performed for them. 
Typical tasks in a business process are, for example, calculating the validity of an insurance 
claim and checking the creditworthiness of an applicant. Within each business process a clear 
start and end can be distinguished. Also, any routing through a business process is allowable, 
but for each case the routing is uniquely defined. The time that is spent to perform a task for an 
individual case, the service time, can be of arbitrary length. If all resources that can work on a 
task are busy and new cases arrive for that task, the cases will have to line up (queuing). At each 
point during the processing of a case, a final state can be distinguished when all processing for 
this case is complete. 

In this paper, we are interested in determining the optimal allocation of resources in a 
business process if there is just a limited set of resources that can be freely allocated. The 
optimisation criterion we apply is the sojourn time, informally defined as the mean time in 
steady-state that elapses between the moment a case becomes available for the process and the 
moment its processing ends. Other common names for this criterion are traversal time, lead time 
and cycle time. In business processes, a low or stable sojourn time is often a desirable or even 
necessary characteristic of a business process [13]. Obviously, a low sojourn time can give a 
business a competitive edge. The resource allocation problem is often encountered when the 
structure of a business process has been redesigned and the new process must be used in 
practice by assigning tasks to individual workers. 

In this paper, an algorithm is given for the allocation of a fixed number of resources to 
minimize the mean sojourn time for a particular class of business processes. We will apply 
stochastic workflow nets to model and analyse these business processes. This type of Petri net 
model is derived from the formal model as described by Van der Aalst [1] en Van Hee [12]. 
More specific, optimality is proven for each stochastic workflow net that can be projected on a 
Jackson network [14][15]. This result builds upon the work of Fox [10], Rolfe [16], Dyer and 
Proll [9], and Weber [17], who studied the optimality of marginal allocation algorithms for 
various queuing networks. In particular, it is shown that a allocation strategy popular in industry 
as advocated by Goldratt [11] is not always optimal for the types of business processes we 
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consider. Queuing theory and simulation will be applied to support our claims; the Petri net tool 
ExSpect [4] is used in the presentation of an example.  

The paper is organized as follows. Section 2 explains the basic terminology and concepts 
used throughout this paper, including the performance criterion that is applied. In Section 3 we 
present Goldratt’s approach and discuss its properties. Then, in Section 4, we introduce the 
marginal allocation strategy, its optimality and its limits of application. In the last section, we 
present our concluding remarks and directions for further research.  

2. STOCHASTIC WORKFLOW NETS 

2.1. Workflow 

A workflow (see e.g. [3]) is a case-based business process, i.e., every action performed in a 
workflow corresponds to some case. Typically, cases are generated by the workflow’s 
environment. The goal of the workflow is to handle cases as efficient and effective as possible. 

The most important aspect of a workflow is its process definition: a partial ordering of the 
tasks that defines which tasks need to be executed in what order. A task that is to be executed 
for a specific case is called a work item. Most work items need a resource to be executed. A task 
that is being executed for a specific case is called an activity. 

2.2. Petri nets 

Workflow process definitions can be modelled by workflow nets, which form a subclass of 
ordinary Petri nets. A Petri net is a directed graph with two kinds of nodes: places and 
transitions. An arc in a Petri net connects a place to a transition or a transition to a place. The 
input (output) places of a transition are those places from (to) which there is an arc to (from) 
that transition. A Petri net where no two arcs connect the same transition to the same place, or 
the same place to the same transition, is called ordinary. 

Places in a Petri net may contain so-called tokens (i.e., may be marked). The distribution of 
these tokens over the places (also referred to as the marking) determines the state of the Petri 
net. A transition is enabled (i.e., can be executed) if and only if all its input places contain 
tokens. If the transition fires (i.e., executes), it removes a token from every input place, and adds 
a token to every output place, resulting in a new marking. A marking is reachable from another 
marking if and only if there exists a series of transition firings that transforms the latter marking 
to the first. 

2.3. Workflow nets 

A workflow net is an ordinary Petri net which satisfies the following three requirements: 
1. There is one source place, i.e., a place without incoming arcs; 
2. There is one sink place, i.e., a place without outgoing arcs;  
3. For every node there exists a directed path from the source place to that node, and a 

directed path from that node to the sink place. 
A token in the source place indicates the arrival of a new case; a token in the sink place 
indicates the completion of a case. 

To enforce proper behaviour of a workflow, the following soundness requirement is 
imposed on the behaviour of the corresponding workflow net: 

1. A marking of the sink place can be reached from every marking reachable from the 
marking with only the source place marked; 

2. For every marking reachable from the marking with only the source place marked, all 
other places are unmarked if the sink place is marked; 

3. Every transition can be enabled from the marking with only the source place marked. 
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The first requirement states that we can always complete a case; the second states that upon 
completion of a case no work is left behind in the workflow; the third states that every task can 
become an activity for some case. 

2.4. Stochastic workflow nets 

A task in a workflow can be modelled by a start transition, an end transition, a busy place, and 
an idle place:  
- The start transition indicates that the task becomes an activity; 
- The end transition indicates that the activity is completed; 
- The busy place holds a combination of a case and a busy resource and indicates that the task 

is an activity; 
- The idle place holds the idle resources. 
The net in Figure 1 is a task. Because there is a token in the busy place, this task is an activity 
for the case associated with that token. 

idle

busy

start endinput output
 

Figure 1: The task model 

Note that cases are associated with tokens and that the start transition needs to be able to 
distinguish tokens from different cases: it should be enabled only if each input place contains a 
token associated with the same case. For this reason, we assume some colour to exist in the 
stochastic workflow net: Each case has a unique identity, tokens associated with a case have the 
colour of that case, and transitions are only allowed to use case tokens (resource tokens have no 
identity) with the same identity during one execution. So, if one of the tokens in one input place 
has the same identity as the token in the second, the task is a work item for the case associated 
with both tokens. Otherwise, the task is not a work item for any case. Note also that the task 
contains four available resources: three idle and one busy. For ease of use, we will use boxes to 
visualize tasks. 

The partial ordering of the workflow can be modelled by routing transitions and condition 
places: 
- Routing transitions are additional transitions that do not correspond to tasks, but may be 

necessary to achieve a correct routing; 
- Condition places define the partial order of all tasks and routing transitions; we can 

distinguish queuing places and routing places: 
- Queuing places are places that directly precede tasks and correspond to FIFO queues in 

the workflow; 
- Routing places are places that directly precede routing transitions, do not correspond to 

queues, but may be necessary to achieve a correct routing.  
Note that we assume that tasks and routing transitions do not share input places, and that all 
queues in the workflow are First-In-First-Out (FIFO) queues. 

To be able to say something about the workflow’s sojourn time, we add several parameters 
to the workflow net: 
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- Each task has an arbitrary service time distribution that is independently sampled for each 
time it is executed; 

- Each task has a number of available resources, which are initially idle; 
- Each routing transition has a relative weight: if a choice is to be made between two (or 

more) enabled routing transitions then these weights are taken into account to determine 
which routing transition is executed first; 

- The process has an arbitrary arrival time distribution, which specifies the arrival pattern of 
new cases; each new case is assumed to arrive at the source place of the workflow. 

Figure 2 shows an example containing two conflicting routing transitions left and right. 
Transitions left has weight 2 and transition right weight 1. If only these transitions are enabled, 
then in 2 out of 2+1=3 cases transition left will fire first, and in 1 out of 3 cases transition right 
will fire first. 

12

left right

conflict

 
Figure 2: Transition weights 

The sojourn time of a workflow can now be defined as the average time it takes the (sound) 
workflow net to move a case from the source place to the sink place. This sojourn time is a 
combination of: 
- Service times: the time a case spends in a task’s service place;  
- Queue times: the time a case spends in places waiting for a resource token; 
- Wait times: the time a case spends in places waiting for other case tokens.  
Note that wait times can only occur at synchronizing transitions, i.e., transitions with multiple 
input places. The relevance of distinguishing between queue and wait time will become clear in 
Section 4. 

3. GOLDRATT’S CONJECTURE 

3.1. Introduction 

The Goldratt algorithm starts to identify a bottleneck within the process among the so-called 
work centers. A work center is any group of which its members are capable of executing the 
same operations. This "work group" concept is very similar to our notion of resources. The 
bottleneck is principally defined by Goldratt as the work group that has a utilization that 
exceeds 1. Obviously, in this situation there is no steady state for the process (queues grow 
infinitely large) and the mean sojourn time is meaningless. For these reasons, we turn this 
definition aside and focus on the secondary definition Goldratt provides: "work centers that 
have the largest amount of work-in-process sitting in front of it are the bottlenecks". This is 
obviously a rather ambiguous specification. We do not think that Goldratt suggests the physical 
size of a queue or even the number of cases in a queue as accurate indicators of the pressure on 
a work group, as they are clearly not. We will distinguish two interpretations of this bottleneck 
definition, as follows: 
1. mean queue time: the bottleneck is the resource class that is assigned to the task where the 

mean queue time is maximal, 
2. utilization: the bottleneck is the resource class with the highest mean utilization. 
The Goldratt algorithm ends by stating that if an extra resource is available it should be placed 
at the bottleneck to increase the overall performance of the process measured in the throughput 
rate. Clearly, the latter figure is the inverse of our sojourn time notion. 
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3.2. Limits 

The intuition behind the Goldratt algorithm is apparent: increase the number of resources that 
are pressured the hardest to improve the throughput rate. However, consider the following 
example. A telephonist of a service organization handles incoming complaints. The telephonist 
can handle 90% of all incoming complaints. On average, this takes him two and a half minutes. 
For the remaining 10%, one of the ten service men has to visit the complainant. On average, a 
visit takes three hours and 50 minutes (230 minutes). So, the mean service time of an arbitrary 
complaint is 25,25 minutes. The service times of tasks T ("Telephonist") and S ("Service men") 
have a negative exponential distribution. The arrivals of complaints is Poisson-distributed. On 
average, every two and a half minutes a new complaint arrives (λ = 1/2,5). This workflow is 
depicted as a a stochastic workflow net in Figure 3. Note that the small number of tasks in this 
process is by no means indicative for the size of workflow nets as they are used in practice to 
model business processes; practical use commonly renders workflow nets with dozens or 
hundreds of tasks.  
 
 

 9

1

µ = 2/5

S

O

λ = 2/5

µ = 1/230

 
Figure 3 Example of a service organization 

As all probabilities in the depicted resource-extended SWN are independent, the 
performance of this workflow can be analytically determined by splitting it up into two well-
known queuing systems: an M/M/10 and an M/M/1 queuing system, with respective Poisson 
arrival rates of 1/25 and 9/25.  

The mean queue time for task S, WS, is approximately 209.7 minutes and the mean queue 
time for task O, WO, equals 22.50 minutes. Combined with the mean service time of 25.25 
minutes, the mean sojourn time is about 41.22 minutes. We will first consider the first 
interpretation of the bottleneck (see previous section). In applying Goldratt’s algorithm, the 
bottleneck turns out to be task S, as its mean queue time exceeds that of task O.  

Now suppose that the service company's management is not content with the current 
sojourn time and that there are sufficient funds to hire another resource. Also suppose that hiring 
a telephonist or service men is just as expensive. Hiring an eleventh service man yields a mean 
queue time WS of 60.75 minutes. This is a local gain of almost 150 minutes. While the 
processing in the other part of the system does not change, this results in a mean queue time of 
approximately 26.33 minutes. Given the mean service time of handling a complaint of 25.25 
minutes this leads to a mean sojourn time of 51.58 minutes. 

However, if we had hired a second operator instead of an eleventh service man the mean 
queue time WO would be 0.635 minutes. This is a local gain of more than 20 minutes, resulting 
in a mean sojourn time of 21.54 minutes and a mean sojourn time of 46.79 minutes. These are 
lower figures than the former scenario, making the hire of a second telephonist more attractive.  
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The results from this example are summarized in  
nS nT WS WT mean queue 

time 
mean sojourn  

time 
10 1 209.7 22.50 41.22 66.47 
10 2 209.7 0.635 21.54 46.79 
11 1 60.75 22.50 26.33 51.58 

Table 1. The number of service men and operators are denoted with nS and nO respectively. 
It is clear that Goldratt’s algorithm is not optimal. It is possible to gain more time at other places 
in the process than at the bottleneck. The effect is obtained by: 

1. the higher marginal effect of one extra operator, where there is just one operator 
working, compared to the benefit of adding a service man to the ten service men already 
working, and  

2. the higher execution frequency of the operators. 
  

nS nT WS WT mean queue 
time 

mean sojourn  
time 

10 1 209.7 22.50 41.22 66.47 
10 2 209.7 0.635 21.54 46.79 
11 1 60.75 22.50 26.33 51.58 

Table 1: Results service organization 
Note that if we had used the utilization rate as criterion to identify the bottleneck, task S 

would still have been the bottleneck: The occupation rate of the service men equals 92%, where 
the occupation rate of the operator equals 90%. 

4. THE METHOD OF MARGINAL ALLOCATION 

4.1. Introduction 

As an alternative to the Goldratt algorithm, we propose a method of marginal allocation. We 
consider a stochastic workflow net that consists of N tasks. The service times of the tasks t1, 
t2,…,tN are arbitrarily distributed, characterized by Λ = 〈µ1, µ2,… µN〉 with µi for 1 ≤ i ≤  N 
containing all parameters to characterize the service time distribution of task ti. The arrival 
process of new cases is arbitrarily distributed with characterization λ. We suppose that initially 
a sufficiently large number of resources is allocated to each task to ensure that the mean queue 
time is finite for every queue in the system. M additional resources are available to be freely 
allocated amongst the tasks (M ∈ N\0). Each resource can be allocated to any of the tasks. 
However, after its allocation, a resource can only work on work items that are to be executed for 
the task it has been allocated to. Let ni for 1≤ i ≤ N be the number of resources that is dedicated 
to task i after M additional resources have been allocated to the process. We denote Γ = 〈n1, 
n2,… nN〉. The mean sojourn time of the process after adding M extra servers can then be 
expressed as a function f(λ, Λ, Γ). Suppose that after marginally allocating M-1 resources the 
number of resources at task i is mi. We denote for 1≤ k ≤ N with ϑk the allocation 〈n1, n2,...,nN〉 
where nk = mk + 1 and nj = mj for j ≠ k and 1≤ j ≤ N. The method of marginal allocation is to 
allocate the Mth resource to a task l such that 

 f(λ, Λ, ϑl) = ( )( )min :1 : , , kk k N f≤ ≤ λ Λ ϑ . (i) 
In some cases the quantity f(λ, Λ, ϑk) can be calculated from an explicit formula; in other 

cases it can be estimated by simulation. If M additional servers are to be applied, the marginal 
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allocation requires N ⋅ M evaluations of the sojourn time. If, instead of marginal allocation, all 

possible allocations were to be tried, 
-1

-1
M N

N
+ 

 
 

 evaluations are required. 

4.2. Example 

We use the service organization from Figure 3 as an example to demonstrate the method of 
marginal allocation.  

nS nT WS WT mean queue 
time 

mean sojourn  
time 

10 1 209.7 22.50 41.22 66.47 
10 2 209.7 0.635 21.54 46.79 
11 1 60.75 22.50 26.33 51.58 

Table 1 shows the mean sojourn times of three possible resource allocations: (nO, nS) = (1, 10) 
and both possible successors of this allocation. From this table, we deduce that an additional 
operator should be hired, because an extra operator reduces the mean sojourn time most. 
Suppose we can hire six additional employees. Table 2 shows the mean sojourn times of the 
organization for allocations up to 17 employees.  

 
nS  

10 11 12 13 14 15 16 
1 41.22 26.33 22.70 21.33 20.74 20.47 20.35 
2 21.54 6.65 3.02 1.66 1.07 0.80  
3 21.04 6.15 2.52 1.06 0.57   
4 20.98 6.09 2.46 1.09    
5 20.97 6.08 2.45     
6 20.97 6.08      

 nO 

7 20.97       

Table 2: Mean sojourn times service organization 

From this table, we deduce that the first employee to hire would be an operator (because 
21.54 < 26.33), the second would be a service man (21.04 > 6.65), the third a service man (6.15 
> 3.02), etc. In the end, three operators and fourteen service men are employed. Note that this is 
the optimal solution with regard to the sojourn time for seventeen employees.  

Using Goldratt’s algorithm, we first hire three service men, then an operator, and then two 
more service men, resulting in a non-optimal situation. If we use occupation rates as criterion 
for the bottleneck, we first hire a service man, then an operator, and then four service men, 
resulting in the same, non-optimal, situation. 

4.3. Optimality 

To discuss the optimality of the marginal allocation strategy we briefly discuss a result by Rolfe 
[16] who considered networks that are composed of an arbitrary number of tasks, where each 
task behaves like a G/GI/m queue. An important condition on these networks is that the arrival 
and queuing processes among the tasks are independent. Using the previously introduced 
notation and denoting the expected queue time at task i after allocating M servers to the total 
system by ( ), ,i i i iW nλ µ , the allocation problem Rolfe studied can be formulated as: 

 ( )
1 2, ,... 1
min , ,

N

N

i i i in n n i
W n

=

 λ µ 
 
∑  with 

1

N

i
i

M n
=

= ∑ . (ii) 
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Fox [10] showed that for this kind of problem the marginal allocation algorithm is optimal 
if the function ( ), ,i i i iW nλ µ  is non-increasing and convex in ni. In other words, for any task i:  

 ( ) ( ) ( ) ( ), , , , 1 , , 1 , , 2 0i i i i i i i i i i i i i i i iW n W n W n W nλ µ − λ µ + ≥ λ µ + − λ µ + ≥ . (iii) 
The condition Fox formulated ensures that it is never necessary to remove already placed 

resources, so that marginal allocation is optimal. This result cannot immediately be translated to 
the optimality of marginal allocation to minimize the sojourn time in stochastic workflow nets. 
In the first place, the arrival and queuing processes among the tasks in a stochastic workflow net 
are generally not independent. The structure of the net, as well as the service time distributions 
of the tasks may influence the arrival and queuing processes at other tasks. In the second place, 
a minimal queue time does not guarantee a minimal sojourn time (this is illustrated by the 
example in Section 4.4). In general, the sojourn time in a stochastic workflow net consists of 
service time, queue time, and wait time. Although the service time is independent of queue time 
in our model, the wait time cannot be neglected in minimizing the sojourn time. Recall that wait 
time is related with synchronizations in concurrent parts of a workflow net (see Section 2.4). 

First, we consider stochastic workflow nets of which the net structure is a state machine, 
i.e., for each transition t of the Petri net holds that it has exactly one input and exactly one 
output place. We will call such a workflow net a State-Machine-Stochastic (SMS) workflow 
net. In an SMS workflow net, no concurrency can take place, so the wait time for each case is 
zero. As a result, the mean sojourn time equals the sum of the mean total service time and the 
mean total queue time. This implies that minimizing the mean queue time for an SMS workflow 
net suffices to minimize its mean sojourn time. After all, the mean service time is constant. 

Suppose we further narrow down the class of workflow nets under consideration to those 
SMS workflow nets where each case is directly routed to one of N alternative tasks after which 
the processing ends. An example of such a net is the one in Figure 3. An SMS workflow net like 
this can be divided into N independent G/GI/m queuing systems. Weber [17] proved that a 
G/GI/m queue is convex and non-increasing in the number of servers m. So, on basis of Fox’ 
result, we can determine that marginal allocation is optimal for arbitrary arrival processes, 
arbitrary service time distributions, and arbitrarily chosen weights. Unfortunately, this is a rather 
small class of stochastic workflow nets. 

Now consider the class of SMS workflow nets with a Poisson arrival process with 
parameter λ, negative-exponentially distributed service time distributions with intensities µ1, 
µ2,..., µN for tasks t1, t2, ..., tN, arbitrarily chosen weights, and an initial allocation of resources 
such that the mean queue time at each task is finite. It is straightforward to see that such a net 
can be mapped onto a (single class) open Jackson queuing network. For Jackson networks it is a 
well known result that the equilibrium distribution can be determined analytically ([14][15]). In 
steady state, each node in a Jackson network behaves as if it were in isolation and subject to 
Poisson arrivals, although the arrivals may in fact not be Poisson. Using the Jackson equilibrium 
formula and Little’s law, it is possible to express the mean queue time at each task i as a 
function of the arrival rate of cases for this particular task (λi), its service rate (µi), and the 
number of resources working on that task (ni) (see e.g. [7]): 

 ( ) 11

2
0

1/ ( / ) ( / ) ( / )
!(1 / ) ! !(1 / )

i iin njn
i i i i i i i i

ji i i i i i i i

n
n n j n n

−−

=

 µ λ µ λ µ λ µ+ − λ µ − λ µ 
∑ . (iv) 

This is the standard expression for the expected queue time of an M/M/ni queue. In steady 
state, λi can be determined on basis of the arrival rate of new cases and the weights applied; µi 
and ni are given. Note that these parameters are independent of the other queues in the network. 
We will denote the expected queue time for a task i within this type of net with Qi(λi, µi, ni). If 
we denote with fi the expected number of executions of task i for an arbitrary case, this allows 
us to express the problem of minimizing the mean queue time of the stochastic workflow net 
over n1, n2, ..., nN as: 

 ( )
1 2, ,..., 1
min Q , ,

N

N

i i i i in n n i
f n

=

 ⋅ λ µ 
 
∑  with 

1

N

i
i

M n
=

= ∑ . (v) 
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The figure fi can be derived for any Jackson network from the weights, the net structure, 
and traffic equations of the net in question. Note that formula (v) resembles the problem as 
formulated by Rolfe as stated with formula (ii). The interesting thing is that Dyer and Proll [9] 
proved that the expected queue time for an M/M/m queue (formula iv) is a non-increasing and 
convex function of m. So, marginal allocation is optimal to minimize the queue time in a 
network of independent M/M/m nodes. But if marginal allocation is optimal for formula (ii), it 
is also optimal for formula (v). After all, on basis of Qi(λi, µi, ni) being non-increasing and 
convex in ni, we can conclude that fi⋅ Qi(λi, µi, ni) is non-increasing and convex in ni. Hence, 
marginal allocation is optimal to minimize the mean sojourn time in SMS workflow nets with a 
Poisson arrival, negative exponential service times, and arbitrary weights.  

Practical experience and simulations of large models seem to suggest that the marginal 
allocation is optimal for any SMS workflow net with a Poisson arrival process, arbitrary service 
time distributions, arbitrary weights and sufficient numbers of resources available to ensure a 
steady state. However, an analysis of these nets is very complex from a queuing network 
perspective.  

4.4. Limits 

From the following example it becomes clear that the marginal allocation strategy is in general 
not optimal if concurrency is allowed in the process. Figure 4 shows a stochastic workflow net. 
Note that to prevent this system from getting clogged, we need initially at least three resources 
at each task. 

µ  = 13

1

µ  = 27/2

1

µ  = 27/2

S

P1

P2

λ  = 5/2

 
Figure 4: Counter example for both strategies 

Because of the synchronization following tasks P1 and P2, we cannot compute results for 
this example analytically using queuing theory. Furthermore, because cases can overtake each 
other, we also need to take the colour of the tokens into account when synchronizing. We used 
simulation with the software package ExSpect to get approximated results.  

To clearly show the characteristics of the example we used as service time distribution for 
each transition a beta distribution with modus (and, because the distribution is symmetric, 
mean) µ, minimum 9µ/10, maximum 11µ/10, and variance µ/900. The beta distribution is often 
very well suited to express the variance in time behaviour for tasks that are executed by humans. 
Similar results can be obtained with e.g. negative exponential service times, but then the 
confidence intervals are wider.  

Using ExSpect as the simulation tool, we simulated for several resource allocations 52 
subruns of length 40.000 each. Only the latter 50 subruns were taken into account for the 
simulation results, i.e., the first two were seen as start-up phase. We obtained the results as 
shown in Figure 5.  
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Note that these results clearly show that allocation (4,3,3) performs better than allocation 
(3,3,4). The simulation results indicate that the optimal allocations for 9, 10 or 11 resources are 
(3,3,3), (4,3,3) and (3,4,4). So, if we have one additional resource available, then the optimal 
allocation would be (4,3,3). If we would have two extra resources, then it would be (3,4,4). 
Apparently, for an optimal allocation strategy we need to be able to reallocate resources. Both 
the Goldratt algorithm and the marginal allocation strategies lack this possibility and are hence 
not optimal in this case. 
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Figure 5: Simulation results counter example 

5. CONCLUSION 

We described a strategy of marginally allocating resources to a stochastic workflow net to 
minimize the mean sojourn time. The Goldratt algorithm was used to illustrate the superiority of 
the marginal allocation strategy. We derived two types of stochastic workflow nets for which a 
marginal allocation strategy is optimal. Both types of networks have an underlying ordinary 
Petri net that is a state machine. For the application of the strategy it is assumed that the 
allocation of resources initially is such that the mean queue time at each task is finite. The first 
type of stochastic workflow nets consists of those nets where each case is directly routed to one 
of N alternative tasks after which the processing ends. Marginal allocation is under this 
condition optimal for arbitrary arrival processes, arbitrary service time distributions, and 
arbitrarily chosen weights. The second type of networks consists of networks that can be 
mapped onto Jackson networks, which means: a Poisson arrival process, negative-exponentially 
distributed service time distributions, and arbitrarily chosen weights. We conjectured the 
optimality of the algorithm for a wider class of stochastic workflow nets. Finally, we showed an 
example of a stochastic workflow net including concurrent behaviour for which neither strategy 
is optimal.  

There are several directions to extend the applicability of the marginal allocation algorithm. 
For example, different cost functions for different types of resources may be incorporated in the 
algorithm. After all, the assumption that resources can be allocated to any task in a business 
process is rather theoretical. Concerning the class of stochastic workflow nets for which the 
strategy is optimal, it seems straightforward to extend the class of stochastic workflow nets of 
the second type to the class of BCMP networks [5], as independent equilibrium distributions can 
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be determined for these networks. Also, the stochastic workflow net could easily be extended to 
allow for multiple classes of customers with their own routing probabilities. An interesting 
direction to formulate necessary and sufficient structural conditions for the marginal allocation 
strategy to be optimal is to apply the results of [6] and [8] on stochastic workflow nets.  
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