
Product-driven Workflow Design

W.M.P. van der Aalst1,2, H.A. Reijers2,3, and S. Limam1

1 Department of Technology and Management, Eindhoven University of Technology,
PO Box 513, NL-5600 MB, Eindhoven, The Netherlands.

2 Department of Mathematics and Computing Science, Eindhoven University of Technology,
PO Box 513, NL-5600 MB, Eindhoven, The Netherlands.

3 Deloitte & Touche Bakkenist, PO Box 23103, NL-1100 DP, Amsterdam, The Netherlands.
E-mail: w.m.p.v.d.aalst@tm.tue.nl, hreijers@win.tue.nl, s.limam@tm.tue.nl,

Abstract

In manufacturing the interaction between the design
of a product and the process to manufacture this
product is studied in detail. Consider for example
Material Requirements Planning (MRP), which is
mainly driven by the Bill-Of-Material (BOM). For
information-intensive products such as insurance,
loans, permits, and many other services, the
relationship with the supporting workflow process is
often neglected. Typically, the workflow processes
are designed without careful consideration of
structure and characteristics of the product. In this
paper, we present a method for designing efficient
and effective workflows based on the products
generated by the process rather than subjective
interpretations of managers, consultants, and IT
experts.

1. Introduction

From a logistical point of view, there are many similarities
between administrative processes and production
processes (cf. Platier [13]). Both kinds of processes, focus
on the routing of work (workflow) and the allocation of
work to resources. In a production system, the products
are physical objects and the principal resources are
machines, robots, humans, conveyor belts and trucks. In
an administrative process the products are often
informational (e.g. documents) and most of the resources
are human. Although there are many similarities, there are
also some logistical aspects in which an administrative
process differs from a typical manufacturing process [1]:
• Making a copy is easy and cheap. In contrast to

making a copy of a product like a car, it is relatively
easy to copy a piece of information (especially if it is
in electronic form).

• There are no real limitations with respect to the in-
process inventory. Informational products do not
require much space and are easy to access
(especially if they are stored in a database).

• There are less requirements with respect to the
order in which tasks are executed. Human resources
are flexible and there are few technical constraints.

• Quality is difficult to measure. What is the quality of
the decision to accept an insurance claim?

• Quality of end-products may vary. A manufacturer
of cars has a minimal quality level that any product
should satisfy. However, in an administrative
process it might be attractive to skip certain checks
to reduce the workload.

• Transportation of electronic data is timeless. In a
network information travels at the speed of light.

• Production to stock is seldom possible. Every
product is unique, therefore it is difficult to produce
in advance. It is not possible to process an insurance
claim before it arrives.

Nevertheless, the two types of processes have a lot in
common. Consider for example performance indicators
such as throughput time, waiting time, service level and
utilization. These performance indicators play a prominent
part in both domains.

In manufacturing, the Bill-Of-Material (BOM) is used
to drive the production process [12]. Consider for
example Material Requirements Planning, often referred
to as MRP-I, which determines the production schedule
based on the ordered quantifies, current stock, and the
composition of product as specified in the BOM.
Contemporary Enterprise Resource Planning (ERP)
systems such as SAP also take resource availability into
account and use more refined algorithms. Nevertheless,
production is driven by the structure of the product.

Administrative processes generate information-
intensive products such as mortgage loans, driving
permits, customs declarations, salary payments, etc.
Typically, support for the process execution is provided
by workflow management systems [9][10][14]. In contrast
to manufacturing, the relation between the product and the
process is seldom made explicit in administrative
processes. Clearly, the interaction between the product
and the process is in the back of everyone’s mind.
However, there is not a standardized way to describe the
product and the workflow process is usually designed
without proper consideration of the product. Consider for

example the processing of insurance claims. The product
is basically a decision: Either the claim is accepted
(followed by a payment) or the claim is rejected. All kinds
of data elements may play a role in making this decision.
One can think of these data elements as raw materials or
subassemblies. The workflow process should manufacture
the decision while taking criteria such as average flow
time, service level, handling costs, and product quality
into account. As mentioned, the latter may be hard to
measure.

Driven by management principles such as Business
Process Reengineering (BPR) [7][11], the focus has
shifted from data and organization to processes. The
problem is not this focus but the way processes are
designed [15]. In many BPR projects, the existing process
is taken as a starting point. In workshops, small groups of
consultants, managers and specialists try and improve
such a process into a new design. As a result of this
approach, the processes are usually sub-optimal,
incomplete, subjective, and at a too abstract level (“The
devil is in the details”). A careful analysis of the product
in terms of data elements and a design which is driven by
the structure of the product and the characteristics of the
data elements, can solve most of these problems.
Therefore, we propose a method for product-driven
workflow design.

2. Product/data structures for workflow processes

The BOM used in manufacturing is a tree-like structure
with the end product as root and raw materials and
purchased products as leafs. In the resulting graph, the
nodes correspond to products, i.e., end-products, raw
materials, purchased products, and subassemblies. The
edges are used to specify composition relations (i.e., is-
part-of relations). The edges have a cardinality to indicate
the number products needed. Figure 1 shows the
simplified BOM of a car which is composed of an engine
and a subassembly. The subassembly is composed of four
wheels and one chassis.

car

engine sub
assembly

wheel chassis

4

Figure 1 : The BOM of a car.

For information-intensive process, the traditional BOM is
not very useful. As was indicated in the introduction there
are several differences between informational products

and physical products. First, making a copy of information
in electronic form is trivial from the process perspective
since it takes hardly any time or resources to do this.
Therefore, cardinalities make no sense. Second, the same
piece of information may be used to manufacture various
kinds of new information. Therefore, also non-tree-like
structures are possible. For example, the age of an
applicant for life insurance may be used to estimate the
health risks and the risks of work related accidents.
Finally, there are no physical constraints and therefore
there are typically multiple ways to derive a piece of
information. For example, health risks may be estimated
using a questionnaire or a full medical examination. These
observations lead to the following product/data model.

Product/data model
A product/data model is a tuple (D, C, pre, F, constr, cst,
flow, prob):
- D: set of data elements, top ∈ D,
- C: set of constraints, true ∈ C,
- pre : D → !(!(D)),

- R = {(p, c)∈D×D | c ∈
()es pre p

es
!
! } is connected

and acyclic,
- (,) :p c R c∀ ∈ ≠ top,
- D : () () { }e pre e pre e∀ ∈ ∅∈ ⇒ = ∅ ,

- F : set of production rules, F = { (p, cs) ∈ D × !(D) |
cs ∈ pre(p) },

- constr : D"× !(D) → C,
- dom(constr) = F,
- D : () { }e pre e∀ ∈ = ∅ ⇒

(),{ }constr e true∅ = ,

- cst : D × !(D) → N,
- dom(cst) = F,

- flow : D × !(D) → N,
- dom(flow) = F,

- prob : D"× !(D) → (0..1]
- dom(prob) = F,
- ()D : () { } ,{ } 1e pre e prob e∀ ∈ = ∅ ⇒ ∅ = ,
- (,) : (,)p cs F constr p cs true∀ ∈ = ⇒

(,) 1prob p cs = .
The product/data model expresses relations between data
elements. These relations can be used to produce a value
for the data element top. The pre function yields for each
data element d zero or more ways to determine a value for
d. If we suppose for data-elements d, e, f ∈ D, that {e, f }
∈ pre(d), then a value of d may be determined on basis of
values of e and f. We say that (d, {e, f}) is a production
rule for d. The expected probability that this production
rule yields a result for d is given by prob(d,{e, f}).

Furthermore, the rule can only be applied if constr(d,{e,
f }) evaluates to true. The cost of producing a value for d
with this rule is specified by cst(d,{e, f}). Likewise, its
flow time (throughput time) is specified by flow (d, {e,
f }). Note that a data element d for which holds that pre(d)
= {∅} is special; it is called a leaf. No other data elements
are required to determine the value of a leaf. There are
also no constraints to determine the value of a leaf; the
probability to determine a leaf’s value is 1. Note that there
may be costs associated with obtaining the value of a leaf
– just as is the case for any other data element. Also note
that for any data element the probability that a value can
be determined is 1 if there are no constraints to determine
its value (i.e., true).

Note that the probabilities given in a product data
model are assumed to be independent. Because values can
be less than 1, it is generally not ensured that the data
element top can be determined for a given set of data
element values. For example, suppose in a real-life
situation that there are two alternative data elements that
can be used to construct a value for some top, both with a
probability of 0.9. Even if the values of both elements are
available there is still a (1-0.9)⋅(1-0.9) = 0.01 probability
that no value for the top element can be determined.

3. An example

An example of a product/data model is depicted in Figure
2. All nodes in this figure correspond to data elements.
Arcs are used to express the pre relation that is in use to
decide whether a candidate is suitable to become a
helicopter pilot in the Dutch Airforce. Unlike the BOM in
Figure 1 there are no cardinalities in effect. On the other
hand, constraints, cost, flow time, and probabilities are
associated with production rules. The meaning of the data
elements is as follows:
− a: suitability to become a helicopter pilot,
− b: psychological fitness,
− c: physical fitness,
− d: latest result of suitability test in the previous two

years,

− e: quality of reflexes,
− f: quality of eye-sight.

cb

e

a

f

d

Figure 2 : Helicopter pilot product/data model.

One of the things that follows from the figure is that there
are three different production rules for the top element a.
The suitability of a candidate can be determined on basis
of:
− The results of the psychological test (b) and the

physical test (c),
− The result of a previous test (d), or
− The candidate’s eye-sight quality (f).
The relations constr, cst, flow, and prob for this example
are as shown in Table 1. If a is a data element, the value
of a is denoted with *a.

From this table it follows that obtaining values for leafs
is much more time-consuming in this example than other
values. This represents a common phenomenon that
actions that involve communication with external parties
take more flow time than internal actions.

Furthermore, it can be concluded that if a candidate’s
eyes are worse than –3.0 or +3.0 dioptries this information
can be used as a direct knock-out [3] for the test result.
The probability that this will happen for an arbitrary case
is 0.4. Note that each production rule for the top element
can be a knock-out for a specific case.

X constr(x) cst(x) flow(x) prob(x)
(a,{ b, c }) True 80 1 1.0
(a,{ d }) *d ∈ {suitable, not suitable} 10 1 0.1
(a,{ f }) *f < -3.0 or *f > +3.0 5 1 0.4
(b,{ ∅∅∅∅ }) True 150 48 1.0
(c,{ e, f }) True 50 1 1.0
(d,{ ∅∅∅∅ }) True 10 16 1.0
(e,{ ∅∅∅∅ }) True 60 4 1.0
(f,{ ∅∅∅∅ }) True 60 4 1.0

Table 1 : Relations constr, cst, flow, and prob for testing a helicopter pilot candidate.

4. Conformance

Up to this point, no specifications are given of the
production rules, other than their signature. For each
element of the pre relation such a specification should be
available to produce working process models. However,
to consider the optimality of process models the exact
specifications are not relevant. What is relevant is that a
given process model conforms with the product/data
model under consideration.

Process model
A process model PM on a product/data model (D, C, pre,
F, constr, cst, prob) is defined by (T, prod, Ω) where:
- T is a set of tasks,
- prod: T → F, the production rule applied in the task,
- Ω is a set of firing sequences.
An execution sequence r ∈ Ω is a sequence t1t2…tk of
tasks with k ∈ N\{0}, such that for any 1 ≤ i ≤ j ≤ k holds
that ti, tj ∈ T and ti = tj ⇒ i = j (single executions of each
task).

Conformance
A process model (T, prod, Ω) conforms to the
product/data model (D, C, pre, F, constr, cst, flow, prob)
if and only if for each sequence r = t1t2…tk ∈ Ω, k ∈
N\{0}, holds that:
1. 1 , (,) :i k p cs F∀ ≤ ≤ ∈ [() (,)iprod t p cs= ⇒

: 1 , () : () (,)jc cs j i ds D prod t c ds ∀ ∈ ∃ ≤ < ∈ = ! ,

2. 1 , () : () (,)ii k cs D prod t top cs∃ ≤ ≤ ∈ =! .
The first requirement ensures a proper order of the
application of production rules. The last requirement
guarantees that the top element may be produced.

5. Design criteria

Given a product/data model there are many conformant
process models. Different subsets of tasks executed in
some order may lead to the production of the top element.
When designing product-driven workflows, the following
three design criteria need to be taken into account: (1)
quality, (2) costs, and (3) time. Costs and time are defined
according to the functions cst and flow. In this paper we
use a rather narrow definition of quality. Quality is
defined as the probability that the value of the top element
can be determined. Note that quality depends on the
structure of the graph (i.e., function pre) and the
probability that a production rule leads to a value. To
allow for a formal definition of these design criteria we
introduce the notion of a plan.

Plan
Let (D, C, pre, F, constr, cst, prob) be a product/data
model. Any subset S of D is called a plan.

One can think of a plan as a sub-graph of the graph
denoting the product/data model. The elements of S are
the data elements that should be produced. The set {a, d}
is a plan corresponding to the product/data model shown
in Figure 2. In this plan the production rules (d,{∅ }) and
(a,{d}) are executed in some order. The set {a, e} is also
a plan although this plan will never lead to a value for data
element a. For any given plan, we can determine the
probability that a value for the top element is determined.

Quality of a plan
Let (D, C, pre, F, constr, cst, prob) be a product/data
model. The quality of a plan S D⊆ is defined as
p_quality(S) = qtop for all d ∈ S:

(,)

1 1 (,) ()d e
d cs F e cs

q prob d cs q eδ
∈ ∈

  = − − ⋅ ⋅  
  

∏ ∏ , (i)

where ()eδ =
0,
1, { }.

e S
e S
∉

 ∈ ∪ ∅

The quality of a plan is the probability that the value of
the top element can be determined successfully assuming
that all production rules only referring to elements in S are
executed. Note that for any production rule (p, cs) ∈ F
holds that all elements in cs should be part of the plan in
order to contribute to qp.

Consider the product/data model shown in Figure 2
and three plans S1 = {a, d}, S2 = {a, b, c, e, f} and S3 = {a,
e}. For plan S1 holds that the quality of this plan is
p_quality(S1) = qtop = qa. According to formula (i), qa = 1-
(1-prob(a,{d}).qd.δ(d)) with qd = 1-(1-prob(d, {∅})⋅ q∅⋅
δ(∅)) = 1. So, p_quality(S1) = qa = 0.1. Similarly, for plan
S2, p_quality(S2) = 1 and for plan S3, p_quality(S3) = 0.

Costs of a plan
Let S D⊆ be a plan. The costs of S are:

(,)
_ () (,) () ()

p cs F e cs
p csts S cst p cs p eδ δ

∈ ∈

= ⋅ ⋅∑ ∏ (ii)

The costs of a plan are simply given by the sum of all
production rules costs relevant for the plan. Note that
again it is assumed that production rule (p, cs) is executed
if {p} ∪ cs is a subset of plan S. These costs can be
interpreted as the maximum costs that are associated with
the execution of a plan.

The costs of plans S1 = {a, d}, S2 = {a, b, c, e, f} and S3
= {a, e} are as follows. For plan S1 the only production
rules relevant are (a, {d}) and (d, {∅}). So, according to
equation (ii), p_csts(S1) = cst(a, {d})⋅δ(a)⋅δ(d) + cst(d,
{∅})⋅δ(d)⋅δ(∅) = 20 (see Table 1). Similarly, p_csts(S2) =
405 and p_csts(S3) = 60.

Flow time of a plan
The actual time required to produce all data elements of a
plan depends on the order in which the production rules
are executed. In a worst-case scenario where all
production rules of the plan are executed sequentially, the
total flow time is:

(,)
(,) () ()

p cs F e cs
flow p cs p eδ δ

∈ ∈

⋅ ⋅∑ ∏ (iii)

By executing some of the production rules of the plan in
parallel, the total flow time can be reduced.

Consider plan S4 = {a,b,c,d,e,f}. Assume that this plan
is executed in the following order: (d,{∅}), (a,{d}),
(f,{∅}), (a,{f}), (e,{∅}), (c,{e,f}), (b,{∅}), (a,{b,c}).
Then the average worst case flow_time(S4) = flow(a, {b,
c})⋅δ(a)⋅ δ(b)⋅δ(c) + flow(a, { f })⋅δ(a)⋅δ(f) + flow(a, {d})⋅
δ(a)⋅δ(d) + flow(b, {∅})⋅δ(b)⋅δ(∅) + flow(c, {e, f})
⋅δ(c)⋅δ(e)⋅δ(f) + flow(f, {∅})⋅δ(f)⋅δ(∅) + flow(e, {∅})⋅
δ(e)⋅δ(∅) + flow(d, {∅})⋅δ(d)⋅δ(∅) = 76 time units. Now
suppose that the production rule (a, {d}) leads to a value
for a, then the flow_time(S4) = flow(a, {d})⋅δ(a)⋅δ(d) +
flow(d, {∅})⋅δ(d)⋅δ(∅) = 17 time units only. So, the
average flow time of a plan may be much smaller because
a value for a data element can be obtained before all
elements of the plan are derived.

6. Product-driven reengineering rules

In the previous section we introduced the notion of a plan.
Given a plan S, it is easy to calculate its quality
p_quality(S) and the associated costs p_costs(S). To
calculate the total flow time of a plan is more complex,
because one has to make assumptions about the order in
which the production rules are executed. Note that a plan
is not a process model: it is merely a subset of data
elements. However, the notion of a plan and the criteria
p_quality(S) and p_costs(S) can be used for a heuristic
approach towards product-driven workflow design. The
heuristic uses the fact that p_quality(S) and p_costs(S)
allow for the definition of a cost optimal plan given a
quality level.

Cost optimal plan
Let (D, C, pre, F, constr, cst, prob) be a product/data
model and q ∈ [0, 1] be a quality level. Plan S ⊆ D is cost
optimal if and only if
1. p_quality(S) ≥ q, and
2. ∀S' ⊆ D: p_quality(S') ≥ q ⇒ p_csts(S') ≥ p_csts(S).

Consider R the set of plans that can be derived from the
product/data model of Figure 2. R = {S1, S2, S3, S4, S5}
where S5 = {a, f}. Assume q = 0.8. We already know the
quality level of plans S1, S2 and S3: p_quality(S1) = 0.1,
p_quality(S2) = 1, and p_quality(S3) = 0. It is easy to

calculate the quality level of plans S4 and S5: p_quality(S4)
= 1 and p_quality(S5) = 0.4. Only plans S2 and S4 fulfill
condition (1). For those plans, costs are p_csts(S2) = 405
and p_csts(S4) = 425. According to the definition of cost
optimality, it appears that plan S2 is the cost optimal plan.

A cost optimal plan gives the least costly subset of data
elements that needs to be calculated to obtain a given
quality level. Note that the costs associated to such a plan
are the maximal costs, i.e., the costs that are made if all
corresponding production rules need to be calculated.
However, a knock-out may result in a value for the top
element before the whole plan is executed. Therefore, it is
important to order the production rules. The ordering of
the production rules can be based on the time criterion or
on the cost criterion mentioned in the previous section.
The two extremes are:
1. Breadth-first. Start with the leaf nodes in the plan and

execute as many production rules in parallel as
possible.

2. Depth-first. Start with the part of the plan which has
the best quality/cost ratio, i.e., execute the production
rules sequentially and start with the most promising
branches first.

Assuming sufficient capacity the breadth-first approach
optimizes the process with respect to flow time but at high
costs (in principle all production rules associated to the
plan are executed). The depth-first minimizes the average
costs but may result in substantial longer flow times. For
the breadth-first approach there is no need to order the
activities executing the production rules: The graph
structure is used to maximize parallelism. For the depth-
first approach these activities need to be ordered
sequentially. To decide on the ordering of activities within
a given plan S, we introduce the notion of a cost optimal
chain of plans.

Cost optimal chain of plans
Let (D, C, pre, F, constr, cst, prob) be a product/data
model and q ∈ [0, 1] be the required quality level. Let S ⊆
D be cost optimal with respect to q and 1 ≤ K ≤ |S|. S1, S2,
..., SK is a cost optimal chain of plans if and only if
1. S = SK ⊇ SK-1 ⊇ SK-2 ⊇ ... ⊇ S1

2. ∀ 1 ≤ i ≤ K, S' ⊆ S: p_quality(S') ≥ p_quality(Si) ⇒
p_csts(S') ≥ p_csts(Si)

A cost optimal chain gives the order in which the
production rules should be executed. First execute the
activities associated to S1 in parallel, then the activities
associated to S2 but not S1 in parallel, etc. The number K
gives the number of steps in this sequential process. If K
equals the number of elements of the set S, then the plan is
executed sequentially, i.e., a pure depth-first strategy. If
K=1, a pure breadth-first strategy is used.

If we consider the example of Figure 2 and a quality
level q = 0.8, the cost optimal plan was S2 = {a, b, c, e, f}.
A breadth-first strategy leads to executing production
rules (e, {∅}), (f, {∅}) and (b, {∅}) in parallel. Then
execute production rule (c, {e, f}) and finally (a, {b, c}).
A depth-first strategy leads to executing production rules
(b, {∅}) then (e, {∅}) and (f, {∅}) in parallel, then (c,
{e, f}) and finally (a, {b, c}).

A cost optimal plan identifies the class of process
models that are best suited to implement a given product
specification. Depending on the preferred ordering of
production rules, a specific process can be derived.

8. Conclusion

In this paper, we presented a new way of looking at
workflow process design. By taking the product as a
starting point many of the problems mentioned in the
introduction can be avoided. A formal model, a
corresponding notion of conformance and a quantification
of design criteria have been given. Finally, a heuristic
approach towards product driven workflow design has
been presented.

By now, Deloitte & Touche Bakkenist applied the
method presented in this paper four times in client
engagements in 2000 and 2001. Business processes of a
large Dutch bank and a national social security agency
have been reengineered. In each occasion, at least a 50%
cost reduction and a 30% flow time reduction has been
achieved, while maintaining the same quality level.

The method of product-driven workflow design is a
promising new way of executing BPR initiatives. A
practical boost would come from the development of tools
to model product/data models and derive process models.
Further research can lead to the incorporation of other
relevant design criteria, techniques, and algorithms.

In Section 2, we compared the classical BOM with our
product/data model for workflow processes. Current ERP
systems allow for so-called generic/variant BOM’s [6][8].
This way, it is possible to deal with large product families
having millions of variants [16]. As is shown in [2], this
concept can be translated to workflow processes facing
ad-hoc and structural changes. It is interesting to extend
the approach presented in this paper to deal with product
families. Another topic for future research is the issue of
variable cardinalities. In many cases, multiple instances of
the same type of data element are required, e.g., multiple
eyewitness reports for an insurance claim. The
product/data model presented in Section 2 does not take
these cardinalities into account.

References

[1] W.M.P. van der Aalst. On the automatic generation of
workflow processes based on product structures.
Computers in Industry, 39:97-111, 1999.
[2] W.M.P. van der Aalst. Generic Workflow Models:
How to Handle Dynamic Change and Capture
Management Information. In M. Lenzerini and U. Dayal,
editors, Proceedings of CoopIS'99. IEEE Computer
Society Press, pages 115-126, 1999.
[3] W.M.P. van der Aalst. Reengineering Knock-out
Processes. Decision Support Systems, 30(4):451-468,
2001.
[4] W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors. Business Process Management: Models,
Techniques, and Empirical Studies, volume 1806 of
Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 2000.
[5] J.A. Buzacott. Commonalities in Reengineered
Business Processes: Models and Issues. Management
Science, 42(5):768-782, 1996.
[6] F. Erens, A. MacKay, and R. Sulonen. Product
modelling using multiple levels of abstraction - instances
as types. Computers in Industry, 24(1):17-28, 1994.
[7] M. Hammer and J. Champy. Reengineering the
corporation. Nicolas Brealey Publishing, London, 1993.
[8] H.M.H. Hegge. Intelligent Product Family
Descriptions for Business Applications. PhD thesis,
Eindhoven University of Technology, Eindhoven, 1995.
[9] S. Jablonski and C. Bussler. Workflow Management:
Modeling Concepts, Architecture, and Implementation.
International Thomson Computer Press, 1996.
[10] P. Lawrence, editor. Workflow Handbook 1997,
Workflow Management Coalition. John Wiley and Sons,
New York, 1997.
[11] R.L. Manganelli and M.K. Klein. The Reengineering
Handbook: A Step-by-step Guide to Business
Transformation. Amacom, 1996.
[12] A. Orlicky. Structuring the bill of materials for MRP.
Production and Inventory Management, pages 19-42, Dec
1972.
[13] E.A.H. Platier. A logistical view on business
processes: BPR and WFM concepts (in Dutch). PhD
thesis, Eindhoven University of Technology, Eindhoven,
1996.
[14] G. Poyssick and S. Hannaford. Workflow
Reengineering. Adobe Press, Mountain View, CA, 1996.
[15] H.A. Reijers and K. Voorhoeve. On the Optimal
Design of Processes and Information Systems (in Dutch).
Informatie, 42:50-57, December, 2000.
[16] E.A. van Veen and J.C. Wortmann. Generative bill of
material processing systems. Production Planning and
Control, 3(3):314-326, 1992.

	Product-driven Workflow Design
	Flow time of a plan

