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Abstract. Process mining techniques allow for the discovery of knowledge based on so-called
“event logs”, i.e., a log recording the execution of activities in some business process. Many
information systems provide such logs, e.g., most WFM, ERP, CRM, SCM, and B2B systems
record transactions in a systematic way. Process mining techniques typically focus on per-
formance and control-flow issues. However, event logs typically also log the performer, e.g.,
the person initiating or completing some activity. This paper focuses on mining social net-
works using this information. For example, it is possible to build a social network based on the
hand-over of work from one performer to the next. By combining concepts from workflow
management and social network analysis, it is possible to discover and analyze social net-
works. This paper defines metrics, presents a tool, and applies these to a real event log within
the setting of a large Dutch organization.
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1. Introduction

This paper builds on concepts from business process management (workflow
management in particular) and sociometry (social network analysis in
particular).

Business process management is concerned with process-aware information
systems, i.e., systems supporting the design, analysis, and enactment of
operational business processes. Typical examples of such process-aware
systems are workflow management systems where the process is driven by an
explicit process model (Jablonski and Bussler, 1996; Leymann and Roller,
1999; Aalst and Hee, 2002). However, in many other process-aware infor-
mation systems the process model is less explicit and users can deviate from
the “normal flow”, i.e., these systems allow for more flexibility.

Sociometry, also referred to as sociography, refers to methods presenting
data on interpersonal relationships in graph or matrix form (Burt and Minor,
1983; Scott, 1992; Wasserman and Faust, 1994). The term sociometry was
coined by Jacob Levy Moreno who conducted the first long-range socio-
metric study from 1932 to 1938 at the New York State Training School for
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Girls in Hudson, New York (Moreno, 1934). As part of this study, Moreno
used sociometric techniques to assign residents to various residential cot-
tages. He found that assignments on the basis of sociometry substantially
reduced the number of runaways from the facility. Many more sociometric
studies have been conducted since then by Moreno and others. In most
applications of sociometry, the assessment is based on surveys (also referred
to as sociometric tests). With the availability of more electronic data, new
ways of gathering data are enabled (Feldman, 1987). By analyzing the history
of a user’s e-mail interactions, personal networks can be extracted. One of the
first social-networked tools developed for this purpose is ContactMap (Nardi
et al., 2002). BuddyGraph (http://www.buddygraph.com) and MetaSight
(http://www.metasight.co.uk) are other examples. By using logs on e-mail
traffic as a starting point, meaningful organizational patterns can be distin-
guished (see e.g., Ogata et al., 2001; Nardi et al., 2002; Begole et al., 2002;
Farnham et al., 2004a, b; Fisher and Dourish, 2004). Similarly, information
on the Web can be used for the analysis of social networks (Culotta et al.,
2004). For example, Usenet data has been used to characterize the
“authority” of individuals based on posting patterns (Smith, 1999).

For the analysis of social networks around business processes such ap-
proaches are less useful, since they are based on unstructured information.
For example, when analyzing e-mail it is difficult, but also crucial, to dis-
tinguish between e-mails corresponding to particular activities within a
business process (e.g., the decision with respect to a loan request) and e-mails
representing less relevant operational details (e.g., scheduling a meeting).
Fortunately, many enterprise information systems store relevant events in a
more structured form. For example, workflow management systems typically
register the enabling, start and completion of activities (Jablonski and
Bussler, 1996; Leymann and Roller, 1999; Fischer, 2001; Aalst and Hee,
2002). ERP systems like SAP log all transactions, e.g., users filling out forms,
changing documents, etc. Business-to-business (B2B) systems log the ex-
change of messages with other parties. Call center packages but also general-
purpose CRM systems log interactions with customers. These examples show
that many systems have some kind of event log often referred to as “history”’,
“audit trail”, “transaction file”, etc. (Agrawal et al., 1998; Grigori et al.,
2001; Sayal et al., 2002; Aalst et al., 2003).

When people are involved in events, logs will typically contain information
on the person executing or initiating the event. We only consider events both
referring to an activity and a case (Aalst et al., 2003). The case (also named
process instance) is the “thing” which is being handled, e.g., a customer
order, a job application, an insurance claim, a building permit, etc. The
activity (also named task, operation, action, or work-item) is some operation
on the case, e.g., “‘contact customer’”. An event may be denoted by (¢, a, p)
where c is the case, a is the activity, and p is the person. Events are ordered in
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time allowing the inference of causal relations between activities and the
corresponding social interaction. For example, if (¢, a;, p;) is directly fol-
lowed by (¢, a», p»), there is some handover of work from p; to p, (note that
both events refer to the same case). If this pattern (i.e., there is some hand-
over of work from p; to p,) occurs frequently but there is never a handover of
work from p; to p3 although p, and p; have identical roles in the organiza-
tion, then this may indicate that the relation between p; and p, is stronger
than the relation between p; and p;. Using such information it is possible to
build a social network expressed in terms of a graph (‘“‘sociogram’) or matrix.

Social Network Analysis (SNA) refers to the collection of methods, tech-
niques and tools in sociometry aiming at the analysis of social networks (Burt
and Minor, 1983; Scott, 1992; Wasserman and Faust, 1994). There is an
abundance of tools allowing for the visualization of such networks and their
analysis. A social network may be dense or not, the “social distances” be-
tween individuals may be short or long, etc. An individual may be a so-called
“star” (directly linked to many other individuals) or an ““isolate” (not linked
to others). However, also more subtle notions are possible, e.g., an individual
who is only linked to people having many relationships is considered to be a
more powerful node in the network than an individual having many con-
nections to less connected individuals.

The work presented in this paper applies the results from sociometry, and
SNA in particular, to events logs in today’s enterprise information systems.
The main challenge is to derive social networks from this type of data. This
paper presents the approach, the various metrics that can be used to build a
social network, our tool MiSoN (Mining Social Networks),1 and a case
study. The paper extends the results presented in (Aalst and Song, 2004) by
providing concrete metrics and demonstrating these using a case study.

The case study, used to demonstrate the applicability of our approach, has
been conducted within a Dutch national public works department employing
about 1000 civil servants. Based on the particular process of handling in-
voices, we constructed several social networks using the various metrics de-
fined in this paper. As a starting point we used an event log with about 5000
cases and more than 33,000 events. One of the metrics we applied was the
handover of work mentioned before, i.e., the strength of the link from person
p1 to person p, is calculated based on the number of times one activity by p; is
followed by an activity by p, for the case (e.g., an invoice). The resulting
social networks were analyzed using a variety of SNA techniques and the
outcomes were discussed with the management of the Dutch national public
works department.

The paper is organized as follows. Section 2 introduces the concept of
process mining. Section 3 focuses on the mining of organizational relations,
introducing concepts from SNA but also showing which relations can be
derived from event logs. Section 4 defines the metrics we propose for mining
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organizational relations. We propose metrics based on (possible) causality,
metrics based on joint cases, metrics based on joint activities, and metrics
based on special event types (e.g., delegation). Then we present our tool
MiSoN. Section 6 discusses the case study. Section 7 presents related work.
Finally, Section 8 concludes the paper.

2. Process mining: An overview

The goal of process mining is to extract information about processes from
transaction logs (Aalst et al., 2003). We assume that it is possible to record
events such that (i) each event refers to an activity (i.e., a well-defined step in
the process), (ii) each event refers to a case (i.e., a process instance), (iii) each
event refers to a performer (the person executing or initiating the activity), and
(iv) events are totally ordered. An event log is a collection of events. Any kind
of transactional information system, e.g., ERP, CRM, or workflow manage-
ment systems, will offer this information in some form (Jablonski and Bussler,

1996; Leymann and Roller, 1999; Fischer, 2001; Aalst and Hee, 2002).

To clarify notions such as activity, case, performer, and event log, let us
consider some examples.

— Consider the cancer treatment process in a hospital. Each case in this
process refers to a patient having cancer. Examples of activities that
may take place are visits of the patient to the hospital for chemother-
apy, consultation of a specialist, a bone marrow transplant, etc. The
performers are all kinds of health-care professionals, e.g., doctors, spe-
cialists, nurses, surgeons, oncologists, radiologists, etc. An event may
be the administration of chemotherapy to a patient by a nurse at a gi-
ven point in time. The event log for the cancer treatment process will
contain all events relevant for this process.

— Another example is the processing of job applications. Each case refers
to a job application. Possible activities are confirming the application,
inviting the applicant for an interview, reimbursing the travel costs,
making a decision, doing a medical test, etc. The performers in the pro-
cess include the personnel officers, department managers, doctors, etc.
An example of an event is the invitation of an applicant for an inter-
view by a personnel officer. The event log for the job application pro-
cess will contain more such events ordered in time.

— The last example comes from the scientific domain. Consider the
reviewing process for a journal. The cases are papers that are submitted
to the journal. Examples of activities are the reviewing of a paper, the
acceptance of a paper, and the notification of authors. Among the per-
formers in this process are reviewers, area editors, editors in chief,
authors, and editorial assistants. An example of an event is the notifica-
tion of the corresponding author by an editorial assistant.
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A more abstract example of an event log is shown in Table 1. Each row
refers to a single event, e.g., the last row refers to the execution of activity D
by Pete for the 4th case.

Many information systems offer the information shown in Table I in some
form. Any workflow management system will provide the information shown
in Table I (and more). Note that we do not assume the presence of a
workflow management system. The only assumption we make, is that it is
possible to collect logs with event data. For example, ERP systems, CRM
systems, HRM systems, hospital information systems, reviewing systems, etc.
offer this information in some form. Nevertheless, it may take some efforts to
extract this information in the right form.

Event logs, such as the one shown in Table I, can be used to construct
models that explain some aspect of the behavior registered. The term process
mining refers to methods for distilling a structured process description from a
set of real executions (Agrawal et al., 1998; Grigori et al., 2001; Sayal et al.,
2002; Aalst et al., 2003). The term ‘“‘structured process description’ may be
interpreted in various ways, ranging from a control-flow model expressed in
terms of a classical Petri net to a model incorporating organizational, tem-
poral, informational, and social aspects. In Section 7, references to the state-
of-the-art using these interpretations are given. In this paper, however, we
focus on the social aspect of mining event logs.

Table 1. An event log

Case identifier Activity identifier Performer
Case 1 Activity A John
Case 2 Activity A John
Case 3 Activity A Sue
Case 3 Activity B Carol
Case 1 Activity B Mike
Case 1 Activity C John
Case 2 Activity C Mike
Case 4 Activity A Sue
Case 2 Activity B John
Case 2 Activity D Pete
Case 5 Activity A Sue
Case 4 Activity C Carol
Case 1 Activity D Pete
Case 3 Activity C Sue
Case 3 Activity D Pete
Case 4 Activity B Sue
Case 5 Activity E Clare
Case 5 Activity D Clare

Case 4 Activity D Pete
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2.1. DISCOVERING SOCIAL NETWORKS

When distilling a process model from an event log, the focus is on the various
process activities and their dependencies. When deriving roles and other
organizational entities, the focus is on the relation between people or groups
of people and the process. Another perspective is to focus on the relations
among individuals (or groups of individuals) acting in the process, in other
words: the social network. Consider for example the event log of Table I.
Although Carol and Mike can execute the same activities (B and C), Mike is
always working with John (cases 1 and 2) and Carol is always working with
Sue (cases 3 and 4). Probably Carol and Mike have the same role but based on
the small sample shown in Table I it seems that John is not working with
Carol and Sue is not working with Carol.? These examples show that an event
log can be used to derive relations between performers of activities, thus
resulting in a sociogram. For example, it is possible to generate a sociogram
based on the transfers of work from one individual to another as is shown in
Figure 1. Each node represents one of the six performers and each arc rep-
resents that there has been a transfer of work from one individual to another.
The definition of “transfer of work from A to B’ is based on whether for the
same case an activity executed by A is directly followed by an activity executed
by B. For example, both in case 1 and 2 there is a transfer from John to Mike.
Figure 1 does not show frequencies. However, for analysis proposes these
frequencies can be added. The arc from John to Mike would then have weight
2. Typically, we do not use absolute frequencies but weighted frequencies to
get relative values between 0 and 1. Figure 1 shows that work is transferred to
Pete but not vice versa. Mike only interacts with John, Carol only interacts
with Sue. Clare is the only person transferring work to herself.

For a simple network with just a few cases and performers the results may
seem trivial. However, for larger organizations with many cases it may be
possible to discover interesting structures. Sociograms as shown in Figure 1
can be used as input for SNA tools that can visualize the network in various
ways, compute metrics like the density of the network, analyze the role of an
individual in the network (for example the ‘“‘centrality” or “power” of a
performer), and identify cliques (groups of connected individuals). Section 3

John Sue
( Clare% Mike
Pete Carol

Figure 1. The sociogram based on the event log shown in Table I.
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will discuss this aspect in more detail and Section 4 will provide concrete
metrics to derive sociograms from event logs.

2.2. OTHER TYPES OF MINING

Table I contains the minimal information we assume to be present in an event
log. Using the information one can also discover other models (i.e., not just
sociograms). For example, we have developed techniques and tools to dis-
cover the process model. Figure 2 shows the resulting Petri net model after
applying our «-algorithm (Aalst et al., 2004) to Table I. The model shows
that the process always starts with 4 and ends with D. In between these tasks
either B and C are executed or E alone. B and C are concurrent, i.e., they can
be executed in any order. Given the focus of this paper, we will not elaborate
further on process discovery. See Section 7 for pointers to related work.

In many applications, the event log contains a time stamp for each event and
this information can be used to extract additional causality information. In
addition, a typical log also contains information about the type of event, e.g., a
start event (a person selecting an activity from a worklist), a complete event
(the completion of a activity), a withdraw event (a scheduled activity is re-
moved), etc. Moreover, we are also interested in the relation between attri-
butes of the case and the actual route taken by a particular case or allocation
of work to workers. For example, when handling traffic violations: Is the
make of a car relevant for the routing of the corresponding traffic violation?
(e.g., People driving a Ferrari always pay their fines in time.) Another example
directly related to SNA would be to see whether the sociograms for different
types of cases (e.g., private and corporate customers) differ.

The presence of timing information and information on cases/activities
allows for more advanced forms of process mining, e.g., methods trying to
explain the performance indicators like flow times in term of the attributes/
performers of cases. Another interesting application of process mining is

B

C

Figure 2. A process model based on the event log shown in Table I discovered by the
a-algorithm.
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fraud detection, i.e., detecting suspicions patterns that may indicate security
violations (cf. four eyes principle (Aalst and Hee, 2002)).

2.3. COMPLETENESS AND NOISE

For this simple example treated so far (i.e., Table I), it is quite easy to gen-
erate the process model shown in Figure 2 or the sociogram shown in
Figure 1. For more realistic situations there are however a number of com-
plicating factors:

— Completeness. For larger workflow models and models exhibiting alter-
native and parallel routing, the workflow log will typically not contain
all possible routes. Consider 10 activities which can be executed in par-
allel. The total number of interleavings is 10! = 3628800. It is not real-
istic that each interleaving is present in a log. Moreover, certain paths
through the process model may have a low probability and therefore
remain undetected. Similar remarks hold for the organizational model
and social network. For example, a person has a role but just by coinci-
dence did not execute some or all activities corresponding to that role.
Another example is that two individuals work together frequently but
during the data collection period one of them was on a sabbatical
leave. As a result the log is not complete in the sense that it captures
possible and/or typical behavior.

— Noise. Parts of the log may be incorrect, incomplete, or refer to excep-
tions. Events can be logged incorrectly because of human or technical
errors. Events can be missing in the log if some of the activities are
manual or handled by another system/organizational unit. Events can
also refer to rare or undesired events. Consider for example the work-
flow in a hospital. If due to time pressure the order of two events (e.g.,
make X-ray and remove drain) is reversed, this does not imply that this
would be part of the regular medical protocol and should be supported
by the hospital’s workflow system. Also two causally unrelated events
(e.g., take blood sample and death of patient) may happen next to each
other without implying a causal relation (i.e., taking a sample did not
result in the death of the patient; it was sheer coincidence). Clearly,
exceptions which are recorded only once should not automatically be-
come part of the regular workflow.

2.4. LEGAL ISSUES AND ETHICAL ISSUES

To conclude this section, we point out legal issues relevant when mining event
logs. Clearly, event logs can be used to systematically measure the perfor-
mance of employees. The legislation with respect to issues such as privacy and
protection of personal data differs from country to country. For example,
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Dutch companies are bound by the Personal Data Protection Act (Wet
Bescherming Persoonsgegevens) which is based on a directive from the
European Union. The practical implications of this for the Dutch situation
are described in (CBP n.d.; Hulsman and Ippel, 1994; Sauerwein and
Linnemann, 2001). Event logs are not restricted by these laws as long as the
information in the log cannot be traced back to individuals. If information in
the log can be traced back to a specific employee, it is important that the
employee is aware of the fact that her/his activities are logged and the fact that
this logging is used to monitor her/his performance. Note that in a log we can
deliberately abstract from information about the workers executing activities
and still mine the process, organizational, and social structures (simply hide
identities).” Therefore, it is possible to avoid collecting information on the
productivity of individual workers and legislation such as the Personal Data
Protection Act does not apply. Nevertheless, the logs of most workflow sys-
tems contain information about individual workers, and therefore, this issue
should be considered carefully. Moreover, to use social network analysis as an
operational tool to improve work processes, employees should approve and it
is vital not to misuse the information gathered.

3. Mining organizational relations

In the previous section, we provided an overview of process mining. In this
section, we focus on the main topic of this paper: mining organizational
relations as described in Section 2.1. The goal is to generate a sociogram that
can be used as input for standard software in the SNA (Social Network
Analysis) domain.

The motivation for doing this is twofold. First of all, existing systems
record information about human activity. This information can be structured
in the form of a sociogram. Second, there is a wide variety of mature tech-
niques and tools to analyze such sociograms. Therefore, it is both interesting
and feasible to use this as a starting point for investigating the social context
of work processes. A better understanding of this social context may reveal a
mis-alignment between the information system and its users and may provide
insights that can be used to increase the efficiency and effectively of processes
and organizations.

In this section, we first introduce the fundamentals of SNA and then focus
on the question how to derive sociograms from event logs.

3.1. SOCIAL NETWORK ANALYSIS

Applications of SNA range from the analysis of small social networks to
large networks. For example, the tool InFlow (http://www.orgnet.com) has
been used to analyze terrorist network surrounding the September 11th 2001
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events. However, such tools could also be used to analyze the social network
in a classroom. In literature, researchers distinguish between sociocentric
(whole) and egocentric (personal) approaches. Sociocentric approaches con-
sider interactions within a defined group and consider the group as a whole.
Egocentric approaches consider the network of an individual, e.g., relations
among the friends of a given person. From a mathematical point of view both
approaches are quite similar. In both cases the starting point for analysis is a
graph where nodes represent people and the arcs/edges represent relations.
Although this information can also be represented as a matrix, we use the
graph notation. The graph can be undirected or directed, e.g., A may like B
but not vice versa. Moreover, the relations may be binary (they are there or
not) or weighted (e.g., “+ 7 or “=”, or a real number). The weight is used to
qualify the relation. The resulting graph is named a sociogram (Scott, 1992;
Wasserman and Faust, 1994). Note that Figure 1 shows an example of
sociogram with directed links which are not weighted.

In a mathematical sense a sociogram is a graph (P, R) where P is the set of
individuals (in the context of process mining referred to as performers) and
R C P x P (Scott, 1992; Wasserman and Faust, 1994). If the graph is undi-
rected, R is symmetric. If the graph is weighted, there is an additional function
W assigning a value to all elements of R. When looking at the graph as a whole
there are notions like density, i.e., the number of elements in R divided by the
maximal number of elements. For example the density of the graph shown in
Figure 1 is 8/(6 * 6)=0.22. Another metric based on weighted graphs is the
maximal geodesic distance in a graph. The geodesic distance of two nodes is
the distance of the shortest path in the graph based on R and W.

When looking at one specific individual (i.e., a node in the graph), many
notions can be defined (Scott, 1992; Wasserman and Faust, 1994). If all other
individuals are in short distance to a given node and all geodesic paths (i.e.,
shorted path in the graph) visit this node, clearly the node is very central (like a
spider in the web). There are different metrics for this intuitive notion of
centrality. The Bavelas—Leavitt index of centrality is a well-known example
that is based on the geodesic paths in the graph (Bavelas, 1948). Let i be an
individual (i.e., i€ P) and D;; the geodesic distance from an individual j
to an individual k. The Bavelas—Leavitt index of centrality is defined as
BL(i) = (32 Djx)/(X2;x Dji + Dix). Note that the index divides the sum of
all geodesic distances by the sum of all geodesic distances from and to a given
resource. Other related metrics are closeness (1 divided by the sum of all
geodesic distances to a given resource) and betweenness (a ratio based on the
number of geodesic paths visiting a given node) (Freeman, 1977; Freeman,
1979; Burt and Minor, 1983; Scott, 1992; Wasserman and Faust, 1994). Other
notions include the emission of a resource (i.e., > ; W; ), the reception of a
resource (i.e., y; W;,), and the determination degree (i.e., Y ; W;; — W;))
(Burt and Minor, 1983; Scott, 1992; Wasserman and Faust, 1994). Another
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interesting metric is the sociometric status which is determined by the sum of
input and output relations, i.e., > ; D;;+ D; ;. All metrics can be normalized by
taking the size of the social network into account (e.g., divide by the number
of resources). Using these metrics and a visual representation of the network
one can analyze various aspects of the social structure of an organization. For
example, one can search for densely connected clusters of resources and
structural holes (i.e., areas with few connections), cf. (Burt and Minor, 1983;
Scott, 1992; Wasserman and Faust, 1994).

Let us apply some of these notions to the sociogram shown in Figure 1
where the arcs indicate (unweighted) frequencies. The sociometric status of
Clare is 3 (if we include self-links, otherwise 1), the sociometric status of Pete
is 2, the emission of John is 2, the emission of Pete is 0, the reception of Pete
is 2, the reception of Sue is 1, the determination degree of Mike is 0, etc. The
Bavelas—Leavitt index of centrality of John is 4.33 while the same index for
Sue is 3.25. The numbers are unweighted and in most cases these are made
relative to allow for easy comparison. Tools like AGNA, Egonet, InFlow,
KliqueFinder, MetaSight, NetForm, NetMiner, NetVis, StOCNET, UCI-
NET, and Visone are just some of the many SNA tools available. For more
information on SNA we refer to (Burt and Minor, 1983; Bernard et al., 1990;
Scott, 1992; Wasserman and Faust, 1994).

3.2. DERIVING RELATIONS FROM EVENT LOGS

After showing the potential of SNA and the availability of techniques and
tools, the main question is: How to derive meaningful sociograms from event
logs? To address this question we identify different metrics. Each metric as-
signs a weight W, ; to the relationship between individuals i and j. If W ; is
above a certain threshold 1, it will be included in R (i.e., (i, j) € R if and only if
W.; > = for any i, j€ P). This way we get a weighted graph (P, R, W) that
can be used by tools such as AGNA and NetMiner. In this paper, we will
focus on four types of metrics that can be derived from event logs: (1) metrics
based on (possible) causality, (2) metrics based on joint cases, (3) metrics
based on joint activities, and (4) metrics based on special event types.
Metrics based on (possible) causality monitor for individual cases how work
moves among performers. One of the examples of such a metric is handover of
work. Within a case (i.e., process instance) there is a handover of work from
individual i to individual j if there are two subsequent activities where the first
is completed by i and the second by j. This notion can be refined in various
ways. For example, knowledge of the process structure can be used to detect
whether there is really a causal dependency between both activities. It is also
possible to not only consider direct succession but also indirect succession
using a “‘causality fall factor” f, i.e., if there are three activities in-between an
activity completed by i and an activity completed by j, the causality fall factor
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is f°. A related metric is subcontracting where the main idea is to count the
number of times individual j executed an activity in-between two activities
executed by individual i. This may indicate that work was subcontracted
from i to j. Again all kinds of refinements are possible.

Metrics based on joint cases ignore causal dependencies but simply count
how frequently two individuals are performing activities for the same case. If
individuals work together on cases, they will have a stronger relation than
individuals rarely working together.

Metrics based on joint activities do not consider how individuals work to-
gether on shared cases but focus on the activities they perform. The
assumption here is that people doing similar things have stronger relations
than people doing completely different things. Each individual has a ““profile”
based on how frequent they conduct specific activities. There are many ways
to measure the ““distance” between two profiles thus enabling many metrics.

Metrics based on special event types consider the type of event. Thus far we
assumed that events correspond to the execution of activities. However, there
are also events like reassigning an activity from one individual to another. For
example, if i frequently delegates work to j but not vice versa it is likely that i is
in a hierarchical relation with j. From an SNA point of view these observa-
tions are particularly interesting since they represent explicit power relations.

The sociogram shown in Figure 1 is based on the causality metric hand-
over of work. In the next section, we will define the metrics in more detail.

4. Metrics

In this section, we define the metrics we have developed to establish rela-
tionships between individuals from event logs. We address all four types
introduced in Section 3.2. Recall that each metric will assign a weight W, ; to
the relationship between individuals i and j. Before we define the various
metrics in detail, we introduce a convenient notation for event logs.

Definition 4.1 (Event log). Let 4 be a set of activities (i.e., atomic workflow/
process objects, also referred to as tasks) and P a set of performers (i.e.,
resources, individuals, or workers). E=A4 X P is the set of (possible) events,
i.e., combinations of an activity and a performer (e.g., (a, p) denotes the
execution of activity a by performer p). C=E" is the set of possible event
sequences (traces describing a case). L € B(C) is an event log. Note that 5(C)
is the set of all bags (multi-sets) over C.

Note that this definition of an event slightly differs from the informal
notions used before. First of all, we abstract from additional information
such as time stamps, data, etc. Secondly, we do not consider the ordering of
events corresponding to different cases. For convenience, we define two
operations on events: m,(e) =a and m,(e) = p for some event e=(a, p).
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4.1. METRICS BASED ON (POSSIBLE) CAUSALITY

Metrics based on causality take into account both handover of work and
subcontracting. The basic idea is that performers are related if there is a
causal relation through the passing of a case from one performer to another.
For both situations, three kinds of refinements are applied. First of all, one
can differentiate with respect to the degree of causality, e.g., the length of
handover. It means that we can consider not only direct succession but also
indirect succession. Second, we can ignore multiple transfers within one in-
stance or not. Third, we can consider arbitrary transfers of work or only
consider those where there is a causal dependency (for the latter we need to
know or be able to derive the process model). Based on these refinements, we
derive 2°=8 variants for both the handover of work and subcontracting
metrics. These variants are all based on the same event log. Before defining
the metrics, some of the basic notions that can be applied to a single case
c¢=(co, c1, ...) are specified.

Definition 4.2. (>, >) Let L be a log. Assume that — denotes some causality
relation derived from the process model. For a;, a, € A, p;, po € P, ¢=(co,
¢1,...)€L, and n € N:

— D1 |>? P2 = 30§i<\(’|—nnp(ci) =p A TC/J(CHn) =

st = 3 {1 ) =pimlen) =p:
0<icel—n L 0 otherwise

—p120 P2 = Jocicie-nTp(ci) = 1 A p(Cipn) = P2 A 1a(ci) — Ta(Cinn)

B |]71 E’:p2| = Z { : if np((f,‘) =PiA np((;i*”) = P2\ ﬂa(ci) - Tfa(CHn)

0<icel—n L 0 otherwise

p1 > py denotes the function which returns frue if within the context of case ¢
performers p; and p, both executed some activity such that the distance
between these two activities is n. For example, for case 1 shown in Table I,
John ! Mike equals 1 (i.e., true) and John >3 Pete equals 1 (i.., true). In this
definition, if the value of n equals 1, it refers to direct succession. If 7 is
greater than 1, it refers to indirect succession. However, it ignores both
multiple transfers within one instance and causal dependencies. |p; > ps|
denotes the function which returns the number of times p; > p in the case c.
In other words, it considers multiple transfers within one instance. p; > p»
and |p; " p,| are similar to p; > p> and |p; > p,| but in addition they take
into account whether there is a real causal dependency. For example, con-
sider case 1 shown in Table I. The order of events is: A (John), B (Mike), C
(John), and D (Pete). If we calculate the relationships among activity B, C,
and D, Mike ! John equals 1 and Mike >! Pete equals 0. However, Mike !
John equals 0, i.e., although an activity conducted by Mike is followed by an
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activity conducted by John there is not a causal dependency between B and C
because both activities are in parallel. However, there is causal dependency
between activity B and D (see Figure 2) and, therefore, Mike b2 Pete equals
1. The information on causality can be added if the process model is known.
If necessary, this information can also be derived from the log by using for
example the a-algorithm (Aalst et al., 2004).

Using such relations, we define handover of work metrics. Based on three
kinds of refinements mentioned before, eight variants are derived as follows.

Definition 4.3 (Handover of work metrics). Let L be a log. For p;, p» € P and
some f (0 < f < 1)

ceL ceL

—pIPLpr = Z L) /1L
cELAp >l p)

—piolp = (Z s >:fpz>/(z ) ﬁ"'(cl—n))
ceL 1

leJh::<§:p1%pz>/<§:<ﬂl>

<n<|c| ceL 1<n<]|c|

*pIDLPQ nfl / Z Z ﬁnfl
ceL l<n<MAp > py ceL 1<n<|c|

z|p1>:,p2>/<z|c| . 1)

ceL

—P1>Lp2
ceL

—Plkﬁpz

—p1Brpr = /L]
cELAp; >1p7

S B e P2|)/(Z > ﬁ”l(|c—”)>

ceL 1<n<|c| ceL 1<n<|c|

(x5 e )(sr)
ceL 1<n<|c|Ap1 b pa ceL 1<n<|c|

p1 > p>» means dividing the total number of direct successions from p; to p, in
a process log by the maximum number of possible direct successions in the
log. p1 > py ignores multiple transfers within one instance (i.e., case). For
example, in Table 1, John >; Mike equals 2/14 and John >; Mike equals 2/5.
Note that metric >;, defines a weight function W, i.e., p1 > p» = W), p, is the
weight of the link from p; to p, in the corresponding sociogram. As indicated
before, a threshold may be used to remove links from the sociogram.

12 l>/£ p> and p D'/ZPQ deal with indirect succession by introducing a ‘“‘cau-
sality fall factor” f in this notation. If within the context of a case there are n
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Table II. Handover of work metrics according to the causality fall factor f8

Beta John Dﬁ Mike John l>€ John John |>§ pete

0.1 0.3116 (1/3.21) 0.0312 (0.1/3.21) 0.0031 (0.01/3.21)
0.5 0.2352 (1/4.25) 0.1176 (0.5/4.25) 0.0588 (0.25/4.25)
0.9 0.1783 (1/5.61) 0.1604 (0.9/5.61) 0.1444 (0.81/5.61)

events in-between two performers, the causality fall factor is f". p >§ y22)
considers all possible successions, while p; §€ p» ignores multiple transfers
within one case. For example, in Table II, if § equals 0.5, then John >; Pete
equals 2.5/19.5 and John > Pete equals 2.5/8.5. If we use a f§ close to 1, the
effect of the distance between performers decreased. For example, suppose
that only case 1 exists in Table I, we calculate the handover of metrics from
John in Activity 4 to Mike, John in Activity B, and Pete, according to
various values of 5. Table II shows the results. If the value f increases in
value, the variance of resulting values decreases.

The remaining four metrics py>; pa, P13, P2, plgﬁpz, and pléﬁpz are
similar to the previous four kinds of metrics, but take into account real causal
dependencies. For example, p;>; p» means that the total number of direct
successions from p; to p, in a log is divided by the maximum number of
possible direct successions in the log when p; and p, are causally related.
Note that each of the eighth metrics defines a different weight function W and
implicitly another sociogram.

From above definitions, we derive general formulations of the metrics. The
eight metrics mentioned can be merged into the following four metrics.

Definition 4.4 (General forms of handover of work metrics). Let L be a log.
For p, p,e P, some (0 < f<1)and k € N.

K z _

—plbﬁ P2= Z Z pispal / Z Z B (el —n)
c€L 1<n<min(|c|—1 A) ceL 1<n<min(|c|—1,k)

. )z s e
C€L 1<n<min( |L\ Lk)Ap1>ipy ceL 1<n<min(|c|—1,k)

—piehpy= B pietipal / Z Z B! (le|—n)
LEL 1<n<min( | | —1,k) ceL 1<n<min(|c|—1,k)

*P|I>L [72 ﬁn—l / Z Z ﬁn_l
LGL 1<n<min(|c \ Lk)Apivpa ceL 1<n<min(|c|-1,k)
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In these alternative formulations, we introduce a ‘“‘calculation depth factor”
k. When we calculate metrics, k specifies maximum degree of causality. For
example, if k equals 3, it considers the case of direct succession, one event in
between two performers, and two events in-between two performers. Note
that if f=1, k=1, then p DIL’I p2=p1>rp2, and if k£ > max(|c|), then
D1 Di’k P2 =p1 D/z p2. This rule is also applied to the other three metrics.
Further, when we calculate the metrics, a suitable value for k is important for
the efficiency of calculation. Logs are typically very large. Therefore con-
sidering all possible successions may be inefficient.

After defining metrics for handover of work we now consider another class
of metrics based on (possible) causality: subcontracting metrics. In the case of
subcontracting, the three refinements mentioned before can also be applied.
However the concept of direct and indirect succession is changed. Direct
succession means there is only one activity in-between two activities executed
by one performer. While indirect succession means, there are multiple
activities in-between two activities executed by one performer. We also
introduce causality fall factor f for indirect succession. For example, assume
that there are four activities. Both the first and the fourth activity are exe-
cuted by a performer i, while the second and third activity are executed by
performer j and k respectively. In this situation, we can derive two relations
which are from a performer i to a performer j and from a performer i to a
performer k. Again we use a causality fall factor . The second and third
refinements are the same as for handover of work. Before defining metrics,
the basic notions applied to a single case ¢=(cy, ¢1, ...) are specified.

Definition 4.5. (&, &) Let L be a log. Assume that — denotes some cau-
sality relation. In the context of L and — , we define a number of relations.
For aj,a, € A,p1,p» € P,c = (co,c1,...) €EL,|c| >2,neN,and n > I:

—P1 <>Z P2 = 30gi</</+n<\c\7fp(t‘i) =p1 A ﬂp(cf/) =p2 N 711;(0[+n) =P1

u .
Ip1 O pa| = 0 otherwise

Z Z { 1 if () =pi Amp(c)) =pa A Tp(civn) =1

0<i<|c|-n i<j<i+n

—P1 9’(1[72 = E|0<j<i-%—n<|<f\7tp(ci) =p1 /\np(cj) =p2 A np(ci+n) =p1 /\7'C,,(Cl‘) - na(cj) - na(ci+71)

“Ip = >

0<i<|c|—-n i<j<i+n

A na(ci) - nu(cj) - nu(ci+rl)

1 if 7[,,(6‘,‘) =p1 A np(C/) =p2 A n[](c[+ll> =Pp1
0 otherwise

p1 <l py denotes the function which returns frue if performer p, executed an
activity in-between two activities executed by performer p; and distance be-
tween these two activities executed by performer p; is n. For example, for
case 1 shown in Table I, John O Mike equals 1. However, it ignores both
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multiple transfers within one instance and causal dependencies. |[p; & ¢ psl
denotes the function which returns the number of times p; . p, in the case
c. In other words, it considers multiple transfers within one instance. p; ¢ p)
and |p; O7 py| are similar to p; OF py and [p;<OF po| but in addition they take
into account whether there is a real causal dependency. For example, con-
sider case 1 shown in Table 1. John & Mike equals 0, because activity B and
C do not have a causal dependency.

Using such relations, we define subcontracting metrics. Again eight
variants are identified.

Definition 4.6 (In-between metrics). Let L be a log. For py, p,€ P, ¢=(co,
¢1,...)EL, |c] > 2,and some (0 < f < 1):

~moun = (Tln ol ) (el -2)

ceL ceL

S — ( 3 1)/|L|
ceL/\p|<>ﬁpa
= (z DY 2|P1<>"172\> / (z z /%"-2<|c|fn><n71>)
—p1 Oy = (Z S 2) (Z S 2)
ceL 2<n<|c|Ap1 O p2 ceL 2<n<|c|
PO = (Zm_cm) /(Suel-2)
ceL ceL
—p&m:< 3 1)/|L|
(EL/\r|<>2p2
= (zz g 2|P1<>"172\> / (z >y /3"-2<|c|fn><nfl>)

witne(5 2 )/ (55 0)

c€L 2<n<|c|Api O pa ceL 2<n<|c|

p1 <1 pr means dividing the total number of direct subcontracting occurrences
between p; and p; in a process log by the maximum number of possible direct
subcontracting occurrences in the log. p; <y p, ignores multiple subcon-
tracting occurrences within one instance (i.e., case). For example in Table I
John &, Mike equals 2/9 and John &) Mike equals 2/5. p1 O1F prand p <>Lp2
deal with the situation where the distance between these two activities exe-
cuted by performer p; is greater than 2. Again we introduce a “‘causality fall
factor” f in a fashion similar to the handover of work metrics. If within the
context of a case there are n events in-between two activities executed by the
same performer, the causality fall factor is . p; OF, p, considers all possible
subcontracting occurrences, while p; <>/£P2 ignores multiple subcontracting
within one case. For example, in Table II, if  equals 0.5, then John & Mike

equals 2/13 and John >, Mike equals 2/7. Again p; &) pa, pi QLpz,pl Qﬁpz,
and p; & , D> are similar but take into account real causal dependencies. For
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example, p; ©; p» means that the total number of direct subcontracting from
p1to p» in a process log is divided by the maximum number of possible direct
subcontracting in the log when p; and p, are causally related.

As before we can derive more general formulations for the metrics. The
eight metrics mentioned above can be merged into four metrics as shown in
the following definition.

Definition 4.7 (General forms of in-between metrics). Let L be a log. For p;,
pr2€P,some (0 < f<1)and k € N(k > 1)

p2el-nn-)

1O p, :( B 2\p|<>"pz) <
ceL 2<n<min \z\ 1,k) L 2<n<min \(\ 1, /\
2 -2
notm=(T (s s )
c€L 2<p<min(]|c \ 1k)Ap1 <l pa ceL 2<n<min(|c|—1,k)
o= # i)/ (2 p =)
ceL 2<n<min( M 1,k) 2<n<min \c\ 1,k)

AN
—2 -2
| s (s s g
ce€L 2<n<min(|e[—1,k)Ap1 <) pa c€L 2<n<min(|c|-1,k)

Again we also introduce a ““calculation depth factor” k. When calculating the
metrics, k specifies maximum distance between two activities executed by one
performer. For example, if k equals 3, it considers the case of one activity in
between two activities executed by one performer and two activities in be-
tween two activities executed by one performer. Note that if f=1, k=2, then

1 OY? pa=py Op po, and if k > max(|¢|), then p; Oh*p,=p, <>L P

M

4.2. METRICS BASED ON JOINT CASES

For this type of metrics we ignore causal dependencies and simply count how
often two individuals are performing activities for the same case.

Definition 4.8 (Working together metrics). Let L be a log. For
PP € Pipi<e py =3 p1>¥e pa/ D ep &lespr) if D ocer gle, p1) # 0,
otherwise p; <ty p» =0, where for ¢ = (co,c1,...) EL:p><.pp=1 if
Jo<i,j<lelniziTp(ci) = p1 A my(cj) = p2, otherwise py <. po =0:g(c,p1) = 1 if
Jo<i<|e|Tp(ci) = p1, otherwise g(c, p1)=0

Note that in this definition we divide the number of joint cases by the
number of cases in which p; appeared. It is important to use a relative
notation. For example, suppose that p; participates in three cases, p, partic-
ipates in six cases, and they work together three times. In this situation, p;
always work together with p,, but p, does not. Thus, the value for p; > p>
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has to be larger than the value for p, <z p;. Let us apply this metric to analyze
the relationship between John and Pete based in the log shown in Table 1. In
the log, John appeared in two cases, Pete in four cases, and they work together
on two cases. Thus, John t<; Pete = 2/2 and Pete <y John = 2/4.
Moreover, alternative metrics can be composed by taking the distance
between activities into account, e.g., use variants like (p; Dﬁ P2+ p2 sz p1)/2

or (p; 5’2192 +p >§p1)/2.

4.3. METRICS BASED ON JOINT ACTIVITIES

To calculate the metrics based on joint activities, first we make a “profile”
based on how frequent individuals conduct specific activities. In this paper,
we use a performer by activity matrix to represent these profiles. This matrix
simply records how frequent each performer executes specific activities.

Definition 4.9. (A) Let L be a log. For p; € P, a; € A, and ¢= (¢, ¢1,...) € L:

1 if i) = ATm,(c;) =
B = Z{ if m,(c;) = a1 Amp(ei) = pi

05l 0 otherwise

—p1ALar = ZplAcal
cel
Note that A defines a matrix with rows P and columns 4. Table III shows
the performer by activity matrix derived from Table 1.

After creating the matrix, we measure the distance between two performers
by comparing the corresponding row vectors. A simple distance measure is
Minkowski distance which can be seen as a generalization of the Euclidean
distance. But the Minkowski distance only gives good results if performers
execute comparable volumes of work. Therefore, we also use the Hamming
distance which does not consider the absolute frequency but only whether it is
0 or not. Another metric is Pearson’s correlation coefficient which is fre-
quently used to find the relationship among cases.

Table I111. The performer by activity matrix

Performer Activity A Activity B Activity C Activity D Activity E

John 2 1 1 0 0
Sue 3 1 1 0 0
Mike 0 1 1 0 0
Carol 0 1 1 0 0
Pete 0 0 0 4 0
Clare 0 0 0 1 1
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Definition 4.10. (A} AP APCY Tet L be a log and A be a performer
by activity matrix. For p, p,€ P, n€{1,2,3,...}:

1/n
-y = (Z l(p1ALa) — (PzALa)\")

acA

,plApoz = (Zé(plALa,pZALa))/\A\

where o) = ([0
e Ywea(((prispa) = X)((p2Ara) — Y))/

E T 0800 = D) S (p200) — V)
where X =Y (piAa)/|A], Y= (pALa)/|A|

acA acA

-piA

The Minkowski distance AY?""has a parameter n: n = 1 is the Rectilinear
distance also referred to as Manhattan distance, n=2 is the Euclidean
distance, and for large values of n the metric approximates the Chebyshev
distance. The Hamming distance A%” does not have a parameter but could
be extended with some threshold value. In the case of Pearson’s correlation
coefficient, the result ranges from + 1 to —1. A correlation of + 1 means that
there is a perfect positive linear relationship between variables. A correlation
of —1 means that there is a maximal negative linear relationship between
variables. In other words, if the distance between performers is small, the
correlation is closer to 1, if it is large, the correlation is closer to —1.

To illustrate the limitations of simple metrics like the Minkowski distance
we consider Table III. Clearly, from an intuitive point of view the distance
between Sue and Carol should be smaller than the distance between Carol
and Clare because Carol and Clare have no activities in common. The
Minkowski distance (n=1) between Sue and Carol equals 3 and the distance
between Carol and Clare equals 4. However, if Sue would have executed
activity B and activity C also three times, the distance between Sue and Carol
would be 7 and thus incorrectly suggest that Carol is closer to Clare than to
Sue. The Hamming distance is more robust and would indicate in both cases
that Carol is closer to Sue: Sue A7P Carol equals 1/5 and Carol AP Clare
equals 4/5. If we calculate the Pearson’s correlation coefficient, Sue AT Carol
equals 0.2182 and Carol AYClare equals —0.6667. Hence, the result of
Pearson’s correlation leads to the same conclusion as the Hamming distance.

Note that if the volume of work varies significantly, the metrics are not
suitable. For example, it is difficult to compare the profile of a part-time worker
with a full-time worker. Thus, in some cases we first apply the log, (X+1)
function on the values of the performer by activity matrix, i.e., use a loga-
rithmic scale for A;. Note that we need to add ““ + 17 to avoid negative values.
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4.4, METRICS BASED ON SPECIAL EVENT TYPES

The types of metrics mentioned in previous subsections do not consider event
types. They more or less assume that all events correspond to the completion
of an activity. But events can contain various event types such as schedule,
assign, withdraw, reassign, start, suspend, resume, pi_abort, ate_ abort, com-
plete, autoskip, manualskip, and unknown.* For example, schedule refers to the
enabling of a task for a specific case, assign refers to the allocation of such an
enabled task to a user, start refers to the actual start of a task, and complete
refers to the completion of a task. Event types such as withdraw, reassign,
suspend, resume, pi_abort, and ate_abort may refer to exceptions which are
interesting from the viewpoint of SNA. See (Aalst et al., 2003) for some more
information on the various event types.

In this subsection, we take into account metrics based on special event
types. In particular, we concentrate on the reassign event type. To define
metrics based on special event types, we suppose that log lines have an event
type. For convenience, we define an operation on events: w,,(e¢) = event type
for some event ¢=(a, p). Note that Definition 4.1 could be extended to
capture event types such as used by commercial systems. In the next section
we define an XML format to capture this information.

Before defining metrics, the basic notations used for a single case
c¢=(cg,c1,- - -) are specified as follows.

Definition 4.11 ( follow,~7). Let L be a log. For p, pop€ P, c=(co, ¢,
...) € L, and some event type event type:

—follow(c,i,j) = ma(ci) = ma(¢j) A Vickajma(cr) # ma(ci), for 0 <i<j<|c]
) e e ) Jo<icj<lel follow(c, i, j) N my(ci) = piA
¢ et (¢i) = event type A my(cj) = p2
1 if Jigjepqfollow(c,1,j) A my(ci) = pi
— |p1 P py| = Z AT (€;) = event type A y(c;) = pa
0<i<lcl { 0 otherwise
In a log, there may be several events that correspond to the same activity. If
the activity a is reassigned from a performer p; to a performer p,, we can find
two events ¢; and ¢; such that ¢;=(a, p1), m./(c;) = ‘reassign’, ¢; =(a, p»), and
m./c;) is some event type. Thus, we need follow to find a next event which is
related to c;. p; 79" P7¢ p, denotes the function which returns true if within
the context of the case ¢ performers p; and p, both executed the same activity
and p; was responsible for a specific type of event and p; is the first performer
of some event for the same activity. |p; 7" "¢ p,| denotes the function
which returns the number of times p; /¢"" “7¢ p, in the case c¢. Using such
relations, we define reassignment metrics. Recall that reassign is a special
event type corresponding to the delegation from one performer to another.



570 WIL M. P. VAN DER AALST ET AL.

Definition 4.12 (Reassignment metrics). Let L be a log. For py, p, € P:

=1 V1 = (X Ipr v pa) /(S (|| = 1)
ceL cel

v = X /L

cELAP 17" py
P17, by is obtained by dividing the total number of reassignments from
p1 to py in the event log by the maximum number of reassignments in the log.
For example, if there are 10 events in a log and John has reassigned an
activity to Mike once, John 57,““**" Mike equals 1/9. py57"*“5¢" p, ignores
multiple reassignment within one instance.

In this section, we formalized the metrics introduced in Section 3.2. It is
important to note that each of the metrics is derived from some log L and the
result can be represented in terms of a weighted graph (P,R,W), where P is
the set of performers, R is the set of relations, and W is a function indicating
the weight of each relation (see Section 3.1). For example, the basic hand-

over of work metric >; defines R = {(p;,p2) € Px P|pi>Lpr # 0}
and W(py,p>) = p1 > p2. For the Hamming distance R= {(p;, p») € PX P | p;
ATPp, = 1} and W(py, po)=1 — (p1 A¥Pp,). For the Pearson’s correlation
coefficient R={(py, po) € P x P | p; AFSp> > o} (where « is some threshold
value between —1 and 1) and W(p,, p>)=(1+ (p; A" p,))/2. In other words,
given an event log L each metric results in a sociogram that can be analyzed
using existing SNA tools.

enterprise

. ) SNA tools
information
systems -
(—\ event log relation;hip m
(XML format) matrix
Staffware event log manager AGNA
NetMiner
InConcert Io%information UCINET
MQSeries . .
. mining manager
) mining&
basic policies - "
statistics mining resu
Y )
log translators aul matrix translators
(product specific translators) I (product specific translators)

Figure 3. The architecture of MiSoN.
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5. MiSoN

This section introduces our tool MiSoN ( Mining Social Networks). MiSoN has
been developed to discover relationships between individuals from a range of
enterprise information systems including workflow management systems such
as Staffware, InConcert, and MQSeries, ERP systems, and CRM systems.
Based on the event logs extracted from these systems MiSoN constructs soci-
ograms that can be used as a starting point for SNA. The derived relationships
can be exported in a matrix format and used by most SNA tools. With such
tools, we can apply several techniques to analyze social networks, e.g., find
interaction patterns, evaluate the role of an individual in an organization, etc.

MiSoN has been developed using Java including XML-based libraries such
as JAXB and JDOM, and provides an easy-to-use graphical user interface.
Figure 3 shows the architecture of MiSoN. The mining starts from a tool-
independent XML format which includes information about processes, cases,
activities, event times, and performers. From enterprise information systems
recording event logs, we can export to this XML format.

Figure 4 shows the XML schema describing this format. It is an extension
of the DTD suggested in (Aalst et al., 2003). The schema has the Work-
flowLog element as a root element. It has Data, Source, and Process elements.
The Source element contains the information about software or system that
was used to record the log (e.g., Staffware). The Process element represents
the process where the process log belongs. Note that there may be multiple
Process elements in a log. Each Process element may hold multiple Process
Instance elements that correspond to cases. The AuditTrailEntry element
represents a log line, i.e., a single event. It contains Workflow ModelElement,
EventType, Timestamp, and Originator elements. For SNA, the Workflow-
ModelElement, EventType, and Originator elements are most important. The
WorkflowModelElement refers to the activity (or subprocess) the event cor-
responds to. The EventType specifies the type of the event, e.g., schedule (i.e.,
a task becomes enabled for a specific instance), assign (i.e., a task instance is
assigned to a user), start (the beginning of a task instance), complete (the

0 B

i p0urce

WorkflowlLog [

r-i,Data B
—{ WorkflowModelElement
i (P

Figure 4. MiSoN workflow mining format (XML schema).
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completion of a task instance), and reassign (as discussed in Section 4.4). In
total, we identify 12 events. Last but not least the Originator element refers to
the performer. To make the format more expressive, we define the Data
element and other elements have it as a sub tags. If users want to specify more
information than the basic elements, they can record the additional infor-
mation using the Data element. Such information can be used for other types
of process mining such as performance analysis, process knowledge extrac-
tion, etc.

After reading an event log that conforms to the XML schema, MiSoN
provides functionalities for displaying user statistics and event log statistics.
Using the metrics defined in Section 4, MiSoN constructs relationships be-
tween individuals. When calculating the relationships, the user can select
suitable metrics and set relevant options. The result can be displayed using a
matrix representation and a graph representation, but it can also be exported
to SNA tools. Exported data contains the number of performers, names of
performers, and a relationship matrix.

To illustrate MiSoN we have used an event log as generated with Staff-
ware, which was converted to the XML format. For this log, we only con-
sider the ‘“released by’ event type to make sociograms. This event
corresponds to the complete event type in our XML format. We have tested
MiSoN with several metrics mentioned in the previous section. Figure 5
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Figure 5. MiSoN screenshot showing a sociogram based on a Staffware log.
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Figure 6. Screenshot of AGNA when analyzing the input from MiSoN.

shows a screenshot of MiSoN when displaying the mining result of handover
of work metrics.

MiSoN can export the mining result using the AGNA-translator (but also
other tools like UCINET and NetMiner). AGNA (cf. http://www.geoci-
ties.com/imbenta/agna/) is an SNA tool that allows for a wide variety of
sociometric analysis techniques. For example, AGNA supports various no-
tions of centrality including the Bavelas—Leavitt index described in Section
3.1. John and Sue have the highest Bavelas—Leavitt index (the value is 4.2),
while Clare has the smallest value (2.8). Figure 6 shows the analysis using the
tool AGNA. It also shows the network structure of result.

MiSoN can also export the mining result to other SNA tools like UCINET
(cf. http://www.analytictech.com) and NetMiner (cf. http://www.netmin-
er.com). In fact, in the case study described in the next section we will mainly
use NetMiner to analyze the social network.
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6. Case study
6.1. CONTEXT

To demonstrate how our metrics can be applied to real workflow logs and
what kinds of analysis can be performed, we employed real workflow log
data and carried out a case study. The case study we describe here involved
one of the twelve provincial offices of the Dutch national public works
department, employing about 1000 civil servants. For reasons of confiden-
tiality, we cannot disclose the name of this specific office.

The office’s primary responsibility is the construction and maintenance of
the road and water infrastructure within its provincial borders. For this
purpose, it subcontracts various parties such as road construction companies,
cleaning companies, and environmental agencies. Also, the provincial office
purchases services and products to support its construction and maintenance
activities on the one hand (e.g., mechanical tools, fuel, and traffic signs) and
its administrative activities on the other (e.g., office supplies).

The process we dealt with concerns the handling of invoices, as received by
the provincial office in question. In general, the handling of an invoice in-
volves several validation steps and, if the invoice is approved, it is completed
by payment. On a yearly basis, the provincial office processes some 20,000
invoices from its various subcontractors and suppliers.

The provincial office has implemented its own proprietary workflow
management system to support the processing of invoices. This system re-
cords transaction information between activities. We extracted a process log
and analyzed it. Since the extracted data are also stored in a relational
database, we first developed a translator which converts the process log in the
database to an XML file using the format described in the previous section.

The process consists of 17 real activities, aside from logistic steps and splits.
The log data contains 4,988 cases. The number of total log lines (i.e., events)
is 33,603 and 43 employees participated in the process execution. The log
holds no information about reassignments. Hence, we cannot apply the
reassignment metrics presented in Section 4.4. However, all other metrics we
discussed in Section 4 have been applied in this case study.

6.2. METRICS APPLICATION

We applied our metrics to the log data and derived several social networks.
Moreover, by applying several SNA techniques, we tried to find the char-
acteristics of the social network.

Figure 7 shows a social network which was derived by applying the
handover of work metrics. The network represents how cases are transferred
among performers. As indicated in Section 4, there are three refinements
possible for the handover of work metrics. To generate this network, we take
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userdi userz22
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user28

Figure 7. Social network based on the handover of work metric >;.

into account direct succession and multiple transfers in a case, but we ignore
the real process structure, i.e., we use the metric > introduced in Definition
4.3. The network has 43 nodes and 406 links. The density of the network is
0.225 and it has no isolated nodes.

Table IV. Performers having high values for (1) betweenness, (2) in-closeness, (3) outclose-
ness, and (4) power when analyzing the social network shown in Figure 7

Ranking Name Betweenness Name In-closeness Name Out-closeness Name Power

1 userl 0.152 userl 0.792 user23 0.678 userd 4.102
2 user4 0.141 user4 0.792 userl 0.667 userl 2.424
3 user23 0.085 userl6 0.75 userd  0.656 user30 1.964
4 user5 0.079 user23 0.689 userS 0.635 userl7 1.957
5 userl6 0.065 user2 0.667 userl3 0.625 user7 1.774
6 userl3 0.057 userl5 0.618 userl8 0.616 user8 1.394
7 userl8 0.052 user5S 0.609 user2 0.606 user2 1.347
8 user2 0.049 user7 0.592 userl6 0.58 user23 1.098
9 user7 0.04 userl3 0.568 user7 0.572 userl6 1.058
10 user31 0.029 userl8 0.568 userl7 0.556 userl8 0.581
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In order to find people who are located in the center of the network, we
calculate several centrality values such as betweenness, in and out closeness,
and power (Bonacich, 1987) of each node. Normally, the nodes which are the
most central have a powerful position in the network. Table IV shows the top
10 ranked performers among the people involved based on (1) betweenness
(i.e., the extent to which a node lies between all other pair of nodes on their
geodesic paths), (2) in-closeness (i.e., the inverse of the sum of distances from
all the other nodes to a given node, which is then normalized by multiplying
it by the number of nodes minus 1), (3) out-closeness (i.e., the normalized
inverse of the sum of distances from a node to all the other nodes), and (4)
power (i.e., Bonacich’s metric based on the principle that nodes connected to

Table V. Summary of arc weights for various values of f§

Beta  Sum Average  Standard deviation ~Minimum value Maximum value
0.1 1.000025  0.000541  0.003269 0 0.086734
0.3 1.000091  0.000541  0.002895 0 0.074274
0.5 1.000001  0.000541  0.002631 0 0.065751
0.7 1.000011  0.000541  0.002522 0 0.063232
0.9 0.999979  0.000541  0.002586 0 0.067214

user1s

Figure 8. Social network based on subcontracting metric.
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powerful nodes are also powerful (Bonacich, 1987)). In this table, we find
that user I and user 4 have larger values than others in most measurements.’

When generating a social network related to the handover of metrics, we
can also consider indirect succession using a ‘‘causality fall factor” f. By
applying various values of f§, we generate several social networks. Despite the
value of f8, the derived networks have the same structure except the weight of
arcs. Table V shows the sum, average, standard deviation, minimum value,
and maximum value of the arc weights based on different values of f. If we
use a small f3, the value of arcs between performers who have the relationship

Table VI. A list of people having a high degree of in-/out-closeness based on the subcon-
tracting network shown in Figure 8

Ranking Name In-closeness Name Out-closeness
1 user4 0.262 user4 0.262
2 userl 0.214 userl 0.214
3 userl6 0.214 user7 0.167
4 userl8 0.19 userl3 0.143
5 user> 0.167 user5 0.167
6 user7 0.167 userl6 0.214
7 userl3 0.143 userl8 0.19
8 user19 0.143 userl4 0.095
9 user10 0.119 user23 0.119
10 userl7 0.119 user27 0.119

{0 |

Figure 9. Social network based on the working together metric (left) and the ego net-
work of user41 (right).
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of direct succession is larger than between others. However, if we use a large
value of f, these differences decrease.

To find subcontracting relationships between people, we apply in-between
metrics. Figure 8 shows the resulting social network. The network has 43
nodes and 146 links. The density of the network is 0.081 and eight nodes are
isolated from the network. In this network, the direction of arcs is important.
The start node of an arc represents a contractor, while the end node of an arc
represents a subcontractor. Table VI shows the ten people of highest in-
degree and out-degree of centrality (based on the in-closeness and out-
closeness calculated by NetMiner).

Figure 9 shows the social network derived by applying the working to-
gether metrics and the ego network (Mitchell, 1969) corresponding to user41.
In the ego network, the nodes represent the people working together with
user41 according to this metric. Note that user41 works together with wuserl,
user4, user23, user26, and user31. The average size of ego network of the
generated network is 24.698 and the standard deviation of this value is 9.709.

user10

user1g W

user
user19
L J AET3
user1f / 1
® usep1 “‘.‘
‘ _, ’ \ ._-:_-
S \SIIE Gy
N ,.;4..‘!!!&}%
user3s \ \, ’
user30 \
usen 143
user32

Figure 10. Social network derived from Pearson’s correlation coefficient (threshold
value 0.75).
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This means that the social network suggests that an employee on average
works with 24 people.

Applying the metrics based on joint activities, we calculate the distance
between people. Figure 10 shows the social network which is derived by
applying Pearson’s correlation coefficient. From the performer by task ma-
trix, we first apply log;o(x + 1), then calculate the distances between people.
We get 5 clusters and two isolated nodes. The nodes in the same cluster play
the same role. In this case, the bridge node can be interpreted as a person who
has multiple roles. In the network, user8, user28, user37, and user43 have
multiple roles.

Finally, we explore how cases are transferred among groups. To calculate
case transfers among groups, we combine the handover of work metrics with a
role model. In this case study, we use the results of correspondence analysis
(Clausen, 1998) as a role model of performers. (Of course, we can also use the
results of the metrics based on joint activities.) Correspondence analysis is
frequently used in biological science to analyze ecological systems based on
species scores for specific locations (Gauch, 1982). In this paper, we apply
correspondence analysis to find relationships between activities and per-
formers. We first make a performer by activity matrix from the workflow logs.
Then, by applying correspondence analysis to the matrix, we derive the
relationship between activities, between performers, and between activities
and performers. Figure 11 shows the graphical result of applying corre-
spondence analysis. In the figure, boxes represent activities and circles rep-

k3

user3i

Figure 11. Graphical result of correspondence analysis.
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Table VII. The result of correspondence analysis: users are clustered into five groups

Group Performers Activities

groupl userl, user2, user4, userl6, user23, user30, user35 task2, task3, task15,
task21, task22
group?2 user3, user24, user25, userd(
group3 user5, userl3, user32, user43 task8, task19
group4 user6, user8, user9,userl2, userl5, user22, user31, task18
user39, userdl

groups user?, userl0, userll, userl4, userl7, userl8, userl9, task5, task7, taskll,
user20, user21, user26, user27, user28, user29, user33, task13, task16,
user34, user36, user37, user38, userd2 task17, task20

resents performers. Closely positioned nodes indicate a strong correspondence
from a work handover perspective between the respective users and/or tasks.
(Although the distance between user nodes and task nodes should not be
interpreted as an absolute measure.) From this figure, performers and activ-
ities are classified into five groups. Table VII shows the results. In the
remainder we will use these five groups as a role model.

Figure 12(a) shows the social network of handover of work metrics con-
sidering the role model given in Table VII. By putting the nodes in the same
group closely, we have reconstructed the original network. And by summing

,.-o,us-'ﬁ_‘ﬁ'" ®\
90 -7

-
N A= cal
N,/ 0, 0,10

¢

053 ——m—s @

(a) Social network of handover of work metrics (b) Information flow among roles
considering roles

Figure 12. Social network based on handover of work metric using the five groups
shown in Table VII.
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Table VIII. Information flow between groups

From To

groupl group?2 group3 group4 groupSs Sum
groupl 1.330 0.058 0.002 0.002 0.895 2.287
group2 0.143 0.014 0.020 0.005 0.028 0.211
group3 0.014 0.005 0.002 0.104 0.030 0.154
group4 0.620 0.000 0.002 0.005 0.004 0.630
group5s 0.132 0.135 0.134 0.526 0.617 1.545
Sum 2.239 0.212 0.160 0.642 1.574 4.827

up the weight of arcs between groups we derive the aggregated network
shown in Figure 12(b).

Table VIII shows the information flow of the network according to the
role model. It is also derived by summing up the weight of arcs between
groups. For example, the value form groupl to group? is calculated by adding
up the weights of the arcs from nodes in groupl to nodes in group2. Based on
Table VIII we can make some observations. First, the highest value (1.330) is
in the cell from groupl to groupl. It means that the handover of work within
groupl happened most frequently. Second the values from groupl to groups
(0.895), from group4 to groupl (0.620), and from group5 to group4 (0.529)
have the highest values. It represents that more handover of work happened
between these groups.

The goal of this subsection is not to provide a comprehensive overview of
all the diagrams we developed or to provide very specific information about
the studied process or organization in question. Its main purpose is to
illustrate the various types of analysis possible. In the next section, we will
reflect on the relevance of the different types of analysis for the organization
in question.

6.3. ORGANIZATIONAL RELEVANCE

Prior to our analysis, the involved management did not express any specific
needs or questions about the invoice handling process. And yet, they indi-
cated that the handling of invoices is in the center of their attention. There
are two main reasons for this. First of all, it is the single most distributed
process under the responsibility of the public works department. For
example, if invoices are related to some particular public works project, its
project leader must personally certify that delivery has taken place before
payment may happen. Project leaders, however, may reside at any location
within the provincial borders (in contrast to the performers working at the
administrative head office). The distributed nature of the process increases
the probability of hand-over errors and work getting lost.
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The second reason for the attention for the invoice process is the recent
Dutch law about penalty interests. Parties that send invoices to public
organizations and receive their rightful payment after more than 30 days are
entitled to a compensation proportional to the invoice amount. Due to the
current interest rate, this compensation exceeds commercial rates. Sluggish
settlement of invoices directly affects the public works department’s financial
position.

Both issues have contributed to the decision to introduce workflow tech-
nology to support the invoice handling process, as this is expected to increase
quality and decrease process lead time. Management expressed a general
interest in results from SNA to learn about process execution, behavior of the
involved parties, and potential opportunities for improvement.

After we applied our metrics to the log data and derived the social net-
works as shown, we presented the managers of the three most involved
departments our analysis results in a joint session. Roughly speaking, the
three departments are, respectively, responsible for the administrative, con-
tractual, and financial aspects of the invoice handling. The goal of this
meeting from a research perspective was threefold:

1. To validate our understanding of the process.
2. To generate feedback on our analyses.
3. To identify further analysis opportunities.

To determine whether we properly understood the process, we discussed
the process model of the invoice handling process and the involved parties for
each of the various steps. This led to no surprising new insights. We will
reflect on the other two aims of the meeting in more detail.

Feedback on analyses. After we explained the various SNA notions we
presented the results from our analyses as presented for a large part in
Section 6.2. We started with discussing the top 5 and bottom 5 of the lists of
performers as ordered on their scores on betweenness, in and out closeness,
and power in, respectively, the social networks of handover, subcontracting,
and working together metrics. Note that we used the lists that included the
real names of the actors to facilitate meaningful feedback.

From the responses, we learned that, typically, performers with high scores
(e.g. userl and user4 in Table IV) work for the administrative department in
supportive functions. This confirms a general insight that highly connected
people often are assistants. Because the administrative department is
responsible for both the preparation and completion of the handling of each
invoice, its staff is involved in the handling of each case, giving them strong
ties with other performers. The managers indicated, however, that not all of
the people in these positions were present in the top of the lists, indicating
that having a supportive function is not sufficient in itself to become highly
connected.
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Performers with low scores could be categorized as follows. First of all,
project leaders were highly represented in the bottom of the lists (e.g. user9).
As stated before, they play an isolated role in the handling of invoices, being
solely responsible for certifying that goods have been delivered (and only if an
invoice is related to a project at all). Other performers with limited formal
verification responsibilities were identified as well (e.g. user22). The second
category of relatively unconnected performers could be traced back to aux-
iliary logins (e.g. user30), used by system administrators and management to
deal with exceptional circumstances. An example of an exceptional situation is
an invoice that is being withdrawn while its processing has already started.
The isolated ““participation” of this category of users is therefore not very
surprising. It did, however, make the managers conscious of the visibility of
this type of irregular interference. One manager remarked: ““So, auditors can
derive this type of information too”. The third category turned out to be more
surprising, as it involved senior positions in the contractual and financial
departments (e.g. user41). At least nominally, they are expected to be actively
involved in the process. Their low position could indicate that a large amount
of work being executed with workflow technology is delegated to their juniors.
Also, one of these performers would retire in a couple of weeks.

After the discussion of the lists of performers, we presented the social
network indicating the distance between people (see Figure 10). The relations
between users were readily recognized by the involved managers. For
example, the subgraph of userl, user2, user4 and user23 concerned the group
of highly-connected assistants at the administrative office we encountered
earlier. Then, we took a closer look at the two isolated nodes. One of them —
rather characteristically — turned out to be the system administrator (user!9).
The isolated position of the other node, userl6, led to some excitement. At
first, the isolation of this performer was not understood, as she was con-
sidered to perform an explicit role in the contractual handling of invoices.
Then it occurred to one of the managers that the involved person was in-
cluded in another cluster under a different user name as well (user32). The
existence of such a situation was a complete surprise to the managers and
considered highly undesirable for compliancy reasons.

The final result we obtained feedback on, involved the correspondence
analysis, such as presented in Table VII and Figure 11. Managers readily
recognized groupl, group3, and group5. At the same time, they indicated that
they did not differentiate themselves between most of the performers in
group2 and group4. This is in line with the observation that some performers
from these groups are closely positioned to each other in Figure 10. For
example, the positions of user25 from group2 and user31 from group4 nearly
coincide. And yet, the strong correspondence between group4 and taskl8
indicates that a degree of performer specialization has taken place with re-
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spect to this specific invoice check that had gone unnoticed with the con-
cerned managers.

Further analyses. Aside from the various surprising aspects of the invoice
handling process, the managers of the provincial office were most intrigued
by the subcontracting analysis. After some discussion, they expressed their
suspicion about three parts of the process where a similar yet undesirable
“back-and-forth” behavior may take place. Specifically, they meant that a
performer (the contractor) routes a work package to another performer (the
subcontractor), who subsequently routes it back to the contractor or one of
the contractor’s close colleagues, because the subcontractor feels the invoice
is received in error. This, for example, takes place when an invoice related to
a project is sent for verification to the wrong project leader. Each occurrence
of this pattern is highly undesirable, as it slows down the processing of the
invoice without making any progress. From an organizational perspective, it
is just as unwelcome when the work package is routed back to the original
contractor as to a colleague with a similar organizational role.

Our initial analysis did not cover this more general kind of subcontracting
pattern, because it focused on the identity of the original contractor only (see
Definition 4.6) . To investigate the expressed suspicions we analyzed the
mining log in various ways, using other than SNA techniques as well.
Therefore, in the context of this paper, we will be brief about this additional
analysis. It turned out that in the handling of over 17% of all invoices, at
least once an undesired subcontracting takes place at either of the three
identified places in the process. The exact distribution is shown in Figure 13.
As can be seen, there are cases where 10 or more erroneous routings take
place.
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8%

Percentage of

e 6% -
total invoices

4% -

2%

0% -
1 2 3 4 5 6 7 8 9 >10

Number of undesired subcontracting occurences within the handling of a
single invoice

Figure 13. The distribution of undesired generalized subcontracting within the han-
dling of invoices.
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As a result of the additional analysis we carried out and discussed again,
management of the provincial office re-enforced the existing procedure that
staff, when in doubt, should contact the intended next performer by phone
first. Especially in cases where hand-overs take place between performers at
the head and regional offices, management felt that people acted too timidly
with respect to this procedure.

7. Discussion

In this section, we demonstrated how our metrics can be applied to a real
workflow log of a Dutch organization. Based on the metrics defined in
Section 4, we derived various sociograms, some of which have been shown in
this paper. Using the sociograms we applied SNA techniques such as
betweenness, closeness, power, ego network, etc. We also showed the pos-
sibility of applying other analysis techniques such as correspondence analysis
to compare users based on their “profile”.

Next we discussed the organizational relevance of our analyses. As we
indicated, many of our findings corresponded with existing insights of the
involved management, supporting the correctness of our analyses. At various
points, our analyses came as a surprise. These particularly concerned senior
performers who did not seem very connected, the clear visibility of the ac-
tions of irregular performers, and a degree of unnoticed performer special-
ization that had taken place. In addition, we found it interesting to observe
how our analysis results triggered the management to identify and define
additional questions. This, in our eyes, strongly supports the relevance and
viability of process mining in an organizational context, even though our
additional analyses extended beyond SNA.

As discussed in Section 2.4, ethical and legal issues play an important role
in the practical application of process mining in general and SNA analysis in
particular. One concern we certainly felt is that the validation and discussion
of our analysis results required us to disclose the identity of the involved
performers. Our tools can anonymize the sociograms without any problems
and we can also aggregate them at a group level. However, in our discussions
with the involved management, it was helpful to be able to refer to specific
people. We informed the management that it is illegal to perform actions
towards individuals based on the presented results. Because of the clear value
of this type of analysis, the managers expressed their intent to ask for the
consent of their employees for the use of future analyses. Note that the re-
enforced policy that resulted from our additional analysis was neither based
on information obtained on individual performers, nor did it affect any
individual more than others.
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8. Related work

Related work can be divided in two categories: process mining and SNA.
However, before discussing the directly related work in detail, we would like
to position this work in the broader Computer Supported Cooperative Work
(CSCW) domain. The work presented in this paper may contribute to the
ongoing discussions in the CSCW domain on “technology push” (i.e., “What
is possible?”’) versus “‘social pull” (i.e., “What is desirable from a sociological
point of view?”’). There exist many definitions of the term CSCW: some
emphasize the support of work processes while other emphasize the fact that
people work in groups (Ellis et al., 1991; Ellis, 2000). Within the CSCW
domain there has been a constant struggle between more technological-ori-
ented views and more sociological-oriented views. A nice illustration is the
so-called “Winograd- Suchman debate” in the early nineties (Winograd and
Flores, 1986; Suchman, 1994; Winograd, 1994; Malone, 1995). Winograd
and Flores advocated the use of a system called the ““‘coordinator’, a system
based on Speech Act theory (i.e., the language/action perspective) in-between
e-mail and workflow technology (Winograd and Flores, 1986; Winograd,
1994). People like Suchman and others argued that such systems are unde-
sirable as they “carry an agenda of discipline and control over an organi-
zation’s members” (Suchman, 1994). Clearly, process mining and discovering
social networks based on event logs add another dimension to this discussion.
We would like to emphasize that the goal of process mining is not to control
people. However, it can be used to monitor and analyze the behavior of
people and organizations. Clearly, such technology triggers ethical questions
as discussed in Section 2.4. Although it is important to balance between both
views, our approach can be seen as a “‘technology push’ approach triggered
by the event logs present in contemporary information systems.

8.1. RELATED WORK ON PROCESS MINING

The idea of process mining is not new (Agrawal et al., 1998; Cook and Wollf,
1998; Aalst et al., 2003) but has been mainly aiming at the control-flow per-
spective. The idea of applying process mining in the context of workflow
management was first introduced in Agrawal et al. (1998). This work is based
on workflow graphs, which are inspired by workflow products such as IBM
MQSeries Workflow (formerly known as Flowmark). Cook and Wolf have
investigated similar issues in the context of software engineering processes. In
Cook and Wolf (1998) they describe three methods for process discovery: one
using neural networks, one using a purely algorithmic approach, and one
Markovian approach. Schimm (2000) has developed a mining tool suitable for
discovering hierarchically structured workflow processes. Herbst and Kara-
giannis also address the issue of process mining in the context of workflow
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management using an inductive approach (Herbst, 2000, 2001). They use
stochastic task graphs as an intermediate representation and generate a
workflow model described in the ADONIS modeling language. Most of the
approaches have problems dealing with parallelism and noise. Our work in
Aalst and Dongen (2002) and Aalst et al. (2004) is characterized by the focus
on workflow processes with concurrent behavior (rather than adding ad-hoc
mechanisms to capture parallelism). In Weijters and Aalst (2003) a heuristic
approach using rather simple metrics is used to construct so-called “depen-
dency/frequency tables” and “dependency/frequency graphs”. These are then
used to tackle the problem of noise. The approaches described in Aalst and
Dongen (2002), Aalst et al. (2004) and Weijters and Aalst (2003) are based on
the o algorithm.

Process mining in a broader sense can be seen as a tool in the context of
Business Process Intelligence (BPI). In Grigori et al. (2001) and Sayal et al.
(2002), a BPI toolset on top of HP’s Process Manager is described. The BPI
toolset includes a so-called “BPI Process Mining Engine”. However, this
engine does not provide any techniques as discussed before. Instead it uses
generic mining tools such as SAS Enterprise Miner for the generation of
decision trees relating attributes of cases to information about execution
paths (e.g., duration). In order to do workflow mining it is convenient to have
a so-called “‘process data warehouse” to store audit trails. Such a data
warehouse simplifies and speeds up the queries needed to derive causal
relations. In Miihlen and Rosemann (2000), Zur Muehlen describes the PISA
tool which can be used to extract performance metrics from workflow logs.
Similar diagnostics are provided by the ARIS Process Performance Manager
(PPM) (IDS Scheer, 2002). The latter tool is commercially available and
integrates some of our ideas. A customized version of PPM is the Staffware
Process Monitor (SPM) (Staffware, 2002) which is tailored towards mining
Staffware logs. Note that none of the latter tools is extracting models, i.e., the
results do not include control-flow, organizational or social network related
diagnostics. The focus is exclusively on performance metrics.

For more information on process mining we refer to a special issue of
Computers in Industry on process mining (Aalst and Weijters, 2004) and the
survey paper (Aalst et al., 2003). Note that although quite some work has been
done on process mining from event logs none of the approaches known to the
authors have incorporated the social dimension as discussed in this paper.

8.2. RELATED WORK ON SNA

Since the early work of Moreno (1934), sociometry, and SNA in particular,
have been active research domains. There is a vast amount of textbooks,
research papers, and tools available in this domain (Moreno, 1934; Bavelas,
1948; Feldman, 1977, 1979, 1987; Burt and Minor, 1983; Bernard et al., 1990;
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Scott, 1992; Wasserman and Faust, 1994; Nemati and Barko, 2003). There
have been many studies analyzing organizational activity based on insights
from social network analysis. However, some of these studies typically have
an adhoc character and sociograms are typically constructed based on
questionnaires rather than using a structured and automated approach as
described in this paper. More structured approaches are often based on the
analysis of e-mail interaction and additional electronic sources. Several
studies have generated sociograms from email logs in organization (Ogata
et al., 2001; Nardi et al., 2002; Farnham et al., 2004a, b; Fisher and Dourish,
2004) to analyze the communication structure. Such studies have resulted in
the identification of relevant, recurrent aspects of interaction in organiza-
tional contexts (Begole et al., 2002; Fisher and Dourish, 2004). However,
these studies are unable to relate the derived social networks to a particular
workflow process, as the analyzed data does not reveal to what activity or
case it applies.

Most tools in the SNA domain take sociograms as input. MiSoN is one of
the few tools that generate sociograms as output. The only comparable tools
are tools to analyze e-mail traffic, cf. BuddyGraph (http://www.buddy-
graph.com), MetaSight (http://www.metasight.co.uk/), and ContactMap
(Nardi et al., 2002). However, these tools monitor unstructured messages and
cannot distinguish between different activities (e.g., work-related interaction
versus social interaction).

As indicated in the introduction, this paper extends the results presented in
Aalst and Song (2004). Unlike Aalst and Song (2004), this paper provides
concrete metrics, a more elaborate description of MiSoN, and a case study
illustrating the applicability of the approach.

9. Conclusions

This paper presents an approach, concrete metrics, and a tool to extract
information from event logs and construct a sociogram which can be used to
analyze interpersonal relationships in an organization. Today many infor-
mation systems are “‘process aware’” and log events in some structured way.
As indicated in the introduction, workflow management systems register the
start and completion of activities, ERP systems log all transactions (e.g.,
users filling out forms), call center and CRM systems log interactions with
customers, etc. These examples have in common that there is some kind of
event log. Unfortunately, the information in these logs is rarely used to derive
information about the process, the organization, and the social network. In
this paper, we focus on the latter aspect and present an approach to discover
sociograms. These sociograms are based on the observed behavior and may
use events like the transfer of work or delegation from one individual to
another. MiSoN can interface with commercial systems such as Staffware
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and standard SNA tools like AGNA, UCINET and NetMiner, thus allowing
for the application of the ideas presented in this paper.

The approach presented in this paper has a number of obvious limitations.
First of all, we can only monitor the events that are actually logged. This
implies that some interactions may not be visible. Moreover, people may find
ways to work around the system. Second, the system may enforce certain
interaction patterns. If workers are completely controlled by the system, the
discovered sociograms reflect the system rather than the organization. For-
tunately, most systems offer a lot of flexibility when it comes to the selection
and ordering of work-items. Even workflow management systems allow for a
pull mechanism where workers select work-items from a shared pool in
any order. Moreover, other types of process-aware information systems (e.g.,
ERP, CRM, PDM systems) tend to allow for even more flexibility. In
addition to the two limitations mentioned, it is important to note that the
sociogram and its analysis are just a starting point for a deeper investigation.

Besides an approach and tool to derive sociograms from event logs, the
paper also presents a case study conducted within a Dutch national public
works department. The case study shows that the event logs in real organi-
zations allow for social network analysis. Moreover, in this particular case
the analysis results provide relevant, surprising organizational information.
The established results and resulting discussions have formed the basis for
additional process mining to deal with managerial concerns, resulting in the
re-enforcement of organizational policies. In the future, we plan to repeat our
analysis within the public works department and apply our approach in
many other organizations as well. It would be interesting to compare the
results we obtain on the basis of event logs to results of the analysis of other
communication means usage e.g., e-mail. This would provide an even richer
view on organizational interaction and process improvement opportunities.

We also investigate extensions of the approach using filtering techniques
and more advanced forms of clustering. For example, we now abstract from
the results of activities. If activities or cases can be classified as successful or
unsuccessful, important or unimportant, standard or special, etc., this
information could be used when building sociograms.

Recently, MiSoN has been integrated in the ProM framework.® The ProM
framework allows for various types of process mining, i.e., given a log it is
possible to not only derive sociograms but also process models. The ProM
framework also provides an LTL checker that can check properties expressed
in Linear Temporal Logic (LTL) (Manna and Pnueli, 1991). This allows for
all kinds of questions, e.g., checking the 4-eyes principle (two tasks for the
same case need to be executed by different people to avoid fraud). This LTL
checker can be used to answer more detailed questions based in insights
generated from the SNA analysis. In the context of the ProM framework also
a prototype of an e-mail analysis tool has been developed. Based on a user’s
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Inbox located on some Exchange server, the prototype can translate the
e-mails to the XML format described in this paper. However, since e-mails
may refer to different processes and there are no explicit pointers to tasks and
cases, and heuristics and/or conventions need to be used. Therefore, we only
consider this as a means to provide more context to the SNA analysis based
on true event logs.
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Notes

1. Note that MiSoN has been embedded in the ProM framework and can be downloaded
from http://www.processmining.org.

2. Clearly the number of events in Table I is too small to establish these assumptions accu-
rately. However, for the sake of argument we assume that the things that did not hap-
pen will never happen, cf. Section 2.3.

3. In the context of the ProM framework (http://www.processmining.org), we offer a tool
that can assign randomly generated names to workers before starting the analysis.

4. These are the event types used by ProM and MinSoN, for more information see http://
WWW.processmining.org.

5. Note that the real user names are changed into anonymous identifiers like userl. Al-
though during our analysis and interaction with the organization real user names were
used, we abstract from the real user names in this paper to ensure privacy and confiden-
tiality.

6. See http://www.processmining.org for more information and to download the tools used
in this paper.
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