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Abstract

New city logistics approaches are needed to ensure efficient urban mobility
for both people and goods. Usually, these are handled independently in ded-
icated networks. This paper considers conceptual and mathematical models
in which people and parcels are handled in an integrated way by the same
taxi network. From a city perspective, this system has a potential to allevi-
ate urban congestion and environmental pollution. From the perspective of a
taxi company, new benefits from the parcel delivery service can be obtained.
We propose two multi-commodity sharing models. The Share-a-Ride Prob-
lem (SARP) is discussed and defined in detail. A reduced problem based
on the SARP is proposed: the Freight Insertion Problem (FIP) starts from
a given route for handling people requests and inserts parcel requests into
this route. We present MILP formulations and perform a numerical study of
both static and dynamic scenarios. The obtained numerical results provide
valuable insights into successfully implementing a taxi sharing service.
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1. Introduction

In many real-life situations, especially in urban areas, people and freight
transportation operations are handled separately. Little research is available
on the efficiency gains that can be obtained by combining individual freight
and passenger transportation streams. A lack of real-time information and
the increased planning complexity due to such a combination are among
the main reasons. Our research fills in this gap and explores People and
Freight Integrated Transportation problems (PFIT problems) with a partic-
ular focus on taxis. As such, this paper focuses on the integration of these
two distinct networks. Combining people and freight flows creates attractive
business opportunities because the same transportation needs can be met
with fewer vehicles and drivers. In order to facilitate effective people-freight
flows, efficient planning models are needed to deal with these challenging
environments.

The goal of this paper is to study the potential benefits and drawbacks
of combining people and parcel flows using taxis. To achieve this goal, we
propose two models for scheduling such a combined system and perform a
numerical study using real taxi trail data (SF, 2008), as shown in Figure 1.
Note that this figure reflects the trails of 528 taxis in San Francisco, based
on historical data of one month.

Figure 1: Trails of taxis in San Francisco (darker regions mean higher density
of trails)

The developed models are based on the well-known Dial-a-Ride Prob-
lem (Cordeau and Laporte, 2003a). Dial-a-Ride problem (DARP) consists of
designing vehicle routes and schedules for a number of users who specify de-
livery requests as defined by pickup and drop-off points. The aim is to plan a
set of minimum cost vehicle routes capable of accommodating as many users
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as possible, under a set of constraints. DARP arises in many practical appli-
cation areas, for instance, taxi and courier services, transportation of elderly
and disabled persons, etc. The key difference in this paper as compared to
the original DARP formulation is the possibility of combining people and
parcels together in the same taxi: people have different requirements and
objectives (lead time, allowed delay, travel time, etc.) than parcels when
being transported.

A key contribution of this paper is to establish models that introduce
these different requirements and objectives into the DARP. Similar to the
DARP, we denote this new class of models as Share-a-Ride Problem (SARP),
referring to the fact that people and parcels share the same taxis. We present
MILP formulations for the SARP, solved exactly using GUROBI. Due to the
complexity of the problem, we can solve only small SARP instances. To
attend a higher level of realism, we provide numerical results for the SARP
under a dynamic environment.

A reduced problem based on the SARP, denoted as the Freight Insertion
Problem (FIP), starts from a given route for handling the people requests
and inserts the parcel requests into this route. As such, the FIP, based on
the SARP, has a reduced complexity (the routing is given, only the schedul-
ing/timing needs to be done) that can be solved reasonably fast for realistic
instances.

This paper is organized as follows. In Section 2, we provide a literature
review. The descriptions of the SARP and FIP are presented in Section 3.
We discuss the static SARP model formulations and dynamic framework in
Section 4. Then, in Section 5, we develop the model formulation for the
FIP. Section 6 summaries experimental settings. The numerical results are
presented in Section 7. Section 8 concludes the paper with a summary and
directions for future research.

2. Literature review

In recent years, there has been an increasing interest in people and freight
sharing systems. A comprehensive survey on sharing transport between peo-
ple and freight was conducted by Trentini and Malhéné (2010), who mainly
provide relevant concepts and solutions in order to improve urban mobility.
The solutions listed show the possibility of using sharing resources over dif-
ferent modes (e.g., using a tram for freight transportation). Traditionally,
these modes are not connected to each other. According to the classification
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of these authors, our research falls in the branch of car-sharing (ridesharing).
For car-sharing (ridesharing) we refer to the survey presented by Furuhata
et al. (2013), where a classification of the key aspects of existing rideshar-
ing systems is proposed. Three major challenges for ridesharing agencies are
identified: design of attractive mechanisms, proper ride arrangement, and
building of trust among unknown travelers in online systems.

According to the research of Agatz et al. (2012), car-sharing assumes that
requests need to share vehicles with others, and similar requests are grouped
(with similar original and destination points), then assigned to the vehicles.
Car-sharing is usually considered in terms of matching problems rather than
scheduling problems. In other words, traditional car-sharing matches indi-
viduals who are close in time and space. The objective of car-sharing is to
maximize the number of matching between drivers and riders. From a mod-
eling point of view, these works mainly focus (see, e.g., Agatz et al., 2012)
on a matching between: (i) a single driver and multiple riders, (ii) multi-
ple drivers and a single rider, (iii) multiple drivers and multiple riders. The
models are solved mainly using heuristic or agent-based simulation methods.
The reason is that car-sharing is usually related to large amounts of data,
which are difficult to be included when using exact methods. Agatz et al.
(2011) considered the problem of matching drivers and riders in a dynamic
setting. They presented a simulation study based on travel demand data
from the Atlanta Metropolitan area. Quadrifoglio et al. (2008) proposed
a bus sharing system named MAST (Mobility Allowance Shuttle Transit).
The MAST service has a fixed base route that covers a specific geographic
zone with one or more mandatory checkpoints. Its innovative feature is that,
given an appropriate slack time, buses are allowed to deviate from the fixed
path to pick up and drop off passengers at their desired locations within a
predetermined service area.

From the modeling viewpoint, our problem is similar to the DARP. The
aim of DARP is to plan a set of minimum cost vehicle routes, under a set
of constraints(Cordeau and Laporte, 2003a). The research on DARP can be
divided into two domains based on the information about requests: static
and dynamic. In the static case all the requests are known beforehand. In
the dynamic case the transportation requests are not known, or only par-
tially known in advance. Study of the DARP started in the late 1960s. Since
then several versions of the DARP have been proposed and several tech-
niques were developed to solve the problem. Psaraftis (1980) formulated and
solved the single vehicle DARP using a dynamic program in which the ob-
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jective function is the minimization of the weighted sum of route completion
time and customer dissatisfaction. This paper provided an exact algorithm
for solving DARP, but they could only solve small instances. Concerning
heuristic algorithms for DARP, the work by Jaw et al. (1986) is a pioneering
research within the area of DARP and most of the following studies in this
area are based on this work. In that paper, a sequential insertion heuristic
algorithm for solving the static DARP is described. For a more comprehen-
sive review of DARP, we refer the reader to Cordeau and Laporte (2003a)
where a summary on the related algorithms is presented.

3. Problem description

The problem under consideration can be described as follows. A number
of taxis drive around in a city to serve transportation requests coming from
people. For the static case, these requests are known beforehand (i.e., origin,
destination and start time for each person). The taxis then follow some
trajectories in order to serve all these requests, as shown in Figure 1 (which
is based on historical data). This is, for example, the case for Connexxion1 (a
transportation company in the Netherlands) where a large amount of requests
are known beforehand. Furthermore, taxis are allowed to deliver some freight
(parcels) in case it does not affect their passengers significantly.

A number of possible situations arise: (1) the taxi carries a person only;
(2) the taxi carries a parcel only; (3) the taxi carries both a person and a
parcel together. Persons have priority over parcels. This last observation
has consequences for the routing of a taxi, but also for the expected extra
time needed for picking a parcel. Note that in urban environments, the
average time of a taxi trip is around 14 minutes (SF, 2008). Thus, only small
deviations from this average travel time are acceptable to human passengers.

Kamar and Horvitz (2009) mentioned several reasons causing a poor per-
formance of existing ride-sharing projects. Personal security and convenience
concerns make people reject taking a trip with strangers: people are con-
cerned about gender, age, smoking preference, etc. In our problem definition,
we do not allow serving two passenger requests simultaneously by one taxi.
Furthermore, people and parcels have different characteristics and required
levels of service. The price for people delivery versus parcels delivery is dif-
ferent, too. We assume that a single passenger will refuse to pay for the trip

1http://taxi.connexxion.nl/
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if the taxi stops too many times or if the travel time exceeds the direct ride
time significantly.

Based on this problem description, we build two mathematical models
for the SARP and the FIP. Figure 2 describes the settings of the two prob-
lems. The figure illustrates the main difference between the two models: all
requests are flexible in the SARP, but in the FIP the routes are partially
fixed beforehand based on the passenger requests. The details are described
in the following two paragraphs.

INPUT OUTPUT

Passenger & 
parcel requests

Passenger & 
parcel requests

Ridesharing routes

Ridesharing routes 
after parcels insertion

People Parcel

SA
R

P
FI

P

Figure 2: An illustrative example of the SARP and the FIP

The SARP assumes that a parcel can be served by at most one taxi, with
the possibility of not been served at all. In the latter case, the “traditional”
parcel service using a dedicated freight network must be used. Either a
vacant or a busy taxi can be chosen for a passenger or parcel requests.

Our problem involves planning a fixed number of taxi routes capable of
accommodating all the people and as much freight (expressed as the number
of parcels) as possible, under a given set of constraints (related to pickup
and delivery times, capacity of a taxi, etc.). Note that people are different
from parcels in terms of their requirements: the pickup and delivery times
for people are more critical than those for freight; some combinations of
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parcels might not be allowed/possible; the length of a detour for picking up
parcels might not be acceptable; the costs/benefits from parcels and people
also differ; various priorities exist, etc. If the situation permits, a parcel can
be picked up or delivered during the passenger service. In that case, the
passenger waits inside the taxi during the parcel service. In general, several
parcels (and a single passenger) may reside in a taxi at the same time. By
contrast, two passengers cannot be served simultaneously by one taxi. We
assume that the taxi company tries to maximize its total profit obtained from
serving both people and parcel requests.

The FIP has the same settings as the SARP but with an additional as-
sumption: the assignments of passengers to taxis and sequences of their
services are given. For a taxi, a new parcel request can be picked up or
delivered during the passenger service. The passenger waits inside the taxi
during the parcel service time.

4. The Share-a-Ride Problem

This section presents the mathematical formulations for the SARP and
the FIP models. First of all, let us clarify some notions that will be used
throughout the rest of the paper. Each service request (a passenger or a
parcel) is associated with two spatial points where a taxi has to stop: its
origin, where a passenger or a parcel is picked up, and the destination. We
will use the word stop to refer to either the origin or destination of a passenger
or a parcel. Furthermore, we assign to each stop a unique index, even though
some of them may refer to the same point in space. Within this setting each
request is uniquely defined by its origin, and we will use a shortcut “request
i” to denote a passenger or a parcel picked up at stop i. Table 1 lists all the
relevant parameters and variables used.

4.1. The static Share-a-Ride Problem formulation

The demands of passengers and parcels are defined by a set of requests.
Let σ denote the number of requests to be served, which include m parcels
and n passengers. The SARP is defined on a complete undirected graph
G = (V,E) where V = V p∪V f ∪{0, 2σ+ 1}. Subsets V p and V f correspond
to passenger and parcel stops, respectively, while nodes 0 and 2σ+1 represent
the origin and destination depots. For easy referencing, we arrange all stops
in V in such a way that all origins precede all destinations, origins of passen-
gers precede origins of parcels, and destinations of passengers precede those
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Table 1: Parameters and variables for the SARP and the FIP models

n,m Number of passengers and parcels, respectively
K Set of taxis, K = {1, 2, . . . , |K|}
V p Set of passenger stops
V f Set of parcel (freight) stops
V p ∪ V f Set of all stops, V p ∪ V f = {1, 2, . . . , 2σ}, σ = m+ n
V = V p ∪ V f ∪ {0, 2σ + 1}, 0 and 2σ + 1 represent the origin and the destination

of a taxi (i.e., depots), respectively
V p,o Set of passenger origins V p,o = {1, 2, . . . , n}
V p,d Set of passenger destinations V p,d = {σ + 1, σ + 2, . . . , σ + n}
V f,o Set of parcel origins V f,o = {n+ 1, n+ 2, . . . , σ}
V f,d Set of parcel destinations V f,d = {σ + n+ 1, σ + n+ 2, . . . , 2σ}
qi Weight of request i
di Distance from the origin to the destination for the request i,

i.e., distance between stops i and i+ σ
[ei, li] Time window for request i
Qk Capacity of taxi k
Tk Maximum duration of parcel service for taxi k
hk Quantity of passengers served by taxi k
Hk Set of passengers served by taxi k, Hk = {1, 2, . . . hk}
C Set of pairs (i, j), which i and j define a pair of subsequently served requests
η Maximum number of requests between one passenger service
dij Distance between stops i and j
tij Travel time between stops i and j
∆dkij Extra travel distance for taxi k if parcel j is inserted between

passengers i and i+ 1
∆tkij Extra travel time for taxi k if parcel j is inserted between

passengers i and i+ 1: ∆tkij = ∆dkij/average speed

$i Maximum delivery time for request i
α Initial fare charged for delivering one passenger
β Initial fare charged for delivering one parcel
γ1 Fare charged for delivering one passenger per kilometer
γ2 Fare charged for delivering one parcel per kilometer
γ3 Average cost per kilometer (fuel, tolls, etc.) for delivering requests
γ4 Discount factor for exceeding the direct delivery time of passengers

Xk
ij Binary decision variables equal to 1 if taxi k goes directly from stop i to stop j

τki Time point when taxi k arrives at stop i
rki Time spent by request i in taxi k, rki = τki+σ − τki , i ∈ C
wki Load of taxi k after visiting stop i
Pi Index of request i in a service sequence of a taxi
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of parcels. Furthermore, the destination of each request can be obtained as
its origin offset by a fixed constant σ.

Let K be the set of vehicles, each vehicle k ∈ K has a capacity Qk and the
total duration of its route cannot exceed Tk. Each stop i is associated with a
load qi such that q0 = q2σ+1 = 0, qi = −qi+σ (i = 1, 2, . . . , σ). A time window
[ei, li] is also associated with node i ∈ V where ei and li represent the earliest
and latest time, respectively. With each edge (i, j) ∈ E are associated a
distance dij and a travel time tij.

For each arc (i, j) ∈ A and each vehicle k ∈ K, let Xk
ij = 1, if vehicle k

travels from node i directly to node j. For each node i ∈ V and each vehicle
k ∈ K, let τ ki be the time that vehicle k begins to serve node i, and wki be the
load of vehicle k after visiting node i. For each passenger i (i ∈ V p,o), let rki
be his/her ride time on vehicle k, the maximum ride time of i is denoted by
$i. The initial profit obtained from a passenger and a parcel are represented
by α and β, respectively; while the average profit per kilometer are denoted
by γ1 and γ2. Moreover, the cost per kilometer is γ3. The discount factor for
exceeding the direct delivery time of passengers is represented by γ4. Finally,
we use variables Pi ∈ {1, 2, . . . , 2(m+ n+ 1)} to define the serving sequence
of taxis, and the maximum number of requests that can be served between
one passenger is defined by η.

Given these notations, the formulation of the SARP is as follows:

max

[ ∑
i∈V p,o

∑
j∈V

∑
k∈K

(α + γ1di,i+σ)Xk
ij +

∑
i∈V f,o

∑
j∈V

∑
k∈K

(β + γ2di,i+σ)Xk
ij

−γ3
∑
i∈V

∑
j∈V

∑
k∈K

dijX
k
ij − γ4

∑
i∈V p,o

∑
k∈K

(rki /ti,i+σ − 1)

]
(1)

Subject to: ∑
j∈V

∑
k∈K

Xk
ij ≤ 1, ∀ i ∈ V p,o ∪ V f,o (2)∑

i∈V

Xk
0,i =

∑
i∈V

Xk
i,2σ+1 = 1, ∀ k ∈ K (3)∑

i∈V

Xk
i,0 =

∑
i∈V

Xk
2σ+1,i = 0, ∀ k ∈ K (4)∑

i∈V

Xk
ij =

∑
i∈V

Xk
i,j+σ, ∀ j ∈ V p,o ∪ V f,o, k ∈ K (5)∑

j∈V

Xk
ij =

∑
j∈V

Xk
ji, ∀ i ∈ V p ∪ V f , k ∈ K (6)
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τ kj ≥ (τ ki + tij)X
k
ij, ∀ i, j ∈ V, k ∈ K (7)

wkj ≥ (wki + qj)X
k
ij, ∀ i, j ∈ V, k ∈ K (8)

rki = τ kσ+i − τ ki , ∀ i ∈ V p,o ∪ V f,o, k ∈ K (9)

Tk ≥ τ k2σ+1 − τ k0 , ∀ k ∈ K (10)

ei ≤ τ ki ≤ li, ∀ i ∈ V, k ∈ K (11)

ti,σ+i ≤ rki ≤ $i, ∀ i ∈ V p,o, k ∈ K (12)

wki ≥ max{0, qi}, ∀ i ∈ V, k ∈ K (13)

wki ≤ min{Qk, Qk + qi}, ∀ i ∈ V, k ∈ K (14)

M(
∑
k∈K

Xk
ij − 1) + Pj − 1 ≤ Pi, ∀ i, j ∈ V p ∪ V f (15)

M(1−
∑
k∈K

Xk
ij) + Pj − 1 ≥ Pi, ∀ i, j ∈ V p ∪ V f (16)

Pj+σ − Pj − 1 ≤ η, ∀ j ∈ V p,o (17)

Xk
ij ∈ {0, 1}; τ ki , rki , wki ∈ R+; Pi ∈ [0, 2(m+ n)] (18)

The objective function (1) maximizes the total profit that equal to the
profit obtained from people and parcel delivery minus the costs. The costs
include four parts: (i) the first part related to the profit obtained from pas-
sengers; (ii) the second part related to the profit obtained from parcels; (iii)
the second part related to cost from the distance traveled; (iv) the last part
related to extra ride time of passengers compared to the direct delivery.

Every request can be served at most once by one taxi as defined in con-
straints (2) and (5). Constraints (3) and (4) fix the original and destina-
tion points of taxis. Every stop except the origin and the destination of
a taxi must have one preceding and one succeeding stop, which is defined
in constraints (6). Constraints (7) and (8) compute the travel times and
loads of taxis, respectively. Constraints (9) define the ride time of requests.
Constraints (10) limit the working hours of taxi drivers. The time window
constraints are defined in (11). Constraints (12) ensure that any passenger
request must be processed within a given time period, and the passenger
origin is visited before the destination. Taxi capacities are defined using con-
straints (13) and (14). Constraints (15)-(16) define that the service sequence
of the requests. Constraints (17) guarantee that a passenger service has a
higher priority: we can insert at most η requests between the pickup and
drop-off point of a passenger (η ∈ {0, 1, 2, ...}).

This formulation is not linear due to constraints (7) and (8). The con-
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stants Mk
ij and W k

i are introduced to linearise these constraints:

τ kj − τ ki ≥ tij +Mk
ij(X

k
ij − 1) ∀ i, j ∈ V p ∪ V f , k ∈ K (19)

wkj − wki ≥ qi +W k
i (Xk

ij − 1) ∀ i, j ∈ V p ∪ V f , k ∈ K (20)

The validity of these two constraints is ensured by settingMk
ij ≥ max{0, li+

tij − ej} and W k
i ≥ min{2Qk, 2Qk + qi}. For constraints (16) and (17), the

validity is ensured by setting M = 2(m+ n+ 1).
In this model, we considered the delivery of both people and parcels. Un-

like the DARP that usually assumes that the amount of cars is large enough
for serving all the requests (see, e.g., Cordeau and Laporte, 2003a), the
SARP allows rejections for both people and freight. If the people trans-
portation network cannot serve all freight requests (e.g., the capacity is not
large enough), some requests should be rejected and served by the freight
network. Thus, the SARP implies cooperation between people and freight
transportation networks. The traditional DARP model does not fulfil these
requirements, which motivated us to build this SARP model.

4.2. The Dynamic Share-a-Ride Problem

Instead of static scenarios, we can envision a more realistic dynamic case
in which passengers are accepted or declined at a time of their call (as usually
happens), and then inserting feasible parcels within their route. Parcels are
known beforehand and available for insertion dynamically. In particular,
it would be useful to find out by experimentation whether the static and
dynamic setting produce comparable results or indicate similar behavior. In
the dynamic experimental simulations, the following assumptions are made:

• The requests of passengers pop up randomly, the generated passenger
information includes the pickup and delivery locations with their time
windows. Once a passenger request pops up, a decision to accept this
request or decline should be made immediately. If more than one taxi
is available, the closest taxi will be chosen for passenger service.

• Total parcel demands are considered as given and fixed (include pickup
points, drop off points and time windows of parcels).

• For a given taxi, we only make schedule for the next 6 locations. There
is a trade-off between the solution quality and the CPU time. It is time
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consuming to get an optimal solution for all the given requests, due to
the complexity of solving the static case. Yet, even if we make a plan
for the whole day, the schedule will be destructed by the new-coming
passengers.

Overall, the procedure includes three basic elements: passengers pop up
one by one according to some sequence, a monitor to record the state (lo-
cations, arrive time, load) of taxis and the objective value, a neighborhood
search subroutine to optimize the current routes. The procedure is defined
as Algorithm 1.

Algorithm 1: The general procedure for the dynamic SARP simulation

Input: set F = {1, . . . ,m} of parcels, set of taxis K = {1, . . . , |K|},
Rk ← ∅ ({Rk}k=1,...,|K| is the route of taxi k)

1 Generate initial route for every taxi sequentially using the Greedy
Insertion Algorithm (see Algorithm 2)

2 for all passengers i do
3 Update the states of all taxis when i pops up, update F (if ∃k with

|Rk| = 0 before passenger i pops up, then insert unserved parcels
into k before update the state of taxi k)

4 Let E be the set of the available taxis for passenger delivery
5 if E 6= ∅ then
6 Select the closest taxi k′ ∈ E to i, let S be the set that includes

all the served requests, update route k′, Rk′ ← (Rk′ ∪ i) \ S,
F ← F \ S

7 Reinsert parcels and optimize the route Rk′ by neighborhood
search (see Section 4.2.1)

8

9 if F 6= ∅ then
10 Insert left parcels to the available taxis
11 else
12 Terminate

4.2.1. Neighborhood search subroutine

We use a neighborhood search to extend and optimize the route. Ev-
ery time, a randomly selected request is removed from the route, then the
new selected requests (choose based on a greedy insertion algorithm) will be

12



Algorithm 2: The Greedy Insertion Algorithm

Input: set of served requests R+
s of route s, set of all unserved

requests R−, f(sbest) = 0
1 s′ ← s
2 while |R+

s | < 6 do
3 for request i← R− do
4 Check all the positions to insert request i, record the best

objective f(s) and the solution s
5 If f(sbest) < f(s), f(sbest) = f(s), update sbest

6 s′ ← sbest, update R+
s and R−

Output: s′

inserted into the route. Once a request is moved out from the route, it is
forbidden to insert into the route in the next 5 iterations. Let s be the cur-
rent solution, s′ be the previous solution. f(s) stands for the objective value
of solution s. We accept the solution with probability min{1, e(f(s)−f(s′))/T},
where s is the current solution, s′ is the solution of the previous iteration,
and T ≥ 0 is the temperature. The temperature starts at T0 and decreases
every iteration using the expression T := T · c, where c = 0.99 is the cooling
rate. T0 is defined in such a way that the objective value of the first iteration
is accepted with probability 0.5. The simulated annealing framework is the
same as in Ropke and Pisinger (2006).

For initialization and optimization of a route, a greedy insertion heuristic
is created to find a feasible solution (see Algorithm 2). When calculating the
arrival time of a taxi, we did not take into account that a taxi may wait at a
stop in order to avoid extra waiting time during the following requests service
process. The departure time of depot equals to the lower time window of the
depot. Suppose the departure time of the request i is defined by τi, the time
that a taxi begins to serve the subsequent request j equals to min{ej, τi+tij}.

5. The static Freight Insertion Problem formulation

The SARP is an extension of the DARP, which is an NP-hard problem
(Baugh et al., 1998). The computational complexity of the SARP motivated
us to define a reduced problem – the FIP, that starts from a given route
for handling people requests and inserts parcel requests into this route. The
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SARP model can change to the FIP model by adding constraints (21) to
guarantee the predefined passenger sequences.

Pj − Pi ≥ 1, ∀ (i, j) ∈ C (21)

Furthermore, we reformulate the general FIP to a specified FIP, where
only one parcel is allowed for insertion between passenger services (between
the pickup and drop-off point of one passenger, or the drop-off of one passen-
ger and the pickup point of another passenger). The FIP with one insertion
can be solved reasonably fast for realistic instances.

The predefined passengers set V p = {1, . . . , n, σ+ 1, . . . , σ+n} is decom-
posed into H1, H2, . . . , Hk (Hk = {1, 2, . . . , hk, . . . h|K|}, ∀k ∈ K) according
to a fixed assignment of passengers to taxis and the sequences of their service.
We use Ho

k to denote the set of pickup stops of passengers. This conversion
reduces the total number of constraints and variables (e.g., variables Xk

ij).
Furthermore, the distance and travel time between the passenger i and (i+1)
in the predefined routing are denoted by dki,i+1 and tki,i+1, respectively. If a
taxi starts from the original point of the first passenger and ends at the
destination of the last passenger, constraints (3) and (4) can be dropped.
Moreover, if at most one parcel is allowed for insertion between passenger
services, constraints (15)-(17) can be replaced by (24). For each taxi k, with
each pair (i, j), where i is a passenger stop (i ∈ Hk \ {hk}) served by taxi k
and j ∈ V f , are associated extra distance ∆dkij and extra time ∆tkij induced
by visiting stop j between stops i and i+1, where ∆dkij = dij +dj,i+1−di,i+1.
Other parameters and variables are the same as for the SARP model (see Ta-
ble 1). Finally, the fixed profit from serving the passengers can be eliminated
from the objective function. Thus, the specified FIP can be formulated as
follows:

max

 ∑
i∈Hk\{hk}

∑
j∈V f

∑
k∈K

(β + γ2di,i+σ − γ3∆dkij)Xk
ij − γ4

∑
i∈Ho

k\{hk}

∑
k∈K

(rki /ti,i+1 − 1)

(22)

Subject to:

∑
k∈K

∑
i∈Hk

Xk
ij ≤ 1, ∀ j ∈ V f (23)
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∑
j∈V f

Xk
ij ≤ 1, ∀k ∈ K, i ∈ Hk \ {hk} (24)

∑
i∈Hk\{hk}

Xk
ij =

∑
i∈Hk\{hk}

Xk
i,j+m, ∀ k ∈ K, j ∈ V f,o (25)

∑
f<i

Xk
fj ≥

∑
f<i

Xk
f,j+m,

∀ k ∈ K, j ∈ V f,o, i ∈ Hk \ {hk} (26)

τ ki+1 − τ ki ≥ tki,i+1 +
∑
j∈V f

∆tkijX
k
ij, ∀k ∈ K, i ∈ Hk \ {hk} (27)

τj ≥ (τ ki + tkij)X
k
ij, ∀ k ∈ K, i ∈ Hk \ {hk}, j ∈ V f (28)

τ khk − τ
k
1 ≤ Tk, ∀ k ∈ K (29)

eki ≤ τ ki ≤ lki , ∀ k ∈ K, i ∈ Hk (30)

ej ≤ τj ≤ lj, ∀ j ∈ V f (31)

τ ki+1 − τ ki ≤ $i, ∀k ∈ K, i ∈ Ho
k \ {hk} (32)∑

f≤i

∑
j∈V f

Xk
fjqj ≤ Qk −

∑
f≤i

qf , ∀ k ∈ K, i ∈ Hk \ {hk} (33)

Xk
ij ∈ {0, 1}; τ ki , τj ∈ R+ (34)

The objective function (22) maximizes the profit from parcel delivery minus
the costs: the cost related to the extra distance for parcel delivery and extra
ride time for passengers. Every parcel can be served at most once by one taxi
as defined in constraints (23) and (25). At most one parcel can be inserted
between passenger services as shown in constraints (24). Constraints (26)
define that the parcel origin precedes its destination. Constraints (27) and
(28) compute the travel times of taxis when reach a passenger and a parcel,
respectively. Constraints (29) restrict the working hours of taxi drivers. The
time window constraints of a passenger are defined in (30). The time window
constraints of a parcel are defined in (31). Constraints (32) prevent the
delivery time for passenger service exceeding the upper bound. Taxi capacity
constraints are defined in (33).

This formulation is not linear due to constraints (28). The constants Mk
i

are introduced to linearise these constraints:

τj − τ ki ≥ tijX
k
ij +Mk

i (Xk
ij − 1) ∀ k ∈ K, i ∈ Hk \ {hk}, j ∈ V f (35)
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The validity of these constraints is ensured by setting Mk
i ≥ lki .

6. Experimental settings

In this section, experimental settings are described. In our study, real
passenger data and artificial parcel data are used. For passenger data, the
Cabspotting database (SF, 2008) was used, which contains coordinates and
time-stamps for a number of taxis operating in the San-Francisco area. The
data set contains information on 12,563 real taxi trips. The parcel data are
generated randomly as described in Section 6.1 and 6.2.

6.1. Instance design for the SARP model

We started the numerical experiments with small instances, however, it
turned out that these are already computationally demanding. That is why
our experiments with the SARP are limited to only 12 small scenarios.

Two basic factors affect the complexity of the SARP: the number of taxis
and the total amount of requests. The experiments reported here is to test
the influence of these two factors. Table 2 lists the parameters of our data
sets. The positions of passenger requests are based on the given taxi traces.
For each passenger, the lower time window equals to the arrival time, and
the setting of upper time window is 14:00h. The positions of parcel requests
are generated following a uniform distribution U([0, 17] × [0, 10])km. Each
parcel request is associated with a time window between a moment drawn
uniformly at random from the interval 9:00-12:00h (accurate to 1 minute) and
14:00h. Actual distances are replaced by the so-called Manhattan distances
(d(x, y) = |x1 − y1| + |x2 − y2|), and travel times are calculated as a ratio
between the distance traveled and the average speed of a taxi (computed
from the database). The parameters used in the model are given in Table 2.

6.2. Instance design for the FIP model

The instances design highlights three factors that affect the behavior of
parcel scheduling: the spatial distribution of parcel requests, the number
of passenger requests, and the number of parcel requests. The requests of
passengers are randomly chosen from the database containing 12,653 pas-
senger trips. The predefined route is totally dependent on the taxi drivers’
decisions. The requests of parcels are generated under five different spatial
distributions.
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Table 2: Parameters used for the SARP

Parameters Values Parameters Values

|K| {1, 2, 3} Q 5.00
m+ n (m = n) {4, 6, 8, 12} η 2.00

ei U(9:00h, 12:00h) α 3.50
li 14:00h β 2.33

$i (i ≤ n) 2ti,σ+i γ1 2.70
Tk 10h γ2 0.90

qi (i ≤ n) 3 γ3 0.80
qi (n < i ≤ σ) 1 γ4 3.50

We consider 5 different spatial distributions because of two major reasons.
First, the actual spatial distribution of requests depends on the users of
a taxi sharing system. For instance, the spatial distribution of individual
requests is usually scattered, while the traffic flow from logistic centers and
warehouses to homes, shops, factories, offices, hotels, etc. tend to have a
cluster-to-scatter pattern. Another case is that the parcels come from an
individual or a company which needs to be sent outside the city. As they
are usually transferred to some logistic center before dispatching, the traffic
flow is similar to the scatter-to-cluster or the cluster-to-cluster pattern. The
distribution of small parcels and mail delivery between individuals inside the
same city obeys a similar spatial distributions as that of passengers. Secondly,
we expect that the spatial distribution of requests has a significant impact
on the performance of a taxi sharing system. These observations lead to the
following spatial distributions:

SS (both origins and destinations are scattered): obey a two-dimensional
uniform distribution U([0, 17]× [0, 10])km.

SC (origins are scattered, destinations are clustered): origins obey a two-
dimensioned uniform distribution U([0, 17] × [0, 10])km. Destinations
are clustered around five points drawn uniformly at random from [0, 17]×
[0, 10]km). The members of each cluster are uniformly distributed
(∼ U([−0.55, 0.55]× [−0.45, 0.45])km) around one of these five points.

CS (origins are clustered, destinations are scattered): origins are gener-
ated in the same way as destinations in SC. Destinations obey a two-
dimensional uniform distribution U([0, 17]× [0, 10])km.
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CC (origins and destinations are clustered): both origins and destinations
are clustered in a similar way as origins in the CS or destinations in
the SC.

SF (the distribution of origins and destinations is similar to the real statis-
tics of San Francisco): 70% of stops lie within the city center ([0, 6]×
[0, 4] km), 30% – outside (within the rectangle of [0, 17]× [0, 10]km).

In total, 1400 instances have been tested (140 scenarios, each including
10 instances). Each scenario has a certain number of passengers and parcels,
and a certain spatial distribution (see Figure 3).

5 different parcel spatial distributions 
(SS, SC, CS, CC, SF) 

7 groups of parcels 
(20, 30, 40, 50, 60, 70, 80) 

4 groups of people with given 
service order (35, 45, 55, 65) 

10 groups of people data are randomly
chosen from 12,653 trips, and 10 

groups of parcels data are generated

140
scenarios

10 × 140 
instances

Figure 3: FIP instances design

We assume the capacity of a taxi equals to 5 units. Real passenger data
is used, at most one parcel insertion is allowed between passenger services.
Each parcel request is associated with a time window: the lower bound
is drawn uniformly at random from the interval 8:00-16:00h (accurate to
1 minute), the upper bound equals to 19:00 for passengers and parcels.
The fixed speed is used under most of the cases in the FIP, only when
we calculate the travel time between two successive passengers, the formula
min{distance/speed, recorded travel time} is used. The reason is that our
instances are based on real data recorded by taxi drivers, some outliers are
unavoidable. These outliers can affect the travel time calculation between
two successive passengers. Even if we use the average speed to approximate
the travel time, the feasible route recorded can became infeasible. The val-
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ues of other parameters (e.g., weight of requests, working hours of the taxi
drivers) are the same as in the previous section (see Table 2).

The instances used can be found at the http://smartlogisticslab.nl/ and
are stored in files with the following naming convention. The name of instance
files includes four parts (e.g., CS 55 60 1.txt): the first part (CS, CC, SC, SS
or SF) stands for the spatial distribution, the second part reflects the total
number of passengers, the third part refers to the total number of parcels,
and the fourth part represents the instance index.

7. Numerical results

Test instances are solved on an Intel Core 2 Duo E7500 2.93 GHz, CPU
4GB RAM computer. GUROBI 5.5.0 was used for the static SARP and FIP
model, and the dynamic SARP simulation was implemented in JAVA.

7.1. Results for the static SARP

Table 3 shows the results for the static SARP model. Each number in the
table is obtained by averaging over 10 instances, the corresponding models
run within a time limit of 2 hours. From the table, we see that by fixing the
number of taxis, the profit increases as the number of requests grows. More
computationally efficient algorithms are needed to solve the SARP model for
realistic instances.

Table 3: Results of the static SARP model

|K| m+ n LB UB Gap (%) CPU time (seconds)

1 4 16.41 16.41 0.00 0.07
1 8 45.48 45.48 0.00 1094.81
1 12 68.62 110.14 63.75 5846.93
2 4 17.38 17.38 0.0 0.27
2 8 48.63 48.63 0.00 571.72
2 12 84.30 114.21 32.83 6294.94
3 4 19.97 19.97 0.00 0.73
3 8 48.82 48.82 0.00 1129.24
3 12 85.81 117.55 34.55 6065.084

To compare the cost/benefit of the SARP services with the traditional
case when passengers and parcels are served separately, we run 30 instances
for the SARP and the traditional case. Two situations are tested: rejections
for requests are allowed or forbidden. Table 4 show the results of these ex-
periments, each number is averaged over 10 instances. The columns “profit”
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and “dis” refer to the profit and the total distance traveled in the SARP case,
respectively. The column “req” denotes the total number of served requests
in the SARP case. All the results are measured as a percentage deviation
from the case when parcels and passengers are served separately.

Summarizing, if rejections are allowed for requests, the profit obtained is
higher than in case of separate service. The other two indicators (distance
and served requests) fluctuate. However, if all the requests must be served,
one can see the profit is higher and the distance is shorter when passengers
share a ride with parcels.

Table 4: The SARP results obtained and measured as a percentage deviation
from the case when parcels and passengers are served separately

Allowed rejections Forbidden rejections
|K| m+ n profit dis req profit dis req

2 4 16.37 28.76 12.50 2.57 -0.98 0.00
2 6 31.55 -24.61 3.92 39.78 -21.36 0.00
2 8 6.52 -16.05 -7.14 5.79 -4.26 0.00

7.2. Results for the dynamic SARP routing
The experimental setting under the dynamic case is the same as for the

offline FIP part. Online routing requires making decisions in a dynamic
environment. Table 5 shows the results of the amount of served passengers,
parcels, profit obtained from the SC, the SF instances. Each value in the
table is obtained by summarizing all 40 instances (same parcels but with 35,
45, 55, 65 passengers) and measured as a percentage deviation from the CC
case. The columns “Pass” and “Pack” show the amount of served passengers
and parcels, respectively. Basically, the CC case offers the lowest number of
served passengers and profit across all instances. The SF, SS, SC, CS cases
offer similar results in terms of profit and the amount served passengers.
From the perspective of the amount of served parcels, the SF case performs
better than others (the SS, SC, CS, CC cases provide similar results).

7.3. Results for the FIP
Both the results and the performance evaluations of different scenarios

and settings for the FIP are proposed in this section.

7.3.1. Results for the FIP with one insertion

In this section, the results on the specific FIP with one insertion are
presented. We calculate three indicators: total profit, acceptance rate, and
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Table 5: Results of dynamic taxi trips and measured as a percentage devia-
tion from the CC

SC SF
m Profit Pass Pack Profit Pass Pack

20 23.19 20.57 158.33 15.73 10.42 308.33
30 52.37 57.24 -26.76 62.44 56.89 157.75
40 18.28 17.71 18.64 42.16 29.43 230.51
50 23.54 14.96 42.86 37.39 24.93 283.33
60 10.90 30.62 -72.35 7.34 17.13 1.18
70 21.78 28.06 -47.92 30.77 36.45 77.08
80 36.65 25.07 29.79 10.26 5.85 112.77

average delivery time. Only part of the results for the SS and the CC cases are
presented, because the performance of the SS, SC, and CS cases are similar
to each other. Most results are based on the proved optimal solutions, only in
few cases the solver reached the time limit of 1000 seconds and interrupted
with a duality gap of at most 1%. Each point in the figures is averaged
over 10 instances. Furthermore, we present the results on the SF spatial
distribution separately.

Overall, the scenarios of the SS, CS, SC are much more robust as com-
pared to the CC case from the perspective of the profit. If the quantity of
requests is large, the profit is, normally, higher than that with less requests.
Comparing the four spatial distribution categories, the performance of the
CC case is the lowest. The reason is that this spatial distribution is sensitive
to the actual mutual position of clusters and passenger stops (see Figure 4
for an example of “inconvenient” clusters).

Figure 5 shows the acceptance rate for the freight insertion. From the
graph, we see that if the quantity of the passengers is small, the acceptance
rate decreases to roughly 0.2. If the quantity of passengers is fixed, the
acceptance rate becomes smaller along with an increase in the quantity of
parcels. In addition, if the quantity of parcels is fixed, additional passengers
improve the acceptance rate for the freight insertion services.

Figure 6 describes the average extra delivery time for the freight inser-
tion (for a given parcel, extra delivery time equals to the time after parcel
insertion minus the original time for passenger service, if the taxi is empty,
the extra delivery time equals to 0). The figure shows that the total amount
of passengers or parcels has a small influence on the extra travel time for
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Figure 4: One taxi trail of the CC case, (◦) represent the parcel stops, (+)
represent the passenger stops, dotted line represent the original trail, solid
line represent the trail with parcels insertion
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Figure 5: FIP - Acceptance rate for 35 (×), 45 (4), 55 (2), 65 (3) passengers

0

2

4

6

8

10

20 40 60 80

T
im

e 
(m

in
)

Total number of parcels

(a) SS

0

2

4

6

8

10

20 40 60 80

T
im

e 
(m

in
)

Total number of parcels

(b) CC

Figure 6: FIP - Average extra delivery time for 35 (×), 45 (4), 55 (2), 65
(3) passengers
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the parcel service. Table 6 provides some statistics data of the extra time
for passenger trips after parcels insertion based on the output of the FIP
model. On average, extra time for parcel service is around 3.44 minutes;
compared to the original passenger trip time, the time used for parcel seems
to be acceptable.

We observed that the performance in the SF case is better than for other
spatial distributions tested. This can be explained by the fact that the ma-
jority of requests are close to each other, leading to small extra distances.
Given the same quantity of requests, the profit of the SF is about two times
higher than in other four cases (the SC, SS, SC, CS, CC). The acceptance
rate of the SF can reach 90%, especially if the number of passengers is high
enough. The average extra time for passenger delivery is 1.88 minutes. The
results are promising for an actual implementation.

Table 6: Extra delivery time (minutes) for passenger services (the data is
based on the parcel insertions performed by the model)

Min Max Mean Std. Dev.

SS 0.00 48.16 3.70 6.04
SC 0.00 57.09 3.80 6.29
CS 0.00 40.98 3.95 6.31
CC 0.00 59.76 3.88 7.06
SF 0.00 47.64 1.88 3.98

TR 1.00 650.00 13.63 21.56

“TR” stands for the travel time of the taxi trips with passengers inside (based on 143,063
trips)
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Figure 7: Results for FIP - SF scenarios for 35 (×), 45 (4), 55 (2), 65 (3)
passengers

One can see that the performance of the CC case is the worst. This can be
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explained by the fact that the performance of the CC scenario highly depends
on the mutual positions of the clusters and passenger stops. Other three cases
(the SS, CS, SC) are much more robust as compared to the CC case. Another
conclusion that can be made from our experiments is that there is a certain
trade-off between the acceptance rate and the profit. From the viewpoint of a
taxi company, the more parcels the more profit can be obtained for delivering
them because there are more possibilities for choosing parcels that can be
served with low additional costs. Clearly, the acceptance rate can be very
low if the parcel number exceeds the maximum amount of parcels that can
be served (e.g., trips with 90 passengers can be combined with at most 45
parcels). Thus, the taxi sharing service cannot be used on its own for parcel
delivery and must be accompanied by a conventional freight service, i.e., the
taxi company may have to outsource a certain amount of parcels to other
logistic companies. On the other hand, for a logistic company it makes sense
to outsource some parcels to a taxi company in two major cases. Firstly, a
logistic company may not have enough capacity to serve its requests and will
have to outsource some. Secondly, the destinations of some requests may lie
in areas where various restrictions apply. It may be beneficial to outsource
such “undesirable” requests to taxis which are less restricted (e.g. in the city
center).

The degree of satisfaction on the provided service is likely to depend on
a combination of the acceptance rate and the delivery time. In order to pro-
vide a suitable service for the clients, policies based on different factors (e.g.,
profit, acceptance rate, delivery time) need to be developed. The policies can
be defined according to different criteria. For instance, from the perspective
of passengers the policy can be based on the thresholds of extra delivery
time: if the extra delivery time is longer than a given threshold, the parcel is
declined. From the perspective of taxi drivers, the threshold for a discount
should also be determined: the discount should adjust enough to ensure the
satisfaction of passengers and keep the profitability at the same time. An-
other suggestion is that it would be wise to analyze the spatial characteristics
of both people and parcel requests before implementing the freight insertion
services.

7.3.2. Sensitivity analysis of the FIP with one insertion

To assess the impact of the price parameters (β, γ2, γ3, γ4), we run the
FIP of one insertion using different price parameter settings. In Table 7 a
group of reference values are predefined. We vary the parameters within a
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range −50%, . . . ,+100% of their reference values.
The SF spatial distribution, 35 passengers together with 20, 40, 60 parcels

are used for testing. The general effect of the changes are similar in all
scenarios, we only present the results of one scenario here (with 35 passengers
and 40 parcels). Figure 8 shows the changes in various indicators due to the
variation of parameters. Each point in the figure is obtained by averaging
over 10 instances, and measured as a percentage deviation from the reference
values of indicators (see Table 7).

Table 7: Reference values for parameters and indicators

Parameters Values

Initial fare (β) 3.50
Parcel fare per kilometer (γ2) 0.90

Cost per kilometer (γ3) 0.80
Discount per extra minute (γ4) 3.50

Indicators Values

Profit 341.16
Acceptance rate 0.44

Average extra delivery time 2.15

One can see from Figures 8a and 8b that β and γ2 have a positive effect
on the profit and the acceptance rate. It indicates that if the parcels become
more profitable, the taxi drivers prefer delivering parcels to obtain more
profit. However, the extra time traveled may also increase together with an
increase in the acceptance rate.

We observe from Figure 8c that γ3 has a negative effect on the profit and
the acceptance rate. The profit mainly depends on γ3 compared to other
parameters. Figure 8d shows the effect of discount to the indicators. The
value of the acceptance rate slightly decreases. It indicates that when the dis-
count increases, the passengers become relatively more expensive. The taxi
drivers prefer to deliver passengers and the discount parameter can decrease
the unhappiness of passengers under these settings.

Finally, the profit depends mainly on the value of γ3. The acceptance
rate is more sensitive to the changes of γ2 and γ3 compared to other two pa-
rameters. Another observation is that the extra time traveled fluctuates (see
Figure 8c). The explanation is that the extra delivery time equals to arrival
time of drop off point minus the time at the pickup point of a passenger. If
a parcel is inserted into an empty taxi, the extra delivery time equals to 0.
Suppose the case that one parcel pickup/drop off point is close, and drop
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off/pickup point is distant, this parcel is worth to serve though it may insert
the distant point between a passenger service. Tn this situation the extra
travel time increases. Furthermore, the profit depends on a combination of
the acceptance rate, travel distance, extra travel time, etc. The changes of
any of these factors can cause the fluctuation of profit.
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Figure 8: Sensitivity analysis of parameters according to different indicators:
profit (3), acceptance rate (2), extra time (4)
Horizontal Axis: deviation in parameters from the reference value, %
Vertical Axis: deviation in indicators form the reference value, %
In (c): the right vertical axis is used for 3, the left vertical axis is for 2 and 4

7.3.3. Effect of relaxing the insertion constraints of the FIP

If the FIP model allows more than one insertion between passenger ser-
vice, the CPU times increase sharply. We test 4 scenarios, every scenario
includes 5 instances with 4 passengers, 4 parcels and 1 taxi. The pickup and
drop off points of parcels are divided into 2 groups and obey the SS, SC, CS,
and CC distributions separately for these 4 scenarios. The “S” means the
points are scattered within a distance of 27 km, the “C” stands for clustered,
which means the distance of any 2 clustered points is within 0.20 km.

The maximum number of insertions allowed varies from 1 to 3. For the 3-
insertion FIP: SS, SC, CS and CC, we get 0.34, 0.00, 0.35, 0.00, respectively.
Every result is obtained by averaging the objective values over 5 instances and
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measured as a percentage deviation from the 1-insertion FIP. The results of
2-insertion are the same as for 3-insertion. According to the test, the increase
in the maximum number of insertions has limited influence on the objective
value. However, due to the small scale of the instances, one can not draw
the conclusion that relaxing the insertion constraints has limited effect, large
instances and a more efficient algorithm are needed for future research.

8. Conclusion

In this paper, we considered two models and developed two corresponding
MILP formulations for people-freight taxi sharing: the SARP and the FIP.
The SARP, that can be viewed as an extension of the well-known DARP,
is the most general model as it optimizes over both passenger and freight
routes. However, due to the high computational complexity of the problem,
the SARP can be solved to optimality only in case of tiny instances. This
motivated us to consider a restricted version of the taxi sharing problem, the
FIP, that assumes fixed assignment of passengers to taxis and sequence of
their service. This problem appears to be much easier from a computational
point of view, and enabled us to perform an extensive numerical study of
the exact solutions. Furthermore, we also addressed the SARP in a dynamic
environment. Overall, the performance of dynamic experiments shows similar
behavior to the static case. Thus, one can consider the static framework for
implementing a taxi sharing service.

The numerical results show that there exists a trade-off between the profit
of a taxi company and the acceptance rate of parcels. In addition, the results
suggest that it is desirable to analyze the spatial characteristics of requests
before implementing a taxi sharing service, because the spatial distribution of
requests can dramatically affect the performance of the taxi sharing system.
Finally, we have shown that the performance of the system is the highest
in case the spatial distribution of requests resembles a pattern inherent to
cities. This makes taxi-sharing quite promising for urban areas. In general,
our numerical study confirms appropriateness of the taxi-sharing systems but
suggests that a traditional freight service must also be available to ensure that
all requests are served.

The proposed models are basic yet essential for the future research. As
the considered models focus only on profitability, an immediate direction for
future research is to introduce also environmental issues. Furthermore, we
see the following broad areas for future research: (i) development of effi-
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cient solution algorithms (exact or heuristic) for the SARP; (ii) extending
the model (introducing multiple objectives related to profit, environmental
impact, etc.) and making it more flexible/realistic (e.g., consider the uncer-
tainty in travel times, traffic jams, etc.); (iii) improving the dynamic (online)
SARP framework by adding a waiting strategy (e.g., postpone the decision
at some specific area or specific time periods). Finally, the results of the
provided models can be used as a benchmark to measure the performance of
different online optimization strategies.
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Trentini, A., Malhéné, N., 2010. Toward a shared urban transport system
ensuring passengers & goods cohabitation. TeMA - Trimestrale del Labo-
ratorio Territorio Mobility Ambiente 3(2), 37–44.

Van Binsbergen, A., Visser, J., 1999. New urban goods distribution systems,
in: Urban Transport Systems, International Conference, Lund, Sweden.
pp. 241–250.

29

http://cabspotting.org/

	Introduction
	Literature review
	Problem description
	The Share-a-Ride Problem
	The static Share-a-Ride Problem formulation
	The Dynamic Share-a-Ride Problem
	Neighborhood search subroutine


	The static Freight Insertion Problem formulation
	Experimental settings
	Instance design for the SARP model
	Instance design for the FIP model

	Numerical results
	Results for the static SARP
	Results for the dynamic SARP routing
	Results for the FIP
	Results for the FIP with one insertion
	Sensitivity analysis of the FIP with one insertion
	Effect of relaxing the insertion constraints of the FIP


	Conclusion

