
ISR 2017 Advanced Course

Proving Program Termination via Term Rewriting

Carsten Fuhs

http://www.dcs.bbk.ac.uk/~carsten/

—Abstract—

1 Topic

Termination is the property of a program that regardless of the input, execution of the
program will always come to a halt eventually. Although this property is undecidable,
since the early 2000s fully automated techniques and tools for termination analysis have
flourished, as witnessed also by the annual International Termination Competition [7]. In
particular, automated termination analysis has been a very active topic of research for term
rewriting. At the same time, term rewriting allows for a convenient representation of user-
defined data structures via terms. This makes term rewriting an attractive target language
for termination proving of programs via translations from dedicated programming language
front-ends [3, 4, 5].

The goal of the course is to present both the general approach used for such transla-
tions and to look into concrete realizations for specific programming languages. As exam-
ples, in the course we shall discuss the lazy functional programming language Haskell [3]
and the object-oriented imperative language Java [5]. In both cases, the program is ex-
ecuted symbolically from its entry point with suitable generalization steps to obtain an
over-approximation of all possible computations. A common theme for the symbolic state
representations (the “abstract domains”) for the different programming languages is to cap-
ture aspects of the program states that lend themselves to a representation as terms. From
this program analysis, we extract a term rewrite system such that a termination proof for
this term rewrite system would imply termination of the original program. This approach
enables a re-use of termination provers for term rewriting also for widely used programming
languages, thus applying term rewriting as an intermediate language for proving program
termination.

As far as time permits, we will also briefly discuss instantiations of this approach for
the programming languages Prolog [4] and C [6] as well as extensions of standard term
rewriting by built-in integer arithmetic [1, 2].

The course is complemented by hands-on exercises that allow the students to perform
such translations both with pen and paper and with the help of the automatic termination
analysis tool AProVE [2].

1

http://www.dcs.bbk.ac.uk/~carsten/


2 Learning Goals

• To construct an over-approximation of all program executions for Haskell and Java
programs that is geared towards termination proving via term rewriting.

• To extract term rewrite systems from this over-approximation so that termination of
the term rewrite system implies termination of the original program.

• To obtain an intuition for the choice of abstract domain for a given programming
language for such over-approximations.

3 Prerequisites

Familiarity with the basics of term rewriting. Some familiarity with functional and object-
oriented programming.

References

[1] Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and Stephan Falke.
Proving termination of integer term rewriting. In Proc. 20th International Conference
on Rewriting Techniques and Applications (RTA ’09), volume 5595 of Lecture Notes in
Computer Science, pages 32–47, 2009.

[2] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian
Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-
Kamp, Thomas Ströder, Stephanie Swiderski, and René Thiemann. Analyzing program
termination and complexity automatically with AProVE. Journal of Automated Rea-
soning, 58(1):3–31, 2017. AProVE is available for download and via a web interface at
http://aprove.informatik.rwth-aachen.de/.

[3] Jürgen Giesl, Matthias Raffelsieper, Peter Schneider-Kamp, Stephan Swiderski, and
René Thiemann. Automated termination proofs for Haskell by term rewriting. ACM
Transactions on Programming Languages and Systems, 33(2):7:1–7:39, 2011.

[4] Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes, and Carsten
Fuhs. Symbolic evaluation graphs and term rewriting – A general methodology for
analyzing logic programs. In Proc. 14th International Symposium on Principles and
Practice of Declarative Programming (PPDP ’12), pages 1–12, 2012.

[5] Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl. Automated
termination analysis of Java Bytecode by term rewriting. In Proc. 21st International
Conference on Rewriting Techniques and Applications (RTA ’10), volume 6 of Leibniz
International Proceedings in Informatics, pages 259–276, 2010.

[6] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten Fuhs, Jera
Hensel, Peter Schneider-Kamp, and Cornelius Aschermann. Automatically proving ter-
mination and memory safety for programs with pointer arithmetic. Journal of Auto-
mated Reasoning, 58(1):33–65, 2017.

[7] Termination Competition. http://termination-portal.org/wiki/Termination_

Competition.

2

http://aprove.informatik.rwth-aachen.de/
http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition

	Topic
	Learning Goals
	Prerequisites

