
Operational semantics for Petri Net components

Jan Friso Groote and Marc Voorhoeve
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, the Netherlands
J.F.Groote@tue.nl M.Voorhoeve@tue.nl

Abstract

We develop a theory for net components with labeled interface places and transitions. Nets are
shown to be isomorphic to algebraic terms, with marked places and transitions as atoms and
arc addition, fusion and relabeling as operators. Net terms with the step firing rule are given a
Plotkin-style SOS semantics, yielding compositionality of the operators. Some rules for reducing
nets modulo strong and branching bisimilarity are given.

1 Introduction

In engineering, all kinds of models are created related to the artifacts to be built. In Software En-
gineering, a marked division exists between graphical (e.g. UML) and character-based (algebraic)
approaches. Graphical models are used mostly in the initial requirements phases of a project and have
gained wide acceptance, despite their often shaky semantics. Theorists are busy plugging holes, like
in [14], but this seems a slow process which necessarily restricts the use of the modeling approach.
Algebraic models are often used in the later design phases. Due to their formal semantics, they allow
various kinds of manipulations and consistency checks, although they are harder to understand and
discuss with end users.

It is claimed that Petri net based modeling languages, like Design/CPN [10] and ExSpect [8] combine
an intuitive, graphical approach with mathematical rigor. This allows the use of the same modeling
paradigm throughout the artifact’s construction. However, the hierarchy concept supported by these
languages presents some semantic problems. It is certainly possible to define the semantics of a
marked net, e.g. by indicating enabled transitions and successor states, but this definition neglects the
fact that nets modeling systems are “open” to interactions by an environment.

The approach usually taken is to “close” such nets by embedding it into some standard environment
(context) that can exhibit any allowed interaction. However, one cannot be sure whether the behavior
of the embedded net is indicative for its behavior in another context. Suppose two closed nets behave
the same in their standard context. It must be proved that they then behave the same in any context.

This has been done in [16], featuring a definition for open nets and several operators to combine open
subnets. The semantics of such an open net is defined by embedding it in a “universal context”. It is
proved that open nets with the same semantics behave the same w.r.t. the operators defined.

In this paper we take their approach a step further. We give a structured operational semantics for open
nets as algebraic terms, without any context. As in [16], we have unconnected places and transitions
as atoms, the merge as binary operator and several unary operators: consumption/production (arc
addition), node relabeling (hiding) and place/transition fusion (melding). A difference between our
approach and [16] is the labeling of nodes; all nodes that are not labeled with the “internal” labelι are
external nodes that can be interfaced with. Different external nodes can have the same label, causing
nondeterminism. This complicates the definition of the unary operators, but in return operators are
unconditional: any operator applied to any net yields some result net.

1

By labeling both places and transitions, our semantics respects the dual (place vs. transition) nature
of Petri nets. By adopting a temporal language like HML [9], it is possible to express and verify
properties of open nets that are both state and event based, like“if a request has arrived which has
not been answered yet, place p is marked”and “if place p is marked, an answer will be issued”.
Net-based modeling does benefit from the ability to reason about both states and events [12].

Our paper is structured as follows. After a preliminary section, we define labeled nets, net operators
and terms. We then give a semantics for nets and show the equivalence of this semantics for net terms
with another semantics defined by SOS rules [15]. In a next section, we explore the equivalence no-
tions between nets that follow from our semantics and show some simple rules for reducing nets while
staying within the same equivalence class. We terminate with a brief discussion and a comparison with
related approaches.

2 Preliminaries

2.1 Relations and tuples

A relation between setsA and B is a subset ofA × B. Special subsets of the powersetP(A × B)
are the sets of functions (A → B). If f is a function we writey = f (x) iff x R y. If f is a
function andX a set, thenf � X = {(x, f (x)) | x ∈ dom(f) ∩ X}. The composition; of two
relations is defined byx (R ; S) z ⇔ ∃y : x R y∧ y S z. The compositionf ◦ g of two functions
f, g is the function defined byg ; f , so (f ◦ g)(x) = f (g(x)). The k-iteration of a relationR is
defined byR1 = R, Rk+1 = Rk ; R and R+ = ⋃

k>0 Rk. The inverse of a relationR is defined by
x R−1 y ⇔ y R x. The identity functions are defined byid(A) = {(a,a) | a ∈ A}.

2.2 Bags

Let A be a set. The setB (A) of finite A-bags is the set of termsn1[a1]+. . .+nk[ak] with theai ∈ A and
ni in N

+ . We denote the empty bag by [] and write [a] = 1[a], [ab] = [a] + [b], [aa] = [a2] = 2[a]
and so on. We define addition and multiplication by integersn ∈ N in the obvious way. We setα ≤ β

iff ∃γ : α + γ = β, β ≥ α iff α ≤ β andβ − γ = α iff α + γ = β. If α, β are bags, then their
quotientα ÷ β is defined as the largestn ∈ N such thatnβ ≤ α. Application of a bag to an element
is defined by [](a) = 0, a = 1, [b](a) = 0 for b 6= a and(α + β)(a) = α(a)+ β(a).

Definition 2.1. A relation R ⊆ B (A) × B (B) is calledadditively closediff [] R [] and ∀x, y, z, w :
x R y∧ z Rw ⇒ (x + z) R (y + w). Theadditive closureof a relationR ⊆ B (A) × B (B) is the
smallest additively closedS such thatR ⊆ S. If R ⊆ A × B (B), then R̃ ⊆ B (A) × B (B) is the
additive closure of{([a], β) | a Rβ}. If R ⊆ A × B, thenR̄ ⊆ B (A) × B (B) is the additive closure
of {([a], [b]) | a R b}.
If f ∈ A → B is a function, thenf̄ is a function too, satisfyinḡf (6i [xi]) = 6i [f (xi)].

2.3 Transition systems

We presuppose a setE of events and a specialsilenteventτ ∈ E . A transition systemis a pair(S,−→),
whereS is set of states and−→ ∈ P(S× E × S) a ternary transition relation. We writex

e−→ x′ iff
(x,e, x′) ∈ −→. The interpretation ofx

e−→ x′ is that the system can move from statex to statex′

2

f
px u

v

z y

t

Figure 1: Example MLN

by evente. The setR(X) of statesreachablefrom X is defined as the smallest set containingX such
that for anye ∈ E; Y ∈ R(X); Y′ ∈ Swith Y

e−→ Y′ we haveY′ ∈ R(X).
We now define an equivalence relation between states of a transition system. Bisimilarity abstracts
from states; branching bisimilarity also abstracts from silent events.

Definition 2.2. Let (S,−→) be a transition system. A relationR ∈ P(S× S) is called asimulation
iff for all x, y, x′ ∈ S; e ∈ E we have

x R y∧ x
e−→ x′ ⇒ (∃y′ ∈ S : y

e−→ y′ ∧ x′ R y′).

A simulationR is abisimulationiff R−1 is a simulation too. The statesX,Y ∈ Sare calledbisimilar
(notationX ∼ Y) iff there exists a bisimulationR such thatX R Y.

The definition of branching bisimilarity requires an auxiliary notion [3]. We defineX
(e)−→ X′ iff

X
e−→ X′ ∨ (e = τ ∧ X = X′). Also X H⇒ X′ iff X(

(τ)−→)+X′.

Definition 2.3. Let S,−→ be a transition system. A relationR ∈ P(S× S) is called anη-simulation
iff for all x, y, x′ ∈ SX; e ∈ E we have

x R y∧ x
e−→ x′ ⇒ ∃y′′, y′ : y H⇒ y′′ (e)−→ y′ ∧ x R y′′ ∧ x′ R y′.

An η-simulation R is called abranching bisimulationiff R−1 is an η-simulation too. The states
X,Y ∈ S are calledbranching bisimilar(notationX ∼b Y) iff there exists a branching bisimulation
R such thatX R Y.

Bisimulation is also calledstrongbisimulation. A strong bisimulation is also a branching bisimulation.
The bisimilarity notions are equivalence relations on states.

3 Labeled nets

In labeled nets, nodes (both places and transitions) are labeled. A special labelι indicatesinternal
nodes. The nodes with a different label are external, and constitute the net’sinterface. We assume a
countably infinite universeN of node labels withι ∈ N and setN e = N \ {ι}. We define nets as
tuples, i.e. functions with as domain a finite set. IfT is a tuple andL ∈ dom(T), we writeLT instead
of T(L). We omit the subscriptT if there is no confusion possible.

Definition 3.1. A marked labeled net(MLN) is a tuple with domain{P, T, F, I ,O, L ,M}, satis-
fying the following constraints. IfX is an MLN, thenPX, TX are disjoint finite sets (the places and
transitions respectively),FX ∈ B ((TX ×PX)∪(PX ×TX)) is the flow function,I X,OX ∈ TX → B (PX)

satisfyOX(t)(p) = FX(t, p) andI X(t)(p) = FX(p, t) for all t ∈ TX, p ∈ PX, L X ∈ (PX ∪TX) → N

is a labeling function andMX ∈ B (PX) is the initial marking.

3

b
a c

a
b b

d
e e

a

d

C

c

f

c

f

d
e

f

A

B

d
b

e
F

c

f

a

d
h

c

f

D

E

Figure 2: Examples of MLN operators

We draw MLNs as bipartite directed graphs like in Figure 1. There, an MLN is depicted with places
x, y, z and transitionst,u, v. The nodest, x have labels in boldface,ι labels are omitted.
So P = {x, y, z}, T = {t,u, v}, L = {(t, f), (x, p)} ∪ ({u, v, y, z} × {ι}), M = [r 2] and
F = {[(t, x)(u, y)(v, x)(v, x)(x,u)(y, v)(z, t)(z, v)]}.
The elements ofP ∪ T are thenodesof an MLN. The placep ∈ P is said to containM(p) tokens.
Usually I (t),O(t) are written as•t and t• respectively. SinceF can be constructed fromI ,O and
vice versa, we introduce the functionscf, cio to construct MLNs. We haveX = cf(P, T, F, L ,M)
iff PX = P, TX = T, FX = F, L X = L and MX = M and X = cio(P, T, I ,O, L ,M) iff PX =
P, TX = T, I X = I ,OX = O, L X = L and MX = M. An MLN is calledneat iff no two places or
transitions have the same label. It is calledP-concreteresp. T -concreteiff no places or transitions
areι-labeled. AP- andT-concrete neat MLN is calledcontrollable.

We define isomorphy for MLNs. This is an equivalence relation; we tacitly assume that isomorphic
MLNs are the same.

Definition 3.2. An isomorphismbetween the MLNsX andY is an injective functionf such that
{ f (p) | p∈PX} = PY, { f (t) | t∈TX} = TY, LY ◦ f = L X, f̄ (MX) = MY and∀a,b : a FX b ⇔
f (a) FY f (b). The MLNsX andY areisomorphiciff there exists an isomorphism between them.

3.1 Net operators

In this subsection, we treat operators for combining labeled nets. The binary merge operator (‖)
juxtaposes two MLNs with disjoint nodes (disjointness being achieved by applying an isomorphism
if necessary). The other operators are unary: consumption (γa,b adding an arc from ab-labeled place
to ana-labeled transition), production (πa,b, adding an arc from ana-labeled transition to ab-labeled
place), transition fusion (φa,b,c, fusing ana andb-labeled transition into ac-labeled one), place fusion
(ϕa, fusing all places with the labela) and renaming (ρ f , applying a relabeling functionf to the
nodes). A special case of renaming is hiding (τA = ρg, with g = id(N \ A) ∪ (A × {ι}), labeling all
nodes with labels inA to ι). To these operators we add the atomic MLNsPa,n, consisting of one place
with labela andn initial tokens andTb, being a transition with labelb.

We may omit brackets when the operator order is clear. An illustration of the operator’s intentions is
given in Figure 2. In the figure all nets are controllable; we identify nodes with labels. We haveC =

4

Tγ = {t ∈ T | L(t) 6= a} ∪ {(t, p) ∈ T × P | L(t) = a ∧ L(p) = b},
Iγ (t) = I (t) if t ∈ T ∩ Tγ , Iγ (t, p) = I (t)+ [p] if t ∈ Tγ \ T,
Oγ (t) = O(t) if t ∈ T ∩ Tγ , Oγ (t, p) = O(t) if t ∈ Tγ \ T,
Lγ (x) = L(x) if x ∈ P ∪ (T ∩ Tγ) , Lγ (t, p) = L(t) if t ∈ Tγ \ T.

Tπ = {t ∈ T | L(t) 6= a} ∪ {(t, p) ∈ T × P | L(t) = a ∧ L(p) = b},
Iπ (t) = I (t) if t ∈ T ∩ Tπ , Iπ(t, p) = I (t) if t ∈ Tπ \ T,
Oπ (t) = O(t) if t ∈ T ∩ Tπ , Oπ(t, p) = O(t)+ [p] if t ∈ Tπ \ T,
Lπ (x) = L(x) if x ∈ P ∪ (T ∩ Tπ) , Lπ(t, p) = L(t) if t ∈ Tπ \ T.

Tφ = {t ∈ T | L(t) 6∈ {a,b}} ∪ {(t,u) ∈ T × T | L(t) = a ∧ L(u) = b},
Iφ(t) = I (t) if t ∈ T ∩ Tφ , Iφ(t,u) = I (t)+ I (u) if t ∈ Tφ \ T,
Oφ(t) = O(t) if t ∈ T ∩ Tφ , Oφ(t,u) = O(t)+ O(u) if t ∈ Tφ \ T,
Lφ(x) = L(x) if x ∈ P ∪ (T ∩ Tφ) , Lφ(t,u) = c if t ∈ Tφ \ T.

Pϕ = {p ∈ P | L(p) 6= a} ∪ {{p ∈ P | L(p) = a}},
Fϕ(t, p) = F(t, p) if p ∈ P ∩ Pϕ , Fϕ(t,Q) = 6p∈QF(t, p) if Q ∈ Pϕ \ P,
Fϕ(p, t) = F(p, t) if p ∈ P ∩ Pϕ , Fϕ(Q, t) = 6p∈QF(p, t) if Q ∈ Pϕ \ P,
Lϕ(x) = L(x) if x ∈ (P ∩ Pϕ) ∪ T , Lϕ(Q) = a if Q ∈ Pϕ \ P,
Mϕ(p) = M(p) if p ∈ P ∩ Pϕ , Mϕ(Q) = 6p∈QM(p) if Q ∈ Pϕ \ P

Table 1: Net operator elaborations

A‖ B (merge),D = φb,e,h(C) (transition fusion),E = γe,a(C) (consumption) andF = ϕd(ρ f (C))
(renaming, then place fusion), wheref = id(N e \ {a}) ∪ {(a,d)}.
The actual definition of the operators is somewhat intricate, due to the fact that in “messy” (non-
neat) MLNs several choices may exist for transition fusion or arc addition. This problem is solved by
copying transitions that face a nondeterministic choice.

Definition 3.3. Let X andY be MLNs such that the setsPX ∪ TX, PY ∪ TY, (PX ∪ TX)× (PX ∪ TX)

andP(PX ∪ TX) are mutually disjoint. Leta,b, c ∈ N e,n ∈ N, f ∈ N e → N ; A ∈ P(N e) such that
a,b, c differ.

Then the net operators are defined by
place Pa,n = cf({a},∅,∅, id({a}),n[a])
transition Tb = cf(∅, {b},∅, id({b}), [])
consumption γa,b(X) = cio(PX, Tγ , Iγ ,Oγ , Lγ ,M)
production πa,b(X) = cio(PX, Tπ, Iπ ,Oπ, Lπ ,M)
transition fusion φa,b,c(X) = cio(PX, Tφ, Iφ,Oφ, Lφ,M)
place fusion ϕa(X) = cf(Pϕ, TX, Fϕ, Lϕ,Mϕ)

relabeling ρ f (X) = cf(PX, TX, FX, (f ∪ {(ι, ι)}) ◦ L X,MX)

merge X ‖ Y = cf(PX ∪ PY, TX ∪ TY, FX ∪ FY, L X ∪ LY,MX + MY)

where theTγ etc. are given in Table 1.

Note that the actual nodes are abstracted from by isomorphy, so the disjointness requirements present
no problem. We can show that the operators are congruences w.r.t. isomorphy. For example iff
is an isomorphism betweenX and Y, then f ∪ {((n,m), (f (n), f (m))) | n,m ∈ dom(f)} is an
isomorphism betweenγa,b(X) andγa,b(Y).

The operatorsγa,b, πa,b andφa,b,c are quite simple for neat MLNs if the labelsa,b occur in it. In that
caseγa,b, πa,b add an input resp. output arc andφa,b,c fuses two transitions. The place fusionϕa fuses

5

d

b

c

b

d

b

c

ba

a a

a

a

a

YX

Figure 3: Messy consumption

all places with labela; for neat MLNs a place can be renamed in order to obtain two places with the
same label that can be fused, resulting in a neat MLN. In this case, our operators are similar to the
ones in [16], as illustrated in Figure 2. However, our operators areunconditional: they are defined for
any MLN. For example, if an MLNX does not possessb-labeled places,γa,b(X) is derived fromX
by removing alla-labeled transitions.

As stated, the operators become somewhat tricky for messy MLNs. Figure 3 gives an example. There,
Y = γa,b(X). Since there are twob-labeled places, each of thea-labeled transitions is doubled and
for eacha,b-combination, an input arc is added.

We prove a few simple equations for the operators. The merge function is symmetric and associative
and theγ andπ functions do commute w.r.t. composition.

Lemma 3.4. For MLNs X,Y, Z we haveX ‖ (Y ‖ Z) = (X ‖ Y) ‖ Z andX ‖ Y = Y ‖ X. Furthermore
f ◦ g = g ◦ f for any two f, g ∈ {γa,b | a,b ∈ N e} or any two f, g ∈ {πa,b | a,b ∈ N e}.
Proof: The merge equations follow from the symmetry and associativity of the union and bag addition.
Theγ-commutativity is proved by writing out the components of the resulting MLNs. Ifc 6= a we
obtain

γa,b(γc,d(X)) = cio(PX, T ′, I ′,O′, L ′,M),

T ′ = {t ∈ TX | L X(t) 6∈ {a, c}}
∪ {(t, p) ∈ TX × PX | L X(t) = a ∧ L X(p) = b}
∪ {(t, p) ∈ TX × PX | L X(t) = c ∧ L X(p) = d},

I ′(t) = I X(t) if t ∈ TX ∩ T ′,
I ′(t, p) = I X(t)+ [p] if t ∈ TX \ T ′,
O′(t) = OX(t) if t ∈ TX ∩ T ′,
O′(t, p) = OX(t) if t ∈ TX \ T ′,
L ′(x) = L X(x) if x ∈ PX ∪ (T ∩ T ′),
L ′(t, p) = L X(t) if t ∈ TX \ T ′.

For the casec = a we have

γa,b(γa,d(X)) = cio(PX, T ′, I ′,O′, L ′,M),

T ′ = {t ∈ TX | L X(t) 6= a}
∪ {(t, p,q) ∈ TX × PX × PX | L X(t) = a ∧ L X(p) = b ∧ L X(q) = d},

I ′(t) = I X(t) if t ∈ TX ∩ T ′,
I ′(t, p,q) = I X(t)+ [p] + [q] if t ∈ TX \ T ′,
O′(t) = OX(t) if t ∈ TX ∩ T ′,
O′(t, p,q) = OX(t) if t ∈ TX \ T ′,
L ′(x) = L X(x) if x ∈ PX ∪ (TX ∩ T ′),
L ′(t, p) = L X(t) if t ∈ TX \ T ′.

6

Clearly both MLNs are symmetric; they do not depend on the order. Theπ-commutativity is fully
analogous. �

With atoms, variables and operators we can build net terms. LetV be a set of variables.

Definition 3.5. The setT (V) of net termsis defined as the smallest set satisfying

• V ∪ {Pa,n | a ∈ N ∧ n ∈ N} ∪ {Tb | b ∈ N } ⊆ T (V)

• if X,Y ∈ T (V) thenX ‖ Y ∈ T (V),
• if X ∈ T (V); g a unary operator, theng(X) ∈ T (V).

The setT (∅) is the set ofclosed termsandT ({ξ }) is the set ofcontexts, i.e. terms with a single
variableξ . Closed net terms clearly represent MLNs; different terms may represent the same MLN.
We prove that every MLN is isomorphic to a closed net term in normal form. In order to define this
normal form, we give some auxiliary definitions. We define addition for functions with bags as range
and use it to define extended production and consumption operators.

Definition 3.6. Forα ∈ B (N e ×N e), we define the unary MLN operators0α,5α by

0[] (X) = X, 5[](X) = X,
0[(a,b)](X) = γa,b(X), 5[(a,b)](X) = πa,b(X),
0α+β(X) = 0α(0β(X)), 5α+β(X) = 5α(5β(X)).

By Lemma 3.4 the definitions of0α and5α do not depend on the order in which the bagα is con-
structed. By the same lemma, we can adopt the notation(‖i∈I Xi) for the repeated merge of MLNs.

Definition 3.7. A closed MLN term T is innormal formiff it has the form

(ρL ◦5O ◦ 0I)((‖t∈T Tt) ‖ (‖p∈P Pp,M(p)))

Theorem 3.8. Every MLN is isomorphic to a closed net term in normal form.

Proof: Let X be an MLN. ChooseN ⊆ N e such that there exist a bijectionφ ∈ ((PX ∪ TX) → N).
Set P′ = φ(PX), T ′ = φ(TX), F ′ = FX ◦ φ−1, L ′ = L X ◦ φ−1,M ′ = MX ◦ φ−1. Let Y1 =
(‖t∈T ′ Tt) ‖ (‖p∈P′ Pp,M ′(p)). ThenY1 = (P′, T ′, [] , id(P′∪T ′),M ′). LetY2 = 5F∩(T×P)(0F∩(P×T)(Y1)).
ThenY2 = (P′, T ′, F ′, id(P′ ∪ T ′),M). Let Y = ρL(Y2). ThenY = cf(P′, T ′, F ′, L ′,M ′), which is
isomorphic toX. �

4 Operational semantics of MLNs

We define an operational semantics of MLNs in terms of processes. In an MLN, tokens can be added
and (if present) removed explicitly from labeled places (cf. the “open” places of [2]). Also firing steps
can occur, causing the implicit consumption and production of tokens. We denote addition, removal

and firing steps respectively as the
α+−→,

α−−→ and
α−→ relations. For example, if the MLNX satisfies

MX ≥ 2[p] and L X(p) = a, thenX satisfiesX
2[a]−−→ X′, with M ′

X′ = MX − 2[p] and alsoX′ 2[a]+−→ X.

If t ∈ TX, I X(t) = [p],OX(t) = [] , L X(t) = b thenX also satisfiesX
2[b]−→ X′.

7

2[z]

[p]+2

[f]
[x z]

[f]2

[x]
[p]+ [p]+

[]
[y z]

[f]

[]

[p]−

[f]

[p]− [p]−

f
p

f
p

[y]
x

yz 2[x] 3[x]

[x y]
t u

v

Figure 4: MLN Transition system

Our eventsE are thus{α | α ∈ B (N e)} ∪ {α+ | α ∈ B (N e)} ∪ {α− | α ∈ B (N e)} and our states are
the MLNs. Our silent eventτ is [], the empty firing. The rules for addition are completely determined

by the global rulex
α+−→ y ⇔ y

α−−→ x, so we only state the rules for
α−−→. We define addition for

removals and additions:α + +β+ = α + β+.

Formally, if X is an MLN andA ∈ B (PX), we denote the MLNcf(PX, TX, FX, L X,MX + A) by
ABX. Furthermore, we writeY = ACX iff X = ABY. We also make use of thēr andR̃ operators in
Definition 2.1, adding a third such operator. IfL ∈ A → N , thenL̂ ∈ B (A) → B (N e) is the additive
closure of{([a], [L(a)]) | L(a) 6= ι} ∪ {([a], []) | L(a) = ι}.

Definition 4.1. The MLN transition system is the pair(M,−→), whereM is the set of all MLNs
and−→ is smallest set of triples satisfying for any MLNX and anyA ∈ B (PX), B ∈ B (TX)

ABX
L̄ X(A)−−→ X if [ι] 6≤ L̄ X(A),

Ĩ X(B)BX
L̂ X(B)−→ ÕX(B)BX.

The condition [ι] 6≤ L̄ X(A) for removals entails that tokens cannot be removed (or added, due to the
global rule) from internal places. Note that isomorphic MLNs are bisimilar. Iff is an isomorphism
betweenX andY, then the relationR = {(cf(PX, TX, FX, L X,M), cf(PY, TY, FY, LY, f̄ (M)) | M ∈
B (PX)} is a bisimulation such thatX R Y.

Example: In Figure 4, part of the process of the MLN in Figure 1 is depicted. Two MLNs are depicted
fully; the others are indicated by their stateM only. We have added identifiers in italics to the nodes.
For example, from the state [xz], transitionst,u can fire concurrently resulting in step [f] to state
[xy]. The firing ofu is hidden (i.e. labeled with the empty bag []) but does not go unnoticed, since it
removes a labeled (visible) token. ¿From state [x], e.g. the bag 2[x] can be added explicitly, resulting
in the state 3[x].

Note that every MLNX satisfiesX
[]−−→ X

[]+−→ X
[]−→ X. The−→ relations resulting from firing

constitute a step semantics of nets, which is what the above semantics amounts to in case all places
are unlabeled. Our operators should be compositional w.r.t. this semantics. IfA, B are MLNs with
the same semantics, then for any contextE, the MLNsE(A), E(B) should have the same semantics.
To this end, we introduce an alternative structure operational semantics (SOS) for closed net terms.

Definition 4.2. The relation
e7−→ is the smallest relation satisfying the rules in Table 2 and in addition

X
α+7−→ X′ ⇔ X′ α−7−→ X. The parameters in Table 2 aren,m ∈ N; a, b, c ∈ N e;α, β ∈ B (N e); A ∈

P(N e); f ∈ N e → N and the MLNsX, X′, X′′, X′′′,Y,Y′ such thata,b, c differ.

8

r(emoval) s(tep)

AT
Pa,n+m

(m[a])−7−→ Pa,n, Tb
[]−7−→ Tb Pa,n

[]7−→ Pa,n, Tb
n[b]7−→ Tb

ME
X

α−7−→ X′,Y
β−7−→ Y′

X ‖ Y
(α+β)−7−→ X′ ‖ Y′

X
α7−→ X′,Y

β7−→ Y′

X ‖ Y
α+β7−→ X′ ‖ Y′

CO
X

α−7−→ X′

γa,b(X)
α−7−→ γa,b(X′)

X
(α(b).[a])−7−→ X′′ α7−→ X′

γa,b(X)
α7−→ γa,b(X′)

PR
X

α−7−→ X′

πa,b(X)
α−7−→ πa,b(X′)

X
(α(b).[a])+7−→ X′′ α7−→ X′

πa,b(X)
α7−→ πa,b(X′)

TF
X

α−7−→ X′

φa,b,c(X)
α−7−→ φa,b,c(X′)

X
α+n[ab]7−→ X′, α(a) = α(b) = 0

φa,b,c(X)
α+n[c]7−→ φa,b,c(X′)

PF
X

α−7−→ X′

ϕa(X)
α−7−→ ϕa(X′)

X
n[a]−7−→ X′′ n[a]+7−→ X′′′ α7−→ X′

ϕa(X)
α7−→ ϕa(X′)

RE
X

α−7−→ X′, [ι] 6≤ f̄ (α)

ρ f (X)
f̄ (α)−7−→ ρ f (X′)

X
α7−→ X′

ρ f (X)
f̂ (α)7−→ ρ f (X′)

Table 2: SOS rules for net operators

We prove that the two semantics agree when applicable, using an auxiliary definition and some lem-
mas.

Definition 4.3. Thestructural equivalencerelationm between closed net terms is the smallest relation
such that for anya ∈ L,n,m ∈ N and any unary net operatorF ,

Ta m Ta, Pa,n m Pa,m

,
X m X′

F(X) m F(X′)
,

X m X′,Y m Y′

(X ‖ Y) m (X′ ‖ Y′)

Note that them relation addresses the structure of terms, so we can have termsX,Y such thatX = Y
but notX m Y.

Lemma 4.4. Let X be a closed net term and lete, X′ such thatX
e−→ X′. Then there exists a closed

net termX′′ such thatX′ = X′′ andX m X′′.

Proof: According to Definition 4.1, is is sufficient to prove that for any closed net termX we have
X m (ABX) andX m (ACX) wheneverABX and/orACX are defined. We prove this by induction
w.r.t. the structure ofX.

If X is a transition, thenABX exists only if A = [], so ABX = X. If X is a placePa,n, then ABX
exists only ifA = m[a] and ABX = Pa,n+m. In both cases,X m ABX.

If X = Y ‖ Z andABX is defined, soA ∈ B (PX), then by the disjointness of the merge, we can write
A = B + C, whereB ∈ B (PY),C ∈ B (PZ) and thusABX = (BBY) ‖ (CBZ), and by the induction
hypothesis we infer thatY m (BBY) andZ m (CBZ).

9

If X = γa,b(Y) andABX is defined, then by Definition 3.3,ABY is defined too andX = γa,b(ABY).
We can use induction as above. The other unary operators except place fusion are analogous.

If X = ϕa(Y) andABX is defined, soA ∈ B (PX), then we can writeA = B + C, whereB ∈ B (PY)

andC = 6i ki [pi] ∈ B ({{p ∈ PY | LY(p) = a}}). Let k = 6i ki be the size ofC. If k > 0, we can
find a p ∈ PY such thatLY(p) = a andABX = ϕa((B + k[p])BY). So we can use induction.

TheC cases are similar to theB case. �

Note that the rules in Table 2 can be written as a set of rules of the formP(7−→) ` C(7−→) about the
7−→ relation (P is the premise andC the conclusion). The next lemma discusses replacing7−→ by
−→ in those rules.

Lemma 4.5.

1. If P(7−→) ` C(7−→) is a rule in Table 2, thenP(−→) ⇒ C(−→).

2. If X
e−→ X′ for some closed net termX, there exists a ruleP(7−→) ` C(7−→) in Table 2 such

thatC(−→) equalsX
e−→ X′ andP(−→) holds.

Proof: The proof of the lemma is by tedious case analysis and will be treated in Appendix A.�

We now prove our theorem.

Theorem 4.6. Let X be a closed net term. Then for any evente and closed net termX′

X
e−→ X′ ⇔ X

e7−→ X′.

Proof: If X
e7−→ X′, there exists a finite derivation chain of rulesPi (7−→) ` Ci (7−→) allowing to

deduce this fact. By Lemma 4.5.1, the rulesPi (−→) ⇒ Ci (−→) hold, so we can proveX
e−→ X′.

We use induction on the structure ofX to prove thatX
e−→ X′ implies X

e7−→ X′. If X is an atom,
and X

e−→ X′, then by Lemma 4.5.2 there is a rule such thatX
e−→ X′ equalsC(−→); the only

rules that apply are AT rules having the empty premise (true), so P(7−→) holds and thusC(7−→) and
henceX

e7−→ X′.
If X is not an atom, it is of the formX1 ‖ X2 or f (Y) for some unary operatorf . If X

e−→ X′, then
by Lemma 4.5.2 there is a rule such thatX

e−→ X′ equalsC(−→) andP(−→) holds. There is only
one set of rules that apply, depending on the operator. In each of these rules, the premiseP is of the

form X1
e1−→ X′

1, X2
e2−→ X′

2 in the merge case andY
d1−→ . . .

dn−→ Y′ in the unary operator case.
By Lemma 4.4, the final termsX′

1, X′
2,Y

′ and any intermediary terms are structurally equivalent to

X1, X2,Y respectively. By the induction hypothesis, we may thus assume thatX1
e17−→ X′

1, X2
e27−→

X′
2 or Y

d17−→ . . .
dn7−→ Y′ and from the ruleP ` C we deduceX

e7−→ X′. �

As a corollary, we deduce the desired compositionality of the operators w.r.t. the semantics.

Theorem 4.7. Let X,Y be MLNs andE a context. IfX ∼ Y thenE(X) ∼ E(Y) and if X ∼b Y then
E(X) ∼b E(Y).

Proof: Let X′,Y′ be closed net terms isomorphic toX andY respectively. Since isomorphy implies
bisimilarity and since bisimilarity is transitive, we deduceX′ ∼ Y′. By Theorem 4.6 and since the

10

SOS rules are in tyft/tyxt format [7],E(X′) ∼ E(Y′). Since the operators and thus contexts are
congruences w.r.t. isomorphy,E(X) ∼ E(Y).

We can repeat the same proof for branching bisimilarity, using [6] instead of [7]. It is essential that the
a ι-labeled node cannot be relabeled. We do not need rootedness due to the absence of a choice-like
operator. �

5 Net equivalence

In this section, we will discuss the equivalence notions we have so far: isomorphy, strong and branch-
ing bisimilarity. We already saw that isomorphy implies strong bisimilarity implies branching bisim-
ilarity. Bisimilarity is connected to HML (Hennessy-Milner) temporal logic, which we define below.
In order to avoid inconsistencies, conjunction is restricted.

Definition 5.1. The setsH of HML predicates satisfying is the smallest set such that

> ∈ H, L ∈ H
¬L ∈ H ,

A ⊆ H countable
∧

A ∈ H ,
L ∈ H,a ∈ N
�aL ∈ H .

Let X be an MLN. The set of predicatesL such thatX satisfiesL (notationX |= L) is the smallest
set satisfying

X |= >
X 6|= L

X |= ¬L

∀M ∈ A : X |= M

X |= ∧
A

∃X′ : X
a−→ X′ ∧ X′ |= L

X |= �aL

We introduce the following abbreviations:

⊥ = ¬> L ∧ M = ∧{L ,M} ∨
A = ¬ ∧{¬L | L ∈ A}

L ∨ M = ∨{L ,M} �aL = ¬�a¬L ∀i ∈ I : Li = ∧{Li | i ∈ I }
∃i ∈ I : Li = ∨{Li | i ∈ I }

The combination of HML with our semantics allows to formulate both state-based and action-based
properties of a component, like�a�b−> (after everya-step ab-labeled token is present).

Two MLNs are bisimilar iff they satisfy the same HML formula’s. Two MLNs are branching bisimilar
iff they satisfy the same formula’s from a somewhat weaker language [5] that abstracts from silent
events. Instead of the unary�a operator this subset has the binary “until” operatorUa, whereφUaψ is
equivalent to

∨
Lφ,ψ , whereLφ,ψ is the set{φ∧�aψ,φ∧�τ (φ∧�aψ), φ∧�τ (φ∧�τ (φ∧�aψ)) . . .}.

We define subclasses of MLNs for which the equivalence notions coincide.

Theorem 5.2. For controllable MLNs, bisimilarity coincides with isomorphy. ForT-concrete MLNs,
bisimilarity coincides with branching bisimilarity.

Proof: Let X,Y be controllable MLNs. We can findZ,W isomorphic toX,Y respectively such that
L Z, LW are identity functions. IfZ 6= W, since we can interchangeZ andW, one of the following
statements must hold for ap ∈ PZ, t ∈ TZ or α with α ≤ MZ.
1 p 6∈ PW

2 t 6∈ TW

3 α 6≤ MW

4 MZ = MW ∧ t ∈ TW ∧ I Z(t) 6≥ IW(t)
5 MZ = MW ∧ t ∈ TW ∧ (OZ(t)− I Z(t)) 6≤ (OW(t)− IW(t))

11

a b a a bα β α β

a a b
α β α α

a
β

b

Β

C D

Α

Figure 5: Equivalent nets

In each case, we give a HML predicateL such thatZ |= L andW 6|= L. So if Z andW are bisimilar,
thenZ = W and thusX,Y are isomorphic. We now give the choices forL, writing 〈α〉 instead of�α.
1 〈[p]+〉>
2 〈I Z(t)+〉〈[t]〉>
3 〈α−〉>
4 〈MZ−〉〈I Z(t)+〉〈[t]〉>
5 〈I Z(t)+〉〈[t]〉〈(MZ(t)+ OZ(t))−〉>

If R is a branching bisimulation, its restriction toT-concrete processes is a strong bisimulation. This
fact proves the second statement. �

In Figure 5 a few MLNs are depicted. The netsA, B andC are bisimilar but not isomorphic. NetsA
andD are branching bisimilar but not bisimilar.

Bisimilarity of nets is undecidable [4], but we give some simple rules for the reduction of nets modulo
bisimilarity. We define the following reduction operators:Rn (node removal),8A (place fusion) and
WB,C (place weaving).

Definition 5.3. Let X be an MLN with a noden ∈ PX ∪ TX, a place setA ⊆ PX such that∀p,q ∈
A : L(p) = L(q) and place setsB,C ⊆ PX. ThenRn(X) = Y,8A(X) = Z,WB,C(X) = W, where
Y, Z,W are the MLNs defined in Table 3. By isomorphy, we may assume that added nodes in that
table are new.

Note thatϕa(X) = 8A(X) with A = {p | L X(p) = a}. Also, the place weave operatorWA,B

resembles transition fusion. We will conditions under which the application of a reduction operator
leads to a result bisimilar to the operand net. We start by defining some concepts.

Definition 5.4. Let X be an MLN. A place autobisimulationof X is a relationR ∈ PX × PX

containing the identity relationid(PX) such that the relation(AB(MXCX), BB(MXCX)) | AR̄ B) is
a bisimulation. Placesp,q ∈ PX areplace autobisimilariff there exists a place bisimulationR such
that p R q.

A placep ∈ PX is calledredundantin X iff L X(p) = ι and for allY ∈ R(X) andβ ∈ B (TX) we have
MY(p) ≥ (MY ÷ ĨY(β)) ĨY(β)(p).

It is easy to prove that place autobisimilarity itself is a place autobisimulation. It can be computed by
starting with the relation{(p,q) | L X(p) = L X(q)} and removing pairs that turn out not to be related,
c.f. [1]. If p,q are place autobisimilar, they must have the same label.

Redundancy of a placep means thatp never contains too few tokens compared to the other places; if
a stepβ cannot occur, it cannot occur even if an arbitrary amount of tokens were added top. Often,
redundancy of a place can be proved by invariants.

We now formulate reduction rules allowing place fusion, node removal and weaving respectively.
Place removal is allowed for redundant places and transition removal is allowed for duplicate transi-

12

PY = PX \ {n}, TY = TX \ {n}
FY = FX � ((PY ∪ TY)× (PY ∪ TY))

LY = L X � (PY ∪ TY)

MY = MX � PX

PZ = (PX \ A) ∪ {A}, TZ = TX

∀t ∈ TZ, p ∈ PX ∩ PZ : I Z(t)(p) = I X(t)(p) ∧ OZ(t)(p) = OX(t)(p)
∀t ∈ TZ : I Z(t)(A) = 6p∈AI X(t)(p) ∧ OZ(t)(A) = 6p∈AOX(t)(p)
∀n ∈ (PZ ∩ PX) ∪ TZ : L Z(n) = L X(n)
∀p ∈ A : L Z(A) = L X(p)
∀p ∈ (PZ ∩ PX) : MZ(p) = MX(p)
MZ(A) = 6p∈AMX(p)

PW = (PX \ (B ∪ C)) ∪ {(p,q) | p ∈ B ∧ q ∈ C ∧ b 6= c}
TW = TX

∀t ∈ TZ, p ∈ PX ∩ PW : IW(t)(p) = I X(t)(p) ∧ OW(t)(p) = OX(t)(p)
∀t ∈ TZ, (p,q) ∈ PW \ PX : IW(t)(p,q) = I X(t)(p)+ I X(t)(q)
∀t ∈ TZ, (p,q) ∈ PW \ PX : OW(t)(p,q) = OX(t)(p)+ OX(t)(q)
∀n ∈ (PW ∩ PX) ∪ TW : LW(n) = L X(n)
∀(p,q) ∈ PW \ PX : LW(p,q) = ι

∀p ∈ (PW ∩ PX) : MW(p) = MX(p)
∀(p,q) ∈ PW \ PX : MW(p,q) = MX(p)+ MX(q)

Table 3: Reduction operator elaborations

tions orι-labeled transitions with identical input and output bags. Weaving is allowed between input
and output sets ofι-labeled transitions that have no conflicts.

Theorem 5.5. Let X be an MLN.

1. If p is redundant inX, thenX andRp(X) are bisimilar.

2. If t ∈ TX such thatI X(t) = OX(t) andL X(t) = ι or if there exist transitionst,u in TX such that
I X(t) ⊆ I X(u) and I X(u)+ OX(t) = I X(t) + OX(u) andL X(t) = L X(U), thenX andRt (X)
are bisimilar.

3. If R is a place autobisimulation ofX andF ⊆ PX such that∀p,q ∈ F : p R q, then8F (X) is
bisimilar to X.

4. If t ∈ TX with L X(t) = ι such that there existA, B ⊆ PX and I X(t) = 6p∈A[p] andOX(t) =
6p∈B[p] and L̂ X(I X(t)) = L̂ X(OX(t)) = [] and∀u ∈ TX, r ∈ I X(t) : r 6∈ I X(u)(r),
thenX andRt (WIX (t),OX(t)(X)) are branching bisimilar.

Proof: We start with redundant place removal.
Let p be a redundant place inX. SetY = Rp(X) andY0 = MYCY. We prove that the function
R = {(Z, (MZ − MZ(p)[p])BY0) | Z ∈ R(X)} is a bisimulation andMX R MY. If U R V, then
sinceU ∈ R(X), the redundancy ofp entails that for eachβ ∈ B (TU) we haveĨU (β) = Ĩ V(β). If
U

α−→ U ′ andα is a step, that there exists a a bagβ ∈ B (TU) and aU0 such thatU = ĨU (β)BU0 and
U ′ = ÕU (β)BU0 andα = L̂U (β). Let V ′ such thatU ′ R V′. From the above it is easy to prove that
V

α−→ V ′. For additions/removals the fact thatL X(p) = ι is sufficient.

13

Next comes transition removal.
The relationR = {(Z, Rt (Z)) | Z ∈ R(X)} is a bisimulation. Its proof is by case analysis, but rather
straightforward.

Next comes the fusion rule.
SetY = 8F (X) and letX0 = MXCX,Y0 = MYCY. Let f = id(PX ∩ PY) ∪ {(p, F) | p ∈ F}.
By the definition of the fusion operator,(ABX0)

α−→ (A′BX0) ⇒ (f̄ (A)BY0)
α−→ (f̄ (A′)BY0) and

(BBY0)
α−→ (B′BY0) implies∃A, A′ : f̄ (A) = B ∧ f̄ (A′) = B′ ∧ (ABX0)

α−→ (A′BX0).

Let Q = {(ABX0, BBY0) | A f̄ B}. We shall prove thatQ is a bisimulation. LetU Q V, where
U = ABX0, so V = f̄ (A)BY0. If U

α−→ U ′ (whereU ′ = A′BX0), then we can chooseV ′ =
f̄ (A′)BY0, so Q is a simulation. Conversely, ifV

α−→ V ′, there existA0, A′
0 such that f̄ (A0) =

f̄ (A),V ′ = f̄ (A′
0)BY0 and(A0BX0)

α−→ (A′
0BX0). Since f̄ (A0) = f̄ (A), we have by the definition

of f that A0 R̄ A. SinceR is a place bisimulation, there exists anA′ such thatU
α−→ (A′BX0)

and f̄ (A′) = f̄ (A′
0). So we can chooseU ′ = A′BX0, proving thatQ−1 is a simulation. Clearly,

f̄ (MX) = MY, soX andY are bisimilar.

Finally comes the weave rule.
SetY = WIX (t),OX(t)(X). We show that theX andY are branching bisimilar. SinceLY(t) = ι and
IY(t) = OY(t) we can then apply the transition removal rule.

SetUA = AB(MXCX). We show that the functionf = {(UA,WIX (t),OX(t)(UA)) | A ∈ B (PX)} is a
branching bisimulation. LetU ∈ dom(f), soU andX only differ in their M component (as dof (U)

and f (X)) and L̂U (MU) = L̂ f (U)(M f (U)). If U
α−−→ U ′ then f (U)

α−−→ f (U ′). If f (U)
α−−→ V ′,

there exists anU ′ such thatU
α−−→ U ′ andV ′ = f (U ′). The global rule takes care of additions.

For steps, note that by the weave construction,f (IU (u)CU) = I f (U)(u)C f (U) if MU ≥ IU (u) and

f (OU (u)BU) = Of (U)(u)B f (U) for all u ∈ TX andU ∈ dom(f). SupposeU
α−→ U ′, then there

exists aβ ∈ B (TU) andU0 such thatU = ĨU (β)BU0 andU ′ = ÕU (β)BU0 and L̂(β) = α. By

the weave construction,f (U) = Ĩ f (U)(β)B f (U0) and f (U ′) = Õ f (U)(β)B f (U0). So f (U)
L̂ f (U)(β)−→

f (U ′) andL f (U) andLU are the same on transitions, sof (U)
α−→ f (U ′).

ForU ∈ dom(f), let g(U) = U − n.IU (t)+ n.OU (t), with n = U ÷ IU (t). We havef (U) = f (V)
iff g(U) = g(V), so also f (g(U)) = f (U). By the condition thatr 6∈ I X(u) if u ∈ TX, r ∈ I X(t)
and sinceL X(t) = ι, it follows that if U

α−→ U ′, theng(U)
α−→ g(U ′). Let V ∈ ran(f). Let

h = {(f (U), g(U)) | U ∈ dom(f)}, which is a function. By the construction off , it follows that
if V

α−→ V ′, thenh(V)
α−→ h(V ′). So if f (U)

α−→ V ′, we setU ′′ = h(U) and we can find
U ′ = g(V ′) so thatU H⇒ U ′′ α−→ U ′, f (U ′′) = f (U) and f (U ′) = V ′. Therefore,f is a branching
bisimulation. �

Note that after nontrivial place fusion duplicate transitions can be removed. Also note that the weave
rule may remove a transition by augmenting the number of places, so it does not necessarily simplify
the net. In Figure 6, examples of net reductions are given. In that figure,Y = (Rt ′ ◦ Ru′ ◦ 8{x,z} ◦
8{y,w})(X) is bisimilar toX by the fusion and transition removal rules. AlsoW = (Rt ◦ W{x,y},{p} ◦
Rz)(Z) is branching bisimilar toZ by the place removal (since the placez is redundant inZ) and
weave rules.

14

c d

a b
a d

x

y

z

w

b

c

c

b

t u

t’ u’

a
b

c

d

t

p

a b

c d

z

x y

W

ZX

Y

Figure 6: Net reduction examples

6 Example

We use MLNs to model components. The tokens in the labeled places define the component’s visible
state, that can be inspected and updated by components in its interface. The transitions represent the
actions or methods that can be called by interfacing components, directly by fusion (rendez-vous) or
indirectly by message passing. The unlabeled places and transitions represent the internal state and
hidden methods of the component.

The specification of a component is the equivalence class modulo branching bisimilarity of its MLN
model. The MLN itself defines the component’s implementation. It is possible to change the imple-
mentation without altering the specification. By compositionality, the specification of a component
will remain the same if the specification of the subcomponents is not changed.

We give a small data communication example. A bufferα that can be filled with tokens is connected
to a componentI that offers them one-by-one to the networkN. The network transfers them to
another location, where the tokens are inserted in bufferβ by a third componentO. The interface
betweenI ,O and N is by transition fusion, betweenI andα by consumption and betweenO and
β by production. In Figure 7, the specifications of the subcomponents and their interconnection are
shown.

Net X is Pα,0 ‖ I ‖ N ‖ O ‖ Pβ,0. NetY is (τ{a,c,c′} ◦ γa,α ◦ πw,β ◦ φs,r,c ◦ φs′,r ′,c′)(X). By the “weave”
rule, the middle transitions can be short-circuited modulo branching bisimilarity, leading toZ. Z is
not branching bisimilar toV ; V satisfies(>U2[α]+>)Uτ¬(>U[α]−>): we can pass from the stage
whereα has two tokens to the stage whereα is empty by a single hidden step. This cannot occur in
Z (andY). The netsZ andV are weakly bisimilar, though. The netW is not equivalent toY in any
way; in W, tokens consumed fromα appear immediately inβ.

7 Conclusion

This paper uses techniques combines Petri net modeling and techniques from process algebra. The
aim is to support Petri net modeling, in contrast to the Petri box algebra [13] where Petri nets support
algebraic modeling.

We define a semantics for “open” nets (MLNs) and operators for combining them. The semantics
preserves the state-event duality typical of Petri nets. Our step semantics does not preserve causal
dependencies between events, unlike e.g. [16, 11]. Sacrificing causality allows simple SOS rules and
the possibility to interface with algebraically specified components.

15

α βα β

Y

α β

r

a

s r’

w

α β
s’X

N
I O

β

Z

α

WV

Figure 7: Token transfer example

In order to arrive at a fully compositional net-based specification language, we need to address some
version of “colored” nets [10, 8]. The addition of color does not invalidate the approach presented
here; problems are mainly technical.

References

[1] C. Autant and Ph. Schnoebelen. Place Bisimulations in Petri Nets. In K. Jensen, editor,Appli-
cation and Theory of Petri Nets 1992, 13th. International Conference, Proceedings, volume 616
of Lecture Notes in Computer Science, pages 45–61. Springer–Verlag, Berlin, 1992.

[2] P. Baldan, A. Corradini, H. Ehrig, and R. Heckel. Compositional modeling of reactive systems
using open nets. InProceedings CONCUR ’01, volume 2154 ofLecture Notes in Computer
Science, pages 502–518. Springer–Verlag, Berlin, 2001.

[3] T. Basten. Branching Bisimilarity is an Equivalence Indeed!Information Processing Letters,
58:141–147, 1996.

[4] P. Jančar. Undecidability for Petri nets and some related problems.Theoretical Computer Sci-
ence, 148(2):281–301, 1995.

[5] R. De Nicola and F.W. Vaandrager. Three logics for branching bisimulation.Journal of the
ACM, 42(2):458–487, 1995.

[6] W.J. Fokkink. Rooted branching bisimulation as a congruence.Journal of Computer and System
Sciences, 60(1):13–37, 2000.

[7] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimulation as a con-
gruence.Information and Computation, 100(2):202–260, 1992.

16

[8] K.M. van Hee. Information Systems Engineering: a Formal Approach. Cambridge University
Press, Cambridge, 1994.

[9] M. Hennesy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency.Journal of
the ACM, 32(1):137–161, 1985.

[10] K. Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.EATCS
monographs on Theoretical Computer Science. Springer–Verlag, Berlin, 1992.

[11] E. Kindler. A compositional partial order semantics for Petri net components. In P. Az´ema and
G. Balbo, editors,Proceedings ATPN ’97, volume 1248 ofLecture Notes in Computer Science.
Springer–Verlag, Berlin, 1997.

[12] E. Kindler and T. Vesper. ESTL: A temporal logic for events and states. In J. Desel and M. Silva,
editors,Proceedings ATPN ’98, volume 1420 ofLecture Notes in Computer Science. Springer–
Verlag, Berlin, 1997.

[13] M. Koutny and E. Best. Operational and denotational semantics for the box algebra.Theoretical
Computer Science, 211:1–83, 1999.

[14] W.E. McUmber and B.H.C. Cheng. A general framework for formalizing UML with formal
languages. InProceedings ICSE ’01, pages 433–442. IEEE press, 2001.

[15] G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Computer Science Dept., Aarhus University, 1981.

[16] L. Priese and H. Wimmel. A uniform approach to true-concurrency and interleaving semantics
for Petri nets.Theoretical Computer Science, 206:219–256, 1998.

17

Appendix A:
We prove Lemma 4.5 here. We start with the first proposition:
If P(7−→) ` C(7−→) is a rule in Table 2, thenP(−→) ⇒ C(−→).

Proof: The proof is by case analysis, using Definitions 3.3 and 4.1.

AT: (the premise is true, so we must prove the conclusions)

We havePa,n+m
m[a]−−→ (m[a]CPa,n+m) = Pa,n. We haveTb = (n. Ĩ TbBTb)

n[b]−→ (ÕTbBTb) = Tb and of

coursePa,n
[]−→ Pa,n andTb

[]−−→ Tb.

ME:
If X

α−−→ X′ andY
β−−→ Y′, then there existA, B with L̄ X(A) = α, L̄ X(B) = β such thatX′ = ACX

andY′ = BCY, soX′ ‖ Y′ = (A+ B)C(X ‖ Y) and since [ι] 6≤ A+ B, we haveX ‖ Y
(α+β)−−→ X′ ‖ Y′.

The proof for the step relation is even simpler.

COr,PRr,TFr,PFr:
If X

α−−→ X′, then there is anA with L̄ X(A) = α such thatX′ = ACX. Then we also have
f (X′) = AC f (X) for f ∈ {γa,b, πa,b, φa,b,c}. There is also anA′ with L̄ϕa(X)(A

′) = α such that

ϕa(X′) = A′Cϕa(X). So f (X)
α−−→ f (X′) in all these cases.

RE:
If X

α−−→ X′, then there is anA with L̄ X(A) = α such thatX′ = ACX. Thusρ f (X′) = AC ρ f (X)

and if [ι] 6≤ f̄ (α), then [ι] 6≤ L̄ρ f (X)(A), soρ f (X)
f̄ (α)−−→ ρ f (X′). The REs rule is analogous, but

simpler since the extra condition is missing.

COs,PRs:

If X
α(b).[a]−−→ X′′ α−→ X′, then there is ann = α(b) and A, E with L̄ X(A) = n[a] and L̂ X(E) = α

such thatX′ = ÕX(E)B(Ĩ X(E)C(ACX). Since(L̂ X(E))(b) = n, we can find a list of transition-
place pairs(t1, p1) . . . (tn, pn) such thatL X(pi) = a, L X(ti) = b for all i and6i [pi] = A and
L̂ X(E − 6i [ti])(b) = 0. This means that the bagF = E − 6i [ti] + 6i [(ti , pi)] contains transitions
of Y = γa,b(X) and L̂Y(F) = α and thatY′ = ÕY(F))B(ĨY(F)CY) exists andY′ = γa,b(X′). So
Y

α−→ Y′. The production step rule is fully analogous.

TFs:
If X

α+n[ab]−→ X′ andα(a) = α(b) = 0, then there areE, F such thatL̂ X(E) = α, L̂ X(F) = n[ab]
and X′ = ÕX(E + F)B(Ĩ X(E + F)CX). We can find a list of transition pairs(t1,u1) . . . (tn,un)

such thatL X(ti) = a, L X(ui) = b for all i and6i [ti ,ui] = F . Sinceα(a) = α(b) = 0, the bag
G = E+6i [(ti ,ui)] is a transition bag ofY = φa,b,c(X) and ĨY(G) = Ĩ X(E+F), ÕY(G) = Õ(E+F)

and L̂(G) = α + n[c]. ThusY′ = ÕY(G)B(ĨY(G)CY) exists andY′ = φa,b,c(X′). SoY
α+n[c]−→ Y′.

PFs:
Let X

n[a]−−→ X′′′ n[a]+−→ X′′ α−→ X′ for somen ≥ 0. So there areA, B ∈ B (PX) andE ∈ B (TX) such that
X′′ = BB(ACX) andX′ = ÕX(E)B(Ĩ X(E)CX′′) andL̄ X(A) = L̄ X(B) = n[a] and L̂ X(E) = α. By
Definition 3.3, we have thatY = ϕa(X) = ϕa(X′′), thatTY = TX and thatY′ = ÕY(E)B(ĨY(E)CY)
satisfiesY′ = ϕa(X′). Soϕa(X)

α−→ ϕa(X′). �

We now move to the second proposition:
If X

e−→ X′ for some closed net termX, there exists a ruleP(7−→) ` C(7−→) in Table 2 such that
C(−→) equalsX

e−→ X′ andP(−→) holds.

Proof: Again we use case analysis for each rule type and Definitions 3.3 and 4.1. Note that the term
X and evente determine what rule type should be used.

18

AT:
If X is an atom andX

e−→ X′, the existence of a rule in the AT row of Table 2 is immediate from the
two definitions.

ME:
If X = U ‖ V andX

α−→ X′, then there existsE ∈ B (TU ∪ TV) such thatX′ = ÕX(E)B(Ĩ X(E)CX)
and L̂ X(E) = α. We can writeE = F + G, whereF ∈ B (TU),G ∈ B (TV). SinceU andV have
disjoint nodes, we know that̃OU (F)+ ÕV(G) = ÕX(E) and ĨU (F)+ Ĩ V(G) = Ĩ X(E) and so there

existsβ = L̂U (F) andγ = L̂V(G) such thatU
β−→ U ′ and V

γ−→ V ′ and X′ = U ′ ‖ V ′. This
corresponds to the MEs rule of Table 2. The MEr rule is similar.

COr,PRr,TFr:
If X = f (Y), where f ∈ {γa,b, πa,b, φa,b,c} and X

α−−→ X′, then there exists a bagA ∈ B (PX) such
that X′ = ACX and [ι] 6≤ L̄ X(A). Then by Definition 3.3,PX = PY andY′ = ACY exists and

X′ = f (Y′) and sinceLY(p) = L X(p) for all p ∈ PX, we have indeedY
α−−→ Y′.

PFr:
If X = ϕa(Y) and X

α−−→ X′, then there exists a bagA ∈ B (PX) such thatX′ = ACX and [ι] 6≤
L̄ X(A). Let g ∈ PY → PX be defined byg(p) = p if LY(p) 6= a andg(p) = {q | LY(q) = a} if
LY(p) = a and leth = ḡ. By Definition 3.3, there exists a bagB ∈ B (PY) with h(B) = A such that

Y′ = BCY exists andX′ = f (Y′). SinceLY(B) = L X(A), we have indeedY
α−−→ Y′.

RE:
If X = ρ f (Y) andX

α−−→ X′, then there exists a bagA ∈ B (PX) such thatX′ = ACX and L̄ X(A) =
α. Of course, [ι] 6≤ α. Thus,Y′ = ACY exists and(f̄ ◦ LY)(A) = α. SoY

f̄ (α)−−→ Y′ and [ι] 6≤ f̄ (α).
The REs rule is similar.

COs,PRs:
If X = γa,bY andX

α−→ X′, then there exists a bagE ∈ B (TX) such thatX′ = ÕX(E)B(Ĩ X(E)CX)
and L̂ X(E) = α. By Definition 3.3,PX = PY,MX = MY andY′ = ÕX(E)B(Ĩ X(E)BY) exists. We
can writeE = Es + Ed whereEs ∈ B (TX ∩ TY) and Ed ∈ B (TX \ TY). The transitions inTX \ TY

are pairs(t, p) and we defineφ ∈ TX → TY by φ(t) = t if t ∈ TY andφ(t, p) = t if (t, p) 6∈ TY.
Let F = φ̄(E). We haveL̂Y(F) = L̂ X(E) = α andÕX(E) = ÕY(F) and Ĩ X(E) = ĨY(F)+6I [pi],
whereL̂ X(6I [pi]) = α(b)[a]. SoY′′ = 6I [pi]CY exists andÕY(F)B(ĨY(F)CY′′) = Y′. By using

Definition 4.1, we conclude thatY
α(b).[a]−−→ Y′′ α−→ Y′. The production step rule is analogous.

TFs:
If X = φa,b,cY andX

β−−→ X′, then there exists a bagE ∈ B (TX) such thatX′ = ÕX(E)B(Ĩ X(E)CX)
and L̂ X(E) = β. By Definition 3.3,PX = PY,MX = MY andY′ = ÕX(E)B(Ĩ X(E)BY) exists. We
can writeE = Es + Ed whereEs ∈ B (TX ∩ TY) andEd ∈ B (TX \ TY). The transitions inTX \ TY are
pairs(t,u) and we defineφ ∈ TX → [(]TY) byφ(t) = [t] if t ∈ TY andφ(t,u) = [t,u] if (t,u) 6∈ TY.
Let F = φ̃(E). We haveÕX(E) = ÕY(F) and likewise forI . SoY′ = ÕY(F)B(ĨY(F)BY) exists
andL̂Y(F) = L̂Y(Es)+n[ab], wheren equals the number of transitions inEd. Thusβ can be written

asα + n[c] and sinceX cannot contain anya- or b-labeled transitions, we haveY
α+n[ab]−→ Y′ with

α(a) = α(b) = 0.

PFs:
If X = ϕaY andX

α−−→ X′, then there exists a bagE ∈ B (TX) such thatX′ = ÕX(E)B(Ĩ X(E)CX)
and L̂ X(E) = β. By Definition 3.3,TX = TY, L̄ X(Ĩ X(E)) = L̄Y(ĨY(E)), L X(ÕX(E)) = L̄Y(ÕY(E))
and ĨY(E) = A + B, where A contains onlya-labeled places (soLY(A) = m[a]) and B all the
other places. SoIY(E)C(ABY) exists andL̄Y(A + MY − IY(E)) = m[a] + L̄ X(MX − I X(E)).

19

So there exists aC ∈ B (Y) with LY(C) = m[a] such that(C + IY(E))C(ABY) exists. LetD be
the largest bag such thatD ≤ A and D ≤ C and letA′ = A − D,C′ + C − D,n[a] = LY(A′) =
LY(C′),Y′ = OY(E)B((C+ IY(E))C(ABY)). Then(C+ IY(E))C(ABY) = IY(E)C(A′B(C′CY))

andY
n[a]−−→ C′CY

n[a]+−→ A′B(C′CY)
α−→ Y′. This completes the proof. �

20

