

 1

Software Engineering Reference Framework

Michel Chaudron, Jan Friso Groote, Kees van Hee,
Kees Hemerik, Lou Somers, Tom Verhoeff.

Department of Mathematics and Computer Science

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{M.R.V.Chaudron, J.F.Groote, K.M.v.Hee, C.Hemerik, L.J.A.M.Somers, T.Verhoeff}@tue.nl

1. Objectives of the framework

This Software Engineering Reference Framework is meant for the education of
computer science students at Eindhoven University of Technology. The
framework will be used to unify the basic concepts and the terminology in the
various courses that cover topics of software engineering and in the OGO-
projects, including the Software Engineering Project.
The reference framework is not an attempt to present a “one size fits all”
approach, that should be adopted by everyone. Therefore, it does not prescribe
how systems should be developed or maintained. It is meant to relate topics of
different courses in order to give students a better insight in the structure of
computer science and software engineering. Parts of the terminology and the
structure are derived from the IEEE software engineering standards [IEEE].

2. Scope of the framework

We start with some elementary concepts. Software engineering is concerned with
the development and maintenance of software systems by the systematic
application of engineering techniques in the software domain.
The process that creates the system is called the development process and the
process that keeps the system in operation is called the maintenance process. We
focus on the development process here, since the maintenance process is a
sequence of (re)development processes. Together they cover the life cycle of a
system. A process recursively consists of sub-processes and the atomic sub-
processes are called tasks. A task has a clear goal with well-defined input and
output; the latter is also called the deliverable. There are two kinds of deliverables:
documents that describe the status and progress of the development process and
documents (including program code) describing the system to be developed. We

 2

call the first kind the (process) reports and the second kind the (system) artefacts.
We focus on the artefacts that make up the system and not on the tasks or sub-
processes that produce these artefacts.

The framework contains the following topics:
1. Definitions of the artefacts that make up a system (e.g. program code,

requirements and manuals)
2. Basic concepts of project management (concepts like: scoping, planning,

milestones and deliverables)
3. The most common process models, i.e. the ordering principles of the tasks

(strategies like: waterfall, evolutionary and incremental)
4. The most common methods and techniques to fulfil these tasks (not in this

report)
5. A glossary of terminology

Terms in italics are defined in the glossary. The following picture shows how a
system fits in its context.

The target system is the for which software needs to be designed or redesigned. In
case of an embedded system, a video recorder is an example of a target system
and in case of an information system a business unit of an insurance company is
an example. In the target system, an information processing system has to support
the processes of the target system. The information processing system consists of

Information
processing

system

Software
system

Platform

Target system

Environment

 3

a software system we have to develop and a platform, consisting of computer
hardware and basic software (like an operating system) that is available. It is in
many cases preferable if the software engineer is involved in the (re)design of the
target system as a whole, although the software system is the one to be
developed.

3. Artefacts

The artefacts are grouped into coherent clusters. For example “inception” is a
group of artefacts that describes the background of the system. It does not mean
that the artefacts in a cluster have to be produced as one uninterrupted task. The
artefacts are the important objects. For some clusters it is quite natural to
produce them in one task, while others, in particular verification, is usually spread
over several tasks. The order of artefacts is not arbitrary since in most cases one
needs the previous artefacts in order to make them.
Depending on the typical system, it is possible to combine artefacts or to split
them. Note that each artefact is documentation (a design, requirements, program
code, installation procedure). In all cases, it is necessary to incorporate the
motivation for choices made and to give sufficient explication.

Inception
Inception is the first step in designing or adapting a system. It answers the
question: “Why do we need a new or renewed system?”

• Mission statement:
The system has to be developed for a particular purpose. This artefact
describes the purpose of the system from the perspective of the stakeholders.

• Context analysis:
This artefact consists of a description of the target system and its environment
for which the software system has to be developed, often in terms of the
stakeholders. This description can include the actors and (models of) the
processes and objects in the target system and its environment, that are
relevant for the software system to be developed.

• Feasibility study:
The analysis of technical and economical feasibility of the system. The last
one leads to the so-called business case for the system.

In the artifacts above, the software system is to be treated as a black box. Its
internal structure is not referred to.

Requirements
Requirements engineering answers the question: “What should the system do for

 4

its environment?” We distinguish three types of requirements.

• User requirements:
The description of the functions that the system has to fulfil for its
environment in terms of the users interacting with the system, e.g. in the form
of use cases.

• Software requirements:
We distinguish functional and extra-functional requirements of the software
system. The software requirements are a translation and a more precise
description of the user requirements, in terms for software engineers.

• Development requirements:
Requirements on the means with which the system should be realized. In
particular the documentation to be delivered, the development methods and
tools to be used and the implementation platform.

These three artefacts are often considered as the contract between the principal
stakeholder and the software engineers.

Design
The design answers the question: “What are the constituent concepts of the
system?”

• Software architecture:
The software architecture consists of:

o The structure, i.e. a set of components and relationships between these
components, such as interaction relations.

o For each component, a model of its behaviour and its logical data
structure, from an external viewpoint.

o For each interaction relation, a model of the interface.
It is often necessary to describe several independent views in a software
architecture, such as a logical view or a physical view.

• Detailed design:
o The translation of the software architecture into the constructs of the

implementation technology, such as modules, procedures and classes
or objects.

o The algorithms and data structures that realize the behavior and data
structures of the components.

Note that the derivation of the program structure as well as the algorithms
and data structures may be a process of stepwise refinement.

Construction
The construction answers the question: “What is the system exactly?”
It consists of:

 5

• Program code:
For new components of the system there should be source code. For OTS (Off-
The-Shelf) components that were already available this is not always possible. A
reference to the source code and an executable are needed for these
components. All code must be clearly annotated to clarify its functionality
and to express the relations between pieces of code, and between the code
and other system artefacts.

• Configuration parameters:
Larger components and in particular OTS components may have configuration
parameters. The values of these parameters are essential elements of the
system. The relationship between the required functionality, the provided
functionality and the values of the configuration parameters must be well
documented.

Verification
Verification answers the question: “Does the system conform to its
specifications?” It determines consistency among the artefacts. The question is
answered in steps, e.g. “is the architecture conform the requirements?”, “is the
detailed design consistent with the architecture?”, “are the algorithms correct?”
and “is the program code implementing the design correctly?”. The verification
whether the complete system satisfies the user requirements, is called validation.
We distinguish three approaches to verification:

• Reviews:
Reviews are performed by experts. They give their expert judgement on any
artefact. There are several ways to perform the inspections and often check
lists are used as guidance.

• Proofs:
Some properties can be verified formally, provided that the property can be
formalized. Typical examples are the verification of invariance properties
and the absence of deadlocks. Software tools such as model checkers and
theorem provers, may be used to provide the proofs,.

• Testing:
A test consists of a:

o Test specification: What will be tested?
o Test script: How will it be done?
o Test cases: The test scenario’s with input data and expected results.
o Test criteria: What are the criteria to determine that the test is

successful?
o Test report: A summary containing the outcomes of the different tests

and the overall conclusion.
 We distinguish several kinds of tests:

 6

o Component tests: Testing a component against its specification.
o Integration tests: Testing the interaction between the components

against the architecture.
o System tests: Testing the integrated system against the use case

scenarios.
Verification generally relates two or more artefacts. Therefore, there will be many
verification artefacts, that can exist as separate documents, but can also be
collected in an overall verification artefact, or be included as appendices in the
verified artefacts.

Deployment
Deployment refers to the transition of the system from its development phase to
the operational phase in the life cycle of a system. Typical ingredients are:

• Build and installation procedures.

• Conversion software to transform the data of the old system into the new one.

• Instructions and manuals for users and administrators.

• Plan for the maintenance process.

4. Project management
For project management there are standardized methods such as PRINCE2,
Projects In Controlled Environments, from the UK Office of Government
Commerce [PRINCE2]. There is also a framework called, PMBOK, Project
Management Body of Knowledge, from the USA based PMI, Project
Management Institute [PMBOK]. Both have a lot in common. Since we use only
the basics of project management we are compliant with each of them. We
assume that projects always take place in a customer-supplier environment, i.e.
there are two roles: the customer, who orders the development of a system and
the supplier who will develop the system.

Project management has three important components:

1. Project organization, consisting of persons and teams having specific
roles:

a. Project board (also called steering committee): defines the project
mandate (also called project charter) and takes major decisions
such as the approval of deliverables and major changes in the
project plan.

b. Project teams: taking care of specific tasks or management
processes.

c. Typical roles are: software architect (mainly responsible for design),
software engineer (mainly responsible for construction) and
management roles (see management processes).

 7

2. Project plan, consisting of phases with deliverables as output:
a. Each phase consists of tasks.
b. The set of phases has a partial order dependency based on the

deliverables.
c. Each phase has a time window, possibly with intermediate

milestones or deadlines. This is often represented in a Gantt chart.
d. Each task has resources, with specific roles assigned to it.
e. Each task has specified deliverables: process reports and artefacts.

3. Management processes, guaranteeing that the project proceeds in good
order:

a. Resource management: time and budget.
b. Risk management: identifying risks and compensating measures.
c. Quality control: guaranteeing the quality of the artefacts and the

engineering process.
d. Configuration management and change control: managing the

versions of artefacts and the processes concerning the change of
these artefacts.

5. Life cycle models
There are many different roadmaps to develop a system. They differ in the way
the production of artefacts is assigned to tasks, the tasks are grouped in phases
and the order in which the phases are executed. We do not prescribe a particular
roadmap, but instead we give the characteristics of three of them:

• Sequential roadmap

• Evolutionary roadmap

• Incremental roadmap
In the sequential roadmap, also called the waterfall model, for almost each
artefact one task is defined and the tasks are grouped in the way we have
grouped the artefacts. So, in our terminology, there are 6 phases: inception,
requirements, design, construction, testing and deployment. Note that “testing”
here is only the testing of the programs and does not contain other verification
activities. In the sequential roadmap the phases are executed one after another.
The next phase may only start if the previous one has been successfully closed. If
a problem occurs and it turns out that the cause of the problem is an error in one
of the former phases, the project has to be “reset” to the task before the one with
the error. Since errors often have only a local effect, it is not necessary to stop
other tasks and therefore the sequential method is almost never executed in a
purely sequential way: there is always some parallel execution in it and there is
iteration if some error occurs. The other roadmaps are variations of the
sequential roadmap.

 8

In the evolutionary roadmap, also called iterative method, the phases before
deployment, are executed several times in an iterative way. In each cycle the
system is improved by solving problems discovered in a previous cycle. After a
number of iterations the system is sufficiently good to move to the deployment
phase. The advantage is the early feedback of the stakeholders, which avoids
spending development effort in a wrong direction.

In the incremental roadmap the system is divided into parts and for these parts a
sequential or evolutionary roadmap is performed, possibly in parallel. The parts
need not be developed at the same time, but as soon a part has passed the testing
phase, it is taken to the deployment phase, which means that parts of the system
are already in use while other parts are still in an early phase. The advantage is
that parts that are easier to develop or the parts that are most wanted, are already
in operation while others are still under development.

6. Glossary

Words in italics occurring in the descriptions refer to other terms in the list.

actor

A person or external-system that interacts directly with the system. The
persons are called users.

architecture

An architecture is:
o A set of models that describe the fundamental organization of a system

embodied in its components, their relationships to each other and to
the environment, from various viewpoints.

o The principles guiding the design and evolution of the system.

basic software

Software that is used by the computer hardware to give the system its
basic functions, like an operating system or performs elementary tasks
such as a compiler.

business case

Description of the system in terms of the stakeholders that have to make
the decision to develop the system, together with an analysis of the
development and operational cost of the system, and of the benefits of the

 9

system and the revenues it might generate.

component

A recognized part of a system. Typically, a component provides cohesive
functionality and has explicit context dependencies only. An OTS
component, where OTS stands for “Off The Shelf”, is a component that
already exists and that is not primarily constructed for the information
system under development. Typically, OTS components are obtained
from third parties.

extra-functional requirement

A requirement considering a non-functional property of the system such
as security, distribution, performance or reliability.

functional requirement
A requirement that specifies a function that a system or component must
be capable of performing. These requirements define behavior of the
system, that is, the fundamental process or transformation that the
information processing system or its components perform on inputs to
produce outputs.

information processing system

The system under construction, consisting of a software system and a
platform. We call an information processing system often a system for short.
We distinguish three types of information processing systems:

• Embedded system if the target system is a piece of equipment.

• Information system if the target is some organization.

• Basic system if the target system is a computer system itself (e.g.
operating systems are compilers are examples of basic systems).

interaction

The mutual influence of two actors, and/or components. Interaction is
performed via an interface.

interface

For two components, or a component and an external actor, a model of the
types of the messages that are exchanged and the order in which this may
occur.

model

A formal representation of an aspect of a system. Typical examples are
data models that give a static view and process models that give a

 10

dynamic view.

platform

The part of the information processing system that is used to execute the
software system. The platform normally consists of computer hardware and
basic software.

requirement

A property that is demanded to be fulfilled by an information processing
system. Often requirements are distinguished in functional and non-
functional requirements. The functional requirements prescribe behavioral
aspects, such as the way the system must interact with actors and
responds to requests. Non-functional requirements regard constraints that
are visible in the explicit behavior of the system, such as resource
requirements.

software engineering

Software engineering is the development and maintenance of software by
the systematic application of engineering techniques in the software
domain.

software system

Part of the information processing system that will be realized in software.

stakeholder

An individual, team, or organization in the target system or its
environment, with interest in the system. Examples are clients, suppliers,
employees, managers, owners and system administrators. All
stakeholders that have interaction with the system are users. One
stakeholder has the role of the principal one who formally gives the
assignment to develop the system.

system
A generic term for a group of interrelated, inderdependent or interacting
elements serving a collective purpose. Software systems, information
processing systems and target systems are typical examples in the context
of software engineering.

system engineering

The process of developing a system that must fulfill a certain purpose
using the systematic application of engineering techniques, and of which
software engineering is a part, provided the system has a software

 11

subsystem.

target system

The system that will be supported by the information processing system
to be developed.

use case

A description of a coherent piece of functionality in terms the stakeholders
understand. Often a use case is expressed as a set of use case scenarios.

use case scenario

A sequence of actions to be performed in the interaction between the
system and the actor, when a system is performing a use case.

user

Persons that interact with the information processing system. They are a
subset of the stakeholders.

validation

Often this term is used as a synonym for verification. More specifically the
term is used to verify if a system satisfies its requirements.

verification

All acts of reviewing, testing, checking, auditing or otherwise establishing
whether artefacts conform to specifications. In most tasks, artefacts are
produced that serves as specifications for other artefacts. In particular, if
the specifications are requirements, the term validation is used.

view

A view is a model representing the system as seen by a stakeholder from a
specific viewpoint. Typical viewpoints are structure, behavior,
functionality, security, distribution, performance and reliability.

References
[IEEE] IEEE. Standards Collection. Software Engineering Institute of

Electrical and Electronic Engineers. 1994.

[PMBOK] A Guide to the Project Management Body of Knowledge (PMBOK

Guide) – 2000 edition. Project Management Institute, 2000.

[PRINCE2] Managing Successful projects with PRINCE2 (PRINCE Guidance).

 12

The Stationary Office Books, 2002. See also www.prince2.com.

