
Semantics, bisimulation and congruence results
for a general stochastic process operator

Jan Friso Groote1 Jan Lanik2

(1) Departement of Mathematics and Computer Science, Eindhoven University of Technology

Den Dolech 2, Eindhoven, The Netherlands

(2) Faculty of Informatics, Masaryk University, Botanická 68a, Ponava, Brno, Czech Republic

Email: J.F.Groote@tue.nl, xlanik1@fi.muni.cz

Abstract

We introduce a general stochastic process operatorf

d:D
p(d) which behaves as the processp(d) where

the valued is chosen from a data domainD with a probability density determined byf . We require that
f is a measurable function fromD to R

≥0 such that
R

d∈D
f(d)dµD = 1. For finite or countableD the

functionf represents the probability distribution directly. For bigger domainsf represents the density
function.

We provide a natural operational semantics for a basic process algebra with this operator and de-
fine strong stochastic timed bisimulation and general stochastic bisimulation, which due to the potential
uncountable nature ofD had to be generalised compared to existing notions. We introduce the notion
bisimulation resilience, which restricts the use of the language, such that thebisimulation closure of
measurable sets is again measurable, and argue that without such a notion stochastic process expressions
make little sense. We prove that the bisimulation equivalences are congruences provided the language is
bisimulation resilient.

1 Introduction

Our primary motivation comes from our work on a process algebra with data and time (mCRL2, [9]). Our
process algebra is on the one hand very straightforward, in the sense that it only contains the minimal set of
process operators to model behaviour. But on the other hand it is very rich, in the sense that the operators
and allowed data types are as universal and mathematical as possible. Typically, the natural numbers have
no largest value, sets are the mathematical notion of sets (e.g., the set of all even numbers can easily be
denoted) and all data types can be lifted to functions. The data types are freely usable in processes. For
instance, it is possible to write in the language:

∑

f :R→R

receive(f)·forward(λn:Z.∃m:R.f(m)>n)· . . .

to receivea functionf from reals to reals and toforward a function from integers to booleans constructed
out of f . As the language is very expressive it is easy to write down undecidable conditions. But, if used
with care the language turns out to be elegant in modelling even industrially sized systems and the tools
are very effective in helping to get insight in these models (seewww.mcrl2.org).

As it stands, the language does not allow to express and studystochastic behaviour, although certainly
half of the questions that we are asked are about performance, unlikelihood of undesired behaviour and
even average behaviour. A typical question from a medical system supplier, which we studied, was which
percentage of X-ray pictures will not be processed within 100ms. Another question was about the through-
put of an elevator system where the elevators were above eachother. The behaviour of such systems are
much more conveniently described in process algebras – or most other formalisms stemming from con-
currency theory – than in classical queueing theory. However, mathematically, queuing theory is far more

1

developed. From the process perspective, mathematical analysis concentrates around on the one hand, sim-
ulation, where any distribution is usable, and on the other hand via Markov chains, which are practically
restricted to discrete and exponential distributions.

We desire a theory which allows to describe, study and manipulate with stochastic behaviour on a
process level. Therefore, we introduce a simple but very expressive operator. We did not want to allow
restrictions on the operator unless self-evident from the problem domain or being a mathematical necessity.
We came up with:

f

d:D
p(d)

whered is a data variable,D some data domain,p a process in whichd can occur andf a probability
distribution (not a cumulative distribution). The intuition of the operator is that a value ford is chosen
with a probability determined byf after whichp happens with this value substituted ford. The same
general operator is introduced in [12] with a different notation, which is no coincidence because both this
paper and [12] originated from the same discussion on how to add a general stochastic operator to current
process algebras. In order to avoid semantical complexities, the operator in [12] is restricted to countable
domains and can only be used in a syntactically restricted setting. A tool is available to generate and
analyse stochastic state spaces.

The purpose of this paper is a different one, namely to develop and understand a maximally expressive
stochastic process algebra. One of the core issues is when such an algebra has a well defined semantics.
From measure theory, we know that integration over density functions is only defined when such functions
are measurable. We consider processes modulo various bisimulation equivalences. We found out that these
are naturally defined if the processes are ‘bisimulation resilient’. This means that if a measurable set of
data elements belonging to some set of processes is extendedwith the data of all bisimilar processes, then
this set must be measurable again.

We provide a semantics for our language in terms of stochastic timed automata. Here, states correspond
to processes that are stochastically determined, which means that the outgoing transitions from states can
be done with certainty. The transitions end in a probabilityfunction, which given a set of states tells what
the probability is to end up in these states. As already shownin [7, 8] it is necessary to let the probability
function work on sets of states, as distributions can be dense. As transitions end in probability functions,
the operational rules have to be adapted to reflect this change. As processes can have initial stochastic
operators, automata have no initial state, but an initial probability distribution.

Subsequently, we define strong stochastic timed bisimulation for stochastically determined processes,
and general stochastic bisimulation for general stochastic processes. With stochastic timed bisimulation we
run into the difficulty that the common notion of strong bisimulation for probabilistic processes due to [14]
is not adequate. We have to make a small, but crucial extension saying that resulting probability functions
must not be compared on bisimulation equivalence classes ofstates, but on (sometimes uncountable)unions
of those equivalence classes. Although this may look like a small extension of the definition, it makes a
huge difference in the proofs that, becoming notationally more complex, are conceptually much easier than
our initial proof attempts. In order to understand intuitively that this extension is needed, we provide an
example in terms of processes.

For general processes, we also define a notion of general stochastic bisimulation, but as it is defined
on probability functions it hardly looks like a bisimulation. We actually provide this bisimulation in two
variants, but we have a strong preference for the second (although our congruence results apply to both of
them). The first variant very much resembles open p-bisimulation in [7].

We prove that both notions of bisimulation that we provide are congruences with respect to all process
operators that we use. These proofs turn out to be particularly involved and rely heavily on the theory
of measurable spaces. A nice place where bisimulations and measure theory meet is lemma 7.13 where
it is shown that an arbitrary finite sequence of measurable square sets can be replaced by a disjoint finite
sequence of measurable and bisimulation closed square setscovering the same area.

Most articles on stochastic process algebras restrict themselves to finite or exponential distributions.
General distributions are found in the work of Josée Desharnais, c.s. [6] but here no operators and congru-
ence results are studied. Absolutely noteworthy is the early work of Pedro D’Argenio c.s. [7, 8] where a
process algebra with general distributions over reals setting clocks is given. The clock setting and testing

2

operators of [7] and also the general language is more restricted than ours and in the semantics it is not
obvious that sets are always measurable when required. But from all the related work we could find, it is
certainly the closest. The work in [7] is also interesting because it provides sets of axioms characterizing
structural and open p-bisimulation on processes.

Structure of the paper. In section 2 we give a compact introduction of our timed process algebra with data.
In section 3 we give a concise overview of all those elements of basic measurability theory that we require.
In section 4 we define stochastic and determined process expressions. Section 5 provides the semantics
for these in terms of a timed stochastic automaton. In section 6 the definitions of strong stochastic timed
bisimulation, general stochastic bisimulation and bisimulation resilience are given and some elementary
properties are proven. Section 7 is the largest and it is usedto state and prove that the given bisimulations
are congruences. The last section provides some outlooks tofurther work.

Acknowledgements.We thank Mark Timmer, Suzana Andova, Tim Willemse, MuhammadAtif, and Jo-
hann Schuster for fruitful discussions and comments helping us to shape the theory in this paper. Thanks
especially go to Marielle Stoelinga who pinpointed a serious error in a late version of the paper.

2 A short description of process algebra with data

We work in the setting of mCRL2, which is a process algebra with data [9, 10]. Processes are constructed
from actions which we typically denote bya, b, c, which represent an atomic activity or communication.
Actions can carry data parameters, e.g.,a(3), b(π, [true, false]) are the actiona carrying the number3, and
the actionb carrying the realπ and a list with the booleanstrue andfalse.

Processes are constructed out of actions using various operators. The most important are the ‘·’ and+,
resp., the sequential and alternative composition operators. A processp·q represents a processp and upon
termination proceeds with processq. A processp+q stands for the process wherep or q can be done. The
first action determines whetherp or q is chosen. So, as an example, the processa·b+c·d can either do ana
followed by ab, of ac followed by ad.

There is a time operatorp֒t with t a non-negative real number, which says that the first action of process
p must take place at timet. So,a֒1·b֒2 is the process wherea happens at exactly time1 andb at exactly
time 2. In the setting of this paper actions cannot happen at the same time, and consecutive actions must
happen at consecutive moments in time. In mCRL2, multi-actions are allowed, which are collections of
actions that happen at the same instant in time. But as multi-actions are irrelevant for the issues studied in
this paper, we do not introduce them here.

A special process isδ, called deadlock or inaction, which is a process that cannotdo any action, and
which cannot terminate. So,δ·a = δ, because thea cannot be performed. In order to let data influence the
actions that can be performed, we use the if-then-else function, compactly denoted byb→p⋄q. Hereb is a
boolean expression. We useb→p as the if-then operator.

The processδ֒t is the process that can idle until timet and cannot proceed beyond that point. This is
called a time deadlock. Obviously, a process with a time deadlock can never exist in the real world. Related
to timed processes is the initialisation operatort≫p which is the process which must start after timet. This
operator is required for the operational semantics of the sequential composition operator in a timed setting.

In order to model parallel behaviour there is a parallel operatorp‖q. This expresses that the actions ofp
andq can happen in any interleaved fashion. Using a commutative and associative communication function
γ it is indicated how actions can communicate. E.g.,γ(r, s) = c indicates that actions with action labels
r ands can happen simultaneously, providedr ands have exactly the same data arguments. The resulting
action is calledc and also carries the same data asr ands. In order to enforce actions to communicate,
there is a block operator∂H(p) which blocks all actions with action labels inH. So, a typical pattern is
∂{r,s}(p ‖ q) with γ(r, s) = c, which expresses that actions with labelsr ands must communicate intoc.

In this paper we adopt an abstract approach towards data, namely, that a data type is a non empty set
D on which a number of functions are defined. There are no constraints on the cardinality ofD. Typical
instances ofD that are used frequently are the booleans (B) that contain exactly two elementstrue and
false, various sorts of numbers (N

+, N, Z, R). But also lists, sets, functions and recursive types are very

3

commonly used. For example sets of lists of reals, or a function from booleans to a recursively defined tree
structure are typical data types in a behavioural specification.

There are a number of process operators in mCRL2 that we do notconsider in this paper as they do
not contribute to this study. One operator that occurs in some examples is the generalised sum operator
∑

d:D p(d). It expresses the choice among the processesp(d) for anyd ∈ D. This is an interesting but
complex operator as it allows to make choice out of an unbounded number of processes. Its interaction
with the semantics of the stochastic operator is so tricky, that we decided to leave this operator out of this
study.

Another interesting language property that we do not address here is recursive behaviour, which in the
setting of mCRL2 is generally described using equations. E.g., the processX defined byX = a·X is the
process that can do an actiona indefinitely.

3 Mathematical properties of the data domains

In abstract expositions on process algebras with data in thestyle of mCRL2, data is given by a data algebra
A = (D, F) whereD is a set of non empty data domains andF contains constants and functions operating
on these domains. We typically denote data domains (also called sorts or types) by lettersD andE. We
assume the existence of the sortB which contains exactly two elements representingtrue andfalse and
has an equality predicate≈, where a predicate is just a function that maps intoB. Moreover, we assume the
existence of the sortR with reals with at least the predicates<,≤,≈ (equality),≥ and> and the constant
0. Reals are used in the time and bounded initialisation operators and booleans are used in the if-then-else
operator in processes expressions.

In the this section we identify the required properties thatdata sorts must have in a stochastic process
algebra. We strongly base ourselves on standard measurability theory [17]. In this reference, all important
definitions and proofs concerning measures and integrationcan be found.

We require that all the data domainsD are metric extended measurable spaces in the sense thatD has a
metricρD and a sigma algebraℑD with a measureµD : ℑD → R

≥0 ∪ {∞}. All these notions are defined
below. In cases where the domain is obvious from the context we tend to drop the subscripts ofρD, ℑD

andµD and write the metric, sigma algebra and measure associated to a domainD asρ, ℑ andµ. We
introduce the notion of a singleton closed measurable spaceas a measurable space where individual data
elements have a measure.

Given a measurable space we define integrals over measurablefunctions. This is required to calculate
the probability of being in some set of states. For given datadomainsD andD′, we use the product domain
D × D′. We indicate how metrics, measures and integrals are liftedto product data types.

First we introduce metrics and the notion of anǫ-neighbourhood, which we require to indicate that
certain events are probable when we are working with dense probability distributions.

Definition 3.1. A metricon a data domainD is a function

ρD : D × D → R
≥0

such that for allx, y, z ∈ D

• ρD(x, y) = 0 if and only if x = y,

• ρD(x, y) = ρD(y, x), and

• ρD(x, z) ≤ ρD(x, y) + ρD(y, z).

Definition 3.2. Let D,D′ be data domains with associated metricsρD, ρD′ respectively. Theproduct
metricρD×D′ on the data setD × D′ is defined as

ρD×D′((a, b), (a′, b′)) =
√

(ρD(a, a′))2 + (ρD′(b, b′))2

for all a, a′ ∈ D and allb, b′ ∈ D′.

4

Definition 3.3. Let D be a data domain with associated metricρD andǫ ∈ R such thatǫ > 0. For every
d ∈ D we define theǫ-neighbourhoodof d as

Uǫ(d) = {x ∈ D | ρD(d, x) < ǫ}.

Next, we introduce the notion of a measurable space, i.e., those subsets ofD closed under countable
unions and complements. A measureµD assigns some size to these subsets. For complex domains the
structure of such measurable spaces is not self evident, as exemplified by the Banach-Tarski paradox [2].

Definition 3.4. Let D be a data domain andℑD a nonempty family of subsets ofD, closed under countable
unions and under complements (and hence also under countable intersections). We callℑD asigma algebra
overD and the pair(D,ℑD) ameasurable space. An elementX∈ℑD is called ameasurable set.

Note that, ifX ∈ ℑD, thenD − X ∈ ℑD, soD ∈ ℑD, and hence∅ ∈ ℑD.

Definition 3.5. Let D be a data domain. We say, that a sigma algebraℑD overD is generated byX ⊆ 2D

iff ℑD is the smallest sigma algebra overD, which contains all the sets inX.

Definition 3.6. Let (D,ℑD) be a measurable space. Ameasureon (D,ℑD) is a functionµD : ℑD →
R

≥0 ∪ {∞} satisfying the following two conditions:

1. µD(∅) = 0.

2. For any countable sequence of disjoint setsX1,X2, . . . ∈ ℑD it holds that

µD





⋃

j

Xj



 =
∑

j

µD(Xj).

A measure is calledσ-finite if every X ⊆ D is equal to some countable union
⋃

i Yi whereYi ⊆ D and
µD(Yi) 6= ∞. We assume all our measures to beσ-finite.

Throughout this paper we require that we can speak about individual data elements, and therefore we
require all our measurable spaces to be singleton closed, asdefined below.

Definition 3.7. Let (D,ℑD) be a measurable space with a metricρD. We say that the(D,ℑD) is singleton
closediff ℑD contains at least{d} and theǫ-neighbourhood ofd for all d ∈ D andǫ > 0.

Typically, for continuous domains (e.g., time) the associated measure is the Lebesque measure defined
on the Lebesque-measurable subsets and for discrete domains it is a measureµ : 2D → R

≥0 ∪ {∞} such
thatµ({d}) = 1 for all d ∈ D. It is noteworthy that both measurable spaces are singletonclosed.

Definition 3.8. Let (D,ℑD) and(D′,ℑD′) be two measurable spaces with measuresµD andµD′ . Let
ℑD×D′ be the sigma algebra overD×D′ generated by the subsets of the formA×B, whereA ∈ ℑD and
B ∈ ℑD′ . We define theproduct measureµD×D′ : ℑD×D′ → R

≥0 ∪ {∞} as

µD×D′(X) = Sup

{

N
∑

i=1

(µD(Ai) × µD′(Bi))

}

,

where the supremum is taken over all finite sequences{Ai, Bi}
N
i=1 such thatAi ∈ ℑD, Bi ∈ ℑD′ ,

Ai × Bi ⊆ X and the setsAi × Bi are mutually disjoint.

Definition 3.9. A measurable data algebraA = (D, F) is a two tuple where

• D is a set with elements of the shape(D,ℑD, ρD) where(D,ℑD) is a singleton closed measurable
space andρD is a metric onD,

• F is a set of functions over the data domains inD, and

5

• The data domains are closed under products. I.e., if there are data domainsD andE in D, then there
is also a data domainD × E.

In this paper we ignore the difference between syntax and semantics of data types. Separating them can
be done in a standard way but would distract from the essence of this paper. Among others, this has as a
consequence that we treat the functions inF as syntactical objects to construct data expressions.

Next, we define measurable functions and integrals over these.

Definition 3.10. Let (D,ℑD) be a measurable space. A functionf : D → R
≥0 is called ameasurable

functioniff {d | f(d) ∈ J} ∈ ℑD for every open intervalJ ⊂ R.

Definition 3.11. Let S ⊆ D, whereD is some data domain. We define thecharacteristic functionof S,
χS : D → R

≥0, as follows

χS(x) =

{

1 if x ∈ S,
0 if x ∈ D − S.

Furthermore, letϕ(x) be some finite linear combination

ϕ(x) =

N
∑

j=1

ajχSj
(x), wherea1, . . . , aN ∈ R

≥0, S1, . . . , SN ∈ ℑD. (3.1)

Thenϕ is calleda simple function.

It is easy to prove that a simple function is measurable. Furthermore, note that a simple function is non-
negative.

Definition 3.12. Let (D,ℑD) be a measurable space with measureµD. Let ϕ : D → R
≥0 be a simple

function as in (3.1) withA ∈ ℑD. We define the integral

∫

A

ϕ dµD =

N
∑

j=1

ajµD(Sj ∩ A).

Let f : D → R
≥0 be any measurable function andA ∈ ℑD. We define the integral

∫

A

f dµD = sup{
∫

A

ϕ dµD | 0 ≤ ϕ ≤ f, ϕ is a simple function}.

Theorem 3.13.Let (D,ℑD) be a measurable space with measureµD. Let A,B ∈ ℑD, A ∩ B = ∅ and
f : D → R

≥0 be any measurable function. Then the integral off is additive in the sense that
∫

A∪B

f dµD =

∫

A

f dµD +

∫

B

f dµD.

Theorem 3.14. Let (D,ℑD) and (D′,ℑ′
D) be measurable spaces with measureµD andµ′

D. Let A ∈
ℑD, B ∈ ℑ′

D and letf : D → R
≥0 andg : D′ → R

≥0 are measurable functions. Then
∫

(a,b)∈A×B

f(a) · g(b) dµD×D′ =

∫

A

f dµD ·

∫

B

g dµD′

Theorem 3.15. Let (D,ℑD) be a measurable space with measureµD, f : D → R
≥0 a measurable

function,X ∈ ℑD andX1 ⊆ X2 ⊆ . . . a sequence of measurable subsets ofX such thatµD(
⋃∞

i=1 Xi) =
µD(X), then

∫

X

fdµD = lim
i→∞

∫

Xi

fdµD.

6

The following identity relates integrals over a product setX ∈ ℑA×B to its constituting domains.

Corollary 3.16. Let (D,ℑD) and(D′,ℑ′
D) be measurable spaces with measureµD andµ′

D and letX ⊆
D × D′.

∫

(a,b)∈X

f(a, b) dµD×D′ = Sup

{

N
∑

i=1

(∫

a∈Ai

∫

b∈Bi

f(a, b)dµD′dµD

)

}

wheref is a measurable function defined on the domainD×D′ and the supremum is taken over all possible
sequences{Ai, Bi}

N
1 such thatAi, Bi are measurable and

⋃N
i=1 Ai × Bi ⊆ X andAi × Bi are mutually

disjoint.

Whenf(a, b) = g(a) · h(b) theorem 3.14 simplifies to the following corollary.

Corollary 3.17. Let (D,ℑD) and(D′,ℑ′
D) be measurable spaces with measureµD andµ′

D and letX ⊆
D × D′.

∫

(a,b)∈X

f(a)·g(b) dµD×D′ = Sup

{

N
∑

i=1

(∫

a∈Ai

f(a)dµD ·

∫

b∈Bi

g(b)dµD′

)

}

wheref andg are measurable functions defined on the respective domainsD andD′, and the supremum
is taken over all possible sequences{Ai, Bi}

N
1 such thatAi, Bi are measurable and

⋃N
i=1 Ai × Bi ⊆ X

andAi × Bi are mutually disjoint.

4 A simple stochastic operator

We take the basic process algebraic operators from mCRL2 andenhance them with a simple notation to
draw an element from a certain data type with a certain probability. For this we use the following notation
(cf. [12] where the same notation has been used):

f

d:D
p,

wheref : D → R
≥0 is a measurable function such that

∫

D

fdµD = 1.

This notation represents the processp(d) whered is drawn from the domainD with a probability dis-
tribution, which is defined by the functionf . For a finite or countableD the functionf represents the
distribution directly. For bigger domains it represents the corresponding probability density function. The
probability that an element will be drawn from a measurable subsetX ⊆ D is defined as

Prob(x∈X) =

∫

X

fdµD.

Note that with a countable domainD with a measure defined asµD({d}) = 1 for all d ∈ D, the probability
that a concrete elementd is drawn is

Prob(x=d) = f(d).

Example 4.1.The behaviour of a lightbulb which is installed at timest , breaks down at timest + t, and
which is subsequently repaired at timest + t + u is described by:

install ֒st
N∞

0 (µ, σ2)

t :R
break down֒(st+t)·

N∞
0 (µ, σ2)

u:R
repair ֒(st+t+u),

wheret andu are distributed according to the normal distributionN∞
0 (µ, σ2) truncated to the interval

[0,∞).

7

We consider the following syntax for processes, of which thenon stochastic operators have been explained
in section 2. Note that a determined (stochastic) process expression is just a process expression, except that
there can not be an initial occurrence of the stochastic operator.

Definition 4.2. Let A = (D, F) be some data algebra. An expression satisfying the following syntax is
called a(stochastic) process expression:

P ::= a | δ | P+P | P ·P | b→P⋄P | P ֒u | u≫P | f
d:D P | P‖P | ∂H(P).

An expression satisfying the following syntax is called a(stochastically) determined process expression:

Q ::= a | δ | Q+Q | Q·P | b→Q⋄Q | Q֒u | u≫Q | Q‖Q | ∂H(Q).

Here b is a boolean data expression andu is a data expression of sortu from the data algebra. If we
use a domainD in the stochastic operatorf

d:D thenf always has to be a measurable function fromD to
R

≥0 such that
∫

d∈D
f(d)dµD = 1. We writeP for the set of process expressions, andPdet for the set of

stochastically determined process expressions.

If we can freely use the data types, then it is possible to write down process expressions that have no
reasonable meaning in a stochastic sense. In definition 6.2 we provide a general semantical constraint that
implies that processes are stochastically well defined. This constraint may limit the use of data expressions
that occur in for instance conditions. As our attention is a semantical one, we do not work out these
restrictions here, but assume in the sequel that we use data expressions with the appropriate constraints.

We introduce a functiondet which makes a process stochastically determined by removing all initial
occurrences of the stochastic operator.

Definition 4.3. We define the functiondet : P → Pdet recursively on the syntactic structure of processes.
Belowp, q ∈ P, t ∈ R andb ∈ B.

det(a) = a
det(δ) = δ
det(p + q) = det(p) + det(q)
det(p · q) = det(p) · q
det(b→p⋄q) = b→det(p)⋄det(q)
det(p֒t) = det(p)֒t
det(t≫p) = t≫det(p)

det(f
d:D p) = det(p)

det(p‖q) = det(p) ‖ det(q)
det(∂H(p)) = ∂H(det(p))

By induction on the structure of determined process expressions we can prove the following lemma:

Lemma 4.4.Let p ∈ Pdet , thendet(p) = p.

5 Semantics

In this section we define the semantics of our stochastic process language. The semantics of a stochastic
process is a timed stochastic automaton, which is defined first. A stochastic automaton has states, which
correspond to stochastically determined processes. Furthermore, there are probability functions that, given
a set of states, indicate what the probability is to be in one of these states. Especially, there is not an initial
state, but an initial probability function, because due to initial stochastic operators, it can be that the initial
states are only known with a certain probability distribution.

As we have time, there are two types of transitions, i.e., ordinary transitions labelled with an action and
a time tag, and idle transitions, labelled with time, indicating that time can pass. Each ordinary transition
goes from a state to a probability function because we sometimes only know the resulting state with a
certain probability. Idle transitions go neither to a statenor to a probability function.

After providing the general definition of a timed stochasticautomaton, we define the semantics of a
process expression in terms of such an automaton using a set of structured operational semantical rules.

8

Definition 5.1. A timed stochastic automatonis a five tuple(S,Act ,F ,−→,;, f0, T) where

• S is a set of states.

• Act is a set of actions.

• F is a set ofprobability functionsf : 2S→[0, 1]∪ {⊥} that can assign a probability to sets of states.
If the probability is not defined for some set of statesX, thenf(X) = ⊥.

• −→⊆ S × Act × R
>0 × F is a transition relation. The expressions

a
−→t f says that a traversal is

made from states to probability functionf by executing actiona at timet.

• ;⊆ S × R
>0 is theidle relation. The predicates ;t expresses that it is possible to idle until and

including timet in states.

• f0 is theinitial probability function.

• T ⊆ S is the set ofterminating states.

Every timed transition system must satisfy theprogressanddensityrequirements. Lets, s′ ands′′ be some
states inS, a anda′ some actions inAct andt, t′ ∈ R

>0 some points in time. The progress requirement
says that

if s
a

−→t s′
a′

−→t′ s′′ or s
a

−→t s′ ;t′ , thent′ > t.

The density requirement expresses that for any actiona ∈ Act , statess, s′ ∈ S and timet ∈ R
>0

if s
a

−→t s′ or s ;t, then s ;t′

for any0 < t′ ≤ t.

Below we define how a stochastic timed automaton is obtained from a stochastic process expression.
The first main ingredient is the functionStoch (see definition 5.6). The probability functionStoch(p)
applied to a set of statesX gives the probability that in processp one can end up in one of the states inX.
Typically, Stoch(p) represents the initial probability function of the timed probabilistic automaton which
is the semantics ofp.

All definitions up to definition 5.6 are required to defineStoch. The functionstochvar(p) provides
the initial stochastic domains in processp. If there are no stochastic domains, whenp is a stochastically
determined process, thenstochvar(p) = {∅}, i.e., the set containing the empty set. The density function
JpK applied to an element of a data domain, provides the probability that this element is chosen in the initial
stochastic operator inp. Using a functionDp states are translated to the matching data elements forp.

Definition 5.2. Let p be an arbitrary process expression. We define thedomain of its unguarded stochasti-
cally bounded data variablesstochvar(p) inductively as follows:

stochvar(a) = {∅}
stochvar(δ) = {∅}
stochvar(p + q) = stochvar(p) × stochvar(q)
stochvar(p · q) = stochvar(p)
stochvar(b→p⋄q) = stochvar(p) × stochvar(q)
stochvar(p֒t) = stochvar(p)
stochvar(t≫p) = stochvar(p)

stochvar(f
d:D p) = D × stochvar(p)

stochvar(p‖q) = stochvar(p) × stochvar(q)
stochvar(∂H(p)) = stochvar(p)

By induction on the structure of determined process expressions we can prove the following lemma.

9

Lemma 5.3. If p ∈ Pdet , thenstochvar(p) = {∅}.

Definition 5.4. Let p be a stochastic process expression. Thedensity functionof p, denoted byJpK, is a
function

JpK : stochvar(p) −→ R,

which is inductively defined as follows:

JaK = λd:{∅}.1
JδK = λd:{∅}.1

Jp + qK = λ~d:stochvar(p), ~e:stochvar(q).JpK(~d)·JqK(~e)
Jp · qK = JpK

Jb→p⋄qK = λ~d:stochvar(p), ~e:stochvar(q).JpK(~d)·JqK(~e)
Jp֒tK = JpK
Jt≫pK = JpK

J f
d:DpK = λd:D, ~d:stochvar(p).f(d)·Jp(d)K(~d)

Jp‖qK = λ~d:stochvar(p), ~e:stochvar(q).JpK(~d)·JqK(~e)
J∂H(p)K = JpK

Note that for any stochastic process expressionp it is the case thatJpK is a measurable function on
(stochvar(p),ℑstochvar(p)). This is due to the fact that eachf in a stochastic operator is a measurable
function, and the product of measurable spaces is again a measurable space (see section 3). Observe also
that for any stochastically determined process expressionp we have

JpK(∅) = 1.

Definition 5.5. Let X ⊆ S be an arbitrary set of determined processes andp an arbitrary (not necessarily
determined) process. We define thedata projection ofX w.r.t. p as follows

Dp(X) = {d ∈ stochvar(p) | det(p)(d) ∈ X}.

Definition 5.6. Let p be a stochastic process expression. We defineStoch(p) by

Stoch(p)(X) =







∫

Dp(X)

JpK dµstochvar(p) if Dp(X) is a measurable set,

⊥ otherwise.

In the tables 1, 2, 3 rules are given for the operational semantics. In these tables we use the following
auxiliary notion of a termination detecting distribution function. This function yields probability 1 on a set
of states iff there is a terminating state among them.

Definition 5.7. Let S = Pdet ∪ {X}. The termination checking distribution functionfX is defined as
follows whereX∈2S is a set of states.

fX(X) =

{

1 if X ∈ X,
0 otherwise.

Furthermore, we extend the definitions ofstochvar anddet to the termination symbolX.

stochvar(X) = {∅},
det(X) = X.

Definition 5.8. Let A = (D, F) be a measurable data algebra and letp be a process expression. The
semantics of a processp is defined by the timed stochastic automaton(S,Act ,F ,−→,;, f0, T) of which
the components are given by

10

a
a

−→t fX

t>0 a ;t δ ;t

p
a

−→t f

p+q
a

−→t f

p ;t
p+q ;t

q
a

−→t f

p+q
a

−→t f

q ;t
p+q ;t

p
a

−→t fX

p·q
a

−→t Stoch(t≫q)

p
a

−→t f

p·q
a

−→t λU :2S .f({r|r·q∈U})
f 6= fX

p ;t
p·q ;t

p
a

−→t f

(b→p⋄q)
a

−→t f
(b≈true)

p ;t

(b→p⋄q) ;t
(b≈true)

q
a

−→t f

(b→p⋄q)
a

−→t f
(b≈false)

q ;t

(b→p⋄q) ;t
(b≈false)

Table 1: Operational rules for the basic operators

p
a

−→t f

p֒t
a

−→t f

p ;t
p֒u ;t

(t ≤ u)

p
a

−→t f

u≫p
a

−→t f
(u ≤ t)

p ;t
u≫p ;t u≫p ;t

(t ≤ u)

Table 2: Operational rules for the time operator and the bounded initialisation operator

• S = Pdet ∪ {X}.

• F is the set of all probability functionsf : 2S → [0, 1] ∪ {⊥}.

• −→ and; are recursively defined by the inference rules in tables 1, 2,3. The multiplication used in
the rule for the parallel operator in table 3 between possibly undefined probabilities is undefined if
one or both of its constituents is undefined.

• f0 = Stoch(p).

• T = {X}.

11

p
a

−→t fX, q ;t

p‖q
a

−→t Stoch(t≫q)

p
a

−→t f, q ;t

p‖q
a

−→t λU :2S .f({r|(r‖t≫q)∈U})
f 6= fX

p ;t, q
a

−→t fX

p‖q
a

−→t Stoch(t≫p)

p ;t, q
a

−→t f

p‖q
a

−→t λU :2S .f({r|(t≫p‖r)∈U})
f 6= fX

p
b

−→t f, q
c

−→t g

p‖q
a

−→t λU :2S .f({r|∃s.r‖s ∈ U})·g({s|∃r.r‖s ∈ U})
γ(b, c) = a, f 6= fX, g 6= fX

p
b

−→t f, q
c

−→t fX

p‖q
a

−→t f
γ(b, c) = a, f 6= fX

p
b

−→t fX, q
c

−→t g

p‖q
a

−→t g
γ(b, c) = a, g 6= fX

p
b

−→t fX, q
c

−→t fX

p‖q
a

−→t fX

γ(b, c) = a

p ;t, q ;t

p‖q ;t

p
a

−→t f

∂H(p)
a

−→t λU :2S .f({r|(∂H(r)∈U})
a /∈ H

p ;t

∂H(p) ;t

Table 3: Structured operational semantics for the paralleland the encapsulation operator

6 Stochastic timed bisimulation and general stochastic bisimulation

In this section two equivalences to relate stochastic processes are given and some elementary properties
about them are proven.

The first equivalence only relates determined stochastic processes that form the states of automata
constituting the semantics of stochastic processes. The equivalence is formulated as a bisimulation, and it
is inspired by the classical definition from [14]. There is a notable and important difference namely that the
resulting probability functions must be equal for allunionsof equivalence classes. This is required to deal
with the potentially continuous nature of our data domains.After the definition we provide a motivating
example to illustrate this necessity.

In definition 6.9 we define general stochastic bisimulation for arbitrary processes which is the core
equivalence we are interested in. As arbitrary processes are interpreted as probability distributions, general
stochastic bisimulation is defined in terms of probability functions and therefore it looks quite different
from an ordinary definition of bisimulation.

Definition 6.1. Let (S,Act ,F ,−→,;, f0, T) be a stochastic automaton as defined in definition 5.8. We
say that an equivalence relationR is a strong stochastic timed bisimulationiff it satisfies for all states
s, s′ ∈ S such thatsRs′

if s
a

−→t f for somef ∈ F , then there is anf ′ ∈ F such that
s′

a
−→t f ′ and for allX ⊆ S/R it holds thatf(

⋃

X) = f ′(
⋃

X).

Furthermore,

if s ;t, thens′ ;t .

Finally,

if s ∈ T, thens′ ∈ T.

12

We say that two statess, s′ ∈ S arestrongly stochastically timed bisimilar, notations↔––dts
′, iff there is a

strong stochastic timed bisimulationR such thatsRs′. The relation↔––dt is calledstrong stochastic timed
bisimulation equivalence.

For closed stochastically determined process expressionsp andq we say that they arestrongly stochas-
tically timed bisimilar, notationp↔––dtq, if p andq are strongly stochastically timed bisimilar states. Ifp and
q are open stochastically determined process expressions, then we say that they arestrongly stochastically
timed bisimilar, notationp↔––dtq, iff they arestrongly stochastically timed bisimilarfor all closed instances.

The necessity of using unions of equivalence classes in the definition above can be seen by considering the
following two determined stochastic processes:

a1·
f

r:R
a2(r) and a1·

f

r:R
a2(r+1) (6.1)

wheref is some continuous distribution such that for everyr it is the case thatf(r) = 0. The two proba-
bility functions that are reached after performing ana1 action in both processes is given by respectively:

f1 = Stoch(
f

r:R
a2(r)) and f2 = Stoch(

f

r:R
a2(r+1)).

Every bisimulation equivalence classX∈S/↔––rt
containsa2(r) for somer. Therefore, it is the case that

f1(X) = 0 andf2(X) = 0. So, if a single equivalence class were used in definition 6.1both processes
in formula (6.1) would be considered equivalent. Using unions of equivalence classes this problem is very
naturally resolved.

Definition 6.1 has an undesired feature, namely that it defines that processes are bisimilar when actions
can happen with undefined probabilities. Consider the following two processes.

p1 = a1·
f

d:D
b(d) → a2 ⋄ δ,

p2 = a1·
f

d:D
b(d) → δ ⋄ a2

whereb is a non measurable predicate ond. For the real numbersb could represent membership in some
Vitali set. Both processes are stochastically timed bisimilar, because after doing ana1 action, the probabil-
ity of ending up in the bisimulation equivalence class wherea singlea2 action can be performed can not
be measured. The probability in both cases is undefined, and therefore equal.

One might try to avoid equating the processesp1 andp2 by stating that processes cannot be equal
whenever their probabilities are undefined. But this has as aconsequence that bisimulation is not reflexive.
In such a casep1 is not equal to itself, because the probabilities of doing ana2 after doing thea1 action
cannot be determined.

In order to avoid such anomalies we introduce the following constraint. The lemma following the the-
orem explains the use of the definition, saying that for all bisimulation closed sets of states, the associated
set of data values is always measurable.

Definition 6.2. Let A be a measurable data algebra andp be a process expression. We say thatp is
bisimulation resilientwith respect toA iff for all stochastic process expressionsp and every measurable
setsA ⊆ stochvar(p) the set

{e∈stochvar(p) | ∃d∈A.det(p)(e) ↔––dt det(p)(d)}

is also a measurable set.

Lemma 6.3. Let A be a measurable data algebra andp a process expression that is bisimulation resilient
with respect toA. For allX⊆S/↔––dt

the setDp(
⋃

X) is measurable.

The next lemma is a very useful workhorse to prove relations to be stochastically timed bisimilar as it
summarises reasoning occurring in almost every proof.

13

Lemma 6.4. Let F be a set of functions from2S to [0, 1] ∪ {⊥} and letR,R′ ⊆ S × S be two equiva-
lence relations such thatR ⊆ R′. If for arbitrary f, f ′ ∈ F such that for allX⊆S/R it is the case that
f(

⋃

X)=f ′(
⋃

X), it also holds that for allY ⊆S/R′ it is the case thatf(
⋃

Y)=f ′(
⋃

Y).

Proof. As bothR andR′ are equivalence relations andR′ containsR, every equivalence class inS/R′ must
be composed of one or more equivalence classes fromS/R. Hence, for allX∈S/R′ there areHX ⊆ S/R
such thatX =

⋃

HX . Take an arbitraryY ⊆ S/R′, i.e. Y =
⋃

i∈I Yi, whereYi ∈ S/R′, and arbitrary
f, f ′∈F such that for allH⊆S/R it is the case thatf(

⋃

H)=f ′(
⋃

H). Then it holds

f(Y) = f

(

⋃

i∈I

Yi

)

= f

(

⋃

i∈I

⋃

HYi

)

= f ′

(

⋃

i∈I

⋃

HYi

)

= f ′

(

⋃

i∈I

Yi

)

= f ′(Y)

because{HYi
| i ∈ I} ⊆ S/R. 2

The following self evident theorem is provided explicitly because its proof is not self evident. Moreover,
history shows that given the complexity of the definition of strong stochastic timed bisimulation, such
theorems are not always correct and therefore worthy of being provided explicitly. The same holds for
lemma 6.6 which is also very elementary.

Theorem 6.5.Strong stochastic timed bisimulation equivalence(↔––dt) is an equivalence relation.

Proof. Reflexivity and symmetry follow directly from the fact that astrong stochastic timed bisimulation
relation is an equivalence relation. The proof of transitivity goes as follows.

Assume for arbitrary statess, s′, s′′ ∈ S thats↔––dts
′ ands′↔––dts

′′. This means that there are strong
stochastic timed bisimulation relationsR andR′ such thatsRs′ and s′R′s′′. Below we show that the
transitive closure ofR ∪ R′, which we callR̃, is also a strong stochastic timed bisimulation relation. The
relationR̃ clearly relatess ands′′, sos ↔––dt s′′.

So, we are to show that̃R is a strong stochastic timed bisimulation. Assume that there are some statess
ands′ (different from those in the previous paragraph) such thatsR̃s′. This means thats ands′ are related
via a sequence

sR1s1R2s2 . . . sn−1Rns′ (6.2)

whereRi is eitherR or R′. By an inductive argument on (6.2) it follows that whens ;t, thens′ ;t, and
with the same argument that ifs∈T , thens′∈T .

Using (6.2) it also follows that ifs
a

−→t f , thens1
a

−→ f1, s2
a

−→ f2, etc., until ultimatelys′
a

−→t f ′.
In order to prove that̃R is a strong stochastic timed bisimulation, we must show for any X⊆S/R̃ that
f(

⋃

X) = f ′(
⋃

X). We know thatR, R′ andR̃ are equivalence relations,R,R′ ⊆ R̃ and for arbitrary
fi, fi+1 we have∀X ⊆ S/R.fi(

⋃

X) = fi+1(
⋃

X) or ∀X ⊆ S/R′.fi(
⋃

X) = fi+1(
⋃

X). Therefore,
from lemma 6.4 it follows∀X ⊆ S/R̃.fi(

⋃

X) = fi+1(
⋃

X).
By inductively applying this argument using (6.2) it follows thatf(

⋃

X) = f ′(
⋃

X). 2

Lemma 6.6. Strong stochastic timed bisimulation equivalence(↔––dt) is a strong stochastic timed bisimu-
lation relation.

Proof. From theorem 6.5 we have that↔––dt is an equivalence relation. So, choose arbitrary(p, q)∈↔––dt .
From the definition of↔––dt it follows that there is some strong stochastic timed bisimulation R such that
(p, q) ∈ R.

Therefore ifp
a

−→t f , then there is anf ′ such thatq
a

−→t f ′ and for allX ⊆ S/R it holds that
f(

⋃

X) = f ′(
⋃

X). As R ⊆ ↔––dt , using lemma 6.4 we getf(
⋃

Y) = f ′(
⋃

Y) for all Y ⊆ S/↔––dt
.

Furthermore from(p, q) ∈ R it follows that if p ;t, thenq ;t and if p ∈ T, thenq ∈ T . So, we have
shown that↔––dt is a strong stochastic timed bisimulation relation. 2

The following lemma says thatfX is in a sense unique, because using the operational semantics, it can
only be ‘simulated’ byfX and no other probability function.

14

Lemma 6.7.Consider two stochastically determined process expressionsp andq. If p↔––dtq andp
a

−→t fX,
thenq

a
−→t fX.

Proof. As p↔––dtq andp
a

−→t fX, we find for some probability functionf thatq
a

−→t f such that for all
X⊆S/↔––dt

it is the case thatf(
⋃

X)=fX(
⋃

X). Consider the setS of all bisimulation classes, except{X},
defined byS={U⊆S | U∈S/↔––dt

}. So,f(
⋃

S)=fX(
⋃

S)=0 andf((
⋃

S)∪{X})=fX((
⋃

S)∪{X})=1.

With induction on the derivation ofq
a

−→t f it can be shown that if there is aX⊆S such thatX/∈X and
f(X)6=f(X ∪ {X}), thenf=fX. 2

Before we are ready to provide our main equivalence notion, we need one final preparatory definition to
determine whether there is a data elementd such that it is conceivable to end up inp(d). If d is a dense
domain,Stoch(p)({d}) is most likely equal to0 for any datumd. In order to determine whetherp(d) is
possible, we look at an arbitrary small epsilon environmentUǫ(d) aroundd and check that the probability
to be in this environment is larger than0.

Definition 6.8. Let p be an arbitrary stochastic process. We say that~d∈stochvar(p) is possiblein p iff for
all real numbersǫ>0 it holds

∫

Uǫ(~d)

JpK dµ > 0,

whereUǫ(~d) is theǫ-neighbourhood ofd with respect toρstochvar(p) (see definition 3.3).

We are now ready to provide our main equivalence between arbitrary stochastic processes.

Definition 6.9. Let p, q be two closed stochastic process expressions. We say thatp andq aregenerally
stochastically bisimilar(denotedp↔––q) iff for all X⊆S/↔––dt

it holds that

Stoch(p)(
⋃

X) = Stoch(q)(
⋃

X).

and for allpossibled in p there exists somepossiblee in q such that

det(p)(d) ↔––dt det(q)(e)

The relation↔–– is calledgeneral stochastic bisimulation.

Note that it is immediately obvious from the definition that general stochastic bisimulation is an equivalence
relation.

Corollary 6.10. If p ↔–– q then for allX ⊆ S/↔––dt
it holds that

Dp(
⋃

X) is measurable iffDq(
⋃

X) is measurable.

Proof. This corollary is a direct consequence of definition 5.6. 2

It is possible to work with a weaker definition of general stochastic bisimulation, which consists of only
the first condition of definition 6.9. Our inspection indicates that all congruence results carry over to this
setting.

However, for the weaker definition the generalised sum operator is not a congruence. This can be seen
by the following example. The notationr≈x represents equality between the data elementsr andx.

px =
f

r:R
(r≈x) → a ⋄ δ and q =

f

r:R
δ

wheref is some continuous distribution andµ is the Lebesque measure withf(r) = 0 and
∫

Uǫ(r)
fdµ > 0

(i.e.,r is possible inpx) for anyr ∈ R. Note that most common continuous distributions satisfy this.

15

The processespx andq are not generally stochastically bisimilar, as the ‘possible’ a action ofpx cannot
be mimicked byq. But they are related in the weaker variant because the classof stochastically determined
processes bisimilar tox≈x→a⋄δ has probability zero.

However, if we put the generalised sum operator in front of both sides, we obtain

∑

x:R

f

r:R
(r≈x) → a ⋄ δ and

∑

x:R

f

r:R
δ. (6.3)

The process at the left can do ana step with a positive probability, although without a precise semantics
the argument is still intuitive. Take for instancef(r) = e−r for r > 0, otherwisef(r) = 0. Then
the probability of being able to do ana action in the process at the left of equation (6.3) is1 minus the
probability that noa step can be done:

1 −
∏

r:R

(1 − f(r)dµr) = 1 − e
R

∞

0
f(r)dµr = 1 − e−1 ≈ 0.632.

The process at the right of equation (6.3) can do noa step at all. So, the so desired congruence property
does not hold, which is of course due to the fact that the sum operator can combine an unbounded number
of processes.

The generalised sum operator is a very important operator. Therefore we decided to consider processes
px andq non bisimilar, which is ensured by the second condition in the definition of general stochastic
bisimulation.

The following lemma tells us that for determined stochasticprocesses our definitions of bisimulation
coincide.

Lemma 6.11.Two bisimulation resilient, stochastically determined processesp andq are generally stochas-
tically bisimilar if and only if they are strongly stochastically bisimilar, i.e.,

p ↔–– q if and only if p ↔––dt q.

Proof. Let p, q be bisimulation resilient and stochastically determined processes. Therefore for arbitrary
X⊆S/↔––dt

it holds

Stoch(p)(X) =

{

1 iff p ∈ X
0 iff p /∈ X

Stoch(q)(X) =

{

1 iff q ∈ X
0 iff q /∈ X

1. Let p↔––q. Then for allY ⊆S/↔––dt
it holds Stoch(p)(

⋃

Y)=Stoch(q)(
⋃

Y). In particular, for all
C∈S/↔––dt

we haveStoch(p)(C)=Stoch(q)(C). Therefore eitherStoch(p)(C)=Stoch(q)(C)=1
and bothp, q are inC orStoch(p)(C)=Stoch(q)(C)=0 and bothp, q are not in C. Thereforep↔––dtq.

2. Letp↔––dtq. Then obviously the second case of definition 6.9 is satisfiedasdet(p)=p anddet(q)=q.
For the first case, observe that for allY ⊆S/↔––dt

either bothp andq are in
⋃

Y or neither of them
is. Hence, eitherStoch(p)(

⋃

Y) = 1 = Stoch(q)(
⋃

Y) or Stoch(p)(
⋃

Y) = 0 = Stoch(q)(
⋃

Y).
Therefore,p↔––q.

By putting both direction together this lemma is proven. 2

7 The stochastic bisimulation relations are congruences

The following section is completely devoted to proving thatstrong stochastic timed bisimulation and gen-
eral stochastic bisimulation are congruences. There is onesnag, namely that the sequential composition
operator for determined processes allows a general stochastic process expression as its second argument.
Therefore, the congruence theorem for the sequential composition for strong stochastic timed bisimulation
(theorem 7.11) has the slightly unusual formulation:

p↔––dtp
′ and p↔––q′ implies p·q↔––dtp

′·q′.

16

All other formulations are exactly as expected.
The proofs are quite technical. For strong stochastic timedbisimulation, a relationR is given that

is proven to satisfy all properties of a bisimulation. A complication is thatR must be an equivalence
relation. This is achieved by considering the transitive closure ofR. Definition 7.1 and lemma 7.2 are
tools to compactly deal with the typical reasoning that occurs in every congruence proof of strong timed
bisimulation.

The congruence results for general stochastic bisimulation have as most complex aspect that they use
multiplication of probability functions. These can be calculated using corollary 3.17 as the supremum of
a finite approximation of squares{Di, Ei}

N
i=1. However, in the proofs it is essential that the domainsDi

andEi are bisimulation closed (cf. definition 7.12) and pairwise disjoint. Lemma 7.13 shows that a longer
but still finite sequence{D∗

j , E∗
j }

M
j=1 with the required properties can be constructed.

Definition 7.1. Let (S,Act ,F ,−→,;, f0, T) be a stochastic automaton. We say that a symmetric and
transitive relationρ ⊆ S × S is a partial strong stochastic timed bisimulationiff for all statess, s′ ∈ S
such thatsρs′ it satisfies

if s
a

−→t f for somef ∈ F , then there is anf ′ ∈ F such that
s′

a
−→t f ′ and for allX ⊆ S/(ρ∪↔––dt)∗

it holds thatf(
⋃

X) = f ′(
⋃

X).

Furthermore,

if s ;t, thens′ ;t .

Finally,

if s ∈ T, thens′ ∈ T.

The expression(ρ∪↔––dt)
∗ denotes the transitive closure ofρ∪↔––dt . Note that(ρ∪ ↔––dt)

∗ is an equivalence
relation. This follows from the the symmetry of bothρ and↔––dt , from the reflexivity of↔––dt and from the
fact that it is a transitive closure.

Lemma 7.2.Let (S,Act ,F ,−→,;, f0, T) be a stochastic automaton. Letρ ⊆ S × S be a partial strong
stochastic timed bisimulation relation. Then the transitive closure ofρ ∪↔––dt is a strong stochastic timed
bisimulation relation.

Proof. Let R be the transitive closure ofρ∪ ↔––dt . As↔––dt is reflexive,R has to be reflexive, too. Further-
more, since bothρ and↔––dt are symmetric,R has to be symmetric, too. Transitivity ofR is obvious and
henceR is an equivalence relation.

We now show thatR is also a strong stochastic timed bisimulation relation. Choose arbitrary(s, s′) ∈
R. From the definition of transitive closure it follows that

u02u12 · · ·2uk, for someu0, . . . , uk ∈ S such thatu0 = s anduk = s′, where2 is eitherρ or↔––dt .

Now, we prove by induction for all0 ≤ i ≤ k, that the following properties hold:

1. if s
a

−→t f for somef ∈ F , then there is af ′ ∈ F such thatui
a

−→t f ′ and for allX ⊆ S/R it
holds thatf(

⋃

X) = f ′(
⋃

X).

2. if s ;t, thenui ;t.

3. if s ∈ T, thenui ∈ T .

Note that using symmetry, it follows directly from these properties thatR is a strong stochastic timed bisim-
ulation. Properties 2 and 3 follow straightforwardly from the definitions ofρ and↔––dt . We concentrate on
property 1.

Foru0 we haveu0 = s and therefores ↔––dt u0. From lemma 6.6 we have that ifs
a

−→t f , then there is
somef ′ such thatu0

a
−→t f ′ and for allX ⊆ S/↔––dt

it is the case thatf(
⋃

X) = f ′(
⋃

X). As↔––dt⊆ R,
and↔––dt andR are equivalences, lemma 6.4 yields that for allX ⊆ S/R it holds thatf(

⋃

X) = f ′(
⋃

X).

17

Now suppose that properties 1 holds for allu0, . . . , ui. We show that it holds forui+1. There are two
cases to consider. Eitheruiρui+1 or ui ↔––dt ui+1.

If ui ↔––dt ui+1, then from lemma 6.6 we have ifui
a

−→t f ′, then there is somef ′′ such thatui+1
a

−→t

f ′′ and for allX ⊆ S/↔––dt
it holds thatf ′(

⋃

X) = f ′′(
⋃

X). As ↔––dt⊆ R, and both are equivalences,
lemma 6.4 yields that forallX ⊆ S/R it is the case thatf ′(

⋃

X) = f ′′(
⋃

X).
If uiρui+1 then from the definition of partial strong stochastic bisimulation there is somef ′′ such that

ui+1
a

−→t f ′′ and asρ ⊆ R, it follows using lemma 6.4 that for allX ⊆ S/R it holds thatf ′(
⋃

X) =
f ′′(

⋃

X).
Together we havef(

⋃

X) = f ′(
⋃

X) = f ′′(
⋃

X) for all X ⊆ S/R. Therefore, property number 1
holds. 2

Theorem 7.3.Strong stochastic timed bisimulation equivalence is a congruence for the at (p֒t) operator.

Proof. Let u ∈ R
≥0. Defineρ = {(p֒u, q֒u) | p↔––dtq} and letR be the transitive closure ofρ ∪ ↔––dt .

Choose arbitrary(p֒u, q֒u) ∈ ρ.

1. If p֒u
a

−→t f , thenp
a

−→t f andt = u. As p↔––dtq, there must be someg ∈ F such thatq
a

−→t g
andf(

⋃

X) = g(
⋃

X) for all X ⊆ S/↔––dt
. As t = u, alsoq֒u

a
−→t g.

From lemma 6.4 it follows thatf(
⋃

Y) = g(
⋃

Y) for all Y ⊆ S/R.

2. If p֒u ;t, thent ≤ u andp ;t. As p↔––dtq, alsoq ;t and hence (ast ≤ u) q֒u ;t.

3. It is never the case, thatp֒u ∈ T .

Thereforeρ is a partial strong stochastic timed bisimulation and from lemma 7.2 it follows that the transitive
closure ofρ ∪ ↔––dt is a strong stochastic timed bisimulation relation. Hence,strong stochastic timed
bisimulation equivalence is a congruence for the֒ operator.

2

Theorem 7.4.Strong stochastic timed bisimulation equivalence is a congruence for the≫ operator.

Proof. Let u ∈ R
≥0. Defineρ = {(u≫p, u≫q) | p ↔––dt q} and letR be the transitive closure ofρ∪↔––dt .

Choose arbitrary(u≫p, u≫q) ∈ ρ. If u≫p
a

−→t f , thenu≤t andp
a

−→t f . Becausep↔––dtq, we have
q

a
−→t g and alsou≫q

a
−→t g, where for allX ⊆ S/↔––dt

it holds thatf(
⋃

X) = g(
⋃

X). From lemma
6.4 it follows thatf(

⋃

Y) = g(
⋃

Y) for all Y ⊆ S/R.
Furthermoreu≫p ;t means that eithert<u and thereforeu≫q ;t, or p ;t and thereforeq ;t and

hence alsou≫q ;t. Finally, note that it is never the case thatt≫p ∈ T .
Therefore,ρ is a partial strong stochastic timed bisimulation and from lemma 7.2 it follows thatR is a

strong stochastic timed bisimulation relation. Hence, strong stochastic timed bisimulation equivalence is a
congruence for the≫ operator. 2

Theorem 7.5.Strong stochastic timed bisimulation equivalence is a congruence for the encapsulation (∂H)
operator.

Proof. Let H ⊆ Act be a set of action labels. DefineR = {(∂H(p), ∂H(q)) | p↔––dtq} ∪ {(p, p) | p ∈ S}.
Choose arbitrary(p1, q1) ∈ R. The case whenp1 = q1 is trivial, therefore it is sufficient to consider only
the case whenp1 = ∂H(p) andq1 = ∂H(q) for somep, q ∈ Pdet such thatp ↔––dt q.

If ∂H(p)
a

−→t f , thena 6∈ H andp
a

−→t f ′ wheref = λU :2S .f ′({r|∂H(r) ∈ U}). As p↔––dtq,
it follows that q

a
−→t g′ such that for allX ⊆ S/↔––dt

it holds f ′(
⋃

X) = g′(
⋃

X). Consequently,

∂H(q)
a

−→t g whereg = λU :2S .g′({r|∂H(r) ∈ U}).
Let Y ⊆ S/R. Now denoteV = {r | ∂H(r) ∈ Y }. We show thatV is closed under↔––dt . Let u↔––dtu

′

andu ∈ V . Then∂H(u) ∈ Y . As (∂H(u), ∂H(u′)) ∈ R it follows that∂H(u′) ∈ Y and therefore,u′ ∈ V .
HenceV ⊆ S/↔––dt

. Thus

f(Y) = f ′(V) = g′(V) = g(Y).

18

Moreover, if∂H(p) ;t, thenp ;t. As p ↔––dt q alsoq ;t and therefore∂H(q) ;t.
Finally, it is never the case that∂H(p) ∈ T . Therefore,R is a strong stochastic timed bisimulation.

Hence, strong stochastic timed bisimulation is a congruence for the encapsulation operator. 2

Theorem 7.6.Strong stochastic timed bisimulation equivalence is a congruence for the+ operator.

Proof. Define the relationρ = {(p+q, p′+q′) | p↔––dtp
′, q↔––dtq

′} and letR be the transitive closure of
ρ ∪ ↔––dt . Note thatρ is an equivalence relation, which follows because↔––dt is an equivalence relation.
Also, R is an equivalence relation, as bothρ and↔––dt are equivalence relations.

Choose arbitrary(p, q) ∈ ρ. Hence,p = p1 + p2 andq = q1 + q2, wherep1↔––dtq1 andp2↔––dtq2. If
p

a
−→t f then eitherp1

a
−→t f or p2

a
−→t f (following the operational rules). Because both situations are

symmetric we can without loss of generality consider only the first one.
Fromp1↔––dtq1 and lemma 6.6, it follows that there is somef ′ such thatq1

a
−→t f ′ and for allX ⊆

S/↔––dt
it is the case thatf(

⋃

X) = f ′(
⋃

X). As↔––dt ⊆ R, we have from lemma 6.4 that for allY ⊆ S/R

it is the case thatf(
⋃

Y) = f ′(
⋃

Y). Becauseq = q1+q2, it holdsq
a

−→t f ′.
Furthemore ifp ;t, then eitherp1 ;t or p2 ;t. Fromp1↔––dtq1 (or p2↔––dtq2)) we haveq1 ;t (or

q2 ;t). Therefore,q ;t. Becausep = p1+p2, it is never the case thatp ∈ T .
Thereforeρ is partial strong stochastic timed bisimulation and from lemma 7.2 it follows thatR is a

strong stochastic timed bisimulation relation. As all pairs of processes(p+q, p′+q′) such thatp↔––dtp
′ and

q↔––dtq
′ are inR, it follows thatp+q↔––dtp

′+q′. Therefore,↔––dt is a congruence for+. 2

Theorem 7.7.Strong stochastic timed bisimulation equivalence is a congruence for the‖ operator.

Proof. We define the relationρ = {(p‖q, p′‖q′) | p↔––dtp
′, q↔––dt q′}. The relationρ is symmetric and

transitive, as↔––dt is symmetric and transitive.
Let (p, q) ∈ ρ. Thenp = p1‖p2 andq = q1‖q2 for somep1, p2, q1, q2 ∈ S such thatp1↔––dtq1 and

p2↔––dtq2. If p1‖p2
a

−→t fp, then either

1. fp = Stoch(t≫p2), p1
a

−→t fX andp2 ;t or fp = Stoch(t≫p1), p2
a

−→t fX andp1 ;t, which
is the symmetric situation. Without loss of generality, we only consider the first case.

As p1↔––dtq1, q1
a

−→t fX (using lemma 6.7) and asp2↔––dtq2, q2 ;t. It follows thatq1‖q2
a

−→t

Stoch(t≫q2). As↔–– is a congruence for≫ (see corollary 7.10; we carefully checked that there are
no circular dependencies in proofs), we have

fp(
⋃

X) = Stoch(t≫p2)(
⋃

X) = Stoch(t≫q2)(
⋃

X) for all X ⊆ S/↔––dt
.

Therefore, using lemma 6.4, it follows that

fp(
⋃

X) = Stoch(t≫p2)(
⋃

X) = Stoch(t≫q2)(
⋃

X) for all X ⊆ S/(ρ∪↔––dt)∗
,

where(ρ ∪↔––dt)
∗ denotes the transitive closure ofρ ∪↔––dt (see definition 7.1).

2. There is somefp1
∈ F such thatp1

a
−→t fp1

, fp1
6= fX andfp(U) = fp1

({r|(r‖t≫p2) ∈ U}) and
p2 ;t. It may be the case thatfp2

∈ F such thatp2
a

−→t fp2
andfp(U) = fp2

({r|(t≫p1‖r) ∈ U})
andp1 ;t. This is the symmetric situation; we treat here only the firstcase.

As q1↔––dtp1 andq2↔––dtp2, it follows thatq2 ;t and there must be somefq1
∈ F such thatq1

a
−→t

fq1
and

∀X ⊆ S/↔––dt
: fp1

(
⋃

X) = fq1
(
⋃

X).

Henceq1‖q2
a

−→t fq, wherefq(U) = fq1
({r | (r‖t≫q2) ∈ U}).

Take arbitraryY ⊆ S/(ρ∪↔––dt)∗
. Denote

αp = {r | (r‖t≫p2) ∈
⋃

Y } and αq = {r | (r‖t≫q2) ∈
⋃

Y }.

Now we are going to prove, thatαp = αq and thatαp (and hence alsoαq) is a composition of
equivalence classes fromS/↔––dt

.

19

• if r ∈ αp, then(r‖t≫p2) ∈
⋃

Y . Thus(r‖t≫p2, r‖t≫q2) ∈ ρ (asr↔––dtr and (from lemma
7.4) t≫p2↔––dt t≫q2). Hence,(r‖t≫q2) ∈

⋃

Y and thereforer ∈ αq. The other inclusion can
be proven analogically. Thereforeαp = αq.

• Supposer ∈ αp andr′ /∈ αp, for somer, r′ ∈ S. Then(r‖t≫p2) ∈
⋃

Y and(r′‖t≫p2) /∈
⋃

Y . If r↔––dtr
′, then, ast≫p2↔––dt t≫p2, it follows that(r‖t≫p2, r

′‖t≫p2) ∈ ρ and therefore
(r′‖t≫p2) ∈

⋃

Y . Thus,r′ ∈ αp, which is a contradiction. Hence,r 6↔––dtr
′ which means that

αp is closed under↔––dt , thereforeαp ⊆ S/↔––dt
.

Now we have for arbitraryY ⊆ S/(ρ∪↔––dt)∗

fp(
⋃

Y)=fp1
({r|(r‖t≫p2)∈

⋃

Y })=fp1
(αp)=fq1

(αq)=fq1
({r|(r‖t≫q2)∈

⋃

Y })=fq(
⋃

Y).

3. There are somefp1
, fp2

∈ F such thatp1
b

−→t fp1
, p2

c
−→t fp2

, fp1
6= fX, fp2

6= fX, γ(b, c) = a
andfp(U) = fp1

({r|∃s.(r‖s) ∈ U})·fp2
({s|∃r.(r‖s) ∈ U}).

As q1↔––dtp1 andq2↔––dtp2, it follows that there must be somefq1
, fq2

∈ F such that

q1
a

−→t fq1
and∀X ⊆ S/↔––dt

: fp1
(
⋃

X) = fq1
(
⋃

X).

q2
b

−→t fq2
and∀X ⊆ S/↔––dt

: fp2
(
⋃

X) = fq2
(
⋃

X).

Henceq1‖q2
a

−→t fq, wherefq(U) = fq1
({r|∃s.(r‖s) ∈ U})·fq2

({s|∃r.(r‖s) ∈ U}). Take
arbitraryY ⊆ S/(ρ∪↔––dt)∗

. Denote

αp = {r|∃s.(r‖s) ∈
⋃

Y } and αq = {s|∃r.(r‖s) ∈
⋃

Y }.

Supposer ∈ αp andr′ 6∈ αp for somer, r′ ∈ S. Then, there is somes ∈ S such thatr‖s ∈
⋃

Y and
for all t ∈ S it holds thatr′‖t 6∈

⋃

Y . If r ↔––dt r′, then(r‖s, r′‖s) ∈ ρ and therefore(r′‖s) ∈
⋃

Y ,
which is a contradiction. Hence,r 6↔––dt r′. Thusαp is closed under stochastic timed bisimulation,
which means thatαp ⊆ S/↔––dt

. Analogically, we can prove thatαq ⊆ S/↔––dt
.

Now we can see that

fp(
⋃

Y) = fp1
(αp)·fp2

(αq) = fq1
(αp)·fq2

(αq) = fq(
⋃

Y).

4. There are someb, c ∈ Act such thatγ(b, c) = a andp1
b

−→t fp, p2
c

−→t fX or p1
b

−→t fX,
p2

c
−→t fp. As both cases are symmetric we only consider the first case without loss of generality.

As p1 ↔––dt q1, it follows that q1
b

−→t fq such that for allX ⊆ S/↔––dt
it holds thatfp(

⋃

X) =

fq(
⋃

X). Also, asp2 ↔––dt q2 from lemma 6.7 it follows thatq2
c

−→t fX. Thereforeq1 ‖ q2
a

−→t fq

and from lemma 6.4 we have that

fp(
⋃

X) = fq(
⋃

X) for all X ⊆ S/(ρ∪↔––dt)∗
.

5. There are someb, c ∈ Act such thatγ(b, c) = a, p1
b

−→t fX andp2
c

−→t fX. From lemma 6.7,

using the fact thatp1 ↔––dt q1 andp2 ↔––dt q2, it follows thatq1
b

−→t fX andq2
c

−→t fX. Therefore
q1 ‖ q2

a
−→t fX.

Furthermore, ifp1‖p2 ;t, thenp1 ;t andp2 ;t and asp1↔––dtq1, p2↔––dtq2, alsoq1‖q2 ;t.
Finally, it is never the case thatp1‖p2 ∈ T . Thereforeρ is a partial strong stochastic timed bisimulation.

Hence, from the lemma 7.2 follows that(ρ ∪↔––dt)
∗ is a strong stochastic timed bisimulation relation and

therefore↔––dt is a congruence for the‖ operator. 2

Theorem 7.8.Strong stochastic timed bisimulation equivalence is a congruence for theb→ ⋄ operator.

20

Proof. Let b be a fixed boolean condition. Define the relationρ = {(b→p⋄q, b→p′⋄q′) | p↔––dtp
′, q↔––dtq

′}.
The relationρ is symmetric and transitive due to the fact that↔––dt is symmetric and transitive.

Let (p, q) ∈ ρ. Thenp = b→p1⋄p2 andq = b→q1⋄q2 for somep1, p2, q1, q2 ∈ S such thatp1↔––dtq1

andp2↔––dtq2.

1. Supposep
a

−→t f , then either

• b = true and p1
a

−→t f . Hence, there is someg ∈ F such thatq1
a

−→t g and for all
X ⊆ S/↔––dt

it holdsf(
⋃

X) = g(
⋃

X). Thereforeq
a

−→t g.

or

• b = false andp2
a

−→t f . In this case there is someg ∈ F such thatq2
a

−→t g and for all
X ⊆ S/↔––dt

it holds thatf(
⋃

X) = g(
⋃

X). Therefore,q
a

−→t g.

2. Supposep ;t, then either

• b = true andp1 ;t. So,q1 ;t and thereforeq ;t.

or

• b = false andp2 ;t. Clearly,q2 ;t and thereforeq ;t.

3. Asp = b→p1⋄p2, it is never the case thatp ∈ T .

Therefore,ρ is a partial strong stochastic timed bisimulation. Hence, from lemma 7.2 it follows that
(ρ∪ ↔––dt)

∗ is a strong stochastic timed bisimulation relation and therefore↔––dt is a congruence for the
b→ ⋄ operator. 2

Theorem 7.9.LetOP : P → P be a unary process operator such that strong stochastic timed bisimulation
equivalence is a congruence forOP and the following properties hold

• stochvar(OP(p)) = stochvar(p),

• JOP(p)K = JpK, and

• det(OP(p)) = OP(det(p)).

Then general stochastic bisimulation is a congruence for the operatorOP.

Proof. Let p, q be arbitrary processes such thatp↔––q. We show thatOP(p)↔––OP(q). LetX be a subset of
S/↔––dt

. Define the set

Y = {r∈Pdet | OP(r) ∈
⋃

X}.

There are three observations that we use aboutY .

1. The setDp(Y) is a measurable set. This follows becauseDOP(p)(
⋃

X) is a measurable set and
Dp(Y) = DOP(p)(

⋃

X). This last observation can be seen as follows:

Dp(Y) = {d∈stochvar(p) | det(p)(d) ∈ Y }
= {d∈stochvar(p) | OP(det(p))(d) ∈

⋃

X}
= {d∈stochvar(p) | det(OP(p))(d) ∈

⋃

X}
= DOP(p)(

⋃

X)

2. The setDq(Y) is a measurable set. This follows asDq(Y) = DOP(q)(
⋃

X), which can be proven
in exactly the same way as the observation in the previous item.

3. The setY is bisimulation closed, i.e., ifr↔––dtr
′, thenr∈Y iff r′∈Y . We prove this as follows.

Assume thatr∈Y . ThenOP(r)∈
⋃

X. As r↔––rtr
′, ↔––rt is a congruence forOP and

⋃

X is
bisimulation closed,OP(r′)∈

⋃

X. So,r′∈Y .

21

Using these observations we can derive

Stoch(OP(p))(
⋃

X) =

∫

DOP(p)(
S

X)

JOP(p)Kdµstochvar(OP(p)) =

∫

Dp(Y)

JpKdµstochvar(p) =

Stoch(p)(Y) = (Y is a measurable set and bisimulation closed,p↔––q)

Stoch(q)(Y) =

∫

Dq(Yp)

JqKdµstochvar(q) =

∫

DOP(q)(
S

X)

JOP(q)Kdµstochvar(OP(q)) =

Stoch(OP(q))(
⋃

X).

Finally, suppose thatd is possible inOP(p). Then asstochvar(p)=stochvar(OP(p)) andJpK=JOP(p)K
it holds thatd is also possible inp and therefore (asp↔––q), there exists somee which is possible inq and
hence, by the same argument as before,e is also possible inOP(q). 2

Corollary 7.10. General stochastic bisimulation is a congruence for the≫, ∂ and֒ operators.

Theorem 7.11.Strong stochastic timed bisimulation equivalence is a congruence for the· operator.

Proof. LetR∗ be the transitive closure of{(p·q, p′·q′) | p↔––dtp
′, q↔––q′}∪↔––dt . Take arbitrary(p·q, p′·q′) ∈

R∗. We only consider the case whenp ↔––dt p′ andq ↔–– q′, as the other is trivial.
If p·q

a
−→t f then eitherf = λU :2S .g({r|r·q ∈ U}), g 6= fX andp

a
−→t g, or f = Stoch(t≫q) and

p
a

−→t fX. We consider both cases separately.

1. In the first case, asp ↔––dt p′ we havep′
a

−→t g′ such that for allX ⊆ S/↔––dt
it holds thatg(

⋃

X) =

g′(
⋃

X). Hencep′·q′
a

−→t f ′ wheref ′ = λU :2S .g′({r|r·q′ ∈ U}).

Now, denoteKU = {r | r·q ∈ U} andK ′
U = {r | r·q′ ∈ U}. We show thatKY = K ′

Y for all
Y ∈2S/R∗ . If r ∈ KY , thenr·q ∈ Y . As r↔––dtr andq↔––q′, it follows that r·q′ ∈ Y and thus,
r ∈ K ′

Y . As this is symmetric, we haveKY = K ′
Y .

Furthermore, we prove that everyKY whereY ∈S/R∗ , is a union of some equivalence classes from
S/↔––dt

, i.e., for allX ∈ S/↔––dt
, if X ∩ KY 6= ∅ thenX ⊆ KY . Supposex ∈ X ∩ KY and choose

arbitraryy ∈ X. Then, it follows thatx·q ∈ Y and asx↔––dty andq↔––q, we have thatx·qR∗y·q and
hencey·q ∈ Y . So,y ∈ KY and thereforeX ⊆ KY .

Using these two facts and the equivalence ofg andg′ on the equivalence classes fromS/↔––dt
, we

have for everyX⊆S/R∗ :

f(
⋃

X) = g(KS

X) = g(
⋃

Y ∈X

KY) = g′(
⋃

Y ∈X

KY) = g′(KS

X) = g′(K ′
S

X) = f ′(
⋃

X).

2. In the second casef = Stoch(t≫q) andp
a

−→t fX. As p ↔––dt p′ we havep′
a

−→t fX and therefore
p′·q′

a
−→t Stoch(t≫q′). As q ↔–– q′, it follows from corollary 7.10 that for allX ⊆ S/↔––dt

:

f(
⋃

X) = Stoch(t≫q)(
⋃

X) = Stoch(t≫q′)(
⋃

X) = f ′(
⋃

X).

22

It is left to check that terminating states and the idle relation are properly mimicked. As this is straightfor-
ward this is omitted (see e.g., the proof of theorem 7.6). 2

The following auxiliary definition is used to identify subsets of data which cause the same behaviour
in a processp. For sets of processes the meaning ofclosed under bisimulationis standard as bisimulation
is defined on processes.

Definition 7.12. Let p be an arbitrary process andD = stochvar(p). We say thatD′ ⊆ D is closed under
bisimulation(w.r.t. p) iff for all d ∈ D′ andd′ ∈ D \ D′, it holds thatdet(p)(d) 6↔––dt det(p)(d′).

Lemma 7.13. Let p andq be processes. LetD = stochvar(p) andE = stochvar(q). Furthermore,
let {(Di, Ei)}

N
i=1 be a finite sequence of measurable rectangles fromD × E in the sense that for every

1 ≤ i ≤ N , it holds thatDi ⊆ D andEi ⊆ E. Then a finite, disjoint sequence{(D∗
i , E∗

i)}M
i=1 of

measurable rectangles fromD × E exists such that

M
⋃

i=1

(D∗
i × E∗

i) =
N
⋃

i=1

(Di × Ei),

where disjoint means that for everyi 6= j: (D∗
i × E∗

i) ∩ (D∗
j × E∗

j) = ∅.
Furthermore, if allDi are closed under bisimulation, then allD∗

i are closed under bisimulation, too,
and if allEi are closed under bisimulation, then also allE∗

i are closed under bisimulation.

Proof. We construct the desired sequenceR by the following algorithm:

• Initialize R := {(Di, Ei)}
N
1 .

• If there are pairs(D̃i, Ẽi) and(D̃j , Ẽj) ∈ R such that(D̃i × Ẽi) ∩ (D̃j × Ẽj) 6= ∅, then remove
(D̃i, Ẽi), (D̃j , Ẽj) from R and add the following seven pairs toR. We only us intersection and set
subtraction, which means that the resulting sets are still measurable.

(D̃j \ D̃i, Ẽi ∩ Ẽj),

(D̃j \ D̃i, Ẽj \ Ẽi),

(D̃i ∩ D̃j , Ẽi \ Ẽj),

(D̃i ∩ D̃j , Ẽi ∩ Ẽj),

(D̃i ∩ D̃j , Ẽj \ Ẽi),

(D̃i \ D̃j , Ẽi \ Ẽj),

(D̃i \ D̃j , Ẽi ∩ Ẽj).

This step is repeated as long as there are pairs inR with overlapping elements.

Note that the union of the products of the new sets match exactly (D̃i × Ẽi) ∪ (D̃j × Ẽj). Therefore, it is
straightforward to see that

M
⋃

i=1

(D∗
i × E∗

i) =

N
⋃

i=1

(Di × Ei)

holds during each iteration of the algorithm.
In order to see that this algorithm terminates, one can consider the set of all minimal setsHD obtained

by closing{Di | 1 ≤ i ≤ N} under intersection and removing every set for which there isa strict subset.
In the same wayHE can be obtained from{Ei | 1 ≤ i ≤ N}. Definecount(D,E) as the number of pairs
of setsD̂ × Ê with D̂ ∈ HD andÊ ∈ HE such thatD̂ × Ê ⊆ D × E. The measure

∑

(D,E)∈R

count(D,E)

decreases by at least one with every step of the algorithm.

23

Finally, we need to show that for every(D̃j , Ẽj) added toR during each iteration,̃Dj is closed under
bisimulation, provided that for each(D̃i, Ẽi) which was inR before the iteration it holds that̃Di is closed
under bisimulation. This also needs to be shown forẼi, but that argument is exactly the same, and therefore
skipped.

First, consider the case where a pair(D̃i ∩ D̃j , . . .) is added toR. Consider ad ∈ D̃i ∩ D̃j and a
d′ /∈ D̃i ∩ D̃j . So,d ∈ D̃i andd ∈ D̃j , whereasd′ /∈ D̃i or d′ /∈ D̃j . Therefore,det(p)(d)6↔––dtdet(p)(d′).

Secondly, consider the case where a pair(D̃i \ D̃j , . . .) is added toR. Consider ad ∈ D̃i \ D̃j and
a d′ /∈ D̃i \ D̃j . So,d ∈ D̃i andd /∈ D̃j , whereasd′ /∈ D̃i or d′ ∈ D̃j . Also in this case it follows that
det(p)(d)6↔––dtdet(p)(d′), which finishes the proof. 2

Theorem 7.14.LetA be a measurable data algebra and assume that all process expressions are bisimulation
resilient wrt.A. Then general stochastic bisimulation is a congruence for the stochastic operator.

Proof. Consider two process expressionsp andp′ containing a free variabled ∈ D such thatp(d)↔––p′(d)
for all d ∈ D (in shortp↔––p′). We must show thatf

d:Dp ↔––
f

d:D p′.
We first prove the second property of general stochastic bisimulation as it is almost trivial, and sub-

stantially easier than the first part. For the second property, we must show that for all possiblee in
f

d:D p there is a possiblee′ in f
d:Dp′ such thatdet(f

d:D p)(e) ↔––dt det(f
d:D p′)(e′). This means thate

has the shape(e1, e2) ande2 is possible inp and the integral off over every environment arounde1 is
greater than zero. Asp ↔–– p′, there exists somee′2 possible inp′ such thatdet(p)(e2) ↔––dt det(p′)(e′2).
By definition 4.3det(f

d:Dp)(e) = det(p)(e2) and det(f
d:Dp′)(e′) = det(p′)(e′2). So, it follows that

det(f
d:D p)(e) ↔––dt det(f

d:Dp′)(e′).
In the first part of the proof we must show that for allX ⊆ S/↔––dt

it is the case thatStoch(f
d:Dp)(

⋃

X) =

Stoch(f
d:Dp′)(

⋃

X). As all processes are bisimulation resilient, we find that

Stoch(f
d:D p)(

⋃

X)
Def. 5.6

=

∫

D f
d:D

p
(
S

X)

J
f

d:D
pKdµD×stochvar(p)

Def. 5.4
=

∫

(e1,e2)∈D f
d:D

p
(
S

X)

f(e1) · Jp(e1)K(e2)dµD×stochvar(p)

Cor. 3.16
= Sup

{

N
∑

i=1

(∫

a∈Ai

f(a) ·

∫

b∈Bi

Jp(a)K(b)dµstochvar(p)dµD

)

}

(7.1)

where the supremum is taken over all possible sequences{Ai, Bi}
N
1 such thatAi, Bi are measurable,

⋃N
i=1 Ai × Bi ⊆ Df

d:D p(
⋃

X) andAi × Bi are pairwise disjoint. However, we need that theBi are closed

under bisimulation, i.e., for alld ∈ D, e ∈ Bi ande′ ∈ B\Bi it holds thatdet(p)(d, e) 6↔––dt det(q)(d, e′).
First we show that there is a sequence of not necessarily disjoint rectangular sets{(Ai, B

′
i)}

N
1 such that

all Bi are closed under bisimulation and

N
⋃

i=1

Ai × Bi ⊆
N
⋃

i=1

Ai × B′
i ⊆ Df

d:D p(
⋃

X). (7.2)

The setsB′
i are constructed as the closure under bisimulation ofBi:

B′
i = Dq({r|∀d ∈ D,∃e ∈ Bi.r ↔––dt det(p)(d, e)}).

Note that as processes are bisimulation resilient, the setsB′
i are measurable. AsBi⊆B′

i, the subset relation
at the left of (7.2) holds trivially. For the right subset relation consider a pair(a, b′) ∈ Ai ×B′

i. Then there
must be some(a, b) ∈ Ai×Bi ⊆ Df

d:D p(
⋃

X) such thatdet(p)(a, b) ↔––dt det(p)(a, b′) and asDf
d:D p(

⋃

X)

is closed under bisimulation,(a, b′) ∈ Df
d:D p(

⋃

X). Therefore everyAi × B′
i is a subset ofDf

d:D p(
⋃

X)

and thus the union
⋃N

i=1 Ai × B′
i also has to be a subset ofDf

d:D p(
⋃

X).

24

Given the sequence{Ai, B
′
i}

N
1 , we know using lemma 7.13 that there is a sequence{Ãi, B̃i}

M
1 which

is a family of rectangular measurable sets closed under bisimulation, which are disjoint and which covers
exactly the same data as{Ai, B

′
i}

N
1 :

N
⋃

i=1

Ai × B′
i =

M
⋃

i=1

Ãi × B̃i.

Using this fact we can further expand the equations from (7.1) as follows

Sup

{

N
∑

i=1

(∫

a∈Ai

f(a) ·

∫

b∈Bi

Jp(a)K(b)dµstochvar(p)dµD

)

}

= Sup

{

M
∑

i=1

(∫

a∈Ãi

f(a) ·

∫

b∈B̃i

Jp(a)K(b)dµstochvar(p)dµD

)

}

.

(7.3)

Note that as thẽBi are closed under bisimulation,Za
i ⊆ S/↔––dt

exist such that

∫

b∈B̃i

Jp(a)K(b)dµstochvar(p) = Stoch(p)(
⋃

Za
i).

Using this the right hand side of equation (7.3) can be rewritten to

Sup

{

M
∑

i=1

(∫

a∈Ãi

f(a) · Stoch(p)(
⋃

Za
i)dµD

)

}

p↔––p′

= Sup

{

M
∑

i=1

(∫

a∈Ãi

f(a) · Stoch(p′)(
⋃

Za
i)dµD

)

}

Def. 5.6
= Sup

{

M
∑

i=1

(

∫

a∈Ãi

f(a) ·

∫

z∈Dp′ (
S

Za
i
)

Jp′K(z)dµstochvar(p′)dµD

)}

.

(7.4)

Observe that̃Ai × B̃i = Df
d:D p({r(a) | a ∈ Ãi, r ∈

⋃

Za
i }) and hence{r(a) | a ∈ Ãi, r ∈

⋃

Za
i } ⊆

⋃

X.
So, the last equation of (7.4) is equal to

Sup







M
∑

i=1

∫

D f
d:D

p′ ({r(a)|a∈Ãi,r∈
S

Za
i
})

J
f

d:D
p′KdµD×stochvar(p′)







= Stoch(
f

d:D
p′)({r(a)|a ∈ Ãi, r ∈

⋃

Za
i })

≤ Stoch(
f

d:D
p′)(

⋃

X).

Note that the argumentation above relies on the fact thatStoch(f
d:D p′)(

⋃

X) is defined, ensured as defini-
tion 3.8.

µ
(

D f
d:D p′(

⋃

X)
)

= Sup

{

M
∑

i=1

µ(Ãi) × µ
(

D f
d:D p′(Z

a
i)

)

}

.

In the same way, we can prove the relation

Stoch(
f

d:D
p′)(

⋃

X) ≤ Stoch(
f

d:D
p)(

⋃

X)

25

and therefore it must hold that

Stoch(
f

d:D
p)(

⋃

X) = Stoch(
f

d:D
p′)(

⋃

X).

2

Theorem 7.15. Let A be a measurable data algebra and let⊕ be a process algebra operator such that
strong stochastic timed bisimulation equivalence is a congruence for the⊕ operator. Assume the following
properties hold:

• stochvar(p ⊕ q) = stochvar(p) × stochvar(q),

• Jp ⊕ qK = λ~d:stochvar(p), ~e:stochvar(q). JpK(~d)·JqK(~e), and

• det(p ⊕ q) = det(p) ⊕ det(q).

• all process expressions are bisimulation resilient wrt.A.

Then, general stochastic bisimulation is also a congruencefor the⊕ operator.

Proof. Assume thatp, q, p′ andq′ are general processes such thatp ↔–– p′ andq ↔–– q′. We must show that
p ⊕ q ↔–– p′ ⊕ q′.

First we concentrate on proving the second property of general stochastic bisimulation, as it is more
straightforward than proving the first property. Suppose that (d, e) is possible inp ⊕ q. Thend is possible
in p ande is possible inq. As p ↔–– p′ andq ↔–– q′, there is somed′ possible inp′ such thatdet(p)(d) ↔––dt

det(p′)(d′) and there is somee′ possible inq′ such thatdet(q)(e) ↔––dt det(q′)(e′). Therefore(d′, e′) is
possible inp′ ⊕ q′ and from the fact that strong stochastic bisimulation is a congruence for⊕, it follows
thatdet(p)(d) ⊕ det(q)(e) ↔––dt det(q)(d′) ⊕ det(q′)(e′).

For the first part, we must prove that for allX ⊆ S/↔––dt
it is the case thatStoch(p ⊕ q)(

⋃

X) =
Stoch(p′⊕q′)(

⋃

X). As our processes are bisimulation resilient,Stoch(p⊕q)(
⋃

X) is defined as follows:

Stoch(p ⊕ q)(
⋃

X)
Def. 5.6

=

∫

Dp⊕q(
S

X)

Jp ⊕ qK dµstochvar(p⊕q)

=

∫

(d,e)∈Dp⊕q(
S

X)

JpK(d)·JqK(e) dµstochvar(p)×stochvar(q)

Cor. 3.17
= Sup

{

N
∑

i=1

(∫

a∈Ai

JpK(a)dµstochvar(p) ·

∫

b∈Bi

JqK(b)dµstochvar(q)

)

}

(7.5)

where the supremum is taken over all possible sequences{Ai, Bi}N
1 such thatAi, Bi are measurable,

⋃N
i=1 Ai × Bi ⊆ Dp⊕q(

⋃

X) andAi × Bi are mutually disjoint.
So, the integral has been approximated with an arbitrary precision by a sum of integrals over some

disjoint finite collection of measurable rectangular sets.But we require a stronger property namely that
this integral can be approximated using sequences{(Ai, Bi)}

N
1 such that bothAi andBi are closed under

bisimulation, i.e., for alld ∈ Ai andd′ ∈ stochvar(p)\Ai it holdsdet(p)(d) 6↔––dt det(p)(d′) and for all
e ∈ Bi ande′ ∈ stochvar(p)\Bi it holdsdet(q)(e) 6↔––dt det(q)(e′).

First we show that for every family of disjoint measurable rectangular sets{(Ai, Bi)}
N
1 such that

⋃N
i=1 Ai × Bi ⊆ Dp⊕q(

⋃

X) there is a family of not necessarily disjoint rectangular sets {(A′
i, B

′
i)}

N
1

such thatA′
i andB′

i are closed under bisimulation and

N
⋃

i=1

Ai × Bi ⊆
N
⋃

i=1

A′
i × B′

i ⊆ Dp⊕q(
⋃

X) (7.6)

The setsA′
i andB′

i are constructed as the closure under bisimulation ofAi, resp.Bi as follows

A′
i = Dp({r|∃d ∈ Ai.r ↔––dt det(p)(d)}),

26

B′
i = Dq({r|∃e ∈ Bi.r ↔––dt det(q)(e)}).

AsAi⊆A′
i andBi⊆B′

i, the set inclusion at the left of equation (7.6) holds trivially. We have yet to prove the
set inclusion at the right. Suppose for somea′ andb′ that(a′, b′)∈A′

i×B′
i. Then there must be some(a, b) ∈

Ai × Bi such thatdet(p)(a)↔––dtdet(p)(a′) anddet(q)(b)↔––dtdet(q)(b
′). From the congruence of strong

stochastic bisimulation for⊕ it follows thatdet(q)(a) ⊕ det(q)(b) ↔––dt det(p)(a′) ⊕ det(q)(b′). Hence,
asDp⊕q(

⋃

X) is closed under bisimulation and(a, b) ∈ Dp⊕q(
⋃

X), we find (a′, b′) ∈ Dp⊕q(
⋃

X).
Therefore everyA′

i ×B′
i is a subset ofDp⊕q(

⋃

X) and thus the union
⋃N

i=1 A′
i ×B′

i has to be a subset of
Dp⊕q(

⋃

X), too.
Observe that lemma 6.3 implies that allA′

i andB′
i are measurable. Given the sequence{A′

i, B
′
i}

N
1 it

follows using lemma 7.13 that there exists a sequence{Ãi, B̃i}
M
1 which is a family of disjoint rectangular

measurable sets closed under bisimulation that covers exactly the same data as{A′
i, B

′
i}

N
1 , i.e.,

N
⋃

i=1

A′
i × B′

i =

M
⋃

i=1

Ãi × B̃i.

Combining, these we can replace the last lines of the equalities (7.5) by
∫

(d,e)∈Dp⊕q(
S

X)

JpK(d)·JqK(e) dµstochvar(p)×stochvar(q) =

Sup

{

M
∑

i=1

(∫

a∈Ãi

JpK(a)dµstochvar(p) ·

∫

b∈B̃i

JqK(b)dµstochvar(q)

)

}

(7.7)

where the supremum is taken over all possible sequences{Ãi, B̃i}
M
1 such thatÃi andB̃i are measurable,

mutually disjoint, closed under bisimulation and
⋃M

i=1 Ãi × B̃i ⊆ Dp⊕q(
⋃

X).
Note that asÃi andB̃i are closed under bisimulation, there must be someYi, Zi ⊆ S/↔––dt

such that

∫

a∈Ãi

JpK(a)dµstochvar(p) = Stoch(p)(
⋃

Yi) and
∫

b∈B̃i

JqK(b)dµstochvar(q) = Stoch(q)(
⋃

Zi).

Continuing with equation (7.7), we obtain

Sup

{

M
∑

i=1

(∫

a∈Ãi

JpK(a)dµstochvar(p) ·

∫

b∈B̃i

JqK(b)dµstochvar(q)

)

}

= Sup

{

M
∑

i=1

(

Stoch(p)(
⋃

Yi) · Stoch(q)(
⋃

Zi)
)

}

p↔––p′ q↔––q′

= Sup

{

M
∑

i=1

(

Stoch(p′)(
⋃

Yi) · Stoch(q′)(
⋃

Zi)
)

}

Def. 5.6
= Sup

{

M
∑

i=1

(

∫

y∈Dp′ (
S

Yi)

Jp′K(y)dµstochvar(p′) ·

∫

z∈Dq′ (
S

Zi)

Jq′K(z)dµstochvar(q′)

)}

Th. 3.14
= Sup

{

M
∑

i=1

∫

Dp′⊕q′ ({r⊕r′|r∈
S

Yi,r′∈
S

Zi})

Jp′ ⊕ q′Kdµstochvar(p′⊕q′)

}

Def. 5.6
= Sup

{

M
∑

i=1

Stoch(p′ ⊕ q′)({r ⊕ r′|r ∈
⋃

Yi, r
′ ∈

⋃

Zi})

}

.

27

Note thatÃi × B̃i = Dp⊕q({r⊕ r′|r ∈
⋃

Yi, r
′ ∈

⋃

Zi}) and hence
⋃M

i=1{r⊕ r′|r ∈
⋃

Yi, r
′ ∈

⋃

Zi} ⊆
⋃

X. So we can conclude

Sup

{

M
∑

i=1

Stoch(p′ ⊕ q′)({r ⊕ r′|r ∈
⋃

Yi, r
′ ∈

⋃

Zi})

}

≤ Stoch(p′ ⊕ q′)(
⋃

X).

Analogically, we can prove the relation

Stoch(p′ ⊕ q′)(
⋃

X) ≤ Stoch(p ⊕ q)(
⋃

X)

and therefore it must hold that

Stoch(p ⊕ q)(
⋃

X) = Stoch(p′ ⊕ q′)(
⋃

X).

2

Corollary 7.16. Let A be a measurable data algebra and assume all process expressions are bisimulation
resilient wrt.A. Then general stochastic bisimulation is a congruence for the+, ‖ andb→ ⋄ operators.

8 Conclusion and future research

In this document we gave a natural semantics for a process language with a stochastic operator. We pro-
vided a notion of bisimulation resilience that guarantees that stochastic processes in a setting with bisimula-
tion make sense. Furthermore, we introduced notions of bisimulation for determined and general stochastic
processes. With examples we motivated the choices we made inthe definitions. With quite elaborate proofs
it was shown that these bisimulations are congruences.

An interesting issue is the translation of the semantic notion of bisimulation resilience to the syntax of
processes. Which data expressions can safely be used in processes, such that its stochastic behaviour is
well defined? We have not addressed this issue, yet, but it oneof the first on our list because it is essential
to know in order to use the language.

We omitted the general sum operator in our language as it addsa next layer of complexity. Recall that
the generalised sum operator

∑

d:D

p

offers a choice in behaviour for anyd from D. If D is finite the sum operator can be dealt with in the
framework of this paper by expanding it to the choice operator. But the sum operator is particularly useful
and interesting whenD is infinite (e.g.,D=N), or even uncountably infinite (e.g.,D=R, D=R → R, etc.).
In order to define the semantics of the sum operator, we must extend definition 5.4 with some clause of the
form

J
∑

d:D

pK = λ~e:stochvar(p).
∏

d:D

JpK(~e).

But in this formulation, the (uncountably) infinite productdoes not have a proper definition asJpK(~e) can
have arbitrary values. If in a product

∏

i∈I ri it holds that0≤ri≤1, the product can be properly defined.
We expect that this can be employed by reformulating the semantics in this paper in terms of probabilities,
instead of distribution functions, but we decided to defer this to a next paper given the technical complexity
of the current paper.

Besides the semantics of sum operator, much more needs to be done to bring this process algebra in
par with the theories for standard process algebras with data but without stochastic operators. This requires
definitions of variants of weak bisimulation, an algebraic characterisation of the equivalences, definition of
recursive processes (what happens when the stochastic operator occurs unguarded in recursive processes?),
manual proof methodology and the construction of tools and algorithms. We intend to conquer all these
issues one at a time.

28

References

[1] S. Andova.Probabilistic Process Algebra. PhD thesis, Technische Universiteit Eindhoven, 2002.

[2] S. Banach and A. Tarski. Sur la décomposition des ensembles de points en parties respectivement
congruentes.Fundamenta Mathematicae, 6:244-277, 1924.

[3] M. Bravetti and P.R. D’Argenio. Tutte le algebre insieme: Concepts, discussions and relations of
stochastic process algebras with general distributions. In Validation of Stochastic Systems, pages 44–
88, 2004.

[4] L. Cardelli and R. Mardare. The measurable space of stochastic processes. InQEST, pages 171–180,
2010.

[5] S. Cattani, R. Segala, M.Z. Kwiatkowska, and G. Norman. Stochastic transition systems for continu-
ous state spaces and non-determinism. InFoSSaCS, pages 125–139, 2005.

[6] V. Danos, J. Desharnais, F. Laviolette and Prakash Panangaden. Bisimulation and cocongruence for
probabilistic systems. Information and Computation 204(4), 503-523, 2006.

[7] P.R. D’Argenio.Algebras and Automata for Timed and Stochastic Systems. PhD thesis, University of
Twente, 1999.

[8] P.R. D’Argenio and J.-P. Katoen. A theory of stochastic systems. Part II: Process Algebra. Information
and Computation 203:39-74, 2005.

[9] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J. van Weerdenburg. Analysis of
distributed systems with mCRL2. In M. Alexander, W. Gardner, editors, Process Algebra for Parallel
and Distributed Processing. Chapman Hall, pp. 99-128, 2009.

[10] J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A. Bergstra, A. Ponse and
S.A. Smolka. Handbook of Process Algebra, pages 1151-1208,Elsevier, Amsterdam, 2001.

[11] D. Van Hung and M. Wirsing, editors.Theoretical Aspects of Computing - ICTAC 2005, Second In-
ternational Colloquium, Hanoi, Vietnam, October 17-21, 2005, Proceedings, volume 3722 ofLecture
Notes in Computer Science. Springer, 2005.

[12] J.P. Katoen, J.C. van de Pol, M.I.A. Stoelinga and M. Timmer. A linear process-algebraic format for
probabilistic systems with data. In: Application of Concurrency to System Design, Tenth International
Conference, Braga, Portugal. pp. 213-222. IEEE Computer Society Press. 2010.

[13] A. Hinton, M. Kwiatkowska, G. Norman and D. Parker. PRISM: A tool for automatic verification of
probabilistic systems. In H. Hermanns and J. Palsberg (editors) Proc. 12th International Conference
on Tools and Algorithms for the Construction and Analysis ofSystems (TACAS’06), volume 3920 of
Lecture Notes in Computer Science, pages 441-444, Springer-Verlag, 2006.

[14] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and Computation.
94(1):1-28, 1991.

[15] B. Klin and V. Sassone. Structural operational semantics for stochastic process calculi. InFoSSaCS,
pages 428–442, 2008.

[16] R. Lanotte and S. Tini. Probabilistic congruence for semistochastic generative processes. InFoSSaCS,
pages 63–78, 2005.

[17] M.E. Taylor.Measure Theory and Integration. The American Mathematical Society, 2006.

[18] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems: A coalgebraic
approach.Theor. Comput. Sci., 221(1-2):271–293, 1999.

29

