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Abstract

We introduce a general stochastic process oper{gfg)p(d) which behaves as the procesgl) where
the valued is chosen from a data domain with a probability density determined by We require that
f is a measurable function froi to R=° such thatfdeD f(d)dup = 1. For finite or countablé the
function f represents the probability distribution directly. For bigger domdimspresents the density
function.

We provide a natural operational semantics for a basic process algétbrthis operator and de-
fine strong stochastic timed bisimulation and general stochastic bisimulatiich due to the potential
uncountable nature db had to be generalised compared to existing notions. We introduce the notion
bisimulation resilience, which restricts the use of the language, such thaisiheulation closure of
measurable sets is again measurable, and argue that without suchnestmtitastic process expressions
make little sense. We prove that the bisimulation equivalences are coiegaiprovided the language is
bisimulation resilient.

1 Introduction

Our primary motivation comes from our work on a process algelith data and time (mCRL2, [9]). Our
process algebra is on the one hand very straightforwartigingnse that it only contains the minimal set of
process operators to model behaviour. But on the other hiasdery rich, in the sense that the operators
and allowed data types are as universal and mathematicakathbfe. Typically, the natural numbers have
no largest value, sets are the mathematical notion of sets (ke set of all even numbers can easily be
denoted) and all data types can be lifted to functions. Tha ty@es are freely usable in processes. For
instance, it is possible to write in the language:

Z recetwe(f)-forward(An:Z.Im:R. f(m)>n)- ...
fR—>R

to receivea function f from reals to reals and torward a function from integers to booleans constructed
out of f. As the language is very expressive it is easy to write dowdeaiable conditions. But, if used
with care the language turns out to be elegant in modelliry évdustrially sized systems and the tools
are very effective in helping to get insight in these modsée(ww. ntr | 2. or g).

As it stands, the language does not allow to express and stadlgastic behaviour, although certainly
half of the questions that we are asked are about performamdigelihood of undesired behaviour and
even average behaviour. A typical question from a medicstesy supplier, which we studied, was which
percentage of X-ray pictures will not be processed withidr®. Another question was about the through-
put of an elevator system where the elevators were aboveatheh The behaviour of such systems are
much more conveniently described in process algebras — et atber formalisms stemming from con-
currency theory — than in classical queueing theory. Howewathematically, queuing theory is far more



developed. From the process perspective, mathematidgk@eoncentrates around on the one hand, sim-
ulation, where any distribution is usable, and on the otldhvia Markov chains, which are practically
restricted to discrete and exponential distributions.

We desire a theory which allows to describe, study and méatipwvith stochastic behaviour on a
process level. Therefore, we introduce a simple but veryesgive operator. We did not want to allow
restrictions on the operator unless self-evident from thélem domain or being a mathematical necessity.
We came up with:

%p(d)

whered is a data variableD some data domair a process in whicll can occur andf a probability
distribution (not a cumulative distribution). The intwiti of the operator is that a value fdris chosen
with a probability determined by after whichp happens with this value substituted fér The same
general operator is introduced in [12] with a different tiota, which is no coincidence because both this
paper and [12] originated from the same discussion on howldcaageneral stochastic operator to current
process algebras. In order to avoid semantical complexitiee operator in [12] is restricted to countable
domains and can only be used in a syntactically restrictéithge A tool is available to generate and
analyse stochastic state spaces.

The purpose of this paper is a different one, namely to devahol understand a maximally expressive
stochastic process algebra. One of the core issues is wishrasualgebra has a well defined semantics.
From measure theory, we know that integration over densitgtions is only defined when such functions
are measurable. We consider processes modulo variousitasiom equivalences. We found out that these
are naturally defined if the processes are ‘bisimulatiofliees. This means that if a measurable set of
data elements belonging to some set of processes is extuaiitthetthe data of all bisimilar processes, then
this set must be measurable again.

We provide a semantics for our language in terms of stoahtisted automata. Here, states correspond
to processes that are stochastically determined, whicmsniat the outgoing transitions from states can
be done with certainty. The transitions end in a probabilityction, which given a set of states tells what
the probability is to end up in these states. As already shoWnh 8] it is necessary to let the probability
function work on sets of states, as distributions can bealefs transitions end in probability functions,
the operational rules have to be adapted to reflect this éhaAg processes can have initial stochastic
operators, automata have no initial state, but an initiabgbility distribution.

Subsequently, we define strong stochastic timed bisinmndtr stochastically determined processes,
and general stochastic bisimulation for general stochasticesses. With stochastic timed bisimulation we
run into the difficulty that the common notion of strong bisiiation for probabilistic processes due to [14]
is not adequate. We have to make a small, but crucial extessiging that resulting probability functions
must not be compared on bisimulation equivalence class#atefs, but on (sometimes uncountahbl@pns
of those equivalence classes. Although this may look likenallsextension of the definition, it makes a
huge difference in the proofs that, becoming notationallyercomplex, are conceptually much easier than
our initial proof attempts. In order to understand intugtivthat this extension is needed, we provide an
example in terms of processes.

For general processes, we also define a notion of generdlastiie bisimulation, but as it is defined
on probability functions it hardly looks like a bisimulatio We actually provide this bisimulation in two
variants, but we have a strong preference for the secortb(ajh our congruence results apply to both of
them). The first variant very much resembles open p-bisitiwrdan [7].

We prove that both notions of bisimulation that we provide @ngruences with respect to all process
operators that we use. These proofs turn out to be partigutarolved and rely heavily on the theory
of measurable spaces. A nice place where bisimulations aabume theory meet is lemma 7.13 where
it is shown that an arbitrary finite sequence of measurahlaregsets can be replaced by a disjoint finite
sequence of measurable and bisimulation closed squareosetisng the same area.

Most articles on stochastic process algebras restrictgbbes to finite or exponential distributions.
General distributions are found in the work of 8eDesharnais, c.s. [6] but here no operators and congru-
ence results are studied. Absolutely noteworthy is theyemork of Pedro D’Argenio c.s. [7, 8] where a
process algebra with general distributions over realingetiocks is given. The clock setting and testing



operators of [7] and also the general language is more cedrthan ours and in the semantics it is not
obvious that sets are always measurable when required.r@utdll the related work we could find, it is
certainly the closest. The work in [7] is also interestingdngse it provides sets of axioms characterizing
structural and open p-bisimulation on processes.

Structure of the paper. In section 2 we give a compact introduction of our timed pssa@dgebra with data.

In section 3 we give a concise overview of all those elemefitasic measurability theory that we require.
In section 4 we define stochastic and determined procesg®sipns. Section 5 provides the semantics
for these in terms of a timed stochastic automaton. In se@&ithe definitions of strong stochastic timed
bisimulation, general stochastic bisimulation and bidatian resilience are given and some elementary
properties are proven. Section 7 is the largest and it is tessthte and prove that the given bisimulations
are congruences. The last section provides some outlodigher work.

Acknowledgements.We thank Mark Timmer, Suzana Andova, Tim Willemse, Muhamratf] and Jo-
hann Schuster for fruitful discussions and comments hglpgito shape the theory in this paper. Thanks
especially go to Marielle Stoelinga who pinpointed a sesierror in a late version of the paper.

2 A short description of process algebra with data

We work in the setting of mMCRL2, which is a process algebrawiéta [9, 10]. Processes are constructed
from actions which we typically denote hy b, ¢, which represent an atomic activity or communication.
Actions can carry data parameters, eng3,), b(, [true, false]) are the actiom carrying the numbes, and
the actiornb carrying the reak and a list with the booleansue andfalse.

Processes are constructed out of actions using variouatopgr The most important are théend +,
resp., the sequential and alternative composition oper.afoproces$-q represents a procegsand upon
termination proceeds with procegsA proces+q stands for the process wher@r ¢ can be done. The
first action determines whethgor ¢ is chosen. So, as an example, the proeelssc-d can either do an
followed by ab, of ac followed by ad.

There is a time operatgrt with ¢ a non-negative real number, which says that the first acfiprozcess
p must take place at time So,a<1-b<2 is the process whete happens at exactly timeandb at exactly
time 2. In the setting of this paper actions cannot happen at the $ame, and consecutive actions must
happen at consecutive moments in time. In mMCRL2, multieastiare allowed, which are collections of
actions that happen at the same instant in time. But as @ctittns are irrelevant for the issues studied in
this paper, we do not introduce them here.

A special process i8, called deadlock or inaction, which is a process that cadoatny action, and
which cannot terminate. Sé;a = §, because the cannot be performed. In order to let data influence the
actions that can be performed, we use the if-then-elseibmatompactly denoted by—poq. Hereb is a
boolean expression. We uke»p as the if-then operator.

The process-t is the process that can idle until timeand cannot proceed beyond that point. This is
called a time deadlock. Obviously, a process with a time lde&dtan never exist in the real world. Related
to timed processes is the initialisation operatpp which is the process which must start after tim&his
operator is required for the operational semantics of thaesetial composition operator in a timed setting.

In order to model parallel behaviour there is a parallel afmp||q. This expresses that the actiongof
andq can happen in any interleaved fashion. Using a commutatisl@asociative communication function
~ it is indicated how actions can communicate. Exdr;, s) = c indicates that actions with action labels
r ands can happen simultaneously, providednds have exactly the same data arguments. The resulting
action is called- and also carries the same dataraands. In order to enforce actions to communicate,
there is a block operatd@y (p) which blocks all actions with action labels . So, a typical pattern is
I¢r,s3 (P || @) with y(r, s) = ¢, which expresses that actions with labeBnds must communicate inte.

In this paper we adopt an abstract approach towards datalyaimt a data type is a non empty set
D on which a number of functions are defined. There are no @ingdron the cardinality ob. Typical
instances ofD that are used frequently are the booledbsthat contain exactly two elementsue and
false, various sorts of number®(", N, Z, R). But also lists, sets, functions and recursive types arg ve



commonly used. For example sets of lists of reals, or a fandtiom booleans to a recursively defined tree
structure are typical data types in a behavioural spedificat

There are a number of process operators in mCRL2 that we doomsider in this paper as they do
not contribute to this study. One operator that occurs ineseramples is the generalised sum operator
> a.pP(d). It expresses the choice among the procegéésfor anyd € D. This is an interesting but
complex operator as it allows to make choice out of an unbedmdimber of processes. Its interaction
with the semantics of the stochastic operator is so tri¢iagt we decided to leave this operator out of this
study.

Another interesting language property that we do not addnese is recursive behaviour, which in the
setting of mMCRL2 is generally described using equationg., Ehe procesX defined byX = a-X is the
process that can do an actierndefinitely.

3 Mathematical properties of the data domains

In abstract expositions on process algebras with data istytieof mCRL2, data is given by a data algebra
A = (D, F) whereD is a set of non empty data domains a@ndontains constants and functions operating
on these domains. We typically denote data domains (al$edcsbrts or types) by lettel® and E. We
assume the existence of the sBrtvhich contains exactly two elements representing: and false and
has an equality predicate, where a predicate is just a function that maps Bitdloreover, we assume the
existence of the sof® with reals with at least the predicates<,~ (equality),> and> and the constant

0. Reals are used in the time and bounded initialisation ¢perand booleans are used in the if-then-else
operator in processes expressions.

In the this section we identify the required properties thater sorts must have in a stochastic process
algebra. We strongly base ourselves on standard meastyréilory [17]. In this reference, all important
definitions and proofs concerning measures and integratiarbe found.

We require that all the data domaifsare metric extended measurable spaces in the sense tras a
metric pp and a sigma algebrap with a measurep : Sp — R=Y U {oo}. All these notions are defined
below. In cases where the domain is obvious from the contextend to drop the subscripts pf, Sp
and up and write the metric, sigma algebra and measure associa@dldmainD asp, S andu. We
introduce the notion of a singleton closed measurable spe@emeasurable space where individual data
elements have a measure.

Given a measurable space we define integrals over meastuwabt®ns. This is required to calculate
the probability of being in some set of states. For given dataainsD andD’, we use the product domain
D x D’. We indicate how metrics, measures and integrals are lift@doduct data types.

First we introduce metrics and the notion of @neighbourhood, which we require to indicate that
certain events are probable when we are working with dercteapility distributions.

Definition 3.1. A metricon a data domai is a function
pp : D x D — R2°
such that for alke, y, z € D
e pp(z,y) =0ifandonly ifz =y,
e pp(z,y) = pp(y,z), and
e pp(z,2) < pp(z,y) + pp (Y, 2).

Definition 3.2. Let D, D’ be data domains with associated metrigs pp respectively. Theproduct
metricpp« p- on the data seb x D’ is defined as

poxp((a,0), (a',6)) = v/ (pp(a, a))? + (ppr (b, V))?

foralla,a’ € D and allb,b’ € D'.



Definition 3.3. Let D be a data domain with associated metricande € R such that > 0. For every
d € D we define the-neighbourhoof d as

U(d) ={xz e D|pp(d,z) <€}

Next, we introduce the notion of a measurable space, i.@setBubsets ab closed under countable
unions and complements. A measuyrg assigns some size to these subsets. For complex domains the
structure of such measurable spaces is not self evidenteaspéified by the Banach-Tarski paradox [2].

Definition 3.4. Let D be a data domain ariglp a nonempty family of subsets éf, closed under countable
unions and under complements (and hence also under coaiimiedrsections). We cdll , asigma algebra
over D and the paif D, Sp) ameasurable spacén elementX €S, is called aneasurable set

Note that, if X € Sp, thenD — X € Sp, soD € Sp, and hencd € Sp.

Definition 3.5. Let D be a data domain. We say, that a sigma alg&hsaover D is generated byX C 2P
iff Sp is the smallest sigma algebra ov@r which contains all the sets iK.

Definition 3.6. Let (D, p) be a measurable space. deasureon (D, Sp) is a functionup : Sp —
R=% U {oo} satisfying the following two conditions:

1. [LD(Q) =0.

2. For any countable sequence of disjoint S€{s X5, ... € Sp it holds that
po [ X5 | =D o (X))
J J

A measure is called-finite if every X C D is equal to some countable unipt Y; whereY; C D and
up(Y;) # oo. We assume all our measures todsénite.

Throughout this paper we require that we can speak abouwtidhudil data elements, and therefore we
require all our measurable spaces to be singleton closetfixed below.

Definition 3.7. Let (D, Sp) be a measurable space with a metric We say that théD, Sp) is singleton
closediff Sp contains at leasitd} and thee-neighbourhood of for all d € D ande > 0.

Typically, for continuous domains (e.g., time) the assetlaneasure is the Lebesque measure defined
on the Lebesque-measurable subsets and for discrete doitigia measurg : 2” — R2% U {oo} such
thatu({d}) = 1 forall d € D. It is noteworthy that both measurable spaces are singtdtsed.

Definition 3.8. Let (D,Sp) and (D', Sp/) be two measurable spaces with measurgsand upr. Let
Spwpr be the sigma algebra ovér x D’ generated by the subsets of the fadnx B, whereA € Sp and
B € Spr. We define theroduct measur@p« pr : Spxpr — RZ% U {00} as

N
pxp(X) = Sup {Z (1D (Ai) x ND'(Bi))} ;
i=1

where the supremum is taken over all finite sequericés B;}Y, such thatd; € Sp, B; € Spr,
A; x B; C X and the setsl; x B; are mutually disjoint.

Definition 3.9. A measurable data algebrd = (D, F') is a two tuple where

e D is a set with elements of the sha@@®, S, pp) where(D, S p) is a singleton closed measurable
space angp is a metric onD,

e F'is a set of functions over the data domain®inand



e The data domains are closed under products. l.e., if therdada domain® andE in D, then there
is also a data domaib x E.

In this paper we ignore the difference between syntax andsgos of data types. Separating them can
be done in a standard way but would distract from the essefrtbésqpaper. Among others, this has as a
consequence that we treat the functiongias syntactical objects to construct data expressions.

Next, we define measurable functions and integrals oveethes

Definition 3.10. Let (D, 3p) be a measurable space. A functipn D — R=° is called ameasurable
functioniff {d | f(d) € J} € Sp for every open interval C R.

Definition 3.11. Let S C D, whereD is some data domain. We define ttiearacteristic functiorof .S,
xs : D — R29 as follows

1 ifzes,
Xs(@W=10 ifren-s

Furthermore, letp(x) be some finite linear combination
N
o(z) = Zajxgj (z), whereay,...,ay € R=%,S;,..., Sy € Sp. (3.1)
j=1

Theny is calleda simple function

It is easy to prove that a simple function is measurable.Heuniore, note that a simple function is non-
negative.

Definition 3.12. Let (D, 3p) be a measurable space with measuge Letp : D — R2° be a simple
function as in (3.1) withd € Sp. We define the integral

N
/A@ dpp = ajup(S; N A).
j=1

Let f : D — R=° be any measurable function adde 3p. We define the integral

/ fdup = sup{/ edup| 0<p < f, pisasimple functioh.
A A

Theorem 3.13.Let (D, Sp) be a measurable space with measure Let A, B € Sp, AN B = () and
f: D — R=° be any measurable function. Then the integraf & additive in the sense that

fduDzAfduD+/]deuD.

AuUB

Theorem 3.14. Let (D, Sp) and (D', 3',) be measurable spaces with measureand y/,. Let A €
Sp, B € S and letf : D — R=%andg : D’ — R=° are measurable functions. Then

[ @ s® duper = [ Faun- [ gdun
(a,b)EAXB A B

Theorem 3.15. Let (D, $Sp) be a measurable space with measurg f : D — R=° a measurable
function, X € Sp andX; C X, C ... a sequence of measurable subset& afuch thatup (-, X;) =
up(X), then

/ fdup = lim / fdup.
X i—oo Jx,



The following identity relates integrals over a product Xe€ $ 4« g to its constituting domains.

Corollary 3.16. Let (D, Sp) and(D’, 3',) be measurable spaces with measupeand ./, and letX C
D x D'

N
/(a,b)EX f(a’ b) d’uDXD/ - Sup {; </(IEAi /bEB-; f(a7 b)dluDld‘uD) }

wheref is a measurable function defined on the donfain D’ and the supremum is taken over all possible
sequence$A;, B;}V such thatd;, B; are measurable artgf.vzl A; x B; € X andA; x B; are mutually
disjoint.

Whenf(a,b) = g(a) - h(b) theorem 3.14 simplifies to the following corollary.

Corollary 3.17. Let (D, Sp) and(D’, 3,) be measurable spaces with measugeand ., and letX C
D x D'

/( oy T @90 dpcr = 5 {i ( / _ fainn- / N g(b)duD/) }

i=1

where f andg are measurable functions defined on the respective doniaarsd D’, and the supremum
is taken over all possible sequendes;, B;}¥ such thatA;, B, are measurable artgi[il A, xB; C X
andA; x B; are mutually disjoint.

4 A simple stochastic operator

We take the basic process algebraic operators from mCRL2ahance them with a simple notation to
draw an element from a certain data type with a certain piitiyatf-or this we use the following notation
(cf. [12] where the same notation has been used):

I
d:Dp’

wheref : D — R=0 is a measurable function such that

/Dfd,uD=1-

This notation represents the procegd) whered is drawn from the domairD with a probability dis-
tribution, which is defined by the functiofi. For a finite or countablé the functionf represents the
distribution directly. For bigger domains it represents torresponding probability density function. The
probability that an element will be drawn from a measurablesetX C D is defined as

Prob(:veX):/ fdup.
X

Note that with a countable domain with a measure defined a3 ({d}) = 1 for all d € D, the probability
that a concrete elemedts drawn is

Prob(z=d) = f(d).

Example 4.1. The behaviour of a lightbulb which is installed at tirsie breaks down at timet + ¢, and
which is subsequently repaired at timve+ ¢ + u is described by:
o'} 2 00 2
instalkstwbreahdoww(st—}-t)wrepaz'ﬂ(st—i—t—i—u),
. w:
wheret andu are distributed according to the normal distributidij® (1, %) truncated to the interval
[0, 00).



We consider the following syntax for processes, of whichrtbie stochastic operators have been explained
in section 2. Note that a determined (stochastic) procga®ssion is just a process expression, except that
there can not be an initial occurrence of the stochasticabper

Definition 4.2. Let A = (D, F') be some data algebra. An expression satisfying the follpwimtax is
called a(stochastic) process expression

P := al|d|P+P|P-P|b—PoP|Pu|u>P | %P | P||P | On(P).
An expression satisfying the following syntax is calle(stochastically) determined process expression

Q = ald|Q+Q|Q-P|b—QoQ|Qu|u>Q|Q|Q|0x(Q).

Hereb is a boolean data expression amds a data expression of sautfrom the data algebra. If we
use a domairD in the stochastic operatqzl% then f always has to be a measurable function frbnto
R=9 such thatfdeD f(d)dup = 1. We writeP for the set of process expressions, &hg; for the set of
stochastically determined process expressions.

If we can freely use the data types, then it is possible toewditwn process expressions that have no
reasonable meaning in a stochastic sense. In definition & @rewvide a general semantical constraint that
implies that processes are stochastically well defineds @bistraint may limit the use of data expressions
that occur in for instance conditions. As our attention iseenantical one, we do not work out these
restrictions here, but assume in the sequel that we use xatassions with the appropriate constraints.

We introduce a functiorlet which makes a process stochastically determined by rergalinnitial
occurrences of the stochastic operator.

Definition 4.3. We define the functiordet : P — Pg4.; recursively on the syntactic structure of processes.
Belowp,q € P, t € R andb € B.

det(a) = a

det(0) = 4

detlp+q) = det(p)+ det(q)
det(p-q) = det(p)-q
det(b—poq) = b—det(p)odet(q)
det(p<t) = det(p)<t
det(t>>p) = t>det(p)
det(z5p) = det(p)

det(pllq) = det(p) || det(q)
detOn(p) = On(det(p))

By induction on the structure of determined process exmmssve can prove the following lemma:
Lemma 4.4.Letp € Py, thendet(p) = p.

5 Semantics

In this section we define the semantics of our stochasticgstanguage. The semantics of a stochastic
process is a timed stochastic automaton, which is defindd Arstochastic automaton has states, which
correspond to stochastically determined processes. érantire, there are probability functions that, given
a set of states, indicate what the probability is to be in drtkese states. Especially, there is not an initial
state, but an initial probability function, because duenitidl stochastic operators, it can be that the initial
states are only known with a certain probability distribuati

As we have time, there are two types of transitions, i.einarg transitions labelled with an action and
a time tag, and idle transitions, labelled with time, indilcg that time can pass. Each ordinary transition
goes from a state to a probability function because we samestionly know the resulting state with a
certain probability. Idle transitions go neither to a stade to a probability function.

After providing the general definition of a timed stochastitomaton, we define the semantics of a
process expression in terms of such an automaton using Asteiictured operational semantical rules.



Definition 5.1. A timed stochastic automatas a five tuple(S, Act, F, —,~, fo,T) where

S is a set of states.

e Act is a set of actions.

e Fis a set ofrobability functionsf : 2°—[0,1] U { L} that can assign a probability to sets of states.
If the probability is not defined for some set of stafésthenf(X) = L.

e —C S x Act x R>? x Fis atransition relation The expression ——; f says that a traversal is
made from state to probability functionf by executing actiom at timet.

e ~C S x R>% is theidle relation The predicate ~», expresses that it is possible to idle until and
including timet in states.

e fy is theinitial probability function
e T C S is the set oterminating states

Every timed transition system must satisfy tiregressanddensityrequirements. Let, s’ ands”’ be some
states inS, a anda’ some actions imct andt, ' € R>Y some points in time. The progress requirement
says that

if s 2, s "—',m s or s =, s~y thent’ > t.

The density requirement expresses that for any actigndct, statess, s’ € S and timet € R>°
if s =, " or s ~y, then s ~u

forany0 <t/ <t.

Below we define how a stochastic timed automaton is obtaired & stochastic process expression.
The first main ingredient is the functioftoch (see definition 5.6). The probability functio$toch(p)
applied to a set of states gives the probability that in procegone can end up in one of the stateskin
Typically, Stoch(p) represents the initial probability function of the timealpabilistic automaton which
is the semantics gf.

All definitions up to definition 5.6 are required to defiSéoch. The functionstochvar(p) provides
the initial stochastic domains in processlf there are no stochastic domains, wheis a stochastically
determined process, therchvar(p) = {0}, i.e., the set containing the empty set. The density functio
[p] applied to an element of a data domain, provides the prahathifit this element is chosen in the initial
stochastic operator ip. Using a functioriD,, states are translated to the matching data elements for

Definition 5.2. Let p be an arbitrary process expression. We definglthreain of its unguarded stochasti-
cally bounded data variablegochvar(p) inductively as follows:

stochvar(a) = {0}

stochvar(0) = {0}

stochvar(p+q) = stochvar(p) x stochvar(q)
stochvar(p - q) = stochvar(p)
stochvar(b—poq) = stochvar(p) x stochvar(q)
stochvar(p<t) = stochvar(p)

stochvar(t >>p) = stochvar(p)

stoch’uar(d D) = D x stochvar(p)
stochvar(p” ) = stochvar(p) x stochvar(q)
stochvar(0p(p)) = stochvar(p)

By induction on the structure of determined process exrssve can prove the following lemma.



Lemma 5.3.1f p € Py, thenstochvar(p) = {0}.

Definition 5.4. Let p be a stochastic process expression. @aesity functiorof p, denoted byfp], is a
function

[p] : stochvar(p) — R,

which is inductively defined as follows:

[a] = Ad:{0}.1

[o] = Ac{:{@}‘l B
[p+q] = Ad:stochvar(p),€:stochvar(q).[p](d)-[¢](€)
[p-dl = Ip] .
[b—poq] = Ad:stochvar(p), €:stochvar(q).[p](d)-[q](€)
[p<t] = [rl

[>p] = o] B

[0 = Ad:D, d:stochvar (p).f (d)-[p(d)](d)

[pllq] = MAd:stochvar(p), €:stochvar(q).[p](d)-[q] (€)

[Ou()] = I[pl

Note that for any stochastic process expresgiat is the case thafp] is a measurable function on
(stochvar(p), Sstochvar(p)). This is due to the fact that eaghin a stochastic operator is a measurable
function, and the product of measurable spaces is again suradde space (see section 3). Observe also
that for any stochastically determined process expregsioa have

[P1(0) = 1.

Definition 5.5. Let X C S be an arbitrary set of determined processesgaan arbitrary (not necessarily
determined) process. We define tteta projection ofX w.r.t. p as follows

D,(X) = {d € stochvar(p) | det(p)(d) € X}.

Definition 5.6. Let p be a stochastic process expression. We défine.(p) by

D] dptstochvar if D,(X) is a measurable set
Stoch () (X) { o P i )

1 otherwise.

In the tables 1, 2, 3 rules are given for the operational séinsarin these tables we use the following
auxiliary notion of a termination detecting distributiamiction. This function yields probability 1 on a set
of states iff there is a terminating state among them.

Definition 5.7. Let S = P4 U {v'}. Thetermination checking distribution functiofy, is defined as
follows whereX €25 is a set of states.

1 ifveX,
fo(X) = { 0 otherwise.

Furthermore, we extend the definitionsseéchvar anddet to the termination symbal’.
stochvar(v') = {0},
det(v') = V.

Definition 5.8. Let A = (D, F) be a measurable data algebra andplée a process expression. The
semantics of a procegss defined by the timed stochastic automatSnAct, 7, —,~», fo, T) of which
the components are given by

10



a7 i o
P [ P~y
g, f pt+q ~t
g f g~y
pHq——1 f P~
pL}tf/ pi%f f#f, P~
pq —5; Stoch(t>q) prq = AU25 f({r|r-qeU}) P
_pn ey P ey
(bmpoq) —r 1 (brstrue) —poq) ~ (bstrue)
QL)—tf bafalse) —3°7t  (basfalse
(b—poq) —=, f (b~false) (b—poq) ~¢ (b false)

Table 1: Operational rules for the basic operators

pi>tf D~ (t<u)
pt ——¢ f B

a
W (u < t)
u>p —¢ f

D~
TSP ~oy Sy (E<u)

Table 2: Operational rules for the time operator and the Hednnitialisation operator

S =Py U {\/}
F is the set of all probability functiong : 2° — [0,1] U { L}.

— and~ are recursively defined by the inference rules in tables 3, Zhe multiplication used in
the rule for the parallel operator in table 3 between pogsibbefined probabilities is undefined if
one or both of its constituents is undefined.

fo = Stoch(p).
T={v}

11



pingf‘/,qvt pi)tfaqf\’)t f#f,

pllg —>+ Stoch(t>q) pllg —=¢ AU25. f({r|(r|t>q)€U})
P“thi’tf\/ _ p“/’taqi%f f#f,
pllg ==+ Stoch(t>p) pllg == AU25_f({r|(t>p|lr)eU})
b c
p—i). 419 vbe)=a, f# oo a# fo

pllg 24 AU:25. f({r|3s.r||s € U})-g({s|3r.r||s € U})

b c
bl gt le f0) = a, f # f
plla =+ f

b c
P fa 8200 0 0) =0, g # o

plla =i g
Pi)t f/aa qi’t Iv v(b,c) =a
pllg —+ fv
Pt g p—= [ ad Py
pllg~1 Or(p) =4 AU:25.f({r| (8 (r)eU}) Iu(p) ~+

Table 3: Structured operational semantics for the parafidithe encapsulation operator

6 Stochastic timed bisimulation and general stochastic bisimulation

In this section two equivalences to relate stochastic m@E® are given and some elementary properties
about them are proven.

The first equivalence only relates determined stochasticgsses that form the states of automata
constituting the semantics of stochastic processes. Thigadgnce is formulated as a bisimulation, and it
is inspired by the classical definition from [14]. There isable and important difference namely that the
resulting probability functions must be equal for aflionsof equivalence classes. This is required to deal
with the potentially continuous nature of our data domaiafier the definition we provide a motivating
example to illustrate this necessity.

In definition 6.9 we define general stochastic bisimulationdrbitrary processes which is the core
equivalence we are interested in. As arbitrary processeist@rpreted as probability distributions, general
stochastic bisimulation is defined in terms of probabilitydtions and therefore it looks quite different
from an ordinary definition of bisimulation.

Definition 6.1. Let (S, Act, F,—,~, fo, T) be a stochastic automaton as defined in definition 5.8. We
say that an equivalence relatidt is a strong stochastic timed bisimulatidfi it satisfies for all states
s,s’ € S such thatsRs’

if s %5, f for somef € F, then there is aif’ € F such that
s' %, f"and forallX C S/R it holds thatf (| X) = f'(U X).

Furthermore,
if s ) thenS/ ot
Finally,

if s €T, thens’ € T.

12



We say that two states s’ € S arestrongly stochastically timed bisimilanotations<= 4 s’, iff there is a
strong stochastic timed bisimulatidb such thats Rs’. The relation=; is calledstrong stochastic timed
bisimulation equivalence

For closed stochastically determined process expresgiandq we say that they arstrongly stochas-
tically timed bisimilar notationp<= 4, ¢, if p andq are strongly stochastically timed bisimilar stateg #nd
g are open stochastically determined process expressiaswte say that they astrongly stochastically
timed bisimilar notationp= 4, q, iff they arestrongly stochastically timed bisimildor all closed instances.

The necessity of using unions of equivalence classes ingfieition above can be seen by considering the
following two determined stochastic processes:

al-r:iRag(r) and arﬁag(r—&—l) (6.1)
wheref is some continuous distribution such that for eveiyis the case thaf(r) = 0. The two proba-
bility functions that are reached after performingaaraction in both processes is given by respectively:

fi= Stoch(%ag(r)) and fa= Stoch(%ag(r—&—l)).

Every bisimulation equivalence classcS/..  containsas(r) for somer. Therefore, it is the case that
f1(X) = 0and f,(X) = 0. So, if a single equivalence class were used in definitiorb6th processes
in formula (6.1) would be considered equivalent. Using nreiof equivalence classes this problem is very
naturally resolved.

Definition 6.1 has an undesired feature, namely that it detfina&t processes are bisimilar when actions
can happen with undefined probabilities. Consider theviotig two processes.

pP1 = aldiDb(d) — a9 < 5,

P2 = aldiDb(d) — 5<>a2
whereb is a non measurable predicate @nFor the real numberiscould represent membership in some
Vitali set. Both processes are stochastically timed bisimbecause after doing an action, the probabil-
ity of ending up in the bisimulation equivalence class wreesnglea, action can be performed can not
be measured. The probability in both cases is undefined heendfore equal.

One might try to avoid equating the procesgesand p, by stating that processes cannot be equal
whenever their probabilities are undefined. But this hasamaequence that bisimulation is not reflexive.
In such a case; is not equal to itself, because the probabilities of doingiaafter doing thez; action
cannot be determined.

In order to avoid such anomalies we introduce the followiagstraint. The lemma following the the-
orem explains the use of the definition, saying that for airbulation closed sets of states, the associated
set of data values is always measurable.

Definition 6.2. Let .4 be a measurable data algebra ande a process expression. We say thas
bisimulation resilientwith respect taA iff for all stochastic process expressignand every measurable
setsA C stochvar(p) the set

{e€stochvar(p) | IdeA.det(p)(e) =q: det(p)(d)}
is also a measurable set.

Lemma 6.3. Let A be a measurable data algebra aralprocess expression that is bisimulation resilient
with respect tod. Forall XCS/.. the setD,(lJ X) is measurable.

The next lemma is a very useful workhorse to prove relatiorizetstochastically timed bisimilar as it
summarises reasoning occurring in almost every proof.
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Lemma 6.4. Let F be a set of functions fro®* to [0, 1] U { L} and letR, R’ C S x S be two equiva-
lence relations such th& C R’. If for arbitrary f, f/ € F such that for allX CS/R it is the case that
FUX)=f(JX), italso holds that for alt CS/R' it is the case thaf (U Y)=f(UY).

Proof. As bothR andR’ are equivalence relations ai containsR, every equivalence class #Y R’ must
be composed of one or more equivalence classes ffioR Hence, for allX €S/ R’ there areHfx C S/R
such thatX = J Hx. Take an arbitraryy” C S/R’,i.e. Y = |J,c; Yi, whereY; € S/R’, and arbitrary
f, f'€F such that for allHCS/R it is the case thaf (U H)=f'(lJ H). Then it holds

fY)=f (U m) =f <UUHYi> =/ (UUHYL) =/ (Un) = f'(Y)

icl iel icl icl
becausd Hy, | i € I} C S/R. |

The following self evident theorem is provided explicitlgdause its proof is not self evident. Moreover,
history shows that given the complexity of the definition tbag stochastic timed bisimulation, such
theorems are not always correct and therefore worthy ofgopiovided explicitly. The same holds for
lemma 6.6 which is also very elementary.

Theorem 6.5.Strong stochastic timed bisimulation equivalefieg;;) is an equivalence relation.

Proof. Reflexivity and symmetry follow directly from the fact thastong stochastic timed bisimulation
relation is an equivalence relation. The proof of trangitigoes as follows.

Assume for arbitrary statess’, s” € S thats=,s ands’=4s”. This means that there are strong
stochastic timed bisimulation relatiod® and R’ such thatsRs’ and s’R’s”. Below we show that the
transitive closure o2 U R’, which we callR, is also a strong stochastic timed bisimulation relatione T
relationR clearly relates ands”, sos =4, s”.

So, we are to show that is a strong stochastic timed bisimulation. Assume thatthee some states
ands’ (different from those in the previous paragraph) such ¢t This means that ands’ are related
via a sequence

SR181R282 . Sn_anS/ (62)

whereR; is eitherR or R’. By an inductive argument on (6.2) it follows that when-,;, thens’ ~;, and
with the same argument thatd€T, thens’eT.

Using (6.2) it also follows that if ——, f, thens; —— f1, so — fo, €tc., until ultimatelys’ —, f’.
In order to prove thaf? is a strong stochastic timed bisimulation, we must show for CS/R that
f(UX) = f(UX). We know thatR, R’ and R are equivalence relation®, R’ C R and for arbitrary
fi, fis1 we havevX C S/R.fi(UX) = firi(UX) orvVX C S/R . f;(UX) = fi+1(UX). Therefore,
from lemma 6.4 it follows/X C S/R.f;(JX) = fir1 (U X).

By inductively applying this argument using (6.2) it follewhatf (| X) = /(U X). ]

Lemma 6.6. Strong stochastic timed bisimulation equivalelteg,; ) is a strong stochastic timed bisimu-
lation relation.

Proof. From theorem 6.5 we have that,, is an equivalence relation. So, choose arbiti@ry)c<= 4.
From the definition o= it follows that there is some strong stochastic timed bisation R such that
(p.q) € R.

Therefore ifp %, £, then there is arf’ such thaty —*», f’ and for allX C S/R it holds that
fUX) = f'(UX). As R C =4, using lemma 6.4 we get(JY) = f(UY) forall Y C S/, .
Furthermore fron(p, ¢) € R it follows that if p ~, thenq ~; and ifp € T, thenq € T. So, we have
shown that=, is a strong stochastic timed bisimulation relation. ]

The following lemma says that, is in a sense unique, because using the operational sesjantian
only be ‘simulated’ byf,, and no other probability function.
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Lemma 6.7.Consider two stochastically determined process expnessiandg. If p= 4. andp ——, f.,
theng ——; f..

Proof. As p=4,q andp -, f.,, we find for some probability functiofi thatq —, f such that for all
XCS/., itisthecasethat(|J X)=f,(JX). Consider the s& of all bisimulation classes, except },

defined byS={UCS | U€S).., }. So, f(US)=f. (US)=0and f(US)U{v })=F. ((US)u{v })=L.
With induction on the derivation af —, f it can be shown that if there isECS such thatv' ¢ X and
FO#F(XU{V}), thenf=f,. 0

Before we are ready to provide our main equivalence noti@need one final preparatory definition to
determine whether there is a data eleméstich that it is conceivable to end upjd). If d is a dense
domain, Stoch(p)({d}) is most likely equal td for any datumd. In order to determine whethe(d) is
possible, we look at an arbitrary small epsilon environndéiit!) aroundd and check that the probability
to be in this environment is larger than

Definition 6.8. Let p be an arbitrary stochastic process. We sayﬁ&atochvar(p) is possiblein p iff for
all real numberg>0 it holds

/ _[pl du >0,

Ue(d)
whereue(d_} is thee-neighbourhood ofl with respect tq;,cnvar(p) (S€€ definition 3.3).
We are now ready to provide our main equivalence betweetramnpstochastic processes.

Definition 6.9. Let p, ¢ be two closed stochastic process expressions. We say tradg aregenerally
stochastically bisimila{denotedp=y) iff for all X gS/ﬁdt it holds that

Stoch(p)(U X) = Stoch(q) (U X).

and for allpossibled in p there exists sompossiblec in ¢ such that

det(p)(d) =ar det(q)(e)
The relation= is calledgeneral stochastic bisimulation

Note that it is immediately obvious from the definition thahgral stochastic bisimulation is an equivalence
relation.

Corollary 6.10. If p = g thenfor allX C S/ﬁdt it holds that

D, (| J X) is measurable ifD, (|_J X) is measurable.
Proof. This corollary is a direct consequence of definition 5.6. O

Itis possible to work with a weaker definition of general $tastic bisimulation, which consists of only
the first condition of definition 6.9. Our inspection indiestthat all congruence results carry over to this
setting.

However, for the weaker definition the generalised sum dpeisnot a congruence. This can be seen
by the following example. The notationzx represents equality between the data elemeatsdzz.

i ! s

:ﬁ(rzx)—wcoé and =7

Dz

wheref is some continuous distribution apds the Lebesque measure witfr) = 0 andfué " fdp >0
(i.e.,r is possible irp,) for anyr € R. Note that most common continuous distributions satisify. th
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The processegs, andg are not generally stochastically bisimilar, as the ‘pdssit action ofp,. cannot
be mimicked by;. But they are related in the weaker variant because the afasschastically determined
processes bisimilar to~z—aod has probability zero.

However, if we put the generalised sum operator in front aftsides, we obtain

T I

Z R (rex) —aod and Z T:Ré' (6.3)
z:R z:R

The process at the left can do arstep with a positive probability, although without a precgemantics

the argument is still intuitive. Take for instangér) = e~ for » > 0, otherwisef(r) = 0. Then

the probability of being able to do anaction in the process at the left of equation (6.3} isinus the

probability that naz step can be done:

1= = fr)dp,) =1 —elo™ Fdr =1 — e~ ~ 0.632.
r:R

The process at the right of equation (6.3) can daurstep at all. So, the so desired congruence property
does not hold, which is of course due to the fact that the susnadpr can combine an unbounded number
of processes.

The generalised sum operator is a very important operabatefore we decided to consider processes
p. andg non bisimilar, which is ensured by the second condition & dkefinition of general stochastic

bisimulation.
The following lemma tells us that for determined stochagtimcesses our definitions of bisimulation

coincide.

Lemma 6.11.Two bisimulation resilient, stochastically determinedgessep andq are generally stochas-
tically bisimilar if and only if they are strongly stochasily bisimilar, i.e.,

p=qifandonlyifp =4 q.

Proof. Let p, ¢ be bisimulation resilient and stochastically determineatpsses. Therefore for arbitrary
XgS/t_,dt it holds

Stoch(p)(X) = { L ’ Z§ Stoch(q)(X) = { o i . §§

1. Letp=q. Then for allyY CS/.. it holds Stoch(p)(UY)=>Stoch(q)(UY). In particular, for all
CGS/g:)di we haveStoch(p)(C)=Stoch(q)(C). Therefore eitheiStoch(p)(C)=Stoch(q)(C)=1
and bottp, ¢ are inC or Stoch(p)(C)==Stoch(q)(C)=0 and bottp, ¢ are not in C. Therefore=4q.

2. Letp=,q. Then obviously the second case of definition 6.9 is satisfeldt(p)=p anddet(q)=g.
For the first case, observe that for ®IC.S/.. ~either bothp andg are in{JY" or neither of them

is. Hence, eitheStoch(p)(lUY) = 1 = Stoch(q)(JY) or Stoch(p)(UY) = 0 = Stoch(q)(JY).
Thereforep=y.

By putting both direction together this lemma is proven. |

7 The stochastic bisimulation relations are congruences

The following section is completely devoted to proving thisbng stochastic timed bisimulation and gen-
eral stochastic bisimulation are congruences. There issnag, namely that the sequential composition
operator for determined processes allows a general sticlpascess expression as its second argument.
Therefore, the congruence theorem for the sequential csithgrofor strong stochastic timed bisimulation
(theorem 7.11) has the slightly unusual formulation:

p=gp and p=q’ implies pg=qp’-q'.
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All other formulations are exactly as expected.

The proofs are quite technical. For strong stochastic tilisonulation, a relationR is given that
is proven to satisfy all properties of a bisimulation. A cditgtion is thatR must be an equivalence
relation. This is achieved by considering the transitivesate of R. Definition 7.1 and lemma 7.2 are
tools to compactly deal with the typical reasoning that esdn every congruence proof of strong timed
bisimulation.

The congruence results for general stochastic bisimuldtéve as most complex aspect that they use
multiplication of probability functions. These can be ed#ted using corollary 3.17 as the supremum of
a finite approximation of squard®D;, £;} % ;. However, in the proofs it is essential that the domdihs
and E; are bisimulation closed (cf. definition 7.12) and pairwiggaint. Lemma 7.13 shows that a longer
but still finite sequenc¢ D7, Ef M * , with the required properties can be constructed.

Definition 7.1. Let (S, Act, F,—,~, fo,T) be a stochastic automaton. We say that a symmetric and
transitive relatiorp C S x S is apartial strong stochastic timed bisimulatiaff for all statess, s’ € S
such thatsps’ it satisfies

if s =, f for somef € F, then there is anf’ € F such that
s' = f'andforallX C S/, . . itholds thatf (U X) = f'(UX).

Furthermore,

if s ~s¢, thens' ~; .
Finally,

if s €T, thens’ € T.

The expressiofpU=4;)* denotes the transitive closure@f<= ;. Note that pU =,;)* is an equivalence
relation. This follows from the the symmetry of bgttand= 4, from the reflexivity of=4 and from the
fact that it is a transitive closure.

Lemma 7.2.Let (S, Act, F,—,~, fo,T) be a stochastic automaton. LetC S x S be a partial strong
stochastic timed bisimulation relation. Then the trawsitlosure ofp U =4 is a strong stochastic timed
bisimulation relation.

Proof. Let R be the transitive closure @fJ = 4. As = is reflexive,R has to be reflexive, too. Further-
more, since botlp and<=4 are symmetricR has to be symmetric, too. Transitivity &f is obvious and
henceR is an equivalence relation.

We now show thaf? is also a strong stochastic timed bisimulation relationo@e arbitrarys, s’) €
R. From the definition of transitive closure it follows that

upDu10 - - - Oug, for someuy, ..., ux € S such that,y = s anduy, = s’, where is eitherp or =4;.

Now, we prove by induction for a) < i < k, that the following properties hold:

1. if s %, f for somef € F, then there is g’ € F such thatu; —*; f’ and for allX C S/R it
holds thatf (| X) = f(J X).

2. ifs o, thenUi ot
3. ifseT, thenu; € T

Note that using symmetry, it follows directly from these pedties that? is a strong stochastic timed bisim-
ulation. Properties 2 and 3 follow straightforwardly frohetdefinitions ofp and=,;. We concentrate on
property 1.

Forug we haveug = s and thereforg =4 ug. From lemma 6.6 we have thatsifi>t f,thenthere is
somef’ such thatuy ——; f" and for allX C S/, itisthe case thaf (U X) = f'(UX). As ﬁdtC R,
and=4 andR are equivalences, lemma 6.4 y|elds that foLallC S/ R it holds thatf (U X) = f (U X).
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Now suppose that properties 1 holds for@ll . .., ;. We show that it holds fot; ;. There are two
cases to consider. Eithefpu; 1 oru; =4 uir1.

If u; =4 u;y1, then from lemma 6.6 we haveif ——, f/, then there is som¢” such thatu; , ——
f"andforallX C S/  itholds thatf'(lJX) = f"(UX). As=4C R, and both are equivalences,
lemma 6.4 yields that foralk C S/Ritis the case that’(|J X) = /(U X).

If u;pu;1q then from the definition of partial strong stochastic bisiation there is somg” such that
uiy1 —; f” and asp C R, it follows using lemma 6.4 that for ak C S/R it holds thatf’ (| X) =
F"(UX).

Together we havg (J X) = f(UX) = f"(UX) forall X C S/R. Therefore, property number 1
holds. m]

Theorem 7.3.Strong stochastic timed bisimulation equivalence is a nognce for the atyt) operator.

Proof. Letu € R=°. Definep = {(p-u,qu) | p=aq} and letR be the transitive closure @f U <= 4.
Choose arbitraryp<u, g<u) € p.

1. If pou -, f, thenp -, f andt = u. As pe24,q, there must be somge F such thaly ——, ¢
andf(UX) =g(UX)forall X C 5/, .Ast=u,alsogu—=;g.

From lemma 6.4 it follows thaf (| JY) = ¢(UY) forallY C S/R.
2. If pcu ~y, thent < w andp ~. As p=4,q, alsog ~ and hence (as< u) gu ~.
3. Itis never the case, thatu € T.

Thereforep is a partial strong stochastic timed bisimulation and fremina 7.2 it follows that the transitive
closure ofp U <4, is a strong stochastic timed bisimulation relation. Herstegng stochastic timed
bisimulation equivalence is a congruence for toperator.

O

Theorem 7.4.Strong stochastic timed bisimulation equivalence is a noence for thes operator.

Proof. Letu € R=. Definep = {(uw>>p,u>q) | p =4 ¢} and letR be the transitive closure @fU < 4.
Choose arbitraryu>p, u>q) € p. If u>p —, f, thenu<t andp -, f. Because<=4q, we have
q —; g and alsau>q —*; g, where for allX C S/, itholds thatf(J X) = g(UJ X). From lemma
6.4 it follows thatf (YY) = g(UY) forall Y C S/R.

Furthermoreu>>p ~+; means that eithe<u and therefore.>>q ~+;, or p ~»; and therefore ~+; and
hence alsa;>>q ~,. Finally, note that it is never the case thgtp € T'.

Thereforeyp is a partial strong stochastic timed bisimulation and fremmna 7.2 it follows thaR is a
strong stochastic timed bisimulation relation. Hencegregrstochastic timed bisimulation equivalence is a
congruence for the> operator. a

Theorem 7.5.Strong stochastic timed bisimulation equivalence is a nogrece for the encapsulatiofy)
operator.

Proof. Let H C Act be a set of action labels. Defide= {(9y (p),0u(q)) | p=arq} U {(p,p) | p € S}.
Choose arbitraryp,,q1) € R. The case whep; = ¢ is trivial, therefore it is sufficient to consider only
the case whep,; = 9y (p) andg; = dg (g) for somep, g € P4 such thap =4 q.

If 0 (p) -, f, thena ¢ H andp —%, f' wheref = \U:25.f'({r|0u(r) € U}). Asp=4q,
it follows thatq —%+; ¢’ such that for allX C S/, itholds f/(UX) = ¢'(UX). Consequently,
Or(q) = g whereg = \U:2%.¢'({r|0n(r) € U}).

LetY C S/R. Now denotedl = {r | 9y (r) € Y'}. We show thal/ is closed unde= ;. Letu=4u’
andu € V. Thendy (u) € Y. As (0u(u), 0 (v')) € Ritfollows thatdy (u') € Y and thereforey’ € V.
HenceV’ C /.. . Thus

f)=f(V)=4g(V)=g).
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Moreover, ifOg (p) ~, thenp ~;. Asp =4 ¢ alsog ~, and thereforé@y (q) ~
Finally, it is never the case théty (p) € T. Therefore,R is a strong stochastic timed bisimulation.
Hence, strong stochastic timed bisimulation is a congredoicthe encapsulation operator. O

Theorem 7.6.Strong stochastic timed bisimulation equivalence is a neewce for ther operator.

Proof. Define the relatiorp = {(p+q,p'+¢') | p=a:p’, ¢=4:¢'} and letR be the transitive closure of
p U =4. Note thatp is an equivalence relation, which follows becausg; is an equivalence relation.
Also, R is an equivalence relation, as bgtland< 4 are equivalence relations.

Choose arbitraryp, q) € p. Hencep = p1 + p2 andq = ¢1 + g2, Wherep; =41 andps<=4:qa. If
p —; f then eithep; ——, f orps —, f (following the operational rules). Because both situatiare
symmetric we can without loss of generality consider ong/filst one.

Fromp;<4,¢: and lemma 6.6, it follows that there is sorflesuch thaty; —, f’ and for allX C
S/, itisthe case thaf(lJ X) = f'(U X). As=4 C R, we have from lemma 6.4 that for all C S/ R
itis the case thaf (JY) = f/(JY). Becausg = q;+go, it holdsq —%-; f'.

Furthemore ifp ~, then eithep; ~»; or ps ~;. Fromp;=4.q; (Or po=4.q2)) we haveg; ~, (or
q2 ~). Thereforeg ~. Because = p;+p2, itis never the case thate T

Thereforep is partial strong stochastic timed bisimulation and frommiea 7.2 it follows thatr is a
strong stochastic timed bisimulation relation. As all paif processe&®-+q, p’+¢’) such thap=4p’ and
q=q4:q’ are inR, it follows thatp+q=4:p'+q’. Therefore=; is a congruence fof-. |

Theorem 7.7.Strong stochastic timed bisimulation equivalence is a noergce for the| operator.

Proof. We define the relatiop = {(pllg,p'll¢") | p=atp’, ¢=a: ¢'}. The relationp is symmetric and
transitive, as=,4; is symmetric and transitive.

Let (p,q) € p. Thenp = p1||p2 andq = q1]|q2 for somepy, p2, q1,q2 € S such thatp; <=4.¢1 and
pee=arqe. If p1llpa —=¢ f,, then either

1. f, = Stoch(t>ps), p1 ——+ fr andpy ~; or f, = Stoch(t>p1), p2 ——+ f, andp; ~+, which
is the symmetric situation. Without loss of generality, widyaconsider the first case.

As pr=aiqi, i —¢ fo (using lemma 6.7) and @8 =4:q2, g2 ~. It follows thatqy [lg; ——¢
Stoch(t>q2). As = is a congruence fos> (see corollary 7.10; we carefully checked that there are
no circular dependencies in proofs), we have

Fo(lJX) = Stoch(t>p2) (| X) = Stoch(t>¢2)(| | X) forall X € S/, .
Therefore, using lemma 6.4, it follows that

Fr(X) = Stoch(t>p2) (| X) = Stoch(t>¢2)(| | X) forall X € S/

(Puﬁdt)*’

where(p U =4 )* denotes the transitive closure of) =4 (see definition 7.1).

2. There is som¢,, € F such thap, —%; f,,, fo, # f andf,(U) = f,, ({r|(r||t>p2) € U}) and

P2 ~. Itmay be the case thdf, € F suchthaps —; f,, andf,(U) = f,, {r|(t>p1|r) € U})
andp; ~. This is the symmetric situation; we treat here only the fieste.

AS g1 = 4p1 andga =4, it follows thatgs ~; and there must be sonfg, € F such that; —,
fq, @nd

VX C S/ﬁdb : fpl(UX) = fq1(UX)~

Henceq: [laz —+ fq, wherefy(U) = fo, ({r | (r|[t>>q2) € U}).
Take arbitraryy” C S/(puﬁdt)*. Denote

ap ={r | (rl[t>p2) € [ JY} and oy = {r | (r[t>q) € [ JV}.

Now we are going to prove, thai, = o, and thata, (and hence alsey,) is a composition of
equivalence classes froffy.. .
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o if r € oy, then(r|[t>py) € UY. Thus(r||t>ps, r|t>q2) € p (@sr=4r and (from lemma
7.4)t>pr= g t>>q0). Hence(r||t>>g2) € |JY and therefore € «,,. The other inclusion can
be proven analogically. Thereforg, = «.

e Suppose: € «, andr’ ¢ «,, for somer,r’ € S. Then(r||t>p2) € UY and(r'|[t>>p2) ¢
UY. If reegr’, then, agsspoe gt po, it follows that(r||e&>pa, 7' ||t>3>p2) € p and therefore
(r'||t>p2) € JY. Thus,r’ € oy, which is a contradiction. Hences 5.’ which means that
oy, is closed undes= 4, , thereforen,, C S/ﬁdi.

Now we have for arbitrary” C S/, .-
FoUY)=Foa ({rl(rllep2)e | Y D= Fo () =For (ag)=fo, ({rl (][ E>a0) € [ J Y D=1 (U V)

3. There are SOM§,,, f,, € F sUch thahy — for, D2 —t fous for 7 fus fon # o v(by¢) = a
andf,(U) = fp, ({r[3s.(r|ls) € U})-fp,({s|3r.(r[|s) € U}).

ASs g1 =4:p1 andga=4;p2, it follows that there must be sonfg, , f,, € F such that
T fq @NdVX C S/ﬁ{ﬁ : fp1(UX) = fq1(UX)

G2~ fg @ndYX C Sy ¢ fr(UJX) = fo (U X).

Henceqi|lgx —=¢ fy, Wheref,(U) = f,,({r|3s.(r||s) € U})-fo,({s]3r.(r||s) € U}). Take
arbitraryY” C S/(puﬁdt)*. Denote

ap = {r|3s.(r|ls) EUY} and oy = {s|3r.(r]|s) UY}

Suppose € a, andr’ ¢ «, for somer, ' € S. Then, there is somee S such that||s € |JY and
forallt € Sitholds that'||t ¢ | JY . If r =4 1/, then(r||s,7’||s) € p and thereforgr’||s) € Y,
which is a contradiction. Hence, 4, r’. Thuscy, is closed under stochastic timed bisimulation,
which means that, C S/ﬁdt. Analogically, we can prove that, C S/ﬁdt.

Now we can see that

UY For(@p) s () = for (ap) foo (@g) = f4 UY

4. There are som&, c € Act such thaty(b,c) = a andp; —— fos P2 ——¢ fr O py L
p2 — f,. As both cases are symmetric we only consider the first caseutiloss of generality.
AS p1 =4 qu, it follows thatg, —, f, such that for allX C S/, it holds thatf,(UX) =

f,(UX). Also, asps =4 g2 from lemma 6.7 it follows thag, —— f,,. Thereforey; || go ——: f,
and from lemma 6.4 we have that

HLUX) = f,(JX) forall X €5/, e

5. There are somg ¢ € Act such thaty(b,c) = a, p1 Lt f, andpy —; f.,. From lemma 6.7,
using the fact thap; =4 g1 andps <=4 ¢, it follows thatq, $t fr, andgs —; f.,. Therefore
a
@l g2 —1 fo.
Furthermore, ifp; ||p2 ~+, thenp; ~; andps ~; and a1 =4:q1, pa=a: g2, alsoq ||gz ~+.
Finally, itis never the case that||p. € T. Thereforep is a partial strong stochastic timed bisimulation.

Hence, from the lemma 7.2 follows th@gt U <=4 )* is a strong stochastic timed bisimulation relation and
therefore=; is a congruence for thigoperator. O

Theorem 7.8.Strong stochastic timed bisimulation equivalence is a nognrce for thé— _o_ operator.
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Proof. Letb be a fixed boolean condition. Define the relatios: {(b—poq, b—p'oq’) | p=ap’, a=a1q'}-
The relationp is symmetric and transitive due to the fact tkaj; is symmetric and transitive.

Let (p,q) € p. Thenp = b—piops andq = b—q10qs for somepy, p2, q1, g2 € S such thap =41
andpz=4:qs.

1. Suppose -, f, then either

e b = true andp, ——; f. Hence, there is somg € F such thaty; —, ¢ and for all
X C S/, itholds (U X) = g(U X). Therefore; —, g.

or

e b = false andp, —, f. In this case there is somee F such thaij; ——, ¢ and for all
X C S/, itholds thatf(J X) = g(J X). Thereforeq <, g.

2. Suppose ~», then either
e b = true andp; ~. S0,q; ~ and thereforg ~»;.
or
e b = false andp, ~»;. Clearly,qo ~, and thereforg ~,.
3. Asp = b—piops, itis never the case thate T.

Therefore,p is a partial strong stochastic timed bisimulation. Hencemflemma 7.2 it follows that
(pU =4)* is a strong stochastic timed bisimulation relation andefee <, is a congruence for the
b—_o_ operator. O

Theorem 7.9.Let OP : P — P be a unary process operator such that strong stochastid bisienulation
equivalence is a congruence f0f° and the following properties hold

o stochvar(OP(p)) = stochvar(p),
* [OP(p)] = [pl. and
o det(OP(p)) = OP(det(p)).
Then general stochastic bisimulation is a congruence foofieratoOP.

Proof. Let p, ¢ be arbitrary processes such thatq. We show thaOP(p)=0OP(q). Let X be a subset of
S/, Define the set

= {rePs | OP(r) € | J X}

There are three observations that we use about

1. The setD,(Y) is a measurable set. This follows becalgpr ., (lJ X) is a measurable set and
D,(Y) = Dopp) (U X). This last observation can be seen as follows:

D,(Y) = {destochvar(p) | det(p)(d) € Y}
= {destochvar(p) | OP(det(p))(d) € UX}
= {destochvar(p) | det(OP(p))(d) € |UX}
= Dop(p)(UX)

2. The seD,(Y') is a measurable set. This follows B§(Y') = Dop(q) (LU X), which can be proven
in exactly the same way as the observation in the previons ite

3. The setY is bisimulation closed, i.e., if=47’, thenreY iff r'€Y. We prove this as follows.
Assume thatreY. ThenOP(r)e|JX. Asre.1’, =, is a congruence foOP and|J X is
bisimulation closedDP(r")e |J X. So,r' €Y.
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Using these observations we can derive

Stoch(OP(p))(UX) =

/ [[OP (p)ﬂdﬂstochvar(op(p)) =
Dop(p) (UX)

/ [[p]] dﬂstochvar(p) =
Dp(Y)

Stoch(p)(Y) = (Y is a measurable set and bisimulation clogegy;)

Stoch(q)(Y) =

/ laldrestochvar(q) =

Dq(Yy)

/ [[OP(Q)]]dlustochvar(OP(Q)) =
Dop(q) (UX)

Stoch(OP(q U X).

Finally, suppose that is possible inOP(p). Then asstochvar(p)=stochvar(OP(p)) and[p]=[OP(p)]
it holds thatd is also possible ip and therefore (ag=q), there exists somewhich is possible iy and
hence, by the same argument as befeiis,also possible iOP(q). a

Corollary 7.10. General stochastic bisimulation is a congruence forthé and- operators.
Theorem 7.11.Strong stochastic timed bisimulation equivalence is a nggmnge for the operator.

Proof. Let R* be the transitive closure ¢fp-q, p’-¢') | p=aip’, ¢=4¢' Y U=4;. Take arbitraryp-q,p’-q') €
R*. We only consider the case whenr=4; p’ andg = ¢/, as the other is trivial.
If p-qg -2, f then eitherf = \U:2%.g({r|r-q € U}), g # f, andp -, g, or f = Stoch(t>q) and
p — f.. We consider both cases separately.
1. Inthe first case, gs<4 p’ we havep’ —; ¢’ such that forallX C S/, itholds thaty(lJ X) =
¢ (UX). Hencep'-¢' -2, f' wheref’ = \U:25.¢'({r|r-¢’ € U}).
Now, denoteKy = {r | r-q € U} andK[, = {r | r-¢' € U}. We show thaty = K} for all

Ye25/p-. If r € Ky, thenrq € Y. Asregr andgeq/, it follows thatr-¢' € Y and thus,
r € K. As this is symmetric, we havky = K.

Furthermore, we prove that evefgy- whereY €5/ g+, is a union of some equivalence classes from
S/e. ie,foralX € S/, ,if XN Ky # 0thenX C Ky. Supposer € X N Ky and choose
arbltraryy € X. Then, it follows that:- -q € Y and asr= 4y andq=q, we have that-qR*y-q and
hencey-q € Y. So,y € Ky and thereforeX C Ky.

Using these two facts and the equivalencgy@indg’ on the equivalence classes frcﬁ’yiﬁdt, we
have for everyX CS/ g-:

FUX) =g(Eyx)=9(|J Kv) =4 (| Kv)=dEyx) =g (K x) = F(JX.
Yex Yex

2. Inthe second case= Stoch(t>q) andp —, f,. Asp =4 p' we havey’ -, f, and therefore
P'-¢ —=1 Stoch(t>q'). Asq = ¢, it follows from corollary 7.10 that for alX C S/, :

F(UX) = Stoch(t>q) (| X) = Stoch(t>q) (| X) = /(| X).
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It is left to check that terminating states and the idle retatire properly mimicked. As this is straightfor-
ward this is omitted (see e.g., the proof of theorem 7.6). ]

The following auxiliary definition is used to identify sultsef data which cause the same behaviour
in a proces®. For sets of processes the meaninglosed under bisimulatiois standard as bisimulation
is defined on processes.

Definition 7.12. Let p be an arbitrary process addl= stochvar(p). We say thatD)’ C D is closed under
bisimulation(w.r.t. p) iff for all d € D" andd’ € D\ D’, it holds thatdet(p)(d) 4: det(p)(d’).

Lemma 7.13. Let p and ¢ be processes. LdD = stochvar(p) and E = stochvar(q). Furthermore,
let {(D;, E;)}_, be a finite sequence of measurable rectangles ffom E in the sense that for every
1 <i<N,it holds thatD, C D andE; C E. Then a finite, disjoint sequendgD;, E;)}M, of
measurable rectangles frobh x E exists such that

M N
U(Df x Ef) = U(Di x E;),
i=1 i=1

where disjoint means that for every# j: (D; x E;) N (D} x E;) = 0.
Furthermore, if allD; are closed under bisimulation, then &l are closed under bisimulation, too,
and if all E; are closed under bisimulation, then alsoafl are closed under bisimulation.

Proof. We construct the desired sequeritéy the following algorithm:
e Initialize R := {(D;, E;)}¥

e If there are pair§D;, E;) and(D;, E;) € R such that D; x E;) N (D; x E;) # 0, then remove
(D;, E;), (D,, E;) from R and add the following seven pairs id We only us intersection and set
subtraction, which means that the resulting sets are stidisurable.
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This step is repeated as long as there are paifswith overlapping elements.

Note that the union of the products of the new sets match lgxa} x ;) U (D; x E;). Therefore, itis
straightforward to see that

M N
U@; x E) = J(Di x E))
1=1 =1

holds during each iteration of the algorithm.

In order to see that this algorithm terminates, one can denghe set of all minimal setd , obtained
by closing{D; | 1 < i < N} under intersection and removing every set for which theeessict subset.
In the same way{ can be obtained froniE; | 1 < i < N'}. Definecount(D, E) as the number of pairs
of setsD x E with D € Hp andE € Hg such thatD x £ C D x E. The measure

Z count(D, E)

(D,E)eR

decreases by at least one with every step of the algorithm.
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Finally, we need to show that for eve(y)J, ) added taoR during each |terat|onD] is closed under
bisimulation, provided that for eadiD;, E;) which was inR before the iteration it holds thdd, is closed
under bisimulation. This also needs to be showrHgrbut that argument is exactly the same, and therefore
skipped.

First, consider the case where a p@; N D;,...) is added toR. Consider al € D; N D; and a
d' ¢ D;nD;. So,d € D;andd € D;, whereasl’ ¢ D; ord’ ¢ D;. Thereforeet(p)(d)# 4 det( )d').

Secondly, consider the case where a paiy \ D;, .. ) is added taR. Consider al € D; \ D; and
ad ¢ D;\ D,. So,d € D; andd ¢ D;, whereas!’ ¢ D; ord’ € D;. Also in this case it follows that
det(p)(d)s2q: det(p)(d’), which finishes the proof. |

Theorem 7.14 .Let A be a measurable data algebra and assume that all processs#aps are bisimulation
resilient wrt..4. Then general stochastic bisimulation is a congruencentostochastic operator.

Proof. Consider two process expressignandyp’ contammg a free variablé € D such thap(d)=p’(d)
for all d € D (in shortp=p’). We must show thaﬁp = —p
We first prove the second property of general stochastlmhiatlon as it is almost trivial, and sub-

stantially easier than the first part. For the second prgperé must show that for all possiblein
—L5p there is a possible’ in SZ5p' such thatdet(;15p)(e) =a det(z5p')(¢'). This means that
has the shapée;, e2) andes is possible inp and the integral oj“ over every environment around is
greater than zero. As = p/, there exists some, pOSSIb|e inp’ such thatdet(p)(e2) =4 det(p’)(eh).
By definition 43det(de)( e) = det(p)(ez) and det(de )(e') = det(p')(eh). So, it follows that

det(Zpp)(e) =ar det(Gl5p)(¢").
In the first part of the proof we must show that for&lIC S/, itisthe case thaﬁtoch(% UX) =

Stoch( d:Dp "Y(UX). As all processes are bisimulation resment, we find that

Def. 5.6
StOCh(% )(U X) = A Ux) dep]]d,uD x stochvar(p)
- f

Def. 5.4
= / f(el) . [p(el)ﬂ(62)d:uD><stochvar(p) (71)
(61762)€'Ddf (Ux)

Cor316 g {i ( / _ @) / . [[p(a)]]<b>dumm<p>dur>) }

=1

where the supremum is taken over all possible sequefidgsB;}Y such thatA;, B; are measurable,
UZ 1A x B; C Df ,(UX)and4; x B; are pairwise disjoint. However, we need that fiieare closed

under b|S|muIat|on i.e.,, forall € D, e € B; ande’ € B\B; it holds thatdet(p)(d, e) 24 det(q)(d,e’).
First we show that there is a sequence of not necessaribyimtisgctangular set§ A;, B;) }¥¥ such that
all B; are closed under bisimulation and

N

N
UaixBiclJaxBcp ((JX). (7.2)

i=1 i=1
The setsB! are constructed as the closure under bisimulatioB;of
B! =D,({r|Vd € D,3e € B;.r =4 det(p)(d,e)}).

Note that as processes are bisimulation resilient, theledse measurable. AB; C B., the subset relation
at the left of (7.2) holds trivially. For the right subsetatbn consider a paiz, b’) € A x BJ. Then there
must be soméa, b) € A; xB; C Df ,(UX) suchthatlet(p)(a,b) =a det(p)(a,b’)and ast ,(UX)

is closed under bisimulatiorg, b’) e Df ,(UX). Therefore every; x B is a subset oDd ,(UX)
and thus the unloin:1 A; x Bl also has tobea subsetlzf%p(u X).

24



Given the sequenciA;, B.} Y, we know using lemma 7.13 that there is a sequente B; }! which
is a family of rectangular measurable sets closed undeanblation, which are disjoint and which covers
exactly the same data 4sl;, B/}{V:

N M
i=1 i=1

Using this fact we can further expand the equations from) @ZXollows

Sup {f: (/a f(a)- Hp(a)ﬂ(b)dﬂstochmr(p)duD)}

i=1 €A; beB;

= Su {f IRLCE N O Cr—ry } .

=1 @

(7.3)

Note that as thé3; are closed under bisimulatiog,* C S/ﬁdt exist such that

_[p(a)](b)dpstochvar(p) = Stoch(p UZ“
beB;

Using this the right hand side of equation (7.3) can be résvrito

Sup{i </ ~ fla)- Stoch(p)(|) 28 duD)}

i=1 €4,

P2 Gup {i (/  f(a) - Stoch(p Nz duD>} (7.4)

M
Def. 5.6 Sup {Z </ ) f(a) / [[p’]](Z)d,ustochmr(p/)duD> }
‘ acA; 2€D, (U Z7)

i=1

Observe thatl; x B; = D, ,({r(a)]ae A;,reJZ¢}) and hencdr(a) |a € A;,r € JZ8} C U X.

So, the last equation of (7.4) is equal to

M f
Sup / [7plﬂduD><stochvar( ")
; D (r(@)acdireyze)) d:D g

= Stoch( P){r(a)ac A;,re| J28})

IN

Stoch U X).

Note that the argumentation above relies on the facﬁhaﬂz(ﬁp’)(u X) is defined, ensured as defini-
tion 3.8.

1 (02, U0) =500 30040 5 (01,122}
i=1

In the same way, we can prove the relation

Stoch(%p’)(u X) < Stoch(%p)(u X)
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and therefore it must hold that
At _ St
Stoch(d:Dp)(U X) = StOCh(d:Dp )(UX)
|
Theorem 7.15. Let A be a measurable data algebra anddlebe a process algebra operator such that

strong stochastic timed bisimulation equivalence is a nogrgce for thed operator. Assume the following
properties hold:

stochvar(p @ q) = stochvar(p) x stochvar(q),

[p & q] = Ad:stochvar(p), &stochvar(q). [p](d)-[¢](€), and
det(p @ q) = det(p) & det(q).

all process expressions are bisimulation resilient wrt.

Then, general stochastic bisimulation is also a congruémdbe @ operator.

Proof. Assume thap, ¢, p’ andq’ are general processes such that p’ andq = ¢’. We must show that
pog=p @q.

First we concentrate on proving the second property of gémstochastic bisimulation, as it is more
straightforward than proving the first property. Suppos# (ti, ¢) is possible irp @ ¢. Thend is possible
in p ande is possible iny. Asp = p’ andg = ¢/, there is somé’ possible inp’ such thatdet(p)(d) =4
det(p’)(d’") and there is some possible ing’ such thatdet(q)(e) =4 det(q')(e’). Therefore(d',e’) is
possible inp’ @ ¢’ and from the fact that strong stochastic bisimulation is @gcoence forp, it follows
thatdet(p)(d) @ det(q)(e) =4 det(q)(d') @ det(q')(e').

For the first part, we must prove that for &l C S/, itis the case thaftoch(p & q)(J X) =
Stoch(p' @¢")(lJ X). As our processes are bisimulation reS|I|eﬁ‘thch (p@q)(J X) is defined as follows:

ef. 5.
StOCh(p D Q)(U X) P = o / [[p D Q]] d,ustochvar(p@q)
Dp@q(U X)

/ [[pﬂ (d) ' [[q]] (6) dustochvar(p) X stochvar(q) (75)
(d,e)€Dpaq(U X)

N
Cor. 3.
:3 1 Sup {Z (/ [[p]] (a)d/-l/stochvar(p) . / [[qﬂ (b)dustochvar(q)> }
; a€A, beB;

i=1

where the supremum is taken over all possible sequefdgsB;} such thatA;, B; are measurable,
UN., A; x B; C Dpe,(lJ X) andA; x B; are mutually disjoint.

So, the integral has been approximated with an arbitrargigiom by a sum of integrals over some
disjoint finite collection of measurable rectangular sdisit we require a stronger property hamely that
this integral can be approximated using sequeti¢ds, B;)}Y such that both; and B; are closed under
bisimulation, i.e., for ald € A; andd’ € stochvar(p)\A; it holds det(p)(d) 24 det(p)(d’) and for all
e € B; ande’ € stochvar(p)\B; it holds det(q)(e) #a: det(q)(e).

First we show that for every family of disjoint measurabletamgular setq(A4;, B;)}Y such that
Ufil A; x B; € Dpay(JX) there is a family of not necessarily disjoint rectangulas §é4;, B;)}¥
such thatd) and B} are closed under bisimulation and

N N
| Ai x B; € | 4] x B € Dyay(| JX) (7.6)
i=1 i=1

The setsd’, and B! are constructed as the closure under bisimulatioA;pfesp.B; as follows
(3 K3 p

A, =D,({r|3d € A;.r =4 det(p)(d)}),
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B! =D,({r|3e € B;.r =4 det(q)(e)}).

As A;,C A} andB;C Bl the setinclusion at the left of equation (7.6) holds tilyia/Ve have yet to prove the
setinclusion at the right. Suppose for somandb’ that(a’, b’)€ A} x B;. Then there must be sone, b) €
A; x B; such thatdet(p)(a)=4det(p)(a’) anddet(q)(b)=4:det(q)(b’). From the congruence of strong
stochastic bisimulation fop it follows that det(q)(a) @ det(q)(b) =q4: det(p)(a’) ® det(q)(b"). Hence,
asD,gq(JX) is closed under bisimulation an@d,b) € D,q,(lJX), we find (a’,b") € Dpe,(JX).
Therefore evenA! x B; is a subset oD,q,(lJ X) and thus the unioh)f’=1 Al x B! has to be a subset of
Dpesq (U X), to0.

Observe that lemma 6.3 implies that dl) and B, are measurable. Given the sequefidé, B/} it
follows using lemma 7.13 that there exists a seque{mi;—eéi}{w which is a family of disjoint rectangular
measurable sets closed under bisimulation that coverslgtae same data a4}, B/}, i.e.,

N M ~ ~
=1 =1
Combining, these we can replace the last lines of the etes(if.5) by

HPH (d) ! [[Q]] (6) d:ustochvar(p) X stochvar(q)

Sup {i (/aEAi [Pl (a)dpsstochvar(p) - /befh [[Q]](b)dﬂstochuar(q)) }

i=1

/(d7e) €Dpaq(UX)
(7.7)

where the supremum is taken over all possible sequenégs3;} such thatd; and B; are measurable,
mutually disjoint, closed under bisimulation apff’, 4; x B; C D, (U X).
Note that asd; and B; are closed under bisimulation, there must be soine; C S/ﬁdt such that

/aefii [[p]] (a)diu‘stochvar(p) = Stoch (p)(U Y:L) and \/l;eél [qﬂ (b)dustochvar(q) = StOCh(Q) (U Z’L)

Continuing with equation (7.7), we obtain

Sup {i ( /a i [pl(a)dpstochvar(p) - /b . [[qﬂ(b)dustochvm(q)) }

i=1

i—1

M
= Sup { (Stoch(p)(U Y;) - Stoch(q)(|J Zi)) }

M
P sup S (Stoch( ) Y2) - Stoch(a Zﬂ)}

EDq/ (U Zl)

Z [[p/ &) qlﬂdﬂstochq;ar(pﬂ%q') }

i=1 Y Dprgqg {ror’|relYi,r el Z:})

M
Defi5‘6 Sup {Z < > [Lp/]] y)dﬂstochvm'(p’) ! / [[q/]](z)d,ustochvar(q’)> }
i yeD, i z

Stoch(p' & ¢'Y({r @ r'|r € UYi,r/ € UZZ})} .
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Note thatd; x B; = Dya,({r&'|r € UY:,r' € UZ}) and hencé M {rav|r e UYi,» e UZi} C
J X. So we can conclude

M
Sup {Z Stoch(p’ & ¢')({r & r'|r € UYi,r’ € U Zi})} < Stoch(p' & q/)(U X).

i=1

Analogically, we can prove the relation

Stoch(p’ @ q’)(U X) < Stoch(p ® Q)(U X)

and therefore it must hold that

Stoch(p & q)(U X) = Stoch(p' & q')(U X).
0O

Corollary 7.16. Let A be a measurable data algebra and assume all process expsems bisimulation
resilient wrt..A. Then general stochastic bisimulation is a congruenceénfo#t | andb— _o_ operators.

8 Conclusion and future research

In this document we gave a natural semantics for a procegsid@e with a stochastic operator. We pro-
vided a notion of bisimulation resilience that guarantbes $tochastic processes in a setting with bisimula-
tion make sense. Furthermore, we introduced notions afibisition for determined and general stochastic
processes. With examples we motivated the choices we malde definitions. With quite elaborate proofs
it was shown that these bisimulations are congruences.

An interesting issue is the translation of the semanticomodif bisimulation resilience to the syntax of
processes. Which data expressions can safely be used irspescasuch that its stochastic behaviour is
well defined? We have not addressed this issue, yet, but ibbtine first on our list because it is essential
to know in order to use the language.

We omitted the general sum operator in our language as itaddst layer of complexity. Recall that
the generalised sum operator

dop
d:D

offers a choice in behaviour for anfrom D. If D is finite the sum operator can be dealt with in the
framework of this paper by expanding it to the choice oper&at the sum operator is particularly useful
and interesting whem is infinite (e.g.,D=N), or even uncountably infinite (e.g)=R, D=R — R, etc.).

In order to define the semantics of the sum operator, we mtei@xefinition 5.4 with some clause of the
form

[[Z p] = Aéstochvar(p). Hﬂpﬂ(é)
d:D

d:D

But in this formulation, the (uncountably) infinite prodwites not have a proper definition [ag (¢) can
have arbitrary values. If in a produff, ., r; it holds that0<r; <1, the product can be properly defined.
We expect that this can be employed by reformulating the séosan this paper in terms of probabilities,
instead of distribution functions, but we decided to delfés to a next paper given the technical complexity
of the current paper.

Besides the semantics of sum operator, much more needs toneetal bring this process algebra in
par with the theories for standard process algebras withlalgtwithout stochastic operators. This requires
definitions of variants of weak bisimulation, an algebrdiamacterisation of the equivalences, definition of
recursive processes (what happens when the stochastatapeccurs unguarded in recursive processes?),
manual proof methodology and the construction of tools dgdrdhms. We intend to conquer all these
issues one at a time.
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