A probabilistic analysis of the Game of the Goose

Jan Friso Groote and Hans Zantema
Department of Computer Science, Technische Universiteit Eindhoven
P.O. Box $513,5600 \mathrm{MB}$, Eindhoven, The Netherlands
\{j.f.groote,h.zantema\}@tue.nl

Abstract

We analyse the traditional board game the Game of the Goose. We are particularly interested in the probability of the different players to win. We show that we can determine these probabilities for up to six players. Our original motivation to investigate this game came from progress in stochastic process theories which prompted us to ask ourselves whether those methods are capable of dealing with well known probabilistic games. As these games have large state spaces, this is not trivial. As a side effect we found that common wisdom about this game is not true.

1 Introduction

The Game of the Goose is a traditional board game. It comes in many variations and is commonly known, especially in Europe [1]. Essentially, it has a number of fields and the goal for each player is to be the first to reach the last field. Players move by throwing two dice and moving the indicated number of spots forward. On their way to the goal each player can encounter several difficulties, among which there are the well and the prison where they have to stay until released by another player.

In [5] the Game of the Goose is described as 'historically the most important spiral game ever devised' and it is claimed that the game stems from the Italy of Francesco de Medici (1574-1587), but similar games were already very popular in ancient history, especially among the Egyptians and the Greek.

Typical for all variants of the Game of the Goose is that there are 64 fields and two or more players. As the game is solely determined by throwing a pair of dice, no strategy is involved. Hence, the probability for each player to win the game is completely determined. An obvious question is whether one can determine these probabilities. That is the main issue of this paper.

Contrary to probabilistic games, the question to determine the winner in a strategy game has always attracted a lot of attention. And although it is not (yet) known which player has a winning strategy in the great games (chess, checkers, go), there are many strategy games for which this is known. Examples are four-in-a-row (or connect-four) [7] and restricted versions of awari [4].

So, we set out to determine the winning probabilities for each player of the 'Old Dutch' variant of the Game of the Goose (het oud-hollands ganzenbord), although even for this game there are different sets of rules and we simply made an arbitrary choice among those. One of the aspects that we ignore is the payment of a small fines ('fiches') that occur in some variants. The precise rules that we use are described in section 2. A typical layout of the playing board is shown in figure 1.

The most straightforward way to determine the winning probabilities is by simulating the game randomly a huge number of times and counting how often each player wins. We observed that convergence of winning probabilities is slow, and it is hard to determine the exact precision of the obtained

Figure 1: A Dutch version of the the Game of the Goose from appr. 1960
probabilities. But we used this technique to verify the outcomes that we obtained in the way described below.

In this paper we calculate the probabilities by generating the complete state space of the game. Each legitimate way to put the players on the board together with the information who has the next turn constitutes a state. For each state and each player we introduce a variable expressing the probability to win the game for that player in that state. By formulating the relations between these probabilities, we get n linear equations among n variables, where n is the size of the state space. The number of states grows exponentially with the number of players. For the game with two players, this n is around 4000 and for five players there are 885 million.

Using Mathematica [8] we can solve the two player game exactly and the three player game using numeric approximation. The four player game could be solved using Matlab [3] with the induced dimension reduction (IDR) method as an extension package [6]. We managed to solve the game for five players with an ad-hoc fixed point algorithm. Establishing the winning probabilities for six or more players is out of our reach at the moment.

Inspecting these probabilities confirms many intuitive ideas about the game, but also lead to several surprising observations. The most surprising was that for the game with two players there is a substantial probability (23%) for the game to end in a draw, where one player is in the prison and the other is in the well. For all investigated numbers of players the first player has a small but definitive bias to win the game, which increases when more players join the game. For two players it is less than 2% and for five players it is almost 10%. It is also interesting to observe how the positions of the players on the board influence the winning probability. For two players we provide 3-D diagrams showing how these probabilities fluctuate depending on the relative position of the players on the board. From this one can for instance make the rather counter-intuitive observation that if one of the players ends in the well, this hardly increases the probability for the other player to win.

It is of course good fun to determine the winning probabilities for the Game of the Goose, but there is a more serious side to such an endeavour. Many real life phenomena can be described as probabilistic games. If we can analyze large games, we can analyze such real life phenomena as well. There are plenty of fully random games that can serve as useful playground. And if such games have been elaborated, there are still the games that combine strategy and randomness to be explored.

Acknowledgement. We thank Michiel Hochstenbach for his fruitful remarks, especially, for pointing out the IDR extension package for Matlab to solve large systems of linear equations.

2 The rules

Before presenting the results we have to determine the precise rules of the Game of the Goose. As it is a traditional game, it has been described in several sources. Although most ingredients of the game are the same in all sources, there are some minor differences. Here we fix a version that covers all interesting ingredients we met, and that is as close as possible to the various sources we considered.

- There are 64 positions, numbered from 0 to 63 . All players start on position 0 . The first player that reaches position 63 wins.
- A step of a player consists of throwing two 6 -sided dice and by moving forward as many steps as there are spots shown.
- In case the resulting position is already occupied by another player, the player has to go back to its original position.
- A player only wins when he lands on position 63 exactly; if the number thrown is higher than required, the surplus is counted backwards from position 63.
- At positions $5,9,14,18,23,27,32,36,41,45,50,54$ and 59 there is a goose (see figure 1). If a player arrives at such a position, he will move the same amount of the roll again in the same direction. If this is again a position with a goose, this will be repeated.
- If from position 0 the dice show 3 and 6 , the resulting position is 53 . If from position 0 the dice show 4 and 5 , the resulting position is 26 . Note that if this rule would not exist, the player would jump immediately to the finish via the positions marked with a goose, when throwing 9 spots in the initial position.
- Position 6 is the bridge: a player arriving there will jump to 12 .
- Position 19 is the inn: a player who is in the inn will stay there for one extra turn.
- Position 31 is the well: a player in the well will not play until another player arrives in the well.
- Position 42 is the maze: a player arriving there will go back to 30 .
- Position 52 is the prison: just as with the well, a player in prison has to postpone participating in the game until another player ends up in prison releasing the first player.
- Position 58 is the death: a player arriving there has to start anew by going back to 0 .

These rules are applied repeatedly. For instance, if a player is at position 46 and throws 4, he will move to 50 . This is a goose, so he moves to 54 . This is again a goose, so he moves to 58 . This is death, so he has to start over by going back to 0 . This combination of moves is considered as one move. If this position 0 is occupied since the turn before the other player came on death, this player will stay at 46 . As another example, consider a player at position 60 throwing double 6 , yielding 12 in total. By counting back he arrives at 54 . Since this is a goose, he has to count back 12 more positions, arriving at 42 . Since this is the maze, he goes to 30 . Note that there is no upper bound on the number of allowed moves, but the probability that the game goes on forever equals zero.

If there are two players there are three possible outcomes: either player can win by arriving at position 63, but the game can also end in a draw if one player is in the prison and the other is in the well, since then no player is allowed to move. Note that when there are more than two players, one of the players will win, and there is no possibility for a draw.

Although we carefully described the rules of the game, experience shows that text can always be interpreted in more than one way. Therefore, we provide a formal description of the game in figure 2 using the process algebraic language mCRL2 [2]. This process algebraic language describes in essence in which sequences actions that can happen. In this case, the actions are $\boldsymbol{\operatorname { w i n }}(p), \operatorname{rest}(p)$ and throw $\left(p, t_{1}, t_{2}\right)$ where p is the player, and t_{1} and t_{2} are the number of spots on both dice .

Players are represented by positive numbers $\left(\mathbb{N}^{+}\right)$. The numbers $1, \ldots, N$ represent the actual players where N is the number of players. As indicated above, we use the letter p to represent a player. The functions next and previous provide the next and previous player in a round robin fashion. The fields on the board are given as natural numbers (\mathbb{N}) ranging from 0 (initial state) to number 64. Field 63 is the winning field. The field with number 64 is used for the inn. A player that arrives in the inn moves to position 64 . When the player is at position 64 he moves to position 19 during his next turn, which represents waiting for one turn in the inn. The position of the players on the board is represented by a function position: $\mathbb{N}^{+} \rightarrow \mathbb{N}$ that gives for each player its position on the board. The function initial positions indicates the initial position on the board for each player. It is defined in the eqn-section as initial_positions $(p)=0$, i.e., each player starts at position 0 .

The process PLAY indicates the sequence in which the actions take place. It has two arguments. The first argument indicates the player that plays next, and the second argument is a function that for each player gives its position on the board. The behaviour of PLAY is given at its right hand side by if-then-else rules, denoted as $b \rightarrow x \diamond y$ indicating that if condition b holds, process x must be executed, and otherwise y is executed.

The first line, starting with the condition position $(\operatorname{previous}(p)) \approx 63$ says that if the position of the previous player is 63 , this previous player won the game, indicated by the action $\operatorname{win}(\operatorname{previous}(p))$ and after that nothing is done, indicated by the deadlock δ.

If this first condition does not hold, the second line applies, which is starting with the condition position $(p) \in\{31,52\} \wedge \ldots$. It says that if the position of the current player p is 31 (the well) or 52 (the prison) and there is no other player in the well or prison (\neg occ_twice (p, position)) then the player must wait one turn, by carrying out the action $\operatorname{rest}(p)$ and continuing to play the game giving the turn to the next player and leaving the positions of all players unchanged ($\operatorname{PLAY}(\operatorname{next}(p)$, position $)$).

If the second condition also does not hold, the third condition $\operatorname{position}(p) \approx 64$ can apply. This says that the player p is waiting in the inn. He automatically moves to position 19. This is denoted using the function update construction. The expression position $[p \rightarrow 19]$ represents the function position, except that it maps the argument p to 19 .

If none of the three cases above apply, the player p throws two dice. This is represented using the sum operator $\sum_{t_{1}, t_{2}: \mathbb{N}^{+}}\left(t_{1} \leq 6 \wedge t_{2} \leq 6\right) \rightarrow \ldots$ which says that positive values for t_{1} and t_{2} are selected that satisfy the condition. Then the action throw $\left(p, t_{1}, t_{2}\right)$ happens representing that player p throws a

```
eqn }\quadN=4
    next (p)=if(p\approxN,1,p+1);
    previous(p) =if(p\approx1,N,p-1);
    initial_positions(p) = 0;
    adapt_after_63(n) = if(n>63,126-n,n);
    next_position(p,position, t},\mp@subsup{t}{2}{})
```



```
        if(position }(p)\approx0\wedge(\mp@subsup{t}{1}{}\approx3\wedge\mp@subsup{t}{2}{}\approx6\vee\mp@subsup{t}{1}{}\approx6\wedge\mp@subsup{t}{2}{}\approx3),\mathrm{ if(occ_twice(p,position[p}->26]),0,26)
```



```
    next_position}2(p,\mathrm{ position, throw,old_position )}
    if(position (p)\in{5,9,14,18, 23, 27, 32, 36, 41, 45,50,54, 59},
        next_position }\mp@subsup{2}{2}{(}p,\mathrm{ position [p}}\mathrm{ adapt_after_63(position ( }p)+t)]\mathrm{ ,
            if(position(p)+t>63,-t,t), old_position),
    if(position ( }p)\approx6,\mp@subsup{\mathrm{ next_position }}{2}{(}(p,\mathrm{ position [ }p->12],t,old_position),
    if(position (p)\approx19, next_position ( ( p,position [p->64], t,old_position),
    if(position (p)\approx42, next_position }\mp@subsup{2}{2}{(p,position [ }p->30],t,\mathrm{ old position),
    if(position ( }p)\approx58,\mp@subsup{\mathrm{ next_position }}{2}{(}(p,\mathrm{ position [ }p->0],t,old_position)
    if(position ( }p)\not\in{31,52}\wedgeocc_twice(p,position),old_position,position(p)))))))
    occ_twice(p,position) =occ_twice_rec(p,position, 1);
    occ_twice_rec(p,position,other) = if(other <N,occ_twice_rec(p,position,other+1),false)\vee
                (other\notzp}p
                    (position (p)\approxposition(other) \vee
            position(other)}\approx19\wedge\operatorname{position (p)\approx64 \vee
            position(other)}\approx64^\operatorname{position}(p)\approx19))
proc }\operatorname{PLAY}(p:\mp@subsup{\mathbb{N}}{}{+},\mathrm{ position:}\mp@subsup{\mathbb{N}}{}{+}->\mathbb{N})
    (position (previous}(p))\approx63)->\boldsymbol{win}(\mathrm{ previous }(p))\cdot\delta
    (position }(p)\in{31,52}\wedge\neg\mathrm{ occ_twice(p,position))
        rest}(p)\cdotPLAY(next(p), position)\diamond
    (position (p)\approx64)->\boldsymbol{rest}(p)\cdotPLAY(next (p), position [p->19])\diamond
    \sum }\mp@subsup{t}{1,t,t:\mp@subsup{\mathbb{N}}{}{+}}{}.(\mp@subsup{t}{1}{}\leq6\wedge\mp@subsup{t}{2}{}\leq6)->\mathbf{throw}(p,\mp@subsup{t}{1}{},\mp@subsup{t}{2}{})
        PLAY(next(p),position[p->next_position(p,position, t}\mp@subsup{t}{1}{},\mp@subsup{t}{2}{})])
```

init $\quad P L A Y(1$, initial_positions $)$;

Figure 2: An MCRL2 description of the Game of the Goose
die with number t_{1} and one with number t_{2}. Subsequently, the game continues where the next player gets a turn, and where the position of the current player is updated using the rather complex function next_position $\left(p\right.$, position, $\left.t_{1}, t_{2}\right)$. This function is defined in the eqn-section and it is explained below.

The function next_position (p, position, t_{1}, t_{2}) calculates the next position of player p where he throws both t_{1} and t_{2} spots, given that the current position of the players is given by position. If p is at the initial position and a 5 and 4 , or a 6 and 3 are thrown, player p moves to position 53 , resp. 26 unless there is already a player occupying this field. In the latter case, the player stays at position 0. The expression occ_twice $(p$, position $[p \rightarrow 53])$ is used to check that if player p moves to position 53 , the position of player p is occupied twice. Note that in the definition of occ_twice, there is an extra check whether position 19 and 64 are both occupied. As both positions represent the inn, this also counts as a single field having a double occupancy.

If the special initial case described above does not apply in the definition of the function calculating the next position next_position $\left(\right.$ p, position, t_{1}, t_{2}), its behaviour is defined by the auxiliary function next_position $n_{2}(p$, position, throw, old_position). It yields the ultimate position of player p on the board when player p did make an initial move (which is already reflected in position) where the dice showed the value throw (but this value is negative if p is moving backward) and old_position is the position where p came from. Note that the use of next_position ${ }_{2}$ is tricky, because the player can have to move backwards when overshooting field 63.

In the definition of next_position ${ }_{2}$ all remaining special rules of the game are dealt with. The first if deals with the 13 positions where the player can move the same number of moves ahead (or backwards). The second condition (position $(p) \approx 6$) deals with the situation where the player is at the bridge, and he must move to position 12 . The third condition position $(p) \approx 19$ represents the player entering the inn. He is moved to the 'resting room' at position 64 . The fourth condition position $(p) \approx 42$ indicates that the player is in the maze. He must move to position 30 . The fifth condition position $(p) \approx 58$ corresponds to the situation where the player dies. He must restart by moving to position 0 . The last condition applies when no subsequent move of the player is possible. It is checked whether the move of the player will lead to a double occupancy of fields (except for the well and the prison at positions 31 and 52 which can have more than one occupant. If there is a double occupancy the player moves to its old position, and otherwise it moves to the new position.

The mCRL2 tools allow to simulate the game and generate a full state space for the game which consists of all reachable configurations of players on the board. When interpreting the throw actions as being able to happen with probability $\frac{1}{36}$ the winning probabilities can be calculated by interpreting the state space as a discrete Markov chain. If a win or rest action can happen, no other actions are possible and therefore, one can consider these actions as happening with probability 1.

3 Analysis of a simple game

In this section we introduce an extremely simplified version of to Game of the Goose in order to illustrate how we obtain the probabilities. The rules of the game are simple. There are two players

Figure 3: A simple two player game

Figure 4: The state space of the simple game
that start at position 0 . The first player that reaches position 2 wins the game. Each player throws a two sided coin with no or one dot, and he will move zero or one positions forward in accordance with the value thrown. The game is illustrated in figure 3.

The game can be described in mCRL2 as follows:

$$
\begin{array}{ll}
\text { proc } \quad & P L A Y\left(p_{1}, p_{2}: \mathbb{N}, \text { turn }: \mathbb{N}^{+}\right)= \\
& \left(p_{1} \approx 2\right) \rightarrow \boldsymbol{\operatorname { w i n }}(1) \cdot \delta \diamond \\
& \left(p_{2} \approx 2\right) \rightarrow \boldsymbol{\operatorname { w i n }}(2) \cdot \delta \diamond \\
& \left((t u r n \approx 1) \rightarrow\left(\sum_{t: \mathbb{N}} \cdot(t<2) \rightarrow \mathbf{t h r o w}(1, t) \cdot \operatorname{PLAY}\left(p_{1}+t, p_{2}, 2\right)\right)\right. \\
& \left.\diamond\left(\sum_{t \cdot \mathbb{N}} \cdot(t<2) \rightarrow \mathbf{t h r o w}(2, t) \cdot \operatorname{PLAY}\left(p_{1}, p_{2}+t, 1\right)\right)\right) ;
\end{array}
$$

init $\operatorname{PLAY}(0,0,1)$;

The state space of the game is depicted in figure 4 . The initial state is light grey and has number 0 . In the initial state player one either throws zero (throw $(1,0)$) or one (throw $(1,1)$) which are represented by arrows leading to respectively state 1 and 2 . In states 1 and 2 the second player can make a move. Figure 4 gives a nice overview how the game can proceed. At states 8 and 9 player 1 wins the game $(\boldsymbol{\operatorname { w i n }}(1))$ and in state 10 and 11 player 2 wins $(\boldsymbol{\operatorname { w i n }}(2))$. State 12 is a deadlock state where the game is finished, corresponding to δ in the mCRL2 description.

We are now interested in the probability for player 1 to win the game when he is in state i. We denote this probability by p_{i}. Clearly, $p_{8}=p_{9}=1$, and $p_{10}=p_{11}=0$. The probability p_{12} makes no sense because in state 12 the game is finished. For all other probabilities p_{i} we can derive a simple linear equation. The probability to win in state 1 is $\frac{1}{2} p_{1}+\frac{1}{2} p_{2}$ because player one has 50% chance to end up in state 1 and 50% chance to end up in state 2 . If we spell out all equations we get the following set of linear equalities.

$$
\begin{array}{lll}
p_{0}=\frac{1}{2} p_{1}+\frac{1}{2} p_{2} & p_{4}=\frac{1}{2} p_{2}+\frac{1}{2} p_{8} & p_{8}=1 \\
p_{1}=\frac{1}{2} p_{0}+\frac{1}{2} p_{3} & p_{5}=\frac{1}{2} p_{6}+\frac{1}{2} p_{9} & p_{9}=1 \\
p_{2}=\frac{1}{2} p_{4}+\frac{1}{2} p_{5} & p_{6}=\frac{1}{2} p_{5}+\frac{1}{2} p_{10} & p_{10}=0 \\
p_{3}=\frac{1}{2} p_{6}+\frac{1}{2} p_{7} & p_{7}=\frac{1}{2} p_{3}+\frac{1}{2} p_{11} & p_{11}=0
\end{array}
$$

This set of linear equations is small and therefore easily solved, leading to $p_{0}=\frac{16}{27} \approx 0.59$. In order to find the probability that player two wins the game we can use the same set of equations, except that we must take $p_{8}=0, p_{9}=0, p_{10}=1$ and $p_{10}=1$. This leads to the expected result of $\frac{11}{27}$ as the winning probability for player 2 . Obviously, the first player has a substantially higher probability of winning the game.

There are other ways of deriving these winning probabilities. A straightforward way is to simulate the game sufficiently often, which gives an approximation of probabilities, although for games with huge state spaces, these probabilities tend to converge slowly.

Another is to derive the linear equations directly from the game, without generating an explicit state space. We define the probabilities $q_{i j k}$ to represent the probability that player 1 wins the game, provided player $i(i \in\{1,2\})$ has the next turn, player 1 is at position j and player 2 is at position k ($j, k \leq 2$). The probability q_{100} is equal to $\frac{1}{2} q_{200}+\frac{1}{2} q_{210}$ because player one has equal probability to stay at position 0 or move to position 1 , after which it is player two's turn. By carefully analysing all board positions of the game we can derive the following set of equations. Note that some probabilities are left out, as such probabilities cannot be reached, such as $p_{12 k}$. These probabilities represent situations where player one can play and has won. Note that the obtained equalities are in this case exactly those obtained via the state space. For the Game of the Goose the number of equations that we obtained in both ways were slightly different.

$$
\begin{array}{lll}
q_{100}=\frac{1}{2} q_{200}+\frac{1}{2} q_{210} & q_{200}=\frac{1}{2} q_{100}+\frac{1}{2} q_{101} & q_{110}=\frac{1}{2} q_{210}+\frac{1}{2} q_{220} \\
q_{112}=0 & q_{210}=\frac{1}{2} q_{110}+\frac{1}{2} q_{111} & q_{220}=1 \\
q_{101}=\frac{1}{2} q_{201}+\frac{1}{2} q_{211} & q_{111}=\frac{1}{2} q_{211}+\frac{1}{2} q_{221} & q_{201}=\frac{1}{2} q_{101}+\frac{1}{2} q_{102} \\
q_{211}=\frac{1}{2} q_{111}+\frac{1}{2} q_{112} & q_{221}=1 & q_{102}=0
\end{array}
$$

We used all three ways to establish the winning probabilities. The reason for this is that it is very hard to not make a mistake in precisely modelling even simple games. By modelling it in three different ways we could compare the results and increased our confidence that our results are correct.

4 Computations for two players

If we analyse the Game of the Goose for two players, we obtain a set of 4048 or 4078 linear equations depending on which method is used for generation. We can derive the following results regarding the winning probabilities for both players.

Probability that player 1 wins the game	0.3936
Probability that player 2 wins the game	0.3799
Probability for a draw	0.2265

354578138124950186817810489217182791317787798724802614410029328485608903369477431635018222558 399309450507103459074238228376405712500904558023752239339280938603803457573412946045548555428 192408470799948053129350811785597975235328183601609649319429499349866185498239751673351341769 582839004783122090660713501153416711577247932684590810429682087674204514516206428023232773142 970683832903046790844706695907372586643039096740098702406743747498676783882062602493264926223 838302824908562507570250392570595827698114873011234704695646697896143603966602499097872351154 669089452354191599916709746676851938051878405719576742617594702275857493698645246959330233303 091445902939904912863840744790654661105175111195454449663058266233638363673073343450482998878 224889581332206333579009718721098139784479036279112434678742992137019681147035075938046701550 918055159448125308748921320289899333197006467347143802920860473826874931173910161985261833871 891348234745481157765616175520794275559824385481401595657510498531296821490135004997149723846 312298317137414865283481215837836732118455291175984574489259882269507968728081889027165529711 660915404995631330437820160918345491253783805093745020459199567996953546847609820992902762908 750628689522634308453656275384033760133459102330761797545360967662642992417761488637785343096 179837783567510615016827169189382638260325730601238974784021870275751361465251485833641380988 601239137220474152073594938576999714048510670106244854187988128408120363500526256376389738531 527536713654289142088651349218285889196358082646355336459464707565595257453153280748427467824 804125023919836067186411643984746979465748585196447014561870836245035624955049440432350263977 824403133461025845332976436704285089656500992657870174243661788423998434592130682667322269405 049490116752141370798765615956317551142249979497567046069585441301567890743987803069586801932 669973979851519762918559922723993392470947267582828358727134952210072937955951818226524755153 725945829745811214804332328703353196315111784798277410263357528661496628912933728773218555977 962282140759639089508990171920383431393394642405434973415711204469313507363576994397787067207 425052329110883835493651467371006199576012293462207442967865421344357444321357800987822349475 376878156929670045445507371744044527718465666904104107234441730939460632072987861228015467811 882360487748332166057469542836916432762990864234404289049048042068157866859460085236085608315 623668882716193909184091442443597083669348518632793885704717828545288254527572206829503888843 189830953755201841220373817976349249436975535253449029794712313365966457380552647526110163477 309530899123504784001358147399949405347287670149449824157437381968509825640543358543867976582 112932024845249858864855940315369112486827116397833485123121716079117281508469354925885409764 674924868096271749236366074963266182936247416433242594731524706999193767511101871330792678259 280382594971805430937807818516642167895701603935105753261288618047393431315053008943441431152 112314766320450756187900149495780206679762576019422616321340814720511095615601551532129272718 542739705072677966046511469321938635400662566613122323344475936596007879096566202575850204524 189676551943771629765498166351584803390675990234443292078393699164128871377784023956250048044 331552068284643624644046415414958009203064443229091249119093243635766772160882604554315879605 060831221307872086909952800271602369875618608782388082232510649386131941136637973880915801002 154572511895832800230367533198381720968690002760891453868273714176187898521616789993779960852 761931148923821002490024262343407522301166428721085616227115222756065531414838764999639026632 039441391801485622144284338102119223432872300849269879911935735471566830470688649086825183967 844807850946421646147394307730886861802798090936151774215069265819265138777116887920005066844 010830068931878504072308068647265799544023019246293329832623031453567259134862222156900665676 786448672835928798628020069958939032396484550567944379409480283

900801560775964656126774493326889579738207808673590850978148447654100516265185014530331647892 963003549157974321305021253246292417449947288406287943081249483047759028012482686458088710035 667076237996138211920100304931630064917887932900820281965696801766239831673398209178450364993 664141772270799113017382685324511970805425293800448269497362017976312673299247677364939829441 356682373589121359929188239605113065014562579196471221602072740197329678855003920081111125071 562181004087297676021601547101904445991031881920268404465974551250191245335606564444955874790 579668842903908691859663445026042171718496802772890001540462085862285203596824508136312510930 848256782907319085401577950566480236492258368651403851498168474838648238887253361826278320974 211582989769501836744362197433090321629992797581960180227991741382084013179433356134386879465 593763466375933164532378142992032030676788266593780697459863590954425340611505393883463891170 971971064338366560257877714490386750914477743904362410695314284442222150192349474163351136665 216496309031156352596603819405940309695923665530872630461144194903750285125269104079009482059 449373800161294244270975727298452311247329735693384663705652207467764860758084365569131209291 229381384664939466470853167529986572849474795951706727760432071740948785034512160370763120637 339519772942758900998043467561936589952119274344302734511358915860188099372260220328866589088 156263594454570824879678437060954154474559388781342874179426124184682655203719929399964083174 163103613617183832005419973105753767668901642442011068968931764251547938499039025283281070521 626469361626355506807630054195079424417327991706187186940870807368776939235542166982376805364 554504077292848886835539066227774214224562642653978516302884675382241286557954761373473131260 398683754349784037651478869577494891197647440888866724744290474747707116650727026018201161485 468721477586155819906563951435363663409456413316958670299530968871213165410259673299779136449 546570382066086147033604221435389641473231140715280626878852774956863960299786109914398931518 303131212483531294493331159638610052553627850621091892922181967442078061555180719269959611691 375488038095571656477654073523484609997634483232600502379658428980870346360321738192432670388 030086044391330549464290582334683133818870134666528351268436864593343373928316778450239320151 490616017571218225599667338674345549599369213030835046237448574463407637323433037344642693651 701648988954227861867925754021764324627782273822196813395500498990947900775262466674566797502 538208692635181129126570140804676875824884483807381185441791415008023307041497487737249042310 505372990270640822151972277764575305052107974872293504455660045611058486209180538423771137278 665443687822206785250296004711649547019031985510776338368259491949746485804668295542587032964 330180313351672274528115527876257178151725307206824846802270199905183486827906401182641218870 282587165253232412527268173813719376856485718148441478527543006201364921512289327167966829752 840415669558102361080423578070292648605539487934572107269958992134149955478331466018851569593 718356612338981495161662932308349814571401207328017569896080483808315461551874907047767528969 200021893878774750118480746745401602759010790621652738798780702998291443204275453806422937174 486042713846526300307683386755779988859765442464426523581101010235589403184706181157183193989 204685507819243217476508781703035183919970452946772074659104050764081839159268568343117208670 821350611437447602059630356954342172567631055484692745718321278817807410839504476278638075658 957815114791859980138843196023327044410709069485441809674404861155840974443329069685443563451 000330064673984317988986377130965450283592011509535800247907476188834267070613796557088503934 717084645791126874032339497526018300237585065551096520626437434582945009801773336358068326941 285478875469093008017253189675909895843648482906710452459750563144869260744545121189657756675 3191653418733360283585073225627136513606612524945418565535662080

Figure 5: The exact winning probability for player 1 in a 2 player game

Figure 6: Visualisations of the winning probabilities of a two player game

Note that there is a substantial 23% probability that one player will end up in prison and the other in the well, leading to a draw in the game.

For a two player game it is actually possible using Mathematica to obtain the exact solution of the set of equations. As a curiosity the precise winning probability is given in figure 5 as a quotient of two natural numbers, which is approximately

$$
0.3936251373937573914028403448768445020070441350696 .
$$

This exact solution can be used to check whether exactly the same game has been modelled. Minor flaws in modelling the game, such as forgetting that a player must rest one turn in the inn, will not substantially influence the winning probabilities of the players, but it will also not lead to exactly the same solution as given in figure 5 .

It is interesting to figure out how the winning probabilities evolve while a game is progressing. For a two player game this can be neatly visualised, see figure 6 . Here three diagrams are depicted, all with a view from above and from the side. The upper diagram models the probability that player one

	\#equations	player 1	player 2	player 3	player 4
two player game	4078	0.39363	0.37999	-	-
three player game	27910^{3}	0.34596	0.33290	0.32114	-
four player game	16.410^{6}	0.26695	0.25471	0.24408	0.23426
five player game	88510^{6}	0.22039	x	x	x

Table 1: Winning probabilities when there are more than two players
will win the game, when it is his turn to make a move. In particular if player one is alone in the well or in the prison, he cannot move, and this situation is not part of this diagram. The second diagram depicts the probability of player one to win the game, when player two is about to move. The third diagram depicts the probability of ending up in a draw.

If player one moves forward, he moves to the back of the diagram. If player two moves forward, he moves to the right. There are only 47 positions in the diagram, because all fields where a player must continue to move forward (i.e., a goose, death, the bridge or the maze) have been removed.

Note that the upper two diagrams have a solid wall at the back. This corresponds to player one winning the game. Similarly, there is a valley at the right, corresponding with player two winning the game, which means that the probability of player one to win the game is 0 . Observe that the closer player one is to the finish, the higher is his probability to win, and reversely, the closer player two is to the finish, the lower is the probability that player one will win. Remarkably, if player two is in the prison, there is a substantially higher probability for player one to win. But if player two is in the well, this hardly influences the probability for player one to win. The reason for this can be seen in the third diagram. If player two is in the well, there is a substantially increased probability that the game will end in a draw. The two spikes in the third diagram correspond to the situation where the game is actually in a draw.

There is much more detailed information in these diagrams. For instance that it is not advantageous to be very close to the finish. But we leave the detailed interpretation of these features to the reader.

5 Winning probabilities for more players

It is also possible to establish the winning probabilities when there are more than two players, but this is increasingly more difficult as the number of states is growing exponentially, approximately according to the formula $N c^{N}$ where $c \approx 45$ and N the number of players. In table 1 the winning probabilities are provided. The winning probabilities marked with an ' x ' can be calculated, but it is simply too time consuming to do so. The obtained number required a few months of continuous calculations.

We first solved the sets of linear equations using Mathematica [8]. This could be done exactly for two players and numerically for three players. For three and four players, using Matlab extended with the IDR package, we could solve the sets of obtained linear equations [3, 6]. For four players 400Gbyte of memory was required.

But we observed that the generated equations have a rather regular structure. For each variable p_{i} there is an equation of the shape

$$
p_{i}=c_{i 1} p_{i 1}+\cdots+c_{i k} p_{i k}
$$

where all $c_{i j}$ are positive numbers smaller or equal than 1 and the solutions for all variables are in
the interval $[0,1]$. This linear set of equations can be viewed as a monotonic operator of which the solution can be obtained using fixed point iteration. Initially, all p_{i} are set to 1 . Taking the equations a assignments, a new value for each p_{i} is repeatedly calculated until a fixed point is reached. This allowed to find the winning probability for player 1 in a five player game.

As it stands solving the game for six players is currently beyond our capabilities, although it is conceivable that with a concerted effort, capable hardware and dedicated software this can be achieved. The number of required equations is estimated to be around 5010^{9}.

References

[1] H.C. Bolton. The game of goose. The Journal of American Folklore 8(29):145-150, 1985.
[2] J.F. Groote and M.R. Mousavi. Modeling and analysis of communicating systems. The MIT press. 2014.
[3] MATLAB version 7.10.0 (R2010a). The MathWorks Inc. Natick Massachussets, 2010.
[4] J.W. Romein and H.E. Bal. Solving the Game of Awari using Parallel Retrograde Analysis. IEEE Computer 38(10):26-33, 2003
[5] A.H. Seville. Tradition and Variation in the Game of Goose. Board Games in Academia III. (Proceedings of Colloquium in Florence), pp. 163-174, 1999.
[6] P. Sonneveld and M.B. van Gijzen. IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems. SIAM Journal of Scientific Computing 31(2):1035-1062, 2008.
[7] J.W.H.M. Uiterwijk, H.J. van den Herik and L.V. Allis. A Knowledge-Based Approach to Connect- Four. The Game is Solved! Heuristic Programming in Artificial Intelligence: the first computer olympiad (eds. D.N.L. Levy and D.F. Beal), pp. 113-133. Ellis Horwood Limited, Chichester, 1989.
[8] Wolfram Research, Inc. Mathematica Version 8.0. Wolfram Research, Inc. Champaign, Illinois. 2010

