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Abstract
We analyse the traditional board game the Game of the Goose. We are particularly interested in
the probability of the different players to win. We show that we can determine these probabilities
for up to six players. Our original motivation to investigate this game came from progress in
stochastic process theories which prompted us to ask ourselves whether those methods are capable
of dealing with well known probabilistic games. As these games have large state spaces, this is
not trivial. As a side effect we found that common wisdom about this game is not true.

1 Introduction

The Game of the Goose is a traditional board game. It comes in many variations and is commonly
known, especially in Europe [1]. Essentially, it has a number of fields and the goal for each player is to
be the first to reach the last field. Players move by throwing two dice and moving the indicated number
of spots forward. On their way to the goal each player can encounter several difficulties, among which
there are the well and the prison where they have to stay until released by another player.

In [5] the Game of the Goose is described as ‘historically the most important spiral game ever
devised’ and it is claimed that the game stems from the Italy of Francesco de Medici (1574-1587), but
similar games were already very popular in ancient history, especially among the Egyptians and the
Greek.

Typical for all variants of the Game of the Goose is that there are 64 fields and two or more
players. As the game is solely determined by throwing a pair of dice, no strategy is involved. Hence,
the probability for each player to win the game is completely determined. An obvious question is
whether one can determine these probabilities. That is the main issue of this paper.

Contrary to probabilistic games, the question to determine the winner in a strategy game has
always attracted a lot of attention. And although it is not (yet) known which player has a winning
strategy in the great games (chess, checkers, go), there are many strategy games for which this is
known. Examples are four-in-a-row (or connect-four) [7] and restricted versions of awari [4].

So, we set out to determine the winning probabilities for each player of the ‘Old Dutch’ variant of
the Game of the Goose (het oud-hollands ganzenbord), although even for this game there are different
sets of rules and we simply made an arbitrary choice among those. One of the aspects that we ignore
is the payment of a small fines (‘fiches’) that occur in some variants. The precise rules that we use are
described in section 2. A typical layout of the playing board is shown in figure 1.

The most straightforward way to determine the winning probabilities is by simulating the game
randomly a huge number of times and counting how often each player wins. We observed that conver-
gence of winning probabilities is slow, and it is hard to determine the exact precision of the obtained

1



Figure 1: A Dutch version of the the Game of the Goose from appr. 1960

probabilities. But we used this technique to verify the outcomes that we obtained in the way described
below.

In this paper we calculate the probabilities by generating the complete state space of the game.
Each legitimate way to put the players on the board together with the information who has the next turn
constitutes a state. For each state and each player we introduce a variable expressing the probability to
win the game for that player in that state. By formulating the relations between these probabilities, we
get n linear equations among n variables, where n is the size of the state space. The number of states
grows exponentially with the number of players. For the game with two players, this n is around 4000
and for five players there are 885 million.

Using Mathematica [8] we can solve the two player game exactly and the three player game using
numeric approximation. The four player game could be solved using Matlab [3] with the induced
dimension reduction (IDR) method as an extension package [6]. We managed to solve the game for
five players with an ad-hoc fixed point algorithm. Establishing the winning probabilities for six or
more players is out of our reach at the moment.

Inspecting these probabilities confirms many intuitive ideas about the game, but also lead to sev-
eral surprising observations. The most surprising was that for the game with two players there is a
substantial probability (23%) for the game to end in a draw, where one player is in the prison and the
other is in the well. For all investigated numbers of players the first player has a small but definitive
bias to win the game, which increases when more players join the game. For two players it is less than
2% and for five players it is almost 10%. It is also interesting to observe how the positions of the play-
ers on the board influence the winning probability. For two players we provide 3-D diagrams showing
how these probabilities fluctuate depending on the relative position of the players on the board. From
this one can for instance make the rather counter-intuitive observation that if one of the players ends
in the well, this hardly increases the probability for the other player to win.
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It is of course good fun to determine the winning probabilities for the Game of the Goose, but
there is a more serious side to such an endeavour. Many real life phenomena can be described as
probabilistic games. If we can analyze large games, we can analyze such real life phenomena as well.
There are plenty of fully random games that can serve as useful playground. And if such games have
been elaborated, there are still the games that combine strategy and randomness to be explored.

Acknowledgement. We thank Michiel Hochstenbach for his fruitful remarks, especially, for pointing
out the IDR extension package for Matlab to solve large systems of linear equations.

2 The rules

Before presenting the results we have to determine the precise rules of the Game of the Goose. As it
is a traditional game, it has been described in several sources. Although most ingredients of the game
are the same in all sources, there are some minor differences. Here we fix a version that covers all
interesting ingredients we met, and that is as close as possible to the various sources we considered.

• There are 64 positions, numbered from 0 to 63. All players start on position 0. The first player
that reaches position 63 wins.

• A step of a player consists of throwing two 6-sided dice and by moving forward as many steps
as there are spots shown.

• In case the resulting position is already occupied by another player, the player has to go back to
its original position.

• A player only wins when he lands on position 63 exactly; if the number thrown is higher than
required, the surplus is counted backwards from position 63.

• At positions 5, 9, 14, 18, 23, 27, 32, 36, 41, 45, 50, 54 and 59 there is a goose (see figure 1). If
a player arrives at such a position, he will move the same amount of the roll again in the same
direction. If this is again a position with a goose, this will be repeated.

• If from position 0 the dice show 3 and 6, the resulting position is 53. If from position 0 the
dice show 4 and 5, the resulting position is 26. Note that if this rule would not exist, the player
would jump immediately to the finish via the positions marked with a goose, when throwing 9
spots in the initial position.

• Position 6 is the bridge: a player arriving there will jump to 12.

• Position 19 is the inn: a player who is in the inn will stay there for one extra turn.

• Position 31 is the well: a player in the well will not play until another player arrives in the well.

• Position 42 is the maze: a player arriving there will go back to 30.

• Position 52 is the prison: just as with the well, a player in prison has to postpone participating
in the game until another player ends up in prison releasing the first player.

• Position 58 is the death: a player arriving there has to start anew by going back to 0.
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These rules are applied repeatedly. For instance, if a player is at position 46 and throws 4, he will
move to 50. This is a goose, so he moves to 54. This is again a goose, so he moves to 58. This is
death, so he has to start over by going back to 0. This combination of moves is considered as one
move. If this position 0 is occupied since the turn before the other player came on death, this player
will stay at 46. As another example, consider a player at position 60 throwing double 6, yielding 12 in
total. By counting back he arrives at 54. Since this is a goose, he has to count back 12 more positions,
arriving at 42. Since this is the maze, he goes to 30. Note that there is no upper bound on the number
of allowed moves, but the probability that the game goes on forever equals zero.

If there are two players there are three possible outcomes: either player can win by arriving at
position 63, but the game can also end in a draw if one player is in the prison and the other is in the
well, since then no player is allowed to move. Note that when there are more than two players, one of
the players will win, and there is no possibility for a draw.

Although we carefully described the rules of the game, experience shows that text can always be
interpreted in more than one way. Therefore, we provide a formal description of the game in figure
2 using the process algebraic language mCRL2 [2]. This process algebraic language describes in
essence in which sequences actions that can happen. In this case, the actions are win(p), rest(p) and
throw(p, t1, t2) where p is the player, and t1 and t2 are the number of spots on both dice .

Players are represented by positive numbers (N+). The numbers 1, . . . , N represent the actual
players where N is the number of players. As indicated above, we use the letter p to represent a
player. The functions next and previous provide the next and previous player in a round robin fashion.
The fields on the board are given as natural numbers (N) ranging from 0 (initial state) to number 64.
Field 63 is the winning field. The field with number 64 is used for the inn. A player that arrives in
the inn moves to position 64. When the player is at position 64 he moves to position 19 during his
next turn, which represents waiting for one turn in the inn. The position of the players on the board
is represented by a function position:N+→N that gives for each player its position on the board. The
function initial positions indicates the initial position on the board for each player. It is defined in the
eqn-section as initial positions(p) = 0, i.e., each player starts at position 0.

The process PLAY indicates the sequence in which the actions take place. It has two arguments.
The first argument indicates the player that plays next, and the second argument is a function that for
each player gives its position on the board. The behaviour of PLAY is given at its right hand side by
if-then-else rules, denoted as b→x�y indicating that if condition b holds, process x must be executed,
and otherwise y is executed.

The first line, starting with the condition position(previous(p))≈63 says that if the position of the
previous player is 63, this previous player won the game, indicated by the action win(previous(p))
and after that nothing is done, indicated by the deadlock δ.

If this first condition does not hold, the second line applies, which is starting with the condition
position(p)∈{31, 52} ∧ . . .. It says that if the position of the current player p is 31 (the well) or 52
(the prison) and there is no other player in the well or prison (¬occ twice(p, position)) then the player
must wait one turn, by carrying out the action rest(p) and continuing to play the game giving the turn
to the next player and leaving the positions of all players unchanged (PLAY(next(p), position)).

If the second condition also does not hold, the third condition position(p)≈64 can apply. This says
that the player p is waiting in the inn. He automatically moves to position 19. This is denoted using
the function update construction. The expression position[p→19] represents the function position,
except that it maps the argument p to 19.

If none of the three cases above apply, the player p throws two dice. This is represented using the
sum operator

∑
t1,t2:N+(t1≤6∧t2≤6)→ . . . which says that positive values for t1 and t2 are selected

that satisfy the condition. Then the action throw(p, t1, t2) happens representing that player p throws a
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eqn N = 4;
next(p) = if(p≈N, 1, p+1);
previous(p) = if(p≈1, N, p−1);
initial positions(p) = 0;
adapt after 63(n) = if(n>63, 126−n, n);

next position(p, position, t1, t2) =
if(position(p)≈0 ∧ (t1≈4∧t2≈5 ∨ t1≈5∧t2≈4), if(occ twice(p, position[p→53]), 0, 53),
if(position(p)≈0 ∧ (t1≈3∧t2≈6 ∨ t1≈6∧t2≈3), if(occ twice(p, position[p→26]), 0, 26),

next position2(p, position[p→adapt after 63(position(p)+t1+t2)],
if(position(p)+t1+t2>63,−t1−t2, t1+t2), position(p))));

next position2(p, position, throw, old position) =
if(position(p)∈{5, 9, 14, 18, 23, 27, 32, 36, 41, 45, 50, 54, 59},

next position2(p, position[p→adapt after 63(position(p)+t)],
if(position(p)+t>63,−t, t), old position),

if(position(p)≈6, next position2(p, position[p→12], t, old position),
if(position(p)≈19, next position2(p, position[p→64], t, old position),
if(position(p)≈42, next position2(p, position[p→30], t, old position),
if(position(p)≈58, next position2(p, position[p→0], t, old position),
if(position(p)/∈{31, 52}∧occ twice(p, position), old position, position(p)))))));

occ twice(p, position) = occ twice rec(p, position, 1);
occ twice rec(p, position, other) = if(other<N, occ twice rec(p, position, other+1), false)∨

(other6≈p ∧
(position(p)≈position(other) ∨
position(other)≈19∧position(p)≈64 ∨
position(other)≈64∧position(p)≈19));

proc PLAY(p:N+, position:N+→N) =
(position(previous(p))≈63)→win(previous(p))·δ�
(position(p)∈{31, 52} ∧ ¬occ twice(p, position))

→rest(p)·PLAY(next(p), position)�
(position(p)≈64)→rest(p)·PLAY(next(p), position[p→19])�∑

t1,t2:N+ .(t1≤6 ∧ t2≤6)→throw(p, t1, t2)·
PLAY(next(p), position[p→next position(p, position, t1, t2)]);

init PLAY(1, initial positions);

Figure 2: An MCRL2 description of the Game of the Goose
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die with number t1 and one with number t2. Subsequently, the game continues where the next player
gets a turn, and where the position of the current player is updated using the rather complex function
next position(p, position, t1, t2). This function is defined in the eqn-section and it is explained below.

The function next position(p, position, t1, t2) calculates the next position of player p where he
throws both t1 and t2 spots, given that the current position of the players is given by position. If p is
at the initial position and a 5 and 4, or a 6 and 3 are thrown, player p moves to position 53, resp. 26
unless there is already a player occupying this field. In the latter case, the player stays at position 0.
The expression occ twice(p, position[p→53]) is used to check that if player p moves to position 53,
the position of player p is occupied twice. Note that in the definition of occ twice, there is an extra
check whether position 19 and 64 are both occupied. As both positions represent the inn, this also
counts as a single field having a double occupancy.

If the special initial case described above does not apply in the definition of the function cal-
culating the next position next position(p, position, t1, t2), its behaviour is defined by the auxiliary
function next position2(p, position, throw, old position). It yields the ultimate position of player p on
the board when player p did make an initial move (which is already reflected in position) where the
dice showed the value throw (but this value is negative if p is moving backward) and old position is
the position where p came from. Note that the use of next position2 is tricky, because the player can
have to move backwards when overshooting field 63.

In the definition of next position2 all remaining special rules of the game are dealt with. The
first if deals with the 13 positions where the player can move the same number of moves ahead (or
backwards). The second condition (position(p)≈6) deals with the situation where the player is at
the bridge, and he must move to position 12. The third condition position(p)≈19 represents the
player entering the inn. He is moved to the ‘resting room’ at position 64. The fourth condition
position(p)≈42 indicates that the player is in the maze. He must move to position 30. The fifth
condition position(p)≈58 corresponds to the situation where the player dies. He must restart by
moving to position 0. The last condition applies when no subsequent move of the player is possible.
It is checked whether the move of the player will lead to a double occupancy of fields (except for the
well and the prison at positions 31 and 52 which can have more than one occupant. If there is a double
occupancy the player moves to its old position, and otherwise it moves to the new position.

The mCRL2 tools allow to simulate the game and generate a full state space for the game which
consists of all reachable configurations of players on the board. When interpreting the throw actions
as being able to happen with probability 1

36 the winning probabilities can be calculated by interpreting
the state space as a discrete Markov chain. If a win or rest action can happen, no other actions are
possible and therefore, one can consider these actions as happening with probability 1.

3 Analysis of a simple game

In this section we introduce an extremely simplified version of to Game of the Goose in order to
illustrate how we obtain the probabilities. The rules of the game are simple. There are two players

0
start

1 2
finish ����d ����t

Figure 3: A simple two player game
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win(1) win(2)

win(2)

Figure 4: The state space of the simple game

that start at position 0. The first player that reaches position 2 wins the game. Each player throws a
two sided coin with no or one dot, and he will move zero or one positions forward in accordance with
the value thrown. The game is illustrated in figure 3.

The game can be described in mCRL2 as follows:

proc PLAY(p1, p2:N, turn:N+) =
(p1≈2)→win(1)·δ�
(p2≈2)→win(2)·δ�
((turn≈1)→(

∑
t:N .(t<2)→throw(1, t)·PLAY(p1+t, p2, 2))

� (
∑

t:N .(t<2)→throw(2, t)·PLAY(p1, p2+t, 1)));

init PLAY(0, 0, 1);

The state space of the game is depicted in figure 4. The initial state is light grey and has number
0. In the initial state player one either throws zero (throw(1, 0)) or one (throw(1, 1)) which are
represented by arrows leading to respectively state 1 and 2. In states 1 and 2 the second player can
make a move. Figure 4 gives a nice overview how the game can proceed. At states 8 and 9 player 1
wins the game (win(1)) and in state 10 and 11 player 2 wins (win(2)). State 12 is a deadlock state
where the game is finished, corresponding to δ in the mCRL2 description.
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We are now interested in the probability for player 1 to win the game when he is in state i. We
denote this probability by pi. Clearly, p8 = p9 = 1, and p10 = p11 = 0. The probability p12 makes
no sense because in state 12 the game is finished. For all other probabilities pi we can derive a simple
linear equation. The probability to win in state 1 is 1

2p1 +
1
2p2 because player one has 50% chance

to end up in state 1 and 50% chance to end up in state 2. If we spell out all equations we get the
following set of linear equalities.

p0 =
1
2p1 +

1
2p2 p4 =

1
2p2 +

1
2p8 p8 = 1

p1 =
1
2p0 +

1
2p3 p5 =

1
2p6 +

1
2p9 p9 = 1

p2 =
1
2p4 +

1
2p5 p6 =

1
2p5 +

1
2p10 p10 = 0

p3 =
1
2p6 +

1
2p7 p7 =

1
2p3 +

1
2p11 p11 = 0

This set of linear equations is small and therefore easily solved, leading to p0 = 16
27≈0.59. In order to

find the probability that player two wins the game we can use the same set of equations, except that
we must take p8 = 0, p9 = 0, p10 = 1 and p10 = 1. This leads to the expected result of 11

27 as the
winning probability for player 2. Obviously, the first player has a substantially higher probability of
winning the game.

There are other ways of deriving these winning probabilities. A straightforward way is to simulate
the game sufficiently often, which gives an approximation of probabilities, although for games with
huge state spaces, these probabilities tend to converge slowly.

Another is to derive the linear equations directly from the game, without generating an explicit
state space. We define the probabilities qijk to represent the probability that player 1 wins the game,
provided player i (i∈{1, 2}) has the next turn, player 1 is at position j and player 2 is at position k
(j, k≤2). The probability q100 is equal to 1

2q200 +
1
2q210 because player one has equal probability to

stay at position 0 or move to position 1, after which it is player two’s turn. By carefully analysing all
board positions of the game we can derive the following set of equations. Note that some probabilities
are left out, as such probabilities cannot be reached, such as p12k. These probabilities represent
situations where player one can play and has won. Note that the obtained equalities are in this case
exactly those obtained via the state space. For the Game of the Goose the number of equations that
we obtained in both ways were slightly different.

q100 =
1
2q200 +

1
2q210 q200 =

1
2q100 +

1
2q101 q110 =

1
2q210 +

1
2q220

q112 = 0 q210 =
1
2q110 +

1
2q111 q220 = 1

q101 =
1
2q201 +

1
2q211 q111 =

1
2q211 +

1
2q221 q201 =

1
2q101 +

1
2q102

q211 =
1
2q111 +

1
2q112 q221 = 1 q102 = 0

We used all three ways to establish the winning probabilities. The reason for this is that it is
very hard to not make a mistake in precisely modelling even simple games. By modelling it in three
different ways we could compare the results and increased our confidence that our results are correct.

4 Computations for two players

If we analyse the Game of the Goose for two players, we obtain a set of 4048 or 4078 linear equations
depending on which method is used for generation. We can derive the following results regarding the
winning probabilities for both players.

Probability that player 1 wins the game 0.3936
Probability that player 2 wins the game 0.3799
Probability for a draw 0.2265
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579668842903908691859663445026042171718496802772890001540462085862285203596824508136312510930
848256782907319085401577950566480236492258368651403851498168474838648238887253361826278320974
211582989769501836744362197433090321629992797581960180227991741382084013179433356134386879465
593763466375933164532378142992032030676788266593780697459863590954425340611505393883463891170
971971064338366560257877714490386750914477743904362410695314284442222150192349474163351136665
216496309031156352596603819405940309695923665530872630461144194903750285125269104079009482059
449373800161294244270975727298452311247329735693384663705652207467764860758084365569131209291
229381384664939466470853167529986572849474795951706727760432071740948785034512160370763120637
339519772942758900998043467561936589952119274344302734511358915860188099372260220328866589088
156263594454570824879678437060954154474559388781342874179426124184682655203719929399964083174
163103613617183832005419973105753767668901642442011068968931764251547938499039025283281070521
626469361626355506807630054195079424417327991706187186940870807368776939235542166982376805364
554504077292848886835539066227774214224562642653978516302884675382241286557954761373473131260
398683754349784037651478869577494891197647440888866724744290474747707116650727026018201161485
468721477586155819906563951435363663409456413316958670299530968871213165410259673299779136449
546570382066086147033604221435389641473231140715280626878852774956863960299786109914398931518
303131212483531294493331159638610052553627850621091892922181967442078061555180719269959611691
375488038095571656477654073523484609997634483232600502379658428980870346360321738192432670388
030086044391330549464290582334683133818870134666528351268436864593343373928316778450239320151
490616017571218225599667338674345549599369213030835046237448574463407637323433037344642693651
701648988954227861867925754021764324627782273822196813395500498990947900775262466674566797502
538208692635181129126570140804676875824884483807381185441791415008023307041497487737249042310
505372990270640822151972277764575305052107974872293504455660045611058486209180538423771137278
665443687822206785250296004711649547019031985510776338368259491949746485804668295542587032964
330180313351672274528115527876257178151725307206824846802270199905183486827906401182641218870
282587165253232412527268173813719376856485718148441478527543006201364921512289327167966829752
840415669558102361080423578070292648605539487934572107269958992134149955478331466018851569593
718356612338981495161662932308349814571401207328017569896080483808315461551874907047767528969
200021893878774750118480746745401602759010790621652738798780702998291443204275453806422937174
486042713846526300307683386755779988859765442464426523581101010235589403184706181157183193989
204685507819243217476508781703035183919970452946772074659104050764081839159268568343117208670
821350611437447602059630356954342172567631055484692745718321278817807410839504476278638075658
957815114791859980138843196023327044410709069485441809674404861155840974443329069685443563451
000330064673984317988986377130965450283592011509535800247907476188834267070613796557088503934
717084645791126874032339497526018300237585065551096520626437434582945009801773336358068326941
285478875469093008017253189675909895843648482906710452459750563144869260744545121189657756675

3191653418733360283585073225627136513606612524945418565535662080

Figure 5: The exact winning probability for player 1 in a 2 player game
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Figure 6: Visualisations of the winning probabilities of a two player game

Note that there is a substantial 23% probability that one player will end up in prison and the other in
the well, leading to a draw in the game.

For a two player game it is actually possible using Mathematica to obtain the exact solution of the
set of equations. As a curiosity the precise winning probability is given in figure 5 as a quotient of
two natural numbers, which is approximately

0.3936251373937573914028403448768445020070441350696.

This exact solution can be used to check whether exactly the same game has been modelled. Minor
flaws in modelling the game, such as forgetting that a player must rest one turn in the inn, will not
substantially influence the winning probabilities of the players, but it will also not lead to exactly the
same solution as given in figure 5.

It is interesting to figure out how the winning probabilities evolve while a game is progressing.
For a two player game this can be neatly visualised, see figure 6. Here three diagrams are depicted, all
with a view from above and from the side. The upper diagram models the probability that player one

10



#equations player 1 player 2 player 3 player 4
two player game 4078 0.39363 0.37999 - -
three player game 279 103 0.34596 0.33290 0.32114 -
four player game 16.4 106 0.26695 0.25471 0.24408 0.23426
five player game 885 106 0.22039 x x x

Table 1: Winning probabilities when there are more than two players

will win the game, when it is his turn to make a move. In particular if player one is alone in the well
or in the prison, he cannot move, and this situation is not part of this diagram. The second diagram
depicts the probability of player one to win the game, when player two is about to move. The third
diagram depicts the probability of ending up in a draw.

If player one moves forward, he moves to the back of the diagram. If player two moves forward,
he moves to the right. There are only 47 positions in the diagram, because all fields where a player
must continue to move forward (i.e., a goose, death, the bridge or the maze) have been removed.

Note that the upper two diagrams have a solid wall at the back. This corresponds to player one
winning the game. Similarly, there is a valley at the right, corresponding with player two winning the
game, which means that the probability of player one to win the game is 0. Observe that the closer
player one is to the finish, the higher is his probability to win, and reversely, the closer player two
is to the finish, the lower is the probability that player one will win. Remarkably, if player two is in
the prison, there is a substantially higher probability for player one to win. But if player two is in the
well, this hardly influences the probability for player one to win. The reason for this can be seen in
the third diagram. If player two is in the well, there is a substantially increased probability that the
game will end in a draw. The two spikes in the third diagram correspond to the situation where the
game is actually in a draw.

There is much more detailed information in these diagrams. For instance that it is not advanta-
geous to be very close to the finish. But we leave the detailed interpretation of these features to the
reader.

5 Winning probabilities for more players

It is also possible to establish the winning probabilities when there are more than two players, but
this is increasingly more difficult as the number of states is growing exponentially, approximately
according to the formula NcN where c≈45 and N the number of players. In table 1 the winning
probabilities are provided. The winning probabilities marked with an ‘x’ can be calculated, but it
is simply too time consuming to do so. The obtained number required a few months of continuous
calculations.

We first solved the sets of linear equations using Mathematica [8]. This could be done exactly
for two players and numerically for three players. For three and four players, using Matlab extended
with the IDR package, we could solve the sets of obtained linear equations [3, 6]. For four players
400Gbyte of memory was required.

But we observed that the generated equations have a rather regular structure. For each variable pi
there is an equation of the shape

pi = ci1pi1 + · · ·+ cikpik

where all cij are positive numbers smaller or equal than 1 and the solutions for all variables are in
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the interval [0, 1]. This linear set of equations can be viewed as a monotonic operator of which the
solution can be obtained using fixed point iteration. Initially, all pi are set to 1. Taking the equations
a assignments, a new value for each pi is repeatedly calculated until a fixed point is reached. This
allowed to find the winning probability for player 1 in a five player game.

As it stands solving the game for six players is currently beyond our capabilities, although it is con-
ceivable that with a concerted effort, capable hardware and dedicated software this can be achieved.
The number of required equations is estimated to be around 50 109.
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