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Abstract. Software is widely used, and society increasingly depends on
its reliability. However, software has become so complex and it evolves
so quickly that we fail to keep it under control. Therefore, we propose
intents: fundamental laws that capture a software systems’ intended be-
havior (resilient, secure, safe, sustainable, etc.). The realization of this
idea requires novel theories, algorithms, tools, and techniques to discover,
express, verify, and evolve software intents. Thus, future software systems
will be able to verify themselves that they meet their intents. Moreover,
they will be able to respond to deviations from intents through self-
correction. In this article we propose a research agenda, outlining which
novel theories, algorithms and tools are required.

1 Introduction

Problem. Software is everywhere: the estimated number of connected devices
today ranges in the tens of billions and will be up in the hundreds of billions very
soon. While society increasingly depends on its reliability and trustworthiness,
the inconvenient truth is that software is very fragile. Software is so complicated
that we have no clear idea of what a program may or may not do. And when
something is working, we are afraid to touch it. For instance, many critical
infrastructures do not update their software for fear of breaking things, even
in the case of crucial security updates. As it stands we lack real control over
software in virtually all areas. Both criminals and intelligence services employ
this to hack into our computers. This is today. Tomorrow will be worse.

Solution. In 1942, the science fiction writer Isaac Asimov formulated a number of
laws for robots. For instance, no matter how complex they became, they should
never injure a human being, or through inaction, allow a human being to come to
harm. In other words, the laws should govern the robot’s behavior, independent
of its normal functionality or complexity.

Today, some 75 years later, we take up this idea and apply it to software: by
defining simple laws or “intents” for software, we want to govern a program’s
behavior, independent of the implementation of its functionality: it should not



crash, it should resist attacks, it should adhere to its functional specification. It
should revert buggy updates, it should keep sensitive data private, etc.

Moreover, the intents should be met under any condition – even if the soft-
ware evolves, or the environment changes. Where needed, the software should
correct itself automatically to fulfil the intents. And whenever the intents change,
the software has to adjust itself. In case conflicting intents for software are dis-
covered, ethical considerations should be made to resolve the conflict.

This requires a research agenda, to investigate methods for discovering the
dynamic intents of living software, techniques to specify and verify intents, and
new mechanisms to make software self-correcting, i.e., to make it adapt itself
to deviations from the current intents. This requires the concerted efforts from
a broad range of software technologies, combining formal analysis, experimental
software laboratory research, and empirical research on deployed software. De-
veloping and evaluating the methods also requires intimate collaboration with
a number of embedded software application domains, like health care, robotics,
automotive, and science experiments.

Software is becoming so versatile, all-embracing and intelligent that it is
inconceivable that we can control all detailed aspects of its behavior. But by
using intents we can guarantee that software adheres always to its essential
purpose, avoids unnecessary harm, and operates within the boundaries of the
law. With the same aim as Asimov’s robot laws, intents guarantee that software
can be used safely and reliably.

2 The Software Reliability Challenge

Software runs the world. Software plays an integral role in our daily lives. There
is an ‘app’ for everything, from the energy grid that powers our infrastructure
to the social media that mediate our social interactions. It is hard to recall
what life was before all that software, and it is even harder to imagine what we
would do without. Society would grind to a halt if the software running it would
break down. This dependence on software will keep growing in the years to come.
Gartner Inc. estimates that the number of connected devices today ranges in the
tens of billions and that this will grow to hundreds of billions very soon [42].

The enormous growth in software [87] has led to many advances. Office soft-
ware and information systems have revolutionized information processing in all
sectors, from finance to retail to government. Software is now a crucial and often
complex component in many embedded systems such as medical surgery robots;
control systems for aviation, traffic, and nuclear equipment; and robot compan-
ions for elderly people. Software is also having a transforming impact on science:
scientific experiments are often replaced by much faster, cheaper and safer soft-
ware simulations, and scientific discoveries often result from automated analysis
of large amounts of measurement data.

These successes stem from the fact that computers outperform humans in
many tasks: computers are faster and more reliable; they can perform many
tasks simultaneously, and can process astounding quantities of data. Already,



there are many cases where software ‘knows’ more about the tasks at hand than
the humans involved, and this development has only just started.

However, the tremendous growth of software also has a downside. All software
systems contain errors that cause them to behave in unintended ways [41, 62].
Studies show that even tested and deployed software has on average between 1
and 16 errors per 1000 lines of code [70, 71]. As a consequence, dormant software
faults persist even in mature code bases [20]. With code bases that often exceed a
million lines of code, modern software systems easily contain thousands of bugs,
many of which may bring down the entire system, or worse, produce wrong
results that go undetected. Most software errors are introduced by developers
accidentally violating the (informal) expectations on a system. However, errors
may also be introduced consciously to actively fool the users [88], which makes
error detection even more challenging. Almost daily, we are exposed to news
reports on the consequences of failures and other malbehavior of software.

Thus, even though many people think they can depend on the reliability of
software, the truth is that that is just an idealized dream. Software has become
too complex, and it evolves so quickly, that we are not really in control. Using
artificial intelligence and autonomous learning techniques, software can adapt
itself to its environment to outwit people, operating in a better way than any
human could ever have programmed. This makes it scientifically very challenging
to predict all possible emergent behaviors of a large, complex, and evolving
software system, and thus to ensure that it is and will remain free of flaws, or
to guarantee that it will always avoid foul play in obtaining its objectives.

Meanwhile, engineers keep developing new systems, for which new software
has to be developed, while the software of old systems grows due to maintenance
and adding new features. The resulting complexity is abused by various parties,
such as criminals and intelligence services, actively searching for flaws in software
systems in order to exploit them for their own advantage. There are even cases
where software developers designed “features” in order to mislead customers and
users, e.g. to circumvent environmental emission restrictions in cars. As a result,
as a society we cannot guarantee the security and integrity of data, ultimately
threatening the identity of our citizens. Moreover, as devices become increasingly
connected and exchange information, the privacy of their users is at stake.

The root cause of this software reliability crisis is that the policies that soft-
ware systems implement are buried in low-level code, which makes it hard to
establish what exactly those policies are, whether they are implemented cor-
rectly, and whether these are indeed the policies that we intended. This problem
is exacerbated by the rapidly increasing complexity of software systems. This
would be akin to a society consisting of individuals that operate by doing as
they please, driven by their own particular desires.

By contrast, modern society operates by rule of law, imposing constraints on
the behavior of its citizens and institutions. While a modern society is a highly
complex system with millions of entities interacting in many ways, rule of law
keeps this system in check by imposing clear and objective criteria for judging
the legality of the behavior of all these entities. To ensure that we can keep



depending on software and to prevent it from running wild, software should be
governed by rule of law, just like our society!

3 Software Intents

Software laws, which we will call software intents, explicitly describe the essential
limits on and expectations on the behavior of a software system. Software intents
often cover functional requirements, but they should also cover non-functional
requirements (e.g., intended performance, response time), and security properties
(e.g., resilience against attackers). A crucial property of software intents is that
they describe high-level requirements that reflect the goals of a software system,
not (just) the low-level effects of a particular realization of those goals on a
particular computing substrate.

Common examples of software intents are: Software should not crash; When
software crashes nevertheless, it should do so gracefully; Software should not
cause any harm to its users, or to any other human being; Software should
be resistant to attacks; Software should satisfy its specifications; and: Software
should not violate the privacy of its users. For a telling example, consider the
recent case of the Japanese satellite Hitomi, which tumbled out of control five
weeks after launch, because of a software error [94]: in an attempt to stop itself
from spinning, the control system fired a thruster jet in the wrong direction,
causing an acceleration, instead of a slow down. An implicit intent for a satellite
is that it should stay in its orbit. By making this intent explicit, and providing
support to ensure that this intent is fulfilled at all times, the error could have
been detected and corrected.

Software intents serve multiple purposes. First, each software system should
explicitly declare its intents, which serves as a promise and explanation what
it intends to do. Second, intents should be usable to verify that a software
system is indeed realizing its intended behavior (and no others). Finally, intents
should facilitate the evolution of software systems, by ensuring that software
maintenance is intent preserving. Technically, intents can be viewed as a form of
redundancy, which will allow to increase software reliability fundamentally, i.e.,
reduce the chance of software errors to less than 10−10.

Therefore, we propose a novel research agenda, revolving around the paradigm
of software intents. This agenda should address at least the following areas:

– Expression of Intent: How to discover and define software intents?
– Verification of Intent: How to ensure that software systems always behave

as intended?
– Evolution of Intent: How to ensure that software systems keep behaving as

intended, also in the future?

While continuous change, reliability and trustworthiness regard any type of soft-
ware system, they are especially critical in embedded software where intents de-
rived from safety, ethics and performance concerns play an essential role. There-
fore, this research agenda can only be effective in close collaboration with a



selected number of embedded software application domains. Clear candidate do-
mains are robotics, in industry, autonomous automotive, or home care situations,
other health care applications, and science experiments in physics and biology.
Here, reliability, safety, ethics, and performance play a prominent role.

3.1 Expression of Intent

The first challenge is how to discover the implicit intents of software systems.
Generally, people have all kinds of expectations on software, but are incapable of
making that precise. What are the fundamental properties that should continue
to hold throughout the lifetime of a software system, no matter how it evolves?
And how can we be sure that all relevant intents have been formulated? Intents
might be specified upfront, but another interesting challenge is to discover intents
for existing (legacy or open source) systems by observing their use, or mining
user or developer data like logs, chats, code repositories, bug trackers, test suites,
etc.

A particular interesting question is whether different intents can be combined

or when intents are conflicting. In case of conflicting intents, we need to under-
stand how to resolve these conflicts, which quickly becomes an ethical question,
as it requires prioritizing one intent over the other. For example, in principle
all user data should remain private, but if the user is a suspected terrorist, the
privacy restriction might be released in favor of the society’s security.

The next challenge is how to express software intents. There can be many
sources of intents: they can be linguistic expressions of intent by human devel-
opers or users; they can be legal restrictions, imposed by laws on safety, privacy
and security; or formal specifications, models, test cases etc. Thus, intents may
be formal, but they do not have to be. How should suitable languages of intent,
covering different classes of intents, be defined? For example, as a language of
intent for a specific application domain, or as a language of intent for a par-
ticular class of properties? Rather than requiring a single language, we stress
the usability and understandability of the languages, so that when an intent is
expressed, all stakeholders have a common understanding of how the software
should behave. Thus, these languages of intent will provide a common framework
for all developers and users of software to express what they believe to be the
intended program’s behavior. Moreover, the advantage of having a well-defined
language is that its underlying semantics of intents can be defined precisely and
formally. This makes it possible to demonstrate that intents are compatible, and
ultimately that software satisfies its intent.

3.2 Verification of Intent

There are many different ways to verify intents on software. This can be done
at design time using logic-based techniques, which can provide high-correctness
guarantees. It is possible to do this by testing applications in a software lab-

oratory setting before deployment. But it can also be done after deployment,



by monitoring applications in real-life situations in the specific environment in
which the software is run.

Design-time verification (or static verification), is done on the basis of
models of the program code or on the code itself. Instead of executing the pro-
gram, it analyses all the possible program executions (for example, by exploring
the complete state space of a program, or by representing program executions
at a suitably abstract level in a symbolic way). Over the last decade, signif-
icant progress has been made to apply design-time verification to large-scale
examples [27, 53, 69]. However design-time verification still requires a significant
amount of user intervention. For design-time verification of intent-based soft-
ware, the major research challenges that need to be addressed are:

1. to fully automate this process by automatically generating all the information
that is necessary to capture all possible program behaviors in a suitable way;

2. to investigate how design-time verification can be generalized to other classes
of intents than traditional functional specifications; and

3. to apply design-time verification when one only has control over parts of the
software system only.

Testing, or run-time verification, considers concrete program executions, and
verifies in a software laboratory whether software does not violate the intended
behavior of the program. Because of the lab situation, one has full control over
the program, and can rerun it, applying smart (or dangerous) test cases. The
main challenges are:

1. to guide the testing process to test cases that might lead to discovering
potential intent violations, or can support certifying their absence;

2. while at the same time optimizing the time and effort put in the testing
process, possibly taking into account a suitable risk assessment.

Finally, monitoring is needed to verify that the software fulfils its intent
even after software deployment. Verification and testing typically assume a par-
ticular environment in which the software is run, but after deployment the en-
vironment might change in unforeseen ways. Monitoring provides a first step,
when a violation of intent is detected or predicted, to adapt the behavior of the
system, or if necessary to completely interrupt it before any real harm can be
done. The major challenges are to understand how the monitoring can be done
effectively for all classes of intents:

1. without significant overhead on the performance of the software; and
2. in the presence of great uncertainty due to the dynamic environment in which

the software is running.

3.3 Evolution of Intent

A fact of life (which makes it interesting) is that both the intents that software
should satisfy as well as the environment in which it must run are continuously



changing. If the environment changes, the software should live up to its intents,
and if needed, adjust itself automatically. In case the intent itself changes, for
example because of a change in user requirements, or a new law imposing new
rules that the software must satisfy, the software has to be adjusted to live up
to its intents. In traditional software engineering, the software has to be re-
engineered. Because of the enormous size of software this is a costly, error prone
and time consuming affair. Avoiding this requires novel techniques such that the
software can correct itself autonomously, and then provide guarantees that it
behaves according to its (new) intent again. Exciting new research shows that it
is possible to achieve this on small programs, with search-based techniques, [58,
73]. However, turning this into a scalable technique will require a major effort.

The first challenge is to investigate how software can establish itself that it is
still fulfilling its intents, especially when there are changes in the environment.
The software should take responsibility for its own intent. The next challenge is to
understand the different techniques for efficient correction of the software in case
the intents are violated. Due to the size and complexity of software, repairing
software at one place can have an unwanted and unexpected impact on other
parts of its behavior. Efficient methods are required, to show that local software
reparations do not adversely affect the rest of the code. The challenge is to show
that the intent is fulfilled again without a complete re-verification. Finally, the
last major challenge is to understand if and how these correction techniques
can be applied autonomously, i.e., to make the software self-correcting. For this,
techniques are required that select the appropriate corrections for the diagnosed
source of the problem automatically, and then apply these corrections.

Just as modern spellcheckers effectively apply auto-correction to natural lan-
guage texts by pattern recognition, in our vision future software systems should

1. detect software patterns that violate their own intents; and
2. identify and apply correction patterns automatically to make software respect

its intents again.

4 Current State-of-the-Art

The quest for reliable software is not new, but started right after the conception
of programmable machines. In this section, we provide a broad overview of the
current state of the art on the topics covered by the proposed research agenda.

4.1 Expression of Intent

Requirements engineering is traditionally used to understand and model the soft-
ware’s intended behavior. Requirements engineering typically focuses on identi-
fying, modeling and analyzing the goals of the stakeholders [89]. Usually, every
stakeholder has a different perspective on what the software should do [37, 78].
These viewpoints can be independent or partially overlapping. Various propos-
als exist to resolve the inconsistencies between viewpoints [36, 5]. A common
approach is to prioritize the requirements.



A systematic approach to incorporate ethical and legal questions into re-
quirement prioritization is still largely missing. From a legal perspective, the
formulation of norms and regulations on software is slowly gaining traction, es-
pecially in the field of security and privacy [15, 54]. Recently, [24] formalized
intents about a wide range of security requirements. Lago et al. started a library
of intents in the domain of cloud-based software [76, 61]. Despite their long his-
tory, the adoption of goal modelling techniques is still low. Software requirements
are often written in natural language [90], so they cannot be linked directly to
the other activities of software development.

At the other side of the spectrum, we have formal languages. For instance,
modal logics specify external system behaviour [8, 48]. They operate on idealized
system models rather than on actual code. For program verification, several
program annotation languages have been introduced [51, 59]. These approaches
are precise, but limited in expressivity. They are based on formal semantics,
detailing the intended behavior of substantial parts of widely used programming
languages, like C [60, 34] and sequential and concurrent Java [52, 6]. Other formal
specification notations, like B and VDM, operate at the system level [3, 38].

Formal notations are precise and often very expressive, but hard to use, even
by insiders. Domain-specific languages (DSLs) [86, 40] provide a good middle
ground between informal natural language and low-level formal logics. DSLs
provide domain-specific notation, analysis, verification, and optimization. A key
complication is the cost of their implementation and maintenance, as studied by
Van Deursen et al. [84]. This can be alleviated by the development of program-
ming environments for the domain-specific programming languages [39, 35]. A
limitation of the current generation of language workbenches is the lack of sup-
port for guaranteeing the safety and reliability of languages, which is crucial for
the software intent paradigm. This requires integrating verification of language
properties in language workbenches [68].

4.2 Verification of Intent

In industry, testing is currently the prevalent way to discover faults, and to
assess the quality of software. It became the most expensive part of system
development, calling for test automation to reduce the costs. However, testing is
poorly understood: while testing does reveal many software faults, it is currently
unknown how much testing is sufficient to gain some justified level of confidence.
Also, testing is often focused at small components (unit testing) while the actual
challenges arise at system integration. An advanced test automation technique
for control-intensive software is model-based testing [82]. This provides a sound
and complete theory for deriving, executing, and evaluating test cases from a
model of a system. However, systematic research on computing the next best
optimal test case is still missing. For data generation, search-based testing has
been investigated [79], which uses meta-heuristic search for steering random test
suites towards optimizing a test fitness function. For both technologies, there is
a gap between the intents of the system and the used test models.



Another challenge is to establish the likelihood that software satisfies its in-
tent after testing, or to generate optimal test cases that lower that likelihood.
This challenge is tough. An overview of the field is presented in [96], providing
nice and intricate theoretical testing models. Aligning these models with practi-
cal observation is a big challenge. Viewing testing as a learning activity is promis-
ing, but not yet widespread. It is most prominent in the field of exploratory test-

ing [50, 93]. Our notion of intent could be used to record the knowledge obtained
by exploratory testing. An algorithmic interpretation is provided by automaton
learning [19, 63, 64, 30], which has been used complementary to testing [1].

Automated verification of software at design-time raises confidence in pro-
gram correctness. Its two fundamental pillars are modularity and automated
reasoning. Modularity forms the cornerstone to scale up verification technol-
ogy to full systems. It is rooted in proper abstractions of program behavior. In
his seminal work, Robin Milner [66] introduced bisimulation as the appropri-
ate equivalence notion. This allowed to reason about the abstract behavior of a
program in its wider context. Hoare logic [51] provides modularity at the level
of program code. Pre- and post-conditions abstract away from the implementa-
tion of software functions. Other parts of the program need to deal with their
specification only.

Automated reasoning has been revolutionized by SAT solving. Although SAT
solving is NP-hard, a series of breakthroughs [25, 17, 80, 49, 33] led to algorithms
that allowed to solve instances of propositional formulas of tremendous size.
Many problems have been translated into SAT solving. An early example is the
verification of PLC programs by Groote [47] that guard the safety of railway
yards, bridges and sluices. More recently, SAT solvers were extended with math-
ematical theories, leading to SMT solvers (satisfiability modulo theories), like
Z3 and Mathsat [29, 21], reasoning about data types automatically.

The three main branches in automated program verification are: (1) Interac-
tive proof checkers. The Dutch mathematician De Bruijn observed in 1967 that
proof checking could be mechanized. He built Automath [26], the first program
to check mathematical proofs. Modern proof checkers, like Coq [11], follow the
same principle. The user constructs a proof interactively, which is checked by
an independent procedure, to eliminate all reasonable doubt on the validity of
a theorem. This approach is versatile, but not feasible for non-trivial software,
since a correctness proof is extremely detailed.

(2) Model checkers [8], invented by the Turing Award winners Clarke, Emer-
son and Sifakis, operate fully automatically in principle. They take a (model of a)
program and a specification, and check the property by brute force computation.
One of the most expressive model checkers is the mCRL2 toolset [48]. Tremen-
dous progress was made by automated abstraction techniques [22, 14], the use of
BDD and SAT-solving technology [12], and the use of high-performance graph
algorithms for model checking, e.g. [55]. Model checkers operate on finite systems
of limited size only; checking realistic software with datatypes and concurrency
remains a challenge.



(3) Automated program verifiers, like OpenJML and KeY [23, 4] strike a bal-
ance between expressivity and automation. They directly operate on software
programs, generating a sufficient set of verification conditions, which are au-
tomatically discharged by SMT solvers. Non-trivial programs can be handled,
which is demonstrated by revealing an error in the popular TIMsort routine
in the Java library with KeY [27]. Extending Hoare Logic [51] by Separation
Logic [32] allowed handle concurrency and data structures of modern software.
This led to tools that can reason about parallel Java programs, like the VerCors
tool [13]. Still, program verifiers can only be used by verification experts, since
they require manual annotations of pre- and post-conditions, as well as auxil-
iary properties like invariants and thread permissions. This doesn’t scale beyond
medium size programs.

Monitoring deployed software is common to all programming languages and
even computer hardware. An example is checking memory accesses, to prevent
violation of the intent that programs should access only their own memory. This
can be supported by hardware, guaranteed by the Operating System, and is
built-in in many modern programming languages (like Java and C#).

In the security context, the versatility and unpredictability of attacks on soft-
ware make it hard to verify against a priori defined intent. Besides monitoring
violation of well-defined security intents, software is often monitored globally
and any unusual activity (such as extreme network activity) is reported for
further investigation. Whenever a security breach is detected, this is generally
transformed into an explicit intent that can be checked. Advanced security mon-
itoring techniques are pioneered by Bos et al [81, 83]. Likewise, Lago’s team has
pioneered monitoring of sustainability intents [75, 77, 57].

In the run-time verification community, attention has shifted to the dynamic
verification of behavioural properties on programs [10, 31]. These techniques are
often limited to safety properties, which guarantee absence of malbehavior. Like
user-inserted asserts, all these forms of monitoring typically lead to a stop-the-
world whenever some intent violation is detected.

4.3 Evolution of Intent

Programming by contract [65] emerged as a systematic approach. When the
software intent or the environment change, it can be checked whether the en-
vironment still offers sufficient functionality, such that the software can still
guarantee its renewed contract. To establish that the software itself ends up
undamaged in core memory, traditional methods are self-tests, checksums and
oblivious hashing. These can be circumvented, so security researchers introduced
tamper-proof software, which relies on encryption [95, 7].

To localize faults, spectrum-based fault diagnosis attributes observed failures
to the responsible software components [2, 74]. A different perspective is origin
tracking [85], where the contribution of a certain source element to some external
effect is carefully traced. A promising new localisation approach is proof carrying
code [67, 9]. Here, the program correctness proof is encoded within the software.



If the intent changes, proof reconstruction might point to the relevant parts of
the proof and program that must be changed.

There are a number of fields where returning to a safe situation has been in-
vestigated in depth. Examples are file storage [91], database transactions [56] and
networking [18]. Generally, such techniques rely on external operators to restart
systems and bring them back in a working state. A whole research line on soft-
ware engineering considers self-* systems (e.g. self-adaptation, self-management,
self-healing, self-configuration). Here a system must preserve its operation at
run-time even in the presence of changes in environment, resources, security
breaches, faults [28]. Solutions come from various areas, like software architec-
ture, fault-tolerance, and bio-inspired computing [92, 16, 72]. These techniques
typically protect against environment uncertainty.

If the software contains errors, or when the intents themselve change, soft-
ware must be updated. There are several techniques to update software while
it is running (hot swappable). Reliable dynamic updates and error recovery are
studied in [45, 44]. There is little systematic research into the question how soft-
ware can handle its own mishap completely autonomously. Only very recently,
some indications that self-correcting code might work were published [43, 58, 73].
The question is whether these observations carry over to software on a larger
scale. In particular, it will be challenging to compute the best update on the
software that removes the problem.

The fundamental challenge in self-correcting code lies in guaranteeing that
code adapts itself in such a way that it will continue to behave in the right way,
even if the intent has not been formulated explicitly and completely. In the past,
various forms of self-adaptation of software have been used, generally with an
adverse effect. An excellent example is the programming language COMAL [46],
which would correct simple programming errors by itself. Superficial typos were
sometimes transformed in deep, hard to spot programming errors, undoing the
beneficiary effect of type checking.

5 Perspectives

We conclude by summarizing our perspective on achieving software that meets
its intents. In particular, we identify technical challenges that will need further
research in the next decade.

First, intents must be discovered and expressed. The goal is that all stake-
holders can express, understand, and prioritize their expectations on software.
Domain specific languages should bridge the enormous gap between human in-
tent and low-level machine readable code.

Second, intents must be verifiable, both statically during design (verification),
dynamically in a laboratory setting (testing), and on deployed code (monitoring).
The big challenge is to make an automation leap: human effort to annotate or
instrument programs, construct proofs, derive test cases, or operate verification
tools should be avoided. Technically, this requires an advance of annotation



and invariant generation. At the same time, verification should bridge the gap
between detailed code and its high-level, emerging properties.

Finally, software should correct itself when it contains errors, when its envi-
ronment changes, or when the intents of people or organizations evolve. Current
runtime adaption and software update technology should be complemented by
an auto-correction facility for code. Building in explicit and executable notions
of intent make it possible in principle that software adapts itself to its intent.

These technical developments require the coordinated effort of researchers
in theoretical computer science, programming languages, and empirical software
engineering. When successful, they could form the basis for intents as software
laws that can be verified and guaranteed. Only automatically self-correcting
software will enable us to regain grip on the complex, evolving software systems
that run our society. Ultimately, this development allows that software providers
can be held accountable for their product.
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