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Abstract

With the emergence of multi-robot systems in the field of
robotics there is a need for new approaches for modeling and
investigating the behavior of robotic systems. Formal verifi-
cation is a well-known mathematical method which has been
used for decades in order to expose potential design faults in
industrial systems. In this paper we introduce the applica-
tion of formal verification techniques in the context of multi-
robot systems. Applying verification techniques, we aim to
prove that the collective behavior of a group of robots sat-
isfies certain desired properties. We illustrate our approach
using a simple path planning algorithm which conducts a set
of robots from their initial positions to their destinations on a
planar surface.

Introduction
Multi-robot systems have the potential to solve compli-
cated problems by their collective behavior. In recent years
multi-robot systems have attracted the attention of many re-
searchers. The challenge is to control the collective behavior
of a number of homogeneous and simple robots in order to
accomplish sophisticated tasks. Robustness and versatility
are the main characteristics offered by multi-robot systems
compared with single robot systems.

The path planning problem for multi-robot systems is of
great importance. The objective is to find, or construct a
trajectory for each robot to start moving from its initial posi-
tion toward its destination while avoiding collisions. Path
planning for mobile robots has been mainly addressed in
the literature from two different aspects. The first approach
is to construct trajectories for robots and move them along
the predefined trajectories (Laumond, 1998; Luigi Biagiotti,
2009; Saska et al., 2006). The second approach is the algo-
rithmic approach, in which robots use an algorithm to find
a way toward their destinations (Jain et al., 2010; min Han,
2007; Pamosoaji and Hong, 2011). Furthermore, existing
analysis approaches for robotic systems are mostly focused
on the behavioral analysis of individual robots. However,
with the increasing popularity of multi-robot systems new
approaches are required to analyze the collective behavior
of these systems.

In the context of the algorithmic approach to path plan-
ning, we propose a new method for behavioral analysis of
multi-robot systems. In this approach, a well-known for-
mal verification technique called model checking (Baier and
Katoen, 2008) is applied to formally analyze the behavior
of a robotic system. Model checking is an algorithmic ap-
proach which verifies the validity of a desired system prop-
erty against a high-level model of the system. Model check-
ing algorithms exhaustively explore all possible behaviors
specified by the system model and check whether this model
meets the given requirement. This technique is now applied
to industrial software/hardware systems in order to verify the
correctness of their behavior against a set of requirements.
In this paper, we apply it for the analysis of a multi-robot
system. The advantage of our approach is that it provides
a systematic methodology for modeling and analyzing the
collective behavior of a group of robots.

Fig. 1 depicts an overview of our approach. Given an in-
formal specification of a path planning algorithm and the
way robots realize this algorithm, we specify a formal model
of the robotic system as a set of communicating processes
in the mCRL2 language (Groote et al., 2009). Moreover,
desired properties of the system are formalized in a math-
ematical language. In particular, we use the modal µ-
calculus (Groote and Mateescu, 1999) for property speci-
fication. The verification procedure verifies the formalized
property against the system model. If the property is sat-
isfied by the model, the verification procedure will respond
with a “Yes”. Otherwise, a “No” response is returned. In this
case, a counterexample is also generated which describes a
situation that the property is violated by the model. We ap-
ply the mCRL2 toolset (Cranen et al., 2013) for verification
of our case study.

Related work The application of formal methods in the
context of robotic systems has been studied in different re-
search works. Most of these works focus on constructing
paths in a robot’s workspace that satisfy properties speci-
fied in a mathematical language. Given an initial position
of a robot in its workspace and a requirement specified in
linear temporal logic (LTL), (Fainekos et al., 2005) apply a
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Figure 1: Overview of the Approach

discretization technique to generate a continuous trajectory
that satisfies the LTL formula. In this method model check-
ing tools are used for constructing trajectories. The work
in (Kress-Gazit et al., 2009) describes an approach for gen-
erating a robot controller that guarantees the satisfaction of
a given LTL property in all execution scenarios in certain
execution environments. It is assumed that the behavior of
robot’s environment is specified as another LTL formula.

(Fainekos, 2011) proposes a diagnostic approach. First,
they define a notion of closeness for properties specified in
LTL. For an LTL property violated by the specification of
the system they aim to find minimal changes to the formula
that makes it satisfiable.

In (Quottrup et al., 2004) a high-level description of a
timed automata-based approach for modeling and verifica-
tion of a multi-robot system is provided. Due to a high level
of abstraction only movements of robots are considered in
the analyses. Moreover, they do not analyze concrete path
planning algorithms. They apply this high level approach
to evaluate certain characteristics of a robotic system (e.g.,
shortest time required by a robot moving in arbitrary direc-
tions to arrive at its destination) and construct paths to a des-
tination using model checking evidence.

However, in this paper we include information about the
sensing mechanisms of robots and their movements in our
analysis. Hence, compared to the timed automata-based
approach we investigate a lower level of abstraction. Our
approach also offers a high-level language for specifying
robotic systems. Moreover, the main objective of this ap-
proach is to prove that certain properties are valid/falsified
in a system and provide efficient feedback to the designer of
a robotic system.

Overview In section System Specification we specify the
main characteristics of the robotic system that we consider
as a case study in this paper. In section Validation Properties
we discuss the types of properties that we aim to validate.
Main features of our analysis approach are explained in
section mCRL2 & the Modal µ-calculus. We apply this
approach in sections Modeling a Multi-Robot System and
Verification to model and verify our case study. Conclusion
includes some concluding remarks and suggestions for fu-
ture research.

System Specification
We introduce a simple multi-robot system which we use as
a case study throughout the paper. In particular, the phys-
ical environment in which robots perform their tasks, main
features of the robots (regarding their moving and sensing
abilities), and the algorithm that guides robots movements
are discussed in this section.

Workspace We assume that robots move on an unbounded
planar surface. There are no static obstacles on the surface
and robots are the only dynamic obstacles in this setting.

Robots Robot platforms designed for multi-robot applica-
tions such as (Bristeau et al., 2011; Mondada et al., 2003)
assume that robots need limited computational resources to
process their path planning algorithm. On the other hand,
these robots are equipped with advanced hardware, e.g., sen-
sors, and processors, to communicate with their environment
or perform complicated tasks, e.g., transport heavy objects.

In our case study we consider an algorithm that can be
realized by robots using limited resources. We assume that
robots are capable of performing translation movements to
move toward their destinations. Each robot can also perform
in-place rotation movements (e.g., when facing an obstacle)
in order to change its direction of movement. Moreover,
each robot is only aware of the position that it currently oc-
cupies and the location of its destination. Every robot has
an embedded sensing device which is capable of detecting
obstacles in its range of sense.

Algorithm A robot starts from an initial position and tries
to move toward its destination while actively scanning its
range of sense for potential obstacles. Whenever a robot
senses the presence of an obstacle in its sensing range, it
performs an in-place 90-degree counter-clockwise rotation
and scans its surroundings along the new direction. This
mechanism is repeated until a safe direction is found.

It should be noted that the reactions of the robots are not
affected by the actual positions of obstacles. When a robot
finds a safe direction, it moves along that direction, steers
itself to the destination, and repeats the path finding proce-
dure until it arrives at its destination. In our analyses we do
not make any assumptions about the relative processing rate
of the robots. In other words, robots can perform their tasks
with different processing rates. The same approach can be
adapted to systems consisting of robots with identical pro-
cessing rates.

Validation Properties
In this section we describe several kinds of desired prop-
erties for a path planning algorithm. We aim to check for
absence of deadlock, absence of collision, and reachability
of robots to their destinations for a given path planning al-
gorithm.

ECAL - General Track

233 ECAL 2013



1

0

-1

-1 0 1

�

Figure 2: Sensing range for a specific position and move-
ment direction

In order to perform such checks in a robotic system it
is required to include information about timing, details of
movement trajectories, accuracy of sensors, and shapes of
the robots. To make our analyses feasible, we try to keep
these details to a minimum. In our analyses we consider a
specific abstraction of the robots workspace and robots be-
havior introduced in System Specification.

We assume that the robots workspace is a two dimen-
sional grid which is uniformly partitioned into disjoint cells.
Thus each cell in this setting can be characterized by a pair
(x, y). Assuming a specific position as the origin of the grid,
for each robot the workspace is the following:

W = {(x, y)|x, y ∈ Z}

Robots are modeled as objects without any specific shape.
Each robot occupies a specific cell on the grid at each mo-
ment in time. We assume that robots can perform translation
movements along vectors from the following set:

D = {(i, j)|i, j ∈ {−1, 0, 1} ∧ (i, j) $= (0, 0)}

Translation movements to a neighboring cell are assumed
to be atomic events without any time duration. Moreover,
performing an in-place rotation by a robot does not change
the configuration of the system.

We abstract from the complexities of the sensing mecha-
nism and the way robots realize it. We assume that sensing
is an atomic action. Performing this action, robots check for
presence of obstacles in their range of sense. The sensing
range is assumed to be one cell ahead from a robot’s current
position along the robot’s next movement direction. In Fig. 2
the gray cell depicts the sensing range for a robot in the cell
(0,−1) which intends to move along (−1, 1). Sensors are
assumed to be accurate and provide correct information.

Finally, we assume that sensing and moving are the only
actions robots perform to realize a path planning algorithm.
These actions are performed by robots in an infinite loop.
Robots that arrive at their destinations can still sense their
surroundings. In what follows we explain several properties
that can be useful in the context of a path planning algorithm.

Deadlock-freeness Checking for absence of deadlock is
one of the general checks that can be performed. Perform-
ing this check we can detect problematic situations in the

system where no further action can be performed by robots.
As mentioned earlier, in our sketched system robots can al-
ways sense their surroundings. Thus, in this case deadlock
freedom easily follows from the system specification. How-
ever, this check could be useful in general.

Collision-freeness For a given path planning algorithm, it
is desirable to check that for all trajectories calculated by the
algorithm, robots will never collide with an obstacle (which
could be another robot). Considering our abstraction of the
workspace and robots movements, this means that robots
should not share a cell on the grid with another object.

Reachability The ultimate goal of a path planning algo-
rithm is to guide robots to their destinations. We check
whether robots can reach their desired destinations in a fi-
nite number of steps. It is also possible to define a limit on
the number of steps that a robot takes before reaching its
goal.

As each robot can prevent other robots from reaching their
destinations, we are also investigating reachability while
reaching the goal can be prevented by other robots for in-
finitely many times.

mCRL2 & the Modal µ-calculus
In this section we explain the details of our analysis ap-
proach depicted in Fig. 1. In section Labeled Transition
Systems we describe labeled transition systems as a means
for modeling and analyzing the behavior of systems. In sec-
tion The mCRL2 language we introduce mCRL2 as a high-
level language for specifying labeled transition systems in a
compositional manner. We use this language to capture the
behavior of multi-robot systems by specifying and compos-
ing the behavior of its components. The modal µ-calculus
is the property specification language used in our approach
which is briefly explained in section The modal µ-calculus.

Labeled Transition Systems
Modeling and analyzing the behavior of systems with la-
beled transition systems (LTS) is a common technique. A
labeled transition system is a directed graph with a set of
states, i.e., graph nodes, and a set of transitions, i.e., graph
edges. States of an LTS correspond to system states. Tran-
sitions are labeled by actions and show the evolution of the
system when executing a specific action. Labeled transition
systems have an initial state which is depicted by an incom-
ing arrow.

Fig. 3 is a simple LTS which specifies the following be-
havior for a system. Starting in the initial state an a action is
performed. Then the system non-deterministically chooses
to perform an a or b. Performing an a will result in a state
where no further action can be performed by the system.
Performing a b means that the left branch is executed. After
the b action is done the system will perform a forever.
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Figure 3: A simple labeled transition system

The mCRL2 language
Modeling systems behavior with LTSs does not scale to
complex systems. High-level languages can be used to de-
scribe complex LTSs. We use the mCRL2 language for this
purpose. In this language LTSs are described as processes.
Data specification and process specification are the main as-
pects of the language.

Data specification The data specification subset of the
language allows the user to use the built-in data types (e.g.,
booleans, natural numbers) or to define and manipulate her
own system-specific data types. For instance, in our case
study we need two data types to specify the position of each
robot and movement vectors. In the mCRL2 syntax we have:

sort Pnt = struct P(X:Int,Y:Int);
Dir = struct D(I:Int,J:Int);

(1)

Each variable of type Pnt corresponds to a cell on the grid.
Instances of Pnt can be constructed by applying the con-
structor P. For an instance p of type Pnt the first and second
element of the pair can be accessed through the application
of the projection functions X and Y, respectively. The same
argument is applicable to Dir. In our modeling we always
use instances d of Dir such that I(d),J(d) ∈ {−1, 0, 1}.

Useful operations on data types can be defined as func-
tions. Each function is specified by its name, types of argu-
ments and return type, and a set of equations describing the
relation between the input(s) and output of the function. We
illustrate this with an example:

map NextPos:Pnt # Dir -> Pnt;
var p:Pnt, d:Dir;
eqn NextPos(p,d)= P(X(p)+I(d), Y(p)+J(d));

(2)

Given the current position of a robot and its next movement
direction, NextPos computes its next position. In this exam-
ple, we have one equation in our equation system (preceded
by eqn). The var block preceding the equation system de-
fines the variables used in the equation. These variables are
used for pattern matching. The single equation specifies that
for a given position p and direction d, the return value is an
instance of Pnt. The X attribute of the next position is the
sum of X(p) and I(d). The Y attribute is computed in a sim-
ilar way.

Process specification The process specification aspect of
the language provides a compositional way for system be-
havior specification. Actions are the main building blocks of
processes. We assume that actions are atomic events without
any time duration. Actions can also carry data parameters.
For the specification of a robotic system, we can define an
action which mimics a single step movement of a robot. The
parameter of this action specifies the movement vector.

act move:Dir;

In order to achieve complex behaviors or communication
patterns we can combine actions sequentially, in parallel, or
make a non-deterministic choice between a (possibly infi-
nite) set of actions. We can also let data values affect the
behavior of a process by adding conditional expressions to
processes.

The non-deterministic choice between processes P and Q

is denoted by P + Q. The process P + Q will behave as P

or Q. The sequential composition of P and Q is denoted by
P.Q and the resulting process first performs the behavior of
P and then behaves as Q. The notation P ||Q represents the
parallel execution of P and Q. It is also possible to enforce
communication between actions executed by different pro-
cesses. Using this facility together with the operator ||, one
can force communication between P and Q for specific ac-
tions. The rest of the actions will be interleaved. Assuming
that c is a boolean expression, the process c → P $ Q will
behave as P if c is satisfied and will behave as Q otherwise.

Using the mCRL2 language, we can specify the move-
ments of a robot as a process. For example, a robot that
takes a sequence of non-deterministically chosen right and
left steps can be specified as follows:
proc Robot(rp:Pnt) =
move(D(1,0)).Robot(NextPos(rp,D(1,0))) +
move(D(-1,0)).Robot(NextPos(rp,D(-1,0)));

The process carries a data parameter which represents the
current position of Robot. After each movement along
D(1,0) or D(-1,0) the robot behaves as the Robot process
with a new parameter calculated by NextPos.

One can easily influence the choices of Robot by another
process, e.g., Environment. In our context this process can
mimic the behavior of the environment by collecting in-
formation about the workspace and enforcing certain con-
straints on movements. We can establish a communication
between the two processes to enforce a movement in a spe-
cific direction. To realize this communication in this exam-
ple, Environment should perform an action, e.g., en move,
which carries data parameters of the same type as move. We
describe Environment as follows:
proc Environment =

en move(D(1,0)).en move(D(-1,0)).Environment;

By enforcing the communication between move and en move
and executing Robot and Environment in parallel, the re-
quired controlling mechanism will be achieved. In this way,
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Figure 4: LTS for Robot||Environment with enforced com-
munication

move and en move are only executed in a synchronized man-
ner both carrying equal data parameters. In our simplified
example Environment only affects the movement direction
of Robot by enforcing it to move to its right and left alternat-
ingly. Putting Robot and Environment in parallel will result
in the LTS of Fig. 4 where action m represents the communi-
cation of move and en move.

The modal µ-calculus
We use the modal µ-calculus for specifying system proper-
ties. The following grammar gives the basic form of modal
µ-calculus formulae where a is an action.

φ ::= true | false | ¬φ | φ ∧ φ | φ ∨ φ |
〈a〉φ | [a]φ | µX.φ | νX.φ (3)

The operators ∧, ∨, and ¬ have their usual meanings. The
formula 〈a〉φ is valid in a state of an LTS when an action a

can be performed such that φ is valid after this action a has
been done. The formula [a]φ is valid in a state if all possible
executions of action a lead to a state where φ holds.

The formulae µX .φ and νX .φ are the minimal and maxi-
mal fixed points, respectively. In both cases, X usually oc-
curs in φ. The property µX .φ is valid for all the states in
the smallest set X that satisfies ‘X = φs’. Similarly, νX .φ

is valid for all the states in the largest set X that satisfies
‘X = φs’ where φs represents all states where φ is valid.
Other capital letters (e.g., Y ) can also be used instead of X.

As an example consider a setting with parameterless ac-
tions {move, sense}. The property µX.([sense]X) is valid
if sense is executed for a finite number of times. In other
words, move is unavoidable (unless a deadlock occurs). The
property νXµY.([move]X∨ [sense]Y ) specifies that any sub-
sequence of consecutive sense actions should be finite.

It is often useful to use a variant of the grammar in Eqn. 3
which allows the occurrence of multiple actions or a se-
quence of actions in a modality. For this purpose regular
formulas are used within modalities. The formula true rep-
resents the set of all actions and ∪ (union), ∩ (intersection),
and ¬ (complement with respect to the set of all actions) can
be used to specify action formulas. Regular formulas extend
action formulas to allow the use of sequences of actions in
modalities. For instance for a subset of actions α, α∗ denotes
any sequence of actions from α.

Since actions can carry data parameters, we need ways to
refer to data values in formulae. As an example consider the

Robot 1 Robot 2 Robot n...

Environment

Figure 5: Robot and Environment processes

set of actions {move, sense} both carrying one data param-
eter of type Dir. Data can be introduced to modal formulae
referring to move and sense using existential or universal
quantifiers. Quantification can be used within modalities.
For instance [∀d : Dir : (¬move(d))∗]φ says that as long as
there is no move in any direction, φ should hold. Quantifiers
can also be used outside the scope of modalities with their
standard meaning. For instance ∀d : Dir.[move(d)]φ is true
if φ holds after performing move in any direction. We can
also store and process data values in fixed points. Using this
feature it is possible for instance to specify constraints on the
number of certain events. Consider the following formula:

µX(p : Pnt = P0).(∀d : Dir[move(d)]X(NextPos(p, d)) ∨
(X(p) > Y (p)))

Here p records the current position of the robot and is ini-
tially set to the P0 (the initial position). The property says
that after finite number of movements the robot should be in
a certain part of the grid where X(p) > Y (p) holds.

We refer the interested reader to (Groote and Mateescu,
1999) for a more detailed explanation of the modal µ-
calculus and its semantics.

Modeling a Multi-Robot System
In this section we elaborate on the simple modeling scheme
we introduced in the previous section to formalize the multi-
robot system described in section System Specification.
Fig. 5 depicts a schematic view of our modeling approach.
For a system consisting of n robots we specify n + 1 pro-
cesses, i.e., n robot processes and 1 environment process,
in mCRL2 and put them in parallel. This scheme conforms
to our description in System Specification, i.e., robots com-
municate with the environment but they do not have direct
communication among themselves.

Each process carries and manipulates certain data param-
eters. Every robot process carries parameters which indi-
cate its current position and the (potential) direction of the
next move. We assign a unique identifier to each robot pro-
cess so the environment process can distinguish them when
performing communications. The environment process car-
ries data parameters to record the current position of all the
robots. Since the destinations of the robots are not affected

ECAL - General Track

ECAL 2013 236



by the dynamics of the system we model them as global pa-
rameters. For instance for Robot1 from Fig. 5 we can specify
the destination as the position (2, 3) as follows:

map PD1:Pnt;
eqn X(PD1)=2;Y(PD1)=3;

(4)

In our case study we assume that the system consists of
identical robots. Thus, the processes we use to describe
their behavior only differ in the unique parameter that is
used for the identification of the robots. This approach can
be adapted to systems consisting of robots with nonidenti-
cal path planning algorithms. For the sake of simplicity we
study a system with two robots in this paper. The following
definition specifies a data type with two unique instances
which we use for robots identification.

sort ID = struct id1|id2;

In what follows we explain the mCRL2 processes that we
use to describe the robots and the environment.

Robots In our abstraction of the robotic system, each
robot scans its surroundings and performs movements in an
infinite loop. Thus, robot processes can be specified in terms
of actions rs (sense) and rm (move).

We enforce a communication on rs with the environment
to collect information about the presence of obstacles. A
robot performs rs providing its unique identifier and the
next movement direction. Performing rs a robot should be
able to react to both outcomes of the performed check, i.e.
presence or absence of obstacles. We specify rs as follows:

act rs:ID # Dir # Bool; (5)

Scanning the range of sense along vector d by a robot iden-
tified by id1 can be modeled as a nondeterministic choice
between a “Yes” or “No” response for presence of obstacles,
i.e., rs(id1,d,true)+rs(id1,d,false).

To establish a communication on rs, the environment pro-
cess should perform an action, e.g., es, with identical pa-
rameter values. Given the movement direction of the robot,
if the environment does not find an obstacle in the range of
sense it will perform es(id1,d,false). Next, the robot will
perform a move action along the direction vector. Other-
wise, the environment will perform es(id1,d,true) and the
robot should not move.

A robot identified by id1 performs rm(id1,d) to declare
its movement along the vector d. We enforce a communica-
tion between the robots and the environment on this action.
In this way the environment can calculate the new position
of the moving robot and update its information. The follow-
ing process describes the behavior of a robot identified by
id1. The process Robot2 can be specified in a similar way.

proc Robot1(p:Pnt,d:Dir) =
sum b:bool. rs (id1,d,b).b ->
Robot1(p,NextDir(id1,d,p,b)) <>
rm(id1,d).Robot1(NextPos(p,d),

NextDir(id1,d,NextPos(p,d),b));

The syntax sum b: bool. rs (id1,d,b) is a shorthand
for rs(id1,d,true)+rs(id1,d,false). The conditional
statement in Robot1 indicates that after performing rm the
same behavior is repeated with new position and direc-
tion parameters calculated by NextPos (see Eqn. (2)) and
NextDir functions, respectively. On the other hand, the pres-
ence of obstacles only causes an in-place change of direc-
tion. The following expressions partially specify NextDir:

map NextDir:ID # Dir # Pnt # Bool -> Dir;
var cp:Pnt, cd:Dir, b:Bool;
eqn (cp!=PD1) -> NextDir(id1,cd,cp,false) =

D(sgn(X(PD1)-X(cp)),sgn(Y(PD1)-Y(cp)));
(cp!=PD1) -> NextDir(id1,cd,cp,true) =

D(-Y(cd), X(cd));
(cp==PD1) -> NextDir(id1,cd,cp,b) = D(0,0);

In this specification sgn is a function that extracts the sign
of its argument and PD1 is Robot1’s destination (Eqn. (4)).
The notations == and != denote data equality and inequal-
ity. Two instances p1,p2 of Pnt are equal if and only if
X(p1)=X(p2) and Y(p1)=Y(p2). The first and second rule of
the equation system determine the next movement direction
for the first robot when it is not at its destination. Absence of
obstacles in the last scan activates the first rule and the next
direction is calculated in order to guide the robot closer to its
destination. Presence of an obstacle in the last scan activates
the second rule which mimics a 90-degree counterclockwise
rotation. The last rule sets the direction to (0, 0) when the
robot arrives at its destination. The complete specification
can be derived by describing a similar behavior for id2.

Fig. 6 depicts the LTS described by Robot1 where each
state is labeled by the data parameters carried by the process
in that state.

Environment The Environment process records the posi-
tion of the robots and performs the actions es and em in order
to establish the required communications with the robot pro-
cesses. The following mCRL2 syntax describes this process:

proc Environment(p1:Pnt,p2:Pnt) =
sum id:ID, d:Dir.es(id,d,Sense(id,p1,p2,d)).
Sense(id,p1,p2,d)->
Environment(p1,p2)<>
(id==id1) ->
em(id1,d).Environment(NextPos(p1,d),p2) +

(id==id2) ->
em(id2,d).Environment(p1,NextPos(p2,d));

The summations over the data types ID and Dir indicate
that this process can establish a communication with any
robot on the action es to perform a check for obstacles along
direction d. The function Sense performs this check. If a
movement is possible, Environment will update its informa-
tion with the new position. Otherwise it will repeat the same

ECAL - General Track

237 ECAL 2013



rs(id1,D(a,b),false)
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P
D(a,b)

rm(id1,D(a,b))

Figure 6: LTS description for Robot1

behavior. A partial specification of Sense is as follows:

map Sense:ID # Pnt # Pnt # Dir -> Bool;
var cp1,cp2:Pnt, cd:Dir;
eqn (PD1!=cp1) -> Sense(id1,cp1,cp2,cd) =

(cp2==NextPos(cp1,cd));
(PD1==cp1) -> Sense(id1,cp1,cp2,cd) = false;

The first rule checks for presence of obstacles when the first
robot is not in its destination. It simply checks whether a
movement in the specified direction will cause a collision
with the second robot (see Fig. 2). Since robots can only
move along (0, 0) after arriving at their destinations, the sec-
ond rule always declares absence of obstacles when Robot1
arrives at its destination. The complete specification can be
derived by describing a similar behavior for id2.

Finally, we initialize the specified processes and put them
in parallel to achieve a model for the system (Fig. 5). To this
end we use the following mCRL2 syntax:

init
allow({m,s},comm({rm|em -> m, rs|es -> s},
Robot1(P01,D01) || Robot2(P02,D02) ||
Environment(P01,P02)));

(6)

The comm operator is used to establish communication be-
tween rs and es and renames this communication to a sin-
gle action (s). The allow operators enforces the specified
communications. In other words it blocks non-synchronous
execution of rs and es. The actions rm and em are treated in
the same way. The initial position and direction parameters,
e.g., P01, can be specified similar to Eqn. (4).

Verification
In what follows we first formalize the properties from Val-
idation Properties in the modal µ-calculus. We report on
the results and observations we achieved on verifying these

properties against the specification discussed in the previous
section. We applied the mCRL2 toolset for verification.

Deadlock-freeness In any reachable state of the system it
is possible to perform an action:

[true∗]〈true〉true (7)

Collision-freeness Trajectories calculated by the algo-
rithm will not cause a collision for two robots initially at
P01 and P02, i.e., robots will not share a cell on the grid:

νX(p1 : Pnt = P01, p2 : Pnt = P02).

(([∀ id : ID, d : Dir.¬m(id, d)]X(p1, p2)) ∧
(∀ d : Dir.[m(id1, d)]X(NextPos(p1, d), p2)) ∧
(∀ d : Dir.[m(id2, d)]X(p1, NextPos(p2, d))) ∧
(p1! = p2))

(8)

Reachability Robot1 (initially at P01) should reach its
destination (PD1) with a finite number of movements:

µX(p : Pnt = P01).νY.(([!d : Dir.m(id1, d)]Y ∧
(∀d : Dir.[m(id1, d)]X(NextPos(p, d)))) ∨ (p == PD1))

(9)
Applying the mCRL2 toolset we verified these properties

against the model of the system. The properties (7) and (8)
hold for any combination of different initial and destination
positions for the robots chosen from the following set:

TestPoints = {(x, y)|x, y ∈ {0, . . . , 5}} (10)

However, reachability does not hold in general. For instance,
we identified the counterexample in Fig. 7. Movements of
the first and second robot are depicted by filled and dashed
arrows, respectively. The numbers denote the order of the
performed moves. Initial and destination cells are marked
by circles and flags, respectively. In this case the second
robot moves relatively slowly compared to the first robot and
it stops at the destination of the first robot. This causes a
livelock in the first robot’s behavior, i.e, it will perform the
same sequence of actions without making any progress.

In an attempt to characterize the occurring problem we
introduce a new notion of reachability where infinite move-
ment steps are allowed when at least one of the robots is
“close” to the destination of the other robot. The following
formula formalizes this property:

µX(p1 : Pnt = P01, p2 : Pnt = P02).

νY (p′1 : Pnt = p1, p
′
2 : Pnt = p2).

(((∀d : Dir.[m(id1, d)]

(((Near(p′2, PD1) ∨Near(NextPos(p′1, d), PD2))∧
Y (NextPos(p′1, d), p

′
2))

∨ ((!Near(p′2, PD1)∧!Near(NextPos(p′1, d), PD2))∧
X(NextPos(p′1, d), p

′
2))))∧

(∀d : Dir.[m(id2, d)]Y (p′1, NextPos(p′2, d)))∧
([∀id : ID, d : Dir.!m(id, d)]Y (p′1, p

′
2)))∨

(p1 == PD1))
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Figure 7: A counterexample for reachability

The function Near is defined as follows where abs is the
built-in absolute value function:

map Near:Pnt # Pnt -> Bool;
var p1,p2:Pnt;
eqn Near(p1,p2) = (abs(X(p1)-X(p2)) <= 2 &&

abs(Y(p1)-Y(p2)) <= 2 );

This property is satisfied by the system described in the pre-
vious section for any reasonable combination of initial and
destination positions from Eqn. (10).

Conclusion
In the context of high level algorithmic approach to the path
planning problem we studied ways to analyze multi-robot
systems in a systematic way. The final goal is to verify a set
of desired properties against a high-level model of a system
and provide efficient feedback to the designer of the system.

We have introduced an approach based on process alge-
bras for modeling and analyzing path planning algorithms.
We have used the mCRL2 language and the modal µ-
calculus for describing a multi-robot system and its prop-
erties. The mCRL2 toolset has been used for the verification
of these properties. We have applied this approach to inves-
tigate the correctness of a set of useful properties in a simple
multi-robot system. Our observations show that for a sim-
ple path planning algorithm useful properties can be verified
with the proposed approach efficiently (about one minute for
each property on a standard desktop computer).

We envisage applying our approach to systems with more
sophisticated path planning algorithms. Applying this ap-
proach to systems consisting of a large number of robots can
also be considered as future work.
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