
Exploring Students’ Understanding of the Concept of
Algorithm: Levels of Abstraction

Jacob Perrenet
Educational Service Centre

Technische Universiteit Eindhoven
P.O.Box 513, 5600MB Eindhoven

The Netherlands
+31-40-2473396

j.c.perrenet@tue.nl

Jan Friso Groote
Department of Computer Science

Technische Universiteit Eindhoven
P.O.Box 513, 5600MB Eindhoven

The Netherlands
+31-40-2475003

j.f.groote@tue.nl

Eric Kaasenbrood
Department of Computer Science

Technische Universiteit Eindhoven
P.O.Box 513, 5600MB Eindhoven

The Netherlands
+31-628189391

e.j.s.kaasenbrood@student.tue.nl

ABSTRACT
How do we know if our students are beginning to think like
computer scientists? In this study we have defined four levels of
abstraction in the thinking of computer science students about the
concept of algorithm. We constructed a list of questions about
algorithms to measure the answering level as an indication for the
thinking level. This list was presented to various groups of
Bachelor Computer Science students. The mean answering level
increased between successive year groups as well as within year
groups during the year, mainly from the second to the third level.
Little relation was found between answering levels and test results
on algorithm oriented courses. The study was inspired by the
tradition of mathematics education research.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer
and Information Science Education – computer
science education, curriculum.

General Terms
Algorithms.

Keywords
Computer science education, abstraction.

1. INTRODUCTION
In the Netherlands, Computer Science is not yet a mandatory
subject in pre-university education and almost no tradition of
Computer Science education research exists. This will probably
change in the next decade. For the Computer Science Department
of the Technische Universiteit Eindhoven a natural starting theme
for educational research is the concept of algorithm. The
educational program has a thoroughly mathematical character; the
focus is on correctness by construction, reliability and the use of
formal methods for design tools (the Eindhoven School). The

modern development in software engineering, starting with
system component construction before bringing the components
together, has recently been incorporated. Still, compared to other
Dutch Computing Science programs, learning to construct
(elementary) algorithms is taught very thoroughly, using a high
level of abstraction. So a natural choice for a focus of educational
research is: levels of abstraction in students’ thinking about
algorithms.

2. LEVELS OF THINKING THEORY
Computer Science Education researchers like Hazzan [5] and
Aharoni [3] investigate levels of abstraction in students’ thinking
about core concepts, starting with, for example, Data Structures
concepts and Computability Theory concepts. Like them, we
value the tradition of the close research field of mathematics
education research. The mathematics education discipline is
relatively mature [1] and many mathematical concepts are similar
in nature to concepts in computer science [2], although sometimes
the same concept has a different meaning (see Fant [4] for the
very concept of algorithm as an example).

Hazzan’s and Aharoni’s research is inspired by the work of
Skemp and his successors (see [7] for an overview). In their
framework a level of abstraction has three interpretations [3], [5]:

1. Abstraction level as the quality of the relationships between

the object of thought and the thinking person.
2. Abstraction level as a reflection of the so-called process-

object duality.
3. Abstraction level as the degree of complexity of the concept

of thought.

We prefer the second interpretation where a next level is reached
when a student can interpret processes and relations between
objects, as a new kind of objects. The process or relation becomes
an object in itself.

In our opinion, when a student has reached a certain level of
thinking, the lower levels still exist and are incorporated; lower
levels can be evoked if necessary, in accordance with Hazzan [5].
Questions or problems do not necessary evoke the highest
available level of thinking. Thus it is better to speak about the
level of thinking in relation to a certain problem. Depending on
the problem, a student with a high level of thinking has the
possibility but not the necessity to react on the highest possible
level.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006…$5.00.

3. RESEARCH DESIGN AND FINDINGS
We will describe our focus in the curriculum, the construction of
an algorithm questionnaire and a set of scoring rules as an
instrument to measure abstraction level. Our main hypotheses are:

1. The abstraction level of successive year groups will increase.
2. The individual abstraction level will increase during a year’s

programme.
3. The individual grade on a subject test will correlate with the

individual abstraction level.

3.1 Design
Algorithm courses
Five algorithm-oriented Bachelor courses were selected in which
students were intended to develop their understanding of the
concept of algorithm, its construction and its analysis (Table 1).

Table 1. Algorithm-oriented courses

Subject and
study phase Contents

Program
Realization 1
Trimester 1.1

Embedding elementary algorithms into larger
programs and encoding into a specific
programming language.

Design of
Algorithms 1
Trimester 1.2

Systematical construction of algorithms using the
Guarded Command Language1.

Design of
Algorithms 2
Trimester 2.1

Programming from a formal specification with
stepwise refinement to the use of simple standard
algorithms.

Design of
Algorithms 3
Trimester 2.3

Mathematically analyzing algorithmic run-time.
Using advanced techniques of algorithmic design
and a number of standard algorithms.

Complexity
Trimester 3.1

Understanding algorithm complexity as well as
problem complexity. Transforming problems
within complexity classes.

Levels of Abstraction
Originally, we proposed three abstraction levels for the algorithm
concept, the program level, the object level and the problem level.
These abstraction levels were discussed in interviews with the
lecturers of the five courses involved in the study. An additional,
lower level, the execution level was suggested. The resulting four
levels are defined as follows:

1. Execution level: the algorithm is a specific run on a concrete

specific machine; its execution time is determined by the
machine.

2. Program level: the algorithm is a process, described by a
specific executable programming language; execution time
depends on the input.

3. Object level: the algorithm is not connected with a specific
programming language; it can be viewed as an object (versus
process); while constructing an algorithm the data structure
and the invariance properties are used; meta properties such
as termination and ‘patterns’ (algorithmic modules) are
relevant; execution time is considered in terms of magnitude
of order as function of the input.

1 See Kaldewaij [6].

4. Problem level: the algorithm can be viewed as a black box;
the perspective of thought is ‘given a problem, which type of
algorithm is suitable?’; problems can be categorized to
suitable algorithms; a problem has an intrinsic complexity.

The lecturers were most outspoken about the difference between
levels 2 and 3. They also expected these two levels of
understanding to be most common among the Bachelor student
group. This opinion was shared with the majority of other teachers
involved in the subjects of Table 1: faculty instructors for
assisting in solving problems, and student assistants for assistance
at instruction and correction of assignments. They expressed their
opinions during short interviews.

Other comments of the lecturers were that they agreed upon an
interpretation of ‘abstraction’ as ‘disregarding detail’ or
‘condensation’. Only some of them accepted the process-object
interpretation, as given above. Some made extra abstraction level
distinctions, such as the difference between knowing an algorithm
for a certain task and being able to prove that a certain algorithm
can complete a certain task in a certain order of time, or such as
thinking about a sequential or a parallel machine performing an
algorithm. There was disagreement on whether the ability to use
pseudo code and an axiomatic notation signified a certain level of
abstraction or a certain level of precision only. The discussions
with the lecturers inspired the contents and the format of the
questions for the students.

Construction of the Questionnaire and Measurement
The original questionnaire consisted of 11 items. The starting item
is worded as follows:
0. Give your definition of ‘algorithm’.
The other ten items (‘proposition items’) have another format.
There is a general introduction: Mark whether you agree or
disagree with the following proposition and give a supporting
argument. So, only ‘agree’ or ‘disagree’ is not sufficient. If
necessary, the option ‘both are possible’ can be chosen, provided
that an argument is given. Only if you cannot answer the question
because of lack of knowledge, then choose for ‘I don’t know’.

All ten items are followed by the four alternatives Agree,
Disagree, Agree and disagree are possible, I don’t know, and
room for supporting argumentation.

The questionnaire was presented to the three Bachelor year groups
in the first trimester after concluding their subject test on Program
Realization 1, Design of Algorithms 2 or Complexity (Table 1).
Further data were collected from the first year group at the end of
the second semester after concluding the subject test of Design of
Algorithms 1, and from the second year group at the end of the
third trimester at Design of Algorithms 3. In total 398
questionnaires were collected (out of 461 students who completed
the relevant courses).

A random sample of 5% of the first trimester (student) output was
scored by two raters (the second and third author). The agreement
between the raters at item level appeared to be too small, so
differences and doubts were discussed and scoring rules were
refined. This first sample was not used in further analysis.
Another 5% sample still resulted in unsatisfactory agreement.
However, after removal of four out of the ten proposition items,
the degree of agreement between the two raters, measured by
Cohen’s Kappa, was .64. Also on the remaining list – item 0 and
six proposition items - a third rater (the first author) scored

satisfactorily consistently with the other two (.64 and .70).
Cohen’s Kappa is a measure that corrects for the influence of
chance and a minimum of .60 is considered acceptable.

We will present the final list of six proposition items. Together
with the item 0 (Give your definition of ‘algorithm’) this list was
used as the questionnaire in further data collection and analysis.

1. An algorithm is a program, written in a programming

language.
2. Two different programs written in the same programming

language can be implementations of the same algorithm.
3. The correctness of an algorithm can generally be proven by

testing the implementation on cleverly selected test cases.
4. A suitable quantity to measure the time needed for a certain

algorithm to solve a certain problem is the time needed in
milliseconds.

5. The complexity of a problem is independent of the choice of
the algorithm to solve it.

6. For every problem it is possible that in the future algorithms
are discovered which are more efficient by an order of
magnitude than the algorithms known at present.

For items 0 to 4 a level score from 1 to 3 is possible, for items 5
and 6 a score from 1 to 4. In Table 2, as an example, the refined
scoring rules are given for three items. As there is no information
about the distances between the levels, we calculated a student’s
answer abstraction-level as the median of the series of item level
scores. If for more than half of the item series no level was
detectable (missing or unclear) then the data were considered to
be insufficient to calculate a students’ level.

3.2 Results
Students’ Answering Levels
Generally, students took approximately fifteen minutes to answer
the seven questions. From the answers the level could be
calculated for almost 85% of the students filling in the
questionnaire; the other students were too often not clear in their
argumentation for the proposition items or they gave no
argumentation at all.

The first hypothesis was, that the abstraction level of successive
year groups would increase. Table 3 shows the percentages of
answering level scores for the year groups 1, 2 and 3 at the end of
the first trimester.

Table 3. Abstraction level of successive year groups

Year group in
trimester

Student percentage with
level score

Number of
students

Level score 1.5 2 2.5 3

Year group 1 in 1.1 4 50 6 40 67

Year group 2 in 2.1 21 7 72 58

Year group 3 in 3.1 8 2 90 72

Indeed, in higher years, the answering level generally is higher:
Spearmann’s rank correlation coefficient rho = 0.48, significant at
0.01 (two-tailed). Almost every student has a median answer level
of 2 to 3; levels under 1.5 or above 3 are non-existent.

Our second hypothesis was, that the abstraction level of the same
group would increase during the year. Table 4 shows the general

answering level growth of the first year group and the second year
group. The percentages are given of students with a higher level,
the same level or a lower level at the second measuring moment,
compared to the first.

 Table 2. Examples of detailed answer level scoring

Item Answer characteristics Answer
level

A process with only one input, and only
on one machine

1

A program in a specific language, runable
with all possible input

2

A series of steps (abstraction from
programming language)

3
0

Unclear or missing x

+ An algorithm equals an execution
equals a program, on a machine or on a
virtual machine

1

+ Implementation or effectuation in a
programming language; program equals
algorithm; executable on a machine or by
hand

2

- Implementation into differing
languages

3

± Implementation or effectuation etc is
clearly mentioned (see above)

2

± Implementation into differing
languages

3

1

?, +, -, ± Without an argument; unclear
or missing

x

+ Computers will become faster 1

+ By optimization of an actual program
or by use of a better programming
language

2

+ By different architectures for
computers / by optimization of a
computational method (not related to a
specific programming language); the
solving algorithm determines the
complexity, the algorithm is placed above
the problem

3

- One specific counter-example is given 3

- The black-box approach emerges /
upper bounds and lower bounds as well
as problems are placed above problems; a
problem possesses an intrinsic complexity

4

± The arguments for disagreement
should emerge clearly; a problem
possesses an intrinsic complexity

4

? (Without further explanation) x

? (The word ‘complexity’ is not
understood)

x

? (The word ‘complexity’ is understood,
but the ‘complexity of a problem’ is not)

3

6

?, +, -, ± (Without an argument, unclear
or missing)

x

Key to symbols used above: + = Agree, - = Disagree,
± = Agree and disagree, ? = I don’t know;
x = No answer level detectable

Table 4. Abstraction level growth during the year

Year group
(trimesters)

% with
increased

level

% with
the same

level

% with
decreased

level

Number
of

students

1 (1.1 to 1.2) 48 44 8 36

2 (2.1 to 2.3) 34 56 10 48

Clearly most students reach a higher level or stay at the same
level: according to the Wilcoxon Signed Ranks Test significant in
both cases at .05 (two-tailed, with Z=-2.47 and Z=-2.27
successively).

Our third hypothesis was that the individual grades on the various
subject tests would correlate with the abstraction level. Table 5
shows the correlations between grade and level for the five subject
tests. Only for one subject a small but significant (at 0.05)
Spearmann’s rank correlation appears: for Complexity. For the
other subjects correlations are non-significant and close to 0
(Design of Algorithms 1, 2, 3 and Program Realization 1).

Table 5. Correlation between answering level and test grade

Subject test Rank
correlation

Number of
students

Program Realization 1 .14 58

Design of Algorithms 1 .05 63

Design of Algorithms 2 -.05 44

Design of Algorithms 3 .09 72

Complexity .27* 72
* = significant at 0.05 (two-tailed)

4. CONCLUDING DISCUSSION
Students’ Answering Levels
In this study, we found various abstraction levels in Computer
Science Bachelor students’ answers to questions about algorithms,
although within a certain range. Assumed levels were 1. execution
level, 2. program level, 3. object level, and 4. problem level; the
mean answering level almost always only varied from program
level (2) to object level (3). One could assume that presenting the
questionnaire to Master students would show a higher level.
However, part of the explanation is in the characteristics of the
items and the method of measurement. For only two of the seven
items, an answer at the fourth level was possible and the mean
answering level (actually the median) was calculated. For
emergence of this highest level as the mean, more items should
have been constructed with the possibility of answering at that
level. Another possibility would have been to use another
operationalization for the measurement, for instance defining the
answering level of a student as the highest answering level that is
reached at least at two items. On the other hand, the lowest level
did not show, although this answering level was possible at every
item. The students involved had followed one semester of
computer science education or more. It would be interesting to do
further research into the existence of the lower execution level at
the actual start of the computer science program or at the end of
pre-university education. In that case however the questionnaire
would need some adaptation: the freshmen computer science
vocabulary is limited.

The results showed level growth for successive year groups (first
hypothesis). A year group was defined as the group taking a test
belonging to the curriculum year. However, slow students in their
second year sometimes have to take a first year test again. And
quick students in their second year sometimes already take a third
year test. More detailed data analysis, taking these circumstances
into account to select purer data, could reveal clearer results.

The results also showed level growth within year groups (second
hypothesis), although a large number of students stayed at the
same answering level. Measurement of the same groups after a
longer period could reveal clearer results. One could argue that
filling in the same questionnaire twice could create a learning
effect, explaining the level growth result as an artifact. This would
certainly be true when feedback was given; this, however, was not
the case. And because filling in the questionnaire generally would
have been of marginal value for the students, compared to the
value of the subjects test itself, we feel confident about the reality
of the results. In any case, more frequent measurement of the
same group of students would require the construction of parallel
items.

Both positive results above should however be viewed with some
caution. The assumption is that the level growth was (partially)
caused by taking the algorithm courses. However, correlation is
not the same as causation. Following other courses could have
caused the level growth or simply the process of getting ‘older
and wiser’. Only experimental research gives a view on causation.

Unexpectedly, in general little relation was found between subject
test results and answering level (third hypothesis), in fact only at
the third year course Complexity. Maybe precision really is more
important than abstraction level for success at these subjects,
especially at the hard-core Eindhoven School subjects (Design of
Algorithms 1 and 2), as some of the lecturers suggested. A
curriculum change is prepared for the coming years with a
revision of these subjects. It would be interesting to repeat the
investigation in the revised curriculum. It would also be
interesting to compare answering level with general performance.

Reliability and Validity
We succeeded in the construction of a series of items plus a
reliable scoring protocol for the measurement of the mean
answering abstraction level for the concept of algorithm. Looking
back on the measurement, we think a measurement output of 85%
is acceptable, given the fact that many students have problems
with clearly expressing their thoughts in writing (or maybe with
clear thinking itself) at the subject tests, as any corrector knows.

Compared to the method of the related research of Hazzan [5] and
Aharoni [3], who interviewed students and analyzed their work, in
our study many more students were involved but with less data
per student. The larger number of students makes statistical
analysis possible, for example to establish reliability as one of the
important aspects of a measurement. On the other hand, an
important question remains for our study: What about the
validity? Did we really measure level of abstraction? Did we not
simply measure the students’ memorization of standard
definitions? One could argue that, if we had solely used a closed
multiple-choice format in our questionnaire. However, we did not
score the multiple-choice answers, but we analyzed the students’
argumentations for their choices. This method fits in the tradition
of mathematics education and its research: not to look at answers
only. But a follow-up could improve the validity of the results

indeed. One way would be to construct more items, and also a
solution for ‘the problem of jargon’ would be welcome: An
example of this problem is the impossibility of measuring the
answering level of the items involving ‘complexity’, when it is
unclear whether the technical meaning of the term ‘complexity’ is
understood or not (items 5 and 6). Another manner to improve the
validity would be to combine the measurement used by us with
methods such as used by Hazan and Aharoni - interviewing
students and analyzing written work and to associate the results;
in that case for a smaller, heterogeneous group of students.

Generalizability
Because of the abstract Eindhoven School character of the
curriculum it is hard to generalize the results to Dutch or general
computer science university education. Comparative measurement
at another university would be necessary. A somewhat risky
hypothesis would be that the abstraction level of the Computer
Science students at the Technische Universiteit Eindhoven, at
least in the second and third year, would be higher.

Implications for Didactics and Didactical Research
Our results are too premature to conclude that teachers should
take their students’ algorithmic thinking level into account more.
Further research into algorithmic thinking levels would be
required - at other institutions and at other moments in the
curriculum – as well as research into other computer science
concepts, and the relations between thinking levels for different
concepts. We advise to use little data from many students as well
as much data from few students. Knowing more about the
students’ thought processes can improve teaching aimed at
supporting students’ own knowledge construction. For computer
science education, there still are worlds to discover!

5. ACKNOWLEDGMENTS
We would like to thank the students and the staff of the Computer
Science Department of the Technische Universiteit Eindhoven for
their cooperation in this research.

Special thanks goes to our colleagues Jos Arts, Irene
Vanderfeesten and Christina Morgan for their helpful comments
on an earlier version of this paper.

6. REFERENCES
[1] Almstrum, V.L., et.al. Import and Export to/from Computing

Science Education: The Case of Mathematics Education
Research. Proceedings ITiCSE, Aarhuus, 2002, 193-194.

[2] Almstrum, V.L., et.al. Transfer to/from Computing Science
Education: The Case of Science Education Research.
Proceedings SIGCSE, Reno, 2003, 303-304.

[3] Aharoni, D. Cogito, Ergo, Sum! Cognitive Processes of
Students Dealing with Data Structures. Proceedings SIGCSE,
Austin, 2000, 26-30.

[4] Fant, K.M. A Critical Review of the Notion of the
Algorithm in Computer Science. Proceedings ACM,
Indianapolis, 1993, 1-6.

[5] Hazzan, O. Reducing Abstraction Level when Learning
Computability Concepts. Proceedings ITCsE, Aarhuus,
2002, 156-160.

[6] Kaldewaij, A. Programming: The Derivation of Algorithms.
Prentice Hall International, UK, 1990.

[7] Tall, E. & Thomas, T. (Ed.). Intelligence, Learning and
Understanding in Mathematics; a tribute to Richard Skemp.
Post Pressed, Flaxton, 2002.

