Exploring Students’ Understanding of the Concept of
Algorithm: Levels of Abstraction

Jacob Perrenet
Educational Service Centre
Technische Universiteit Eindhoven
P.0.Box 513, 5600MB Eindhoven
The Netherlands
+31-40-2473396

j-c.perrenet@tue.nl

ABSTRACT

How do we know if our students are beginning tankhlike
computer scientists? In this study we have defiioed levels of
abstraction in the thinking of computer sciencelshis about the
concept of algorithm. We constructed a list of gues about
algorithms to measure the answering level as aigdtidn for the
thinking level. This list was presented to varioggoups of
Bachelor Computer Science students. The mean aingnevel
increased between successive year groups as welitldia year
groups during the year, mainly from the seconchithird level.
Little relation was found between answering lewaeid test results
on algorithm oriented courses. The study was iespipy the
tradition of mathematics education research.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer
and Information Science Educatiomemputer
science education, curriculum.

General Terms
Algorithms.

Keywords
Computer science education, abstraction.

1. INTRODUCTION

In the Netherlands, Computer Science is not yetamdatory
subject in pre-university education and almost rawition of
Computer Science education research exists. THispvabably
change in the next decade. For the Computer Scieapartment
of the Technische Universiteit Eindhoven a natstatting theme
for educational research is the concept alforithm The
educational program has a thoroughly mathematitaiacter; the
focus is on correctness by construction, religbgihd the use of
formal methods for design tools (the Eindhoven ®thoThe

Permission to make digital or hard copies of alart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialadtage and that
copies bear this notice and the full citation o fihst page. To copy
otherwise, or republish, to post on servers oetlistribute to lists,
requires prior specific permission and/or a fee.

ITICSE’'05 June 27-29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006...$5.00.

Jan Friso Groote
Department of Computer Science
Technische Universiteit Eindhoven
P.0.Box 513, 5600MB Eindhoven
The Netherlands
+31-40-2475003

j.f.groote@tue.nl

Eric Kaasenbrood
Department of Computer Science
Technische Universiteit Eindhoven
P.0.Box 513, 5600MB Eindhoven
The Netherlands
+31-628189391

e.j.s.kaasenbrood@student.tue.nl

modern development in software engineering, stgrtimith
system component construction before bringing theponents
together, has recently been incorporated. Stillhgared to other
Dutch Computing Science programs, learning to caonst
(elementary) algorithms is taught very thoroughiging a high
level of abstraction. So a natural choice for aufoof educational
research is:levels of abstraction in students’ thinking about
algorithms

2. LEVELSOF THINKING THEORY
Computer Science Education researchers like Ha#zhrand
Aharoni [3] investigate levels of abstraction indgnts’ thinking
about core concepts, starting with, for exampletaD&tructures
concepts and Computability Theory concepts. Likenth we
value the tradition of the close research field nedithematics
education research. The mathematics education ptirei is
relatively mature [1] and many mathematical consepe similar
in nature to concepts in computer science [2]caltfin sometimes
the same concept has a different meaning (see [Ehaffior the
very concept of algorithm as an example).

Hazzan's and Aharoni’s research is inspired bywbek of
Skemp and his successors (see [7] for an overvievifeir
framework a level of abstraction has three intagtiens [3], [5]:

1. Abstraction level as the quality of the relatiomshbetween
the object of thought and the thinking person.

2. Abstraction level as a reflection of the so-callewcess-
object duality.

3. Abstraction level as the degree of complexity &f toncept
of thought.

We prefer the second interpretation where a nexdl lis reached
when a student can interpret processes and redati@tween
objects, as a new kind of objects. The processlation becomes
an object in itself.

In our opinion, when a student has reached a cel&iel of
thinking, the lower levels still exist and are ingorated; lower
levels can be evoked if necessary, in accordantehazzan [5].
Questions or problems do not necessary evoke tgbesi
available level of thinking. Thus it is better tpesk about the
level of thinking in relation to a certain probleepending on
the problem, a student with a high level of thimkihas the
possibility but not the necessity to react on tighést possible
level.

3. RESEARCH DESIGN AND FINDINGS

We will describe our focus in the curriculum, tlenstruction of
an algorithm questionnaire and a set of scoringsrak an
instrument to measure abstraction level. Our mgpotheses are:

1. The abstraction level of successive year groupsngtease.

2. The individual abstraction level will increase dugia year's
programme.

3. The individual grade on a subject test will corttelavith the
individual abstraction level

3.1 Design

Algorithm courses

Five algorithm-oriented Bachelor courses were setemn which
students were intended to develop their understgndif the
concept of algorithm, its construction and its geil (Table 1).

Table 1. Algorithm-oriented cour ses

Subject and
study phase

Contents

Program
Realization 1
Trimester 1.1

Embedding elementary algorithms into larger
programs and encoding into a specific
programming language.

De3|gn of Systematical construction of algorithms using the
Algorithms 1

> Guarded Command Langudge
Trimester 1.2
Design of Programming from a formal specification with
Algorithms 2 | stepwise refinement to the use of simple standard
Trimester 2.1| algorithms.
Design of Mathematically analyzing algorithmic run-time
Algorithms 3 | Using advanced techniques of algorithmic design
Trimester 2.3| and a number of standard algorithms.
Complexity | Understanding algorithm complexity as well as

Trimester 3.1

problem complexity. Transforming problems
within complexity classes.

Levels of Abstraction

Originally, we proposed three abstraction levelstfe algorithm
concept, thegrogramlevel, theobjectlevel and theroblemlevel.
These abstraction levels were discussed in intesviwith the
lecturers of the five courses involved in the stublg additional,
lower level, theexecutionlevel was suggested. The resulting four
levels are defined as follows:

1. Executionlevel: the algorithm is a specific run on a cotere
specific machine; its execution time is determiri®d the
machine.

2. Program level: the algorithm is a process, described by a
specific executable programming language; executiime
depends on the input.

3. Objectlevel: the algorithm is not connected with a specif
programming language; it can be viewed as an olyecsus
process); while constructing an algorithm the dstacture
and the invariance properties are used; meta giepesuch
as termination and ‘patterns’ (algorithmic modulemle
relevant; execution time is considered in termsnafjnitude
of order as function of the input.

! See Kaldewaij [6].

4. Problemlevel: the algorithm can be viewed as a black box;
the perspective of thought is ‘given a problem,chhiype of
algorithm is suitable?’; problems can be categdrize

suitable algorithms; a problem has an intrinsic plaxity.

The lecturers were most outspoken about the differdoetween
levels 2 and 3. They also expected these two lewdls
understanding to be most common among the Baclsélmient
group. This opinion was shared with the majoritytifer teachers
involved in the subjects of Table 1: faculty instars for
assisting in solving problems, and student asgistan assistance
at instruction and correction of assignments. Tégyressed their
opinions during short interviews.

Other comments of the lecturers were that theyeargon an
interpretation of ‘abstraction’” as ‘disregarding tale or
‘condensation’. Only some of them accepted the ggsobject
interpretation, as given above. Some made extracation level
distinctions, such as the difference between kngwim algorithm
for a certain task and being able to prove thagréam algorithm
can complete a certain task in a certain ordeinoé,tor such as
thinking about a sequential or a parallel machieggming an
algorithm. There was disagreement on whether tligyato use
pseudo code and an axiomatic notation signifiedrtain level of
abstraction or a certain level of precision onlyeTdiscussions
with the lecturers inspired the contents and then& of the
questions for the students.

Construction of the Questionnaire and Measurement
The original questionnaire consisted of 11 itentee $tarting item
is worded as follows:

0. Give your definition of ‘algorithm’.

The other ten items (‘proposition items’) have &eotformat.
There is a general introductiodMark whether you agree or
disagree with the following proposition and givesapporting
argument. So, only ‘agree’ or ‘disagree’ is not fmiént. If
necessary, the option ‘both are possible’ can beseh, provided
that an argument is given. Only if you cannot ansive question
because of lack of knowledge, then choose forrltdmow’.

All ten items are followed by the four alternativégyree
Disagree Agree and disagree are possible, | don't knamd
room for supporting argumentation.

The questionnaire was presented to the three Barchehr groups
in the first trimester after concluding their sudtjgest on Program
Realization 1, Design of Algorithms 2 or Complex(fjable 1).
Further data were collected from the first yeargrat the end of
the second semester after concluding the subjstcoteesign of
Algorithms 1, and from the second year group atehe of the
third trimester at Design of Algorithms 3. In tot898
guestionnaires were collected (out of 461 studehts completed
the relevant courses).

A random sample of 5% of the first trimester (stjl®utput was
scored by two raters (the second and third autfit®.agreement
between the raters at item level appeared to bestoall, so
differences and doubts were discussed and scotilgg mwere
refined. This first sample was not used in furtharalysis.
Another 5% sample still resulted in unsatisfactagreement.
However, after removal of four out of the ten prsigion items,
the degree of agreement between the two raterssuresh by
Cohen’s Kappa, was .64. Also on the remaining-igem 0 and
six proposition items - a third rater (the firsttlzar) scored

satisfactorily consistently with the other two (.Ghd .70).
Cohen’s Kappa is a measure that corrects for tflaeimce of
chance and a minimum of .60 is considered acceptabl

We will present the final list of six propositiotems. Together
with the item 0 (Give your definition of ‘algoritii) this list was
used as the questionnaire in further data collecitd analysis.

1. An algorithm is a program, written in a programming
language.

2. Two different programs written in the same prograngnm
language can be implementations of the same digorit

3. The correctness of an algorithm can generally beer by
testing the implementation on cleverly selectetdases.

4. A suitable quantity to measure the time needed fertain
algorithm to solve a certain problem is the timede in
milliseconds.

5. The complexity of a problem is independent of theice of
the algorithm to solve it.

6. For every problem it is possible that in the futalgorithms
are discovered which are more efficient by an oader
magnitude than the algorithms known at present.

For items 0 to 4 a level score from 1 to 3 is dassifor items 5
and 6 a score from 1 to 4. In Table 2, as an exantp refined
scoring rules are given for three items. As thenea information
about the distances between the levels, we cafmlastudent’s
answer abstraction-level as tmedianof the series of item level
scores. If for more than half of the item seriedevel was
detectable (missing or unclear) then the data wensidered to
be insufficient to calculate a students’ level.

3.2 Results

Students’ Answering Levels

Generally, students took approximately fifteen nésuto answer
the seven questions. From the answers the leveld cba

calculated for almost 85% of the students filling the

guestionnaire; the other students were too oftdrciear in their
argumentation for the proposition items or they egawo

argumentation at all.

The first hypothesis was, thdte abstraction level of successive
year groups would increas@able 3 shows the percentages of
answering level scores for the year groups 1, 23atlthe end of
the first trimester.

Table 3. Abstraction level of successiveyear groups

Year group in Student percentage with | Number of

trimester level score students
Level score | 1.5 2 25 3

Yeargroup 1in 1.1 4 50 6 40 67

Year group 2in 2.1 21 7 72 58

Year group 3in 3.1 8 2 90 72

Indeed, in higher years, the answering level gélyeis higher:

Spearmann’s rank correlation coefficient rho = Qignificant at
0.01 (two-tailed). Almost every student has a mediaswer level
of 2 to 3; levels under 1.5 or above 3 are nontemts

Our second hypothesis was, ttla¢ abstraction level of the same
group would increase during the yedrable 4 shows the general

answering level growth of the first year group dimel second year
group. The percentages are given of students witigtser level,
the same level or a lower level at the second nm@smoment,
compared to the first.

Table 2. Examples of detailed answer level scoring

Item Answer characteristics Alnsmer
evel
A process with only one input, and only 1
on one machine
A program in a specific language, runable >
0 with all possible input
A series of steps (abstraction from 3

programming language)
Unclear or missing X

+ An algorithm equals an execution
equals a program, on a machine or on a 1
virtual machine

+ Implementation or effectuation in a
programming language; program equals

algorithm; executable on a machine or by 2
hand

1 - Implementation into differing 3
languages
+ Implementation or effectuation etc is >
clearly mentioned (see above)
+ Implementation into differing 3
languages
?, +, -, £ Without an argument; unclear X
or missing
+ Computers will become faster 1
+ By optimization of an actual program
or by use of a better programming 2
language

+ By different architectures for

computers / by optimization of a

computational method (not related to a
specific programming language); the 3
solving algorithm determines the
complexity, the algorithm is placed above
the problem

- One specific counter-example is given 3

6 - The black-box approach emerges /

upper bounds and lower bounds as wel
as problems are placed above problems; a
problem possesses an intrinsic complexity
+ The arguments for disagreement
should emerge clearly; a problem 4
possesses an intrinsic complexity

—

? (Without further explanation) X
? (The word ‘complexity’ is not

X
understood)
? (The word ‘complexity’ is understood, 3
but the ‘complexity of a problem’ is not)
?, +, -, £ (Without an argument, unclear X

or missing)

Key to symbols used above: + = Agree, - = Disagre
+ = Agree and disagree, ? =1 don’t know;
x = No answer level detectable

Table 4. Abstraction level growth during the year

Year arou % with % with % with Number
(trimegsterg increased | thesame | decreased of
level level level students
1(1.1t01.2) 48 44 8 36
2(2.1t02.3) 34 56 10 48

Clearly most students reach a higher level or styhe same
level: according to the Wilcoxon Signed Ranks &ghificant in
both cases at .05 (two-tailed, with Z=-2.47 and 2227
successively).

Our third hypothesis was thtte individual grades on the various
subject tests would correlate with the abstractievel Table 5
shows the correlations between grade and levehéofive subject
tests. Only for one subject a small but significdat 0.05)
Spearmann’s rank correlation appears: for CompleXor the
other subjects correlations are non-significant atase to 0
(Design of Algorithms 1, 2, 3 and Program Real@atl).

Table5. Correlation between answering level and test grade

Subject test corlfggt(i on ’\Isl,tJ umdlgt : f
Program Realization 1 14 58
Design of Algorithms 1 .05 63
Design of Algorithms 2 -.05 44
Design of Algorithms 3 .09 72

Complexity 27 72

" = significant at 0.05 (two-tailed)

4. CONCLUDING DISCUSSION

Students’ Answering Levels

In this study, we found various abstraction levielsComputer
Science Bachelor students’ answers to questionst abgorithms,
although within a certain range. Assumed levelsewlerexecution
level, 2. program level, 3. object level, and bkpem level; the
mean answering level almost always only varied frormgram
level (2) to object level (3). One could assume tirasenting the
questionnaire to Master students would show a hidgaeel.

However, part of the explanation is in the chandsties of the
items and the method of measurement. For only fixtheoseven
items, an answer at the fourth level was possiblk the mean
answering level (actually the median) was calcdlaté&or

emergence of this highest level as the mean, ntenesi should
have been constructed with the possibility of amswgeat that
level. Another possibility would have been to useother
operationalization for the measurement, for instadefining the
answering level of a student as the highest anagéevel that is
reached at least at two items. On the other hédwdlowest level
did not show, although this answering level wassiiiis at every
item. The students involved had followed one seemesif

computer science education or more. It would ber@sting to do
further research into the existence of the lowerceakion level at
the actual start of the computer science programat dne end of
pre-university education. In that case howeverdbestionnaire
would need some adaptation: the freshmen compuience
vocabulary is limited.

The results showed level growth for successive geaunps (first

hypothesis). A year group was defined as the gtakimg a test
belonging to the curriculum year. However, slowdstuts in their
second year sometimes have to take a first yearatggsn. And

quick students in their second year sometimes @&Jrézke a third

year test. More detailed data analysis, takingetesumstances
into account to select purer data, could reveareleresults.

The results also showed level growth within yearugis (second
hypothesis), although a large number of studersgest at the
same answering level. Measurement of the same grafipr a
longer period could reveal clearer results. Onelccaugue that
filing in the same questionnaire twice could ceeat learning
effect, explaining the level growth result as atifaat. This would
certainly be true when feedback was given; thisyen@r, was not
the case. And because filling in the questionngéneerally would
have been of marginal value for the students, coetb#o the
value of the subjects test itself, we feel confidgmout the reality
of the results. In any case, more frequent measnerof the
same group of students would require the constmaif parallel
items.

Both positive results above should however be viewigh some
caution. The assumption is that the level growts partially)
caused by taking the algorithm courses. Howevemetadion is
not the same as causation. Following other coucsetd have
caused the level growth or simply the process dfirge ‘older
and wiser’. Only experimental research gives a \oevzausation.

Unexpectedly, in general little relation was folretween subject
test results and answering level (third hypothegisfact only at
the third year course Complexity. Maypeecisionreally is more
important than abstraction level for success astehsubjects,
especially at the hard-core Eindhoven School stbj@esign of
Algorithms 1 and 2), as some of the lecturers ssigge A
curriculum change is prepared for the coming yeaith a
revision of these subjects. It would be interestiogrepeat the
investigation in the revised curriculum. It woulds@a be
interesting to compare answering level with genpeaformance.

Reliability and Validity

We succeeded in the construction of a series ofst@lus a
reliable scoring protocol for the measurement oé tmean
answering abstraction level for the concept of algm. Looking
back on the measurement, we think a measurememitoaft 85%
is acceptable, given the fact that many student® hmoblems
with clearly expressing their thoughts in writingr (maybe with
clear thinking itself) at the subject tests, as emyector knows.

Compared to the method of the related researchaaz&h [5] and
Aharoni [3], who interviewed students and analyttesir work, in
our study many more students were involved but \é#s data
per student. The larger number of students makasstatal
analysis possible, for example to establish rdligikas one of the
important aspects of a measurement. On the othed, han
important question remains for our study: What abthe
validity? Did we really measurevel of abstractiof Did we not
simply measure the students’ memorization of stahda
definitions?0ne could argue that, if we had solely used a dlose
multiple-choice format in our questionnaire. Howewee did not
score the multiple-choicanswers but we analyzed the students’
argumentationgor their choices. This method fits in the traamfiti
of mathematics education and its research: natdk at answers
only. But a follow-up could improve the validity dfe results

indeed. One way would be to construct more itemsl, @so a
solution for ‘the problem of jargon’ would be wetoe: An
example of this problem is the impossibility of reeang the
answering level of the items involving ‘complexitywhen it is
unclear whether the technical meaning of the taomplexity’ is
understood or not (items 5 and 6). Another manmémprove the
validity would be to combine the measurement usgdid with
methods such as used by Hazan and Aharoni - ietemg
students and analyzing written work and to assediag¢ results;
in that case for a smaller, heterogeneous grosfudents.

Generalizability

Because of the abstract Eindhoven School charactethe
curriculum it is hard to generalize the resultDiatch or general
computer science university education. Comparatieasurement
at another university would be necessary. A somewlsky
hypothesis would be that the abstraction levelhaef Computer
Science students at the Technische Universiteidtginen, at
least in the second and third year, would be higher

Implications for Didactics and Didactical Research

Our results are too premature to conclude thathtracshould
take their students’ algorithmic thinking levelanaccount more.
Further research into algorithmic thinking levelsoul be

required - at other institutions and at other mommein the

curriculum — as well as research indther computer science
concepts, and the relatiohetweenthinking levels for different
concepts. We advise to use little data from maogesits as well
as much data from few students. Knowing more abkiet

students’ thought processes can improve teachimgedi at

supporting students’ own knowledge construction. Eamputer
science education, there still are worlds to discbv

5. ACKNOWLEDGMENTS

We would like to thank the students and the stafhe Computer
Science Department of the Technische Universitigititoven for
their cooperation in this research.

Special thanks goes to our colleagues Jos Artspelre
Vanderfeesten and Christina Morgan for their hélgfimments
on an earlier version of this paper.

6. REFERENCES

[1] Almstrum, V.L., et.al. Import and Export to/from @puting
Science Education: The Case of Mathematics Edutatio
ResearchProceedings ITiICSEarhuus 2002, 193-194.

[2] Almstrum, V.L., et.al. Transfer to/from Computingi&nce
Education: The Case of Science Education Research.
Proceedings SIGCSReno, 2003, 303-304.

[3] Aharoni, D. Cogito, Ergo, Sum! Cognitive Processes
Students Dealing with Data StructurBsoceedings SIGCSE,
Austin, 2000, 26-30

[4] Fant, K.M. A Critical Review of the Notion of the
Algorithm in Computer Scienc@roceedings ACM,
Indianapolis, 1993, 1-6.

[5] Hazzan, O. Reducing Abstraction Level when Learning
Computability Concept$roceedings ITCsEarhuts,
2002, 156-160.

[6] Kaldewaij, A.Programming: The Derivation of Algorithms.
Prentice Hall International, UK, 1990.

[7] Tall, E. & Thomas, T. (Ed.)ntelligence, Learning and
Understanding in Mathematics; a tribute to Rich&klemp
Post Pressed, Flaxton, 2002.

