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ABSTRACT 
How do we know if our students are beginning to think like  
computer scientists? In this study we have defined four levels of 
abstraction in the thinking of computer science students about the 
concept of algorithm. We constructed a list of questions about 
algorithms to measure the answering level as an indication for the 
thinking level. This list was presented to various groups of 
Bachelor Computer Science students. The mean answering level 
increased between successive year groups as well as within year 
groups during the year, mainly from the second to the third level. 
Little relation was found between answering levels and test results 
on algorithm oriented courses. The study was inspired by the 
tradition of mathematics education research.  

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer 
and Information Science Education – computer 
science education, curriculum. 

General Terms 
Algorithms. 

Keywords 
Computer science education, abstraction.  

1. INTRODUCTION 
In the Netherlands, Computer Science is not yet a mandatory 
subject in pre-university education and almost no tradition of 
Computer Science education research exists. This will probably 
change in the next decade. For the Computer Science Department 
of the Technische Universiteit Eindhoven a natural starting theme 
for educational research is the concept of algorithm. The 
educational program has a thoroughly mathematical character; the 
focus is on correctness by construction, reliability and the use of 
formal methods for design tools (the Eindhoven School). The 

modern development in software engineering, starting with 
system component construction before bringing the components 
together, has recently been incorporated. Still, compared to other 
Dutch Computing Science programs, learning to construct 
(elementary) algorithms is taught very thoroughly, using a high 
level of abstraction. So a natural choice for a focus of educational 
research is: levels of abstraction in students’ thinking about 
algorithms. 
  

2. LEVELS OF THINKING THEORY 
Computer Science Education researchers like Hazzan [5] and 
Aharoni [3] investigate levels of abstraction in students’ thinking 
about core concepts, starting with, for example, Data Structures 
concepts and Computability Theory concepts. Like them, we 
value the tradition of the close research field of mathematics 
education research. The mathematics education discipline is 
relatively mature [1] and many mathematical concepts are similar 
in nature to concepts in computer science [2], although sometimes 
the same concept has a different meaning (see Fant [4] for the 
very concept of algorithm as an example). 

Hazzan’s and Aharoni’s research is inspired by the work of 
Skemp and his successors (see [7] for an overview). In their 
framework a level of abstraction has three interpretations [3], [5]: 
  
1. Abstraction level as the quality of the relationships between 

the object of thought and the thinking person. 
2. Abstraction level as a reflection of the so-called process-

object duality. 
3. Abstraction level as the degree of complexity of the concept 

of thought. 
  
We prefer the second interpretation where a next level is reached 
when a student can interpret processes and relations between 
objects, as a new kind of objects. The process or relation becomes 
an object in itself. 

In our opinion, when a student has reached a certain level of 
thinking, the lower levels still exist and are incorporated; lower 
levels can be evoked if necessary, in accordance with Hazzan [5]. 
Questions or problems do not necessary evoke the highest 
available level of thinking. Thus it is better to speak about the 
level of thinking in relation to a certain problem. Depending on 
the problem, a student with a high level of thinking has the 
possibility but not the necessity to react on the highest possible 
level.      
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3. RESEARCH DESIGN AND FINDINGS 
We will describe our focus in the curriculum, the construction of 
an algorithm questionnaire and a set of scoring rules as an 
instrument to measure abstraction level. Our main hypotheses are: 
  
1. The abstraction level of successive year groups will increase.  
2. The individual abstraction level will increase during a year’s 

programme. 
3. The individual grade on a subject test will correlate with the 

individual abstraction level. 

3.1  Design 
Algorithm courses 
Five algorithm-oriented Bachelor courses were selected in which 
students were intended to develop their understanding of the 
concept of algorithm, its construction and its analysis (Table 1). 
   

Table 1. Algorithm-oriented courses 

Subject and 
study phase Contents 

Program 
Realization 1 
Trimester 1.1 

Embedding elementary algorithms into larger 
programs and encoding into a specific 
programming language. 

Design of 
Algorithms 1 
Trimester 1.2 

Systematical construction of algorithms using the 
Guarded Command Language1.   

Design of 
Algorithms 2  
Trimester 2.1 

Programming from a formal specification with 
stepwise refinement to the use of simple standard 
algorithms. 

Design of 
Algorithms 3 
Trimester 2.3 

Mathematically analyzing algorithmic run-time. 
Using advanced techniques of algorithmic design 
and a number of standard algorithms.  

Complexity 
Trimester 3.1 
 

Understanding algorithm complexity as well as 
problem complexity. Transforming problems 
within complexity classes.  

 

Levels of Abstraction 
Originally, we proposed three abstraction levels for the algorithm 
concept, the program level, the object level and the problem level. 
These abstraction levels were discussed in interviews with the 
lecturers of the five courses involved in the study. An additional, 
lower level, the execution level was suggested. The resulting four 
levels are defined as follows: 
 
1. Execution level: the algorithm is a specific run on a concrete 

specific machine; its execution time is determined by the 
machine. 

2. Program level: the algorithm is a process, described by a 
specific executable programming language; execution time 
depends on the input. 

3. Object level: the algorithm is not connected with a specific 
programming language; it can be viewed as an object (versus 
process); while constructing an algorithm the data structure 
and the invariance properties are used; meta properties such 
as termination and ‘patterns’ (algorithmic modules) are 
relevant; execution time is considered in terms of magnitude 
of order as function of the input. 

                                                 
1 See Kaldewaij [6]. 

4. Problem level: the algorithm can be viewed as a black box; 
the perspective of thought is ‘given a problem, which type of 
algorithm is suitable?’; problems can be categorized to 
suitable algorithms; a problem has an intrinsic complexity. 

 
The lecturers were most outspoken about the difference between 
levels 2 and 3. They also expected these two levels of 
understanding to be most common among the Bachelor student 
group. This opinion was shared with the majority of other teachers 
involved in the subjects of Table 1: faculty instructors for 
assisting in solving problems, and student assistants for assistance 
at instruction and correction of assignments. They expressed their 
opinions during short interviews. 

Other comments of the lecturers were that they agreed upon an 
interpretation of ‘abstraction’ as ‘disregarding detail’ or 
‘condensation’. Only some of them accepted the process-object 
interpretation, as given above. Some made extra abstraction level 
distinctions, such as the difference between knowing an algorithm 
for a certain task and being able to prove that a certain algorithm 
can complete a certain task in a certain order of time, or such as 
thinking about a sequential or a parallel machine performing an 
algorithm. There was disagreement on whether the ability to use 
pseudo code and an axiomatic notation signified a certain level of 
abstraction or a certain level of precision only. The discussions 
with the lecturers inspired the contents and the format of the 
questions for the students. 

Construction of the Questionnaire and Measurement 
The original questionnaire consisted of 11 items. The starting item 
is worded as follows:  
0. Give your definition of ‘algorithm’.  
The other ten items (‘proposition items’) have another format. 
There is a general introduction: Mark whether you agree or 
disagree with the following proposition and give a supporting 
argument. So, only ‘agree’ or ‘disagree’ is not sufficient. If 
necessary, the option ‘both are possible’ can be chosen, provided 
that an argument is given. Only if you cannot answer the question 
because of lack of knowledge, then choose for ‘I don’t know’.   

All ten items are followed by the four alternatives Agree, 
Disagree, Agree and disagree are possible, I don’t know, and 
room for supporting argumentation. 

The questionnaire was presented to the three Bachelor year groups 
in the first trimester after concluding their subject test on Program 
Realization 1, Design of Algorithms 2 or Complexity (Table 1). 
Further data were collected from the first year group at the end of 
the second semester after concluding the subject test of Design of 
Algorithms 1, and from the second year group at the end of the 
third trimester at Design of Algorithms 3. In total 398 
questionnaires were collected (out of 461 students who completed 
the relevant courses). 

A random sample of 5% of the first trimester (student) output was 
scored by two raters (the second and third author). The agreement 
between the raters at item level appeared to be too small, so 
differences and doubts were discussed and scoring rules were 
refined. This first sample was not used in further analysis. 
Another 5% sample still resulted in unsatisfactory agreement. 
However, after removal of four out of the ten proposition items, 
the degree of agreement between the two raters, measured by 
Cohen’s Kappa, was .64. Also on the remaining list – item 0 and 
six proposition items - a third rater (the first author) scored 



satisfactorily consistently with the other two (.64 and .70). 
Cohen’s Kappa is a measure that corrects for the influence of 
chance and a minimum of .60 is considered acceptable. 

We will present the final list of six proposition items. Together 
with the item 0 (Give your definition of  ‘algorithm’) this list was 
used as the questionnaire in further data collection and analysis. 
  
1. An algorithm is a program, written in a programming 

language. 
2. Two different programs written in the same programming 

language can be implementations of the same algorithm. 
3. The correctness of an algorithm can generally be proven by 

testing the implementation on cleverly selected test cases. 
4. A suitable quantity to measure the time needed for a certain 

algorithm to solve a certain problem is the time needed in 
milliseconds. 

5. The complexity of a problem is independent of the choice of 
the algorithm to solve it. 

6. For every problem it is possible that in the future algorithms 
are discovered which are more efficient by an order of 
magnitude than the algorithms known at present. 

  
For items 0 to 4 a level score from 1 to 3 is possible, for items 5 
and 6 a score from 1 to 4. In Table 2, as an example, the refined 
scoring rules are given for three items. As there is no information 
about the distances between the levels, we calculated a student’s 
answer abstraction-level as the median of the series of item level 
scores. If for more than half of the item series no level was 
detectable (missing or unclear) then the data were considered to 
be insufficient to calculate a students’ level. 

3.2  Results 
Students’ Answering Levels  
Generally, students took approximately fifteen minutes to answer 
the seven questions. From the answers the level could be 
calculated for almost 85% of the students filling in the 
questionnaire; the other students were too often not clear in their 
argumentation for the proposition items or they gave no 
argumentation at all. 

The first hypothesis was, that the abstraction level of successive 
year groups would increase. Table 3 shows the percentages of 
answering level scores for the year groups 1, 2 and 3 at the end of 
the first trimester.  

Table 3. Abstraction level of successive year groups 

Year group in 
trimester 

Student percentage with 
level score 

Number of 
students 

Level score 1.5 2 2.5 3  

Year group 1 in 1.1 4 50 6 40 67 

Year group 2 in 2.1  21 7 72 58 

Year group 3 in 3.1  8 2 90 72 

 
Indeed, in higher years, the answering level generally is higher: 
Spearmann’s rank correlation coefficient rho = 0.48, significant at 
0.01 (two-tailed). Almost every student has a median answer level 
of 2 to 3; levels under 1.5 or above 3 are non-existent. 

Our second hypothesis was, that the abstraction level of the same 
group would increase during the year. Table 4 shows the general 

answering level growth of the first year group and the second year 
group. The percentages are given of students with a higher level, 
the same level or a lower level at the second measuring moment, 
compared to the first. 

 Table 2. Examples of detailed answer level scoring 

Item Answer characteristics Answer 
level 

A process with only one input, and only 
on one machine 

1 

A program in a specific language, runable 
with all possible input  

2 

A series of steps (abstraction from 
programming language) 

3 
0 

Unclear or missing  x 

+   An algorithm equals an execution 
equals a program, on a machine or on a 
virtual machine 

1 

+   Implementation or effectuation in a 
programming language; program equals 
algorithm; executable on a machine or by 
hand  

2 

-    Implementation into differing 
languages 

3 

±   Implementation or effectuation etc is 
clearly mentioned (see above)  

2 

± Implementation into differing 
languages 

3 

1 

?, +, -, ±  Without an argument; unclear 
or missing  

x 

+   Computers will become faster 1 

+   By optimization of an actual program 
or by use of a better programming 
language 

2 

+   By different architectures for 
computers / by optimization of a 
computational method (not related to a 
specific programming language); the 
solving algorithm determines the 
complexity, the algorithm is placed above 
the problem  

3 

-    One specific counter-example is given 3 

-    The black-box approach emerges / 
upper bounds and lower bounds as well 
as problems are placed above problems; a 
problem possesses an intrinsic complexity  

4 

±   The arguments for disagreement 
should emerge clearly; a problem 
possesses an intrinsic complexity  

4 

?   (Without further explanation) x 

?   (The word ‘complexity’ is not 
understood) 

x 

?   (The word ‘complexity’ is understood, 
but the ‘complexity of a problem’ is not)  

3 

6 

?, +, -, ±  ( Without an argument, unclear 
or missing) 

x 

Key to symbols used above: +  = Agree, -  = Disagree, 
±  = Agree and disagree, ?  = I don’t know; 
x  = No answer level detectable 



Table 4. Abstraction level growth during the year 

Year group 
(trimesters) 

% with 
increased 

level 

% with 
the same 

level 

% with 
decreased 

level 

Number 
of 

students 

1 (1.1 to 1.2) 48 44 8 36 

2 (2.1 to 2.3) 34 56 10 48 

 
Clearly most students reach a higher level or stay at the same 
level: according to the Wilcoxon Signed Ranks Test significant in 
both cases at .05 (two-tailed, with Z=-2.47 and Z=-2.27 
successively). 

Our third hypothesis was that the individual grades on the various 
subject tests would correlate with the abstraction level. Table 5 
shows the correlations between grade and level for the five subject 
tests. Only for one subject a small but significant (at 0.05) 
Spearmann’s rank correlation appears: for Complexity. For the 
other subjects correlations are non-significant and close to 0 
(Design of Algorithms 1, 2, 3 and Program Realization 1). 

Table 5. Correlation between answering level and test grade 

Subject test Rank 
correlation 

Number of 
students 

Program Realization 1 .14 58 

Design of Algorithms 1 .05 63 

Design of Algorithms 2 -.05 44 

Design of Algorithms 3 .09 72 

Complexity .27* 72 
* = significant at 0.05 (two-tailed) 

 

4. CONCLUDING DISCUSSION 
Students’ Answering Levels 
In this study, we found various abstraction levels in Computer 
Science Bachelor students’ answers to questions about algorithms, 
although within a certain range. Assumed levels were 1. execution 
level, 2. program level, 3. object level, and 4. problem level; the 
mean answering level almost always only varied from program 
level (2) to object level (3). One could assume that presenting the 
questionnaire to Master students would show a higher level. 
However, part of the explanation is in the characteristics of the 
items and the method of measurement. For only two of the seven 
items, an answer at the fourth level was possible and the mean 
answering level (actually the median) was calculated. For 
emergence of this highest level as the mean, more items should 
have been constructed with the possibility of answering at that 
level. Another possibility would have been to use another 
operationalization for the measurement, for instance defining the 
answering level of a student as the highest answering level that is 
reached at least at two items. On the other hand, the lowest level 
did not show, although this answering level was possible at every 
item. The students involved had followed one semester of 
computer science education or more. It would be interesting to do 
further research into the existence of the lower execution level at 
the actual start of the computer science program or at the end of 
pre-university education. In that case however the questionnaire 
would need some adaptation: the freshmen computer science 
vocabulary is limited.  

The results showed level growth for successive year groups (first 
hypothesis). A year group was defined as the group taking a test 
belonging to the curriculum year. However, slow students in their 
second year sometimes have to take a first year test again. And 
quick students in their second year sometimes already take a third 
year test. More detailed data analysis, taking these circumstances 
into account to select purer data, could reveal clearer results. 

The results also showed level growth within year groups (second 
hypothesis), although a large number of students stayed at the 
same answering level. Measurement of the same groups after a 
longer period could reveal clearer results. One could argue that 
filling in the same questionnaire twice could create a learning 
effect, explaining the level growth result as an artifact. This would 
certainly be true when feedback was given; this, however, was not 
the case. And because filling in the questionnaire generally would 
have been of marginal value for the students, compared to the 
value of the subjects test itself, we feel confident about the reality 
of the results. In any case, more frequent measurement of the 
same group of students would require the construction of parallel 
items.      

Both positive results above should however be viewed with some 
caution.  The assumption is that the level growth was (partially) 
caused by taking the algorithm courses. However, correlation is 
not the same as causation. Following other courses could have 
caused the level growth or simply the process of getting ‘older 
and wiser’. Only experimental research gives a view on causation. 

Unexpectedly, in general little relation was found between subject 
test results and answering level (third hypothesis), in fact only at 
the third year course Complexity. Maybe precision really is more 
important than abstraction level for success at these subjects, 
especially at the hard-core Eindhoven School subjects (Design of 
Algorithms 1 and 2), as some of the lecturers suggested. A 
curriculum change is prepared for the coming years with a 
revision of these subjects. It would be interesting to repeat the 
investigation in the revised curriculum. It would also be 
interesting to compare answering level with general performance.  

Reliability and Validity  
We succeeded in the construction of a series of items plus a 
reliable scoring protocol for the measurement of the mean 
answering abstraction level for the concept of algorithm. Looking 
back on the measurement, we think a measurement output of 85% 
is acceptable, given the fact that many students have problems 
with clearly expressing their thoughts in writing (or maybe with 
clear thinking itself) at the subject tests, as any corrector knows. 

Compared to the method of the related research of Hazzan [5] and 
Aharoni [3], who interviewed students and analyzed their work, in 
our study many more students were involved but with less data 
per student. The larger number of students makes statistical 
analysis possible, for example to establish reliability as one of the 
important aspects of a measurement. On the other hand, an 
important question remains for our study: What about the 
validity? Did we really measure level of abstraction? Did we not 
simply measure the students’ memorization of standard 
definitions? One could argue that, if we had solely used a closed 
multiple-choice format in our questionnaire. However, we did not 
score the multiple-choice answers, but we analyzed the students’ 
argumentations for their choices. This method fits in the tradition 
of mathematics education and its research: not to look at answers 
only. But a follow-up could improve the validity of the results 



indeed. One way would be to construct more items, and also a 
solution for ‘the problem of jargon’ would be welcome: An 
example of this problem is the impossibility of measuring the 
answering level of the items involving ‘complexity’, when it is 
unclear whether the technical meaning of the term ‘complexity’ is 
understood or not (items 5 and 6). Another manner to improve the 
validity would be to combine the measurement used by us with 
methods such as used by Hazan and Aharoni - interviewing 
students and analyzing written work and to associate the results; 
in that case for a smaller, heterogeneous group of students.  

Generalizability 
Because of the abstract Eindhoven School character of the 
curriculum it is hard to generalize the results to Dutch or general 
computer science university education. Comparative measurement 
at another university would be necessary. A somewhat risky 
hypothesis would be that the abstraction level of the Computer 
Science students at the Technische Universiteit Eindhoven, at 
least in the second and third year, would be higher. 

Implications for Didactics and Didactical Research             
Our results are too premature to conclude that teachers should 
take their students’ algorithmic thinking level into account more. 
Further research into algorithmic thinking levels would be 
required - at other institutions and at other moments in the 
curriculum – as well as research into other computer science 
concepts, and the relations between thinking levels for different 
concepts. We advise to use little data from many students as well 
as much data from few students. Knowing more about the 
students’ thought processes can improve teaching aimed at 
supporting students’ own knowledge construction. For computer 
science education, there still are worlds to discover! 

5. ACKNOWLEDGMENTS 
We would like to thank the students and the staff of the Computer 
Science Department of the Technische Universiteit Eindhoven for 
their cooperation in this research. 

Special thanks goes to our colleagues Jos Arts, Irene 
Vanderfeesten and Christina Morgan for their helpful comments 
on an earlier version of this paper. 

6. REFERENCES 
[1] Almstrum, V.L., et.al. Import and Export to/from Computing 

Science Education: The Case of Mathematics Education 
Research. Proceedings ITiCSE, Aarhuus, 2002, 193-194.   

[2] Almstrum, V.L., et.al. Transfer to/from Computing Science 
Education: The Case of Science Education Research. 
Proceedings SIGCSE, Reno, 2003, 303-304. 

[3] Aharoni, D. Cogito, Ergo, Sum! Cognitive Processes of 
Students Dealing with Data Structures. Proceedings SIGCSE, 
Austin, 2000, 26-30. 

[4] Fant, K.M.  A Critical Review of the Notion of the 
Algorithm in Computer Science. Proceedings ACM, 
Indianapolis, 1993, 1-6. 

[5] Hazzan, O. Reducing Abstraction Level when Learning 
Computability Concepts. Proceedings ITCsE, Aarhuus, 
2002, 156-160. 

[6] Kaldewaij, A. Programming: The Derivation of Algorithms. 
Prentice Hall International, UK, 1990. 

[7] Tall, E. & Thomas, T. (Ed.). Intelligence, Learning and 
Understanding in Mathematics; a tribute to Richard Skemp. 
Post Pressed, Flaxton, 2002. 



 


