
AN ANALYSIS OF THE CONTROL HIERARCHY MODELLING OF THE
CMS DETECTOR CONTROL SYSTEM

Y.L.Hwong, A.Racz, B.Beccati, C.Deldicque, C.Schwick, D.Gigi, E.Cano, E.Meschi, F.Glege,
F.Meijers, H.Sakulin, J.A.Coarasa, J.F.Laurens, J.Gutleber, L.Orsini, M.Ciganek, M.Simon,
M.Zanetti, R.Gomez-Reino, R.Moser, S.Cittolin (CERN) J.F.Groote, T.Willemse (TUE) A.Meyer,
D.Hatton, U.Behrens (DESY) D.Shpakov, H.Cheung, J.A.Lopez-Perez, K.Biery, R.K.Mommsen,
V.O'Dell (Fermilab) A.S.Yoon, C.Loizides, C.Paus, F.Ma, G.Bauer, J.F.Serrano Margaleff,
K.Sumorok (MIT) S.Erhan (UCLA) A.Petrucci, J.Branson, M.Pieri, M.Sani (UCSD)

Abstract

The high level Detector Control System (DCS) of the
CMS experiment is modelled using Finite State Machines
(FSM), which cover the control application behaviours of
all the sub-detectors and support services. The Joint
Controls Project (JCOP) at CERN has chosen the SMI++
framework for this purpose. Based on this framework, the
functionality and behaviour of the equipments and
subsystems of the experiment is represented as a
collection of objects in a hierarchical structure where
commands flow down and states flow upwards. The FSM
tree of the whole CMS experiment consists of tens of
thousands of nodes. Due to the enormous size and
complexity of the system, a high level of homogeneity
and consistency is desired. The analysis of the current
FSM hierarchy of the CMS experiment and the design of
a mechanism for the optimization of the FSM logic and
structure is presented. The CMS FSM system is discussed
in view of most recent research on modelling and analysis
of such systems. A methodology for describing and
analyzing complex FSM systems is presented.

INTRODUCTION
The CMS experiment uses a general purpose detector to

investigate a wide range of particles and phenomena
produced in high-energy collisions in the LHC. The
Detector Control System (DCS) involves the control,
configuration, readout and monitoring of hardware
devices as well as monitoring of external systems such as
the electrical system, cooling system, etc. The modelling
of the control system is implemented as a hierarchy of
Finite State Machines (FSM) and is developed using the
SMI++ toolkit [1]. The FSM tree of the whole CMS
experiment consists of tens of thousands of nodes, which
makes the design, implementation and maintenance of a
homogenous and consistent system a non-trivial matter.
Thus the development of a technique for describing and
analyzing systems of such scale becomes an important
subject. The micro Common Representation Language 2
(mCRL2) [2] analysis technique is being adopted for this
purpose. Using its accompanying toolset, systems can be
analyzed and verified automatically.

FINITE STATE MACHINES
The control applications of behaviours of all sub-

detectors and support services are modelled as Finite State
Machine nodes. In this model there is a state/command
interface between a parent and its children. Commands
are passed from a parent to its children and the states of
the children are propagated to the parent. Two types of
objects are defined in this hierarchy:

• Control Units (CUs): They are logical decision units
that monitor the states of their children and report an
overall state to their parent.

• Device Units (DUs): They interface with the lower
level components representing hardware and do not
implement logic behaviour.

Figure 1: A simple control system modelled using FSMs

The SMI++ Framework
The implementation of the FSM tree using the SMI++

toolkit is based on the original State Manager concept [3].
To reduce the complexity of large systems, logically
related objects are grouped into SMI++ domains; in each
domain the objects are organized in a hierarchical
structure to form a subsystem control.

The framework consists of a set of tools. The most
important ones are the State Manager Language (SML),
State Manager Process (SM) and Application Program
Interface (API).

The CMS FSM System
Each sub-detector group of the CMS experiment is

responsible for the development of its own FSM tree
control layer modelling their system, which will then be
integrated into a single CMS FSM tree.

*This work has been supported in part by a Marie Curie Initial
Training Network Fellowship of the European Community’s Seventh
framework program under contract number (PITN-GA-2008-211801-
ACEOLE).
#This project is a collaboration with the Department of Computer
Science of the University of Technology Eindhoven.

Table 1: Parameter overview of the CMS sub-detectors.

Detector Monitored Parameters Channels

Muon
Systems

High Voltage
Low Voltage
Front End Electronics and
other auxiliary services

27200
10500

 86500

Calorimeters High Voltage
Low Voltage
Front End Electronics and
other auxiliary services

 3050
 4800

103000

Trackers High Voltage
Low Voltage
Temperature and Detector
Control Units

4200
4200

 19300

The diversity in the development philosophy of

different sub-detector groups and the enormous amount of
parameters to be monitored is a fundamental aspect of a
large-scale experiment such as the CMS detector. To
ensure uniformity and a sound logic implementation
throughout a system of such size, the investigation of
some desired properties such as deadlock and endless-
loop freedom requires an equally, if not more, complex
mechanism. The modelling and analysis of the whole
CMS FSM system is a challenging task, whereby a
simulation and visualization tool is indispensable.

THE MCRL2
The adoption of the mCRL2 toolset, developed at the

department of Mathematics and Computer Science of the
University of Technology Eindhoven, will be the main
focus of this section.

The mCRL2 Philosophy
mCRL2 is a specification language that can be used to

specify and analyze the behaviour of large distributed
systems and protocols. It is the successor to µCRL[4].
The language is supported by a toolset enabling
simulation, visualisation, behavioural reduction and
verification of software requirements [5].

The concept of a process is fundamental in mCRL2.
Processes can perform actions and can be composed to
form new processes using algebraic operators. A system
usually consists of several processes in parallel.

A central notion in mCRL2 is the linear process.
Complex systems such as the CMS FSM system,
consisting of hundreds or even thousands of processes,
can be translated to a single linear process. Even for
systems with an infinite state space, the linear process
(being an abstract representation of that state space) is
finite and can often be obtained very easily. Therefore,
most tools in the mCRL2 toolset operate on linear
processes rather than on state space.

Model checking is provided using Parameterised
Boolean Equation Systems (PBES) [6]. Given a linear

process and a formula that expresses some desired
behaviour of the process, a PBES can be generated
automatically. The solution to this PBES indicates
whether the process satisfies the desired behaviour or not.

Figure 2: An overview of the mCRL2 toolset

The mCRL2 Specification
Every analysis starts off by specifying the behaviour of

the system being studied. The specification can be seen as
a mathematical model of the real system: it is a simplified
or abstracted version of the reality. Obtaining a
specification that is faithful to the real system is far from
trivial and to a certain extent requires some human
intuition and ingenuity.

A mCRL2 specification is a plain-text file containing a
model in the mCRL2 language, with a special syntax
defined for this language. A model of the FSM system of
the Resistive Plate Chamber (RPC) sub-detector has been
defined with the mCRL2 specification and its behaviour
has been analyzed.

Linearization
Typically, the specification of a distributed system

contains several processes that run in parallel. The first
step in the mCRL2 analysis process is to linearize this
specification to obtain a Linear Process Specification
(LPS). This is a mCRL2 specification from which all
parallelism has been removed. All that remains is a series
of condition – action – effect rules that specify how the
system as a whole reacts to a certain stimuli given its
current state.

These LPSs are a compact symbolic representation of
the state space of the specification. Due to its restricted
form, an LPS is especially suited as input for tools; there
is no need for such tools to take into account all the
different operators of the complete language [5].

Simulation
After having obtained an LPS, a very useful analysis

method is by simulating the model. Starting from the
initial state, sequences of actions can be performed which
can quickly reveal unexpected or erroneous behaviour. It
is also a good way of getting acquainted with the
modelled behaviour. It is possible to manually trigger
state changes, but traces can also be generated
automatically, and subsequently inspected.

Visualization
From the LPS, a Labelled Transition System (LTS)

which is an explicit representation of the state space can
be generated. The LTS can be visualized in several ways
using interactive GUI tools. The most straightforward
way of visualizing an LTS is by showing it as a node-link
graph. But the picture produced is often too cluttered for
larger LTS. A more sophisticated way of representing a
LTS is with the ltsview tool which employs a clustering
technique to reduce the complexity of the image. It
produces a 3D visualization of the LTS and aims to show
symmetry in the behaviour of the system. The
visualizations also help in scrutinising the model based on
unexpected visual anomalies. It is possible to mark
transitions and deadlocks for investigation purposes
(Figure 3).

Figure 3: 3D representation of the Labelled Transition
System (LTS) for the RPC sub-detector.

Model Checking
A system’s analysis often involves showing that the

modelled system exhibits certain desired properties (or
does not exhibit an undesired one). A powerful
verification method which is supported in the mCRL2
toolset is model checking. This is provided using
Parameterized Boolean Equation Systems (PBESs).

A formula expressing a desired property that the system
should not violate (or satisfy) is needed for model
checking. Such formulas are expressed in the powerful
extensions of the regular modal μ-calculus [7] and have
its own syntax definition. Given a LPS and a formula, the
tool lps2pbes produces a PBES in which the model
checking question of “does the formula hold for this
LPS?” is encoded. By solving the PBES, an answer to this
question can be found. The tool for this is pbes2bool. It
attempts to solve a given PBES and (if successful) returns
either true or false. Examples of the model checking
formulas which were applied for the verification of the
RPC sub-detector:

• To check for deadlock freedom: [true*]<true>true
• To check for the reachability of action

move_to_STANDBY:
mu X. <true>X || <move_to_STANDBY>true

• To check for the inevitability of
move_to_STANDBY action:
mu X. [!move_to_STANDBY]X

CONCLUSIONS
The mCRL2 is a versatile and powerful toolset for the

study and modelling of large distributed system, as is seen
by its adoption for the analysis and optimization of the
CMS RPC FSM system. Further application on other
parts of the system is planned and is envisaged to enhance
the performance and provide a better insight into the
whole CMS FSM system. However, proper training is
required for an accurate modelling of the system in such a
way that its properties can be efficiently checked using
the toolset. As the toolset harbours great potential, an
automated tool for the translation from the FSM to the
mCRL2 language is foreseen to be a highly rewarding
project for the future.

ACKNOWLEDGEMENTS
I would like to express my gratitude to Jan Friso Groote

and Tim Willemse from the Design and Analysis of
System group at the University of Technology Eindhoven
for their generous help and support in the course of this
research project.

REFERENCES
[1] B.Frank, C.Gaspar, “SMI++ Object Oriented

Framework for Designing and Implementing
Distributed Control Systems”, SLAC-PUB-12067

 http://www.slac.stanford.edu/pubs/slacpubs/12000/sl
ac-pub-12067.html

[2] http://www.mcrl2.org
[3] J.Barlow et al, “Run Control in MODEL: The State

Manager”, IEEE trans.nucl.sci.. 36, pp.1549 – 1553
[4] J.F.Groote, M.A.Reniers, “Algebraic Process

Verification”, in: J.A.Bergstra, A.Ponse, S.A.Smolka
(Eds), “Handbook of Process Algebra”, Elsevier
Science Publishers B.V., Amsterdam, 2001, Ch.17,
pp. 1151 – 1208

[5] J.F.Groote, A.H.J.Mathijssen, M.A.Reniers,
Y.S.Usenko, M.J. van Weerdenburg, “Analysis of
distributed systems with mCRL2”, in: M.Alexander,
W.Gardnereditors, “Process Algebra for Parallel and
Distributed Processing”, Chapman Hall, 2009, pp.
99-128

 [6] J.F.Groote, T.Willemse, “Parameterised Boolean
Equation Systems”, Theor. Comput. Sci. 343, 2005,
pp. 332-369

[7] D.Kozen, “Results on the propositional mu-calculus”,
Theor. Comput. Sci. 27, 1983, pp. 333 – 354

