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Abstract 

The high level Detector Control System (DCS) of the 
CMS experiment is modelled using Finite State Machines 
(FSM), which cover the control application behaviours of 
all the sub-detectors and support services. The Joint 
Controls Project (JCOP) at CERN has chosen the SMI++ 
framework for this purpose. Based on this framework, the 
functionality and behaviour of the equipments and 
subsystems of the experiment is represented as a 
collection of objects in a hierarchical structure where 
commands flow down and states flow upwards. The FSM 
tree of the whole CMS experiment consists of tens of 
thousands of nodes. Due to the enormous size and 
complexity of the system, a high level of homogeneity 
and consistency is desired. The analysis of the current 
FSM hierarchy of the CMS experiment and the design of 
a mechanism for the optimization of the FSM logic and 
structure is presented. The CMS FSM system is discussed 
in view of most recent research on modelling and analysis 
of such systems. A methodology for describing and 
analyzing complex FSM systems is presented. 

INTRODUCTION 
The CMS experiment uses a general purpose detector to 

investigate a wide range of particles and phenomena 
produced in high-energy collisions in the LHC. The 
Detector Control System (DCS) involves the control, 
configuration, readout and monitoring of hardware 
devices as well as monitoring of external systems such as 
the electrical system, cooling system, etc. The modelling 
of the control system is implemented as a hierarchy of 
Finite State Machines (FSM) and is developed using the 
SMI++ toolkit [1]. The FSM tree of the whole CMS 
experiment consists of tens of thousands of nodes, which 
makes the design, implementation and maintenance of a 
homogenous and consistent system a non-trivial matter. 
Thus the development of a technique for describing and 
analyzing systems of such scale becomes an important 
subject. The micro Common Representation Language 2 
(mCRL2) [2] analysis technique is being adopted for this 
purpose. Using its accompanying toolset, systems can be 
analyzed and verified automatically.  

 

FINITE STATE MACHINES 
The control applications of behaviours of all sub-

detectors and support services are modelled as Finite State 
Machine nodes. In this model there is a state/command 
interface between a parent and its children.  Commands 
are passed from a parent to its children and the states of 
the children are propagated to the parent. Two types of 
objects are defined in this hierarchy: 

• Control Units (CUs): They are logical decision units 
that monitor the states of their children and report an 
overall state to their parent.  

• Device Units (DUs): They interface with the lower 
level components representing hardware and do not 
implement logic behaviour.  

 

 
Figure 1: A simple control system modelled using FSMs 

The SMI++ Framework 
The implementation of the FSM tree using the SMI++ 

toolkit is based on the original State Manager concept [3]. 
To reduce the complexity of large systems, logically 
related objects are grouped into SMI++ domains; in each 
domain the objects are organized in a hierarchical 
structure to form a subsystem control.  

The framework consists of a set of tools. The most 
important ones are the State Manager Language (SML), 
State Manager Process (SM) and Application Program 
Interface (API). 

The CMS FSM System 
Each sub-detector group of the CMS experiment is 

responsible for the development of its own FSM tree 
control layer modelling their system, which will then be 
integrated into a single CMS FSM tree.  
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Table 1: Parameter overview of the CMS sub-detectors. 
 

Detector Monitored Parameters Channels 

Muon 
Systems 

High Voltage 
Low Voltage 
Front End Electronics and 
other auxiliary services  

27200 
10500 

   86500 
       

Calorimeters High Voltage  
Low Voltage 
Front End Electronics and 
other auxiliary services  

 3050 
 4800 

103000 
  

Trackers High Voltage 
Low Voltage 
Temperature and Detector 
Control Units 

4200 
4200 

  19300 

 
The diversity in the development philosophy of 

different sub-detector groups and the enormous amount of 
parameters to be monitored is a fundamental aspect of a 
large-scale experiment such as the CMS detector.  To 
ensure uniformity and a sound logic implementation 
throughout a system of such size, the investigation of 
some desired properties such as deadlock and endless-
loop freedom requires an equally, if not more, complex 
mechanism. The modelling and analysis of the whole 
CMS FSM system is a challenging task, whereby a 
simulation and visualization tool is indispensable. 

  

THE MCRL2  
The adoption of the mCRL2 toolset, developed at the 

department of Mathematics and Computer Science of the 
University of Technology Eindhoven, will be the main 
focus of this section. 

The mCRL2 Philosophy 
mCRL2 is a specification language that can be used to 

specify and analyze the behaviour of large distributed 
systems and protocols. It is the successor to µCRL[4]. 
The language is supported by a toolset enabling 
simulation, visualisation, behavioural reduction and 
verification of software requirements [5]. 

The concept of a process is fundamental in mCRL2. 
Processes can perform actions and can be composed to 
form new processes using algebraic operators. A system 
usually consists of several processes in parallel.  

A central notion in mCRL2 is the linear process. 
Complex systems such as the CMS FSM system, 
consisting of hundreds or even thousands of processes, 
can be translated to a single linear process. Even for 
systems with an infinite state space, the linear process 
(being an abstract representation of that state space) is 
finite and can often be obtained very easily. Therefore, 
most tools in the mCRL2 toolset operate on linear 
processes rather than on state space.  

Model checking is provided using Parameterised 
Boolean Equation Systems (PBES) [6]. Given a linear 

process and a formula that expresses some desired 
behaviour of the process, a PBES can be generated 
automatically. The solution to this PBES indicates 
whether the process satisfies the desired behaviour or not.  

 

 
Figure 2: An overview of the mCRL2 toolset 

The mCRL2 Specification 
Every analysis starts off by specifying the behaviour of 

the system being studied. The specification can be seen as 
a mathematical model of the real system: it is a simplified 
or abstracted version of the reality.  Obtaining a 
specification that is faithful to the real system is far from 
trivial and to a certain extent requires some human 
intuition and ingenuity.  

A mCRL2 specification is a plain-text file containing a 
model in the mCRL2 language, with a special syntax 
defined for this language. A model of the FSM system of 
the Resistive Plate Chamber (RPC) sub-detector has been 
defined with the mCRL2 specification and its behaviour 
has been analyzed. 

Linearization  
Typically, the specification of a distributed system 

contains several processes that run in parallel. The first 
step in the mCRL2 analysis process is to linearize this 
specification to obtain a Linear Process Specification 
(LPS). This is a mCRL2 specification from which all 
parallelism has been removed. All that remains is a series 
of condition – action – effect rules that specify how the 
system as a whole reacts to a certain stimuli given its 
current state. 

These LPSs are a compact symbolic representation of 
the state space of the specification. Due to its restricted 
form, an LPS is especially suited as input for tools; there 
is no need for such tools to take into account all the 
different operators of the complete language [5].  

Simulation 
After having obtained an LPS, a very useful analysis 

method is by simulating the model. Starting from the 
initial state, sequences of actions can be performed which 
can quickly reveal unexpected or erroneous behaviour. It 
is also a good way of getting acquainted with the 
modelled behaviour. It is possible to manually trigger 
state changes, but traces can also be generated 
automatically, and subsequently inspected. 



Visualization 
From the LPS, a Labelled Transition System (LTS) 

which is an explicit representation of the state space can 
be generated. The LTS can be visualized in several ways 
using interactive GUI tools. The most straightforward 
way of visualizing an LTS is by showing it as a node-link 
graph. But the picture produced is often too cluttered for 
larger LTS. A more sophisticated way of representing a 
LTS is with the ltsview tool which employs a clustering 
technique to reduce the complexity of the image. It 
produces a 3D visualization of the LTS and aims to show 
symmetry in the behaviour of the system. The 
visualizations also help in scrutinising the model based on 
unexpected visual anomalies. It is possible to mark 
transitions and deadlocks for investigation purposes 
(Figure 3). 
 

 
 
Figure 3: 3D representation of the Labelled Transition 
System (LTS) for the RPC sub-detector. 

Model Checking 
A system’s analysis often involves showing that the 

modelled system exhibits certain desired properties (or 
does not exhibit an undesired one). A powerful 
verification method which is supported in the mCRL2 
toolset is model checking. This is provided using 
Parameterized Boolean Equation Systems (PBESs). 

A formula expressing a desired property that the system 
should not violate (or satisfy) is needed for model 
checking. Such formulas are expressed in the powerful 
extensions of the regular modal μ-calculus [7] and have 
its own syntax definition. Given a LPS and a formula, the 
tool lps2pbes produces a PBES in which the model 
checking question of “does the formula hold for this 
LPS?” is encoded. By solving the PBES, an answer to this 
question can be found. The tool for this is pbes2bool. It 
attempts to solve a given PBES and (if successful) returns 
either true or false. Examples of the model checking 
formulas which were applied for the verification of the 
RPC sub-detector:  

• To check for deadlock freedom: [true*]<true>true 
• To check for the reachability of action 

move_to_STANDBY:  
mu X. <true>X || <move_to_STANDBY>true 

• To check for the inevitability of 
move_to_STANDBY action: 
mu X. [!move_to_STANDBY]X 

 

CONCLUSIONS 
The mCRL2 is a versatile and powerful toolset for the 

study and modelling of large distributed system, as is seen 
by its adoption for the analysis and optimization of the 
CMS RPC FSM system. Further application on other 
parts of the system is planned and is envisaged to enhance 
the performance and provide a better insight into the 
whole CMS FSM system. However, proper training is 
required for an accurate modelling of the system in such a 
way that its properties can be efficiently checked using 
the toolset. As the toolset harbours great potential, an 
automated tool for the translation from the FSM to the 
mCRL2 language is foreseen to be a highly rewarding 
project for the future.   
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