
Assessing the Quality of Tabular State
Machines through Metrics

Ammar Osaiweran
ASML Netherlands B.V.,

Veldhoven, The Netherlands
ammar.osaiweran@asml.com

Jelena Marincic
ASML Netherlands B.V.,

Veldhoven, The Netherlands
jelena.marincic@asml.com

Jan Friso Groote
Eindhoven University of Technology,

Eindhoven, The Netherlands
j.f.groote@tue.nl

Abstract—Software metrics are widely used to
measure the quality of software and to give an
early indication of the efficiency of the development
process in industry. There are many well-established
frameworks for measuring the quality of source code
through metrics, but limited attention has been paid
to the quality of software models. In this article, we
evaluate the quality of state machine models specified
using the Analytical Software Design (ASD) tooling.
We discuss how we applied a number of metrics to
ASD models in an industrial setting and report about
results and lessons learned while collecting these
metrics. Furthermore, we recommend some quality
limits for each metric and validate them on models
developed in a number of industrial projects.

I. INTRODUCTION

The use of model-based techniques in soft-
ware development processes has been promoted
for many years [15], [2], [7], [3]. The aim is to
use the models as the main software artifacts in
the development process, not only for visualization
and communication among developers, but also as
means of specification, formal verification, code
generation, testing and validation.

In traditional development, source code is the
main software artifact. To measure the quality of
source code, a number of widely used metrics are
utilized, with well-established industrial strength
tools and frameworks, such as TICS [17], CodeS-
onar [4] and VerifySoft [19]. Code metrics are
useful means to detect decays and code smells [9]
that hinder future evolution and maintenance.

However, these frameworks and tools cannot be
applied directly to measure the quality of models.
They can measure the generated code, but it is
debatable whether this is meaningful. This is be-
cause, usually, code generators generate correct and
optimal source code tailored to a specific domain
and the generated code is often excluded from code
analysis tools due to violations and non-adherence
to the prescribed coding standards. Therefore, com-
plexity, duplication and other undesired properties

must be analyzed at the level of models. Since
industry is becoming more reliant on software
models, there is an urgent need to establish a way
for measuring various metrics at the level of models
and not at the level of source code.

In our industrial context, we use state machines
to design and specify reactive and control aspects
of software using a lightweight formal modeling
tool called ASD:Suite [18]. The tool allows mod-
eling of state machines in a tabular format. These
models can be formally verified and corresponding
source code can be generated from these models.

Because there are no means to measure the
quality of these models, a number of challenging
questions are raised. How can we evaluate the
quality of this type of state machine models? Are
some of the models developed in early projects
in our industrial setting overly complex? Which
factors contribute to the complexity of models?
How can these factors be detected and measured?
How can we help engineers to improve the qual-
ity of their future models? How can we provide
to modelers information on deterioration as their
models evolve?

In this paper we provide answers to the above
questions by utilizing a number of software metrics
that we tailored and adapted for measuring the
quality of ASD models. This article is structured
as follows. Section II discusses related work on
metrics of state machines. Section III introduces
ASD to the extent needed for this article. In Section
IV a number of well-known software metrics are
detailed with the application to ASD models. Sec-
tion V introduces recommended limits of metrics
for good quality models. Section VI details the
data collection process of metrics from models and
discusses observations during the data analysis. In
Section VII we conclude our paper highlighting the
limitations of our metrics and future work in this
regard.

2017 IEEE International Conference on Software Quality, Reliability and Security

978-1-5386-0592-9/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS.2017.52

426

2017 IEEE International Conference on Software Quality, Reliability and Security

978-1-5386-0592-9/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS.2017.52

426

II. RELATED WORK

In previous research at Philips Healthcare [16],
guidelines for readability and verifiability of ASD
models were introduced. An important guideline
is for instance: an ASD tabular model should not
include more than 250 rows leading to not more
than 3000 lines of generated code. The limitation
of this guideline is that it considers only the size
of models and generated code while no other
complexity factors were addressed.

To estimate the reliability of UML state ma-
chines, and to identify failure-prone components,
a group of authors [12] measured the cyclomatic
complexity of UML state machines. They did not
measure the CC directly on state machines, but
on the control flow graph generated from their
software realization.

Similarly, other authors focus on assessing the
number of tests. For example, in [8] decision
diagrams as intermediate artifacts were used to
calculate the number of tests for the code of
concurrent state machines.

III. ANALYTICAL SOFTWARE DESIGN

This section provides a short introduction of the
ASD approach and its toolset, the ASD:Suite [18].
Using the ASD:Suite, models of components and
interfaces can be described. Two types of models
are distinguished which are both state machines
specified by a tabular notation: ASD interface mod-
els and ASD design models.

The external behavior of a component is speci-
fied using an interface model which excludes any
internal behavior not seen by client components
that use the interface. The interface model is im-
plemented by a design model which typically uses
the interfaces of other so-called server components.

An ASD component includes an implemented
interface model, a design model, and optional
server interface models. Formal verification is es-
tablished by verifying that calls in design models
to interfaces of server components are correct,
with respect to contracts of the servers. For this
ASD uses CSP/FDR2 [11], [6] for model checking
by exhaustively searching for illegal interactions,
deadlocks or livelocks in the behavior. It is also
formally checked whether the behavior of the de-
sign model obeys its implemented interface model.

The ASD tool also provides the modeler with
elementary metrics related to the generated state
space such as the number of states and transitions
and the time required for verification in seconds.
Besides formal verification, the ASD:Suite allows

Fig. 1. Example controller system of automatic door

code generation to a number of languages (C, C++,
C#, Java).

In ASD, a client issues synchronous calls to
server components, whereas a server sends asyn-
chronous callbacks to its clients. These callbacks
are non-blocking and can be received by a compo-
nent at any time.

We detail the ASD specification by using a
small automatic Door controller example. It con-
sists of a Door controller component that controls
a Sensor and a Motor component, see Figure 1.
The Controller receives two requests from external
clients, namely systemOn to start-up the system
and systemOff to shutdown the system. When the
system is ON, the controller may receive a callback
from the sensor component when there is a detected
object. Upon such an event, it issues a command to
the motor component to open the door and apply
a brake. Then it starts a timer and when it times-
out the controller issues a command to release the
brake to close the door. This example is used to
clarify and illustrate the interface model in Sec-
tion III-A and the design model in Section III-B.

A. ASD Interface Models
The interface model is the first artifact that must

be specified when creating an ASD component. It
describes the external behavior of the component
by means of the allowed sequence of calls and
callbacks, exchanged with clients. Any internal
behavior not visible to clients is abstracted from
the interface specification.

Figure 2 depicts the tabular specification of an
ASD interface model. The specification lists all
implemented interfaces, their events (also called
input stimuli), guards or predicates on the events.
A sequence of response actions can be specified in
the Actions list such as return values or callbacks
to clients, and special actions such as Illegal which
essentially marks the corresponding event as not
allowed in that state.

In Figure 2 the interface specification of the
Door controller is described. The model contains
two states: Off and On. Any ASD model must

427427

be complete in the sense that actions for all input
stimuli events must be defined in every state. For
example in row 3 a systemOn event is accepted and
the component will transit to state ON after return-
ing a voidReply to IDoorControlAPI. In row 4 and
7 of Figure 2 the Illegal action is specified denoting
that invoking the event is forbidden by clients.
Once in the On state, the component accepts a
systemOff request and transits back to the Off state.
Similarly, Figure 3 depicts the external behavior of

Fig. 2. Interface model of door controller

the Sensor hardware component, which is strictly
alternating between the Active and Inactive states
via the startSensing and stopSensing events. In row
10, a so-called internal event is specified denoting
that something internal in the device can happen,
which is in this case a detectedMovement. As a
consequence, the detectedObject callback is sent to
the controller and the Sensor remains in the Active
state. Via internal events, the interface abstracts
from one or more actions that happen internally
in the implementation.

Fig. 3. Sensor interface model

B. ASD Design Models
The ASD design model implements the interface

model and extends it with more detailed internal
behavior. The model includes calls to other inter-
face models of other components.

Figure 4 depicts the design model of the Door
controller. The specification refines the interface
model of Figure 2 with all required internal details
and uses the interface models of other components
such as the Sensor interface model of Figure 3.
For example, row 4 specifies that when the Door
component receives a systemOn request, it does not
only return voidReply to the client, as specified in

the interface model, but it also calls a configuration
component via the getConfiguration action and
asks the Sensor hardware to start monitoring the
surroundings via the startSensing action. After that,
the controller transits to the DoorClose state. Note
that, the call to the configuration is supplied with
2 data parameters namely, speed and time. When
the call returns, the component stores their values
in the local storage parameters of the component
using the ≫ operator, to be retrieved later when
needed via≪ operator. The rest of the specification
is self-explanatory.

An example of processing a callback is depicted
in row 13 and 21 where the component may receive
a detectedObject and a timeOut callback from the
Sensor and the Timer components respectively.

IV. TAILORING CODE METRICS FOR ASD
MODELS

To measure the quality of ASD models, we
tailored a number of metrics that are widely used
in industrial practice for measuring the quality
of source code like the McCabe and Halstead
complexity metrics [13], [10]. In this section we
introduce these metrics and discuss how we adapt
them to measure ASD design and interface models.

We start by introducing the McCabe cyclomatic
complexity metric (CC) and its application to mea-
sure complexity of ASD models. Then, we intro-
duce our tailored version of the CC metric along
with its application to ASD models. We discuss
how both metrics complement each other and how
they provide more insights on the complexity of the
models. After that we introduce Halstead metrics
detailing how they are adapted to measure ASD
models.

A. Cyclomatic complexity of ASD models
The cyclomatic complexity (CC) metric provides

a quantitative measure on the number of linearly
independent paths in source code of a program,
represented by a control flow directed graph [13].
At the time the CC metric was developed, the main
purpose was to calculate the minimum number of
test cases required to test the independent paths of a
program. When the CC metric is high it indicates
not only that the number of related test cases is
high but also that the program itself is hard to read
and understand by developers.

To calculate the CC of source code, the program
should first be represented as a connected graph.
For example, Figure 5 depicts a function foo and
its graph representation. The CC of a program can
be calculated using the following equation:

428428

Fig. 4. Design model of door controller. Illegal events are hidden

Fig. 5. Code and its graph representation

CC = E −N + 1,

where E denotes the number of edges in the graph
and N is the total number of nodes. The CC of the
code presented in Figure 5 is: 5− 5 + 1 = 1.

In a similar way, we can use CC for code
as a basis to calculate the CC of ASD models.
The tabular notation of ASD models can also be
seen as a directed graph that contains edges and
nodes. Note that, for ASD components we are
mainly concerned with the understandability aspect
of ASD components rather than testing effort since
model checking replaces testing and guarantees
that all paths of a model are exhaustively and fully
checked. Testing efforts can be of a concern for
non-ASD components since their implementation
is handcrafted.

To illustrate how CC can be collected for ASD
models, consider the specification depicted in Fig-
ure 6. The specification consists of 2 states namely

Fig. 6. An ASD interface model with 2 states and 5 transitions

state X and state Y . In state X , the machine
accepts events a1, a2 and a3 via the IF interface

and then moves to state Y . The machine stays in
state Y forever accepting a4 and a5 events.

Fig. 7. a) Graphical representation with independent edges for
events. b) Graph with unique edges with set of actions

The graphical representation of the ASD state
machine is depicted in Figure 7.a. The CC of this
model can be calculated as follows:

E = 5,N = 2,
CC = 5− 2 + 1 = 4

Application to the Door models
The CC of the Door interface model depicted in
Figure 2 is 1, while the CC of the design model
depicted in Figure 4 is 4. The CC of the Sensor
interface model of Figure 3 is 2.

B. Actual (structural) complexity
We tailored the CC metric to collect the so-

called Actual (or structural) complexity (ACC) of
a model. With the ACC metric we group edges
between states. If there are multiple edges between
certain states, we only count them as one. This
means that in ACC any edge may contain one or
more events (a set of events) while in CC each edge
has only one event. For example, in Figure 7b, it
is possible to transit from state X to state Y via
either a1, a2 or a3 events (one transition labeled by
a set of events). In state Y only a4 or a5 events
are accepted.

Note that, the ACC metric does not replace
CC but it complements it by providing additional
insight to complexity. It groups events that have
similar transitions and identical effect on a state.
The metric gives an indication on how complex and
difficult it is for a human to read and to understand
the model through navigating and memorizing the
history of states. The metric is not concerned

429429

with the number of tests required to exercise the
state machine. ACC can be calculated using the
following equation:

ACC = EU - N + 1,

where EU denotes the total number of unique
edges and N is the total number of nodes. For in-
stance, the ACC of the ASD state machine depicted
earlier in Figure 6a can be calculated as follows:

EU = 2,N = 2,
ACC = 2− 2 + 1 = 1.

Application to the Door models
The ACC of the Door interface model depicted in
Figure 2 is 1, while the ACC of the design model
depicted in Figure 4 is 4. The ACC of the Sensor
interface model of Figure 3 is 2.

C. Halstead, LoC and maintainability index

Using Halstead approach, metrics are collected
based on counting operators and operands of source
code [10]. We introduce these metrics and discuss
how we tailored them to ASD models. Further-
more, we show how the lines of code metric and
the maintainability index are collected.

We start by introducing Halstead metrics. The
metrics measure the cognitive load of a program
which is the mental effort used to understand,
maintain and develop the program. The higher the
load, the more time it takes to design or under-
stand it, and the higher the chances of introducing
bugs. Halstead considered programs as implemen-
tation of algorithms, consisting of operators and
operands. His metrics are designed to measure the
complexity of any kind of algorithms regardless
of the language in which they are implemented.
Halstead metrics use the following basis measures:

• n1: the number of unique operators,
• N1: the number of occurrences of operators,
• n2: the number of unique operands,
• N2: the number of occurrences of operands,
• n = n1 + n2: the model vocabulary,
• N = N1 + N2 the length of the model.

For any ASD model we consider the following to
be operands:

• state variables used as guards,
• states of the state machine,
• data variables in events and actions.

We consider the following to be operators:
• events (calls, internal events and stimuli call-

backs) and actions (all responses including
return values and callbacks),

• operators on state variables such as not, and,
or, >, <, ==, ≤, ≥, +, −, and otherwise (a
keyword denoting the else part of a guard),

• operators on data variables such as≫,≪, ><
(value of variable is stored and retrieved), and
$ (literal value).

The basic measures are then used to calculate the
metrics below:

• Volume: V = N ∗ log2n,
• Difficulty: D = (n1/2) ∗ (N2/n2),
• Effort: E = D ∗ V denotes the effort spent to

make the model,
• Time required to understand the model: T =

(E/18) (seconds),
• Expected number of Bugs: B = V/3000.
The volume metric V considers the information

content of a program as bits. Assuming that hu-
mans use binary search when selecting the next
operand or operator to write, Halstead interpreted
volume as a number of mental comparisons a
developer would need to write a program of length
N . Program difficulty D is based on a psychology
theory that adding new operators, while reusing
the existing operands increases the difficulty to
understand an algorithm.

Program effort E measures the mental effort
required to implement or comprehend an algorithm.
It is measured in elementary mental discrimina-
tions. For each mental comparison (and there are
V of them), depending on the difficulty, the human
mind will perform several elementary mental dis-
criminations. The rate at which a person performs
elementary mental discriminations is given by a
Stroud number that ranges between 5 and 20 ele-
ments per second. Halstead empirically determined
that in the calculation of the time T to understand
an algorithm this constant should be adjusted to 18.

Finally, the estimated number of bugs B corre-
lates with the volume of the software. The more the
size increases, the more the likelihood to introduce
bugs. Halstead empirically calculated the estimated
number of bugs by a simple division by 3000.

We calculate the lines of code metric based on
not only the total number of rows in the model
but also the number of actions in the Actions
list. Therefore, each action counts as 1 line. For
instance, the specification of the Door interface
model contains 4 LoC.

The original maintainability index (MI) of
source code is calculated based on V, LoC and
CC of the source code [5]. It indicates whether
it is worth to keep maintaining, modifying and
extending a program or to immediately consider
refactoring or redesigning it.

430430

Microsoft incorporated the MI in the Microsoft
Studio environment. We used the formula of Mi-
crosoft to calculate the MI of ASD models. The
formula is defined as follows:

MI = MAX(0, (171− 5.2 ∗ ln(V)− 0.23 ∗ ACC
−16.2 ∗ ln(LoC)) ∗ 100/171)

The formula produces a number between 0 and
100, where 20 or above indicates good and highly
maintainable source code.
Application to the Door models
Table I lists the volume (V), expected number of
bugs (B), difficulty (D) and time (T in seconds)
metrics of the three ASD models of the Door
system.

Model V B D T (sec) LoC MI
Door interface 33 0.01 2 4 4 76
Door design 236 0.08 16 210 19 55
Sensor interface 56 0.02 4 13 6 70.5

TABLE I
METRICS OF DOOR CONTROLLER MODELS

The table is self-explanatory. Notable is the time
required to understand the models. The reader of
this paper is expected to read and understand the
specification of the Door design model in about
210 seconds. All models exhibit a maintainability
index of 20 and above, hence they are highly
maintainable. The rest of the data provided in the
table is self-explanatory.

V. OPTIMAL VALUES AND RECOMMENDED
LIMITS OF METRICS

In this section, we propose limits of metrics
for good quality interface and design models. The
limits were established after carefully analyzing
and reviewing over 615 interface and design mod-
els built for a large photolithography system, de-
veloped by ASML [1]. The limits were proposed
after iterative review meetings and alignments with
various engineers who owned and developed the
models.

Metric Limit of metric
Low Moderate High

CC ≤ 30 ≤ 50 > 50
ACC ≤ 20 ≤ 40 > 40
V ≤ 8000 ≤ 14000 > 14000
LoC (IM) ≤ 200 ≤ 400 > 400
LoC (DM) ≤ 500 ≤ 800 > 800
MI ≤ 10 ≤ 20 > 20
VT ≤ 1 min ≤ 5 min > 5 min

TABLE II
OPTIMAL VALUES OF METRICS FOR ASD MODELS

Table II lists all metrics and the advised limits
in our industrial context. As depicted in the table,

the limits of the metrics for interface and design
models are similar except for the LoC metric.

In our industrial context, the CC of a module
written in C++ should not exceed 10. If source
code exhibits a CC between 10 to 40 then the code
should be refactored while if it is more than 40 then
the code is end-of-life and has to be rewritten again
in a simpler way. This CC limit may vary from one
organization to another.

The reason that the limits of CC for models are
raised compared to the CC for source code is that
the metrics are collected at the level of models.
We found that the tabular representation of the
model raises the abstraction level and increases the
understandability of the software artifact compared
to source code. Models with a CC less than 30
were easy to understand when reviewing the tabular
format of the models.

Similarly, designers were reasonably comfort-
able reviewing models that exhibit an ACC of less
than 20. For the size metric, we used the limit
suggested by VerifySoft [19] and observed that
models exceeding 8000 are big in size. Finally, the
thresholds of MI were chosen as used by Microsoft.

In our industrial context, we recommend that
verification time (or waiting time for the model
checker during debugging) should not exceed 1
minute. The reason is that we want to prevent
that productivity of developers is hindered by the
model-checking technology.

Design and modeling are creative processes and
having good metrics of a model does not al-
ways mean that the underlying design is good.
It is possible that certain models exhibit metrics
within the accepted limits while mixing the level
of abstractions with inappropriate decomposition
of components and mixed responsibilities. While
metrics can help detecting bad smells and decays
in early design phases, additional experts reviews
are still needed to assess the overall design quality.

VI. DETAILED DATA ANALYSIS

In this section we detail the application of the
proposed metrics and the recommended limits to
measure and evaluate the existing ASD models,
see Table III. In order to make the process of
data analysis and collection of the models more
efficient, we built a tool that automatically extracts
the metrics and visualize the results graphically.
The tool is compatible with ASD:Suite version
9.2.7. We used the tool to extract metrics from
615 ASD interface and design models, developed
in four different projects, within the period of 2008
until the end of 2015.

431431

Metric Interface Design
Models Models

of models 348 267
Average CC 18 39.4

Average ACC 4.5 11
Total Volume 204,593 3,533,640

Total LoC 12,580 205,772
Total C++ LoC 55,710 611,724

TABLE III
SUMMARY OF STATISTICAL DATA OF DEVELOPED MODELS

Table III provides collected metrics data about
the models. The total number of interface models
is 348 while there are 267 design models. Row 3
and 4 list the average CC and ACC measures for
the models. In row 5 the total volume or size of
models is depicted. Row 6 lists the total number
of lines of code in the models while the last row
lists the total number of lines of the generated C++
code excluding blank lines.

Metric Limit Interface Design Percen-
models models tage

CC
≤ 30 299 178 77.56%
(30, 50) 24 26 8.13%
> 50 25 63 14.31%

ACC
< 20 333 231 91.71%
(20, 40) 7 17 3.9%
> 40 8 19 4.4%

V
< 8K 344 181 85.37%
(8K, 14K) 3 17 3.25%
> 14K 1 69 11.4%

LoC
< 200 338 182 84.55%
(200, 400) 5 14 3.08%
> 400 5 71 12.36%

VT
< 1 min 348 266 99.84%
(1 min,5 min) 0 1 0.16%
> 5 min 0 0 0%

TABLE IV
ANALYSIS OF METRICS VALUES

We separated ASD interface models from design
models and then carefully evaluated them in isola-
tion. After that, we ordered the models according to
CC, ACC and volume, to sort the models based on
their complexity and size. The purpose of sorting
the models is to capture the complex and big
models that are present in our archive to refactor
and improve these models. The data analysis of
these models is summarized in Table IV.

In summary, the analysis revealed that over 22%
of the models are relatively complex based on the
CC metric and the models should be refactored
to reduce complexity. Considering the ACC metric
over 10% of the models should be refactored to
simpler models. We discuss the relation between
CC and ACC shortly. With respect to size we
considered the volume and LoC metrics. Over 15%
of the models are big in size and should be split
into smaller models. Similarly, over 15% of the

models include many lines of code. Most of these
big models exhibit also high complexity metrics;
therefore, improving one metric will consequently
improve the other metrics.

All models were verified in less than 1 minute
except one model which took about 5 minutes from
the model checker. This model is also the biggest
and the most complex model compared to others.
The reason that all models were verified in a short
time is that the execution of the components is
configured to be single-threaded; therefore there is
no concurrency that leads to the generation of big
state spaces.

The data and results of our analysis are com-
municated to the development teams together with
the metric extraction tool to facilitate repeating the
experiments. The teams appreciated the work since
it helped them uncover hidden complex and big
models. A team of one of the projects planned
refactoring tasks to gradually improve the quality
of complex models. For newly started projects,
developers frequently check the metrics of their
models to address any issue early during the mod-
eling phase and before final delivery of the models.

Fig. 8. Representing a stateless machine as a flower-shape (CC)
or a mouse ear (ACC)

One observation during the data analysis is that
not all models with high CC are really complex to
understand. We discuss this observation by com-
paring CC and ACC of an example specification
and discuss how the ACC metrics provided more
insight in complexity. Consider Figure 8. At the
left of the figure a stateless machine accepts N
events. If we set N to 31 (meaning that 31 different
events are accepted by the machine) then CC = 31
while ACC = 1. Therefore, from the CC perspective
the state machine is considered to be moderate in
complexity since it exceeded the complexity limit
we set before as a guideline.

In fact, all models that exhibit a flower-shape
behavior are not very complex but they may be
rather big because the interface is verbose with
many events. These machines are relatively simple
to understand since they just consume input events
in a single state. This type of models exhibit a
relatively very low ACC metric. Correlating CC
and ACC can help developers detecting interfaces

432432

Fig. 9. Complexity of interface models of components sorted
by ACC

that include many different events that have actu-
ally the same behavior. In hindsight, it indicates to
developers the need to split the interface early and
categorize the events into smaller models.

Figure 9 depicts the CC and ACC of interface
models of a number of components in one project.
model 07 gives an example of a flower-shaped
interface model with high CC and low ACC. By
reviewing the contents of the model we realized
that the interface contains many events that should
be categorized and split into smaller interface mod-
els. Notable are model 05 and model 06 which
exhibit similar metrics. After reviewing the models
we found that they are isomorphic in structure (they
model 2 physical sensors of the same type with
different ids). An action was taken to combine the
two models in one and parametrize the ids of the
sensors.

We observed that Halstead T and E metrics are
very controversial. We found that these metrics
provide good estimates for models that are within
the recommended size limit of 8000. For some
models that exceed this limit the metrics are not
very accurate. Empirical experiments are needed
to adapt the formula for this type of models.

VII. CONCLUSIONS AND FUTURE WORK

As industry is rapidly migrating towards model-
based development, it is becoming urgent to es-
tablish means to measure the quality of models
since they form the main software artifact in the
modeling paradigm. In this article we proposed a
number of metrics for ASD models which are state
machines specified in a tabular format.

An apparent limitation of our work is that we
only considered the structural complexity of mod-
els. The added complexity of introducing guards in

the specification is not considered. Guards can have
a similar complexity effect as introducing states.

Finally, the results of this work reveal the im-
portance and need for metrics at the model level.
Based on the metric feedback, and subsequent
review of the flagged models, interesting patterns
and opportunities for model improvement were
identified. Moreover, the results reveal that more
work is needed to extend the set of metrics mak-
ing them also less sensitive or biased for certain
patterns and aspects.

REFERENCES

[1] ASML homepage. http://www.asml.com. (Accessed
2017).

[2] F. Badeau and A. Amelot. Using B as a High Level
Programming Language in an Industrial Project: Roissy
VAL, p 334–354. Springer Berlin Heidelberg, 2005.

[3] J.L. Boulanger, F.-X. Fornari, J.-L. Camus, and B. Dion.
SCADE: Language and Applications. Wiley-IEEE Press,
1st edition, 2015.

[4] CodeSonar homepage. http://www.grammatech.com. (Ac-
cessed 2017).

[5] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using
metrics to evaluate software system maintainability. Com-
puter, 27(8):44–49, Aug. 1994.

[6] Formal Systems (Europe) Ltd. FDR2 model checker,
2011. http://www.fsel.com/

[7] J.S. Fitzgerald, P. G. Larsen, and S. Sahara. Vdmtools:
advances in support for formal modeling in VDM. SIG-
PLAN Notices, 43(2):3–11, 2008.

[8] L. Guo, A.S. Vincentelli, and A. Pinto. A complexity
metric for concurrent finite state machine based embedded
software. In 2013 8th IEEE International SIES, p. 189–
195, 2013.

[9] M. Fowler and K. Beck. Refactoring: Improving the
Design of Existing Code. Component software series.
Addison-Wesley, 1999.

[10] M.H. Halstead. Elements of Software Science (Operating
and Programming Systems Series). Elsevier Science Inc.,
New York, NY, USA, 1977.

[11] C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1985.

[12] J. Jürjens and S. Wagner. Component-Based Develop-
ment of Dependable Systems with UML, pages 320–344.
Springer Berlin Heidelberg, 2005.

[13] T.J. McCabe. A complexity measure. IEEE Trans. Softw.
Eng., 2(4):308–320, July 1976.

[14] H. D. Mills. Stepwise refinement and verification in box-
structured systems. Computer, 21(6):23–36, June 1988.

[15] A. Osaiweran, M. Schuts, J. Hooman, J.F. Groote, and
B. van Rijnsoever. Evaluating the effect of a lightweight
formal technique in industry. Int. Jour. on STTT, Springer,
18(1):93–108, 2016.

[16] A. Osaiweran, M. Schuts, J. Hooman, and J. Wesselius.
Incorporating formal techniques into industrial practice:
An experience report. ENTCS. 295:49–63, May 2013.

[17] Tiobe homepage. http://www.tiobe.com. (Accessed 2017).
[18] Verum homepage. http://www.asd.verum.com. (Accessed

2017).
[19] Verifysoft homepage. http://www.verifysoft.com. (Ac-

cessed 2017).

433433

