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1. INTRODUCTION

One of the first detailed studies of the equational theory of a process algebra was
carried out by Hennessy and Milner [1985]. They considered the equational theory
of the process algebra that arises from the recursion-free fragment of CCS [Milner
1989a], and presented a set of equational axioms that is complete in the sense that
all valid closed equations (i.e., equations in which no variables occur) are derivable
from it in equational logic. For the elimination of parallel composition from closed
terms, Hennessy and Milner proposed the well-known Expansion Law, an axiom
schema that generates infinitely many axioms. Thus, the question arose whether a
finite complete set of axioms exists. With their axiom system ACP, Bergstra and
Klop [1984] demonstrated that it exists if two auxiliary operators are used: the left
merge and the communication merge. It was later proved by Moller [1990] that
without using at least one auxiliary operator a finite complete set of axioms does
not exist.

The aforementioned results pertain to the closed fragments of the equational
theories discussed, i.e., to the subsets consisting of the closed valid equations only.
Many valid equations, such as, e.g., the equation (x ‖ y) ‖ z ≈ x ‖ (y ‖ z) expressing
that parallel composition is associative, are not derivable (by means of equational
logic) from the axioms in [Bergstra and Klop 1984] or [Hennessy and Milner 1985].
In this paper we shall not neglect the variables and contribute to the study of
full equational theories of process algebras. We take the fragment of CCS without
recursion, restriction and relabelling, and consider the full equational theory of the
process algebra that is obtained by taking the syntax modulo (strong) bisimilarity
[Park 1981]. Our goal is then to present an equational base (i.e., a set of valid
equations from which every other valid equation can be derived) for it, which is finite
if the set of actions is finite. Obviously, Moller’s result about the unavoidability
of the use of auxiliary operations in a finite complete axiomatisation of the closed
fragment of the equational theory of CCS a fortiori implies that auxiliary operations
are needed to achieve our goal. So we add the left merge and the communication
merge from the start.

Moller [1989] considers the equational theory of the same fragment of CCS, except
that his parallel operator implements pure interleaving instead of CCS-communi-
cation and the communication merge is omitted. He presents a set of valid axiom
schemata and proves that it generates an equational base provided that the set of
actions is infinite. Groote [1990] does consider the fragment including the commu-
nication merge, but, instead of the CCS-communication mechanism, he assumes an
uninterpreted communication function. His axiom schemata also generate an equa-
tional base provided that the set of actions is infinite. We improve on these results
by considering the communication mechanism present in CCS, and by proving that
our axiom schemata generate an equational base also if the set of actions is finite.
Moreover, our axiom schemata generate a finite equational base if the set of actions
is finite.

Our equational base consists of axioms that are mostly well-known. For parallel
composition (‖), left merge (‖ ) and communication merge (|) we adapt the axioms
of ACP, adding from Bergstra and Tucker [1985] a selection of the axioms for
standard concurrency and the axiom (x | y) | z ≈ 0, which expresses that the
ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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communication mechanism is a form of handshaking communication.
Our proof follows the classic two-step approach: first we identify a set of normal

forms such that every process term has a provably equal normal form, and then
we demonstrate that for distinct normal forms there is a distinguishing valuation
that proves that they should not be equated. (We refer to the survey [Aceto et al.
2005b] for a discussion of proof techniques and for an overview of results and open
problems in the area. We remark in passing that one of our main results in this
paper, viz. Corollary 4.10, solves the open problem mentioned in [Aceto et al.
2005b, p. 362].) Since both associating a normal form with a process term and
determining a distinguishing valuation for two distinct normal forms are easily
seen to be computable, as a corollary to our proof we get the decidability of the
equational theory. Another consequence of our result is that our equational base is
complete for the set of valid closed equations as well as ω-complete [Heering 1986].

The positive result that we obtain in Corollary 4.10 of this paper stands in
contrast with the negative result that we have obtained in [Aceto et al. 2005a]. In
that article we proved that there does not exist a finite equational base for CCS
if the auxiliary operation |/ of Hennessy [1988] is added instead of Bergstra and
Klop’s left merge and communication merge. Furthermore, we conjecture that a
finite equational base fails to exist if the unary action prefixes are replaced by binary
sequential composition. (We refer to [Aceto et al. 2005b] for an infinite family of
valid equations that we believe cannot all be derivable from a single finite set of
valid equations.)

The paper is organised as follows. In Sect. 2 we introduce a class of algebras of
processes arising from a process calculus à la CCS, present a set of equations that is
valid in all of them, and establish a few general properties needed in the remainder
of the paper. Our class of process algebras is parametrised by a communication
function. It is beneficial to proceed in this generality, because it allows us to
first consider the simpler case of a process algebra with pure interleaving (i.e., no
communication at all) instead of CCS-like parallel composition. In Sect. 3 we prove
that an equational base for the process algebra with pure interleaving is obtained
by simply adding the axiom x | y ≈ 0 to the set of equations introduced in Sect. 2.
The proof in Sect. 3 extends nicely to a proof that, for the more complicated case
of CCS-communication, it is enough to replace x | y ≈ 0 by x | (y | z) ≈ 0; this is
discussed in Sect. 4. We end the paper in Sect. 5 with some concluding remarks, a
discussion of related work, and some comments on the complications that arise when
trying to extend our results to fragments of CCS including restriction, relabelling
and recursion, and to adapt our proof for CCS modulo observation congruence.

2. ALGEBRAS OF PROCESSES

We fix a set A of actions, and declare a special action τ that we assume is not in
A. We denote by Aτ the set A ∪ {τ}. Generally, we let a and b range over A and
α over Aτ . We also fix a countably infinite set V of variables. The set P of process
terms is generated by the following grammar:

P ::= x | 0 | α.P | P + P | P ‖ P | P | P | P ‖ P ,

with x ∈ V, and α ∈ Aτ . We shall often simply write α instead of α.0. Furthermore,
to be able to omit some parentheses when writing terms, we adopt the convention

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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Table I. The operational semantics.

α.P
α−−→ P

P
α−−→ P ′

P + Q
α−−→ P ′

Q
α−−→Q′

P + Q
α−−→Q′

P
α−−→ P ′

P ‖ Q
α−−→ P ′ ‖ Q

P
α−−→ P ′

P ‖ Q
α−−→ P ′ ‖ Q

Q
α−−→Q′

P ‖ Q
α−−→ P ‖ Q′

P
a−−→ P ′, Q

b−−→Q′, γ(a, b)↓

P | Q
γ(a,b)−−−−−→ P ′ ‖ Q′

P
a−−→ P ′, Q

b−−→Q′, γ(a, b)↓

P ‖ Q
γ(a,b)−−−−−→ P ′ ‖ Q′

that α. binds stronger and + binds weaker than all the other operations. A term of
the form P + Q is referred to as alternative composition and one of the form P ‖ Q
as parallel composition. We shall also use the generalised summation operator,
inductively defined on a sequence of process terms P1, . . . , Pn as follows:

n∑
i=1

Pi =


0 if n = 0,
P1 if n = 1, and
n−1∑
i=1

Pi + Pn if n > 1.

A process term is closed if it does not contain variables; we denote the set of
all closed process terms by P0. We define on P0 binary relations α−−→ (α ∈ Aτ )
by means of the transition system specification in Table I. The last two rules in
Table I refer to a communication function γ, i.e., a commutative and associative
partial binary function γ : A×A ⇀ Aτ . We shall abbreviate the statement ‘γ(a, b)
is defined’ by γ(a, b)↓ and the statement ‘γ(a, b) is undefined’ by γ(a, b)↑. We shall
in particular consider the following communication functions:

(1) The trivial communication function is the partial function f : A × A ⇀ Aτ

such that f (a, b)↑ for all a, b ∈ A.
(2) The CCS communication function h : A×A ⇀ Aτ presupposes a bijection .̄ on

A such that a = a and a 6= a for all a ∈ A, and is then defined by h(a, b) = τ
if a = b and undefined otherwise.

Definition 2.1. A bisimulation is a symmetric binary relation R on P0 such that
P R Q implies

if P α−−→ P ′, then there exists Q′ ∈ P0 such that Q α−−→Q′ and P ′ R Q′.

Closed process terms P,Q ∈ P0 are said to be bisimilar (notation: P ↔γ Q) if
there exists a bisimulation R such that P R Q.

The relation ↔γ is an equivalence relation on P0; we denote the equivalence class
containing P by [P ], i.e.,

[P ] = {Q ∈ P0 : P ↔γ Q} .

If, in Table I, P, P ′, Q and Q′ are treated as variables ranging over closed process
terms and the last two rules are treated as rule schemata generating a rule for all
ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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a, b such that γ(a, b)↓, then the rules in Table I are all in the format of de Simone
[1985]. Hence, ↔γ is compatible with the syntactic constructs of our language of
closed process terms, and therefore the constructs induce an algebraic structure on
P0/↔γ , with a constant 0, unary operations α. (α ∈ Aτ ) and four binary operations
+, ‖ , | and ‖ defined by

0 = [0] [P ] ‖ [Q] = [P ‖ Q]
α.[P ] = [α.P ] [P ] | [Q] = [P | Q]
[P ] + [Q] = [P + Q] [P ] ‖ [Q] = [P ‖ Q] .

Henceforth, we denote by Pγ (for γ an arbitrary communication function) the
algebra obtained by dividing out ↔γ on P0 with constant 0 and operations α.
(α ∈ Aτ ), +, ‖ , |, and ‖ as defined above. The elements of Pγ are called processes,
and will be ranged over by p, q and r.

2.1 Equational Reasoning

We can use the full language of process expressions to reason about the elements
of Pγ . A valuation is a mapping ν : V → Pγ ; it induces an evaluation mapping

[[ ]]ν : P → Pγ

inductively defined by

[[x]]ν = ν(x) [[P ‖ Q]]ν = [[P]]ν ‖ [[Q]]ν
[[0]]ν = 0 [[P | Q]]ν = [[P]]ν | [[Q]]ν
[[α.P]]ν = α.[[P]]ν [[P ‖ Q]]ν = [[P]]ν ‖ [[Q]]ν
[[P + Q]]ν = [[P]]ν + [[Q]]ν .

A process equation is a formula P ≈ Q with P and Q process terms; it is said to
be valid (in Pγ) if [[P]]ν = [[Q]]ν for all ν : V → Pγ . If P ≈ Q is valid in Pγ , then
we shall also write P ↔γ Q. The equational theory of the algebra Pγ is the set of
all valid process equations, i.e.,

EqTh(Pγ) = {P ≈ Q : [[P]]ν = [[Q]]ν for all ν : V → Pγ} .

The precise contents of the set EqTh(Pγ) depend to some extent on the choice of
γ. For instance, the process equation x | y ≈ 0 is only valid in Pγ if γ is the
trivial communication function f ; if γ is the CCS communication function h, then
Pγ satisfies the weaker equation x | (y | z) ≈ 0.

Table II lists process equations that are valid in Pγ independently of the choice
of γ. (The equations L2, C2 and C3 are actually axiom schemata; they generate
an axiom for all α ∈ Aτ and a, b ∈ A. Note that if A is finite, then these axiom
schemata generate finitely many axioms.) Henceforth whenever we write an equa-
tion P ≈ Q, we mean that it is derivable from the axioms in Table II by means of
equational logic. It is well-known that the rules of equational logic preserve validity.
We therefore obtain the following result.

Proposition 2.2. For all process terms P and Q, if P ≈ Q, then P ↔γ Q.

In the following lemma we give an example of a valid equation that can be derived
from Table II using the rules of equational logic.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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Table II. Process equations valid in every Pγ .

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

L1 0 ‖ x ≈ 0
L2 α.x ‖ y ≈ α.(x ‖ y)
L3 (x + y) ‖ z ≈ x ‖ z + y ‖ z
L4 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)
L5 x ‖ 0 ≈ x

C1 0 | x ≈ 0
C2 a.x | b.y ≈ γ(a, b).(x ‖ y) if γ(a, b)↓
C3 a.x | b.y ≈ 0 if γ(a, b)↑
C4 (x + y) | z ≈ x | z + y | z
C5 x | y ≈ y | x
C6 (x | y) | z ≈ x | (y | z)
C7 (x ‖ y) | z ≈ (x | z) ‖ y

P1 x ‖ y ≈ (x ‖ y + y ‖ x) + x | y

Lemma 2.3. The following equation is derivable from the axioms in Table II:

C8 (x ‖ y) | (z ‖ u) ≈ (x | z) ‖ (y ‖ u) .

Proof. The lemma is proved with the derivation:

(x ‖ y) | (z ‖ u) ≈ (z ‖ u) | (x ‖ y) (by C5)

≈ (z | (x ‖ y)) ‖ u (by C7)

≈ ((x ‖ y) | z) ‖ u (by C5)

≈ ((x | z) ‖ y) ‖ u (by C7)

≈ (x | z) ‖ (y ‖ u) (by L4).

A set of valid process equations is an equational base for Pγ if all other valid
process equations are derivable from it by means of equational logic. The purpose
of this paper is to prove that if we add to the equations in Table II the equation
x | y ≈ 0 we obtain an equational base for Pf , and if, instead, we add x | (y | z) ≈ 0
we obtain an equational base for Ph . Both these equational bases are finite if the
set of actions A is finite.

For the proofs of these results, we adopt the classic two-step approach [Aceto
et al. 2005b]:

(1) In the first step we identify a set of normal forms, and prove that every process
term can be rewritten to a normal form by means of the axioms.

(2) In the second step we prove that bisimilar normal forms are identical modulo
applications of the axioms A1–A4. This is done by associating with every pair
of normal forms a so-called distinguishing valuation, i.e., a valuation that proves
that the normal forms are not bisimilar unless they are provably equal modulo
the axioms A1–A4.

Many of the proofs to follow will be by induction, using the following syntactic
measure on process terms.

Definition 2.4. Let P be a process term. We define the height of a process term
ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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P, denoted h(P), inductively as follows:

h(0) = 0 ,
h(x) = 1 ,
h(α.P) = h(P) + 1 ,
h(P + Q) = max(h(P), h(Q)) .

h(P ‖ Q) = h(P) + h(Q) ,
h(P | Q) = h(P) + h(Q) ,
h(P ‖ Q) = h(P) + h(Q) ,

Definition 2.5. We call a process term simple if it is not 0 and not an alternative
composition.

Lemma 2.6. For every process term P there exists a collection of simple process
terms S1, . . . , Sn (n ≥ 0) such that h(P) ≥ h(Si) for all i = 1, . . . , n and

P ≈
n∑

i=1

Si (by A1, A2 and A4).

The terms Si will be called syntactic summands of P.

2.2 General Properties of Pγ

We collect some general properties of the algebras Pγ that we shall need in the
remainder of the paper.

The binary transition relations α−−→ (α ∈ Aτ ) on P0, which were used to associate
an operational semantics with closed process terms, will play an important rôle in
the remainder of the paper. They induce binary relations on Pγ , also denoted by

α−−→, and defined as the least relations such that P
α−−→P ′ implies [P ] α−−→ [P ′]. Note

that we then get, directly from the definition of bisimulation, that for all P, P ′ ∈ P0:

[P ] α−−→ [P ′] iff for all Q ∈ [P ] there exists Q′ ∈ [P ′] such that Q α−−→Q′.

Proposition 2.7. For all p, q, r ∈ Pγ :

(1 ) p = 0 iff there do not exist p′ ∈ Pγ and α ∈ Aτ such that p
α−−→ p′;

(2 ) α.p
β−−→ r iff α = β and r = p;

(3 ) p + q
α−−→ r iff p

α−−→ r or q
α−−→ r;

(4 ) p ‖ q
α−−→ r iff there exists p′ ∈ Pγ such that p

α−−→ p′ and r = p′ ‖ q; and

(5 ) p | q
α−−→ r iff there exist actions a, b ∈ A and processes p′, q′ ∈ Pγ such that

α = γ(a, b), p
a−−→ p′, q

b−−→ q′, and r = p′ ‖ q′; and
(6 ) p ‖ q

α−−→ r iff p ‖ q
α−−→ r or q ‖ p

α−−→ r or p | q α−−→ r.

Let p, p′ ∈ Pγ ; we write p→ p′ if p α−−→ p′ for some α ∈ Aτ and call p′ a residual
of p. We write p 6→ if p has no residual, that is, if p = 0 (by Proposition 2.7(1)).
We denote by →∗ the reflexive transitive closure of →.

It is easy to see from Table I that if P α−−→ P ′, then P ′ has fewer symbols than
P . Consequently, the length of a transition sequence starting with a process [P ] is
bounded from above by the number of symbols in P .

Definition 2.8. The depth |p| of an element p ∈ Pγ is defined as

|p| = max{n ≥ 0 : ∃pn, . . . , p0 ∈ Pγ s.t. p = pn → · · · → p0}.
ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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The branching degree bdeg(p) of an element p ∈ Pγ is defined as

bdeg(p) = |{(α, p′) : p
α−−→ p′}| .

Note that p = 0 iff |p| = 0.
For the remainder of this section, we focus on properties of parallel composition on

Pγ . The depth of a parallel composition is the sum of the depths of its components.

Lemma 2.9. For all p, q ∈ Pγ , |p ‖ q| = |p|+ |q|.

Proof. If p = pm → · · · → p0 and q = qn → · · · → q0, then

p ‖ q = pm ‖ q → · · · → p0 ‖ q = p0 ‖ qn → · · · → p0 ‖ q0 ,

so clearly |p ‖ q| ≥ |p|+ |q|.
It remains to prove that |p|+ |q| ≥ |p ‖ q|. We proceed by induction on the depth

of p ‖ q.
If |p ‖ q| = 0, then clearly |p|+ |q| ≥ |p ‖ q| (since depth is nonnegative).
Suppose that |p ‖ q| > 0. Then p ‖ q → p′ ‖ q′ for some p′ and q′ with |p ‖ q| =

1 + |p′ ‖ q′|, and either p → p′ and q = q′, or p = p′ and q → q′, or p → p′ and
q → q′. In any case, |p| + |q| ≥ 1 + |p′| + |q′|, so, by the induction hypothesis,
|p|+ |q| ≥ 1 + |p′|+ |q′| ≥ 1 + |p′ ‖ q′| = |p ‖ q|.

According to the following lemma and Proposition 2.2, Pγ is a commutative
monoid with respect to ‖, with 0 as the identity element.

Lemma 2.10. The following equations are derivable from the axioms in Table II:

P2 (x ‖ y) ‖ z ≈ x ‖ (y ‖ z)
P3 x ‖ y ≈ y ‖ x
P4 x ‖ 0 ≈ x .

An element p ∈ Pγ is parallel prime if p 6= 0, and p = q ‖ r implies q = 0 or
r = 0. Suppose that p is an arbitrary element of Pγ ; a parallel decomposition of p
is a finite multiset [p1, . . . , pn] of parallel primes such that p = p1 ‖ · · · ‖ pn. (The
process 0 has as decomposition the empty multiset, and a parallel prime process p
has as decomposition the singleton multiset [p].)

The following unique parallel decomposition result was proved for Pf by Milner
and Moller [1993] and for Ph by Moller [1989]. In its formulation below, with γ an
arbitrary communication function, it is a straightforward consequence of a unique
decomposition theorem by Luttik and van Oostrom [2005], which generalises the
unique parallel decomposition theorems in [Moller 1989].

Theorem 2.11. Every element of Pγ has a unique parallel decomposition.

Proof. In a similar way as in [Luttik and van Oostrom 2005, Sect. 4] it can
be established that the inverse of →∗ is a decomposition order on the commuta-
tive monoid Pγ with respect to parallel composition; it then follows from [Luttik
and van Oostrom 2005, Theorem 32] that this commutative monoid has unique
decomposition.

The following corollary follows easily from the above unique decomposition result.

Corollary 2.12. Let p, q, r ∈ Pγ . If p ‖ q = p ‖ r, then q = r.
ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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The branching degree of a parallel composition is at least the branching degree
of its components.

Lemma 2.13. For all p, q ∈ Pγ , bdeg(p ‖ q) ≥ bdeg(p), bdeg(q).

Proof. First we prove that bdeg(p‖ q) ≥ bdeg(q). By Proposition 2.7, if q
α−−→ q′,

then p‖ q
α−−→p‖ q′. Suppose that q1 and q2 are distinct processes such that q

α−−→q1

and q
α−−→ q2. Then p ‖ q

α−−→ p ‖ q1 and p ‖ q
α−−→ p ‖ q2. Since p ‖ q1 = p ‖ q2 would

imply q1 = q2 by Corollary 2.12, it follows that p ‖ q1 and p ‖ q2 are distinct. Hence
bdeg(p ‖ q) ≥ bdeg(q).

By commutativity of ‖, it also follows that bdeg(p ‖ q) ≥ bdeg(p).

In the remainder of the paper we will make use of the following sequence of
parallel prime processes:

ϕi = τ.0 + τ.τ.0 + · · ·+ τ i.0 (i ≥ 1) (1)

(with τ i.0 recursively defined by τ i.0 = 0 if i = 0, and τ.τ i−1.0 if i > 0). The
special properties of the processes ϕi, proved in the lemma below, make them very
suitable tools in the analysis of the equational theory of parallel composition. They
were first used for this purpose by Moller [1990].

Lemma 2.14. (1 ) For all i ≥ 1, the processes ϕi are parallel prime.
(2 ) The processes ϕi are all distinct, i.e., ϕk = ϕl implies that k = l.
(3 ) For all i ≥ 1, the process ϕi has branching degree i.

Proof. (1) Clearly ϕi 6= 0. Suppose ϕi = p ‖ q; to prove that ϕi is parallel
prime, we need to establish that either p = 0 or q = 0. Note that p ‖ q

τ−−→ 0.
There do not exist actions a and b and processes p′ and q′ such that γ(a, b) = τ ,
p a−−→p′ and q b−−→q′, for then also p‖ q a−−→p′‖ q, quod non. Therefore, according
to Proposition 2.7, there are only two cases to consider:
(a) If there exists p′ such that p τ−−→ p′ and p′ ‖ q = 0, then it follows by

Lemma 2.9 that |q| = 0, and hence q = 0.
(b) If there exists q′ such that q

τ−−→ q′ and p ‖ q′ = 0, then it follows by
Lemma 2.9 that |p| = 0, and hence p = 0.

(2) If ϕk = ϕl, then k = |ϕk| = |ϕl| = l.
(3) On the one hand, ϕi

τ−−→ τ j .0 for all 0 ≤ j < i and τk.0 = τ l.0 implies k = l for
all 0 ≤ k, l < i, so bdeg(ϕi) is at least i. On the other hand, if ϕi

α−−→ p, then
α = τ and p = τ j .0 for some 0 ≤ j < i, so bdeg(ϕi) is at most i.

3. AN EQUATIONAL BASE FOR Pf

In this section, we prove that an equational base for Pf is obtained if the axiom

F x | y ≈ 0

is added to the set of axioms generated by the axiom schemata in Table II. The
resulting equational base is finite if A is finite. Henceforth, whenever we write
P ≈F Q we mean that the equation P ≈ Q is derivable from the axioms in Table II
and the axiom F.

Proposition 3.1. For all process terms P and Q, if P ≈F Q, then P ↔f Q.
ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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To prove that adding F to the axioms in Table II suffices to obtain an equational
base for Pf , we need to establish that P ↔f Q implies P ≈F Q for all process terms
P and Q. First, we identify a set of normal forms NF such that every process term
P can be rewritten to a normal form by means of the axioms.

Definition 3.2. The set NF of F-normal forms is generated by the following
grammar:

N ::= 0 | N + N | α.N | x ‖ N ,

with x ∈ V, and α ∈ Aτ .

Lemma 3.3. For every process term P there is an F-normal form N such that
P ≈F N and h(P) ≥ h(N).

Proof. Recall that h(P) denotes the height of P (see Definition 2.4). In this
proof we also use another syntactic measure on P: the length of P, denoted `(P),
is the number of symbols occurring in P. Define a partial order ≺ on process
terms by P ≺ Q if the pair (h(P), `(P)) is smaller than the pair (h(Q), `(Q)) in the
lexicographical order on ω × ω; i.e., P ≺ Q if h(P) < h(Q) or h(P) = h(Q) and
`(P) < `(Q). It is well-known that the lexicographical order on ω × ω, and hence
the order ≺ on process terms, is well-founded; so we may use ≺-induction.

The remainder of the proof consists of a case distinction on the syntactic forms
that P may take.

(1) If P is a variable, say P = x, then P ≈ x ‖ 0 by L5; the process term x ‖ 0 is
an F-normal form and h(P) = h(x) = h(x) + 0 = h(x ‖ 0).

(2) If P = 0, then P is an F-normal form.
(3) If P = α.P ′, then, since h(P ′) < h(P), it holds that P ′ ≺ P, and hence by

the induction hypothesis there exists an F-normal form N such that P ′ ≈F N
and h(P ′) ≥ h(N). Then α.N is an F-normal form such that P ≈F α.N and
h(P ) ≥ h(α.N).

(4) If P = P1 + P2, then, since h(P1), h(P2) ≤ h(P) and `(P1), `(P2) < `(P), it
holds that P1, P2 ≺ P, and hence by the induction hypothesis there exist F-
normal forms N1 and N2 such that P1 ≈F N1, P2 ≈F N2, h(P1) ≥ h(N1) and
h(P2) ≥ h(N2). Then N1 + N2 is an F-normal form such that P ≈F N1 + N2

and h(P) ≥ h(N1 + N2).
(5) If P = Q ‖ R, then, since h(Q) ≤ h(P) and `(Q) < `(P), it holds that Q ≺ P,

and hence by the induction hypothesis and Lemma 2.6 there exists a collection
S1, . . . , Sn of simple F-normal forms such that Q ≈F

∑n
i=1 Si and h(Q) ≥ h(Si)

for all i = 1, . . . , n. If n = 0, then P ≈F 0 ‖ R ≈ 0 by L1, and clearly
h(P) ≥ h(0). Otherwise, by L3

P ≈F

n∑
i=1

(Si ‖ R) .

So it remains to show, for all i = 1, . . . , n, that Si ‖ R is provably equal to
an appropriate F-normal form. We distinguish cases according to the syntactic
form of Si:
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(a) If Si = α.N ′
i , with N ′

i an F-normal form, then by L2

Si ‖ R ≈ α.(N ′
i ‖ R) .

Since h(N ′
i) < h(Si) ≤ h(Q), it holds that N ′

i ‖ R ≺ P and hence by the
induction hypothesis there exists an F-normal form Ni such that N ′

i ‖R ≈F

Ni and h(N ′
i ‖ R) ≥ h(Ni). Clearly, α.Ni is an F-normal form such that

Si ‖ R ≈F α.Ni and h(Si ‖ R) ≥ h(α.Ni).
(b) If Si = x ‖ N ′

i , with N ′
i an F-normal form, then by L4

(x ‖ N ′
i) ‖ R ≈ x ‖ (N ′

i ‖ R) .

Note that h(x) = 1, so h(N ′
i) < h(Si) ≤ h(Q). It follows that N ′

i ‖ R ≺ P,
and hence by the induction hypothesis there exists an F-normal form Ni

such that N ′
i ‖ R ≈F Ni and h(N ′

i ‖ R) ≥ h(Ni). Clearly, x ‖ Ni is an
F-normal form such that Si ‖ R ≈F x ‖ Ni and h(Si ‖ R) ≥ h(x ‖ Ni).

(6) If P = Q | R, then P ≈F 0 according to the axiom F and clearly h(P) ≥ h(0).
(7) If P = Q ‖ R, then P ≈ (Q ‖ R + R ‖ Q) + Q | R ≈F Q ‖ R + R ‖ Q by

the axioms P1, F and A4. We can now proceed as in case 5 to show that for
Q‖ R and R‖ Q there exist F-normal forms N1 and N2, respectively, such that
Q ‖ R ≈F N1, R ‖ Q ≈F N2, h(Q ‖ R) ≥ h(N1) and h(R ‖ Q) ≥ h(N2). Then
N1+N2 is an F-normal form such that P ≈F N1+N2 and h(P) ≥ h(N1+N2).

It remains to prove for every pair of F-normal forms N1 and N2 that if N1 ↔f N2

(i.e., if [[N1]]ν = [[N2]]ν for all valuations ν : V → Pf ), then N1 ≈F N2. We shall in
fact prove something seemingly stronger by associating with every pair of F-normal
forms N1 and N2 a special valuation ∗ : V → Pf such that

if [[N1]]∗ = [[N2]]∗, then N1 ≈F N2. (2)

Contrapositively, if N1 and N2 are not provably equal, then their ∗-interpretations
are distinct; this is why we call such a valuation ∗ a distinguishing valuation.

The idea is to use a valuation ∗ that assigns processes to variables in such a
way that much of the original syntactic structure of N1 and N2 can be recovered
by analysing the behaviour of [[N1]]∗ and [[N2]]∗. To recognize variables, we shall
use the special processes ϕi (i ≥ 1) defined in Eqn. (1) on p. 9. Recall that the
processes ϕi have branching degree i. We are going to assign to every variable
a distinct process ϕi. By choosing i larger than the maximal ‘branching degrees’
occurring in N1 and N2, the behaviour contributed by an instantiated variable is
distinguished from behaviour already present in the F-normal forms themselves.

Definition 3.4. We define the width w(N) of an F-normal form N as follows:

(1) if N = 0, then w(N) = 0;
(2) if N = N1 + N2, then w(N) = w(N1) + w(N2);
(3) if N = α.N ′, then w(N) = max(w(N ′), 1); and
(4) if N = x ‖ N ′, then w(N) = max(w(N ′), 1).

The valuation ∗ that we now proceed to define is parametrised with a natural
number W ; in Theorem 3.8 we shall prove that it serves as a distinguishing valuation

ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.



12 · Luca Aceto et al.

(i.e., satisfies Eqn. (2)) for all F-normal forms N1 and N2 such that w(N1),w(N2) ≤
W . Let pq denote an injective function

pq : V → {n ∈ ω : n > W}

that associates with every variable a unique natural number greater than W . We
define the valuation ∗ : V → Pf for all x ∈ V by

∗(x) = τ.ϕpxq .

The τ -prefix is to ensure the following property.

Lemma 3.5. For every F-normal form N, the branching degree of [[N]]∗ is at
most w(N).

Proof. Structural induction on N.

Lemma 3.6. Let S be a simple F-normal form, let α ∈ Aτ , and let p be a process
such that [[S]]∗

α−−→ p.

(1 ) If S = β.N , then α = β and p = [[N ]]∗.
(2 ) If S = x ‖ N , then α = τ and p = ϕpxq ‖ [[N]]∗.

An important property of ∗ is that it allows us to distinguish the different types
of simple F-normal forms by classifying their residuals according to the number of
parallel components with a branching degree that exceeds W . Let us say that a
process p is of type n (n ≥ 0) if its unique parallel decomposition contains precisely
n parallel prime components with a branching degree larger than W .

Corollary 3.7. Let S be a simple F-normal form such that w(S) ≤ W .

(1 ) If S = α.N, then the unique residual [[N ]]∗ of [[S]]∗ is of type 0.
(2 ) If S = x ‖ N, then the unique residual ϕpxq ‖ [[N]]∗ of [[S]]∗ is of type 1.

Proof. On the one hand, by Lemma 3.5, in both cases [[N ]]∗ has a branching
degree of at most w(N) ≤ w(S) ≤ W , and hence, by Lemma 2.13, its unique parallel
decomposition cannot contain parallel prime components with a branching degree
that exceeds W . On the other hand, by Lemmas 2.14(1) and 2.14(3), the process
ϕpxq is parallel prime and has a branching degree that exceeds W . So [[N]]∗ is of
type 0, and ϕpxq ‖ [[N]]∗ is of type 1.

Theorem 3.8. For every two F-normal forms N1, N2 such that w(N1),w(N2) ≤
W it holds that [[N1]]∗ = [[N2]]∗ only if N1 ≈ N2 modulo A1–A4.

Proof. By Lemma 2.6 we may assume that N1 and N2 are summations of
collections of simple F-normal forms. We assume [[N1]]∗ = [[N2]]∗ and prove that
then N1 ≈ N2 modulo A1–A4, by induction on the sum of the heights of N1 and
N2.

We first prove that for every syntactic summand S1 of N1 there is a syntactic
summand S2 of N2 such that S1 ≈ S2 modulo A1–A4. To this end, let S1 be an
arbitrary syntactic summand of N1; we distinguish cases according to the syntactic
form of S1.
ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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(1) Suppose S1 = α.N ′
1; then [[S1]]∗

α−−→ [[N ′
1]]∗. Hence, since [[N1]]∗ = [[N2]]∗, there

exists a syntactic summand S2 of N2 such that [[S2]]∗
α−−→ [[N ′

1]]∗. By Lemma 3.5
the branching degree of [[N ′

1]]∗ does not exceed W , so [[S2]]∗ has a residual of
type 0, and therefore, by Corollary 3.7, there exist β ∈ Aτ and an F-normal
form N ′

2 such that S2 = β.N ′
2. Moreover, since [[S2]]∗

α−−→ [[N ′
1]]∗, it follows

by Lemma 3.6(1) that α = β and [[N ′
1]]∗ = [[N ′

2]]∗. Hence, by the induction
hypothesis, we conclude that N ′

1 ≈ N ′
2 modulo A1–A4, so S1 = α.N ′

1 ≈ β.N ′
2 =

S2.
(2) Suppose S1 = x‖ N ′

1; then [[S1]]∗
τ−−→ϕpxq ‖ [[N ′

1]]∗. Hence, since [[N1]]∗ = [[N2]]∗,
there exists a summand S2 of N2 such that [[S2]]∗

τ−−→ϕpxq ‖ [[N ′
1]]∗. Since S2 has

a residual of type 1, by Corollary 3.7 there exist a variable y and an F-normal
form N ′

2 such that S2 = y ‖ N ′
2. Now, since [[S2]]∗

τ−−→ ϕpxq ‖ [[N ′
1]]∗, it follows

by Lemma 3.6(2) that

ϕpxq ‖ [[N ′
1]]∗ = ϕpyq ‖ [[N ′

2]]∗ . (3)

Since [[N ′
1]]∗ and [[N ′

2]]∗ are of type 0, we have that the unique decomposition of
[[N ′

1]]∗ (see Theorem 2.11) does not contain ϕpyq and the unique decomposition
of [[N ′

2]]∗ does not contain ϕpxq. Hence, from (3) it follows that ϕpxq = ϕpyq

and [[N ′
1]]∗ = [[N ′

2]]∗. From the former we conclude, by Lemma 2.14(2) and the
injectivity of p.q, that x = y and from the latter we conclude by the induction
hypothesis that N ′

1 ≈ N ′
2 modulo A1–A4. So S1 = x ‖ N ′

1 ≈ y ‖ N ′
2 = S2.

We have established that every syntactic summand of N1 is provably equal to
a syntactic summand of N2. Similarly, it follows that every syntactic summand
of N2 is provably equal to a syntactic summand of N1. Hence, modulo A1–A4,
N1 ≈ N1 + N2 ≈ N2, so the proof of the theorem is complete.

Note that it follows from the preceding theorem that there exists a distinguishing
valuation for every pair of F-normal forms N1 and N2 that are distinct modulo A1–
A4; it is obtained by instantiating the parameter W in the definition of ∗ with a
sufficiently large value. Hence, we get the following corollary.

Corollary 3.9. For all process terms P and Q, P ≈F Q if, and only if, P ↔f

Q, and hence the axioms generated by the schemata in Table II together with the
axiom F consitute an equational base for Pf .

Proof. The implication from left to right is Proposition 3.1. To prove the
implication from right to left, suppose P ↔f Q. Then, by Lemma 3.3 there exist
F-normal forms N1 and N2 such that P ≈F N1 and Q ≈F N2; from P ↔f Q we
conclude by Proposition 3.1 that N1 ↔f N2. Now choose W large enough such that
w(N1),w(N2) ≤ W . From N1 ↔f N2 it follows that [[N1]]∗ = [[N2]]∗, and hence, by
Theorem 3.8 N1 ≈ N2. We may therefore conclude that P ≈F N1 ≈ N2 ≈F Q.

Corollary 3.10. The equational theory of Pf is decidable.

Proof. From the proof of Lemma 3.3 it is easy to see that there exists an
effective procedure that associates with every process term a provably equivalent
F-normal form. Furthermore, from Definition 3.4 it is clear that every F-normal
form has an effectively computable width. We now sketch an effective procedure
that decides whether a process equation P ≈ Q is valid:
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(1) Compute F-normal forms N1 and N2 such that P ≈F N1 and Q ≈F N2.
(2) Compute w(N1) and w(N2) and define W as their maximum.
(3) Determine the (finite) set V ′ of variables occurring in N1 and N2; define an

injection p.q : V ′ → {n ∈ ω : n > W}, and a substitution ∗ : V ′ → P0 that
assigns to a variable x in V ′ the closed process term τ.ϕpxq. (We may interpret
Eqn. (1) as defining a sequence of closed process terms instead of a sequence of
processes.)

(4) Let N∗
1 and N∗

2 be the results from applying ∗ to N1 and N2, respectively.
(5) Determine if the closed process terms N∗

1 and N∗
2 are bisimilar; if they are,

then the process equation P ≈ Q is valid in Pf , and otherwise it is not.

4. AN EQUATIONAL BASE FOR Ph

We now consider the algebra Ph . Note that if A happens to be the empty set,
then Ph satisfies the axiom F, and it is clear from the proof in the previous section
that the axioms generated by the axiom schemata in Table II together with F
in fact constitute a finite equational base for Ph . We therefore proceed with the
assumption that A is nonempty, and prove that an equational base for Ph is then
obtained if we add the axiom

H x | (y | z) ≈ 0

to the set of axioms generated by the axiom schemata in Table II. Again, the
resulting equational base is finite if the set A is finite. Henceforth, whenever we
write P ≈H Q, we mean that the equation P ≈ Q is derivable from the axioms in
Table II and the axiom H.

Proposition 4.1. For all process terms P and Q, if P ≈H Q, then P ↔h Q.

We proceed to adapt the proof presented in the previous section to establish the
converse of Proposition 4.1. Naturally, with H instead of F not every occurrence of
| can be eliminated from process terms, so the first thing we need to do is to adapt
the notion of normal form.

Definition 4.2. The set NH of H-normal forms is generated by the following
grammar:

N ::= 0 | N + N | α.N | x ‖ N | (x | a) ‖ N | (x | y) ‖ N ,

with x, y ∈ V, α ∈ Aτ and a ∈ A.

In the proof that every process term is provably equal to an H-normal form, we
use the following derivable equation.

Lemma 4.3. The following equation is derivable from the axioms in Table II and
the axiom H:

C9 τ.x | y ≈H 0 .

Proof. Let a ∈ A; then

τ.x | y ≈H τ.(x ‖ 0) | y by P4 (see Lemma 2.10)
≈H (a.x | a.0) | y by C2
≈H 0 by H.
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Lemma 4.4. For every process term P there exists an H-normal form N such
that P ≈H N and h(P) ≥ h(N).

Proof. As in the proof of Lemma 3.3 we proceed by ≺-induction and do a case
distinction on the syntactic form of P. For the first four cases (P is a variable,
P = 0, P = α.P ′ and P = P1 + P2) the proofs are identical to those in Lemma 3.3,
so they are omitted.

(5) If P = Q ‖ R, then, since h(Q) ≤ h(P) and `(Q) < `(P), it holds that Q ≺ P,
and hence by the induction hypothesis and Lemma 2.6 there exists a collection
S1, . . . , Sn of simple H-normal forms such that Q ≈H

∑n
i=1 Si and h(Q) ≥ h(Si)

for all i = 1, . . . , n. If n = 0, then P ≈H 0 ‖ R ≈ 0 by L1, and clearly
h(P) ≥ h(0). Otherwise, by L3

P ≈H

n∑
i=1

(Si ‖ R) ,

so it remains to show, for all i = 1, . . . , n, that Si ‖ R is provably equal to an
appropriate H-normal form. We distinguish cases according to the syntactic
form of Si:
(a) If Si = α.N ′

i (with N ′
i an H-normal form), then by L2

Si ‖ R ≈H α.(N ′
i ‖ R) .

Since h(N ′
i) < h(Si) ≤ h(Q), it holds that N ′

i ‖ R ≺ P and hence by the
induction hypothesis there exists an H-normal form N such that N ′

i ‖R ≈H

N and h(N ′
i ‖ R) ≥ h(N). Clearly, α.N is an H-normal form such that

Si ‖ R ≈H α.N and h(Si ‖ R) ≥ h(α.N).
(b) If Si = S′

i ‖ N ′′
i with S′

i = x, S′
i = (x | a) or S′

i = (x | y), and N ′′
i an

H-normal form, then by L4

Si ‖ R ≈H S′
i ‖ (N ′′

i ‖ R) .

Note that h(S′
i) > 0, so h(N ′′

i ) < h(Si) ≤ h(Q). It follows that N ′′
i ‖R ≺ P,

and hence by the induction hypothesis there exists an H-normal form N
such that N ′′

i ‖ R ≈H N and h(N ′′
i ‖ R) ≥ h(N). Clearly, S′

i ‖ N is an
H-normal form such that Si ‖ R ≈H S′

i ‖ N and h(Si ‖ R) ≥ h(S′
i ‖ N).

(6) If P = Q|R, then, since h(Q) ≤ h(P) and `(Q) < `(P), it holds that Q ≺ P, and,
for similar reasons, R ≺ P. Hence, by the induction hypothesis and Lemma 2.6
there exist collections S1, . . . , Sm and T1, . . . , Tn of simple H-normal forms such
that Q ≈H

∑m
i=1 Si, R ≈H

∑n
j=1 Tj , h(Q) ≥ h(Si) for all i = 1, . . . ,m, and

h(R) ≥ h(Tj) for all j = 1, . . . , n. Note that if m = 0, then P ≈H 0 | R ≈ 0 by
C1, and if n = 0, then P ≈H Q | 0 ≈H 0 | Q ≈H 0 by C5 and C1, and clearly
h(P) ≥ h(0). Otherwise, by C4 and C5

P ≈H

m∑
i=1

n∑
j=1

(Si | Tj) ,

and it remains to show, for all i = 1, . . . ,m and j = 1, . . . , n, that Si |Tj is prov-
ably equal to an appropriate H-normal form. We distinguish cases according
to the syntactic forms that Si and Tj may take:
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(a) Suppose Si = τ.S′
i; then Si |Tj ≈H 0 by Lemma 4.3, and clearly h(Si |Tj) ≥

0.
(b) Suppose Tj = τ.T ′

j ; then we apply C5 and proceed as in the previous case.
(c) Suppose Si = S′

i ‖ S′′
i with S′

i = x | a or S′
i = x | y; then by C7, C6, H, and

L1

Si | Tj ≈ (S′
i | Tj) ‖ S′′

i ≈H 0 ‖ S′′
i ≈ 0 ,

and clearly h(Si | Tj) ≥ h(0).
(d) Suppose Tj = T ′

j ‖ T ′′
j with T ′

j = x | a or T ′
j = x | y; then Si | Tj ≈ Tj | Si

by C5 and we can proceed as in the previous case.
(e) Suppose Si = a.S′

i and Tj = b.T ′
j .

If b 6= a, then Si | Tj ≈ 0 by C3 and h(Si | Tj) ≥ h(0).
On the other hand, if b = a, then Si | Tj ≈ τ.(S′

i ‖ T ′
j) by C2, and, since

h(S′
i) < h(Si) ≤ h(Q) and h(T ′

j) < h(Ti) ≤ h(R), it follows that S′
i‖T ′

j ≺ P.
So, by the induction hypothesis there exists an H-normal form N such that
S′

i ‖ T ′
j ≈H N and h(S′

i ‖ T ′
j) ≥ h(N). Then clearly τ.N is an H-normal

form such that Si | Tj ≈H τ.N and h(Si | Tj) ≥ h(τ.N).
(f) Suppose Si = a.S′

i and Tj = x ‖ T ′
j . Then

a.S′
i | (x ‖ T ′

j) ≈ a.(0 ‖ S′
i) | (x ‖ T ′

j) (by P4, P3 in Lemma 2.10)

≈ (a ‖ S′
i) | (x ‖ T ′

j) (by L2)

≈ (x | a) ‖ (S′
i ‖ T ′

j) (by Lemma 2.3 and C5).

Since h(S′
i) < h(Si) ≤ h(Q) and h(T ′

j) < h(Ti) ≤ h(R), it follows that
S′

i ‖ T ′
j ≺ P, and hence by the induction hypothesis there exists an H-

normal form N such that S′
i ‖ T ′

j ≈H N and h(S′
i ‖ T ′

j) ≥ h(N). Then
clearly (x | a) ‖ N is an H-normal form such that Si | Tj ≈H (x | a) ‖ N
and h(Si | Tj) ≥ h((x | a) ‖ N).

(g) If Si = x ‖ S′
i and Tj = a.T ′

j , then the proof is analogous to the previous
case.

(h) Suppose Si = x ‖ S′
i and Tj = y ‖ T ′

j . Then, by the derived equation C8
(see Lemma 2.3)

Si | Tj ≈ (x | y) ‖ (S′
i ‖ T ′

j) .

Since h(S′
i) < h(Si) ≤ h(Q) and h(T ′

j) < h(Ti) ≤ h(R), it follows that
S′

i ‖ T ′
j ≺ P, and hence by the induction hypothesis there exists an H-

normal form N such that S′
i ‖ T ′

j ≈H N and h(S′
i ‖ T ′

j) ≥ h(N). Then
clearly (x | y) ‖ N is an H-normal form such that Si | Tj ≈H (x | y) ‖ N
and h(Si | Tj) ≥ h((x | y) ‖ N).

(7) If P = Q ‖ R, then P ≈ Q ‖ R + R ‖ Q + Q | R. We can now proceed as in
case 5 to show that for Q ‖ R and R ‖ Q there exist H-normal forms N1 and
N2, respectively, such that Q ‖ R ≈H N1, R ‖ Q ≈H N2, h(Q ‖ R) ≥ h(N1)
and h(R ‖ Q) ≥ h(N2). Furthermore, we can proceed as in case 6 to show
that for Q | R there exists an H-normal form N3 such that Q | R ≈H N3

and h(Q | R) ≥ h(N3). Then N1 + N2 + N3 is an H-normal form such that
P ≈H N1 + N2 + N3 and h(P) ≥ h(N1 + N2 + N3).
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We proceed to establish that for every two H-normal forms N1 and N2 there
exists a valuation ∗ : V → Ph such that

if [[N1]]∗ = [[N2]]∗, then N1 ≈H N2. (4)

The distinguishing valuations ∗ will have a slightly more complicated definition
than before, because of the more complicated notion of normal form.

As in the previous section, the definition of ∗ is parametrised with a natural
number W . Since | may now occur in H-normal forms, we also need to make sure
that whatever process ∗ assigns to variables has sufficient communication abilities.
To achieve this, we also parametrise ∗ with a finite subset A′ = {a1, . . . , an} of A
that is closed under the bijection .̄ on A. (Note that every finite subset of A has a
finite superset with the aforementioned property.) Based on W and A′ we define
the valuation ∗ : V → Ph by

∗(x) = a1.ϕ(1·pxq) + · · ·+ an.ϕ(n·pxq) .

We shall prove that ∗ satisfies Eqn. (4) if the actions occurring in N1 and N2 are in
A′ ∪ {τ} and the widths of N1 and N2, defined below, do not exceed W . We must
also be careful to define the injection pq in such a way that the extra factors 1, . . . , n
in the definition of ∗ do not interfere with the numbers assigned to variables; we
let pq denote an injection

pq : V → {m : m a prime number such that m > n and m > W}

that associates with every variable a prime number greater than the cardinality of
A′ and greater than W .

The definition of width also needs to take into account the cardinality of A′ to
maintain that the maximal branching degree in [[N]]∗ does not exceed w(N).

Definition 4.5. We define the width w(N) of an H-normal form N as follows:

(1) if N = 0, then w(N) = 0;
(2) if N = N1 + N2, then w(N) = w(N1) + w(N2);
(3) if N = α.N ′, then w(N) = max(w(N ′), 1);
(4) if N = x ‖ N ′, then w(N) = max(w(N ′), n);
(5) if N = (x | a) ‖ N ′, then w(N) = max(w(N ′), 1); and
(6) if N = (x | y) ‖ N ′, then w(N) = max(w(N ′), n).

Lemma 4.6. For every H-normal form N, the branching degree of [[N]]∗ is at
most w(N).

Proof. Structural induction on N.

Lemma 4.7. Let S be a simple H-normal form, let α ∈ Aτ , and let p be a process
such that [[S]]∗

α−−→ p. Then the following statements hold:

(1 ) if S = β.N , then α = β and p = [[N ]]∗;
(2 ) if S = x ‖ N , then α = ai and p = ϕi·pxq ‖ [[N]]∗ for some i ∈ {1, . . . , n};
(3 ) if S = (x |a)‖ N , then α = τ and p = ϕi·pxq‖ [[N]]∗ for the unique i ∈ {1, . . . , n}

such that a = ai; and
ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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(4 ) if S = (x | y) ‖ N , then α = τ and p = ϕi·pxq ‖ ϕj·pyq ‖ [[N]]∗ for some i, j ∈
{1, . . . , n} such that ai = aj.

As in the previous section, we distinguish H-normal forms by classifying their
residuals according to the number of parallel components with a branching de-
gree that exceeds W . Again, we say that a process p is of type n (n ≥ 0) if its
unique parallel decomposition contains precisely n parallel prime components with
a branching degree larger than W .

Corollary 4.8. Let S be a simple H-normal form such that w(S) ≤ W and
such that the actions occurring in S are included in A′ ∪ {τ}.

(1 ) If S = α.N, then the unique residual of [[S]]∗ is of type 0.
(2 ) If S = x ‖ N, then all residuals of [[S]]∗ are of type 1.
(3 ) If S = (x | a) ‖ N, then the unique residual of [[S]]∗ is of type 1.
(4 ) If S = (x | y) ‖ N, then all residuals of [[S]]∗ are of type 2.

Proof. On the one hand, by Lemma 4.6, in each case [[N ]]∗ has a branching
degree of at most w(N) ≤ w(S) ≤ W , and hence, by Lemma 2.13, its unique parallel
decomposition cannot contain parallel prime components with a branching degree
that exceeds W . On the other hand, by Lemmas 2.14(1) and 2.14(3), the processes
ϕi·pxq and ϕj·pyq are parallel prime and have a branching degree that exceeds W .
Further note that, since the assumption on CCS communication functions that
a 6= a implies that i 6= j, the processes ϕi·pxq and ϕj·pyq are distinct. Using these
observations it is straightforward to establish the corollary as a consequence of
Lemma 4.7.

Theorem 4.9. For every two H-normal forms N1, N2 such that w(N1),w(N2) ≤
W and such that the actions occurring in N1 and N2 are included in A′ ∪ {τ} it
holds that [[N1]]∗ = [[N2]]∗ only if N1 ≈ N2 modulo A1–A4, C5.

Proof. By Lemma 2.6 we may assume that N1 and N2 are summations of
collections of simple H-normal forms. We assume [[N1]]∗ = [[N2]]∗ and prove that
then N1 ≈ N2 modulo A1–A4, C5, by induction on the sum of the heights of N1

and N2.
We first prove that for every syntactic summand S1 of N1 there is a syntactic

summand S2 of N2 such that S1 ≈ S2 modulo A1–A4, C5. To this end, let S1 be an
arbitrary syntactic summand of N1; we distinguish cases according to the syntactic
form of S1.

(1) Suppose S1 = α.N ′
1; then [[S1]]∗

α−−→ [[N ′
1]]∗. Hence, since [[N1]]∗ = [[N2]]∗, there

exists a syntactic summand S2 of N2 such that [[S2]]∗
α−−→ [[N ′

1]]∗. By Lemma 4.6
the branching degree of [[N ′

1]]∗ does not exceed W , so [[S2]]∗ has a residual
of type 0, and therefore, by Corollary 4.8, there exist β ∈ Aτ and an H-
normal form N ′

2 such that S2 = β.N ′
2. Moreover, since [[S2]]∗

α−−→ [[N ′
1]]∗ it

follows by Lemma 4.7(1) that α = β and [[N ′
1]]∗ = [[N ′

2]]∗. Hence, by the
induction hypothesis, we conclude that N ′

1 ≈ N ′
2 modulo A1–A4, C5. So

S1 = α.N ′
1 ≈ β.N ′

2 = S2.
(2) Suppose S1 = x‖ N ′

1; then [[S1]]∗
a1−−→ϕpxq ‖ [[N ′

1]]∗. Hence, since [[N1]]∗ = [[N2]]∗,
there exists a summand S2 of N2 such that [[S2]]∗

a1−−→ϕpxq ‖ [[N ′
1]]∗. Since S2 has
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a residual of type 1, by Corollary 4.8(1, 4) it is not of the form α.N ′
2 for some

α ∈ Aτ and H-normal form N ′
2, or of the form (y | z) ‖ N ′

2 for some y, z ∈ V
and H-normal form N ′

2. Moreover, S2 cannot be of the form (y | a) ‖ N ′
2 for

some y ∈ V and a ∈ A, for then by Lemma 4.7(3) [[S2]]∗
α−−→ p would imply

α = τ 6= a1. So, there exists a variable y and an H-normal form N ′
2 such that

S2 = y ‖ N ′
2. Now, since [[S2]]∗

a1−−→ ϕpxq ‖ [[N ′
1]]∗, it follows by Lemma 4.7(2)

that

ϕpxq ‖ [[N ′
1]]∗ = ϕpyq ‖ [[N ′

2]]∗ . (5)

Since [[N ′
1]]∗ and [[N ′

2]]∗ are of type 0, we conclude that the unique decomposition
of [[N ′

1]]∗ does not contain ϕpyq and the unique decomposition of [[N ′
2]]∗ does not

contain ϕpxq. Hence, from (5) it follows that ϕpxq = ϕpyq and [[N ′
1]]∗ = [[N ′

2]]∗.
From the former we conclude by the injectivity of p.q that x = y, and from the
latter we conclude by the induction hypothesis that N ′

1 ≈ N ′
2 modulo A1–A4,

C5. So S1 = x ‖ N ′
1 ≈ y ‖ N ′

2 = S2.

(3) Suppose S1 = (x | a)‖ N ′
1, and let i be such that a = ai. Then [[S1]]∗

τ−−→ϕi·pxq ‖
[[N ′

1]]∗. Hence, since [[N1]]∗ = [[N2]]∗, there exists a summand S2 of N2 such that

[[S2]]∗
τ−−→ ϕi·pxq ‖ [[N ′

1]]∗ .

Since S2 has a residual of type 1, by Corollary 4.8(1,4) it is not of the form α.N ′
2

for some α ∈ Aτ and H-normal form N ′
2, or of the form (y | z) ‖ N ′

2 for some
y, z ∈ V and H-normal form N ′

2. Moreover, S2 cannot be of the form y ‖ N ′
2

for some y ∈ V, for then by Lemma 4.7(2) [[S2]]∗
α−−→ p would imply α = ak 6= τ

for some k ∈ {1, . . . , n}. So, there exist a variable y, action b ∈ A′ and an H-
normal form N ′

2 such that S2 = (y | b)‖ N ′
2. Now, since [[S2]]∗

τ−−→ϕi·pxq ‖ [[N ′
1]]∗,

it follows by Lemma 4.7(3) that

ϕi·pxq ‖ [[N ′
1]]∗ = ϕj·pyq ‖ [[N ′

2]]∗ , (6)

with j ∈ {1, . . . , n} such that b = aj . By Lemma 2.14(1,3) the processes ϕi·pxq
and ϕj·pyq are parallel prime and have branching degrees that, since pxq > W
and pyq > W , exceed W . Therefore, since [[N ′

1]]∗ and [[N ′
2]]∗ are of type 0, it

follows that the unique decomposition of [[N ′
1]]∗ does not contain ϕj·pyq and the

unique decomposition of [[N ′
2]]∗ does not contain ϕi·pxq. Hence, by (6) we have

that ϕi·pxq = ϕj·pyq and [[N ′
1]]∗ = [[N ′

2]]∗. From ϕi·pxq = ϕj·pyq, by Lemma 2.14(2)
we infer that i ·pxq = j ·pyq. Since pxq and pyq are prime numbers greater than i
and j, it follows that i = j, whence a = b, and pxq = pyq, whence x = y by the
injectivity of p.q. From [[N ′

1]]∗ = [[N ′
2]]∗ we conclude by the induction hypothesis

that N ′
1 ≈ N ′

2 modulo A1–A4, C5. So S1 = (x | a) ‖ N ′
1 ≈ (y | b) ‖ N ′

2 = S2.

(4) Suppose S1 = (x | y) ‖ N ′
1. Then [[S1]]∗

τ−−→ ϕi·pxq ‖ ϕj·pyq ‖ [[N ′
1]]∗ with i, j ∈

{1, . . . , n} such that ai = aj . Hence, since [[N1]]∗ = [[N2]]∗, there exists a
summand S2 of N2 such that

[[S2]]∗
τ−−→ ϕi·pxq ‖ ϕj·pyq ‖ [[N ′

1]]∗ .

Since S2 has a residual of type 2, by Corollary 4.8 there exist x′, y′ ∈ V and an
H-normal form N ′

2 such that S2 = (x′ | y′) ‖ N ′
2. Now, since [[S2]]∗

τ−−→ ϕi·pxq ‖
ACM Transactions on Computational Logic, Vol. V, No. N, August 2007.
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ϕj·pyq ‖ [[N ′
1]]∗ it follows by Lemma 4.7(4) that for some k, l ∈ {1, . . . , n} such

that ak = al

ϕi·pxq ‖ ϕj·pyq ‖ [[N ′
1]]∗ = ϕk·px′q ‖ ϕl·py′q ‖ [[N ′

2]]∗ . (7)

By Lemma 2.14(1,3) the processes ϕi·pxq, ϕj·pyq, ϕk·px′q and ϕl·py′q are parallel
prime and have branching degrees that exceed W . Therefore, since [[N ′

1]]∗ and
[[N ′

2]]∗ are of type 0, it follows that the unique decomposition of [[N ′
1]]∗ does

not contain ϕk·px′q and ϕl·py′q, and the unique decomposition of [[N ′
2]]∗ does not

contain ϕi·pxq and ϕj·pyq. Hence, from (7) we infer that [[N ′
1]]∗ = [[N ′

2]]∗ and either
ϕi·pxq = ϕk·px′q and ϕj·pyq = ϕl·py′q, or ϕi·pxq = ϕl·py′q and ϕj·pyq = ϕk·px′q. From
the former we conclude by the induction hypothesis that N ′

1 ≈ N ′
2 modulo A1–

A4, C5; from the latter it follows reasoning as in case 3 that either x = x′ and
y = y′, or x = y′ and y = x′. In both cases, S1 = (x | y)‖ N ′

1 ≈ (x′ | y′)‖ N ′
2 =

S2.

We have established that every syntactic summand of N1 is provably equal to a
syntactic summand of N2. Similarly, it follows that every syntactic summand of
N2 is provably equal to a syntactic summand of N2. Hence, modulo A1–A4, C5
N1 ≈ N1 + N2 ≈ N2, and the proof of the theorem is complete.

Corollary 4.10. For all process terms P and Q, P ≈H Q if, and only if,
P ↔h Q, and hence the axioms generated by the schemata in Table II together with
the axiom H consitute an equational base for Ph .

Proof. The implication from left to right is Proposition 4.1. To prove the
implication from right to left, suppose P ↔h Q. Then, by Lemma 4.4 there exist
H-normal forms N1 and N2 such that P ≈H N1 and Q ≈H N2; from P ↔h Q
we conclude by Proposition 4.1 that N1 ↔h N2. Now choose W large enough
such that w(N1),w(N2) ≤ W , and pick a finite set A′ that is closed under .̄ and
includes all of the actions occurring in N1 and N2. From N1 ↔h N2 it follows that
[[N1]]∗ = [[N2]]∗, and hence, by Theorem 4.9 N1 ≈ N2. We can therefore conclude
P ≈H N1 ≈ N2 ≈H Q.

Corollary 4.11. The equational theory of Ph is decidable.

Proof. From the proof of Lemma 4.4 it is easy to see that there exists an
effective procedure that associates with every process term a provably equivalent
H-normal. Furthermore, from Definition 4.5 it is clear that, given a set A′, every
H-normal form has an effectively computable width. We now sketch an effective
procedure that decides whether a process equation P ≈ Q is valid:

(1) Compute H-normal forms N1 and N2 such that P ≈H N1 and Q ≈H N2.
(2) Determine the least set A′ = {a1, . . . , an} of actions that is closed under .̄ and

contains the actions in A occurring in N1 and N2.
(3) Compute w(N1) and w(N2) given A′, and define W as their maximum.
(4) Determine the (finite) set V ′ of variables occurring in N1 and N2; define an

injection

p.q : V ′ → {m ∈ ω : m a prime number such that m > n and m > W} ,
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and a substitution ∗ : V ′ → P0 that assigns to a variable x in V ′ the closed
process term

a1.ϕ1·pxq + · · ·+ an.ϕn·pxq .

(Again, we interpret Eqn. (1) as defining a sequence of closed process terms
instead of a sequence of processes.)

(5) Let N∗
1 and N∗

2 be the results from applying ∗ to N1 and N2, respectively.
(6) Determine if the closed process terms N∗

1 and N∗
2 are bisimilar; if they are,

then the process equation P ≈ Q is valid in Ph , and otherwise it is not.

5. CONCLUDING REMARKS

We have discussed the equational theories of two process algebras arising from the
fragment of CCS without recursion, restriction and relabelling. Moller [1990] has
proved that these equational theories are not finitely based. We have shown that if
the set of actions is finite and the auxiliary operators left merge and communication
merge from Bergstra and Klop [1984] are added, then finite equational bases can be
obtained. They consist of (adaptations of) axioms appearing already in [Bergstra
and Klop 1984; Bergstra and Tucker 1985; Hennessy and Milner 1985].

Denote by E the set of the axioms generated by the schemata in Table II on p. 6
together with the axiom x | (y | z) ≈ 0, which expresses that the communication
mechanism conforms to the handshaking paradigm. Our main result (Corollary 4.10)
establishes that E is an equational base for the algebra Ph . Note that an equational
base for an algebra is an equational base for every extension of that algebra in which
the axioms hold.1 So, as a consequence of our result, E is in fact an equational
base, e.g., for every algebra of process graphs modulo bisimulation endowed with
a distinguished element 0 and operations α. (α ∈ Aτ ), +, ‖, ‖ and | according to
their standard interpretations. In particular it is clear from the preceding remarks
that, although the algebra Ph contains only finite processes, this is not essential
for our result.

As a special case of Corollary 4.10, the axiom system E is ground-complete with
respect to bisimilarity (i.e., ≈H coincides with ↔h on the set of closed terms P0).
Consequently, the algebra Ph is isomorphic with the initial algebra associated with
E , i.e., the quotient of the set of closed terms modulo ≈H. It also follows from
Corollary 4.10 that the axiom system E is ω-complete. For suppose that every
closed instance of the equation P ≈ Q is derivable; then the equation itself is valid
in the initial algebra. By ground-completeness, it follows that P ≈ Q is valid in
Ph , and hence, by Corollary 4.10, it is derivable from E .

As a stepping stone towards our main result, we first considered the process al-
gebra Pf with a trivial communication mechanism. An equational base for it is
obtained if the axiom x | y ≈ 0 is added to the axioms generated by the schemata
in Table II on p. 6 (Corollary 3.9). The auxiliary operator | is then actually super-
fluous. For we can replace P1 by x ‖ y ≈ x ‖ y + y ‖ x, and, moreover, transform
every equational proof into a proof in which | does not occur by replacing every oc-
currence of a subexpression P |Q by 0. It follows that the axiomatisation consisting

1The algebra B is an extension of the algebra A if there exists an embedding, i.e., an injective
homomorphism, from A into B.
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of A1–A4, L1–L5, and the simplified axiom P1 is ω-complete. Thus, we generalise
the result of Moller [1989], who establishes ω-completeness of the axiomatisation
under the condition that the set of actions is infinite; according to our result the
condition can be omitted.

The proofs that the presented axiomatisations are indeed complete for the al-
gebras Pf and Ph proceed in two steps. The first step consists of identifying an
appropriate collection of normal forms and proving that every process term is prov-
ably equal to a normal form. The second step consists of associating with every
pair of normal forms a distinguishing valuation, i.e., a valuation such that if the
two normal forms are equal under this particular valuation, then the normal forms
are provably equal. In both cases considered in this article, the first step is fairly
straightforward. The second step makes essential use of the property of unique
parallel decomposition that holds in the algebras Pf and Ph .

We now proceed to discuss the extension of our results with restrictions and
relabellings, and recursion, and then we comment on the complications that would
arise when trying to adapt our proofs for CCS modulo observation congruence.

5.1 Restrictions and Relabellings

In the case of the trivial communication function, restrictions distribute over left
merges. If the standard axioms for restriction (see, e.g., [Milner 1980]) and the
axiom (x ‖ y)\L ≈ x\L ‖ y\L are added to the axioms in Sect. 3, then restrictions
can be pushed all the way down to the variables in a process term. Thus, only
a mild adaptation of the notion of F-normal form (cf. Definition 3.2 on p. 10) is
needed, assuming that there is a restriction around the variable x in x ‖ N. It is
proved by van Tilburg [2007] that then for any pair of normal forms there exists a
distinguishing valuation, which is a refinement of the distinguishing valuation used
in this paper. We expect that a similar result can be obtained for the extension
with relabellings.

In the case of the handshaking communication function, it is much less obvious
what would be an appropriate notion of normal form in the presence of restrictions
and relabellings. The reason is that in this case restrictions and relabellings do
not distribute over parallel compositions, left merges and communication merges.
To implement the two-step approach to proving completeness, it will be necessary
to add further axioms explaining the relation between parallel compositions (and
left merges and communication merges) on the one hand and restrictions and rela-
bellings on the other hand. We refer to [van Tilburg 2007] for (an incomplete set
of) additional axioms, and for a more elaborate discussion of the complexity arising
from the nondistributivity of restrictions over parallel compositions.

5.2 Recursion

One way of including recursion in CCS is in the form of the fixed-point construction
µX. The construction µX binds the free occurrences of the process variable X in
the process expression to which it is applied. As a consequence, it does not give rise
to a sensible operation on the algebra of closed process expressions modulo strong
bisimilarity. Thus, the type of question considered in this paper (Is the algebra
of closed process expressions modulo strong bisimilarity finitely based?) does not
make sense if recursion is added in the form of a fixed-point construction.
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However, the closely related question of whether a certain proof system for deriv-
ing equations between process expressions is ω-complete does make sense. In fact,
it can be argued that the inference system for the fragment of CCS consisting of 0,
action prefixing, choice and the fixed-point construction presented by Milner [1984]
is ω-complete: whenever all closed substitution instances of an equation with free
occurrences of process variables are derivable, then the equation itself is derivable
too. Milner’s inference system is based on equational logic, but it has an additional
inference rule schema expressing the unique existence of certain fixed points, and
it has axiom schemata with metavariables ranging over process expressions each
generating infinitely many axioms. Due to the presence of the variable-binding
construction µX, the metavariables cannot be treated as real algebraic variables
(ranging over the elements of some process algebra). Thus, any axiomatisation in-
volving the µX construction will be inherently infinite. Furthermore, [Sewell 1994]
has proved that if λ-calculus is used to formally express the axiom schemata in a
finite manner, then a finite axiomatisation not requiring the extension of equational
logic with additional inference rules is impossible, even when restricting to closed
µ-expressions.

Nevertheless, it is an interesting open question how to obtain a (finitely presented)
ω-complete inference system for a fragment of CCS including both parallelism and
the fixed-point construction. The extension of Milner’s inference system with the
axioms for parallelism discussed in this paper could be taken as a natural starting
point, but most likely, it will be necessary to add further axioms explaining the
interplay of the fixed-point construct and parallel composition. The proof that the
resulting inference system is indeed ω-complete, will in any case not be a straight-
forward extension of the proof of Milner [1989a], nor of our proof in the present
paper. The proof of Milner [1989a] for the regular fragment of CCS, on the one
hand, crucially depends on the property that all behaviours defined by an expres-
sion in the considered fragment are finite-state, which is lost by the addition of
parallelism. Our proof for the fragment without recursion, on the other hand, cru-
cially depends on the property of unique parallel decomposition, which is lost by
the addition of recursion.

An alternative inference system for reasoning about equality in CCS is discussed
by Christensen et al. [1994]. They consider a fragment of CCS that includes paral-
lelism, relabelling, restriction and recursion, the latter in the form of a facility for
specifying processes by means of a family of recursive process equations. The infer-
ence system is sequent based and presupposes a recursive process specification in
standard form (all right-hand sides of process equations are sums of prefixes of paral-
lel compositions of variables). In addition, to transform any restriction/relabelling-
free or any communication-free process specification into standard form, a collection
of equational axioms is provided; it includes a variant of the Expansion Law to deal
with parallel compositions.

The sound and complete inference system from Christensen et al. [1994] is for
closed terms only; equations do not contain variables ranging over arbitrary pro-
cesses.2 Note that when variables are included in the syntax, the notion of stan-

2The syntax includes the notion of process variable, but it is, in fact, a constant symbol defined
by a process equation.
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dard form becomes considerably more complicated; in particular, it should allow
for unguarded occurrences of parallel compositions (cf. our notion of normal form
in Sect. 4).

Baeten and Bravetti [2005] consider a very rich process calculus that includes all
the operations of ACP and CCS, and has a facility for specifying processes by means
of a family of recursive process equations. They present an inference system for
their calculus modulo observation congruence. It is based on equational logic and
generalises the inference system of Milner [1989b] for the fragment of CCS consisting
of 0, action prefixing, choice and the fixed-point construction. Baeten and Bravetti
[2005] prove that their inference system is ground-complete for a fragment of their
calculus that includes parallel compositions and recursion, but disallows process
variables at the right-hand side of process equations to occur within the scope of
parallel compositions. They do not consider ω-completeness.

5.3 Observation congruence

It would be interesting to try and find also a finite equational base for CCS mod-
ulo observation congruence [Milner 1989a]. Of course, for a start, Milner’s τ -laws
should be added. Then, it will be a challenge to adapt our proofs, if at all pos-
sible. For instance, the property of unique parallel decomposition takes a more
complicated shape (see [Moller 1989]). Also, our distinguishing valuation would
need nontrivial adaptation. Naturally, we can no longer use τ to get a process with
a distinguishingly high branching degree or long trace; we should use some observ-
able action a for this. A further complication arises, for the equation x | b ≈ x | b+a
is not valid (take, e.g., b for x), while it does hold under any valuation ∗ such that
∗(x) can communicate with b and then proceed as a process with a summand a
(simply replacing τ by a in the valuation we used in Sect. 4 would yield such a
valuation). So, in general, the distinguishing valuation cannot have summands at
depth 1 that also appear in the normal forms that should be distinguished.
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