
Innovations Syst Softw Eng manuscript No.
(will be inserted by the editor)

Towards Model Checking Executable UML Specifications
in mCRL2

Helle Hvid Hansen · Jeroen Ketema · Bas Luttik

· MohammadReza Mousavi · Jaco van de Pol

Abstract We describe a translation of a subset of Ex-

ecutable UML (xUML) into the process algebraic spec-

ification language mCRL2. This subset includes class
diagrams with class generalisations, and state machines

with send and change events. The choice of these xUML

constructs is dictated by their use in the modelling of

railway interlocking systems.

The long term goal is to verify safety properties

of interlockings modelled in xUML using the mCRL2

and LTSmin toolsets. Initial verification of an interlock-
ing toy example demonstrates that the safety proper-

ties of model instances depend crucially on the run-to-

completion assumptions.

Keywords software verification and validation,

specification languages, model checking, executable

UML, process algebra

1 Introduction

We translate a subset of Executable UML (xUML) [15]

into the formal specification language mCRL2 [12] with

the purpose of verifying safety properties. The xUML
constructs covered include class diagrams with class

generalisations and object associations, and state ma-

chines which consist of composite and concurrent states

and have signal and change events.

The mCRL2 language extends the process algebra

ACP [3] with abstract data types. Its process algebraic

Helle Hvid Hansen · Bas Luttik · MohammadReza Mousavi
Eindhoven University of Technology, Eindhoven,
the Netherlands.
E-mail: {h.h.hansen,s.p.luttik,m.r.mousavi}@tue.nl

Jeroen Ketema · Jaco van de Pol
University of Twente, Enschede, the Netherlands.
E-mail: {j.ketema,j.c.vandepol}@ewi.utwente.nl

foundation makes mCRL2 suitable for specifying dy-

namic, concurrent behaviour. Moreover, it enables the

use of compositional verification methods and provides
a clear, formal semantics [12]. Our use of mCRL2 is

strongly motivated by the availability of powerful ver-

ification tools: The mCRL2 toolset1 provides for ex-

plicit model checking, state space analysis and simula-
tion. Symbolic model checking is provided for by the

LTSmin toolset2 [4,5].

Our work is part of INESS3, an EC FP7-funded

project, which aims at developing uniform specifica-

tions for future railway interlockings. Briefly, an in-
terlocking prevents conflicting routes from being set

by monitoring and controlling the operation of signals,

points and other track side elements. Here, a “route” is

the concept used by railway signallers to guide trains
over arrangements of tracks, points etc. The high-level

safety requirements of interlockings are to ensure that

trains neither collide nor derail. In INESS, the func-

tional requirements of interlockings are expressed as an

xUML model, and one of the project tasks is to formally
verify safety properties of such xUML interlocking mod-

els. Several approaches to this task are explored within

the project. Our approach is based on model checking

using mCRL2, and the current paper provides a first
step by presenting a translation from xUML to mCRL2.

As in most real-world applications, the xUML mod-

els arising from the interlocking domain are of consider-

able size. One of our secondary aims in the current pa-

per is therefore to investigate the feasibility of perform-
ing verification on the models resulting from transla-

tion. Moreover, we would like to explore the kind of be-

haviours contained in xUML interlocking models, and

1 http://www.mcrl2.org
2 http://fmt.cs.utwente.nl/tools/ltsmin/
3 http://www.iness.eu

2

expose any kind of semantic assumption that is either

under-specified or beyond the scope of the model. To

this end we also report on a small experiment using

a toy interlocking specification, which was kindly pro-

vided to us by KnowGravity Inc.4 This toy specification
is almost as simple as it gets, but it shows, in partic-

ular, how different run-to-completion assumptions give

rise to a wide variety of model sizes and observable

traces.

The rest of this paper is organised as follows. In
Section 2, we describe and motivate the use of model

checking in the verification of xUML interlocking mod-

els. In Section 3, we introduce the xUML constructs

covered by our translation, and discuss different types
of run-to-completion assumptions. In Section 4, we de-

scribe our translation to mCRL2 and, in Section 5, we

expose some issues related to model checking xUML

models and report on our observations made in trans-

lating and verifying a toy xUML interlocking model.
Finally, we discuss related work and conclude in Sec-

tions 6 and 7, respectively.

2 Model Checking xUML Interlocking Models

In model checking [2], a formal model describes all pos-
sible executions of the system being modelled, and ver-

ification is carried out by an exhaustive state space ex-

ploration of this model. In our case, we obtain a formal

model as the mCRL2 translation of an instance of the

xUML model. More precisely, a model is obtained by in-
stantiating the classes and associations of the xUML in-

terlocking model according to a particular track layout.

A track layout is a configuration of physical and logi-

cal railway elements such as tracks, points, signals and
routes (see Section 5.1 for an example). Model checking

of xUML interlocking models is thus always carried out

with respect to a particular instantiation of the model.

Consequently, model checking cannot prove that all in-

stances of the xUML model satisfy a given set of safety
requirements.

In spite of the above limitation, model checking can

provide valuable information: First, for a fixed track

layout, verification is exhaustive, in contrast with sim-

ulation and testing. Secondly, the violation of a safety
property in a particular model instance shows that the

xUML model is not correct in general; traces that wit-

ness this undesired behaviour can be used to improve

the model. Finally, we can increase confidence in the
correctness of the xUML model by verifying partic-

ularly significant model instances. For example, Pro-

4 http://www.knowgravity.com

Rail5, the Dutch railway infrastructure manager, has

designed three track layouts that together are supposed

to capture all features of track layouts found in the

Netherlands. Proving that the model instances arising

from these track layouts satisfy certain properties would
increase the confidence that the properties also hold for

other instances.

3 Executable UML

Executable UML (xUML) [15] consists of UML class

diagrams, UML state machines and an action language

which complies with the UML action semantics. There
are several action languages in use; we refer to [15] for

a — somewhat limited — overview.

The xUML models to be translated are expressed

in the Cassandra/xUML dialect [14], as developed by

KnowGravity. We briefly describe the modelling con-
structs relevant to us, following the UML 2.2 standard

[17] where possible, and Cassandra/xUML otherwise.

3.1 Constructs

In class diagrams, we allow for class generalisations (in-

heritance) and associations between classes (specifying

which class instantiations may reference each other).
Association classes, however, may not occur, i.e., no

objects may be related to instances of associations.

State machines may contain concurrent and com-

posite states (AND- and OR-states) and initial pseudo-

states. We currently do not translate history and final
pseudo-states. All UML-defined transitions may occur

as far as they involve the allowed (pseudo-)states. A

transition is labelled with a trigger and a sequence of

actions, both of which may be empty. A trigger must
be a signal event or a change event.

Signals are communicated asynchronously. A signal

can be sent either by an object within the system (an

internal signal) or by the environment (an external sig-

nal). Each state machine is accompanied by an event
pool which stores received signals until dispatched, i.e.,

until they are taken from the event pool by the state

machine [17, Section 13.3.25].

A change event [17, Section 13.3.7] is an event which

is generated when a certain condition becomes true.
The condition typically refers to the states of objects

referenced through associations. Contrary to the other

modelling constructs relevant to us, the UML 2.2 se-

mantics of change events [17, Section 13.3.7] is rather
under-specified. For example, it is not detailed when

5 http://www.prorail.nl

3

a change event is evaluated or how a change event is

detected. Also, implementations may or may not let

change events remain in case their condition becomes

false again after having been true. In Cassandra/xUML,

change events are denoted by when(cond), where cond

is a boolean expression. Given a state machine X with a

transition t labelled by a change event when(cond), the

Cassandra/xUML simulator adds an event ewhen(cond)

to the event pool of X whenever cond changes from
false to true (personal communication with KnowGrav-

ity). The event ewhen(cond) triggers transition t once dis-

patched and remains in the event pool even in case cond

becomes false before ewhen(cond) is dispatched.

If a dispatched event is not the trigger of an en-

abled transition, the event is discarded. Otherwise, the

actions labelling the transition are carried out. The only

type of action we currently allow is the sending of a sig-
nal [17, Section 11.3.45], where the target may either

be an object within the system or the environment.

3.2 Run-to-Completion

An important aspect of concurrency is the interleav-

ing of process executions. Run-to-completion (RTC) as-

sumptions can help reduce the complexity of a concur-
rent system. A local RTC step of a state machine X

consists of processing all actions labelling a transition

triggered by some event. In the literature, three differ-

ent levels of RTC seem to be considered (no fixed ter-

minology seems to exists and the names are our own):

Local RTC : A local RTC step of a state machine X

must be completed before the next event can be

dispatched to X .

Atomic RTC : While a state machine X is executing a
local RTC step, no event can be dispatched to any

of the state machines in the system.

Global RTC : External signals may only be dispatched

to the system in case all event pools are empty and

there are no remaining change events.

Local RTC is required by the UML specification [17,

Section 15.3.12]. It ensures that a state machine is in a

well-defined configuration before the next event is dis-

patched. With atomic RTC, local RTC steps in different

state machines may not be interleaved (which is not for-
bidden by local RTC). Global RTC separates internal

system interactions (between objects) from interactions

with the environment. Note that atomic RTC implies

local RTC, but that global RTC implies neither local
nor atomic RTC. Atomic RTC is used in [20,9]. The

Cassandra/xUML simulator employs both atomic RTC

and global RTC [14, Section 4.3.5].

4 Translation into mCRL2

The mCRL2 specification language [12] extends the pro-

cess algebra ACP [3] with abstract datatypes, including

built-in types such as booleans, integers, and lists. New

structured data types can be defined using the struct

keyword. We currently use only enumerated data types,
for example,

sort Elt State = struct Ready | Not Ready .

Functions over sorts can be defined by giving equations.

The process specification language of mCRL2 allows

for the definition of basic actions with zero or more pa-

rameters. For example, act send, read : Message de-

fines the actions send and read which take a parameter
of type Message. Similarly, a process specification may

take parameters, for example,

proc Element(state : Elt State) .

Processes can be composed using sequential and paral-

lel composition and non-deterministic choice. Moreover,

actions can be hidden (turned into the silent action)

and blocked (disallowed). Synchronisation rules take

the form of so-called multi-actions a1 | a2 | . . . | an → c,
which specify that the actions a1, a2, . . . , an must syn-

chronise and the result of this multi-party synchronisa-

tion is the action c.

An mCRL2 specification consists of data type defi-
nitions, equations over the data types, process specifi-

cations and an initial process. The above process spec-

ification proc Element(state : Elt State) could, for

example, be initialised as init Element(Ready).

4.1 Translation

In our translation from xUML to mCRL2, each class

becomes a process specification. Each of these process

specifications consists of two parallel parts: One part
is the translation of the state machine associated with

the class, the other part formalises the event pool asso-

ciated with the state machine as a buffer process. The

buffer process essentially implements a queue. An event

is placed in the queue by a synchronous communication
between the sending process and the buffer process. The

sending process can be either the environment, another

process representing a state machine, or a process mon-

itoring change events (described at the end of this sec-
tion). Signals are dispatched on a FIFO basis through

synchronous communication between the buffer process

and the process representing a state machine.

4

Class diagrams. As mentioned in Section 3.1, we allow

for class generalisations and class associations. In our

translation, the first is dealt with by flattening the class

hierarchy; each superclass Y of a class X occurs only

once in this flattening, even in case there are several is-

a associations between X and Y in the class diagram.

Now, if X is a class with superclasses Y1, . . . , Yn, the

flattened class X ′ arising from X has all attributes of

X , Y1, . . . , Yn, and the state machine of X ′ is defined
as the concurrent composition of the state machines of

X, Y1, . . . , Yn.

Class associations are translated by defining an enu-
merated data type consisting of identifiers (depending

on the instantiation of the model) and supplementing

each mCRL2 representation of a class instance with one

parameter (of the enumerated type) for each of its as-
sociations.6 For example, if each instance of a class X

is associated with exactly one instance of a class Y ,

then the process specification of X will be of the form

proc X(. . . , id Y : Id, . . .), where Id is the enumerated

type consisting of identifiers.

State machines. The potential state configurations of a

state machine X are encoded as follows. For each non-
concurrent composite state (OR-state) S, we define an

enumerated type ancS states where ancS identifies S

in the state hierarchy. If S has substates P , . . . , Q,

then ancS states has members ancS substate P, . . . ,

ancS substate Q, and ancS substate nop. The pro-
cess specification of the state machine X is then sup-

plied with a parameter ancS state whose value repre-

sents the currently active substate of S. In particular,

the top state T of a state machine for a class is always
a non-concurrent state and gives rise to a parameter

T state. We refer to ancS state as a state parame-

ter. If S is not active, then ancS state has the value

ancS substate nop.

The configurations of a concurrent state S are not

modelled by parameters, as they are determined by

the state configurations of the (direct) substates of the
concurrent components of S (the Cartesian product of

these substates to be precise). To illustrate, consider

the state machine F in Figure 1 (transitions are unla-

belled as we only wish to illustrate how composite states
are treated). In Figure 2 we list the data type defini-

tions arising from F together with the declaration of

state parameters in the process specification of F (dis-

regarding any class attributes), and an initial process

corresponding to the initial state configuration.

6 We actually employ macro pre-processing of the mCRL2
specification before model checking. This is to avoid loop con-
structs when dealing with one-many and many-many associa-
tions.

Fig. 1 A state machine

sort F states = struct F substate G

| F substate N

| F substate nop;

sort F G H states = struct F G H substate I

| F G H substate J

| F G H substate nop;

sort F G K states = struct F G K substate L

| F G K substate M

| F G K substate nop;

proc F(F state : F states,

F G H state : F G H states,

F G K state : F G K states) = . . . ;

init F(F substate G,

F G H substate I,

F G K substate L);

Fig. 2 Translation of the state machine in Figure 1: data types
for representing states, state parameters and initialisation

Since we treat class generalisation by flattening, if a

class Y generalises a class X , then the process specifi-
cation of the state machine for X (which concurrently

composes the state machines for Y and X) will have

the state parameters arising from both X and Y . This

is completely analogous to the handling of concurrent

states within a state machine.

Transitions. Given the local RTC assumption, a pro-

cess specifying the state machine of a class X can ob-

tain an event from its buffer process (event pool) pre-

cisely when it is in a stable state, i.e., when no other
transition is currently being taken. One of the transi-

tions triggered by the obtained event is taken at random

(non-deterministic choice), assuming such a transition

exists. The actions labelling the chosen transition are
executed and the state parameters of the process are

updated to reflect the new state configuration. If no

transition is triggered by the event, then the event is

5

discarded, as allowed by the UML state machine se-

mantics [17, Section 15.3.12].

Change events. We implement change events by intro-

ducing a process for each such event. This process mon-
itors the value of the condition in the change event. For

example, if a state machine X has a transition from a

state S triggered by (in pseudo-notation)

when(P.state = T & Q.state = U) ,

where P and Q are state machines associated with X ,

then we create a process

when X S(P in state T : Bool, Q in state U : Bool) ,

and let P and Q communicate synchronously with the

monitor process whenever they enter or leave the states

T and U , respectively. This communication updates

the values of the boolean parameters P in state T and
Q in state U. When an update results in the condi-

tion changing from false to true, the monitor process

places a signal in the buffer of X . This signal remains

in the buffer of X even when the condition becomes

false again. Whence, at the moment the state machine
reacts to the event, the condition might no longer hold.

Concretely, the monitor process when X S described

above is specified as in Figure 3. The process defined

in the figure can either receive an update from state
machine P , represented by the action when upd P, or

from Q, represented by the action when upd Q. We ex-

plain communication with P , the case of Q is analogous.

The action when upd P carries a boolean data argument

b which indicates whether P entered or left state T .
The sum ensures that b can have either the value True

or False. Upon reception of when upd P(b), the pro-

cess checks whether P was not in the state T before

(!P in State T), that P is in the state T now (b) and
that Q is in state U (Q in State U). If these conditions

hold, a signal is put in the buffer of X (send when to X)

and the state of the monitor process is updated, written

as when X S(b, Q in state U), after which the process

is able to receive a state update again from either P

or Q. If one of the conditions does not hold, the state

of when X S is simply updated and again the process is

able to receive a state update again from either P or Q.

Architecture. We now summarise how the elements of
an xUML model are mapped onto the elements of an

mCRL2 specification: For each flattened class with as-

sociated state machine X , we define a process specifi-

cation proc X Complex(id : Id, . . .) consisting of the
parallel composition of X(id : Id, . . .), X buffer(id :

Id, . . .), and X wheni(id : Id, . . .) where i ranges over

the change events of X . The parameter id represents

proc when X S(P in state T : Bool, Q in state U : Bool) =
P

b: Bool .when upd P(b).
(

(!P in State T & b & Q in State U) →
send when to X.when X S(b, Q in state U)

⋄
when X S(b, Q in state U)

)
+
P

b: Bool .when upd Q(b).
(

(P in State T &!Q in State U & b) →
send when to X.when X S(P in state U, b)

⋄
when X S(P in state U, b)

)
;

Fig. 3 A monitor process for a change event

the unique identifier associated with an instance of the
represented class. The translation of the state machine

X is embodied by X, and the process X buffer repre-

sents the event pool. Each X wheni monitors one of the

change events occurring in the state machine associated

with X , as described earlier.
An instance of an xUML model defines, in addition

to the above, an enumerated type with object identi-

fiers and an appropriate initialisation consisting of the

parallel composition of the processes arising from the
objects in the instantiation, together with the required

synchronisation constraints.

5 Model Checking

From a model checking perspective the UML 2.2 se-

mantics presents us with two problems:

1. Any instance of an xUML model has an infinite state

space; this comes about, as UML 2.2 neither lim-

its the size of event pools nor limits the number of

events the instance may accept from the environ-

ment at any point in time.
2. Class instances may starve, i.e., a class instance

may have events in its event pool waiting to be dis-

patched, but the instance may never get its turn;

this comes about, as UML 2.2 does not impose any
fairness restrictions concerning event dispatching.

Since our translation to mCRL2 faithfully follows the

UML 2.2 semantics, the obtained mCRL2 models will
also have both infinite state spaces and leave room for

starvation. To alleviate these problems, we propose two

constraints on our mCRL2 models:

A. Limit the size of buffers. This restriction will over-

come the first of the above problems. However, as

6

Fig. 4 Class diagram for Micro interlocking

Fig. 5 Track layout for an instance of the Micro model

an object may send several signals to itself during

a local RTC step (cf. Section 3.2), we only impose

this limit with regard to messages coming from other

objects and from the environment in order to avoid

deadlock.
B. Add a mechanism which ensures that the system

can only receive a message from the environment in

case all message queues are empty. In other words,

implement global RTC (cf. Section 3.2). This restric-
tion addresses both of the above problems under the

assumption that external signals do not (directly or

indirectly) trigger an unbounded number of internal

events. Consequently, each process will eventually

get the chance to empty its buffer.

It should be clear that both A and B only eliminate

traces from the translated model. Hence, as safety prop-
erties are violated by finite traces, any safety violation

found in a model restricted according to A or B is also

present in the unrestricted model.

5.1 Model Checking a Toy Specification

We have applied the translation from Section 4 to a

toy interlocking specification which we refer to as the

Micro model. The Micro model has classes named ele-

ment, track, point, signal and route, where element is a

generalisation of track, point and signal. The class dia-

gram for this model is depicted in Figure 4. An instance

of the Micro model is obtained from the track layout
depicted in Figure 5.

The layout consists of three tracks t1, t2, t3, one

point p1 (positioned left in the picture), one signal s1,

Fig. 6 State machine for class Route

and two routes: route r1 requires p1 to be positioned

left and goes from track t1 to track t3; route r2 requires

p1 to be positioned right and goes from t1 to t2; both
routes have s1 as their entry signal. The model instance

thus contains three track objects, one point object, one

signal object and two route objects, and these objects

are linked via the following associations:

tracks = {〈r1, t1〉, 〈r1, t3〉, 〈r2, t1〉, 〈r2, t2〉}

left points = {〈r1, p1〉}
right points = {〈r2, p1〉}

entry signal = {〈r1, s1〉, 〈r2, s1〉}

The main functionality of the Micro model is route

setting and route cancellation. Informally described,

when a route receives a reserve request, it should signal

to its left points and right points to move into posi-
tion. When all points are positioned, all tracks along

the route are clear and the entry signal is ready, the

entry signal is set to show proceed. When one of the

elements associated with the route is no longer in the
required state, or the route is cancelled, the route entry

signal is set to show stop. The state machine describing

the behaviour of the class Route is shown in Figure 6.

We translated the above instance of the Micro model

into mCRL2 in two different ways corresponding to con-
straints A and B from the previous section. The state

space resulting from version A is huge (61×1012 states)

even with buffer size 1, but our symbolic tool LTSmin

still computes the number of states within seconds: The
mentioned state space was explored in 113 seconds us-

ing 238 MB memory of a machine equipped with an In-

tel Xeon 2.66 GHz, 32GB of memory and Linux 2.6.18.

7

To obtain version B we used barrier synchronisation.

This version has a significantly smaller state space with

8 million states. However, computing the number of

states takes longer and uses more memory (160 seconds

and 311MB). The state space reduction that stems from
a global RTC assumption is thus significant, but run-

time increases for the symbolic tools.

We were able to prove the presence of certain (un-

wanted) traces in both version A and B by placing a
monitor process in parallel with the mCRL2 translation

of Micro. The monitor deadlocks the process in case a

certain finite trace, representing the violation of a safety

property, is present. The deadlock detection function-

ality of LTSmin was used to produce a trace. The trace
shows that when the entry signal s1 has been set to

show proceed, the system may command the point p1

to move before it sets s1 to show stop, thus risking the

derailment of a train passing over p1. However, we point
out that the Micro model is merely intended to illus-

trate the type of xUML model constructs that are used

in the modelling of interlockings, and it is not claimed

to be a safe interlocking specification. Our main point

is that some of these traces cannot be observed in the
Cassandra/xUML simulator, because it uses a stronger

RTC assumption (atomic and global RTC) than our

versions A (local RTC) and B (local and global RTC).

6 Related Work

There is extensive work on the formalisation of exe-

cutable UML, and in particular, UML state machines,

for the purpose of carrying out formal verification [1,
20,7,9,13]. Translation of xUML into a process alge-

braic language occurs in [19,22]. More references can

be found in [7] and in the survey article [18].

In all aforementioned work, translation focuses on

composite and concurrent states, history pseudo-states,
(conflicting) transitions, and the action language. We

were not able to locate any research that includes the

formalisation of change events. The reason for this could

be that change events are considered a problematic con-
struct due to their under-specified semantics. An indi-

cation hereof is given by the fact that the “foundational

subset for xUML” (fUML) [16] forbids the use of change

events. Nonetheless, we want to include change events,

as they are an essential ingredient of the interlocking
specifications provided to us. Consequently, we cannot

(completely) base our work on the formally better spec-

ified fUML.

Formal methods have been widely applied in the
verification of interlockings. The work can be divided

into two categories: Verification of concrete interlock-

ings (see, e.g., [11,6,10]) and verification of more high-

level interlocking specifications (see, e.g., [21,8]), as in

our case.

7 Conclusion

We have presented a translation of a subset of xUML

into the process algebra mCRL2. Each of the elements

of the xUML subset is translated into a very simple

mCRL2 construct, with the translation of the change
events being the most complicated. Given the simplic-

ity of the mCRL2 constructs, we expect that our trans-

lation can be automated without too much trouble. In

fact, work on this automatic translation from xUML (in

the form of XMI files) to mCRL2 has already begun.

Future work includes extending our translation to

further constructs that occur in larger xUML inter-

locking models provided to us. These constructs include

transition guards and call events (synchronous commu-
nication), which we expect are easily added. In fact,

we expect that our translation can also easily be ex-

tended to include history and final pseudo-states, and

even any chosen action language, bar operations like

object creation and destruction. These last operations
would correspond to on-the-fly process creation and de-

struction which are not possible in mCRL2. Other fu-

ture work includes defining a formal semantics of xUML

interlocking models, and proving the correctness of our
translation with respect to this semantics.

Our first steps towards verifying safety properties

of xUML interlocking specifications have demonstrated

the following:

– The fairness and safety properties of an interlocking
system may depend crucially on the run-to-comple-

tion (RTC) assumption employed in the implemen-

tation. Verification should therefore be relative to a

particular choice of RTC.

– Even for small xUML models, such as our toy spec-
ification, the state space can be enormous. Still the

symbolic model checker seems to be able to deal

quite well with the mCRL2 translations obtained

from the toy specification. However, in order to ver-
ify real interlocking specifications, we expect it will

be necessary to come up with specific abstraction

and decomposition techniques, as well as reduce the

number of event orderings, either in a generic way

(partial-order reduction) or specifically (by using
different RTC assumptions).

Funding. This research is partially funded by the Eu-
ropean Comission (EC), as a grant to the FP7 project

INESS, grant agreement no. 218575. Any opinions, find-

ings and conclusions or recommendations expressed in

8

this material are those of the authors and do not nec-

essarily reflect the views of either the EC or the INESS

consortium.

References

1. R. Alur and M. Yannakakis. Model checking of hierarchical

state machines. ACM Transactions on Programming Lan-
guages and Systems, 23(3):273–303, 2001.

2. C. Baier and J.-P. Katoen. Principles of Model Checking.
The MIT Press, 2008.

3. J. A. Bergstra and J. W. Klop. Process algebra for syn-
chronous communication. Information and Control, 60(1-
3):109–137, 1984.

4. S. Blom and J. van de Pol. Symbolic reachability for process
algebras with recursive data types. In Proc. Theoretical As-
pects of Computing (ICTAC 2008), volume 5160 of Lecture
Notes in Computer Science, pages 81–95. Springer, 2008.

5. S. C. C. Blom, J. C. van de Pol, and M. Weber. Bridg-
ing the gap between enumerative and symbolic model check-
ers. Technical Report TR-CTIT-09-30, CTIT, University of
Twente, Enschede, 2009.

6. A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. To-
rielli, and P. Traverso. Formal verification of a railway in-
terlocking system using model checking. Formal Aspects of
Computing, 10(4):361–380, 1998.

7. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. A
discrete-time UML semantics for concurrency and commu-
nication in safety-critical applications. Science of Computer
Programming, 55:81–155, 2005.

8. L.-H. Eriksson. Specifying railway interlocking requirements
for practical use. In Proceedings of the 15th International
Conference on Computer Safety, Reliability and Security
(SAFECOMP’96). Springer, 1996.

9. Fei Xie, V. Levin, and J. Browne. Model checking for an exe-
cutable subset of UML. In 16th IEEE International Confer-
ence on Automated Software Engineering (ASE 2001), pages
333–336, 2001.

10. W. Fokkink. Safety criteria for the vital processor interlock-
ing at Hoorn-Kersenboogerd. In 5th Conference on Comput-
ers in Railways (COMPRAIL’96). Volume I: Railway Sys-
tems and Management, 1996.

11. S. Gnesi, D. Latella, G. Lenzini, C. Abbaneo, A. M. Amen-
dola, and P. Marmo. An automatic SPIN validation of a
safety critical railway control system. In Proc. of the 2000
Int. Conf. on Dependable Systems and Networks, pages 119–
124, Washington, DC, USA, 2000. IEEE Computer Society.

12. J. F. Groote, A. Mathijssen, M. A. Reniers, Y. S. Usenko,
and M. van Weerdenburg. The formal specification language
mCRL2. In Proc. of Methods for Modelling Software Sys-
tems,, volume 06351 of Dagstuhl Seminar Proceedings, 2007.

13. Z. Hu and S. M. Shatz. Explicit modeling of semantics asso-
ciated with composite states in UML statecharts. Journal of
Automated Software Engineering, 13(4):423–467, Oct. 2006.

14. KnowGravity. Cassandra/xUML User’s Guide, 2008.

15. S. J. Mellor and M. Balcer. Executable UML: A foundation
for model-driven architecture. Addison Wesley, 2002.

16. Object Management Group. Semantics of a Foundational
Subset for Executable UML Models, Nov. 2008.

17. Object Management Group. OMG Unified Modeling Lan-
guage Superstructure Version 2.2, Feb. 2009.

18. B. Purandar and S. Ramesh. Model checking of statechart
models: Survey and research directions, July 2004.

19. E. Turner, H. Treharne, S. Schneider, and N. Evans. Auto-
matic generation of CSP ‖ B skeletons from xUML models.
In Proc. of Theoretical Aspects of Computing (ICTAC 2008),

pages 364–379, 2008.
20. M. von der Beeck. Formalization of UML-statecharts. In

Proc. UML 2001, volume 2185 of Lecture Notes in Computer
Science, pages 406–421. Springer, 2001.

21. K. Winter and N. J. Robinson. Modelling large railway in-
terlockings and model checking small ones. In ACSC ’03:
Proc. of the 26th Australasian comp. sci. conference, pages
309–316. Australian Computer Society, Inc., 2003.

22. W. L. Yeung, K. R. P. H. Leung, J. Wang, and W. Dong.
Improvements towards formalizing UML state diagrams in
CSP. In Proc. of the 12th Asia-Pacific Software Engineering
Conference (APSEC 2005). IEEE Computer Society, 2005.

