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Abstract. We prove a unique decomposition theorem for a class of or-
dered commutative monoids. Then, we use our theorem to establish that
every weakly normed process definable in ACPε with bounded commu-
nication can be expressed as the parallel composition of a multiset of
weakly normed parallel prime processes in exactly one way.

1 Introduction

The Fundamental Theorem of Arithmetic states that every element of the com-
mutative monoid of positive natural numbers under multiplication has a unique
decomposition (i.e., can be expressed as a product of prime numbers uniquely
determined up to the order of the primes). It has been an invaluable tool in num-
ber theory ever since the days of Euclid. In the realm of process theory, unique
decomposability with respect to parallel composition is crucial in the proofs that
bisimulation is decidable for normed BPP [5] and normed PA [8]. It also plays
an important rôle in the analysis of axiom systems involving an operation for
parallel composition [1,6,12].

Milner and Moller [10] were the first to establish the unique decomposition
property for a commutative monoid of finite processes with a simple operation
for parallel composition. In [11], Moller presents an alternative proof of this
result which he attributes to Milner; we shall henceforth refer to it as Milner’s
technique. Moller explains that the reason for presenting Milner’s technique is
that it serves “as a model for the proof of the same result in more complicated
languages which evade the simpler proof method” of [10]. He refines Milner’s
technique twice. First, he adds communication to the operational semantics of
the parallel operator. Then, he turns from strong bisimulation semantics to weak
bisimulation semantics. Christensen [4] shows how Milner’s technique can be
further refined so that also certain infinite processes can be dealt with. He proves
unique decomposition theorems for the commutative monoids of weakly normed
BPP and of weakly normed BPPτ expressions modulo strong bisimulation.

Milner’s technique hinges on some special properties of the operational se-
mantics of parallel composition. The main contribution of this paper is to place
these properties in a general algebraic context. Milner’s technique employs a
well-founded subrelation of the transition relation induced on processes by the

B. Rovan and P. Vojtáš (Eds.): MFCS 2003, LNCS 2747, pp. 562–571, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



A Unique Decomposition Theorem for Ordered Monoids 563

operational semantics. We consider commutative monoids equipped with a well-
founded partial order (rather than an arbitrary well-founded relation) to tie in
with the theory of ordered monoids as put forward, e.g., in [3,7]. In Section 2
we propose a few simple conditions on ordered commutative monoids, and we
prove that they imply the unique decomposition property (Theorem 13).

Then, to prove that a commutative monoid has the unique decomposition
property, it suffices to define a partial order and establish that it satisfies our con-
ditions. From Section 3 onwards, we illustrate this technique, discussing unique
decomposability for the process theory ACPε [13]. ACPε is more expressive than
any of the process theories for which unique decomposition was investigated
previously. Firstly, it distinguishes two forms of termination (successful and
unsuccessful). Secondly, it has a more general communication mechanism (an
arbitrary number of parallel components may participate in a single commu-
nication, and communication not necessarily results in τ). These two features
make the extension of Milner’s technique to ACPε nontrivial; in fact, they both
lead to counterexamples obstructing a general unique decomposition result (see
Examples 16 and 19).

In Section 4 we introduce for ACPε an appropriate notion of weak normed-
ness that takes into account the distinction between successful and unsuccessful
termination, and we propose a requirement on the communication mechanism.
In Section 5 we prove that if the communication mechanism meets the require-
ment, then the commutative monoid of weakly normed ACPε expressions modulo
bisimulation satisfies the abstract specification of Section 2, and hence admits a
unique decomposition theorem.

Whether or not a commutative monoid satisfies the conditions put forward
in Section 2 is independent of the nature of its elements (be it natural num-
bers, bisimulation equivalence classes of process expressions, or objects of any
other kind). Thus, in particular, our unique decomposition theorem for ordered
monoids is independent of a syntax for specifying processes. We think that it will
turn out to be a convenient tool for establishing unique decomposability results
in a wide range of process theories, and for a wide range of process semantics.
For instance, we intend to investigate next whether our theorem can be applied
to establish unique decomposition results for commutative monoids of processes
definable in ACPε modulo weak- and branching bisimulation, and of processes
definable in the π-calculus modulo observation equivalence.

2 Unique Decomposition in Commutative p.o. Monoids

A positively ordered monoid (a p.o. monoid) is a nonempty set M endowed with:

(i) an associative binary operation ⊗ on M with an identity element ι ∈ M ; the
operation ⊗ stands for composition and ι represents the empty composition;

(ii) a partial order � on M that is compatible with ⊗, i.e.,
x � y implies x ⊗ z � y ⊗ z and z ⊗ x � z ⊗ y for all x, y, z ∈ M ,

and for which the identity ι is the least element, i.e., ι � x for all x ∈ M .
A p.o. monoid is commutative if its composition is commutative.
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An example of a commutative p.o. monoid is the set N of natural numbers
with addition (+) as binary operation, 0 as identity element and the less-than-
or-equal relation (≤) as (total) order; we call it the additive p.o. monoid of
natural numbers. Another example is the set N∗ of positive natural numbers with
multiplication (·) as binary operation, 1 as identity element and the divisibility
relation (|) as (partial) order; we call it the multiplicative p.o. monoid of positive
natural numbers.

In the remainder of this section we shall use N and N∗ to illustrate the
theory of decomposition in commutative p.o. monoids that we are about to de-
velop. However, they are not meant to motivate it; the motivating examples stem
from process theory. In particular, note that N and N∗ are so-called divisibility
monoids [3] in which x � y is equivalent to ∃z(x ⊗ z = y). The p.o. monoids
arising from process theory generally do not have this property.

Definition 1. An element p of a monoid M is called prime if p �= ι and p = x⊗y
implies x = ι or y = ι.

Example 2. The natural number 1 is the only prime element of N. The prime
elements of N∗ are the prime numbers.

Let x1, . . . , xn be a (possibly empty) sequence of elements of a monoid M ;
we formally define its composition x1 ⊗ · · · ⊗ xn by the following recursion:

(i) if n = 0, then x1 ⊗ · · · ⊗ xn = ι; and
(ii) if n > 0, then x1 ⊗ · · · ⊗ xn = (x1 ⊗ · · · ⊗ xn−1) ⊗ xn.

Occasionally, we shall write
⊗n

i=1 xi instead of x1 ⊗ · · · ⊗ xn. Furthermore, we
write xn for the n-fold composition of x.

Definition 3. If x is an element of a monoid M and p1, . . . , pn is a sequence of
prime elements of M such that x = p1 ⊗ · · · ⊗ pn, then we call the expression
p1 ⊗ · · · ⊗ pn a decomposition of x in M . Two decompositions p1 ⊗ · · · ⊗ pm and
q1 ⊗· · ·⊗qn of x are equivalent if there is a bijection σ : {1, . . . , m} → {1, . . . , n}
such that pi = qσ(i) for all 1 ≤ i ≤ m; otherwise, they are distinct.

The identity element ι has the composition of the empty sequence of prime ele-
ments as a decomposition, and every prime element has itself as a decomposition.

We now proceed to discuss the existence and uniqueness of decompositions
in commutative p.o. monoids. We shall present two conditions that together
guarantee that every element of a commutative p.o. monoid has a unique de-
composition.

Definition 4. Let M be a commutative p.o. monoid; by a stratification of M
we understand a mapping | | : M → N from M into the additive p.o. monoid N
of natural numbers that is a strict homomorphism, i.e.,

(i) |x ⊗ y| = |x| + |y|, and
(ii) x ≺ y implies |x| < |y| (where ≺ and < are the strict relations corresponding

to � and ≤, respectively).
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A commutative p.o. monoid M together with a stratification | | : M → N we
call a stratified p.o. monoid; the number |x| thus associated with every x ∈ M
is called the norm of x.

Observe that |x| = 0 iff x = ι (since |ι|+ |ι| ≤ |ι⊗ ι| = |ι| by the first condition in
Definition 4, it follows that |ι| = 0, and if x �= ι, then ι ≺ x, whence 0 = |ι| < |x|
by the second condition in Definition 4).

Example 5. The additive p.o. monoid N is stratified with the identity mapping
idN on N as stratification. The multiplicative p.o. monoid N∗ is stratified with
| | : N∗ → N defined by

|k| = max{n ≥ 0 : ∃k0 < k1 < · · · < kn(1 = k0 | k1 | · · · | kn = k)}.

Proposition 6. In a stratified commutative p.o. monoid every element has a
decomposition.

Proof. Straightforward by induction on the norm.

The next two propositions are straightforward consequences of the definition
of stratification; we need them later on.

Proposition 7. If M is a stratified commutative p.o. monoid, then M is strict :

x ≺ y implies x ⊗ z ≺ y ⊗ z and z ⊗ x ≺ z ⊗ y for all x, y, z ∈ M.

Proposition 8. The order � of a stratified p.o. monoid M is well-founded :
every nonempty subset of M has a �-minimal element.

Definition 9. We call a p.o. monoid M precompositional if for all x, y, z ∈ M :

x � y ⊗ z implies that there exist y′ � y and z′ � z such that x = y′ ⊗ z′.

Example 10. That N∗ is precompositional can be shown using the well-known
property that if p is a prime number such that p | k · l, then p | k or p | l (see,
e.g., [9, p. 11]).

If x ≺ y, then x is called a predecessor of y, and y a successor of x. If there
is no z ∈ M such that x ≺ z ≺ y, then x is an immediate predecessor of y, and
y is an immediate successor of x. The following two lemmas establish a crucial
relationship between the immediate predecessors of a composition and certain
immediate predecessors of its components.

Lemma 11. Let M be a precompositional stratified commutative p.o. monoid,
and let x, y and z be elements of M . If x is a predecessor of y of maximal norm,
then x ⊗ z is an immediate predecessor of y ⊗ z.

Lemma 12. Suppose that x = x1 ⊗ . . .⊗xn and y are elements of a precompo-
sitional stratified commutative p.o. monoid M . If y is an immediate predecessor
of x, then there exist i ∈ {1, . . . , n} and an immediate predecessor yi of xi such
that y = x1 ⊗ · · · ⊗ xi−1 ⊗ yi ⊗ xi+1 ⊗ · · · ⊗ xn.
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Theorem 13 (Unique Decomposition). In a stratified and precompositional
commutative p.o. monoid every element has a unique decomposition.

Proof. Let M be a stratified and precompositional commutative p.o. monoid. By
Proposition 6, every element of M has a decomposition. To prove uniqueness,
suppose, to the contrary, that the subset of elements of M with two or more
distinct decompositions is nonempty. Since � is well-founded by Proposition 8,
this subset has a �-minimal element a. That a has at least two distinct decom-
positions means that there must be a sequence p, p1, . . . , pn of distinct primes,
and sequences k, k1, . . . , kn and l, l1, . . . , ln of natural numbers such that

(A) a = pk ⊗ pk1
1 ⊗ · · · ⊗ pkn

n and a = pl ⊗ pl1
1 ⊗ · · · ⊗ pln

n ;
(B) k < l; and
(C) |p| < |pi| implies ki = li for all 1 ≤ i ≤ n.

That a is �-minimal means that the predecessors of a, i.e., the elements of the
initial segment I(a) = {x ∈ M : x ≺ a} of M determined by a, all have a unique
decomposition. Let x be an element of I(a). We define #p(x), the multiplicity of
p in x, as the number of occurrences of the prime p in the unique decomposition
of x. The index of p in x, denoted by [x : p], is the maximum of the multiplicities
of p in the weak predecessors of x, i.e., [x : p] = max{#p(y) : y � x}.

We now use that a = pk ⊗ pk1
1 ⊗ · · · ⊗ pkn

n to give an upper bound for the
multiplicity of p in an element x of I(a). Since M is precompositional there exist
y1, . . . , yk � p and zi1, . . . , ziki

� pi (1 ≤ i ≤ n) such that

x =
(⊗k

i=1 yi

)
⊗

(⊗n
i=1

⊗ki

j=1 zij

)
.

From yi � p it follows that #p(yi) ≤ [p : p] = 1, and from zij � pi it follows that
#p(zij) ≤ [pi : p], so for all x ∈ I(a)

#p(x) =
k∑

i=1

#p(yi) +
n∑

i=1

ki∑

j=1

#p(zij) ≤ k +
n∑

i=1

ki · [pi : p]. (1)

We shall now distinguish two cases, according to the contribution of the second
term to the right-hand side of the above inequality, and show that either case
leads inevitably to a contradiction with condition (B) above.

First, suppose that
∑n

i=1 ki · [pi : p] > 0; then [pj : p] > 0 for some 1 ≤ j ≤ n.
Let x1, . . . , xn be such that xi � pi and #p(xi) = [pi : p] for all 1 ≤ i ≤ n, and

x = pl ⊗ xl1
1 ⊗ · · · ⊗ xln

n .

Since #p(pi) = 0, if #p(xi) > 0 then xi ≺ pi. In particular, since #p(xj) =
[pj : p] > 0, this means that x is an element of I(a) (use that a = pl⊗pl1

1 ⊗· · ·⊗pln
n

and apply Proposition 7), and hence, that #p(x) is defined, by

#p(x) = l +
n∑

i=1

li · [pi : p].

We combine this definition with the inequality in (1), to conclude that
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l +
n∑

i=1

li · [pi : p] ≤ k +
n∑

i=1

ki · [pi : p].

To arrive at a contradiction with condition (B), it therefore suffices to prove
that ki · [pi : p] = li · [pi : p] for all 1 ≤ i ≤ n. If [pi : p] = 0, then this is clear
at once. If [pi : p] > 0, then, since #p(pi) = 0, there exists x ≺ pi such that
#p(x) = [pi : p] > 0. Every occurrence of p in the decomposition of x contributes
|p| to the norm of x, so |p| ≤ |x| < |pi|, from which it follows by condition (C)
that ki · [pi : p] = li · [pi : p]. This settles the case that

∑n
i=1 ki · [pi : p] > 0.

We continue with the hypothesis that
∑n

i=1 ki · [pi : p] = 0. First, assume
li > 0 for some 1 ≤ i ≤ n; then, by Proposition 7, pl is a predecessor of a,
but that implies l = #p(pl) ≤ k, a contradiction with (B). In the case that
remains, we may assume that li = 0 for all 1 ≤ i ≤ n, and consequently, since
a = pl cannot be prime, that l > 1. Clearly, pl−1 is a predecessor of a, so
0 < l − 1 = #p(pl−1) ≤ k; it follows that k > 0. Now, let y be a predecessor of
p of maximal norm; by Lemma 11, it gives rise to an immediate a-predecessor

x = y ⊗ pk−1 ⊗ pk1
1 ⊗ · · · ⊗ pkn

n .

Then, since a = pl, it follows by Lemma 12 that there exists an immediate
predecessor z of p such that x = z⊗pl−1. We conclude that k−1 = #p(x) = l−1,
again a contradiction with condition (B). 	


3 ACPε

We fix two disjoint sets of constant symbols A and V; the elements of A we call
actions; the elements of V we call process variables. With a ∈ A, X ∈ V and H
ranging over finite subsets of A, the set P of process expressions is generated by

P ::= ε | δ | a | X | P ·P | P +P | ∂H(P ) | P ‖ P | P |P | P ‖P.

If X is a process variable and P is a process expression, then the expression
X

def= P is called a process equation defining X. A set of such expressions is called
a process specification if it contains precisely one defining process equation for
each X ∈ V. For the remainder of this paper we fix a guarded process specification
S: every occurrence of a process variable in a right-hand side P of an equation
in S occurs in a subexpression of P of the form a · Q with a ∈ A.

We also presuppose a communication function, a commutative and associa-
tive partial mapping γ : A×A ⇀ A. It specifies which actions may communicate:
if γ(a, b) is undefined, then the actions a and b cannot communicate, whereas if
γ(a, b) = c then they can and c stands for the event that they do.

The transition system specification in Table 1 defines on the set P a unary
predicate ↓ and binary relations a−−→ (a ∈ A). A bisimulation is a symmetric
binary relation R on P such that P R Q implies

(i) if P↓, then Q↓; and
(ii) if P a−−→ P ′, then there exists Q′ such that Q a−−→ Q′ and P ′ R Q′.
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Table 1. The transition system specification for ACPε.

ε↓
P↓, Q↓
(P · Q)↓

P↓
(P + Q)↓, (Q + P )↓

P↓, Q↓
(P ‖ Q)↓, (Q ‖ P )↓

P↓
∂H(P )↓

a
a−−→ ε

P
a−−→ P ′

P · Q
a−−→ P ′ · Q

P↓, Q
a−−→ Q′

P · Q
a−−→ Q′

P
a−−→ P ′

P + Q
a−−→ P ′, Q + P

a−−→ P ′
P

a−−→ P ′, (X def= P ) ∈ S
X

a−−→ P ′

P
a−−→ P ′

P ‖ Q
a−−→ P ′ ‖ Q

P
b−−→ P ′, Q

c−−→ Q′, a = γ(b, c)
P | Q

a−−→ P ′ ‖ Q′
P

a−−→ P ′, a �∈ H
∂H(P ) a−−→ ∂H(P ′)

P
a−−→ P ′

P ‖ Q
a−−→ P ′ ‖ Q, Q ‖ P

a−−→ Q ‖ P ′
P

b−−→ P ′, Q
c−−→ Q′, a = γ(b, c)

P ‖ Q
a−−→ P ′ ‖ Q′

Process expressions P and Q are said to be bisimilar (notation: P ↔ Q) if there
exists a bisimulation R such that P R Q.

The relation ↔ is an equivalence relation; we write [P ] for the equivalence
class of process expressions bisimilar to P , and we denote by P/↔ the set of
all such equivalence classes. Baeten and van Glabbeek [2] prove that ↔ has the
substitution property with respect to ‖, and that P ‖ (Q ‖ R) ↔ (P ‖ Q) ‖ R,
P ‖ε ↔ ε‖P ↔ P and P ‖Q ↔ Q‖P . Hence, we have the following proposition.

Proposition 14. The set P/↔ with ⊗ and ι defined by [P ]⊗ [Q] = [P ‖Q] and
ι = [ε] is a commutative monoid.

4 Weakly Normed ACPε with Bounded Communication

In this section we present three counterexamples obstructing a general unique
decomposition theorem for the monoid P/↔ defined in the previous section.
They will guide us in defining a submonoid of P/↔ which does admit a unique
decomposition theorem, as we shall prove in the next section.

The first counterexample already appears in [10]; it shows that perpetual
processes need not have a decomposition.

Example 15. Let a be an action, let γ(a, a) be undefined and let X
def= a·X. One

can show that X ↔ P1 ‖ · · · ‖ Pn implies Pi ↔ X for some 1 ≤ i ≤ n. It follows
that [X] has no decomposition in P/↔. For suppose that [X] = [P1]⊗· · ·⊗ [Pn];
then [Pi] = [X], whereas [X] is not a prime element of P/↔ (e.g., X ↔ a ‖ X).

The second counterexample employs the distinction between successful and
unsuccessful termination characteristic of ACP-like process theories.

Example 16. Let a be an action; then [a], [a + a · δ] and [a · δ + ε] are prime
elements of P/↔. Moreover, a �↔ a+a ·δ (the transition a+a ·δ a−−→δ cannot be
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simulated by a). However, it is easily verified that a‖(a·δ+ε) ↔ (a+a·δ)‖(a·δ+ε),
so a decomposition in P/↔ need not be unique.

Let w ∈ A∗, say w = a1 · · · an; we write P
w−−→ P ′ if there exist P0, . . . , Pn

such that P = P0
a1−−→ · · · an−−→ Pn = P ′. To exclude the problems mentioned in

Examples 15 and 16 above we use the following definition.

Definition 17. A process expression P is weakly normed if there exist w ∈ A∗

and a process expression P ′ such that P w−−→ P ′ ↔ ε. The set of weakly normed
process expressions is denoted by Pε.

It is straightforward to show that bisimulation respects the property of being
weakly normed, and that a parallel composition is weakly normed iff its parallel
components are. Hence, we have the following proposition.

Proposition 18. The set Pε/↔ is a submonoid of P/↔. Moreover, if [P ‖Q] ∈
Pε/↔, then [P ] ∈ Pε/↔ and [Q] ∈ Pε/↔.

Christensen et al. [5] prove that every element of the commutative monoid
of weakly normed BPP expressions modulo bisimulation has a unique decompo-
sition. Presupposing a communication function γ that is everywhere undefined,
the operational semantics for BPP expressions is as given in Table 1. So, in BPP
there is no communication between parallel components. Christensen [4] extends
this result to a unique decomposition theorem for the commutative monoid of
weakly normed BPPτ expressions modulo bisimulation. His BPPτ is obtained
by replacing the parallel operator of BPP by a parallel operator that allows a
restricted form of handshaking communication.

Our next example shows that the more general communication mechanism of
ACPε gives rise to weakly normed process expressions without a decomposition.

Example 19. Let a be an action, suppose that a = γ(a, a) and X
def= a · X + a.

Then one can show that X ↔ P1 ‖ · · · ‖ Pn implies that Pi ↔ X for some
1 ≤ i ≤ n, from which it follows by a similar argument as in Example 15 that
[X] has no decomposition in P/↔.

The communication function in the above example allows an unbounded
number of copies of the action a to participate in a single communication. To
exclude this phenomenon, we use the following definition.

Definition 20. A communication function γ is bounded if every action can be
assigned a weight ≥ 1 in such a way that a = γ(b, c) implies that the weight of
a is the sum of the weights of b and c.

5 Unique Decomposition in Pε/↔
We now prove that every element of the commutative monoid Pε/↔ of weakly
normed process expressions modulo bisimulation has a unique decomposition,
provided that the communication function is bounded. We proceed by defining
on Pε/↔ a partial order � and a stratification | | : Pε/↔ → N turning it into
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a precompositional stratified commutative p.o. monoid. That every element of
Pε/↔ has a unique decomposition then follows from the theorem of Section 2.
Throughout this section we assume that the presupposed communication func-
tion γ is bounded so that every action has a unique weight assigned to it (cf.
Definition 20). We use it to define the weighted length 
(w) of w ∈ A∗ inductively
as follows: if w is the empty sequence, then 
(w) = 0; and if w = w′a and a is an
action of weight i, then 
(w) = 
(w′) + i. This definition takes into account that
a communication stands for the simultaneous execution of multiple actions. It
allows us to formulate the following crucial property of the operational semantics
of ACPε.

Lemma 21. If P , Q and R are process expressions such that P ‖Q w−−→R, then
there exist P ′, Q′ ∈ Pε and u, v ∈ A∗ such that R = P ′ ‖ Q′, P u−−→ P ′, Q v−−→ Q′

and 
(u) + 
(v) = 
(w).

Definition 22. The norm |P | of a weakly normed process expression is the
least natural number n such that there exists w ∈ A∗ of weighted length n and
a process expression P ′ such that P w−−→ P ′ ↔ ε.

Lemma 23. If P ↔ Q, then |P | = |Q| for all P, Q ∈ Pε.

Lemma 24. |P ‖ Q| = |P | + |Q| for all P, Q ∈ Pε.

We define on Pε binary relations �i (i ≥ 1) and � by

P �i Q ⇐⇒ there exists a ∈ A of weight i s.t. P
a−−→ Q and |P | = |Q| + i.

P � Q ⇐⇒ P �i Q for some i ≥ 1.

The reflexive-transitive closure �∗ of � is a partial order on Pε.

Definition 25. We write [P ] � [Q] iff there exist P ′ ∈ [P ] and Q′ ∈ [Q] such
that Q′ �∗ P ′.

It is straightforward to verify that � is a partial order on Pε/↔. Furthermore,
that � is compatible with ⊗ can be established by means of Lemma 24, and
that ι is its least element essentially follows from weak normedness. Hence, we
get the following proposition.

Proposition 26. The set Pε/↔ is a commutative p.o. monoid.

By Lemmas 23 and 24, the mapping | | : (Pε/↔) → N defined by [P ] �→ |P |
is a strict homomorphism.

Proposition 27. The mapping | | : (Pε/↔) → N is a stratification of Pε/↔.

Lemma 28. If P ‖ Q �∗ R, then there exist P ′ and Q′ such that P �∗ P ′,
Q �∗ Q′ and R = P ′ ‖ Q′.

The following proposition is an easy consequence of the above lemma.
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Proposition 29. The p.o. monoid Pε/↔ is precompositional.

According to Propositions 26, 27 and 29, Pε/↔ is a stratified and precomposi-
tional commutative p.o. monoid, so by Theorem 13 we get the following result.

Theorem 30. In the p.o. monoid Pε/↔ of weakly normed processes expressions
modulo bisimulation every element has a unique decomposition, provided that
the communication function is bounded.
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