

MOA: {M}assive {O}nline {A}nalysis.

Albert Bifet

Hamilton, New Zealand

August 2010, Eindhoven

PhD Thesis

Adaptive Learning and Mining for Data Streams and Frequent Patterns

Coadvisors: Ricard Gavaldà and José L. Balcázar

LARCA

Laboratory for Relational Algorithmics, Complexity and Learning Universitat Politècnica de Catalunya

Adaptive Stream Mining

Mining Evolving Streams

Framework

2 ADWIN

- Hoeffding Adaptive Tree
- ADWIN Bagging

Adaptive-Size Hoeffding Tree Bagging Mining XML Tree Streams

- Closure Operator on Trees
- Incremental Method
- Sliding Window Method
- Adaptive Method

XML Classification

Adaptive Stream Mining

Mining Evolving Streams

Framework

2 ADWIN

- Hoeffding Adaptive Tree
- ADWIN Bagging

Adaptive-Size Hoeffding Tree Bagging Mining XML Tree Streams

- Closure Operator on Trees
- Incremental Method
- Sliding Window Method
- Adaptive Method

XML Classification

Mining Massive Data

2007

- Digital Universe: 281 exabytes (billion gigabytes)
- The amount of information created exceeded available storage for the first time

Web 2.0

- 106 million registered users
- 600 million search queries per day
- 3 billion requests a day via its API.

Green Computing

Green Computing

Study and practice of using computing resources efficiently.

Algorithmic Efficiency

A main approach of Green Computing

Data Streams

Fast methods without storing all dataset in memory

What is MOA?

{M}assive {O}nline {A}nalysis is a framework for online learning from data streams.

- It is closely related to WEKA
- It includes a collection of offline and online methods as well as tools for evaluation:
 - boosting and bagging
 - Hoeffding Trees

with and without Naïve Bayes classifiers at the leaves.

What is MOA?

- Easy to extend
- Easy to design and run experiments
- Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer

RWTH Aachen University, University of Waikato Benchmarking Stream Clustering Algorithms within the MOA Framework KDD 2010 Demo

WEKA

- Waikato Environment for Knowledge Analysis
- Collection of state-of-the-art machine learning algorithms and data processing tools implemented in Java
 - Released under the GPL
- Support for the whole process of experimental data mining
 - Preparation of input data
 - Statistical evaluation of learning schemes
 - Visualization of input data and the result of learning

- Used for education, research and applications
- Complements "Data Mining" by Witten & Frank

WEKA: the bird

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the Weka, but also extinct.

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the Weka, but also extinct.

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the Weka, but also extinct.

Data stream classification cycle

- Process an example at a time, and inspect it only once (at most)
- Use a limited amount of memory
- Work in a limited amount of time
- Be ready to predict at any point

Experimental setting

Evaluation procedures for Data Streams

- Holdout
- Interleaved Test-Then-Train or Prequential

Environments

- Sensor Network: 100Kb
- Handheld Computer: 32 Mb
- Server: 400 Mb

Experimental setting

Data Sources

- Random Tree Generator
- Random RBF Generator
- LED Generator
- Waveform Generator
- Function Generator

Experimental setting

Classifiers

- Naive Bayes
- Decision stumps
- Hoeffding Tree
- Hoeffding Option Tree
- Bagging and Boosting

Prediction strategies

- Majority class
- Naive Bayes Leaves
- Adaptive Hybrid

Hoeffding Option Tree

Hoeffding Option Trees

Regular Hoeffding tree containing additional option nodes that allow several tests to be applied, leading to multiple Hoeffding trees as separate paths.

Extension to Evolving Data Streams

New Evolving Data Stream Extensions

- New Stream Generators
- New UNION of Streams
- New Classifiers

Extension to Evolving Data Streams

New Evolving Data Stream Generators

- Random RBF with Drift
- LED with Drift
- Waveform with Drift

- Hyperplane
- SEA Generator
- STAGGER Generator

Definition

Given two data streams *a*, *b*, we define $c = a \oplus_{t_0}^W b$ as the data stream built joining the two data streams *a* and *b*

•
$$\Pr[c(t) = b(t)] = 1/(1 + e^{-4(t-t_0)/W})$$

•
$$\Pr[c(t) = a(t)] = 1 - \Pr[c(t) = b(t)]$$

Example

- $(((a \oplus_{t_0}^{W_0} b) \oplus_{t_1}^{W_1} c) \oplus_{t_2}^{W_2} d) \dots$
- $(((SEA_9 \oplus_{t_0}^W SEA_8) \oplus_{2t_0}^W SEA_7) \oplus_{3t_0}^W SEA_{9.5})$

• CovPokElec = $(CoverType \oplus_{581,012}^{5,000} Poker) \oplus_{1,000,000}^{5,000} ELEC2$

Extension to Evolving Data Streams

New Evolving Data Stream Classifiers

- Adaptive Hoeffding Option Tree
- DDM Hoeffding Tree
- EDDM Hoeffding Tree

OCBoost

FLBoost

Ensemble Methods

New ensemble methods:

- Adaptive-Size Hoeffding Tree bagging:
 - each tree has a maximum size
 - after one node splits, it deletes some nodes to reduce its size if the size of the tree is higher than the maximum value
- ADWIN bagging:
 - When a change is detected, the worst classifier is removed and a new classifier is added.

ADWIN Bagging

ADWIN

An adaptive sliding window whose size is recomputed online according to the rate of change observed.

ADWIN has rigorous guarantees (theorems)

- On ratio of false positives and negatives
- On the relation of the size of the current window and change rates

$\texttt{ADWIN} \ \textbf{Bagging}$

When a change is detected, the worst classifier is removed and a new classifier is added.

Web

http://www.cs.waikato.ac.nz/~abifet/MOA/

GUI

java -cp .:moa.jar:weka.jar
-javaagent:sizeofag.jar moa.gui.GUI

🛎 MOA Graphical User Interface 📃 🗖					
Classification	lustering				
Configure EvaluateModel Run					
command	status	time elapsed	current activity	% complete	
Pause Resume Cancel Delete					
No preview available Refresh Auto refresh: every second 💌					
Export as .txt file					

Command Line

EvaluatePeriodicHeldOutTest

java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar moa.DoTask "EvaluatePeriodicHeldOutTest -l DecisionStump -s generators.WaveformGenerator -n 100000 -i 100000000 -f 10000000" > dsresult.csv

This command creates a comma separated values file:

- training the DecisionStump classifier on the WaveformGenerator data,
- using the first 100 thousand examples for testing,
- training on a total of 100 million examples, and
- testing every one million examples:

Easy Design of a MOA classifier

- void resetLearningImpl ()
- void trainOnInstanceImpl (Instance inst)
- double[] getVotesForInstance (Instance i)
- void getModelDescription (StringBuilder out, int indent)

Example: Sentiment Analysis on Twitter

Sentiment analysis

Classification problem into two categories depending on whether they convey positive or negative feelings

Emoticons are visual cues associated with emotional states

Positive Emoticons	Negative Emoticons
:)	:(
:-)	:-(
:)	: (
:D	
=)	

Table: List of positive and negative emoticons.

Twitter Empirical evaluation

Figure: Accuracy and Kappa Statistic on twittersentiment corpus

Twitter Empirical evaluation

Figure: Accuracy and Kappa Statistic on Edinburgh corpus

Summary

{M}assive {O}nline {A}nalysis is a framework for online learning from data streams.

http://www.cs.waikato.ac.nz/~abifet/MOA/

- It is closely related to WEKA
- It includes a collection of offline and online as well as tools for evaluation:

25/25

- boosting and bagging
- Hoeffding Trees
- MOA deals with evolving data streams
- MOA is easy to use and extend