Combining One-Class Classifiers for User Substitution Detection

Oleksiy Mazhelis

mazhelis@jyu.fi University of Jyväskylä, Finland

Workshop on Concept Drift TU/e, Eindhoven, the Netherlands August 20, 2010

✗ University of Jyväskylä → Finland

Motivation

- Mobile terminals are used to:
 - Store sensitive personal information
 - Store valuable corporate information
 - Receive and view emails...
- Terminals are often lost:
 - "lost mobile devices are just a fact of life"

- 1. Personal names and addresses 86%
- 2. Business names and addresses 81%
- 3. Telephone 71%
- 4. Business diary 59%
- 5. Personal diary 55%
- 6. Receive and view emails 45%
- 7. Entertainment, games, music etc 37%
- 8. Passwords/PIN numbers 37%
- 9. Personal images (photographs)
- 10. Corporate information 27%
- 11. Bank account details 15%
- 22% of users experienced a loss or theft of the terminal
- 85 619 mobile phones lost in taxis in Chicago (the six months period)
- 54 874 mobile phones lost in taxis in London (the six months period)
- Access to terminals is often poorly controlled
 - "One in four [lost phones or laptops] have absolutely no security on them"
 - 34% of mobile phone users disable PIN authentication
 - 78% of users do not encrypt the information on PDA/Smartphone
- Need for preventive and detective security means

Sources:

http://www.pointsec.com/news/newsreleases/release.cfm?PressId=108 http://www.pointsec.com/news/newsreleases/release.cfm?PressId=386 http://www.pointsec.com/news/newsreleases/release.cfm?PressId=313 http://www.pointsec.com/_file/PointsecNews_3_2006_Global_72dpi.pdf (Clarke and Furnell 2005)

Approach to masquerader detection

- Detection as classification
- A claimant is either user or impostor
- Classification problem: claimant's behaviour and environment is classified as belonging to the user class or to the impostor class

Mobile masquerader detection based on combining one-class classifiers

- Data belonging to the user class only may be available for learning
 - Privacy issue

University of Jyväskylä

Finland

- Coverage issue
- One-class classification

- Using a single classifier is problematic
 - Different nature or scale of variables
 - Course of dimensionality
 - Partial availability
 - Use of several classifiers whose classifications are combined

Questions

- What measures to monitor?
- Which individual classifiers to take?
- How to combine individual classifications?

Measures being monitored

- In total, 9 measures were empirically tested
- Behavioural
 - ARR_CALL Inter-arrival time of calls
 - ARR_SMS Inter-arrival time of SMSs
 - DUR_CALL Duration (length) of calls
 - SPEED 1/timeInCell, where timeInCell < 11 min
 - MOTION Sequences of CellIDs
 - ACT_APP Applications launched at the terminal
- Environmental
 - PLACES CellIDs wherein a terminal is registered > 11 min
 - CONT_NUM ID of terminal being contacted via calls or SMS
 - BT_DEV IDs of Bluetooth devices in the neighbourhood

Individual classifiers

- One-class classifiers output prior probability estimates $p_i(\mathbf{x}_i/C_U)$
 - Numeric features, temporal relations ignored
 - Symbolic features, temporal relations ignored
 - Symbolic features, temporal relations are important
- Numeric features, temporal relations ignored
 - ARR_CALL, ARR_SMS, DUR_CALL, SPEED
 - K-nearest neighbours classifier
- Symbolic features, temporal relations ignored
 - ACT_APP, PLACES, CONT_NUM, BT_DEV
 - Probability estimators based on histograms
- Symbolic features, temporal relations are important
 - MOTION
 - Classifier based on conventional Markov model

Combining one-class classifiers

- Distance-based schemes
 - Based on Chi-square statistics
 - Based on Hotelling's T² statistics
- Rules based on posterior probabilities
 - Various types of vote
 - Product of estimated probabilities (PP rule)
 - Mean of estimated probabilities (MP rule)
 - Modified mean of estimated probabilities rule (modMP rule)

Combining one-class classifiers

- Product of estimated probabilities rule (PP)
- Mean of estimated probabilities rule (MP)
- Modified MP rule (modMP)

$$u_{\rm pp} = \frac{\prod_{i=1}^{R} p(\mathbf{x}_i | C_U)}{\prod_{i=1}^{R} p(\mathbf{x}_i | C_U) + \prod_{i=1}^{R} p(\mathbf{x}_i | C_I)},$$
$$u_{\rm mp} = R^{-1} \sum_{i=1}^{R} p(\mathbf{x}_i | C_U),$$
$$u_{\rm mc} = R^{-1} \sum_{i=1}^{R} \frac{p(\mathbf{x}_i | C_U)}{p(\mathbf{x}_i | C_U) + \overline{p}(\mathbf{x}_i | C_U)},$$

Combining rules: Modified MP rule

- Mean Probabilities (modified) rule
 - Introduced in (Mazhelis & Puuronen, 2004)
 - Takes the prior probability estimates $p_i(\mathbf{x}_i/C_U)$ as input
 - Modifies them (normalises)

$$u_i(p(\mathbf{x}_i|C_U)) = \frac{1}{1 + \exp\left(-\ln\frac{p(\mathbf{x}_i|C_U)}{\overline{p}(\mathbf{x}_i|C_U)}\right)} = \frac{p(\mathbf{x}_i|C_U)}{p(\mathbf{x}_i|C_U) + \overline{p}(\mathbf{x}_i|C_U)}$$

- Averages the modified estimates $u_i(p(\mathbf{x}_i/C_U))$
- Compares the obtained average with a threshold

University of Jyväskylä ✓ Finland

Data used

- Dataset is collected during two field studies
 - ContextPhone software used for data collection
 - 3 groups of users (12 users in total) are monitored for some months
 - http://www.cs.helsinki.fi/group/context/data/
 - Behavior and environment of two user groups (nine users) is used
- Data are processed in sliding windows
 - length 1800s, incremented by 900s
- For each user, file is split into training and classification parts
 - Training phase: the records are used to build the classifiers' models (for probabilities/likelihoods)
 - Classification phase: each classifier outputs the value of probability or likelihood, or non-classification

Experimental settings

- Goal of experiments
 - I. Assessing accuracy of individual classifiers
 - II. Ensembles: selecting classifiers based on ranking
 - III. Ensembles: comparing combining rules
- Evaluation criteria
 - ROC, AUC, partial AUC (p-AUC)
 - Normalized ROC and AUC (averaged)

Normalized ROC curve

 Normalized ROC and normalized AUC (averaged) Example: Normalized ROCcurves for individual classifiers (user 25)

Evaluation criteria

- Accuracy of detection
 - ROC, AUC
 - Partial AUC (p-AUC)
- Comparison
 - modMP vs. MP; modMP vs. PP
 - t-test for means of two paired samples)
 - the Wilcoxon Signed Ranks Test
 - the Sign Test

I. Accuracy of individual classifiers

Accuracy (averaged AUC and AUC_{norm}) of individual classifiers

Classifier	ARR_CALL	ARR_SMS	DUR_CALL	PLACES	SPEED	MOVE	CONT_NUM	BT_DEV	ACT_APP
AUC	0.501	0.501	0.504	0.743	0.537	0.578	0.806	0.709	0.544
AUC ^{norm}	-	-	0.500	0.543	0.506	0.549	0.518	0.536	0.513

- Two classifiers (ARR_CALL and ARR_SMS) are excluded
- The remaining are used to build ensembles of classifiers
- The accuracy ranking differs depending on whether AUC or AUC_{norm} is used

II. Selecting classifiers for an ensemble

Classifiers are ranked based on

- AUC
- AUC_{Normalized}
- $(AUC 0,5) \times #classifications$

Classifier	DUR_CALL	PLACES	SPEED	MOVE	CONT_NUM	BT_DEV	ACT_APP
Rank acc. AUC	7	2	6	4	1	3	5
Rank acc. AUC _{norm}	7	2	6	1	4	3	5
Rank acc. AUC _{norm} x n _C	7	1	6	4	3	2	5

II. Selecting classifiers for an ensemble (cont)

- Accuracy (averaged AUC and AUC_{norm}) of classifier ensembles
- Ensemble gives output, if one or more individual classification is available

Classifiers combined	AUC	AUC _{norm}
PLACES+CONT_NUM	0.7490	0.5742
PLACES+BT_DEV	0.7521	0.6080
CONT_NUM+BT_DEV	0.7316	0.5719
PLACES+MOVE	0.6119	0.5738
PLACES+MOVE+BT_DEV	0.6788	0.6397
PLACES+CONT_NUM+BT_DEV	0.7637	0.6452
PLACES+CONT_NUM+BT_DEV+ACT_APP	0.7139	0.6673
PLACES+MOVE+CONT_NUM+BT_DEV	0.6904	0.6687
PLACES+MOVE+CONT_NUM+BT_DEV+ACT_APP	0.6854	0.6849
DUR_CALL+PLACES+SPEED+MOVE+CONT_NUM+BT_DEV+ACT_APP	0.6658	0.6658

- Accuracy (AUC_{norm}) grows according to the third rank: (AUC 0,5) \times #classifications
- Best accuracy is achieved with five classifiers, deteriorates after that
- Best ROC for 5 classifiers overpass best ROC for 3 classifiers only for large FR

University of Jyväskylä ✓ Finland

III. Comparing combining rules

- Comparing rules:
 - i) modMP vs. MP; ii) modMP vs PP
 - 2-5 classifiers/ensemble: PLACES, MOVE, CONT_NUM, BT_DEV, ACT_APP
 - Full and partial AUC
- Full AUC:
 - 2 classifiers:
 - ModMP outperforms PP
 - ModMP and MP give similar accuracy
 - 3-5 classifiers:
 - ModMP outperforms MP
 - ModMP and PP give similar accuracy
- Partial AUC (p=0.3)
 - 2-3 classifiers:
 - ModMP outperforms PP
 - ModMP and MP give similar accuracy
 - 4-5 classifiers
 - ModMP outperforms MP
 - ModMP and PP give similar accuracy

III. Comparing combining rules (cont)

- Comparing modMP vs. MP & PP
 - Modified MP rule provides more accurate than or as accurate results as the other rules
- Sensitivity to estimation errors
 - Modified MP rule has one extra parameter to estimate
 - Accuracy of modified MP rule depends on how well its parameter is estimated

Conclusions and further work

- ☑ Differentiating users by behaviour and environment is possible
- ☑ Ensemble to include accurate and "productive" classifiers
- ☑ Three combining rules (MP, PP, modMP) compared
- ☑ Mobile MP rule appears the most reasonable one
- Accurate estimation of the parameter of modMP rule is important (e.g. by using incremental estimation)
- Comparing with other combining schemes
- □ Validating results using other datasets
- □ Improving individual classifiers
- □ Response to detected attacks
- □ User acceptability tests

University of Jyväskylä Finland

Thank you!