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This talk is about
● hidden context / dependencies in the data

● What is context?
● Why identify hidden context?
● Data transformation (rotation) for identifying 

context
● Outlook



  

What is context?
● Supervised learning: (X,y) data and labels
● (X,y,z) data, labels and context



  

What is context?
● Supervised learning: (X,y) data and labels
● (X,y,z) data, labels and context

● time does not 
explain the label   
P(y|z) = P(y)

● but time helps to 
explain the label 
using temperature     
P(y|X,z) ≠ P(y|X)



  

Why identifying context?
● To improve classification accuracy

● two level decision making in static scenarios 

● dynamic (evolving) scenarios
● Better understand the data

● Identifying contexts can be seen as data 
preprocessing (filter) step
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data

context model decision



  

What about concept drift?

context 1 context 2

Time 
context

context 2context 1

Space 
context

Reoccuring 
context



  

Identifying hidden context
● Grouping (clustering) the data (X)
● But clases (y) instead of contexts (z) might be 

captured
● Or a mix of classes-contexts 
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Proposed Approach
● 'Hide' class label information from the data
● i.e. transform the data (X → X') so that it is not 

correlated with the label (y)
● then cluster the transformation X'
● record the contexts (z)
● add context categories to the original dataset 

(X,y,z)



  

How to 'hide' class label information
● Three apporaches:

● Overlay
● Projections
● Fature underselection



  

Overlay
● Normalize each class separately to zero mean
● X' = {X(I) – mean(X(I)) U X(II) – mean(X(II))}
● Cluster X'
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Projection
● Rotate the data 
● Maximizing the Fisher criterion 

● maximizes between-class variance and minimizes 
with-class variance

● We want the opposite thus flip the criterion

J LDA=
vT Sb v
vT S wv

J PR=
vT Sw v
vT Sb v

X '=V X
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Feature underselection
● Measure correlations with individual features

● Discard the most correlated features

● Cluster X'

r i=corr  xi , y

∣ri1∣∣r i2∣...∣r ip−1∣∣rip∣



  

Evaluation
● How good are the identified contexts?
● Normalized mutual information for 

independence
● But random contexts would give 
● Adapted measures from clustering

● Validity learnable mapping from data to context     
X →z

● Stability {X
u
 U X

q
}: train clust

u
(X

u
) and clust

q
(X

q
), 

c
u
=clust

u
(X

q
), c

q
 = clust

q
(X

q
), compare c

u
 and c

q

 

NMI= I  y , z 
H  y H  z 

NMI=0



  

Experimentals
● 30 classification datasets from UCI and other 

sources
● Size 500 – 67000, dimensionality 4-100, 

number of classes 2-11
● Split data into groups:

● low-dimensional <10
● medium-dimensional 10-19
● high-dimensional >=20



  

Results
● Transformation works well for low-medium 

dimensional data
● Less well, but ok for high dimensional data



  

Results
● Gain in independence w.r.t. simple clustering is 

larger for 
● low dimensional data and 
● data with larger number of classes



  

Case study
● Two level classification 

● transformation X→X'
● identify context X'→z 
● select the model L

z

● classify L
z
:X→y

● Six base classifiers, 3 transformations 
● K=2: EN►PR►FU►OV►AL►CL►RN
● K=4: EN►OV►FU►CL►PR►AL►RN
● K=7: EN►PR►AL►OV►FU►RN►CL

Level 1

Level 2



  

Outlook
● More trasfrmations for independence

● Clustering with constraints
● Decision trees with 'twisted' splitting criteria

● Related tasks: managing hidden dependencies
● Modeling evolving data as a mixture of 

contexts
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