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Identification of a response amplitude operator for ships
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Abstract. At the European Study Group Mathematics with Industry 2012

in Eindhoven, the Maritime Research Institute Netherlands (MARIN) pre-

sented the problem of identifying the response amplitude operator (RAO) for

a ship, given input information on the amplitudes of the sea waves and output

information on the movement of the ship. We approach the problem from a

threefold perspective: a direct least-squares approach, an approach based on

truncated Fourier series, and an approach using low-dimensional measures of

the RAO. We give a few recommendations for possible further investigations.

Keywords. Parameter/structure identification, inverse problem, re-

sponse amplitude operator, ship structure, fatigue estimation

1 Introduction

In the present paper we deal with a problem proposed by MARIN during the SWI 2012 workshop

in Eindhoven. MARIN, the Maritime Research Institute Netherlands, is an independent service

provider for the maritime industry. MARIN’s customers include commercial ship builders, fleet

owners, navies, naval architects, and offshore companies.

∗Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Postbus 513, 5600 MB

Eindhoven, The Netherlands.
†Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Postbus 513, 5600 MB

Eindhoven, The Netherlands.
‡Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Postbus 513, 5600 MB

Eindhoven, The Netherlands. c.mercuri@tue.nl
§Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Postbus 513, 5600 MB

Eindhoven, The Netherlands.
¶Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Postbus 513, 5600 MB

Eindhoven, The Netherlands.
‖Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Postbus 513, 5600 MB

Eindhoven, The Netherlands.
∗∗Leiden University, Mathematical Institute, Snellius building Niels Bohrweg 1 2333 CA Leiden.
††Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Postbus 513, 5600 MB

Eindhoven, The Netherlands.

1

mailto:c.mercuri@tue.nl


Giovanni A. Bonaschi, Olena Filatova, Carlo Mercuri, Adrian Muntean, Mark A. Peletier, Volha
Shchetnikava, Eric Siero, Iason Zisis

The problem we tackle here is the identification of the structure response amplitude operator

(RAO) of a 230m long FPSO, given sets of input-output data, which will be explained in Section

2.

A floating production, storage and offloading (FPSO) unit is a floating vessel used by the

offshore industry for the storage and processing of oil and gas, and it is typically moored at a fixed

position at sea. The structure is exposed to a natural process of degradation related to the cyclic

loading of the structure through time: fatigue. This is due to continuously incoming sea waves and

wind. This topic has been studied extensively in the literature according to different points of view;

see for example [4, 3, 2] and the references mentioned therein.

The interest of MARIN in the identification of the RAO lies in its use to estimate the expected

time until the formation of fatigue cracks. The methods that we discuss in this report might be

used to improve the accuracy of numerically calculated RAOs, and lead to a better estimate of the

fatigue lifetime. We keep this in mind when discussing the different possible working strategies.

2 The data

The data provided by MARIN are generated by two different detection devices.

• A buoy at some distance from the FPSO measures water surface height and angle, and

converts these into a wave energy spectrum. For each 30-minute interval indexed by k this

results in a discretely defined function S
(k)
ζ (ω, θ), which gives the energy contained in waves

moving in direction θ with frequency ω.

• A number of strain gauges on the FPSO measures a local strain in the structure, and converts

this into another energy spectrum. This results in a discretely defined function S
(k)
R (ω, d(k)),

measured at the same time k, which gives the energy contained in harmonic bending modes

with frequency ω.

• The draft d(k) is the vertical distance between the waterline and the bottom of the hull at

the time of measurement k. This draft changes over time, since the structure accumulates

oil and gas over time, and periodically offloads it to transport ships. According to MARIN,

the draft has a significant effect on the behavior of the structure, and this is why this draft

is taken into account.

The measurement data is organized as follows.

(θ) The measurements of Sζ are taken along discretized directions of 4 degrees each (91 in total;

θ1 = 0 and θ91 = 360 coincide).

(ω) The frequency range for ω is 0.025−0.580Hz for Sζ and 0−0.995Hz for SR. For Sζ there are

64 different frequencies, 200 for SR. Since the available data for SR and Sζ do not correspond
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to the same frequency, we convert the values of SR to the 64-value discretization of Sζ by

interpolation. As a consequence we do not analyze values of SR at frequencies greater than

0.58Hz and below 0.025Hz.

(d) The draft of the vessel ranges from 9 to 15 (meters) with ∆d = 0.5, so that there are 12

different drafts.

(k) Measurements are taken along a period of one year with different draft values as shown in

Table 1.

Table 1: Number of measurements for different periods and

drafts.

Draft July 2007 April 2008 May 2008 Sept 2008 Total

9.0-9.5 0 91 91

9.5-10.0 0 45 45

10.0-10.5 221 207 428

10.5-11.0 710 555 1265

11.0-11.5 1482 422 1904

11.5-12.0 1408 464 1872

12.0-12.5 893 588 1481

12.5-13.0 1052 124 1176

13.0-13.5 902 426 1328

13.5-14.0 370 783 1153

14.0-14.5 109 202 311

14.5-15.0 0 92 92

Total 7147 3999 11146

3 The mathematical problem

We now describe the mathematical problem that we consider. The response of the FPSO is assumed

to follow linear response theory, resulting in the (theoretical) equation (see [4, 1, 3])

∀ω, d : SR(ω, d) =

∫
ΦR(ω, θ, d)Sζ(ω, θ) dθ, (1)

where, as we described above, SR and Sζ are respectively the total response of the structure and

the profile of incoming waves at different angle θ, at a certain frequency ω. SR, Sζ and ΦR are

positive functions; ΦR and SR are assumed to depend also on the draft d. The unknown function
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ΦR is, by definition, the response amplitude operator (RAO), and its identification is the aim of

this work.

We first convert equation (1) into a discrete, experiment-dependent version:

∀ω, k : S
(k)
R (ω, d(k)) =

∑
θ

ΦR(ω, θ, d(k))S
(k)
ζ (ω, θ). (2)

We will also reduce to the case of a single draft, using only the 1176 data points corresponding

to draft range 12.5–13.0. Therefore we can omit the explicit draft dependence in SR and ΦR, and

then the equation becomes

∀ω, k : S
(k)
R (ω) =

∑
θ

ΦR(ω, θ)S
(k)
ζ (ω, θ). (3)

The central question of this paper is therefore:

Can we construct methods for the determination of ΦR in (3), given data on SR and Sζ?

4 Inverse problems and least squares

This problem is a classical inverse problem: determining a physical law from experimental data

(see e.g. [6]). For each ω we need to determine the 91 values of ΦR(ω, ·); since for each ω we have

1176 data points to do so, this is an a priori strongly over-determined problem. The method of

first choice in this situation is the least-squares solution.

Unconstrained least squares

The least-squares method can be interpreted as a method of fitting data. The best fit in the least-

square sense is that instance of the model for which the sum of squared residuals has its lowest

value, the residual being the difference between an observed value and the value given by the model.

Fix ω, and write ak,j := S
(k)
ζ (ω, θj), bk := S

(k)
R , and xj := ΦR(ω, θj). Writing A for the matrix

of ak,j , equation (3) becomes

Ax = b ⇐⇒ ∀k :
∑
j

ak,jxj = bk. (4)

A least-squares solution of (4) is a vector x that minimizes the residual of (4), i.e.

x = arg minx‖b−Ax‖22, (5)

where ‖ · ‖2 is the standard Euclidean norm.

If A has maximal rank, then this x is given by

x = (ATA)−1AT b.

The MATLAB backslash operator implements this solution concept.
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Constrained least squares

A least-squares solution has no reason to be non-negative, while the RAO ΦR is necessarily non-

negative. The minimization problem (5) has a natural generalization

x = arg minx≥0‖b−Ax‖22,

in which x ≥ 0 should be interpreted as component wise non-negativity. In MATLAB the routine

lsqnonneg implements this constrained least-squares solution.

5 Organization of the report

During the Study Group three different approaches were investigated.

1. The first approach is to apply the constrained or unconstrained least-squares method directly.

In an attempt to reduce the impact of noise, we first made a selection of the most relevant

data. This approach is outlined in Section 6.

2. A second approach used a truncated Fourier series representation of ΦR, and determined the

RAO again by least-squares fitting (Section 7).

3. A final approach focused on low-dimensional properties of the RAO (see Section 8).

6 Ansatz-free solutions after data selection

In this approach the idea is to solve equation (3) for fixed frequency ω and then repeat for all 64

frequencies for which there are both response and wave data available. For fixed ω the equation

reads:

SR = ΦR(θ1)Sζ(θ1) + ΦR(θ2)Sζ(θ2) + ...+ ΦR(θ90)Sζ(θ90);

where ΦR(θ1),ΦR(θ2), ...,ΦR(θ90) are 90 unknowns.1 Thus if one obtains 90 of these equations, then,

generically, it should be possible to solve for the unknowns. From every simultaneous measurement

of SR and Sζ it is possible to obtain such an equation.

6.1 Data selection

In real life some of the data are bad. For instance, when a ship passes the measuring buoy, this

affects Sζ , but does not change SR. The relationship resulting from this measurement will be

inherently false. To reduce the impact of erroneous data we make a selection, by taking at given

frequency ω the data with the highest response SR at that frequency. The idea is that, to obtain a

1Since both 0 and 360 degrees are represented in the data, it has been decided to exclude the data for 360 degrees

from the calculations in this approach.
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good relation at a given frequency, the frequency should be represented in the measurement. This

is guaranteed if the FPSO shows a response at this frequency.

Is, for fixed frequency, every angle represented in some of the chosen data? If Sζ(ω, θ) is small

in every measurement, then the response of the ship to components of waves coming from this angle

is impossible to determine. As a consequence the RAO may have a peak at this angle, without

any meaning. This corresponds to the RAO being (partly) under-determined. This has not been

checked during the Study Group.
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Figure 1: unconstrained RAO with

negative components.
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Figure 2: RAO calculated from data with 100

highest stress responses.
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Figure 3: RAO calculated from data with 200

highest stress responses.
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6.2 Least-squares solutions

Use of the unconstrained least squares solver (the MATLAB backslash operator) leads to a solution

with negative components. This is illustrated by Figure 1, where the RAO computed from 100 data

points with the highest stress response is plotted. Along the vertical axes the component of the

RAO ΦR(ω, θ) is drawn for each of the 90 angles θ and each of the 64 frequencies ω. Since the

RAO should be non-negative, the unconstrained solver is not useful.

Thus we switched to the constrained least-squares lsqnonneg solver, since this solver finds a

least squares solution under the constraint that every component must be non-negative. In figures

2 and 3, results are shown that are computed using respectively the 100 and 200 data with the

highest stress response, for every frequency separately. As one can see, the solutions are very spiky.

Moreover, it has been observed that these spikes have the tendency to move to a neighboring angle

upon small changes in the input data.

If we fix θ = 0, then Figure 4 shows graphs of ΦR as a function of ω, which corresponds to

taking a slice from Figures 2 and 3. The peak of the solid red line at ω = 0.8 is not present in the

dashed blue line. If we fix ω = 0.8, then Figure 5 shows graphs of ΦR as a function of θ, which

corresponds to taking a slice in the other direction. From this graph we see that for the ‘dashed

blue’ RAO based on 200 data, there is a peak for ω = 0.8 near θ = 0, at θ = 352. This is illustrated

further by the behavior near θ = 150. Although in Figure 5 the RAOs practically coincide near

θ = 150, this will not be reflected by taking slices for fixed θ = 144 or θ = 148.

6.3 Intermediate conclusion

The calculations shown in this section suggest that using the least-squares method one can calculate

an approximate RAO, but the resulting RAO will be rather sensitive to differences in data point

selection. Because the computed RAOs contain spikes instead of having a more smooth profile, it

is not possible to reliably plot ΦR(ω) for a fixed θ.
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Figure 4: Graph of ΦR(ω)|θ=0.
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Figure 5: Graph of ΦR(θ)|ω=0.8.

7 Fourier expansions

7.1 Motivation

In the previous section we showed that, most likely, the straightforward least-squares approach

leads to a sensitive dependence of the RAO on the choice of the data. This is a common occurrence
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when dealing with inverse problems, and is intimately related to the intrinsic ill-posedness of the

problem (see again e.g. [6]). We now investigate whether this issue can be limited by restricting

the set of RAO’s to a smaller set.

We postulate a solution ΦR of the form

ΦR(ω, θ) = K(ω)Ψ(θ). (6)

Such an expression allows to consider dependency on ω and θ separately, and simplifies our calcu-

lations. For more precise approximation it is also worthwhile to replace (6) by

ΦR(ω, θ) =

n∑̀
`=0

K`(ω)Ψ`(θ). (7)

Due to the anisotropy of the ship’s geometry it was suggested by MARIN to choose Ψ`(θ) = cos(`θ).

Thus the final form of our approximation Ansatz is

ΦR(ω, θ) =

n∑̀
`=0

K`(ω) cos(`θ). (8)

This Ansatz can be viewed as representing ΦR by a truncated Fourier series in the terms of θ

variable.

This approach again defines a linear least squares problem, which we refer to as the LLSP.

As a result we expect to find K`(ω) which determine the final approximation of the solution. We

will estimate residuals for different numbers of terms n` in (8). Moreover the relative error of the

solution ΦR(ω, θ) and SR(ω) predicted by our model will be estimated in section 7.4 for different

amounts of data used.

7.2 Implementation of the model

For each fixed ω we define

P :=


S
(1)
ζ (ω, θ1) . . . S

(N)
ζ (ω, θ1)

. . . . . . . . .

S
(1)
ζ (ω, θ91) . . . S

(N)
ζ (ω, θ91)

 , (9)

and

C :=


1 cos θ1 . . . cosn`θ1

1 cos θ2 . . . cosn`θ2
...

...

1 cos θ91 . . . cosn`θ91

 . (10)

The LLSP then consists of solving, in the least-squares manner, the equation Ax = b, with

A = P TC, b = [S
(1)
R (ω), . . . , S

(N)
R (ω)]T , (11)

and x = [K1(ω), . . . ,Kn`
(ω)]T .

By repeating the procedure for each ω we obtain K` and thus ΦR(ω, θ).
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7.3 Analysis of the method

It is important to understand how well this model constructs ΦR and predicts SR. On the other

hand, we wish to analyze to which extent the constructed ΦR is data-dependent.

7.4 Approximation error

First we analyze the approximation error, which is the discrepancy between the exact values of SR

and their approximation by the LLSP.

We split the total available data for the draft 12.5–13.0 into disjoint groups of different sizes.

We fix a number N of data points. Let Dκ, κ = 1, 2 be two disjoint sets of data of size N . Also let

K [κ] be the solution of the LLSP with data Dκ, i.e. the minimizer of the norm of the residuals for

data set Dκ. In other words, we have

K [κ](ω) := arg minx
∥∥S[κ]

R (ω)−Ax
∥∥
2
,

where S
[κ]
R (ω) is the N -vector of response data corresponding to data set Dκ and A is defined

in (11).

Then, for each frequency ω, we define the approximation error of LLSP-solution κ for the data

Dλ as follows:

F (ω,K [κ], Dλ) :=
‖S[λ]

R (ω)−AK [κ](ω)‖2
‖S[λ]

R (ω)‖2
, κ, λ = 1, 2, (12)

where S
[κ]
R (ω) is the N -vector of response data corresponding to data set Dκ, and K [λ] is the solution

of the LLSP for the data set Dλ.

First we study the influence of the number N of data points. We choose two sets D1 and

D2 of size N = 350 corresponding to the data from February and August 2008. We compare

F (ω,K [1], D1) and F (ω,K [2], D1) for the amount of terms in (8) n` = 3. This can be interpreted

as a measure of how well data D2 predicts data D1.

The high value of the F (ω,K [2], D1) in Figure 6 may well be explained by the fact that during

different seasons the intensity of some frequencies differs. We next compare F (ω,K [2], D2) and

F (ω,K [1], D2). In Figure 7 we see that the prediction of the August response by the February data

is much better than vice versa. It can be useful to see how this fact changes with increasing the

size of data sets used.

From Figures 8–11 it is clear that the bigger data sets we use, the closer to each other the

approximation errors of the corresponding solutions become. But for several small frequencies the

approximation error is still very high. We believe that this happens due to measurement errors of

the experiments.

At this stage the conclusion is that it is best to use the biggest available amount of data for

the further analysis of the approximation error on the number of terms in expansion (8). Now, in

Figures 12–15, we vary the number of terms n` and fix the size of the data sets N = 715, as this
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Figure 6: The approximation error for F (ω,K [1], D1) and

F (ω,K [2], D1), N = 350.
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Figure 7: The approximation error for F (ω,K [2], D2) and

F (ω,K [1], D2), N = 350.

is the half of the available data for the chosen draft. The case n` = 0 corresponds to the fact that

ΦR is approximated by a function that is constant in θ.

We study not only the approximation error but also two other values of interest (ε(ω) and ε(θ)

defined in equations (13),(14)). The first of them is the relative error of Φ
[κ]
R with respect to Φ

[λ]
R

for each frequency:

ε(ω) =
‖Φ[κ]

R (ω, ·)− Φ
[λ]
R (ω, ·)‖2

‖Φ[κ]
R (ω, ·)‖2

, (13)

where Φ
[κ]
R (ω, θ) and Φ

[λ]
R (ω, θ) are approximated values of ΦR calculated via corresponding solutions

K [κ] and K [λ] of LLSP using two distinct data sets Dκ and Dλ of the same size. The norms above

are the L2-norms over θ.

A similar quantity can be calculated for each angle θ, where the norms are calculated by
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Figure 8: The approximation error for F (ω,K [1], D1) and

F (ω,K [2], D1), N = 500.
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Figure 9: The approximation error for F (ω,K [1], D2) and

F (ω,K [2], D2), N = 500.

summing over ω:

ε(θ) =
‖Φ[κ]

R (·, θ)− Φ
[λ]
R (·, θ)‖2

‖Φ[κ]
R (·, θ)‖2

. (14)

Increasing n` gives the system more freedom to adjust the parameters. From this point of view

using more terms is a good idea. At the same time it leads to an increasing amount of oscillations,

as can be seen in Figures 12-15. From the numerical experiments we suggest to use n` = 2, because

of two reasons:

• the peak of the approximation error for small frequencies is not high yet;

• the relative errors ε(ω) and ε(θ) are still reasonable (below 1).
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Figure 10: The approximation error for F (ω,K [1], D1) and

F (ω,K [2], D1), N = 715.
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Figure 11: The approximation error for F (ω,K [1], D2) and

F (ω,K [2], D2), N = 715.
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Figure 13: The approximation error for F (ω,K [1], D1) and

F (ω,K [2], D1), n` = 2.
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Figure 14: The approximation error for F (ω,K [1], D1) and

F (ω,K [2], D1), n` = 6.
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Figure 15: The approximation error for F (ω,K [1], D1) and

F (ω,K [2], D1), n` = 10.
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7.5 Prediction of SR

The comparison of predicted (dashed line) and experimental dependence (solid line) of ΦR on ω is

done for different data files. We again use the set of 715 files and predict the values of SR for three

specific data points which are not included in those 715 files. All calculations are done for nl = 2.

Also corresponding ΦR(ω) for several angles is presented in Figures 19-21.
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Figure 16: The predicted values have an overshoot.
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Figure 17: The predicted values are too small.
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Figure 18: The predicted and experimental behavior fit well

together.

Figures 16–18 show that, depending on the date which we pick for forecast, the result differs.

One way of explaining this phenomenon is due to experimental errors. Results obtained for the 1st

and 2nd of July 2008 on Figures 22 and 23 are examples of this. Usually the response on consequent

days changes continuously but for these dates it is not the case.
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Figure 19: The prediction of ΦR(ω, 60).
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Figure 20: The prediction of ΦR(ω, 120).
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Figure 21: The prediction of ΦR(ω, 256).

Another reason could be an insufficient period of measurements used in calculations. Therefore

our recommendation is to use the observations of several years to predict ΦR.

7.6 Intermediate conclusions

From these calculations we draw the following conclusions:

1. If the number of data points is large enough (N ≥ 500 seems a reasonable lower bound)

then the cross-approximation error F (ω,K [2], D1) often is practically as good as the self-

approximation error F (ω,K [1], D1). In words: the least-squares error for data 1, based on

the parameters determined with data 2, is close to the error calculated with the optimal
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Figure 22: Results for the 1st of July.
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Figure 23: Results for the 2nd of July.

parameters for data 1. (See e.g. Figures 12–15).

2. The number n` of Fourier modes is a free parameter in this inverse problem. By definition,

the self-approximation error decreases with increasing n`, since the minimization is performed

over larger sets. But for larger n`, the Fourier coefficients K` becomes highly sensitive to the

choice of data. The calculations done above suggest to keep n` low, e.g. n` ≈ 2.

8 Reduced measures

During the Study Group the question arose whether the identification of the RAO might be used

to detect fatigue: can fatigue cracks determine a modified stress response, and therefore result in a

modified RAO? By tracking changes in the RAO over time, we thought that these changes might

be detected. This idea turned out to be incorrect. Indeed a fatigue crack cannot determine any

significant change in the vertical bending moment, by which the global behavior of the structure is

analyzed. This consideration has been communicated to us by MARIN.

In the spirit of the previous section, we focus here on a particular Ansatz, investigating whether

the RAO could be determined with sufficient accuracy and confidence. The ill-posed nature of

the problem suggests to replace the aim of determining ΦR by determining some low-dimensional

properties of ΦR that might (a) function as fatigue markers, and (b) be more stable.

Given that our data only spans 15 months, and that the fatigue time scale is expected to be

longer than this, it was difficult to test any hypothesis concerning stability with respect to time.

Instead, we investigate below a simple hypothesis concerning a special form of RAO with respect

to the dependence on θ and ω.

Equation (3) can be written as

∀ω, k :
∑
θ

ΦR(ω, θ)S(k)(ω, θ) = 1, (15)
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where S(k)(ω, θ) := S
(k)
ζ (ω, θ)/S

(k)
R (ω). One Ansatz for ΦR would be that ΦR is of the form

ΦR(ω, θ) = c(θ)(S(k))−1(ω, θ), (16)

for some function c(θ) satisfying
∑

θ c(θ) = 1. It is worth pointing out explicitly that the arbitrari-

ness of c(θ) reflects the ill-posed nature of the problem. This is due to the lack of uniqueness in

determining the kernel for equation (1). Note also that since ΦR is k-independent, this requires S(k)

also to be k-independent. This is a condition that we can test directly the available experimental

data.

8.1 Data analysis

We analyze if the ratio (S(k))−1 is data- (k-) independent. This analysis is achieved by means of

an estimator. We average the ratio among measurements, but they must belong to the same draft

to avoid the draft dependence (that will be analyzed in the following). So we define

fd(ω, θ) :=
1

S̃(ω, θ, d)
=

∑
k∈I(d) S

−1
k (ω, θ, d)

#I(d)
, (17)

where I(d) is the set of all the measurements obtained for a certain draft. From now on for brevity

we write S−1k instead of (S(k))−1. If there is an independence; then we expect the standard deviation

to be small. We analyze then the relative error:

gd(ω, θ) = σ2 =

∑
k∈I(S

−1
k − S̃

−1)2

#I
, (18)

relative error := hd(ω, θ) =

√
g(ω, θ)

f(ω, θ)
. (19)

A suitable way to analyze the relative error is to perform the average of the relative error over

angles or frequencies:

a(ω) :=

∑
θ h(ω, θ)

#θ
, b(θ) :=

∑
ω h(ω, θ)

#ω
. (20)

The above formulas give us an estimator of the oscillations occurring in the data, depending only

on one variable. We perform this procedure because we cannot represent all the values of h(ω, θ)

(it is a 90 ∗ 64 matrix). The problem that can appear when averaging is related to huge oscillations

giving an irrelevant average. This will not be our case as it will be showed in the following.

8.2 Draft dependence

We need to make a reasonable choice of a single draft. To do this we analyze the total average of

the relative error to check to which extent the independence (of the ratio with respect to data) is

a reasonable assumption and to see which measurements present a strong correlation:

c(d) :=

∑
θ

∑
ω h(ω, θ, d)

#ω ×#θ
=

∑
θ b(θ, d)

#θ
=

∑
ω a(ω, d)

#ω
. (21)
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c(d) 142% 12.1% 3.8% 2.2% 1.7% 2.7%

Draft 9.5 10 10.5 11 11.5 12

c(d) 2.2% 2% 2% 2.4% 7.1% 9.5%

Draft 12.5 13 13.5 14 14.5 15

Table 2: For each draft d the value of c(d) estimates to

which extent the function S−1
k can be considered

measurement- (k-) independent.

Table 2 shows the value of c(d) for each d. Note that the values for the middle range of d are

relatively small, giving support to the conjecture (16). In choosing a specific draft d for further

analysis, it makes sense to avoid the extremal values for which c(d) is larger.

8.3 Correlation

In Figure 24, we plot the functions a(ω), b(θ) defined in (20). They refer to the fixed draft 12–12.5m,

that presents a low total average (c(d)).

Figure 24: Relative standard deviations.

We note that the values are relatively small and they show weak fluctuations. This gives more

relevance to the choice of the estimator c(d) and it is a way to quantify the independence of the

ratio S−1k with respect to measurements.

8.4 Time evolution

The small values of c(d) allow us to focus in the data analysis on a single draft. We now want

to investigate whether the time scale of the data measurements could provide a reasonable RAO.
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A necessary condition is that the vessel does not experience excessive changes in its structure. In

order to check this fact, we choose suitable estimators and we analyze their values on each month

in a time range of 15 months. For fixed θ, we consider Nexp measurements in a certain time range.

We use (a normalized) S−1 as a probability distribution, then, and we compute its ω-average for

each θ:

ω
(k)
θ =

∑
ω ωS

−1(ω, θ)∑
ω S
−1(ω, θ)

, k = 1, . . . , Nexp. (22)

Now we average along measurements and determine the mean value and standard deviation at

fixed angles:

ω̄θ :=
1

Nexp

Nexp∑
k=1

ω
(k)
θ , (23)

σ2θ :=
1

Nexp

∑
(ω̄θ − ω

(k)
θ )2, (24)

where ω
(k)
θ is given by (22). ω̄θ can be interpreted as an average eigenfrequency of the structure.

In Table 3 are shown average and standard deviations related to five angles, in a time range of

15 months. We note that the values at 0 and 360 coincide, confirming the expected periodicity in

θ 0 90 180 270 360

ω̄θ 0.1337 0.1359 0.1396 0.1704 0.1337

σθ 0.0255 0.0331 0.0426 0.0516 0.0264

Table 3: Angles, averages and standard deviations.

θ of the data sets.

In Figure 25 we plot the average and standard deviations for each month, i.e. ω̄θ and σ2θ
calculated for each month separately. We choose two angles, θ = 90 and θ = 270. The number of

measurements per month is given by the following table:

1st 2nd 5th 8th 9th 10th 12th 13th 14th 15th

106 59 140 473 37 78 11 109 351 117

Table 4: Measurements analyzed per months, starting from

July 2007, ending in September 2008.

8.5 Intermediate conclusions

Figure 25 shows no significant drift of ωθ over the five months, and the fluctuations are of the

magnitude that is to be expected. This observation can be interpreted as suggesting that the

object that we calculate here (the expected frequency, according to the weighting given by the
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Figure 25: Monthly averages ω̄θ and standard deviations σθ

for two angles θ = 90, 270.

‘probability distribution’ S−1) is approximately constant over the 15 months of the data. This

consideration together with Table 2 estimates to which extent (16) is a reasonable choice.

An interesting analysis would be to have a θ-dependent picture of the behavior of the structure

measured by the fluctuations of the monthly averages and their relative standard deviation, which,

during SWI 2012, we thought to be more considerable in those directions where the vessel is affected

by more relevant damage and structural changes. This idea turned out to be wrong, after discussing

with our collaborator from MARIN, as we already mentioned at the beginning of this section.
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9 Summary and conclusions

We have seen that despite the large amount of data, determining the RAO to any accuracy is a

hard problem. This is illustrated, for instance, in the strong data-dependence that we observed

when doing direct (constrained) least-squares fitting in Section 6. This is a classical difficulty in

inverse problems, and is related to the ill-posed nature of the problem.

As emphasized in the title, the lack of uniqueness in determining the kernel of the integral

equation (1) (see equation (15) and comments below) leaded us to the problem of ‘identifying an’

RAO. Namely, we tried to overcome the ill-posed nature of the problem by restricting the class of

admissible RAOs and perform the fitting in this smaller class. This is the core idea in Section 7

and Section 8 (see respectively equations (6) and (16)), where a special form for RAO has been

postulated. This restriction brings in Section 7 the identification of an RAO.

A different form of RAO has been considered in Section 8, where initially we tried to address

the question whether the data could provide information about existence of fatigue-induced drift.

The performed data analysis is meant to verify to which extent (confidence) the Ansatz (16) is a

reasonable guess, as a preliminary step in the identification of an RAO.

There are many possible avenues for further research and algorithm construction. Below we sum

up those that we considered during the five-day SWI 2012 study group to be the most important.

• All methods should be set in a suitable stochastic framework in order to treat the unavoidable

noise brought in by the measurements.

• We expect a faithful modeling of the characteristics of this noise will improve the quality of

the fitting methods. For this a more strict collaboration with MARIN would be essential,

in order to improve the stability analysis of the data we tried to perform in the preceding

sections and to find more suitable filters and regularization methods.

• Connected to the above consideration is the study of the rank of the available data files. Re-

ferring for simplicity to the Ansatz-free approach, it would worth analyzing how independent

the data are, in order to yield the solvability of the linear system of equations. Intuitively,

this is related to the non-vanishing determinants of the sub-matrices associated to the linear

system.
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