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SMALL VOLUME-FRACTION LIMIT OF THE DIBLOCK
COPOLYMER PROBLEM: II. DIFFUSE-INTERFACE FUNCTIONAL∗

RUSTUM CHOKSI† AND MARK A. PELETIER‡

Abstract. We present the second of two articles on the small volume-fraction limit of a nonlocal
Cahn–Hilliard functional introduced to model microphase separation of diblock copolymers. After
having established the results for the sharp-interface version of the functional [SIAM J. Math. Anal.,
42 (2010), pp. 1334–1370], we consider here the full diffuse-interface functional and address the limit
in which ε and the volume fraction tend to zero but the number of regions (called particles) associated
with the minority phase remains O(1). Using the language of Γ-convergence, we focus on two levels
of this convergence, and derive first- and second-order effective energies, whose energy landscapes
are simpler and more transparent. These limiting energies are finite only on weighted sums of delta
functions, corresponding to the concentration of mass into “point particles.” At the highest level,
the effective energy is entirely local and contains information about the size of each particle but no
information about its spatial distribution. At the next level we encounter a Coulomb-like interaction
between the particles, which is responsible for the pattern formation. We present the results in three
dimensions and comment on their two-dimensional analogues.
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1. Introduction.

1.1. The functional. This paper is concerned with asymptotic properties of
the following nonlocal Cahn–Hilliard energy functional defined on H1(Td):

(1.1) E(u) := ε

∫
Td

|∇u|2 dx +
1

ε

∫
Td

W (u) dx + γ

∥∥∥∥u−−
∫
u

∥∥∥∥2
H−1(Td)

,

where we take the double-well potentialW (u) := u2(1−u)2. Here the order parameter
u is defined on the flat torus Td = Rd/Zd, i.e., the square [− 1

2 ,
1
2 ]

d with periodic
boundary conditions, and has two preferred states u = 0 and u = 1. We are interested
in the structure of minimizers of E over u with fixed mass −

∫
Td u = f , where f ∈ (0, 1).

The first term ε
∫ |∇u|2 penalizes large gradients, and acts as a counterbalance to

the second term, smoothing the “interface” that separates the two phases. The third
(nonlocal) term is defined as∥∥∥∥u−−

∫
u

∥∥∥∥2
H−1(Td)

=

∫
Td

|∇w|2 dx, where −Δw = u−−
∫
Td

u.
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740 RUSTUM CHOKSI AND MARK A. PELETIER

This term favors high-frequency oscillation, as can be seen in the 1/|k|2-penalization
in a Fourier representation:∥∥∥∥u−−

∫
u

∥∥∥∥2
H−1(Td)

=
∑

k∈Zd\{0}

|û(k)|2
4π2|k|2 .

If the parameter γ is large enough, this term may push the system away from large,
bulky structures and favor variation and oscillation at intermediate scales, i.e., give
rise to patterns with an intrinsic length scale. As we explain in what follows, we refer
to this mass-constrained variational problem as the diblock copolymer problem. When
the mass constraint f is close to 0 or 1, minimizing patterns will consist of small
inclusions of one phase in a large “sea” of the other. We wish to explore this regime
via the asymptotic behavior of the functional in a limit wherein the following hold:

• both ε and the volume/mass fraction f of the minority phase tend to zero
(appropriately slaved together);

• γ is chosen in order to keep the number of minority phase particles O(1).

We will concern ourselves primarily with the case d = 3 but remark on the analogous
results for d = 2.

1.2. The spherical phase in diblock copolymers. The functional E was
introduced by Ohta and Kawasaki to model self-assembly of diblock copolymers [25,
24]. The nonlocal term is associated with long-range interactions and connectivity
of the subchains in the diblock copolymer macromolecule.1 The order parameter
u represents the relative monomer density, with u = 0 corresponding to a pure-
A region and u = 1 to a pure-B region. The interpretation of f is therefore the
relative abundance of the A-parts of the molecules, or equivalently the volume fraction
of the A-region. The constraint of fixed average f reflects that in an experiment
the composition of the molecules is part of the preparation and does not change
during the course of the experiment. From (1.1) the incentive for pattern formation
is clear: the first term penalizes oscillation, the second term favors separation into
regions of u = 0 and u = 1, and the third favors rapid oscillation. Under the mass
constraint the three cannot vanish simultaneously, and the net effect is to set a fine
scale structure depending on ε, γ, and f . The precise geometry of the phase separation
(i.e., the information contained in a minimizer of (1.1)) depends largely on the volume
fraction f . In fact, as explained in [9], the two natural parameters controlling the
phase diagram are Γ = (ε3/2

√
γ)−1 and f . When Γ is large and f is close to 0

or 1, numerical experiments [9] and experimental observations [4] reveal structures
resembling small well-separated spherical regions of the minority phase. We often
refer to such small regions as particles, and they are the central objects of study of
this paper. Since we are interested in a regime of small volume fraction, it seems
natural to seek asymptotic results. Building on our previous work in [8], it is the
purpose of this article to give a rigorous asymptotic description of the energy in a
limit wherein the volume fraction tends to zero but where the number of particles in
a minimizer remains O(1). That is, we examine the limit where minimizers converge
to weighted Dirac delta point measures and seek effective energetic descriptions for
their positioning and local structure.

1See [10] for a derivation and the relationship to the physical material parameters and basic
models for inhomogeneous polymers. Usually the wells are taken to be ±1, representing pure phases
of A- and B-rich regions. For convenience, we have rescaled to wells at 0 and 1.
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Fig. 1. A two-dimensional cartoon of small particle structures.

The small particle structures of this paper are illustrated (for two space dimen-
sions) in Figure 1. There are three length scales involved: the large scale of the
periodic box Td, the intermediate scale of the droplets, and the smallest scale of the
thickness of the interface. Two of these scales are known beforehand: we have chosen
the size of the box to be 1, and the interfacial thickness should be O(ε) by the dis-
cussion above. The intermediate scale �, the size of the droplets, is not yet fixed and
will depend on the two remaining parameters: the parameter γ in E and the volume
fraction f .

For a function u, the mass is defined as f =
∫
Td u. In Figure 1 the region where

u ≈ 1 is small, suggesting that
∫
Td u is small. We characterize this by introducing a

parameter η (the characteristic size of the particles), which will tend to zero, and by
assuming that the mass

∫
Td u tends to zero at the rate of ηd:

(1.2) f =

∫
Td

u =Mηd for some fixed M > 0.

After rescaling with respect to η, M will be the mass of the rescaled functions. We
now have three parameters ε, γ, and η, which together determine the behavior of
structures under the energy Eε,σ. Let us fix d = 3. In section 3 we see that in terms
of v := u/η3, the relevant functional is

(1.3) Eε,η(v) := η

[
ε η3

∫
T3

|∇v|2 dx +
η3

ε

∫
T3

W̃ (v) dx

]
+ η

∥∥∥∥v −−
∫
v

∥∥∥∥2
H−1(T3)

,

where W̃ (v) := v2(1 − η3v)2. Via a suitable slaving of ε to η (see Theorem 3.1), we
prove, via Γ-convergence, a rigorous asymptotic expansion for Eε(η),η of the form

Eε(η),η = E0 + ηF0 + higher-order terms,

where both E0 and F0 are defined over weighted Dirac point masses and may be viewed
as effective energies at the first and second order. Their essential properties can be
summarized as follows:

• E0, the effective energy at the highest level, is entirely local: it is the sum
of local energies of each particle and is blind to the spatial distribution of
the particles. The particle effective energy depends only on the mass of that
particle.
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• F0, the effective energy at the next level, contains a Coulomb-like interaction
between the particles. It is this latter part of the energy which we expect to
enforce a periodic array of particles.

Note here that we present our results without any mention of mass being con-
strained; rather, we adopt only the weaker condition that mass be bounded. See
Remark 1 for the role of constrained mass and, in particular, M as described above.

The proof of Theorem 3.1 relies heavily on our previous work for the sharp-
interface limiting functional Eη (see section 4 for its precise definition) obtained by
fixing η in Eε,η and letting ε tend to zero. The well-known Modica–Mortola the-
orem [19] makes this limit Eη precise in the sense of Γ-convergence. The small-η
asymptotics of Eη were proved in [8], and the main result of this article (Theorem
3.1) is to establish the same limiting behavior but in the diagonal limit of both ε and
η tending to zero. We summarize these limits (for the leading order) in the diagram
below.

This article is organized as follows. In section 3, we discuss the rescalings and
state the main result, Theorem 3.1. Section 4 explicitly states the main results of
our previous paper [8] which form the basis for the proof of Theorem 3.1 presented in
section 5. In section 6, we discuss the variational problem associated with the first-
order Γ-limit E0, connecting it with an old problem of Poincaré and presenting some
conjectures. In section 7, we discuss the necessary modifications in two dimensions.

2. Some definitions and notation. We recall the definitions and notation of
[8]. We use Td = Rd/Zd to denote the d-dimensional flat torus of unit volume. We
will be concerned primarily with the case d = 3. For the use of convolution, we note
that Td is an additive group, with neutral element 0 ∈ Td (the “origin” of Td). For
u ∈ BV (Td; {0, 1}), we denote by ∫

Td

|∇u|

the total variation measure evaluated on Td, i.e., ‖∇u‖(Td) (see, e.g., [2] or [3, Chap-
ter 3]). Since v is the characteristic function of some set A, it is simply the notion
of its perimeter. Let X denote the space of Radon measures on Td. For μη, μ ∈ X ,
μη ⇀ μ denotes weak-∗ measure convergence; i.e.,∫

Td

f dμη →
∫
Td

f dμ

for all f ∈ C(Tn). We use the same notation for functions; i.e., when writing vη ⇀ v0,
we interpret vη and v0 as measures whenever necessary.

We introduce the Green’s function GTd for −Δ in dimension d on Td. It is the
solution of

−ΔGTd = δ − 1, with

∫
Td

GTd = 0,
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where δ is the Dirac delta function at the origin. In three dimensions,2 we have

(2.2) GT3(x) =
1

4π|x| + g(3)(x)

for all x = (x1, x2, x3) ∈ R3 with max{|x1|, |x2|, |x3|} ≤ 1/2, where the function g(3)

is continuous on [−1/2, 1/2]3 and smooth in a neighborhood of the origin.
For μ ∈ X such that μ(Td) = 0, we may solve

−Δw = μ

in the sense of distributions on Td. If w ∈ H1(Td), then μ ∈ H−1(Td) and

‖μ‖2H−1(Td) :=

∫
Td

|∇w|2 dx.

In particular, if u ∈ L2(Td), then
(
u− −

∫
u
) ∈ H−1(Td) and∥∥∥∥u−−

∫
u

∥∥∥∥2
H−1(Td)

=

∫
Td

∫
Td

u(x)u(y)GTd(x− y) dx dy.

Note that on the right-hand side we may write the function u rather than its zero-
average version u− −

∫
u, since the function GTd itself is chosen to have zero average.

If f is the characteristic function of a set of finite perimeter on all of R3, we define

‖f‖2H−1(R3) =

∫
R3

∫
R3

f(x) f(y)

4π|x− y| dx dy.

3. Rescalings and statements of the results. We now rescale the energy E
in (1.1). Starting in three dimensions, for η > 0, we define

v :=
u

η3
,

so that E becomes in terms of v

(3.1) ε η6
∫
T3

|∇v|2 dx +
η6

ε

∫
T3

W̃ (v) dx + γ η6
∥∥∥∥v −−

∫
v

∥∥∥∥2
H−1(T3)

,

where

W̃ (v) := v2(1− η3v)2.

In order to find the correct scaling of γ in terms of η, we argue as follows. Let
ε
 η, and let φε denote a standard mollifier with support length scale ε. We consider
a collection vη : T3 → {0, 1/η3} of components of the form

(3.2) vη =
∑
i

viη, viη =
1

η3
χAi

∗ φε,

2In two dimensions, the Green’s function GT2 satisfies

(2.1) GT2(x) = − 1

2π
log |x| + g(2)(x)

for all x = (x1, x2) ∈ R2 with max{|x1|, |x2|} ≤ 1/2, where the function g(2) is continuous on
[−1/2, 1/2]2 and C∞ in a neighborhood of the origin.
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where the Ai are disjoint, spherical subsets of T3, all with radius η. Then, under the
assumption that the number of spheres Ai remains O(1), we find

η

[
ε η3

∫
T3

|∇vη|2 dx +
η3

ε

∫
T3

W̃ (vη) dx

]
ε�η∼ η

∫
T3

|∇vη| ∼ η−2

∫
T3

|∇χAi | = O(1).

Here we use the well-known Modica–Mortola convergence theorem [19, 5] linking the
perimeter to the scaled Cahn–Hilliard terms. A simple calculation (done in [8]) shows
that the leading order of the ‖vη − −

∫
vη‖2H−1(T3) is 1/η and that this leading contri-

bution is from the self-interactions; i.e., ‖viη − −
∫
viη‖2H−1(T3) is 1/η. Thus balancing

the third term in (3.1) implies choosing γ ∼ 1/η3. Hence we set

γ =
1

η3
.

Choosing the proportionality constant equal to 1 entails no loss of generality, since in
the limit ε→ 0 this constant can be scaled into the mass M defined in (1.2).

With this choice, one finds

E(u) = η2

{
η

[
ε η3

∫
T3

|∇v|2 dx +
η3

ε

∫
T3

W̃ (v) dx

]
+ η

∥∥∥∥v −−
∫
v

∥∥∥∥2
H−1(T3)

}
,

noting that the contents of the outer parentheses is O(1) as η → 0 with ε 
 η. This
leads to the definition (1.3) of the renormalized energy Eε,η.

We are interested in the small-η behavior of Eε,η and describe this behavior via
functionals defined over Dirac point masses. Let us first introduce the remaining
relevant functionals in our analysis. First we define the surface tension

(3.3) σ := 2

∫ 1

0

√
W (t) dt.

For the leading order, we define

e0(m) := inf

{
σ

∫
R3

|∇z| + ‖z‖2H−1(R3) : z ∈ BV (R3; {0, 1}),
∫
R3

z = m

}
(3.4)

and

E0(v) :=

⎧⎪⎨⎪⎩
∞∑
i=1

e0(m
i) if v =

∞∑
i=1

miδxi with {xi} distinct, mi ≥ 0,

∞ otherwise.

For the next order, we note that among all measures of mass M the global infimum
of E0 is given by

(3.5) inf

{
E0(v) :

∫
T3

v =M

}
= e0(M).

We will recover the next term in the expansion as the limit of Eε,η −e0, appropriately
rescaled, that is of the functional

Fε,η(vη) := η−1

[
Eε,η(vη)− e0

(∫
T3

vη

)]
.
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Its limiting behavior will be characterized by the functional

F0(v) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞∑
i=1

g(3)(0) (mi)2

+
∑
i�=j

mimj GT3(xi − xj) if v =

∞∑
i=1

miδxi with {xi} distinct, {mi} ∈ M,

∞ otherwise,

where g(3) is defined in (2.2) and

M :=

{
{mi}i∈N : mi ≥ 0, e0(m

i) admits a minimizer for each i,

and
∞∑
i=1

e0(m
i) = e0

( ∞∑
i=1

mi
)}

.

Note that while the definitions above involve infinite sequences and sums, we have
shown in [8] that the sequences in M have only a finite (but unknown) number of
nonzero terms (see also Remark 3).

We have defined our limit functions E0 and F0 over X , the space of Radon mea-
sures on T3. Let us trivially extend the functionals Eε,η and Fε,η to X by defining
them to be +∞ on X\H1(T3). In Theorem 3.1 we prove under a certain scaling
assumption on ε with respect to η that

Eε,η
Γ−→ E0 and Fε,η

Γ−→ F0

within the space X . This is made precise as follows.
Theorem 3.1.

• (Condition 1: the lower bound and compactness). Let εn and ηn be sequences
tending to zero such that, for some ζ > 0, εn = o(η4+ζ

n ). Let vn be a sequence
vn ∈ X such that the sequence of energies Eεn,ηn(vn) and masses −

∫
T3 vn are

bounded. Then (up to a subsequence) vn ⇀ v0, supp v0 is countable, and

(3.6) lim inf
n→∞ Eεn,ηn(vn) ≥ E0(v0).

If, in addition, Fεn,ηn(vn) is bounded and ζ ≥ 1, then the limit v0 is a global
minimizer of E0 under constrained mass (i.e., v0 attains the infimum in (3.5)
for some M), and

(3.7) lim inf
n→∞ Fεn,ηn(vn) ≥ F0(v0).

• (Condition 2: the upper bound). There exist two continuous functions C1, C2 :
[0,∞) → [0,∞) with C1(0) = C2(0) = 0 but strictly positive otherwise, with
the following property. Let εn and ηn be sequences tending to zero, and let
εn ≤ C1(ηn). Let v0 ∈ X be such that E0(v0) < ∞. Then there exists a
sequence vn ⇀ v0 such that

(3.8) lim sup
n→∞

Eεn,ηn(vn) ≤ E0(v0).

If, in addition, v0 minimizes E0 under constrained mass and εn ≤ C2(ηn),
then this sequence also satisfies

(3.9) lim sup
n→∞

Fεn,ηn(vn) ≤ F0(v0).
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We conclude this section with two remarks.
Remark 1 (the role of the mass constraint). In our results, we have not fixed the

mass but rather, for the lower bound, included the weaker assumption of bounded
mass. The diblock copolymer problem is a mass-constrained problem, and, moreover,
minimizing any of the functionals in this article over all X gives the trivial zero
minimizer corresponding to zero energy. Hence, at first, the reader may question how
our results pertain to the small mass regime of the diblock copolymer problem and
how they retain the integrity of this mass-constrained problem.

The crucial point here is that the mass constraint passes to the limit with the
convergence in X , and therefore mass-constrained minimizers again converge to a
mass-constrained minimizer. One could argue as follows. For any M > 0, let

XM :=

{
μ ∈ X

∣∣∣∣ ∫
T3

dμ = M

}
.

Fix M > 0, and let w be a minimizer of E0 with respect to mass constraint M , i.e.,
a minimizer over XM . By Theorem 3.1, there exists a sequence wn converging to w
such that

E0(w) ≥ lim supEε,η(wn).

Note that Mn := −
∫
T3 wn converges to M . Now let un be a minimizer of Eε,η over

XMn . By Theorem 3.1, there exists a subsequence un which converges to u ∈ X
(hence u ∈ XM ) with

lim inf Eε,η(un) ≥ E0(u).

Hence

E0(w) ≥ lim supEε,η(wn) ≥ lim inf Eε,η(un) ≥ E0(u).

Thus u is a minimizer of E0 over XM and hence a limit point of the mass-constrained
(albeit different masses) minimizers of Eε,η. The same argument applies at the next
order.

One might naturally ask if one can directly prove Γ-convergence within the space
XM . This can also be done with the following modification. The result follows if the
constructions of the upper-bound (recovery) sequences can be made with fixed mass.
Our proof of the upper bounds for the sharp-interface functionals (i.e., the work of
[8]) does indeed keep the mass fixed. The current proof in the present paper requires
an approximation lemma (Lemma 5.1) which as stated may perturb the mass slightly.
With a few modifications, this lemma could be modified to fix mass. However, as
we comment on in the next remark, the use of Lemma 5.1 is simply because at
this stage we are unable to prove that minimizers of e0 are in fact spherical. Once
this is established, one can take an upper bound sharp-interface sequence consisting
of spherical droplets and simply modify along the boundaries via a standard one-
dimensional interface construction which would preserve the mass.

Remark 2 (choice of the slaving of ε to η). There are two separate arguments
connecting the two parameters:

• If the sharp-interface approximation is to be reasonable, then the scaling
should be such that the interfacial width is small with respect to the size
of the particles. Since a particle has diameter O(η), this translates into the
condition ε
 η.
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• E0 is infinite on structures that are not collections of point masses. If E0

is to be the limit functional of Eε,η, then along any sequence that does not
converge to such point-mass structures Eε,η should diverge. It turns out that
this provides a stronger condition, as we now show.
For Eε,η, every function v ∈ H1(T3) is admissible. Under constrained mass
M , an obvious candidate for the limit behavior is the function v ≡ M , with
energy scaling Eε,η(M) ∼ η4/ε. On the other hand, if the functional Eε,η is
close to E0, then we will have Eε,η ≈ E0 = O(1). Therefore the ratio η4/ε
is critical. If this ratio is small, then the constant state has lower energy
than localized states, and we do not expect the functional E0 to be a good
approximation of Eε,η. On the other hand, if the ratio η4/ε is large, then
localized states have lower energy than constant states.

In Theorem 3.1, the lower bound is responsible for forcing divergence of the energy
along sequences which do not converge to point masses; the lower bound therefore
requires ε 
 η4. The extra factor ηζn is used in the truncation part of the proof:
in relating a diffuse-interface sequence to a sharp-interface sequence, we truncate at
a suitable level set of the interface, and the small factor ηζn is used to quantify the
closeness in interfacial energies with respect to the surface tension σ.

For the upper bound, we would ideally require εn = o(ηn). What we assume,
εn ≤ C1(ηn) and εn ≤ C2(ηn), are stronger requirements and are not explicit. This
is simply a consequence of the fact that at this stage we do not know the exact local
behavior for minimizers of e0. In two dimensions we can fully characterize this local
behavior, and as we shall see in section 7, this allows us to require only the (probably

weaker) condition εn = o(ηn |log ηn|−1
). In three dimensions we use a convenient

version of the Modica–Mortola profile construction which does not give an optimal
scaling in terms of closeness of energies (cf. Lemma 5.1). Unfortunately, this lemma
entails an energy comparison with a nonexplicit functional dependence on η—hence
the undetermined functions C1 and C2. One could in principle make this estimate
explicit; however, it would be much more natural to first establish the conjectured
behavior for the local problem (see section 6) and then bypass Lemma 5.1 entirely
with an explicit interface construction yielding the optimal slaving, where εn ∼ ηn up
to a logarithmic correction.

4. Previous results for the sharp-interface limit. In [8] we dealt with the
sharp-interface functionals that arise from letting ε tend to zero for fixed η. For Eε,η

and Fε,η, respectively, these limit functionals defined on X are

(4.1) Eη(v) :=

⎧⎪⎨⎪⎩η σ
∫
T3

|∇v| + η

∥∥∥∥v −−
∫
v

∥∥∥∥2
H−1(T3)

if v ∈ BV (T3; {0, 1/η3}),

∞ otherwise

and

Fη(v) :=

⎧⎨⎩η−1

[
Eη(v)− e0

(∫
T3

v

)]
if v ∈ BV (T3; {0, 1/η3}),

∞ otherwise.

We proved that

Eη
Γ−→ E0 and Fη

Γ−→ F0 as η → 0.
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This is made precise as follows.
Theorem 4.1. Let ηn be a sequence tending to 0.
• (Condition 1: the lower bound and compactness). Let vn be a sequence such
that the sequence of energies Eηn(vn) and masses

∫
T3 vn are bounded. Then

(up to a subsequence) vn ⇀ v0, supp v0 is countable, and

(4.2) lim inf
n→∞ Eηn(vn) ≥ E0(v0).

If, in addition, Fηn(vn) is bounded, then the limit v0 is a global minimizer of
E0 under constrained mass, v0 =

∑
im

iδxi where {mi} ∈ M and

(4.3) lim inf
n→∞ Fηn(vn) ≥ F0(v0).

• (Condition 2: the upper bound). Let E0(v0) < ∞ and F0(v0) < ∞, respec-
tively. Then there exists a sequence vn ⇀ v0 such that

(4.4) lim sup
n→∞

Eηn(vn) ≤ E0(v0).

If F0(v0) <∞, then there exists a sequence vn ⇀ v0 such that

(4.5) lim sup
n→∞

Fηn(vn) ≤ F0(v0).

Remark 3. We recall from [8] some properties of e0:
1. For every a > 0, e′0 is nonnegative and bounded from above on [a,∞).
2. If {mi}i∈N with

∑
im

i <∞ satisfies

(4.6)

∞∑
i=1

e0(m
i) = e0

( ∞∑
i=1

mi
)
,

then only a finite number of mi are nonzero.
Remark 4. In proving Theorem 4.1, the bulk of the work was confined to the lower-

bound inequalities wherein, after establishing compactness, one needed a characteri-
zation of sequences with bounded energy and mass. The characterization implied that
such a sequence eventually consists of a collection of nonoverlapping, well-separated
connected components (see [8, Lemma 5.2]).

We note that in proving the second-order Γ convergence we saw that for an ad-
missible sequence vn the boundedness of Fηn(vn) implied both a minimality condition
and compactness:

• The minimality condition arose from the fact that Eεn,ηn(vn) must converge
to its minimal value and implied that the {mi} must satisfy (4.6). Hence by
property 2 above, the number of limiting particles must be finite.

• The compactness condition implied that for each mi the minimization prob-
lem defining e0(m

i) (namely (3.4)) had a solution.
These conditions are responsible for the additional properties of the weights mi (cf.
M) in the definition of F0.

5. Proof of Theorem 3.1. The proof of Theorem 3.1 relies on Theorem 4.1.
For the lower bound, we use a suitable truncation to relate the approximating diffuse-
interface sequence to a sharp-interface sequence with the same limit and whose dif-
ference in energy is small. For the upper bound, we modify, in a neighborhood of the
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boundary, the sharp-interface recovery sequence given by Theorem 4.1 via a quan-
tification of the Modica–Mortola optimal-profile construction [19]. Such a result is
provided by a lemma of Otto and Viehmann [26].

Lemma 5.1. Let α > 0. There exists a constant C0(α) such that for any char-
acteristic function χ of a subset of T3 and δ > 0 there exists an approximation
u ∈ H1(Tn, [0, 1]) with∫

T3

δ |∇u|2 +
1

δ
u2 (1− u2) dx ≤ (σ + α)

∫
T3

|∇χ|

and ∫
T3

|χ− u| dx ≤ C0(α) δ

∫
T3

|∇χ|.

The proof of Lemma 5.1 follows from the proof of Proposition 1 in section 7 of
[26]. Note that in [26] the authors deal with the functional∫

Ω

δ

2(1− u2)
|∇u|2 +

1

2δ
(1 − u2) dx,

defined on cubes of arbitrary size Ω. Here the wells are at ±1 and, more importantly,
this scaling produces unity as the limiting surface tension σ. However, the structure
of their proof uses only the fact that this functional Γ-converges to∫

Ω

|∇u|.

Hence our Lemma 5.1 follows directly not from the statement of their Proposition 1
but from its proof.

Proof of Theorem 3.1. We first prove Condition 1 (the compactness and lower
bounds). Let εn, ηn, and vn be sequences as in the theorem such that Eεn,ηn(vn)
is bounded (but not necessarily Fεn,ηn(vn), yet). For part of the proof we will work
with the sequence and the energy in the original scaling un, given by un = η3nvn. In
terms of un, we find

Eεn,ηn(vn) =
εn
η2n

∫
T3

|∇un|2 + 1

η2nεn

∫
T3

W (un) +
1

η5n

∥∥∥∥un −−
∫
un

∥∥∥∥2
H−1

.

Following [19] we define the continuous and strictly increasing function

φ(s) := 2

∫ s

0

√
W (t) dt,

and note that as a consequence of the inequality a2 + b2 ≥ 2ab we have

(5.1) Eεn,ηn(vn) ≥
1

η2n

∫
T3

|∇φ(un)|+ 1

η5n

∥∥∥∥un − −
∫
un

∥∥∥∥2
H−1

.

Now set αn = 1/(σ− ηζn), where as before σ = 2
∫ 1

0

√
W (t) dt = φ(1)−φ(0). Fix

δn > 0 by the condition

φ(1 − 2δn)− φ(2δn) = φ(1)− φ(0)− ηζn =
1

αn
,
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and note that the quadratic behavior of W at 0 and 1 implies that δn = O(η
ζ/2
n ). We

also introduce the notation [u] for the clipping to the interval [0, 1]:

[u] := min{1,max{0, u}}.
We want to show that there exists a tn ∈ [φ(δn), φ(1 − δn)] \An for which

(5.2) H2(∂∗{φ([un]) > tn}) < αn

∫
T3

|∇φ([un])| ≤ αn

∫
T3

|∇φ(un)|.

Here H2 denotes a two-dimensional Hausdorff measure. To this end, we use the
characterization of perimeter (cf. [12] or [2, Theorem 2.1])∫

T3

|∇φ([un])| =
∫ φ(1)

φ(0)

H2(∂∗{φ([un]) > t}) dt

to estimate the size of the set

An :=

{
t ∈ [φ(0), φ(1)] : H2(∂∗{φ([un]) > t}) ≥ αn

∫
T3

|∇φ([un])|
}

by

|An| =
∫
An

1 dt ≤ 1

αn

∫
T3 |∇φ([un])|

∫ φ(1)

φ(0)

H2(∂∗{φ([un]) > t}) dt = 1

αn
.

By definition of αn and δn, there exists a tn ∈ [φ(δn), φ(1 − δn)] \ An for which (5.2)
holds.

We now construct an auxiliary sequence un such that the corresponding vn =
un/η

3
n will be admissible for the sharp-interface functional Eη. We map the values of

un to {0, 1} with cutoff φ−1(tn):

un(x) :=

{
0 if φ(un(x)) < tn,

1 if φ(un(x)) ≥ tn

so that

(5.3)

∫
|∇un| = H2(∂∗{φ([un]) > tn}).

We estimate the difference in L2 and H−1 of un and un. Since φ is increasing and
φ−1(tn) ∈ [δn, 1− δn], the function

ψn(u) :=

{
u2 if φ(u) < tn,

(1− u)2 if φ(u) ≥ tn

is bounded from above by an increasing factor times W ; i.e.,

ψn(u) ≤ Cδ−2
n W (u) ≤ C′η−ζ

n W (u) for some C, C′ independent of n.

Therefore the sequences un and un are close in L2:

‖un − un‖2L2 =

∫
T3

ψn(un) ≤ C′η−ζ
n

∫
T3

W (un) = O(εnη
2−ζ
n ) → 0,
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where the final estimate results from the boundedness of Eεn,ηn(vn). Consequently
they are also close in H−1:∥∥∥∥un − un −−

∫
(un − un)

∥∥∥∥
H−1

≤ C

∥∥∥∥un − un −−
∫
(un − un)

∥∥∥∥
L2

≤ 2C‖un − un‖L2

= O(ε1/2n η1−ζ/2
n ) → 0,(5.4)

and the same holds for the squared norms:∣∣∣∣∣
∥∥∥∥un −−

∫
un

∥∥∥∥2
H−1

−
∥∥∥∥un −−

∫
un

∥∥∥∥2
H−1

∣∣∣∣∣
≤
(∥∥∥∥un −−

∫
un

∥∥∥∥
H−1

+

∥∥∥∥un −−
∫
un

∥∥∥∥
H−1

)∥∥∥∥un − un −−
∫
(un − un)

∥∥∥∥
H−1

≤
(
2

∥∥∥∥un −−
∫
un

∥∥∥∥
H−1

+

∥∥∥∥un − un −−
∫
(un − un)

∥∥∥∥
H−1

)
O(ε1/2n η1−ζ/2

n )

=
(
η5nEεn,ηn(vn)

)1/2
O(ε1/2n η1−ζ/2

n ) +O(εnη
2−ζ
n )

= O(ε1/2n η7/2−ζ/2
n ) +O(εnη

2−ζ
n )

= o(η11/2n ).(5.5)

Note that in the last lines of (5.4) and (5.5) we have used the hypothesis εn = o(η4+ζ
n ).

Using (5.2) and (5.3) we transfer the lower bound (5.1) to the sequence un:

Eεn,ηn(vn)
(5.1),(5.2)

≥ 1

αnη2n
H1(∂∗{φ([un]) > tn}) + 1

η5n

∥∥∥∥un −−
∫
un

∥∥∥∥2
H−1

(5.3),(5.5)
=

1

αnη2n

∫
T3

|∇un|+ 1

η5n

∥∥∥∥un −−
∫
un

∥∥∥∥2
H−1

+ o(η1/2n )

=
ηn
αn

∫
T3

|∇vn|+ ηn

∥∥∥∥vn −−
∫
vn

∥∥∥∥2
H−1

+ o(η1/2n )

≥ 1

σαn
Eηn(vn) + o(η1/2n ),(5.6)

where in the last line we used the fact that σαn > 1 (note that σαn → 1 as n→ ∞).
From (5.6) it follows that the sequence vn satisfies the conditions of Theorem 4.1.

Therefore there exists a subsequence vnk
converging to a limit v0, with countable

support, such that

(5.7) lim inf
k→∞

Eηnk
(vnk

) ≥ E0(v0).

The corresponding subsequence vnk
of the sequence vn also converges weakly to the

same limit, since, for ϕ ∈ C(T3),∣∣∣∣∫
T3

(vnk
− vnk

)φ

∣∣∣∣ ≤ 1

η3nk

‖unk
− unk

‖L2‖ϕ‖L2 = O(ε1/2nk
η−2−ζ/2
nk

) → 0.

This proves the compactness of the sequence vn and the characterization of the support
of the limit v0. The lower-bound inequality (3.6) then follows from (5.6) and (5.7).
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We address the lower bound for Fε,η. We note that boundedness of Fεn,ηn(vn)
implies boundedness of Eεn,ηn(vn), so that the characterization of the convergence of
the sequence given above applies. In addition, by (5.6), we have

Fεn,ηn(vn) =
1

ηn

[
Eεn,ηn(vn)− e0

(∫
T3

vn

)]
≥ 1

ηn

[
Eηn(vn)− e0

(∫
T3

vn

)]
+

1

ηn

(
1

σαn
− 1

)
Eηn(vn) + o(1).

Since σαn = 1 + o(ηζn), with ζ > 1, the lower bound (4.3) for Fη implies

lim inf
n→∞ Fεn,ηn(vn) ≥ F0(v0),

which is (3.7).
We now turn to the upper bound (Condition 2), treating Eε,η first. As in the

proof of Theorem 4.1, it is sufficient to prove that for any v0 of the form

v0 =

N∑
i=1

miδxi , with xi distinct,

there exists a sequence vn ⇀ v0 with

(5.8) lim sup
n→∞

Eεn,ηn(vn) ≤ E0(v0).

See [8] for an explanation. Given such a v0, Theorem 4.1 (specifically (4.4)) provides
an admissible sequence vn ⇀ v0 for Eη with

(5.9) lim
n→∞Eηn(vn) = E0(v0).

We write un := η3nvn, which is the characteristic function of a subset of T3 composed
of N sets whose diameters are decreasing to zero. For each n, Lemma 5.1 with α = ηn
implies that there exists a C0(ηn) such that for any εn > 0 we have an approximation
un ∈ H1(T3, [0, 1]) such that

(5.10)

∫
T3

εn |∇un|2 +
1

εn
u2n (1− u2n) dx ≤ (σ + ηn)

∫
T3

|∇un|

and ∫
T3

|un − un| dx ≤ C0(ηn) εn

∫
T3

|∇un|.

Now let

vn =
un
η3n
.

We have

‖vn − vn‖L1(T3) =
1

η3n

∫
T3

|un − un| dx

≤ C0(ηn)εn
η3n

∫
T3

|∇un|

≤ C
C0(ηn)εn

ηn
.(5.11)
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We will slave εn to ηn such that the above tends to zero as n tends to infinity. In
particular, vn and vn will have the same limit v0. We crudely estimate the H−1-norm
as follows:∥∥∥∥vn − vn −−

∫
(vn − vn)

∥∥∥∥2
H−1(T3)

≤ C

∥∥∥∥vn − vn −−
∫
(vn − vn)

∥∥∥∥2
L2(T3)

≤ C′ ‖vn − vn‖2L2(T3)

≤ C′ ‖vn − vn‖L∞(T3) ‖vn − vn‖L1(T3)

(5.11)

≤ C′ C0(ηn)εn
η4n

.(5.12)

Next we note that

Eεn,ηn(vn) =
εn
η2n

∫
T3

|∇un|2 + 1

η2nεn

∫
T3

W (un) +
1

η5n

∥∥∥∥un −−
∫
un

∥∥∥∥2
H−1

=
1

η2n

∫
T3

(
εn |∇un|2 + 1

εn
u2(1 − u2n)

)
dx + ηn

∥∥∥∥vn −−
∫
vn

∥∥∥∥2
H−1

≤ 1

η2n

∫
T3

(
εn |∇un|2 + 1

εn
u2(1 − u2n)

)
dx + ηn

∥∥∥∥vn −−
∫
vn

∥∥∥∥2
H−1

+ ηn

∥∥∥∥vn − vn −−
∫
(vn − vn)

∥∥∥∥2
H−1(T3)

(5.10),(5.12)

≤ ηn (σ + ηn)

∫
T3

|∇vn|+ ηn

∥∥∥∥vn −−
∫
vn

∥∥∥∥2
H−1

+ C′ C0(ηn)εn
η3n

= Eηn(vn) + η2n

∫
T3

|∇vn|+ C′ C0(ηn)εn
η3n

.(5.13)

Thus we assume

(5.14)
C0(ηn)εn

η3n
→ 0 as n → ∞,

and we choose a function C1 as in the theorem such that (5.14) is satisfied whenever
εn ≤ C1(ηn). We now take the limsup as n → ∞ in (5.13), and hence (5.9) gives
(5.8).

For the next order, let

v0 =
N∑
i=1

miδxi , {mi} ∈ M.

Theorem 4.1 (specifically (4.5)) gives a sequence vn ⇀ v0 such that

(5.15) lim
n→∞Fηn(vn) = F0(v0).
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We take vn to be the diffuse-interface approximation used in the previous upper-
bound argument but now taking α to be η2n. Hence vn ⇀ v0 and, following the steps
of (5.13), we have

(5.16) Eεn,ηn(vn) ≤ Eηn(vn) + η3n

∫
T3

|∇vn| + C
C0(η

2
n)εn
η3n

and

Fεn,ηn(vn) = η−1
n

[
Eεn,ηn(vn)− e0

(∫
T3

vn

)]
(5.16)

≤ η−1
n

[
Eηn(vn) + η3n

∫
T3

|∇vn| + C
C0(η

2
n)εn
η3n

− e0

(∫
T3

vn

)
+

(
e0

(∫
T3

vn

)
− e0

(∫
T3

vn

))]
≤ Fηn(vn) +O(ηn) + η−1

n

[
L ‖vn − vn‖L1 + C

C0(η
2
n)εn
η3n

]
,

where L is the local Lipschitz constant of e0 (cf. Remark 4). Thus, choosing εn such
that

(5.17)
C0(η

2
n)εn
η3n

→ 0 as n→ ∞,

equation (5.15) implies

lim sup
n→∞

Fεn,ηn(vn) ≤ F0(v0).

We choose a function C2 as in the theorem so that εn ≤ C2(ηn) implies (5.17).

6. The local structure of minimizers and the variational problem that
defines e0. Simulations of minimizers of the diblock copolymer problem show phase
boundaries which resemble constant mean curvature surfaces (see, for example, [9]
and the references therein): in the regime of this article, we observe spherical bound-
aries. Experimental observations in diblock copolymer melts also support this [34].
On the other hand one can see, for example via vanishing first variation, that on
a finite domain the nonlocal term will have an effect on the structure of the phase
boundary [20, 11]. While a full rigorous characterization of this effect remains open,
one would expect that exploiting a small parameter might prove useful, and, indeed,
this is exactly what our first-order asymptotics have done: in proving the first-order
lower bound, we have reduced the local optimal shape of the particles to solutions of
the variational problem (3.4) that defines e0. The details of this calculation can be
found in [8]. Let us now comment on this problem and present some conjectures.

We briefly recall the problem defining e0. For m > 0, minimize∫
R3

|∇u| +
∫
R3

∫
R3

u(x)u(y)

4π|x− y| dx dy over all u ∈ BV (R3, {0, 1}) with

∫
R3

u dx = m.
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Note that the two terms are in direct competition: balls are best for the first term
and worst for the second.3 The function e0(m) denotes this minimal value, i.e.,

e0(m) := inf

{∫
R3

|∇u| +
∫
R3

∫
R3

u(x)u(y)

4π|x− y| dx dy
∣∣∣∣ u ∈ BV (R3, {0, 1}),

∫
R3

u dx = m

}
.

We also define the energy of one ball of volume m:

f(m) := (36π)1/3m2/3 +
2

5

(
3

4π

)2/3

m5/3.

Clearly, we have e0(m) ≤ f(m). We conjecture the following scenario. There exists
m∗ > 0 such that, for all m ≤ m∗, there exists a global minimizer associated with
e0(m), and it is a single ball of mass m. For m > m∗, a minimizer fails to exist. In
fact, as m increases past m∗, the ball remains a local minimizer, but a minimizing
sequence consisting of two balls of equal size that move away from each other has
lower limiting energy. This separation is driven by the H−1 interaction energy, which
attaches a positive penalty to any two objects at finite distance from each other.
The limiting energy of such a sequence is simply the sum of the energies of two
noninteracting balls, i.e., 2f(m/2). The critical m∗ is then the only positive zero of
f(m)− 2f(m/2), m∗ ≈ 22.066.

As m further increases above a certain m∗∗ > m∗, a sequence consisting of three
balls of equal size is a minimizing sequence for e0(m), with limiting value 3f(m/3);
and so on for higher values of n. Specifically, we conjecture the following.

Conjecture. The minimizer associated with e0(m) exists iff m ≤ m∗, and it is
a ball of mass m. Moreover, for all m > 0, we have

e0(m) = inf
n∈N

nf(m/n).

The infimum is achieved iff m ≤ m∗.
Our basis for this conjecture, and in particular the fact that droplets break up

in pieces with equal mass, is twofold. In two dimensions one has an explicit form

3The latter point has an interesting history. Poincaré [27, 28] considered the problem of deter-
mining possible shapes of a fluid body of mass m in equilibrium. Assuming vanishing total angular
momentum, the total potential energy in terms of u, the characteristic function of the body, is given
by

(P)

∫
R3

∫
R3

−u(x) u(y)

C |x− y| dx dy,

where −(C|x− y|)−1, C > 0 being the potential resulting from the gravitational attraction between
two points x and y in the fluid. Poincaré showed under some smoothness assumptions that a body
has the lowest energy iff it is a ball. He referred to some previous work of Lyapunov but was critical
of its incompleteness. It was not until almost a century later that the essential details were sorted
out wherein the heart of proving the statement lies in the rearrangement ideas of Steiner for the
isoperimetric inequality. These ideas are captured in the Riesz rearrangement inequality and its
development (cf. [18]): for functions f, g, and h defined on Rd,

∫
Rd

∫
Rd

f(y) g(x− y) h(x) dy dx ≤
∫
Rd

∫
Rd

f∗(y) g∗(x− y) h∗(x) dy dx,

where f∗, g∗, h∗ denote the spherically decreasing rearrangements of f, g, and h. While the general
case of equality was treated by Burchard in [7], for the problem at hand where the function g ∼ |· |−1

is fixed and symmetrically decreasing, the inequality with the specific case of equality was treated
by Lieb in [17], thus proving that balls are the unique minimizers for the potential problem (P).
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for e0(m) for which one can prove equal mass distribution for minimizers (cf. Lemma
6.2 of [8] or Lemma 7.1 of the present article). Moreover, preliminary numerical
experiments in three dimensions conquer with the hypothesis that equal masses are
optimal.

One might ask what is known about global minimizers in three dimensions. In our
previous article [8] on the sharp-interface functionals, we prove that if a sequence (in
η) has bounded energy Fη, then it must converge to a weighted sum of delta functions
where all the weights mi must have a corresponding minimizer of e0(m

i). One can
readily check, via trial functions, that such a sequence exists. Thus, for certain values
of m, a minimizer of e0(m) does exist. Unfortunately, our lower bound compactness
argument gives no explicit range for the possible limiting weights mi. One could also
consider local minimizers, and in particular one can study the stability of balls. A
calculation (cf. [22]) using the second variation indicates that the ball retains stability
up to mc ≈ 62.83, well past the critical mass m∗.

Proving our conjecture would for the first time provide some rigorous justification
for why minimizers of the diblock copolymer problem have phase boundaries which
resemble periodic constant mean curvature surfaces, supporting the idea that at small
length scales the perimeter (short-range) effects override the nonlocal (long-range)
effects.

7. Analogous results in two dimensions. As in [8], we summarize the anal-
ogous results for d = 2. While we do not give all the details, we give the essential
features which should enable the reader to complete the proofs. The fundamental
difference between two and three dimensions is that the H−1-norm is critical in two
dimensions. As explained in [8], after rescaling with v = u/η2, this involves slaving γ
to η via

γ =
1

|log η| η3 ,

and the two-dimensional function analogous to Eε,η becomes

E2d
ε,η(v) := εη3

∫
|∇v|2 + η3

ε

∫
W̃ (v) + |log η|−1

∥∥∥∥v −−
∫
v

∥∥∥∥2
H−1

.

Here the rescaled double-well energy is now

W̃ (v) := v2(1− η2v)2.

The analogous sharp-interface (ε→ 0) limit is given by

E2d
η (v) :=

⎧⎪⎨⎪⎩σ η
∫
T

|∇v|+ |log η|−1

∥∥∥∥v −−
∫
v

∥∥∥∥2
H−1(T)

if v ∈ BV (T, {0, 1/η2}),

∞ otherwise,

where σ is again given by (3.3). The first-order limit is defined by

E2d
0 (v) :=

⎧⎪⎨⎪⎩
∑
i∈I

e2d0 (mi) if v =

∞∑
i=1

miδxi with {xi} distinct, mi ≥ 0,

∞ otherwise,
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where the function e2d0 : [0,∞) → [0,∞) is defined as follows. Let

e2d0 (m) :=
m2

4π
+ 2σ

√
πm

=
m2

4π
+ inf

{
σ

∫
R2

|∇z| : z ∈ BV (R2; {0, 1}),
∫
R2

z = m

}
.(7.1)

An interesting feature here is the explicit nature of e2d0 (in contrast to (3.4)). The
first term is the dominant part of the H−1-norm in two dimensions, and it arises
from the fact that the logarithm is additive with respect to multiplicative scaling. We
introduce the lower-semicontinuous envelope function (cf. [8])

(7.2) e2d0 (m) := inf

⎧⎨⎩∑
j∈J

e2d0 (mj) : mj > 0,

∞∑
j=1

mj = m

⎫⎬⎭ .

For the next order, note that

min

{
E2d
0 (v) :

∫
T2

v =M

}
= e2d0 (M).

We hence recover the next term in the expansion as the limit of E2d
η −e2d0 , appropriately

rescaled, that is of the functional

F 2d
ε,η(v) := |log η|

[
E2d

ε,η(v) − e2d0

(∫
T2

v

)]
.

Note that the corresponding sharp-interface function is

F2d
η (v) := |log η|

[
E2d
η (v)− e2d0

(∫
T2

v

)]
.

In order to define the second-order limit, we require some preliminary definitions.
We first recall a lemma whose proof was presented in [8].

Lemma 7.1. Let {mi}i∈N be a solution of the minimization problem

(7.3) min

{ ∞∑
i=1

e2d0 (mi) : mi ≥ 0,
∞∑
i=1

mi =M

}
.

Then only a finite number of the mi are nonzero, and all the nonzero terms are equal.4

In addition, if one mi is less than 2−2/3π, then it is the only nonzero term.
Let

f0(m) :=
m2

8π

(
3− 2 log

m

π

)
.

For n ∈ N and m > 0 the sequence n⊗m is defined by

(n⊗m)i :=

{
m, 1 ≤ i ≤ n,

0, n+ 1 ≤ i <∞.

4In [21], the author presents an asymptotic description of minimizers in two dimensions. A
similar limiting statement on the equal distribution of mass is proved (cf. [21, equation (2.11) of
Theorem 2.2]).
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Let M̃ be the set of optimal sequences for the problem (7.3):

M̃ :=
{
n⊗m : n⊗m minimizes (7.3) for M = nm, and e2d0 (m) = e2d0 (m)

}
.

Then define
(7.4)

F2d
0 (v) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n
{
f0(m) + m2 g(2)(0)

}
+
m2

2

∑
i,j≥1
i�=j

GT2(xi − xj) if v = m

n∑
i=1

δxi with {xi} distinct, n⊗m ∈ M̃,

∞ otherwise,

where the function g(2) was defined in (2.1). We briefly comment on these functionals
and their properties. As in three dimensions, the boundedness of F 2d

ε,η implies that the

limiting weights mi satisfy both a minimality condition and a compactness condition.
The minimality condition implies that n ⊗ m minimizes (7.3). The compactness
condition implies that

(7.5) e2d0 (mi) = e2d0 (mi).

As we can see from Lemma 7.1, the minimality condition provides a characterization
that is stronger than in three dimensions: in particular the masses must be equal.
Let us also comment on the function f0. The minimization problem (7.1) has only
balls (here circular disks) as solutions. Thus, in computing the small-η asymptotics of
F 2d
ε,η, the H

−1(R2)-norm of a two-dimensional disc of mass m enters. The functional
f0(m) is exactly this value.

Theorem 7.2.

• (Condition 1: the lower bound and compactness). Let εn and ηn be sequences
tending to zero such that εnη

−3−ζ
n → 0 for some ζ > 0. Let vn be a sequence

such that the sequence of energies E2d
εn,ηn

(vn) and masses −
∫
T2 vn are bounded.

Then (up to a subsequence) vn ⇀ v0, supp v0 is countable, and

(7.6) lim inf
n→∞ E2d

εn,ηn
(vn) ≥ E2d

0 (v0).

If, in addition, F 2d
εn,ηn

(vn) is bounded, then the limit v0 is a global minimizer

of E2d
0 under constrained mass, and

(7.7) lim inf
n→∞ F 2d

εn,ηn
(vn) ≥ F2d

0 (v0).

• (Condition 2: the upper bound). Let εn and ηn be sequences tending to zero
such that εnη

−1
n |log ηn| → 0. Let v0 be such that E2d

0 (v) < ∞. Then there
exists a sequence vn ⇀ v such that

lim sup
n→∞

E2d
εn,ηn

(vn) ≤ E2d
0 (v0).

If, in addition, v minimizes E2d
0 under constrained mass, and if εnη

−1
n |log ηn|2

→ 0, then this sequence also satisfies

lim sup
n→∞

F 2d
εn,ηn

(vn) ≤ F2d
0 (v0).
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The proof of Theorem 7.2 is very similar to that of Theorem 3.1. Again, we rely
heavily on the lower-bound estimate and upper-bound recovery sequence of the asso-
ciate sharp-interface problems. We summarized those results in [8]. The lower-bound
inequality follows verbatim the three-dimensional case, the differences in dimension
reflected by the exponent 3 as opposed to 4 in the slaving of εn to ηn.

The main difference comes in the upper bound, and this is reflected in the less
restrictive slaving of εn to ηn. In two dimensions, minimizers associated with the
first-order limit are necessarily circular droplets. This gives an upper-bound recovery
sequence of circular droplets (cf. (7.1)). To regularize the circular boundaries, one can
bypass Lemma 5.1 and simply use a one-dimensional optimal profile to approximate
a Heaviside function. The advantage here is then the explicit dependence of εn on ηn.
For the step analogous to (5.12), one can use an interpolation inequality corresponding
to the “nearly” embedding of L1 in H−1 to relate the H−1-norm to the L1-norm. For
completeness we present this inequality in the appendix (Lemma A.1).

8. Discussion, dynamics, and related work. Together with [8], we have
presented an analysis of the small-volume regime for the diblock copolymer problem.
This has been accomplished by an asymptotic description of the energy functional
in the small volume-fraction regime. We refer to the discussion section of [8] for
comments on the role of the mass constraint with respect to the limit functionals
and the fundamental differences between the two- and three-dimensional cases. As
described above, in three dimensions, many open problems remain with respect to the
local structure problem, and it is here that one should first focus in order to rigorously
address the role of the nonlocal term on shape effects.

This asymptotic study has much in common with the asymptotic analysis of
the well-known Ginzburg–Landau functional for the study of magnetic vortices (cf.
[32, 15, 1]). Our problem is much more direct as it pertains to the asymptotics of the
support of minimizers. This is in strong contrast to the Ginzburg–Landau functional
wherein one is concerned with an intrinsic vorticity quantity which is captured via a
certain gauge-invariant Jacobian determinant of the order parameter.

Our results are consistent with and complementary to two other recent studies in
the regime of small volume fraction. In [30] Ren and Wei prove the existence of sphere-
like solutions to the Euler–Lagrange equation of (1.1) and further investigate their
stability. They also show that the centers of sphere-like solutions are close to global
minimizers of an effective energy defined over delta measures which includes both a
local energy defined over each point measure and a Green’s function interaction term
which sets its location. While their results are similar in spirit to ours, they are based
upon completely different techniques which are local rather than global. Recently,
Muratov [21] proved a strong and rather striking result for the sharp-interface problem
in two dimensions. In an analogous small volume-fraction regime, he proves that the
global minimizers are nearly identical circular droplets of a small size separated by
large distances. While this result does not precisely determine the placement of the
droplets—ideally proving periodicity of the ground state—to our knowledge it presents
the first rigorous work characterizing some geometric properties of the ground state
(global minimizer).

We conclude this section on the interesting connection with gradient-flow dynam-
ics. It is convenient to examine either the H−1 gradient flow of (1.1) or the modified
Mullins–Sekerka free boundary problem of Nishiura and Ohnishi [24] which results
from taking the gradient flow of the sharp-interface functional. In [14, 13] the au-
thors explore the dynamics of small spherical phases (particles). By constructing
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approximations based upon an ansatz of spherical particles similar to the classical
Lifshitz–Slyozov–Wagner theory, one derives a finite-dimensional dynamics for parti-
cle positions and radii. Here one finds a separation of time scales for the dynamics:
small particles both exchange material as in usual Ostwald ripening and migrate be-
cause of an effectively repulsive nonlocal energetic term. Coarsening via mass diffusion
occurs only while particle radii are small, and they eventually approach a finite equi-
librium size. Migration, on the other hand, is responsible for producing self-organized
patterns. For large systems, kinetic-type equations which describe the evolution of
a probability density are constructed. A separation of time scales between particle
growth and migration allows for a variational characterization of spatially inhomo-
geneous quasi-equilibrium states. Heuristically this matches our findings of (a) a
first-order energy which is local and essentially driven by perimeter reduction, and
(b) a Coulomb-like interaction energy, at the next level, responsible for placement and
self-organization of the pattern. Moreover, in [13], one finds that both the particle
position radii and centre ODEs have gradient-flow structures related to energies which
can be directly linked to our first- and second-order limit functionals, respectively.

The natural question is to what extent one can rigorously address the dynamics
and the separation of coarsening and particle migration effects. Recently, Niethammer
and Oshita [23] have given a rigorous derivation of the mean-field equations associ-
ated with the evolution of radii. Another approach (currently in progress) is via
Sandier and Serfaty’s connection between Γ-convergence and an appropriate (weak)
convergence of the associated gradient flows [31, 33]. Le [16] has recently used this
framework for the ε→ 0 problem, establishing convergence of the H−1-gradient flow
of (1.1) to that of the modified Mullins–Sekerka free boundary problem of Nishiura
and Ohnishi [24]. While this method gives a rather weak notion of convergence, it
allows for much weaker assumptions on the initial data and generic structure of the
evolving phases.

Appendix.
Lemma A.1. Let f ∈ L∞(T2) with

∫
T2 f = 0. Then there exists a constant

C > 0 such that

‖f‖2H−1(T2) ≤ C‖f‖2L1(T2)

(
1 + log

‖f‖L∞(T2)

‖f‖L1(T2)

)
.

Since the proof of this inequality is short and, to our knowledge, absent from the
literature, we present its proof. To this end, we first derive an inequality proved by
Brezis and Merle [6] in a slightly different form.

Lemma A.2. There exists a constant C0 ≥ 1 such that∫
T2

e|φ| ≤ C0

for all φ ∈W 2,1(T2) satisfying ∫
T2

|Δφ| = 1.

Remark 5. As the proof below shows, the result holds true for any φ such that∫
T2 |Δφ| < 4π; the constant C0 diverges as the critical value of 4π is approached.

Proof of Lemma A.2. Setting f(x) := −Δφ, so that
∫ |f | = 1, we have

φ(x) =

∫
T2

GT2(y)f(x− y) dy,
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and note that by (2.1)

|GT2(y)| ≤ C − 1

2π
log |y|

for some C > 0 and for all y ∈ (−1/2, 1/2)2. Therefore, using Jensen’s inequality,∫
T2

e|φ(x)| dx ≤
∫
(−1/2,1/2)2

exp

(∫
(−1/2,1/2)2

|GT2(y)||f(x − y)| dy
)
dx

≤ eC
∫
(−1/2,1/2)2

exp

(∫
(−1/2,1/2)2

log
(
|y|−1/2π

)
|f(x− y)| dy

)
dx

≤ eC
∫
(−1/2,1/2)2

∫
(−1/2,1/2)2

|y|−1/2π|f(x− y)| dydx

= eC
∫
(−1/2,1/2)2

|y|−1/2π dx

=: C0.

Proof of Lemma A.1. Set Φ(s) := |s| log(1 + C0|s|), and let Φ∗ be the convex
conjugate Φ∗(t) := sups∈R(ts−Φ(s)). From the lower bound Φ(s) ≥ |s| log(C0|s|) we
derive the upper bound

Φ∗(t) ≤ C−1
0 e|t|.

Define the Orlicz norm

‖f‖Φ := inf

{
λ > 0 :

∫
T2

Φ
(f
λ

)
≤ 1

}
.

Then we have the Hölder inequality (see, for example, section 3.3 of [29])∫
T2

fg ≤ 2‖f‖Φ‖g‖Φ∗.

To prove Lemma A.1 we take f ∈ L∞, f �= 0, with
∫
f = 0, and by multiplying

f with a constant we can assume that
∫ |f | = 1. Setting −Δφ = f , we have

‖f‖2H−1(T2) =

∫
T2

fφ ≤ 2‖f‖Φ‖φ‖Φ∗ ≤ 2‖f‖Φ.

The second inequality above follows from remarking that

‖φ‖Φ∗ = inf

{
λ > 0 :

∫
T2

Φ∗
(φ
λ

)
≤ 1

}
≤ inf

{
λ > 0 : C−1

0

∫
T2

e|φ|/λ ≤ 1

}
LemmaA.2≤ 1.

Now let λ∗ := ‖f‖Φ. Since the map λ→ ∫
T2 Φ(

f
λ) is continuous at λ∗, we must have∫

T2

Φ
( f
λ∗

)
= 1.
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Thus

λ∗ =

∫
T2

|f(x)| log
(
1 + C0

f(x)

λ∗

)
dx ≤ log

(
1 + C0

‖f‖∞
λ∗

)
or

λ∗(eλ∗ − 1) ≤ C0‖f‖∞.

We note that

log 2

2
eλ ≤ λ(eλ − 1) for all λ > 0 with λ(eλ − 1) ≥ 1.

Hence, if λ∗(eλ∗ − 1) ≥ 1, then

‖f‖2H−1(T2) ≤ 2‖f‖Φ = 2λ∗ ≤ 2 log
2C0‖f‖∞

log 2
.

On the other hand, if λ∗(eλ∗ − 1) < 1, then, since λ �→ λ (eλ − 1) is increasing, we
have λ∗ ≤ λ̄, where λ̄(eλ̄ − 1) = 1. Since

log 2

2
eλ̄ ≤ λ̄(eλ̄ − 1),

we have

‖f‖2H−1(T2) ≤ 2‖f‖Φ = 2λ∗ ≤ 2λ̄ ≤ 2 log
2C0‖f‖∞

log 2
.

Replacing f with f/‖f‖L1 gives the desired inequality.
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