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Abstract
In molecular dynamics and sampling of high dimensional Gibbs measures 
coarse-graining is an important technique to reduce the dimensionality of the 
problem. We will study and quantify the coarse-graining error between the 
coarse-grained dynamics and an effective dynamics. The effective dynamics 
is a Markov process on the coarse-grained state space obtained by a closure 
procedure from the coarse-grained coefficients. We obtain error estimates 
both in relative entropy and Wasserstein distance, for both Langevin and 
overdamped Langevin dynamics. The approach allows for vectorial coarse-
graining maps. Hereby, the quality of the chosen coarse-graining is measured 
by certain functional inequalities encoding the scale separation of the Gibbs 
measure. The method is based on error estimates between solutions of (kinetic) 
Fokker–Planck equations in terms of large-deviation rate functionals.
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1.  Introduction

Coarse-graining or dimension reduction is the procedure of approximating a large and com-
plex system by a simpler and lower dimensional one, where the variables in the reduced model 
are called coarse-grained or collective variables. Such a reduction is necessary from a compu-
tational point of view since an all-atom molecular simulation of the complex system is often 
unable to access information about relevant temporal and/or spatial scales. Further this is also 
relevant from a modelling point of view as the quantities of interest are often described by a 
smaller class of features. For these reasons coarse-graining has gained importance in various 
fields and especially in molecular dynamics.

Typically coarse-graining requires scale separation, i.e. the presence of fast and slow scales. 
In this setting, as the ratio of fast to slow increases, the fast variables remain at equilibrium 
with respect to the slow ones. Therefore the right choice for the coarse-grained variables are 
the slow ones. Such a situation has been dealt via various techniques: the Mori–Zwanzig pro-
jection formalism [Gra82, GKS04], Markovian approximation to Mori–Zwanzig projections 
[HEVEDB10] and averaging techniques [Har07, PS08] to name a few. Recently in [BS13, 
LVE14], coarse-graining techniques based on committor functions have been developed for 
situations where scale separation is absent.

As pointed out by the literature above and extensive references therein, the question of sys-
tematic coarse-graining has received wide attention over the years. However the question of 
deriving quantitative estimates and explicit bounds even in simple cases is a more challenging 
one to answer. Legoll and Lelièvre [LL10] provide first results which address this question. 
Starting from the overdamped Langevin equation as the reference they derive explicit quanti-
tative estimates using relative entropy techniques. Recently, the two authors together with Olla 
have derived trajectorial estimates [LLO17].

The work of [LL10] has certain limitations: (1) the quantitative estimates work only in the 
presence of a single coarse-grained variable and (2) the estimates are only applicable to over-
damped Langevin equation. Having a single coarse-grained variable is an obvious issue from 
a modelling perspective. In practice, the (underdamped) Langevin equation is often preferred 
over the overdamped Langevin equation since it is closer to the Hamiltonian dynamics and 
therefore is seen as a natural choice to sample the canonical measure.

The aim of the present work is to generalise the ideas introduced in [LL10] to over-
come the limitations mentioned above. In recent years it has been discovered that a large 
class of evolution equations and specifically the Langevin and the overdamped Langevin 
equations have a natural variational structure that arises as a large-deviation characteriza-
tion of some stochastic process [ADPZ11, DPZ13, MPR14], which can be employed for 
qualitative coarse-graining [DLPS17]. Using this connection to large-deviations theory, we 
give structure to the relative entropy techniques used in [LL10]. This structure allows us 
to extend their results to the case of multiple coarse-grained variables and to the Langevin 
dynamics. We also present new error estimates in the second-order Wasserstein distance 
(henceforth called Wasserstein-2), which is a standard tool in the theory of optimal trans-
port [Vil03] and gradient flows [AGS08].
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1.1. The central question

We will consider two equations: the overdamped and the full Langevin equation. To start we 
will focus on the simpler overdamped Langevin equation

dXt = −∇V(Xt) dt +
√

2β−1 dWd
t , Xt=0 = X0.� (1.1)

Here Xt ∈ Rd is the state of the system at time t, V  is a potential, β = 1/(kBTa) is the inverse 
temperature, Wd

t  is a d-dimensional Brownian motion and X0 is the initial state of the system.
The aim is to study approximations of this system in the form of low-dimensional stochas-

tic differential equations (SDEs). This question is motivated by the field of molecular dynam-
ics, where the study of low-dimensional versions is extremely relevant to address the problems 
of numerical complexity arising in large systems.

The key idea that allows for such an approximation is to consider not the full informa-
tion present in X, but only a reduced low-dimensional version t �→ ξ(Xt), characterized by a 
coarse-graining map

ξ : Rd → Rk with k < d.� (1.2)

In the context of molecular dynamics ξ is called a ‘reaction coordinate’, and is chosen to be 
the set of variables which evolve on a slower time-scale than the rest of the dynamics. The 
projection space could be replaced by a general smooth k-dimensional manifold as considered 
for particular examples in [FKE10, Rei00]. However, for the sake of presentation and to avoid 
technical difficulties, we work with Rk. Given a coarse-graining map ξ, the evolution of ξ(Xt) 
with Xt a solution to (1.1) follows from the Itô’s formula and satisfies

dξ(Xt) =
(
−Dξ∇V + β−1∆ξ

)
(Xt) dt +

√
2β−1 |DξDξ�| (Xt) dWk

t ,� (1.3)

where Dξ denotes the Jacobian of ξ and Wk
t  is the k-dimensional Brownian motion

dWk
t =

Dξ√
|DξDξ�|

(Xt) dWd
t .

Equation (1.3) is not closed since the right hand side depends on Xt. This issue is addressed 
by working with a different random variable Ŷt proposed by Gyöngy [Gyö86] which has the 
property that it has the same time marginals as ξ(Xt) i.e. law(ξ(Xt)) = law(Ŷt) (see proposi-
tion 2.8). The random variable Ŷ  evolves according to

dŶt = −b̂(t, Ŷt) dt +
√

2β−1Â(t, Ŷt) dWk
t ,� (1.4)

where

b̂(t, z) := E
[(

Dξ∇V − β−1∆ξ
)
(Xt)

∣∣∣ ξ(Xt) = z
]

,

Â(t, z) := E
[∣∣DξDξ�

∣∣ (Xt)
∣∣∣ ξ(Xt) = z

]
.

�
(1.5)

We will refer to both Ŷt and ρ̂t := law(Ŷt) as the coarse-grained dynamics. Note that the coef-
ficients in the evolution of Ŷ  are time dependent and require knowledge about the law of Xt. 
This renders this closed version (1.4) as computationally intensive as the original system (1.3).

Legoll and Lelièvre [LL10] suggest replacing (1.4) by the following SDE:

dYt = −b(Yt) dt +
√

2β−1A(Yt) dWk
t ,� (1.6)
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with coefficients

b(z) = Eµ

[(
Dξ∇V − β−1∆ξ

)
(X)

∣∣∣ ξ(X) = z
]

,

A(z) = Eµ

[∣∣DξDξ�
∣∣ (X)

∣∣∣ ξ(X) = z
]

.
�

(1.7)

Here Eµ is the expectation with respect to the Boltzmann–Gibbs distribution μ

dµ(q) = Z−1 exp(−βV(q))dq,� (1.8)

which is the stationary measure for the overdamped Langevin dynamics (1.1). Following 
[LL10], we will refer to both Yt and ηt := law(Yt) as the effective dynamics. Note that the 
coefficients b, A in (1.7) are time-independent as they only depend on the Boltzmann–Gibbs 
distribution, and therefore can be calculated offline. This makes the effective dynamics (1.6) 
easier to work with numerically.

Using the effective dynamics (1.6) instead of the coarse-grained dynamics (1.5) is justified 
only if the coefficients of the effective dynamics (1.7) are good approximations for the coef-
ficients of the coarse-grained dynamics. This of course happens when there is an inherent scale-
separation present in the system, i.e. if ξ(Xt) is indeed a slow variable, due to which on the typical 
time scale of slow variable, Xt samples like the stationary measure from the level set {ξ(Xt) = z}.

Now we state the central question of this paper:

Can the difference between the solutions of the coarse-grained dynamics (1.4) and the effec-
tive dynamics (1.6) be quantified, if so in what sense and under what conditions on the coarse-
graining map ξ?

1.2.  Overdamped Langevin dynamics

The solutions Ŷ  of the coarse-grained dynamics (1.4) and Y of the effective dynamics (1.6) 
can be compared in a variety of ways: pathwise comparison, comparison of laws of paths and 
comparison of time marginals. We will focus on the last of these and will estimate

sup
t∈(0,T)

(distance (ρ̂t, ηt)) ,� (1.9)

with ρ̂t = law(Ŷt) and ηt = law(Yt). The first choice of distance is the relative entropy7. The 
relative entropy of a probability measure ζ with respect to another probability measure ν is 
defined by

H(ζ|ν) =
{∫

f log f dν if ζ � ν and f = dζ
dν ,

+∞ otherwise.
� (1.10)

Now we state the central relative-entropy result.

Theorem 1.1.  Under the assumptions of theorem 2.15, for any t ∈ [0, T]

H(ρ̂t|ηt) � H(ρ̂0|η0) +
1
4

(
λ2

H +
κ2

Hβ
2

αTI αLSI

)
(H(ρ0|µ)− H(ρt|µ)).� (1.11)

Here ρt := law(Xt) is the law of the solution to the overdamped Langevin equation  (1.1), 
ρ0, ρ̂0, η0 are the initial data at t  =  0, μ is the Boltzmann–Gibbs distribution (1.8) and the 

7 Strictly speaking, the relative entropy is not a metric but it is widely used as a measurement of the difference 
between two probability measures.
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constants λH,κH,αTI, αLSI, encoding the assumptions on V  and ξ, are made explicit in theo-
rem 2.15.

The second choice for the distance in (1.9) is the Wasserstein-2 distance. The Wasserstein-2 
distance between two probability measures ν, ζ ∈ P(X) on a metric space (X, d) is defined as

W2
2(ν, ζ) := inf

Π∈Γ(ν,ζ)

{∫

X×X
d(x1, x2)

2 dΠ(x1, x2)

}
,� (1.12)

where Γ(ν, ζ) is the set of all couplings of ν and ζ, i.e. measures Π on X × X  such that for any 
Borel set A ⊂ X

∫

A×X
dΠ(x1, x2) = ν(A) and

∫

X×A
dΠ(x1, x2) = ζ(A).� (1.13)

In the case of X = Rk  we use the euclidean distance d(x1, x2) = |x1 − x2|. We now state our 
main result on the Wasserstein-2 distance.

Theorem 1.2.  Under the assumptions of theorem 2.23, for any t ∈ [0, T]

W2
2(ρ̂t, ηt) � ec̃Wt

(
W2

2(ρ̂0, η0) +

(
4λ2

W + βκ2
W

αTI αLSI

)
(H(ρ0|µ)− H(ρt|µ))

)
.

�

(1.14)

Here ρt := law(Xt) is the law of the solution of the the overdamped Langevin equation (1.1), 
ρ0, ρ̂0, η0 are the initial data at t  =  0, μ is the Boltzmann–Gibbs distribution (1.8), and the 
constants λW,κW, c̃W, encoding the assumptions on V  and ξ are made explicit in theorem 2.23.

The constants κH, κW, λH, λW, αTI and αLSI in the statements (1.11) and (1.14) of theorem 
1.1 and 1.2, quantify different aspects of the compatibility of the coarse-graining map ξ and 
the dynamics. The constants αTI and αLSI are constants occurring in functional inequalities 
(Talagrand and Log-Sobolev) for the coarse grained equilibrium measure. For multi-scale 
systems, these constants are large when the coarse-graining map resolves the scale separa-
tion (see section 4). The constants κH and κW measure the cross-interaction of the slow and 
fast scales. The constants λH and λW measure how well the slow manifold is adapted to the 
model space Rk. A more detailed discussion of these constants will be provided in the coming 
sections.

1.2.1.  Comparison of the relative-entropy and Wasserstein estimate.  Let us compare the rel-
ative-entropy estimate (1.11) and the Wasserstein estimate (1.14). Assuming that both the 
coarse-grained and the effective dynamics have the same initial data ρ̂0 = η0, these estimates 
become

H(ρ̂t|ηt) �
1
4

(
λ2

H +
κ2

Hβ
2

αTI αLSI

)
(H(ρ0|µ)− H(ρt|µ)),� (1.15)

W2
2(ρ̂t, ηt) � ec̃Wt

(
4λ2

W + βκ2
W

αTI αLSI

)
(H(ρ0|µ)− H(ρt|µ)).� (1.16)

As mentioned earlier, κH,λW,κW are positive constants. Under the assumption of scale- 
separation, the constants αTI αLSI are large (see section 4). Hence, the right hand side of the 
Wasserstein estimate (1.16) becomes small, i.e. it is O(1/αTI αLSI ), whereas the right hand 
side of the relative entropy estimate is O(1) since it still has the constant λH. By definition 
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(see (2.48) for exact definition) λH is small if (A − DξDξ�) is small in L∞ on the level set. In 
particular, λH = 0 corresponds to affine coarse-graining maps ξ. Therefore in the presence of 
scale separation, the relative entropy estimate is sharp only for close-to-affine coarse-graining 
maps, whereas the Wasserstein estimate is sharp even for the non-affine ones.

Finally let us analyze the long-time behaviour of (1.15) and (1.16). By construction, the 
coarse-grained and the effective dynamics should be the same in the limit of long time i.e. 
H(ρ̂t|ηt) → 0 as t → ∞. Using 0 � H(ρt|µ), the right-hand side of (1.15) can be controlled by 
a constant (independent of time) while the right-hand side of (1.16) is exponentially increas-
ing in time. Though both estimates are not sharp, the relative entropy estimate has better long-
time properties as compared to the Wasserstein estimate. However the error in the long-time 
behaviour of these estimates can be corrected using the knowledge that the original dynamics 
is ergodic with respect to the stationary measure as done in [LL10, corollary 3.1]. The overall 
estimate then involves the minimum of (1.15) and (1.16) respectively and an exponentially 
decaying correction C1e−C2t  which characterises the ‘slower’ exponential convergence of 
the full dynamics to the equilibrium (see [LL10, corollary 3.1] for details). In this work, we 
concentrate on the explicit dependence of the final estimate in terms of the scale-separation 
parameters αTI ,αLSI for a fixed time-interval [0, T].

1.3.  Langevin equation

So far we have focused on the overdamped Langevin equation. The second main equation con-
sidered in this article is the Langevin equation

dQt =
Pt

m
dt

dPt = −∇V(Qt) dt − γ

m
Pt dt +

√
2γβ−1 dWd

t ,
�

(1.17)

with initial data (Qt=0, Pt=0) = (Q0, P0). Here (Qt, Pt) ∈ Rd × Rd is the state of the system 
at time t, more specifically Qt ∈ Rd and Pt ∈ Rd can physically be interpreted as the position 
and the momentum of the system. The constant γ > 0 is a friction parameter, V  is the spatial 
potential as before, m is the mass and β = 1/(kBTa) is the inverse temperature. In what fol-
lows, we choose m  =  1 for simplicity.

Our interest as before is to study lower-dimensional approximations of the Langevin equa-
tion. To make this precise we need to define a coarse-graining map akin to the overdamped 
Langevin case, this time on the space of positions and momenta. In applications, the choice 
of the coarse-grained position is often naturally prescribed by a spatial coarse-graining map 
ξ with Rd � q �→ ξ(q) ∈ Rk . However, we have a freedom in defining the coarse-grained 
momentum. Motivated by the evolution of Qt in (1.17), a possible choice for the coarse-
grained momentum is p �→ Dξ(q) p, where Dξ is the Jacobian of ξ. This leads to the coarse-
graining map Ξ on the 2d-dimensional phase space

Ξ : R2d → R2k, Ξ (q, p) =
(

ξ(q)
Dξ(q) p

)
.� (1.18)

However, we are only able to show the main results under the additional assumption, that ξ is 
affine, i.e. it is of the form

ξ(q) = Tq + τ ,� (1.19)

for some τ ∈ Rk  and T ∈ Rk×d  of full rank. Note that in that case the coarse-graining map Ξ 
is simply

M H Duong et alNonlinearity 31 (2018) 4517
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Ξ (q, p) =
(
Tq + τ

Tp

)
.� (1.20)

Using (1.18) as a coarse-graining map when the spatial coarse-graining map ξ is non-affine 
leads to issues of well-posedness in the corresponding effective dynamics (see remark 3.1). 
There are other possible choices for the coarse-grained momentum as discussed in [LRS10, 
section 3.3.1.3], but these do not resolve the well-posedness issues. Constructing the coarse-
grained momentum, in the case of non-affine spatial coarse-graining map is an open question, 
and is left for future research.

With this affine choice for Ξ, we now apply the same scheme as used in the overdamped 
Langevin case and define the coarse-grained dynamics as

dẐt = V̂t dt

dV̂t = −b̂(t, Ẑt, V̂t) dt − γV̂t dt +
√

2γβ−1Â(t, Ẑt, V̂t) dWk
t ,

� (1.21)

with coefficients

b̂(t, z, v) := E
[
(Dξ∇V) (Qt, Pt)

∣∣∣Ξ(Qt, Pt) = (z, v)
]

,� (1.22)

Â(t, z, v) := E
[(

DξDξ�
)
(Qt, Pt)

∣∣∣Ξ(Qt, Pt) = (z, v)
]

.� (1.23)

As before, the coarse-grained dynamics satisfies law(Ξ(Qt, Pt)) = law(Ẑt, V̂t). Similar to the 
earlier discussion we define the effective dynamics as

dZt = Vt dt

dVt = −b(Zt, Vt) dt − γVt dt +
√

2γβ−1A(Zt, Vt) dWk
t ,

�
(1.24)

with time-independent coefficients

b(z, v) := Eµ

[
(Dξ∇V) (Q, P)

∣∣∣Ξ(Q, P) = (z, v)
]

,

A(z, v) := Eµ

[(
DξDξ�

)
(Q, P)

∣∣∣Ξ(Q, P) = (z, v)
]

.

Here Eµ denotes the expectation with respect to the Boltzmann–Gibbs distribution

dµ(q, p) = Z−1 exp (−βH(q, p)) , with H(q, p) :=
p2

2m
+ V(q),

�

(1.25)

which is the equilibrium probability density of the Langevin equation. In the case when ξ 
satisfies (1.19), we find

∀(z, v) ∈ R2k : A(z, v) = Â(t, z, v) = TT�.� (1.26)

As in the overdamped case, we prove estimates on the error between ρ̂t = law(Ẑt, V̂t) and 
ηt = law(Zt, Vt) in relative-entropy and Wasserstein-2 distance. We now state the main rela-
tive-entropy result.

Theorem 1.3.  Under the assumptions in theorem 3.5, then for any t ∈ [0, T]

H(ρ̂t|ηt) � H(ρ̂0|η0) +
κ2t

2αTI
H(ρ0|µ).� (1.27)
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Here ρt := law(Qt, Pt) is the law of the solution of the Langevin equation (1.17), ρ0, ρ̂0, η0 are 
the initial data at t  =  0, μ is the Boltzmann–Gibbs distribution (1.25) and κ,αTI are constants 
made explicit in theorem 3.5.

Next we present the main Wasserstein estimate for the Langevin case.

Theorem 1.4.  Under the assumptions in theorem 3.6, for any t ∈ [0, T]

W2
2(ρ̂t|ηt) � ec̃t

[
W2

2(ρ̂0|η0) +
2κ2t
αTI

H(ρ0|µ)
]

.� (1.28)

Here ρt := law(Qt, Pt) is the law of the solution to the Langevin equation (1.17), ρ0, ρ̂0, η0 
are the initial data at t  =  0, μ is the Boltzmann–Gibbs distribution (1.25) and κ, αTI, c̃ are 
constants made explicit in theorems 3.5 and 3.6.

As mentioned earlier, under the assumption of scale separation, the constant αTI is large. 
Assuming that both the coarse-grained and the effective dynamics have the same initial data 
ρ̂0 = η0, the right hand side of (1.27) and (1.28) becomes small, i.e. they are O(1/αTI ). We 
would like to reiterate that the results presented above for the Langevin dynamics hold in the 
setting of affine coarse-graining maps.

1.4.  Central ingredients of the proofs

As mentioned earlier, in this article we use two different notions of distance to compare the 
coarse-grained dynamics ρ̂t = law(Ŷt) and the effective dynamics ηt = law(Yt): the relative 
entropy (1.10) and the Wasserstein-2 distance (1.12). Now we briefly discuss the main ingre-
dients that go into proving these estimates.

1.4.1.  Encoding scale-separation via functional inequalities.  The choice of the coarse- 
graining map ξ is often naturally prescribed by scale-separation, i.e. the presence of fast and 
slow scales typically characterised by an explicit small parameter in the system. For instance, 
the potential could be of the form Vε(q) = 1

εV0(q) + V1(q). In this case, V0 is the driving 
potential for the fast and V1 for the slow dynamics. A good coarse-graining map satisfies the 
condition Dξ(q)∇V0(q) = 0, i.e. integral curves of q̇ = ∇V0(q) stay in the level set of ξ.

Legoll and Lelièvre [LL10] use the framework of functional inequalities to characterize the 
presence of scale separation. These functional inequalities have the advantage that they do not 
require the presence of an explicit small parameter; however, when such a parameter is indeed 
present it may be reflected in the constants associated to these inequalities. Following Legoll 
and Lelièvre, in this paper we will also use these inequalities, specifically the Logarithmic-
Sobolev (hereon called Log-Sobolev) and the Talagrand inequality, to encode scale separa-
tion. For the definition of these inequalities see section 2.2 and for the results regarding the 
class of scale separated potentials see section 4.1.

1.4.2.  Relative entropy results.  Legoll and Lelièvre [LL10] give first results which estimate 
the relative entropy H(ρ̂t|ηt) for the case of the overdamped Langevin equation. Their esti-
mate is based on differentiating the relative entropy in time and proving appropriate bounds 
on the resulting terms. Recently in [DLPS17] the authors introduce a variational technique, 
which is based on a large-deviation rate functional and its relations to the relative entropy 
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and the Fisher information, for qualitative coarse-graining. Specifically, they study the 
asymptotic behaviour of a (Vlasov-type) Langevin dynamics in the limit of a small parameter 
which introduces a scale-separation in the system. By constructing a coarse-graining map 
which is compatible with the scale-separation, they derive an effective equation wherein the 
fast variables are averaged out. In this paper, we show that this technique can also be used 
to quantitatively estimate the coarse-graining error for both the overdamped and full Lan-
gevin dynamics and without the explicit presence of scale-separation. The basic estimate is 
a stability property of solutions to the Fokker–Planck equation with respect to the relative 
entropy. Essentially, this property states that the error between solutions of two Fokker–
Planck equations can be explicitly estimated in terms of a large-deviation rate functional. A 
similar result has also been derived by Bogachev et al [BRS16], without the connection to 
large-deviations theory. To illustrate this property, consider two families (ζt)t∈[0,T], (νt)t∈[0,T] 
of probability measures which are the solutions to two distinct Fokker–Planck equations. 
Then we find

H(ζt|νt) � H(ζ0|ν0) + I(ζ),� (1.29)

where ζ0, ν0 are the initial data at time t  =  0 and I(·) is the empirical-measure large- 
deviation rate functional arising in a large-deviation principle for the empirical measure 
defined from many i.i.d. copies of the SDE associated to ν (see section 2.5.1 for details). 
The relative entropy result in theorem 1.1 follows by making the choice ζ ≡ ρ̂ and ν ≡ η in 
(1.29) and then analyzing the rate functional term I(ρ̂) using its relations with the relative 
entropy and the Fisher information. Note that I(ρ̂) does not show up in the final estimate 
(1.11) in theorem 1.1.

1.4.3.  Wasserstein estimates.  The central ingredient in estimating the Wasserstein-2 distance 
W2(ρ̂t, ηt) is the coupling method. Let us consider the case of the overdamped Langevin equa-
tion for simplicity. The forward Kolmogorov (Fokker–Planck) equation for Ŷt (1.4) is

∂tρ̂t = divz

(
ρ̂t b̂

)
+ β−1D2

z :
(

Â ρ̂t

)
,

and for Yt (1.6)

∂tηt = divz (ηt b) + β−1D2
z : (A ηt) ,

where D2
z  is the Hessian with respect to the variable z ∈ Rk. For any t  >  0 and ρ̂t, ηt ∈ P(Rk), 

we define a time-dependent coupling Πt ∈ P(R2k)

∂tΠt = D2
z : (AΠt) + divz (bΠt)� (1.30)

where we write z = (z1, z2) and the coefficients are given by

A(t, z1, z2) := σσ� with σ(t, z1, z2) :=

(√
Â(t, z1)√
A(z2)

)
and b(t, z1, z2) :=

(
b̂(t, z1)

b(z2)

)
.� (1.31)

The coupling method consists of differentiating 
∫
R2k |z1 − z2|2 dΠt in time and using a 

Gronwall-type argument to obtain an estimate for the Wasserstein-2 distance W2(ρ̂t, ηt). The 
Gronwall argument also explains the exponential pre-factor in (1.14). A similar approach also 
works for the Langevin case (see section 3.4). The particular coupling (1.31) has been used 
in the literature before and is called the basic coupling [CL89]. The coupling method has 
commonly been used to prove contraction properties, see e.g. [CL89, Ebe15, Duo15] and 
references therein.
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1.5.  Novelties

The novelty of the work lies in the following.

	 1.	�In comparison with existing literature: Legoll and Lelièvre [LL10] prove error estimates 
in relative entropy for the overdamped Langevin equation  in the case of scalar-valued 
coarse-graining maps. We generalise these estimates in two directions. First we prove 
error estimates in the case of vector-valued coarse-graining maps, and secondly we 
prove error estimates starting from the Langevin equation as a reference dynamics. More 
recently Legoll, Lelièvre and Olla [LLO17] have derived pathwise estimates on the 
coarse-graining error starting with the overdamped Langevin dynamics and a coordinate 
projection as a coarse-graining error. In this work we only focus on error estimates in time 
marginals.

	 2.	�Large deviations and error quantification: the use of the rate functional as a central 
ingredient in proving quantitative estimates is new. It has a natural connection (1.29) with 
the relative entropy, which allows us to derive error estimates for the Langevin equation, 
which is not amenable to the usual set of techniques used for reversible systems. This 
furthers the claim that the large-deviation behaviour of the underlying particle systems 
can successfully be used for qualitative and quantitative coarse-graining analysis of the 
Fokker–Planck equations.

	 3.	�Error estimates in Wasserstein distance: since the Wasserstein distance is a weaker 
distance notion than the relative entropy, the estimates derived in this distance are also 
weaker. However it turns out that these error bounds are sharper in the limit of infinite 
scale-separation for a larger class of coarse-graining maps as compared to the relative 
entropy estimates.

1.6.  Outline

In section 2 we derive error estimates for the overdamped Langevin equation and in section 3 
for the Langevin equation. In section 4 we discuss the estimates in the presence of explicit 
scale-separation. Finally in section 5 we conclude with further discussions.

2.  Overdamped Langevin dynamics

This section deals with the case of the overdamped Langevin dynamics. In section 2.1 we 
present a few preliminaries and discuss the two important equations we will be working with: 
the coarse-grained dynamics and the effective dynamics. In sections 2.5 and 2.6 we compare 
these two equations in relative entropy and Wasserstein-2 distance respectively.

We now introduce the notion of solution to the Fokker–Planck equation, which we will be 
using in this work.

Definition 2.1.  Let [0, T]× Rn � (t, x) �→ A(t, x) ∈ Rn×n
sym  be a non-negative symmetric  

matrix with Borel measurable entries, called a diffusion matrix, and [0, T]× Rn �
(t, x) �→ b(t, x) ∈ Rn be a Borel measurable vector field, called the drift coefficient. Moreover, 
assume that A, b are locally bounded in x, that is for any compact set U ⊂ Rn and T  >  0, there 
exists C = C(U, T) > 0 such that

sup
(t,x)∈[0,T]×U

{|A(t, x)| , |b(t, x)|} � C.� (2.1)
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Then a family of probability measures (ρt)t∈[0,T] on Rn is a solution to the Cauchy problem

∂tρt = D2 : (Aρt) + div (bρt) and ρt=0 = ρ0,� (2.2)

provided that it has finite second moment for almost all t ∈ (0, T) and

for any g ∈ C2
c (Rn) :

∫

Rn
g dρt =

∫

Rn
g dρ0 +

∫ t

0

∫

Rn

(
A : D2g − b · Dg

)
dρt dt.� (2.3)

Unless explicitly stated otherwise, this general definition will be implicitly used, if we 
speak of solutions in the rest of this paper. The result [BKRS15, theorem 6.7.3] implies that 
the solution set of the above Cauchy problem is non-empty in the space of sub-probability 
measures. To ensure that the solution stays in the class of probability measures, we have added 

the second-moment bound to the solution concept. We will check that the function x �→ 1
2 |x|

2 
acts as a Lyapunov function, which implies by [BKRS15, corollary 6.6.1, theorem 7.1.1] the 
second-moment condition and the conservation of probability mass. Let us point out that in 
general, the above assumptions on the coefficients are not sufficient to conclude uniqueness 
of solutions to the Cauchy problem (2.2). This may be the case for the coarse-grained equa-
tion for ρ̂t , since its coefficients (1.5) depend on the solution. On the other hand, the effective 
equation for ηt  has a unique solution (see theorem 2.11 and remark 2.13).

2.1.  Setup of the system

The overdamped Langevin equation in Rd with potential V : Rd → R at inverse temperature 
β > 0 is the stochastic differential equation, already mentioned as (1.1),

{
dXt = −∇V(Xt) dt +

√
2β−1 dWd

t ,
Xt=0 = X0.

� (2.4)

The corresponding forward Kolmogorov equation for the law ρt = law(Xt) is the solution (in 
the sense of definition 2.1) to

{
∂tρ = div(ρ∇V) + β−1∆ρ,
ρt=0 = ρ0.

� (2.5)

Throughout this section we assume that the potential V  satisfies the following conditions.

Assumption 2.2.  The potential V  satisfies

	(V1)	� (Regularity) V ∈ C3(Rd;R) with e−βV ∈ L1(Rd).
	(V2)	� (Growth conditions) There exists a constant C  >  0 such that for all q ∈ Rd

|V(q)| � C(1 + |q|2), |∇V(q)| � C(1 + |q|), |D2V(q)| � C.� (2.6)

Here D2 is the Hessian on Rd. Condition (V1) ensures that (2.5) admits a normalizable 
stationary solution µ ∈ P(Rd)

µ(dq) := Z−1
β exp (−βV(q)) dq with Zβ =

∫

Rd
exp (−βV(q)) dq.� (2.7)

Moreover, we need certain regularity and growth assumptions on the coarse-graining map 
ξ : Rd → Rk which identifies the relevant variables z := ξ(q) ∈ Rk  from the entire class of 
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variables q ∈ Rd . We will fix the notation q ∈ Rd  for the spatial coordinate and z ∈ Rk for the 
coarse-grained spatial coordinate. We make the following assumption.

Assumption 2.3.  The coarse-graining map ξ satisfies

	(C1) �(Regularity) ξ ∈ C3(Rd;Rk) with Dξ having full rank k.
	(C2) �(Jacobian bounded away from zero) There exists a constant C  >  0 such that 

DξDξ� � C−1Id k.
	(C2) �(Growth conditions) There exists a constant C  >  0 such that

‖Dξ‖L∞(Rk) � C, |D2ξ(q)| � C
1 + |q|2

, |D3ξ(q)| � C,

where Dξ, D2ξ, D3ξ are the successive derivative tensors of ξ.

While conditions (C1) and (C2) are standard [LL10, proposition 3.1], the growth condi-
tions (C3) on D2ξ and D3ξ are required to ensure the well-posedness of the effective dynam-
ics (see theorem 2.11). These assumptions can be weakened, for instance, it is sufficient to 
have certain superlinear decay for D2ξ at infinity. However to keep the presentation simple we 
will not focus on these technical details. The crucial implication of assumption 2.3 is that ξ is 
affine at infinity, i.e. there exists a fixed T ∈ Rk×d and a constant Cξ such that for all q ∈ Rd

|Dξ(q)− T| � Cξ

1 + |q|
.� (2.8)

See lemma A.1 in the appendix for a proof of this implication.
We can now take a closer look at the closed push-forward equation and the corresponding 

approximate equation introduced in section 1.1. We make a few preliminary remarks to fix 
ideas and notations and then present the exact coarse-grained and the approximate effective 
equation.

For any z ∈ Rk we denote by Σz the z-level set of ξ, i.e.

Σz :=
{

q ∈ Rd : ξ(q) = z
}

.� (2.9)

On any such level set Σz, there exists a canonical intrinsic metric dΣz defined for y1, y2 ∈ Σz  
by

dΣz(y1, y2) := inf

{∫ 1

0
|γ̇(s)| ds : γ ∈ C1([0, 1],Σz), γ(0) = y1, γ(1) = y2

}
.

�

(2.10)

The regularity assumptions (C1)–(C3) imply that there exists a constant C � 1 such that for 
any z ∈ Rk and any y1, y2 ∈ Σz ,

1
C
|y1 − y2| � dΣz(y1, y2) � C |y1 − y2| .� (2.11)

We use Dξ ∈ Rk×d, G := DξDξ� ∈ Rk×k  and Jac ξ :=
√

det G to denote the Jacobian, met-
ric tensor and Jacobian determinant of ξ respectively. By condition (C2), Jac ξ is uniformly 
bounded away from zero.

Using the co-area formula and the disintegration theorem, any ν ∈ P(Rd) that is abso-
lutely continuous with respect to the Lebesgue measure on Rd, i.e. ν(dq) = ν(q)L d(dq) 
for some density again denoted by ν for convenience, can be decomposed into its marginal 
measure ξ#ν =: ν̂ ∈ P(Rk) satisfying ν̂(dz) = ν̂(z)L k(dz) with density
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ν̂(z) =
∫

Σz

ν(q)
H d−k(dq)

Jac ξ(q)
,� (2.12)

and for any z ∈ Rk the family of conditional measures ν( · |Σz) =: ν̄z ∈ P(Σz) satisfying 
ν̄z(dq) = ν̄z(q)H d−k(dq) with density

ν̄z(q) =
ν(q)

Jac ξ(q) ν̂(z)
.� (2.13)

Here H d−k is the (d − k)-dimensional Hausdorff measure.
Differential operators on the coarse-grained space Rk will be denoted with subscript z, i.e. 

∇z, divz , ∆z, Dz. This is to separate them from differential operators on the full space Rd which 
will have no subscript. Further, we define the surface (tangential) gradient on Σz by

∇Σz := (Id d − Dξ�G−1Dξ)∇.� (2.14)

We will often use the chain rule, which for sufficiently smooth g : Rk → R gives

D(g ◦ ξ) = Dξ� ∇zg ◦ ξ and ∆(g ◦ ξ) = ∆ξ · (∇zg) ◦ ξ + D2
z g ◦ ξ : G.

�
(2.15)

Here D2
z  is the Hessian on Rk and A : B := trA�B is the Frobenius inner product for matrices. 

For any ψ ∈ L1(Rd;R) and any random variable X on Rd with law(X) = ψ(q) dq, the law of 
ξ(X) satisfies law(ξ(X)) = ψξ(z) dz, where ψξ : Rk → R is defined by

ψξ(z) :=
∫

Σz

ψ

Jac ξ
dH d−k.� (2.16)

This follows from the co-area formula which gives 
∫
Rd ψ(q) dq =

∫
Rk ψ

ξ(z) dz. The following 
lemma explicitly characterizes the Rk-derivative of ψξ.

Lemma 2.4.  For ψ ∈ W1,1(Rd) and ψξ defined in (2.16) one has

∇zψ
ξ(z) =

∫

Σz

div
(
ψG−1Dξ

) dH d−k

Jac ξ
.� (2.17)

Similarly, for B ∈ L1(Rd;Rk×k
sym ) and Bξ defined component-wise as in (2.16),

divzBξ(z) =
∫

Σz

div
(
BG−1Dξ

) dH d−k

Jac ξ
.� (2.18)

The divergence of the matrices above is defined as

divzBξ ∈ Rk with (divzBξ)i =

k∑
j=1

∂j(B
ξ
ij) for 1 � i � k;

and for A : Rd → Rk×d as

divA ∈ Rk with (divA)i =

d∑
j=1

∂j(Aij) for 1 � i � k.

The proof is an extension of [LL10, lemma 2.2] to higher dimensions and we include it 
for convenience in appendix A. Another object of interest is the so called local mean force 
F : Rd → Rk ,
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F := G−1Dξ∇V − β−1div
(
G−1Dξ

)
.� (2.19)

This object is related to the Lebesgue density of the coarse-grained stationary measure 
µ̂ = ξ#µ. By applying lemma 2.4 to log µ̂(z) we find

−β−1∇z log µ̂(z) =
∫

Σz

F dµ̄z,� (2.20)

which clarifies the name local mean force. For further interpretation and properties see [LL10, 
section 2.1].

Finally, we introduce some notation for norms of vectors and matrices. We write |v| for the 
standard Euclidean norm of a vector v in Rd or Rk, and we write |M| for the operator norm 
of a matrix in Rd×d, Rd×k , Rk×d , or Rk×k. With these norms we have inequalities of the type

|Mv| � |M| |v| for v ∈ Rd and M ∈ Rk×d (as an example).

In theorem 2.15 below we also use a weighted Euclidean norm. For A ∈ Rk×k  and v ∈ Rk we 
set

|v|2A := (v, Av)� (2.21)

and write the corresponding norm of a matrix M ∈ Rk×d , viewed as an operator from 
(Rd, | · |) to (Rk, | · |A), as |M|I→A. In section 2.6 we will also use the Frobenius norm of a 
matrix M ∈ Rk×k,

|M|F :=
k∑

i,j=1

|Mij|2 = trMTM.

Note that the operator norm and the Frobenius norm are related by |M| � |M|F �
√

k|M|. 
The corresponding operator norm for a three-tensor T ∈ Rk×k×k, viewed as a mapping from 
(Rk, | · |) to (Rk×k, | · |F), is noted as | · |I→F.

2.2.  Functional inequalities

As discussed in the introduction, an important ingredient for proving error estimates is the 
framework of functional inequalities which we use to encode the assumption of scale-separa-
tion. Let us introduce the Poincaré, Talagrand and Log-Sobolev inequality.

Definition 2.5 (Poincaré, Talagrand and Log-Sobolev inequality).  A probability 
measure ν ∈ P(X), where X ⊆ Rd is a smooth submanifold, satisfies

		 (PI ) �the Poincaré inequality with constant αPI if

∀f ∈ H1(ν) : var ν( f ) :=
∫

X

(
f −

∫

X
f dν

)2

dν �
1

αPI

∫

X
|∇f |2 dν.

�

(2.22)

		 (TI ) �the Talagrand inequality with constant αTI if

∀ζ ∈ P(X) : W2
2(ζ, ν) �

2
αTI

H(ζ|ν),� (2.23)

�where W2(·, ·) is the Wasserstein-2 distance (1.12) and H( · | · ) is the relative entropy 
(1.10).

	 (LSI) � the Log-Sobolev inequality with constant αLSI if
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∀ζ ∈ P(X) : H(ζ|ν) � 1
2αLSI

RF(ζ|ν).� (2.24)

		 For any two probability measures ν, ζ ∈ P(X), the relative Fisher information of ζ with 
respect to ν is defined by

RF(ζ|ν) =




∫

X

∣∣∣∇ log
(

dζ
dν

)∣∣∣
2

dζ, if ζ � ν and ∇ log
(

dζ
dν

)
∈ L2(X; ζ),

+∞, otherwise.
�

(2.25)

Here the notion of ∇ depends on the manifold X and will be made explicit when it occurs. 
For X = Rd, we have as usual ∇ = (∂1, . . . , ∂d), whereas for X = Σz we use the surface gra-
dient ∇ = ∇Σz.

Remark 2.6.  The Log-Sobolev inequality implies the Talagrand inequality and the Tala-
grand inequality implies the Poincaré inequality, such that one has the following estimates on 
the constants: 0 � αLSI � αTI � αPI (see [BGL01, corollary 3.1] and [OV00] for details).

We will use these inequalities by assuming that the conditional stationary measure µ̄z satis-
fies either the Talagrand inequality or the Log-Sobolev inequality on Σz uniformly in z ∈ Rk. 
In the introduction we described various bounds on H(ρ̂t|ηt) and W2(ρ̂t, ηt), and it will turn out 
that these bounds become sharp when αTI ,αLSI are large.

Remark 2.7.  We will assume below that the initial measure ρ0 has finite entropy H(ρ0|µ) 
with respect to the stationary measure μ. This implies the dissipation inequality (see for in-
stance [DLR13, proposition 4.6] and [DLPS17, theorem 2.3])

H(ρt|µ) + β−1
∫ t

0
RF(ρs|µ) ds � H(ρ0|µ) for all t ∈ [0, T].� (2.26)

2.3.  Coarse-grained dynamics

The coarse-grained dynamics Ŷt is the solution of the stochastic differential equation
{

dŶt = −b̂(t, Ŷt) dt +
√

2β−1Â(t, Ŷt) dWk
t ,

Ŷt=0 = Y0,
� (2.27)

with coefficients b̂ and Â defined in (2.29) and (2.30) below. It is related to the full over-
damped Langevin dynamics via the relation law(ξ(Xt)) = law(Ŷt), which we show next.

Proposition 2.8.  If ρ is a solution to (2.5), then ξ#ρt =: ρ̂t ∈ P(Rk) evolves according to
{
∂tρ̂ = β−1D2

z :
(

Â ρ̂
)
+ divz

(
ρ̂ b̂

)
,

ρ̂t=0 = ρ̂0,
� (2.28)

with coefficients b̂ : [0, T]× Rk → Rk, Â : [0, T]× Rk → Rk×k

b̂(t, z) = Eρ̄t,z [Dξ∇V − β−1∆ξ],� (2.29)

Â(t, z) = Eρ̄t,z [G].� (2.30)
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Here ρ̄t,z is the conditional measure corresponding to ρ. Moreover, ρ̂  has second moments that 
are bounded uniformly in time.

Proof.  According to definition 2.1 the family (ρt)t∈[0,T] solves for almost all t ∈ (0, T) and 
every f ∈ C2

c(Rd)

0 =

∫

Rd
(f dρt − f dρ0)−

∫ t

0

∫

Rd

(
β−1∆f −∇f · ∇V

)
dρt dt.� (2.31)

The proof follows by substituting f = g ◦ ξ for some g ∈ C2
c(Rk), where we note that by as-

sumption 2.3 we have f ∈ C2
c(Rd).

Since the original dynamics ρt  has bounded second moments, ρ̂  shares the same property 
by the estimate
∫

Rk
|z|2 ρ̂t(dz) =

∫

Rd
|ξ(q)|2 ρt(dq) � 2

(
|ξ(0)|2 + ‖Dξ‖2

∞

∫

Rd
|q|2 ρt(dq)

)
< +∞.

□ 

Similarly, assuming that the initial measure ρ0 has finite relative entropy H(ρ0|µ), the same 
holds for the push-forward ρ̂0, and we have a similar dissipation inequality as (2.26):

Corollary 2.9.  If H(ρ0|µ) < ∞, then

H(ρ̂t|µ̂) + β−1
∫ t

0
RFA(ρ̂s|µ̂) ds � H(ρ0|µ) for all t ∈ [0, T],� (2.32)

where RFA is the relative Fisher Information on Rk with metric A,

RFA(ρ̂s|µ̂) :=



∫
Rk

∣∣∣∇z log
(

dρ̂s
dµ̂

)
(z)

∣∣∣
2

A(z)
dρ̂s(z), if ρ̂s � µ̂ and ∇z log

(
dρ̂s
dµ̂

)
∈ L2(Rk; µ̂),

+∞, otherwise.

Proof.  The proof follows from a standard application of the tensorization principle of the 
relative entropy and the Fisher information to the dissipation inequality (2.26). For the relative 
entropy it reads

H(ρt|µ) =
∫

Rk
H(ρ̄t,z|µ̄z) dρ̂t + H(ρ̂t|µ̂).

For the Fisher information, we use for convenience the following projection

P : Rd → Rd with P = Dξ�G−1Dξ.

Then we have the orthogonal splitting of the gradient into its normal P∇ and tangential part 
(Id − P)∇ = ∇Σz . In particular for ρ � µ we find

∫

Rd

∣∣∣∣∇ log
dρt

dµ

∣∣∣∣
2

dρt =

∫

Rd

(∣∣∣∣P∇ log
dρt

dµ

∣∣∣∣
2

+

∣∣∣∣∇Σz log
dρt

dµ

∣∣∣∣
2
)

dρt.

By definition of the marginal measure and using the disintegration theorem we arrive at
∫

Rd

∣∣∣∣P∇ log
dρt

dµ

∣∣∣∣
2

dρt =

∫

Rd

∣∣∣∣P∇ log
dρ̂t ◦ ξ
dµ̂ ◦ ξ

∣∣∣∣
2

dρt =

∫

Rk

∫

Σz

∣∣∣∣PDξ�∇z log
dρ̂t

dµ̂

∣∣∣∣
2

dρ̄t,z dρ̂t(z).
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The last observation needed is that since P is a projection, for any v, z ∈ Rk it follows that
∫

Σz

∣∣PDξ�v
∣∣2 dρ̄t,z =

∫

Σz

v · DξPDξ�vdρ̄t,z = v · Eρ̄t,z [G] v = |v|2A,

where | · |A is defined on page 10. Here we have used DξPDξ� = DξDξ� = G. Hence (2.32) 
follows from (2.26).� □ 

2.4.  Effective dynamics

Next, let us define the effective dynamics Yt,
{

dYt = −b(Yt) dt +
√

2β−1A(Yt) dWk
t ,

Yt=0 = Y0,
� (2.33)

with the corresponding forward Kolmogorov equation for the law ηt = law(Yt),
{
∂tη = divz (η b) + β−1D2

z : (A η) ,
ηt=0 = η0.

� (2.34)

The coefficients b : Rk → Rk, A : Rk → Rk×k are

b(z) := Eµ̄z [Dξ∇V − β−1∆ξ],� (2.35)

A(z) := Eµ̄z [G].� (2.36)

Note that the expectations are taken with respect to the conditional stationary measure µ̄z. The 
effective dynamics admits the measure µ̂ := ξ#µ as a stationary solution [LL10, lemma 2.4].

Remark 2.10 (Effective dynamics is a gradient flow).  By using lemma 2.4 and the 
explicit definition of µ̄z (2.13) it follows that

divzA =

∫

Σz

[
µG∇z

(
1

µ̂(z)

)
+

1
µ̂(z)

div(µDξ)

]
dH d−k

Jac ξ

=

∫

Σz

µ

µ̂
(Dξ∇ logµ+∆ξ − G(∇z log µ̂))

dH d−k

Jac ξ
),

and therefore divzA = −βb − A∇z log µ̂. Hence we can rewrite the effective dynamics (2.34) 
as

∂tη = β−1 (divz (A∇zη) + divz (η A∇z (− log µ̂))) .� (2.37)

With the free energy E (η) := β−1
∫
(η log η − η log µ̂) , which up to a factor β−1 corre-

sponds to the relative entropy of η with respect to µ̂, and by using δE (η) = β−1 log η
µ̂  for the 

variational derivative, we can write

∂tη = divz (η A∇z(δE (η))) = β−1divz

(
ηA∇z log

η

µ̂

)
.� (2.38)

This formally indicates that the effective dynamics is a Wasserstein-2 gradient flow of E  with 
respect to the space dependent metric 〈z1, z2〉A := 〈z1, Az2〉 on Rk. Using the form (2.38) of the 
effective equation, it is easily seen that µ̂ is the stationary measure of the effective dynamics. 
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Therefore the long-time limit of the coarse-grained and the effective dynamics are the same 
as ρt  converges to μ.

Next we discuss the well-posedness of the effective dynamics (2.34). The existence of 
a solution for the effective dynamics as a family of probability measures in the sense of 
definition 2.1 is a subtle issue, even though the effective dynamics is uniformly parabolic. 
Essentially, we need to rule out finite-time explosion, which is closely related to the condi-
tion of ξ being affine at infinity (recall lemma A.1) which is a consequence of the growth 
conditions (C1)–(C3). We show that under these growth conditions the effective drift b is 
Lipschitz (see lemma 2.12), and as a consequence the solution to the effective dynamics does 
not explode in finite time.

Before doing so, let us point out that all the main results depend on the relative entropy of 
the initial data with respect to the Gibbs measure. Hence, we will assume for the proof, that 
the initial datum ρ0 = law(X0) has bounded relative entropy with respect to μ

H(ρ0|µ) < +∞.� (2.39)

This implies ρ0 � µ and so we can define f0 := dρ0/dµ.
Henceforth, to avoid certain technicalities we assume that

∥∥∥∥
dρ0

dµ

∥∥∥∥
L∞

+

∥∥∥∥
dµ
dρ0

∥∥∥∥
L∞

< ∞.� (2.40)

This assumption can be made without any loss of generality. To see this, we introduce the 
truncation

f M
0 :=

1
ZM

min

{
max

{
f0,

1
M

}
, M

}
,� (2.41)

where ZM is a normalization constant to ensure that f M
0 µ is a probability measure. By standard 

comparison principle results for parabolic equations [PW12, chapter 3], we then find that the 
solution ρM  with initial data ρM

0 := f M
0 µ satisfies

1
MZM

µ � ρM
t �

M
ZM

µ.� (2.42)

In section 2.7 we will show that the final estimates obtained are independent of the constant 
M and hence we can let M → ∞.

Theorem 2.11 (Well-posedness of effective dynamics).  Assume the following:

	 1.	�The initial datum η0 has bounded second moments, i.e. 
∫
Rk |z|2 dη0 < +∞.

	 2.	�The conditional stationary measure µ̄z satisfies the Poincaré inequality (2.22) uniformly 
in z ∈ Rk with constant αPI > 0, where the gradient in the Poincaré inequality is given 
by ∇Σz.

Then there exists a unique family of probability measures (ηt)t∈[0,T] which solves the ef-
fective dynamics (2.34) in the sense of definition 2.1. Furthermore, this family has bounded 
second moments, i.e.

∀t ∈ [0, T] :
∫

Rk
|z|2 dηt < +∞.

To prove theorem 2.11 we need some control on the growth of the coefficients, which we 
summarize below.
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Lemma 2.12.  If the stationary conditional measures {µ̄z}z∈Rk satisfy a Poincaré inequality 
(2.22) uniformly in z ∈ Rk with constant αPI, V  and ξ satisfy assumptions 2.2 and 2.3, then the 
effective vector drift b and the effective diffusion matrix A are Lipschitz, and for some C  >  0

b ∈ W1,∞
loc (Rk;Rk) with sup

z∈Rk
|∇zb(z)| � C� (2.43)

and

A ∈ W1,∞(Rk;Rk×k) with
1
C

Id k � A(z) � CId k.� (2.44)

The proof of lemma 2.12 is provided in appendix B. The growth conditions on D2ξ, D3ξ 
in (C3) are critical in the proof. Since the diffusion matrix A in the effective dynamics is 
bounded, it is the Lipschitz property of b implied by the growth conditions which ensures that 
the solution to the effective dynamics does not explode in finite time.

Proof of theorem 2.11.  The existence of solutions to the effective dynamics (2.34) fol-
lows from [BKRS15, theorem 6.6.2]. Since b is Lipschitz, say with a constant Lb (see lemma 
2.12), we find

d
dt

∫

Rk

|z|2

2
dηt = −

∫

Rk
z · b(z) dηt +

∫

Rk
Id k : A dηt

= −
∫

Rk
z · (b(z)− b(0)) dηt +

∫

Rk
Id k : A dηt − b(0)

∫

Rk
z dηt

�

(
Lb +

b(0)
2

)∫

Rk
|z|2 dηt + C.

Applying a Gronwall-type estimate to this inequality and using the bounded second moment 
for the initial data implies bounded second moments for ηt . The conclusion follows by ap-
proximating the function z �→ |z|2 /2 in the test-function class C∞

c (Rk). The uniqueness of the 
effective dynamics follows from [BKRS15, theorem 9.4.3] under the given assumptions.� □ 

Remark 2.13.  We want to emphasize that a similar result does not hold in general for the 
coarse-grained dynamics. The diffusion coefficient Â in (2.30) and vector field b̂ in (2.29) 
depend on the conditional measure ρ̄t,z corresponding to the solution. In particular, proving 
regularity properties of the coarse-grained coefficients to ensure well-posedness via classical 
methods, would require strong assumptions on the initial data, which we wish to avoid at this 
point. Due to this reason, we want to avoid any uniqueness assumptions on the solution to the 
coarse-grained equation. But, we want to note that the existence of a solution to the coarse-
grained equation is straightforward by its definition as the push-forward ξ#ρt = ρ̂t of the full 
dynamics ρt .

A technical difficulty arising from the above remark is that it is not straightforward to con-
struct a coupling between the coarse-grained and the effective dynamics, which is required for 
proving Wasserstein estimates in the coming sections. To deal with this we will construct a 
coupling (see lemma 2.25) between the full dynamics and a suitably lifted effective dynamics, 
which we now describe.

A lifted version of the effective dynamics ηt , denoted by θt, is defined such that ηt  is its 
marginal under ξ. We do not impose any constraint on the conditional part θ̄t,z  of this measure, 
i.e. for any functions f : Rk → R and g : Rd → R
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∫

Rd
f (ξ(x)) g(x) dθt(x) :=

∫

Rk
f (z)

∫

Σz

g(y) dθ̄z,t(y) dηt(z).� (2.45)

A reasonable choice for the conditional measure could be µ̄z, which would allow us to investi-
gate the relaxation of the full-dynamics ρt  on the submanifolds {Σz}z∈Rk. We leave this study 
for future works. Here we just construct a family of measures θt defined on Rd with ηt  as the 
push-forward under ξ. In the following lemma we construct an evolution for θt which is suit-
able for our purpose. However it should be noted that this is not the only possible choice.

Lemma 2.14.  Let θt be the solution of

∂tθt = div
(

b̃θt

)
+ β−1D2 :

(
Ãθt

)
,� (2.46)

where the coefficients b̃ : Rd → Rd, Ã : Rd → Rd×d  are given by

Ã := Dξ�G−1 (A ◦ ξ) G−1Dξ,

b̃ := Dξ�G−1 (b ◦ ξ + β−1D2ξ : Ã
)

.

If ξ#θ0 = η0 and {ηt}t∈R+ is a solution of (2.34), then ξ#θt = ηt. Moreover, if θ0  has bounded 
second moment, then the same holds for θt for all t  >  0.

Proof.  The lifted dynamics (2.46) has a solution in the sense of definition 2.1. To verify the 
push-forward property, we use φ ◦ ξ with φ : Rd → R as a test function in (2.3) and calculate

d
dt

∫

Rk
φd (ξ#θt) =

d
dt

∫

Rd
φ ◦ ξdθt =

∫

Rd

(
β−1D2 (φ ◦ ξ) : Ã − D (φ ◦ ξ) · b̃

)
dθt

=

∫

Rd

(
β−1 (D2

zφ ◦ ξ
)

: (DξÃDξ�︸ ︷︷ ︸
=A◦ξ

− (∇zφ ◦ ξ) ·
(

Dξb̃ − β−1D2ξ : Ã
)

︸ ︷︷ ︸
=b◦ξ

)
dθt.

Hence, ξ#θt  solves (2.34) in the sense of definition 2.1 and by the uniqueness of solution to 
the effective dynamics (see theorem 2.11), we obtain ξ#θt = ηt. The second moment bound 

follows by using, after a standard approximation argument, 12 |x|
2 as test function, which gives

d
dt

1
2

∫

Rd
|x|2 dθt =

∫

Rd

(
β−1tr Ã + x · b̃

)
dθt.

By assumption 2.3, we conclude that tr Ã � C. Additionally with (2.43) we conclude that ∣∣∣b̃(x)
∣∣∣ � C(1 + |x|), which implies

d
dt

1
2

∫

Rd
|x|2 dθt � C

∫

Rd

(
1 + |x|2

)
dθt,

and the conclusion follows by using the Gronwall lemma.� □ 

2.5.  Relative entropy estimate

In this section we state and prove the first main result theorem 1.1, on the error estimates 
between ρ̂  and η in relative entropy.

Theorem 2.15.  Suppose V  and ξ satisfy assumptions 2.2 and 2.3, respectively and the 
initial datum ρ0 satisfies (2.40). Let
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κH := sup
z∈Rk

sup
y1,y2∈Σz

|F(y1)− F(y2)|A(z)

dΣz(y1, y2)
,� (2.47)

where A is the effective mobility (2.36), dΣz is the intrinsic metric (2.10), and F is the local 
mean force (2.19). The norm | · |A is defined in (2.21). Moreover, assume that

		 (H1) �The conditional stationary measure µ̄z satisfies the Talagrand inequality (2.23) 
and the Log-Sobolev inequality (2.24) uniformly in z with constants αTI > 0 and 
αLSI > 0 respectively.

		 (H2) �There exists λH > 0 such that

λH :=
∥∥∥
∣∣∣A−1/2 (A − DξDξ�

) (
DξDξ�

)−1/2
∣∣∣
∥∥∥

L∞(Rd)
< ∞.� (2.48)

Then for any t ∈ [0, T]

H(ρ̂t|ηt) � H(ρ̂0|η0) +
1
4

(
λ2

H +
κ2

Hβ
2

αTI αLSI

)
(H(ρ0|µ)− H(ρT |µ)).� (2.49)

Remark 2.16.  The constant κH is bounded from above by supz∈Rk

∥∥∥|∇Σz F|I→A(z)

∥∥∥
L∞(Σz)

 

and is finite since |∇Σz F|I→A(z) � |∇F|I→A(z) < ∞ by assumptions 2.2 and 2.3 on V  and ξ. It 
is a measure of the interaction strength between the dynamics along the coarse-grained vari-
ables and the dynamics on the level sets Σz. The constant αTI quantifies the scale-separation 
between the dynamics on the level sets Σz and across the level sets. Note that by remark 2.6 we 
have αTI � αLSI and hence the statement on the Talagrand inequality is, in particular, satisfied 

with the constant αLSI, since 2
αTI

� 2
αLSI

. The constant λH is a measure of how close DξDξ� 
is to being constant on the level set.

Remark 2.17 (Comparison of theorem 2.15 with the results of Legoll and Lelièvre 
[LL10]).  The constants κH,λH defined in theorem 2.15 are the multidimensional generali-
sations of the corresponding constants defined in [LL10, theorem 3.1]. The prefactor in the 
relative entropy estimate (2.49) can be seen as the exact multidimensional generalisation of 
the prefactor in [LL10, equation (31)].

The proof of theorem 2.15 consists of two steps:

	 1.	�Prove an abstract estimate which connects the relative entropy of two (general) Fokker–
Planck type evolutions with a large-deviation rate functional (see section 2.5.1).

	 2.	�Apply this estimate to the choice of coarse-grained and effective dynamics and estimate 
the large-deviation rate functional appropriately (see section 2.5.2).

2.5.1.  Estimate of the relative entropy by a large deviation functional.  In this section we pres-
ent a general theorem which estimates the relative entropy between two probability measures 
that solve two different Fokker–Planck equations in terms of a large-deviation rate functional. 
This theorem relies on studying the evolution of the relative entropy of these two solution in 
time. The precise result is due to Bogachev et al [BRS16], who prove these results in general 
conditions without making the connection to large deviations. In subsequent sections, we will 
apply this theorem to the effective and the coarse-grained dynamics in both the overdamped 
Langevin and the Langevin case.
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Consider the following stochastic differential equation

dZt = −b(t, Zt) dt +
√

2β−1A(t, Zt) dWk
t ,

� (2.50)
where b : [0, T]× Rk → Rk  and A : [0, T]× Rk → Rk×k is a symmetric positive-definite 
matrix. We will mention the precise assumptions on the coefficients in theorem 2.18 below. 

Let 
{

Zi
}n

i=1 denote independent and identically distributed copies of Z. It is well known that 
the empirical measure

νn(t) :=
1
n

n∑
i=1

δZi
t� (2.51)

converges as n → ∞ almost surely to the unique solution of the forward Kolmogorov equa-
tion for νt := law(Zt) (see for instance [Oel84])

∂tν = L ∗ν, L ∗ν := div(b ν) + β−1D2 : A ν.� (2.52)

Furthermore, it has been shown that the sequence (νn) satisfies a large-deviation principle 
[DG87], which characterizes the probability of finding the empirical measure far from the 
limit ν, written informally as

Prob (νn ≈ ζ) ∼ exp (−nI(ζ)) ,

in terms of a rate functional I : C([0, T]; P(Rk)) → R. Assuming that the initial data Zi(0) are 
chosen to be deterministic, and such that the initial empirical measure νn(0) converges nar-
rowly to some ν0; then I has the form, (see [DG87, FK06]),

I(ζ) :=




β
4

∫ T
0

∫
Rk |rt|2A dζt dt,

if ∂tζt − L ∗ζt = −div(ζtArt) with ζ|t=0 = ν0

for some h ∈ L2(0, T; L2
A(ζt));

+∞, otherwise.
�

(2.53)

Here |r|2A := 〈r, Ar〉 is the A-weighted Rk inner-product and L2
A(ζt) is the closure of {

∇f : f ∈ C∞
c (Rk)

}
 in the norm ‖F‖2

L2
A(νt)

:=
∫
|F|2A dζt . The rate functional satisfies two 

critical properties:

I � 0 and I(ζ) = 0 iff ζt solves (2.52).

Now we state the abstract large-deviation result, which without making the connection to 
large deviations is already contained in [BRS16].

Theorem 2.18.  Let νt  be the law of Zt (2.50), i.e. a solution to

∂t ν = L ∗νt = div(b ν) + β−1D2 : A ν,

and let ζ ∈ C([0, T]; P(Rk)) satisfy ∂tζt − L ∗ζt = −div(ζtAht) for some h ∈ L2(0, T; L2
A(ζt)). 

Suppose that

	(B1) �b is locally bounded and A is locally Lipschitz in z and locally strictly positive.
	(B2) �(1 + |z|)−2|Aij|, (1 + |z|)−1|b|, (1 + |z|)−1|h| ∈ L1([0, T]× Rk, ν).

Then, for any t ∈ [0, T], it holds that

H(ζt|νt) � H(ζ0|ν0) + I(ζ),� (2.54)

where I is the rate functional (2.53).
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Proof.  We show here the formal computation to demonstrate the main idea of the proof. 
This computation requires sufficient regularity of the solution ν which is not guaranteed by the 
hypotheses (B1)–(B2). To make it rigorous, some regularization arguments are required. We 
refer the reader to [BRS16, theorem 1] for a detailed proof. Note also that in [DLPS17, theo-
rem 2.3], the authors prove a similar result but for the relative entropy between an arbitrary 
measure and the stationary solution of the Vlasov–Fokker–Planck equation using a variational 
method.

Note that under the conditions on b and A, the rate functional exists [DG87, DPZ13]. We 
first note that the equation for ν, ζ  can be rewritten in divergence-form as

∂tνt = div(b νt) + β−1div(νt divA + A∇νt)

∂tζt = div(b ζt) + β−1div(ζtdivA + A∇ζt)− div(ζtAht).

Differentiating H(ζt|νt) with respect to time gives

∂tH(ζt|νt) = ∂t

∫

Rk
ζt log

(
ζt

νt

)
=

∫

Rk
∂tζt log

(
ζt

νt

)
+

∫

Rk
νt∂t

(
ζt

νt

)
=: I + II.

Using integration by parts we obtain

I = −
∫

Rk
∇ log

(
ζt

νt

)
·
[
bζt + β−1A∇ζt + β−1divA ζt − Aht ζt

]

= −
∫

Rk
∇ log

(
ζt

νt

)
·
[
b + β−1A∇ log(ζt) + β−1divA − Aht

]
ζt.

Similarly for term II we have

II =
∫

Rk
∂tζt −

ζt

νt
∂tνt = 0 +

∫

Rk
∇
(
ζt

νt

)
·
[
b + β−1A∇ log(νt) + β−1divA

]
νt

=

∫

Rk
∇ log

(
ζt

νt

)
·
[
b + β−1A∇ log(νt) + β−1divA

]
ζt.

Combining the terms we end up with

∂tH(ζt|νt) =

∫

Rk
∇ log

(
ζt

νt

)
·
[
β−1A∇ log(νt)− β−1A∇ log(ζt) + Aht

]
ζt

=

∫

Rk
∇ log

(
ζt

νt

)
·
[
−β−1A∇ log

(
ζt

νt

)
+ Ah

]
ζt

= −β−1RFA (ζt|νt) +

∫

Rk

[
∇ log

(
ζt

νt

)
· Aht

]
ζt

� −β−1RFA (ζt|νt) +
√

RFA(ζt|νt)
√
‖ht‖2

L2
A(ζt)

,

where RFA(·|·) is the Fisher information weighted with the matrix A, i.e.

RFA(ζ|ν) =
∫

Rk

∣∣∣∣∇ log

(
dζ
dν

)∣∣∣∣
2

A
dζ.
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Integrating in time and using Young’s inequality gives

H (ζt|νt) + (1 − τ)β−1
∫ t

0
RFA (ζs|νs) ds � H (ζ0|ν0) +

1
τ

I(ζ)� (2.55)

for every τ ∈ (0, 1]. The claimed result then follows since the Fisher information term is non-
negative.� □ 

Remark 2.19.  As indicated by the formal proof, the actual result (2.55) is stronger than 
(2.54) which is missing the Fisher information term. However in what comes next we do not 
use the Fisher information term and therefore have dropped it in the final result (2.54), by 
choosing τ = 1 in (2.55).

2.5.2.  Estimating the rate-functional term.

Corollary 2.20.  Recall that ρ̂t  is the coarse-grained dynamics (see section 2.3) and ηt  the 
effective dynamics (section 2.4). Assume that ρ0 satisfies H(ρ0|µ) < ∞. Let I be the large-
deviation rate functional (2.53) (therefore corresponding to the effective dynamics (ηt)t∈[0,T]). 
Then we have

H(ρ̂t|ηt) � H(ρ̂0|η0) + I(ρ̂) for all t ∈ [0, T].� (2.56)

Proof.  We define

ht(z) :=
(
b + β−1divzA

)
−
(

b̂ + β−1divzÂ
)
+ β−1

(
A − Â

)
∇z log ρ̂t.� (2.57)

This h satisfies

∂tρ̂− L ∗
η ρ̂ = −divz(ρ̂AA−1ht),

where Lη is the generator corresponding to the effective dynamics η,

Lηf := −b · ∇zf + β−1A : D2
z f .

From the definition of the large deviation rate functional (2.53), we have

I(ρ̂) =
β

4

∫ T

0

∫

Rk
|ht|2(A(z))−1 dρ̂t dt.� (2.58)

The statement of this lemma is an application of theorem 2.18 to the choice ζt ≡ ρ̂t and 
νt ≡ ηt. Thus we just need to verify the two hypotheses in theorem 2.18. By lemma 2.12 the 
coefficients b and A satisfy assumption (B1). Additionally

∫ T

0

∫

Rk

[
(1 + |z|)−2|Aij|+ (1 + |z|)−1|b|

]
dρ̂t dt � CT < ∞,

which verifies the first two conditions in (B2). It remains to show that
∫ T

0

∫

Rk

|ht|
1 + |z|

dρ̂t dt < ∞,� (2.59)
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where ht = −
(

b̂ + divzÂ
)
+ (b + divzA) +

(
A − Â

)
∇z log ρ̂t. We have

∫ T

0

∫

Rk

|ht|
1 + |z|

dρ̂t dt �
∫ T

0

∫

Rk

(|b|+ divzA) + |b̂|+ |divzÂ|+ |(A − Â)∇z log ρ̂t|
1 + |z|

dρ̂t dt.� (2.60)

Similarly as above, we find
∫ T

0

∫

Rk

|b|+ |divzA|
1 + |z|

dρ̂t dt � CT < ∞.� (2.61)

The term involving b̂ can be estimated directly. By the regularity properties of ξ and especially 
by the assumption of affinity at infinity it follows that

∣∣Dξ∇V − β−1∆ξ
∣∣ (x) � C (1 + |x|)

and therefore
∫

Rk

∣∣∣b̂(z)
∣∣∣ dρ̂(z) �

∫

Rk

∫

Σz

∣∣Dξ∇V − β−1∆ξ
∣∣ ρt

dH d−k

Jac ξ
dH k

� C
∫

Rk

∫

Σz

(1 + |x|) ρt
dH d−k

Jac ξ
dH k � C

∫

Rd
(1 + |x|) dρt < ∞,

since the second moment of ρt  is bounded according to lemma 2.12.
For the estimate of divÂ we use the representation in lemma 2.4 and the regularity assump-

tions on ξ to conclude
∣∣∣divzÂ(z)

∣∣∣ �
∫

Σz

ρt

ρ̂t
|Dξ∇ log ρt +∆ξ − G∇z log ρ̂t|

dH d−k

Jac ξ
� C

∫

Σz

(
1 +

∣∣∣∣∇ log
ρt

µ

∣∣∣∣+ |∇ logµ|
)

dρ̄t,z.

Integrating with respect to ρ̂  and using |∇ logµ| � C (1 + |x|) leads to a bound in terms of the 
relative Fisher information and the second moment, which after integrating in t are bounded.

For the remaining term in (2.60), we use the Cauchy–Schwarz inequality, and the bounds ∣∣∣A − Â
∣∣∣ � C , 1

C Id k � A, Â � CId k  and |∇ log µ̂| � C (1 + |z|) to estimate (writing C for 

general constants that differ from line to line)



∫ T

0

∫

Rk

∣∣∣
(

A − Â
)
∇z log ρ̂t

∣∣∣
1 + |z|

dρ̂t dt




2

� C
∫ T

0

∫

Rk

|∇z log ρ̂t|2

(1 + |z|)2 dρ̂t dt

� C
∫ T

0

∫

Rk

(
|∇z log ρ̂t −∇z log µ̂|2 +

|∇z log µ̂|2

(1 + |z|)2

)
dρ̂t dt

� C
∫ T

0

∫

Rk

(
∇z log

ρ̂t

µ̂
· A∇z log

ρ̂t

µ̂

)
dρ̂t dt +

∫ T

0

∫

Rk

(1 + |z|)2

(1 + |z|)2 dρ̂t dt

� C
∫ T

0
[RFA(ρ̂t|µ̂) + 1] dt.

By corollary 2.9, the final integral is finite. This completes the proof of this corollary.� □ 
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We now cast ht in (2.57) into a more usable form.

Lemma 2.21.  The function ht (defined in (2.57)) can be rewritten as

ht(z) = β−1Eρ̄t,z

[
(A − DξDξ�)G−1Dξ∇ log

(
ρt

µ

)]
− A(z)

∫

Σz

F(dρ̄t,z − dµ̄z),

�

(2.62)

where F is the local mean force (2.19).

Proof.  By similar calculations as in remark 2.10 we obtain

divzA = −βb − A∇z log µ̂,

divzÂ = −βb̂ − Â∇z log ρ̂t + Eρ̄t,z [Dξ (β∇V +∇ log ρt)] .
� (2.63)

By substituting (2.63) into (2.57) and using the identity ∇ logµ = −β∇V  we find

ht = β−1A∇z log

(
ρ̂t

µ̂

)
− β−1Eρ̄t,z [Dξ (∇ log ρt −∇ logµ)] .� (2.64)

By using lemma 2.4 to evaluate ∇zρ̂, ∇zµ̂, we can rewrite the first term in (2.64),

β−1A∇z log

(
ρ̂t

µ̂

)
= β−1A

(
∇zρ̂t

ρ̂t
− ∇zµ̂

µ̂

)

= β−1A
∫

Σz

div
(
G−1Dξ

)
(dρ̄t,z − dµ̄z) + β−1A

∫

Σz

G−1Dξ

(
∇ρt

ρ̂t
− ∇µ

µ̂

)
dH d−k

Jac ξ
.

�
(2.65)

We can also rewrite the second term in the right hand side of (2.65) by using once more 
∇ logµ = −β∇V ,
∫

Σz

G−1Dξ

(
∇ρt

ρ̂t
− ∇µ

µ̂

)
dH d−k

Jac ξ
=

∫

Σz

G−1Dξ (∇ log ρt dρ̄t,z −∇ logµ dµ̄z)

=

∫

Σz

G−1Dξ

(
∇ log

ρt

µ
dρ̄t,z − β∇V (dρ̄t,z − dµ̄z)

)
.

By substituting these terms back into (2.64), we find

ht = A
∫

Σz

(
β−1div(G−1Dξ)− G−1Dξ∇V

)
(dρ̄t,z − dµ̄z)

+ β−1
∫

Σz

(
A (DξDξ�)−1 − Id k

)
Dξ∇ log

(
ρt

µ

)
dρ̄t,z.

The result follows by using the definition of F (2.19).� □ 

Using this reformulation of the rate functional we now estimate I(ρ̂).

Lemma 2.22.  Under the same assumptions as in theorem 2.15,

I(ρ̂) �
1
4

(
λ2

H

β
+

κ2
Hβ

αTI αLSI

)∫ T

0

∫

Rd

∣∣∣∣∇ log

(
ρt

µ

)∣∣∣∣
2

dρt dt.

Proof.  Recall from (2.58) that to bound I(ρ̂) we need to estimate |ht|2A−1 = |A−1/2ht|2. Let 
us do this for each term in (2.62). For the first term we find
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∣∣∣∣β−1A−1/2Eρ̄t,z

[
(A − DξDξ�)(DξDξ�)−1Dξ∇ log

(
ρt

µ

)]∣∣∣∣
2

�
λ2

H

β2

∫

Σz

∣∣∣∣(DξDξ�)−1/2Dξ∇ log

(
ρt

µ

)∣∣∣∣
2

dρ̄t,z,
�

(2.66)

where λH is defined in (2.48). For any coupling Π ∈ P(Σz × Σz) of µ̄z and ρ̄t,z we can write
∣∣∣∣
∫

Σz

AF(dρ̄t,z − dµ̄z)

∣∣∣∣
2

A−1

=

∣∣∣∣
∫

Σz×Σz

(
(A1/2F)(y1)− (A1/2F)(y2)

)
dΠ(y1, y2)

∣∣∣∣
2

� κ2
H

∫

Σz×Σz

dΣz(y1, y2)
2 dΠ(y1, y2),

where κH is defined in (2.47). By taking the infimum over all admissible couplings Π, we ob-
tain the Wasserstein-2 distance between ρ̄t,z and µ̄z with respect to the intrinsic metric on Σz. 
Under the assumption (H1) we find
∣∣∣∣
∫

Σz

AF(dρ̄t,z − dµ̄z)

∣∣∣∣
2

A−1

� κ2
HW2

2(ρ̄t,z, µ̄z) �
κ2

H

αTI αLSI

∫

Σz

∣∣∣∣∇Σz log

(
ρt

µ

)∣∣∣∣
2

dρ̄t,z.� (2.67)

The final inequality follows from the definition of the conditional measure ρ̄t,z, µ̄z and by not-
ing that ∇Σz ρ̂ = ∇Σz µ̂ = 0. Combining (2.66) and (2.67) and applying Young’s inequality we 
obtain for any τ > 0

|ht|2A−1 �
λ2

H

β2 (1 + τ)

∫

Σz

∣∣∣∣(DξDξ�)−1/2Dξ∇ log

(
ρt

µ

)∣∣∣∣
2

dρ̄t,z

+
κ2

H

αTI αLSI

(
1 +

1
τ

)∫

Σz

∣∣∣∣∇Σz log

(
ρt

µ

)∣∣∣∣
2

dρ̄t,z.

Substituting into I(ρ̂) we find

I(ρ̂) �
λ2

H

4β
(1 + τ)

∫ T

0

∫

Rd

∣∣∣∣(DξDξ�)−1/2Dξ∇ log

(
ρt

µ

)∣∣∣∣
2

dρt dt

+
κ2

Hβ

4αTI αLSI

(
1 +

1
τ

)∫ T

0

∫

Rd

∣∣∣∣∇Σz log

(
ρt

µ

)∣∣∣∣
2

dρt dt.

�

(2.68)

We need to combine the two terms on the right hand side. Note that for any v ∈ Rd

|Dξ�(DξDξ�)−1Dξv|2 = v�Dξ�(DξDξ�)−1DξDξ�(DξDξ�)−1Dξv

= v�Dξ�(DξDξ�)−1Dξv = |(DξDξ�)−1/2Dξv|2.

Since in addition ∇Σz = (Id − Dξ�(DξDξ�)−1Dξ)∇, the two terms within the integrals in 
(2.68) combine to |∇ log(ρt/µ)|2, which is the Fisher information for the original Fokker–
Planck equation. By choosing τ =

κ2
Hβ

2

αTI αLSI λ2
H

, the pre-factors to the two integrals become 

equal and the claimed result follows.� □ 

Proof of theorem 2.15.  Substituting the result of lemma 2.22 into (2.56), for any t ∈ [0, T]
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H(ρ̂t|ηt) � H(ρ̂0|η0) +
1
4

(
λ2

H

β
+

κ2
Hβ

αTI αLSI

)∫ T

0

∫

Rd

∣∣∣∣∇ log

(
ρt

µ

)∣∣∣∣
2

dρt dt.

�

(2.69)

Rewriting the Fokker–Planck equation as ∂tρt =
1
β∇ ·

(
ρt∇ log ρt

µ

)
, it follows that

d
dt

H(ρt|µ) =
∫

Rd

(
log

(
ρt

µ

)
+ 1

)
1
β
∇ ·

(
ρt∇ log

ρt

µ

)
dx = − 1

β

∫

Rd

∣∣∣∣∇ log

(
ρt

µ

)∣∣∣∣
2

dρt.�

(2.70)

Plugging this into (2.69), for any t  >  0 we arrive at

H(ρ̂t|ηt) � H(ρ̂0|η0) +
1
4

(
λ2

H +
κ2

Hβ
2

αTI αLSI

)
(H(ρ0|µ)− H(ρT |µ)),

which is the claimed result.� □ 

2.6.  Wasserstein estimates  In this section we state and prove theorem 1.2, which estimates 
in Wasserstein-2 distance the error between the coarse-grained dynamics ρ̂t  (2.28) and the 
effective dynamics ηt  (2.34).

Theorem 2.23.  Consider a coarse-graining map ξ satisfying assumption 2.3, a potential V  
satisfying assumption 2.2 and initial datum ρ0 with finite second moment and H(ρ0|µ) < ∞. 
Moreover, define

κW := sup
z∈Rk

sup
y1,y2∈Σz

∣∣(Dξ∇V − β−1∆ξ)(y1)− (Dξ∇V − β−1∆ξ)(y2)
∣∣

dΣz(y1, y2)
,� (2.71)

λW := sup
z∈Rk

sup
y1,y2∈Σz

∣∣∣
√

DξDξ�(y1)−
√

DξDξ�(y2)
∣∣∣
F

dΣz(y1, y2)
,� (2.72)

where |·|F is the Frobenius norm for matrices (see page 10). Assume that the conditional sta-
tionary measure µ̄z satisfies the Talagrand inequality (2.23) and Log-Sobolev inequality (2.24) 
uniformly in z with constants αTI > 0 and αLSI > 0. Then for any t ∈ [0, T]

W2
2(ρ̂t, ηt) � ec̃Wt

(
W2

2(ρ̂0, η0) +
4λ2

W + βκ2
W

αTI αLSI
(H(ρ0|µ)− H(ρt|µ))

)
� (2.73)

with c̃W = (1 +max{4β−1‖divzA‖2
∞, 2‖∇zb‖∞}).

Remark 2.24.  The constants λW,κW are indeed finite. This follows since

λW �
∥∥∥
∣∣∣∇Σz

√
DξDξ�

∣∣∣
I→F

∥∥∥
L∞(Rd)

and κW �
∥∥∣∣∇Σz

(
Dξ∇V − β−1∆ξ

)∣∣∥∥
L∞(Rd)

,

where the right hand side is bounded uniformly in z ∈ Rk by assumptions (C1)–(C3) on ξ, 
assumption (V2), and since ∇Σz = (Id − Dξ�(DξDξ�)−1Dξ)∇. The notation | · |I→F was 
introduced below (2.21). Note, that the constants κW and λW have a similar interpretation as 
the constants λH and κH in theorem 2.15 (see remark 2.16). They respectively measure the 
interaction of the dynamics on and across the level sets, and the local variations of the effec-
tive diffusion on the level sets.
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In the remainder of this section we prove theorem 2.23. The central ingredient in the proof 
of this theorem is a time-dependent coupling Πt ∈ P(R2k) of the coarse-grained and the 
effective dynamics (defined in the sense of definition 2.1):

{
∂tΠ = divz(bΠ) + β−1D2

z : AΠ,
Πt=0 = Π0,

� (2.74)

with coefficients b : [0, T]× R2k → R2k and A : [0, T]× R2k → R2k×2k defined by

b(t, z1, z2) :=
(

b̂(t, z1)

b(z2)

)
� (2.75)

A(t, z1, z2) := σσ� with σ(t, z1, z2) :=

(√
Â(t, z1)√
A(z2)

)
.� (2.76)

Here Π0 is the optimal coupling of the initial data and D2
z , divz are differential operators on 

R2k.
Let us point out that the SDE corresponding to Π is a coupling of the SDEs corresponding 

to the ρ̂  and η by the same realization of a Brownian motion in Rk. Therefore any calculations 
with Π can also be carried out in the SDE setting.

The existence theorem quoted after definition 2.1 ensures that (2.74) has a solution. 
However proving that the solution Π is indeed a coupling is a more subtle issue. The reason 
is that the uniqueness statement for the coarse-grained equation, to the best of our knowledge, 
would require sufficiently regular initial data, which we wish to avoid (see remark 2.13). To 
get around this lack of uniqueness, we introduce a coupling of the original dynamics and the 
lifted effective dynamics introduced in lemma 2.14. The push-forward of this new coupling 
will solve the equation (2.74) with marginals given by the coarse-grained dynamics ρ̂t  and 
effective dynamics ηt . In this way, we construct a solution to (2.74) which has the correct 
marginals. The next lemma makes these ideas precise.

Lemma 2.25 (Existence of the coupling).  Let Π0 be the optimal Wasserstein-2 cou-
pling of the initial data ρ̂0 and η0. Then there exists a family of probability measures (Πt)t∈[0,T] 
which solves (2.74). Further Πt is a coupling of ρ̂t, ηt and has bounded second moments for 
any t ∈ [0, T].

Proof.  We first define a coupling on R2d  denoted by Π̃ which solves
{
∂tΠ̃ = Dx(b̃Π̃) + β−1D2

x :
(

ÃΠ̃
)

,

Π̃t=0 = Π̃0,
� (2.77)

where Π̃0 is a probability measure with bounded second moment on R2d  with 

(ξ ⊗ ξ)# Π̃0 = Π0. The variable x ∈ R2d and Dx, D2
x are differential operators on R2d . Here 

the coefficients b̃ : R2d → R2d and Ã : ×R2d → R2d×2d  are defined by

b̃(x1, x2) :=
(
∇V(x1)

b̃(x2)

)

Ã(x1, x2) := σ̃σ̃� with σ̃(x1, x2) :=

(
Id d√
Ã(x2)

)
.
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The existence of a solution in the sense of definition 2.1 follows from [BKRS15, theorem 
6.7.3]. Next, we define Πt := (ξ ⊗ ξ)# Π̃t. To verify that Πt solves (2.74), we use g ◦ (ξ ⊗ ξ) 
as a test function in the weak formulation of (2.77) (see definition 2.1), where g ∈ C2

c(R2k). 
Repeating the calculations as in the proofs of proposition 2.8 and lemma 2.14, it then follows 
that Πt solves (2.74). Now, we also note that the first marginal of Π̃t is the unique solution of 
the full dynamics (2.5) and the second marginal is a solution to lifted effective dynamics of 
lemma 2.14. This is easily checked by choosing g(x1, x2) = h(x1) and g(x1, x2) = h(x2) for 
some h ∈ C2

c(Rd) as test function in the weak form of (2.77). In particular, this implies that 
the first marginal of Πt is ξ#ρt = ρ̂t by construction and the second marginal of Πt is ηt  by 
lemma 2.14, which is unique by theorem 2.11. Hence, we have obtained the desired coupling 
Πt. It is left to show that Πt has bounded second moments, which follows directly by estimat-
ing |z|2 � 2 |z1|2 + 2 |z2|2 from the statements for the marginals ρ̂t  in proposition 2.8 and ηt  in 
lemma 2.14.� □ 

The proof of theorem 2.23 relies on differentiating 
∫
|z1 − z2|2 Πt(dz1dz2), appropriately 

estimating the resulting terms and then applying a Gronwall argument. This is the content of 
the next two lemmas.

Lemma 2.26.  The coupling Π constructed in lemma 2.25 satisfies

d
dt

∫

R2k
|z1 − z2|2dΠt(z1, z2) � c̃W

∫

R2k
|z1 − z2|2dΠt(z1, z2)

+ 4β−1
∥∥∥∥
∣∣∣∣
√

Â(t, ·)−
√

A(·)
∣∣∣∣
F

∥∥∥∥
2

L2
ρ̂t

+
∥∥∥b̂(t, ·)− b(·)

∥∥∥
2

L2
ρ̂t

,
�

(2.78)

where c̃W = (1 +max{4β−1‖
∣∣∣divz

√
A
∣∣∣
I→F

‖2
∞, 2‖ |∇zb| ‖∞}).

Proof.  Since Πt has bounded second moment by lemma 2.25, we obtain
∫

R2k
|z1 − z2|2 dΠt(z1, z2) � 2

∫

R2k

(
|z1|2 +

∣∣z2
2

∣∣) dΠt(z1, z2) < ∞,

uniformly in t ∈ [0, T]. This bound allows us to approximate R2k � (z1, z2) �→ |z1 − z2|2 by 
smooth functions, and therefore using the form (2.3) (with coefficients from (2.74)) along 
with standard regularisation arguments we can calculate

d
dt

∫

R2k
|z1 − z2|2 dΠt(z1, z2) = 2β−1

∫

R2k
A :

(
Id k −Id k

−Id k Id k

)
dΠt(z1, z2)

− 2
∫

R2k
(z1 − z2) ·

[
b̂(t, z1)− b(z2)

]
dΠt(z1, z2).

�

(2.79)

The first term in the right hand side of (2.79) can be estimated via the triangle inequality

2β−1
∫

R2k
A :

(
Id k −Id k

−Id k Id k

)
dΠt(z1, z2) = 2β−1

∫

R2k

∣∣∣∣
√

Â(t, z1)−
√

A(z2)

∣∣∣∣
2

F
dΠt(z1, z2)

� 4β−1
∫

R2k

[∣∣∣∣
√

Â(t, z1)−
√

A(z1)

∣∣∣∣
2

F
+
∣∣∣
√

A(z1)−
√

A(z2)
∣∣∣
2

F

]
dΠt(z1, z2)

� 4β−1
∥∥∥∥
∣∣∣∣
√

Â(t, ·)−
√

A(·)
∣∣∣∣
F

∥∥∥∥
2

L2
ρ̂t

+ 4β−1
∥∥∥
∣∣∣∇z

√
A
∣∣∣
I→F

∥∥∥
2

∞

∫

R2k
|z1 − z2|2 dΠt(z1, z2).

� (2.80)
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The last inequality follows from lemma 2.12, which states that |∇zA|I→F < +∞ and A  >  0 
uniformly on Rk. Therefore, 

√
A is Lipschitz with a constant bounded from above by 

‖
∣∣∣∇z

√
A
∣∣∣
I→F

‖∞. A similar calculation can be used to estimate the second term in the right 

hand side of (2.79),

−2
∫

R2k
(z1 − z2) ·

(
b̂(t, z1)− b(z2)

)
dΠt(z1, z2)

� 2
∫

R2k
|z1 − z2| |b̂(t, z1)− b(z1)| dΠt(z1, z2) + 2

∫

R2k
|z1 − z2| |b(z1)− b(z2)| dΠt(z1, z2)

�
∥∥∥b̂(t, ·)− b(·)

∥∥∥
2

L2
ρ̂t

+ (1 + 2‖ |∇zb| ‖∞)

∫

R2k
|z1 − z2|2 dΠt(z1, z2).

�

(2.81)

The final inequality follows since b is Lipschitz with a constant bounded by ‖ |∇zb| ‖∞, where 
we recall that ∇zb is indeed bounded by lemma 2.12. Substituting (2.80) and (2.81) back into 
(2.79) we conclude the proof.� □ 

We now estimate the normalized terms in (2.78).

Lemma 2.27.  Under the same assumptions as in theorem 2.23
∥∥∥∥
∣∣∣∣
√

Â(t, ·)−
√

A(·)
∣∣∣∣
F

∥∥∥∥
2

L2
ρ̂t

�
2λ2

W

αTI

∫

Rk
H(ρ̄t,z‖µ̄z) dρ̂t(z),� (2.82)

∥∥∥b̂(t, ·)− b(·)
∥∥∥

2

L2
ρ̂t

�
2κ2

W

αTI

∫

Rk
H(ρ̄t,z‖µ̄z) dρ̂t(z).� (2.83)

Proof.  For symmetric strictly positive definite matrices M, N  the function

(M, N) �→
∣∣∣
√

M −
√

N
∣∣∣
2

F
= tr

[(√
M −

√
N
)2
]

,

is jointly convex in (M, N). This follows by expanding the square and noting that tr[
√

M
√

N
�
] 

is concave by Lieb’s concavity theorem [Bha97, section IX.6]. Since Â, A are strictly posi-
tive-definite, we can apply a two-component Jensen’s inequality by using an admissible cou-
pling Θ of ρ̄t,z and µ̄z,

∣∣∣∣
√

Â(t, z)−
√

A(z)
∣∣∣∣
2

F
= tr



((∫

Σz

DξDξ�(y1)ρ̄t,z(y1)dy1

) 1
2

−
(∫

Σz

DξDξ�(y2)µ̄z(y2)dy2

) 1
2
)2




�
∫

Σz×Σz

tr

[(√
DξDξ�(y1)−

√
DξDξ�(y2)

)2
]

dΘ(y1, y2) � λ2
W

∫

Σz×Σz

dΣz(y1, y2)
2 dΘ(y1, y2),

where λW is defined in (2.72). Here dΣz is the intrinsic distance on the level set Σz defined in 
(2.10). Since by assumption µ̄z satisfies the Talagrand inequality with constant αTI, we find

∥∥∥∥
√

Â(t, ·)−
√

A(·)
∥∥∥∥

2

L2
ρ̂t

� λ2
W

∫

Rk
W2

2(ρ̄t,z, µ̄z) dρ̂t(z) �
2λ2

W

αTI

∫

Rk
H(ρ̄t,z|µ̄z) dρ̂t(z).
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This proves (2.82). The proof of (2.83) follows similarly.� □ 

Proof of theorem 2.23.  The prove of theorem 2.23 follows from a Gronwall-type esti-
mate applied to (2.78) in combination with the error estimates (2.82) and (2.83)

d
dt

[
e−c̃Wt

∫

R2k
|z1 − z2|2dΠt(z1, z2)

]
� e−c̃Wt

[
4β−1

∥∥∥∥
∣∣∣∣
√

Â(t, ·)−
√

A(·)
∣∣∣∣
F

∥∥∥∥
2

L2
ρt

+
∥∥∥b̂(t, ·)− b(·)

∥∥∥
2

L2
ρt

]
.

A straightforward application of the estimates in lemma 2.27 gives

W2
2(ρ̂t, ηt) � ec̃WtW2

2(ρ̂0, η0) + 2
(

4β−1λ2
W + κ2

W

αTI

)∫ t

0

∫

Rk
H(ρ̄s,z|µ̄z) dρ̂s(z) ec̃W(t−s) ds.� (2.84)

Using the Log-Sobolev assumption, the final term in (2.84) can be estimated as
∫ t

0

∫

Rk
H(ρ̄t,z|µ̄z) dρ̂s(z) ec̃(t−s) ds �

∫ t

0

∫

Rk

(
1

2αLSI

∫

Σz

∣∣∣∣∇Σz log

(
ρ̄s,z

µ̄z

)∣∣∣∣
2

dρ̄s,z

)
dρ̂s(z) ec̃(t−s) ds

�
ec̃t

2αLSI

∫ t

0

∫

Rd

∣∣∣∣∇ log

(
ρs

µ

)∣∣∣∣
2

dρs ds,

where we have used ∇Σz = (Id − Dξ�(DξDξ�)−1Dξ)∇ and the disintegration theorem to 
arrive at the final inequality. By using

d
dt

H(ρt|µ) = − 1
β

∫

Rd

∣∣∣∣∇ log

(
ρt

µ

)∣∣∣∣
2

dρt,

we obtain the claimed result (2.73).� □ 

2.7.  Estimates for general initial data

Recall from section 2.4 that our estimates throughout this section holds under the assumption 
(2.40), i.e. when the original dynamics solves

{
∂tρ

M = β−1∆ρM + div(ρM∇V),
ρM

t=0 = ρM
0 := f M

0 µ,
� (2.85)

where f M
0 := 1

ZM
max {min {f , M} , 1/M} and ZM is the normalization constant which ensures 

that the initial data is a probability measure. In what follows we show that we can let M → ∞ 
in our estimates.

The relative entropy estimate (2.49) and the Wasserstein-2 estimate (2.73) give

H(ρ̂M
t |ηt) � H(ρ̂M

0 |η0) +
1
4

(
λ2

H +
κ2

Hβ
2

αTI αLSI

)(
H(ρM

0 |µ)− H(ρM
t |µ)

)
,� (2.86)

W2
2(ρ̂

M
t , ηt) � ec̃t

(
W2

2(ρ̂
M
0 , η0) +

(
4β−1λ2

W + κ2
W

αTI αLSI

)
(H(ρM

0 |µ)− H(ρM
t |µ))

)
.

�

(2.87)

These estimates depend on the parameter M through the terms H(ρM
0 |µ), H(ρM

t |µ), H(ρ̂M
t |ηt) 

and W2
2(ρ̂

M
t , ηt). Since
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ρM
0 := f M

0 µ → f0µ = ρ0 a.e.,

by the dominated convergence theorem it follows that H(ρM
0 |µ) → H(ρ0|µ) as 

M → ∞. Since we assume that H(ρ̂0|η0) < ∞, we have ρ̂0 = ξ#ρ0 � η0 and by the regu-
larity assumptions (C1)–(C3) we obtain ρ̂M

0 = ξ#ρ
M
0 � η0. Hence, H(ρ̂M

0 |µ̂) → H(ρ̂0|µ̂) and 
W2(ρ̂

M
0 , η0) → W2(ρ̂0, η0).

Using the convergence of ρM
0  to ρ0 we also have a convergence of the weak formulation of 

(2.85) to the weak formulation of the original Fokker–Planck equation (2.5). Note that there 
exists a unique solution to the original Fokker–Planck equation (2.5) under the assumptions 
(V1) and (V2) on the potential V  (see [BKRS15, theorem 9.4.3]). Using the relative entropy 
bound in (2.26) along with the positivity of Fisher Information and well-prepared initial data, 
for any t ∈ [0, T] it follows that

H(ρt|µ) = H(ρM
t |Z−1

V/2) +
1
2

∫

Rd
VdρM

t + log

∫
Rd e−V

∫
Rd e−V/2 < C ⇒

∫

Rd
VdρM

t < C,

where ZV/2 :=
∫
Rd e−V/2. As a result, the sequence (ρM

t )M∈N ∈ P(Rd) is tight and therefore 
converges weakly as M → ∞ for any t ∈ [0, T] to the unique solution ρt  of the original system 
(2.5). Since the relative entropy is lower-semicontinuous with respect to the weak topology, 
we get

lim sup
M→∞

(H(ρM
0 |µ)− H(ρM

t |µ) � H(ρ0|µ)− H(ρt|µ)).

The convergence ρM
t ⇀ ρt implies that ρ̂M

t ⇀ ρ̂t, and therefore by using the lower-semicon-
tinuity of relative entropy and Wasserstein-2 distance with respect to the weak topology we 
obtain the following estimate for the original Fokker–Planck equation (2.5),

H(ρ̂t|ηt) � lim inf
M→∞

H(ρ̂M
t |ηt) � lim sup

M→∞
H(ρ̂M

t |ηt)

� lim sup
M→∞

{
H(ρ̂M

0 |η0) +
1
4

(
λ2

H +
κ2

Hβ
2

αTI αLSI

)
(H(ρ0|µ)− H(ρM

t |µ))
}

� H(ρ̂0|η0) +
1
4

(
λ2

H +
κ2

Hβ
2

αTI αLSI

)
(H(ρ0|µ)− H(ρt|µ)).

�

(2.88)

Similarly, we also get

W2
2(ρ̂t, ηt) � ec̃t

(
W2

2(ρ̂0, η0) +

(
4β−1λ2

W + κ2
W

αTI αLSI

)
(H(ρ0|µ)− H(ρt|µ))

)
.

�

(2.89)

3.  Langevin dynamics

Having covered the case of the overdamped Langevin equation, we now shift our attention 
to the (underdamped) Langevin equation. As discussed in section 1.3, in this case the choice 
of the coarse-graining map is a more delicate issue, which we address in section 3.2. We 
also introduce the coarse-grained and effective dynamics corresponding to the Langevin case 
in the same section. In section  3.4 we derive error estimates both in relative entropy and 
Wasserstein-2 distance. The estimates in section  3.4 are restricted to affine spatial coarse-
graining maps, and we discuss this restriction in remark 3.1.

M H Duong et alNonlinearity 31 (2018) 4517



4550

3.1.  Setup of the system

Recall the Langevin equation, where for simplicity we put m  =  1 from now on,
{

dQt = Pt dt
dPt = −∇V(Qt) dt − γPt dt +

√
2γβ−1 dWd

t ,
� (3.1)

with initial datum (Qt=0, Pt=0) = (Q0, P0). The corresponding forward-Kolmogorov 
equation is

{
∂tρ = −div(ρJ2d∇H) + γdivp(ρp) + γβ−1∆pρ

ρt=0 = ρ0,
� (3.2)

where ρt = law(Qt, Pt), the initial datum ρ0 = law(Q0, P0). The spatial domain here is R2d  
with coordinates (q, p) ∈ Rd × Rd, and subscripts as in ∇p and ∆p indicate that the differ
ential operators act on the corresponding variables. We have used a slightly shorter way of 
writing this equation by introducing the Hamiltonian H(q, p) = V(q) + p2/2 and the canoni-

cal 2d- symplectic matrix J2d =

(
0 Id d

−Id d 0

)
. The potential V  is assumed to satisfy (V1) 

and (V2) of assumption 2.2 as in the overdamped Langevin case. For the computations made 
in this section, it is sufficient to interpret (3.2) in the sense of definition 2.1. Condition (V1) 
ensures that (3.2) admits a normalizable stationary solution µ ∈ P(R2d),

µ(dq dp) := Z−1 exp

(
−β

[
p2

2
+ V(q)

])
dq dp.� (3.3)

We assume that the initial datum ρ0 = law(Q0, P0) has bounded relative entropy with respect 
to μ i.e.

H(ρ0|µ) < +∞,� (3.4)

and as a consequence we can define f0 := dρ0/dµ.
Instead of working with ρ which solves (3.2), from here on we will again work with an 

approximation ρM,α which has better properties:
{
∂tρ

M,α = (L Lan)∗ρM,α + α
[
divq(ρ

M,α∇V) + ∆qρ
M,α

]
ρM,α

∣∣
t=0 = ρM,α

0 := f M
0 µ.� (3.5)

Here α > 0, f M
0 := Z−1

M min {max {f , 1/M} , M}, ZM is the normalization constant which 
ensures that the initial data is a probability measures and (L Lan)∗ is the generator corre
sponding to (3.1), i.e. the right hand side of (3.2). Note that by contrast to the overdamped case 
we not only truncate the initial datum but also regularize the equation. In particular, adding 
the term ∆qρ

M,α makes (3.5) a non-degenerate diffusion equation. The term divq(ρ
M,α∇V) 

ensures that μ is still the stationary solution of (3.5). This approximation is introduced as 
before to enable various calculations in the proofs. Let us emphasize, that although equa-
tion (3.5) can be interpreted as a Fokker–Planck equation as in the previous section, the results 
cannot be simply translated. However, the overall scheme and strategy is similar.

In section 3.6 we show that the estimates we derive for the approximation (3.5) also apply 
to the original system (3.2). Using the dominated convergence theorem and (3.4),

H(ρM,α
0 |µ) < +∞.

Since (3.5) is a non-degenerate parabolic equation, by using standard results [PW12, chapter 
3], for all t ∈ [0, T] we find
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1
MZM

µ � ρM,α
t �

M
ZM

µ.� (3.6)

To simplify notation, here onwards we will drop the superscripts M,α in ρM,α.

3.2.  Coarse-graining map

In the overdamped Langevin case, the coarse-graining map ξ was used to identify the coarse-
grained variables. In the Langevin case we need to similarly define a coarse-graining map 
on the phase space. We make the structural assumption that the phase-space structure of the 
coarse-graining map is preserved, i.e. the coarse-graining map maps the Langevin equation to a 
dynamics onto a new phase space, again consisting of a ‘position’ and a ‘momentum’ variable. 
Moreover, we assume for simplicity that the slow manifold for the spatial and the momentum 
variables is Rk. Like for the overdamped Langevin equation a generalization to k-dimensional 
manifolds seems to be possible at the expense of increased technical complexity. Hence, we 
work with a mapping Ξ : R2d → R2k  which identifies the relevant spatial and momentum 
variables (q, p) �→ (z, v) := Ξ(q, p). Throughout this section we will use (q, p) ∈ R2d  for the 
original coordinates and (z, v) ∈ R2k for the coarse-grained coordinates.

Typically, the choice of the spatial coarse-grained variable is prescribed by a mapping 
ξ : Rd � q �→ z ∈ Rk, as in the case of the overdamped Langevin dynamics, i.e. it is possible 
from modeling assumptions or physical intuition to identify the spatial reaction coordinates 
of the problem.

Motivated by (3.1) we define the coarse-grained momentum by

d
dt
ξ(Qt) = Dξ(Qt)Q̇t = Dξ(Qt)Pt,

and therefore the full coarse-graining map Ξ : R2d → R2k  is

Ξ(q, p) :=
(

ξ(q)
Dξ(q) p

)
=:

(
z
v

)
.� (3.7)

At the moment, this choice of the coarse-graining map Ξ is restricted to affine ξ. In view of 
remark 3.1 below it is unclear if such a choice for Ξ works with non-affine ξ, as, in this case 
the well-posedness of the resulting effective dynamics is not apparent (see remarks 3.1 for 
details). So unless explicitly stated otherwise, we assume that

ξ : Rd → Rk is affine with Dξ having full row rank k.� (3.8)

In particular (3.8) implies that ξ(q) = Tq + τ  for some τ ∈ Rk  and T ∈ Rk×d  of full rank. 
While there are other possible choices for the coarse-graining maps on the phase space (see 
[LRS10, LRS12] for detailed discussions), we restrict ourselves to (3.7) in this section. Now 
we make a few preliminary remarks to fix notations.

For any (z, v) ∈ R2k, Σz,v  denotes the (z, v)-level set of Ξ, i.e.

Σz,v :=
{
(q, p) ∈ R2d : Ξ(q, p) = (z, v)

}
.� (3.9)

Similar to (2.10), on a level set Σz,v  we can define a canonical metric dΣz,v. The Jacobian 
determinant Jac Ξ =

√
DξDξ�  is bounded from below by a constant C−1 due to condi-

tion (3.8). Any ν ∈ P(R2d) which is absolutely continuous with respect to the Lebesgue 
measure, i.e. dν(q, p) = ν(q, p)dL 2d(q, p) for some density again denoted by ν for con-
venience, can be decomposed into its marginal measure Ξ#ν =: ν̂ ∈ P(R2k) satisfying 
dν̂(z, v) = ν̂(z, v)dL 2k(z, v) with density
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ν̂(z, v) =
∫

Σz,v

ν
dH 2d−2k

Jac Ξ
� (3.10)

and the family of conditional measures ν(·|Σz,v) =: ν̄z,v ∈ P(Σz,v) having a 2d  −  2k- 
dimensional density dν̄z,v(q, p) = ν̄z,v(q, p)dH 2d−2k(q, p) given by

ν̄z,v(q, p) =
ν(q, p)

Jac Ξ ν̂(z, v)
.� (3.11)

Here H 2d−2k is the (2d − 2k)-dimensional Hausdorff measure. For a time dependent measure 
νt , we will use ν̄t,z,v to indicate the corresponding conditional measure on the level set Σz,v  at 
time t.

Differential operators on the coarse-grained space R2k will be equipped with subscripts z, v 
i.e. ∇z,v, divz,v, ∆z,v, Dz,v. This is to separate them from differential operators on the full space 
R2d  which will have no subscript. For any sufficiently smooth g : R2k → R,

∇(g ◦ Ξ) =
(

Dξ� ∇zg ◦ Ξ
Dξ� ∇vg ◦ Ξ

)
, D2(g ◦ Ξ) =

(
DξDξ� : D2

z g ◦ Ξ
DξDξ� : D2

vg ◦ Ξ

)
.� (3.12)

Although Dξ ∈ Rk×d is the constant matrix T ∈ Rk×d , since ξ is affine, we keep the notation 
Dξ. Here D2

z , D2
v is the Hessian on Rk with respect to z, v respectively.

The following remark summarizes the main issue with the choice (3.7) for Ξ, when ξ is 
non-affine.

Remark 3.1 (Non-affine ξ).  Let us consider the Langevin equation  (3.1) with 
γ = β = 1 for simplicity and a general ξ which has sufficient regularity and satisfies 
C1Id k � DξDξ� � C2Id k for some C1, C2 > 0, and Ξ as in (3.7). We now apply the stand-
ard procedure used throughout this article to derive the effective dynamics: we first evalu-
ate Ξ(Qt, Pt) using Itô’s formula, and then use the closure procedure in Gyö86 which gives 
coarse-grained random variables (Ẑt, V̂t) and finally approximate these variables by the fol-
lowing effective ones

dZt = Vtdt

dVt = −b̃(Zt, Vt)dt − Vtdt +
√

2A(Zt, Vt) dWk
t .

� (3.13)

Here the coefficients b̃ : R2k → R2k  and A : R2k → R2k×2k  are

b̃(z, v) := Eµ̄z,v

[
Dξ∇V − p�D2ξp

]
and A(z, v) := Eµ̄z,v

[
DξDξ�

]
,

�
(3.14)

where ( p�D2ξp)l = Σd
i,j=1pipj∂ijξl. Note that the term p�D2ξp in b̃ vanishes when ξ is affine, 

and in this case equals b which is the drift for the affine case (3.17). By assumptions on ξ, 
the diffusion matrix A is elliptic and bounded, C1Id k � A(z, v) � C2Id k. Therefore to show 
that (3.13) has in general a solution that remains finite almost surely in finite time, a sufficient 
condition is that the drift b̃ satisfies a one-sided Lipschitz condition. Let us take a closer look 
at b̃ on the level set Σz,v . Since DξDξ� is bounded away from zero by assumption, |p| � C |v|. 
If we assume that ξ is not affine and that D2ξ � C/(1 + |q|), then there exists c such that

∫

Σz,v

p�D2ξ(q) p dµ̄z,v � c |v|2 .

That is, the second term in b̃ grows super-quadratically. Therefore, b̃ can not be Lipschitz and 
it is possible that (3.13) admits solutions that explode in finite time. In this case, we cannot 
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hope for control on any moments of (3.13), and so it is not clear if such a system will allow us 
to prove error estimates in either relative entropy or Wasserstein-2 distance.

3.3.  Coarse-grained and effective dynamics

Now we discuss the coarse-grained and effective dynamics corresponding to ρ which is the 
solution to (3.5). The random variables (Qt, Pt) corresponding to ρt = law(Qt, Pt) satisfy

dQt = Pt dt − α∇V(Qt) dt +
√

2α dWd
t ,

dPt = −∇V(Qt)− γPt dt +
√

2γβ−1 dWd
t .

Following the same scheme as in the overdamped case, we derive the coarse-grained dynamics,



∂tρ̂ = −divz,v

(
ρ̂J2k

(
b̂
v

))
+ divz,v

(
ρ̂

(
αb̂
γv

))
+ D2

z,v :

(
αÂ 0
0 γβ−1Â

)
ρ̂,

ρ̂t=0 = ρ̂0,
� (3.15)

where the coefficients are b̂ : [0, T]× R2k → Rk and Â : [0, T]× R2k → Rk×k  are defined by

b̂(t, z, v) := Eρ̄t,z,v [Dξ∇V] and Â(t, z, v) := Eρ̄t,z,v

[
DξDξ�

]
.

Here J2k is the canonical 2k-dimensional symplectic matrix and ρ̄t,z,v is the conditional mea-
sure for ρ. Solutions to equation (3.15) are understood in the sense of definition 2.1. As for the 
overdamped Langevin equation, we can identify ρ̂t = law(Ξ(Qt, Pt)) (this follows similarly to 
the proof of proposition 2.8).

Following the same principle used to construct the effective dynamics in the overdamped 
Langevin case, the effective dynamics in this case is


∂tη = −divz,v

(
ηJ2k

(
b(z, v)

v

))
+ divz,v

(
η

(
αb(z, v)

γv

))
+ D2

z,v :
(

αA(z, v) 0
0 γβ−1A(z, v)

)
η,

ηt=0 = η0,
� (3.16)

with coefficients b : R2k → Rk, A : R2k → Rk×k

b(z, v) := Eµ̄z,v [Dξ∇V] and A := Eµ̄z,v

[
DξDξ�

]
,� (3.17)

where µ̄z,v is the conditional stationary measure.

Remark 3.2.  Note that in comparison with the overdamped dynamics in section 2.3, terms 
that involve second derivatives of ξ in b̂(t, z, v) and b(z, v) vanish since ξ is affine and the ef-
fective and coarse-grained diffusion matrices A = Â are constant.

As before, the coarse-grained dynamics and the effective dynamics are the same in the 
long-time limit, i.e. ρ̂∞ = η∞, which follows since ρt  converges to μ as time goes to infinity.

Next we discuss the well-posedness and properties of the effective dynamics (3.16). As 
in the overdamped Langevin case, we need the uniqueness of solution to the effective equa-
tion for the Wasserstein estimate.

Theorem 3.3.  Consider a coarse-graining map ξ which satisfies (3.8). Assume:

	 1.	�The initial datum for the effective dynamics has bounded second moment.
	 2.	�The conditional stationary measure µ̄z,v satisfies a Poincaré inequality (2.22) uniformly 

in (z, v) ∈ R2k with constant αPI > 0, i.e.
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∀(z, v) ∈ R2k, ∀f ∈ H1(µ̄z,v) :
∫

Σz,v

(
f −

∫

Σz,v

f dµ̄z,v

)2

dµ̄z,v �
1

αPI

∫

Σz,v

∣∣∇Σz,v f
∣∣2 dµ̄z,v.

Then the coefficients of the effective dynamics satisfy

	 1.	�A = TT�, where ξ(q) = Tq + τ .
	 2.	�b ∈ W1,∞

loc (R2k;Rk) and Db ∈ L∞(Rk×2k).

Furthermore, there exists a unique family of measures (ηt)t∈[0,T] which solves the effective 
dynamics (2.34) in the sense of definition 2.1. This family has bounded second moments, i.e.

∀t ∈ [0, T] :
∫

R2k

∣∣∣∣
(

z
v

)∣∣∣∣
2

dηt < ∞.

Proof.  The properties of the coefficients follow exactly as in the proof of lemma 2.12 (re-
place V  by H in this case). The existence and uniqueness for the solution to the effective 
dynamics follows from the properties of the coefficients and using [BKRS15, theorem 6.6.2, 
BKRS15, theorem 9.4.3] respectively. Applying a Gronwall-type estimate to the following 
calculation implies that ηt  has bounded second moments for any t ∈ [0, T],

d
dt

∫

R2k

1
2

∣∣∣∣
(

z
v

)∣∣∣∣
2

ηt =

∫

R2k
ηt

[(
v
−b

)
·
(

z
v

)
− αb · z − γ|v|2 + γβ−1A : Id k + αA : Id k

]

� C(α,β, γ)
∫

R2k

∣∣∣∣
(

z
v

)∣∣∣∣
2

ηt.
□ 

While the effective dynamics has a unique solution, it is not straightforward to prove 
the uniqueness of the coarse-grained dynamics (see remark 2.13 for the overdamped case). 
Therefore as in the overdamped case, we will introduce a lifted effective dynamics which will 
be required to prove Wasserstein estimates. As in the overdamped setting, the lifted version θt 
is constructed such that it has ηt  as the marginal under Ξ. The following lemma outlines the 
construction of this lifted dynamics and some useful properties.

Lemma 3.4.  Let θt be the solution of

∂tθt = −div
(
θtJ2d

(
b̃
p

))
+ div

(
θt

(
αb̃
γp

))
+ D2 :

(
αÃ 0
0 γβ−1Ã

)
θt,

�

(3.18)

in the sense of definition 2.1. Here the coefficients b̃ : Rd → Rd, Ã : Rd → Rd×d  are given by

b̃ := Dξ�G−1b ◦ ξ,

Ã := Dξ�G−1 (A ◦ ξ) G−1Dξ.

If Ξ#θ0 = η0 and {ηt}t∈R+ is a solution of (3.16), then Ξ#θt = ηt . Moreover, if θ0  has bound-
ed second moment, then the same holds for θt for all t  >  0.

The proof follows along the lines of lemma 2.14. Note that the definition of b̃ in this case is 
simplified as compared to overdamped case (see lemma 2.14) since D2ξ = 0 by (3.8).
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3.4.  Relative entropy estimate

Let us state the main relative entropy result.

Theorem 3.5.  Consider a coarse-graining map ξ that satisfies (3.8), a potential V  satisfy-
ing (V1)–(V2), and define

κ := sup
(z,v)∈R2k

sup
(q1,p1),(q2,p2)∈Σz,v

|Dξ (∇V(q1)−∇V(q2))|
dΣz,v((q1, p1), (q2, p2))

,� (3.19)

where dΣz,v is the intrinsic metric on Σz,v . Assume that the conditional stationary measure µ̄z,v 
satisfies a Talagrand inequality (2.23) uniformly in (z, v) ∈ R2k with constant αTI. Then for 
any t ∈ [0, T],

H(ρ̂t|ηt) � H(ρ̂0|η0) +
κ2t

2αTI
(α+ γ−1β)H(ρ0|µ).� (3.20)

Since ξ is affine and by the growth assumptions V  from assumption 2.2, the constant κ is 
bounded from above by ‖|∇Σz (Dξ∇V)|‖L∞(Rk) < +∞.

Proof.  The proof of theorem 3.5 is similar to the proof of theorem 2.15 and consists of: (1) 
applying theorem 2.18 to ρ̂, η, and (2) estimating the rate functional term. Making the choice 
ζ ≡ ρ̂ and ν ≡ η in (2.54) we have

H(ρ̂t|ηt) � H(ρ̂0|η0) + I(ρ̂).� (3.21)

Using (2.53), the rate functional can be written as

I(ρ̂) =
1
4

∫ T

0

∫

R2k
|h̃t|2Ã(z,v)dρ̂t dt,

where Ã : R2k → R2k×2k  and h̃t ∈ L2
Ã
(ηt) satisfy

Ã(z, v) =
(
αA(z, v) 0

0 γβ−1A(z, v)

)
and h̃t(z, v) = Ã−1

(
α(b(z, v)− b̂(t, z, v))

b(z, v)− b̂(t, z, v)

)
.

� (3.22)
This form of h̃t  follows from the definition of the large-deviation rate functional (2.53) and 
by noting that ξ is affine, which implies A = Â = DξDξ� with DξDξ� ∈ Rk×k (a constant 
matrix), and therefore

∂tρ̂− L ∗ρ̂ = −divz,v

(
ρ̂

(
α(b(z, v)− b̂(t, z, v))

b(z, v)− b̂(t, z, v)

))
= −divz,v

(
Ãρ̂Ã−1

(
α(b(z, v)− b̂(t, z, v))

b(z, v)− b̂(t, z, v)

))
.

Here L ∗ is the generator for the effective dynamics.
We now estimate I(ρ̂). Using (3.22) we find,

|h̃t|2Ã =

∣∣∣∣∣

(
α(b(z, v)− b̂(t, z, v))

b(z, v)− b̂(t, z, v)

)∣∣∣∣∣
2

Ã−1(z,v)

= (α+ γ−1β)
∣∣∣b(z, v)− b̂(t, , v)

∣∣∣
2

A−1(z,v)

= (α+ γ−1β)

∣∣∣∣
∫

Σz,v×Σz,v

(∇V(q1)− V(q2))dΠ((q1, p1), (q2, p2))

∣∣∣∣
2

� (α+ γ−1β)

∫

Σz,v×Σz,v

|∇V(q1)−∇V(q2))|2dΠ((q1, p1), (q2, p2))

� κ2(α+ γ−1β)

∫

Σz,v×Σz,v

dΣz,v((q1, p1), (q2, p2))
2 dΠ((q1, p1), (q2, p2)),
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where Π is a coupling of ρ̄t,z,v and µ̄z,v, and κ is defined in (3.19). Since µ̄z,v satisfies the Tala-
grand inequality with a constant αTI, we bound the rate functional to arrive at

I(ρ̂) �
κ2

4
(α+ γ−1β)

∫ T

0

∫

R2k
W2

2 (ρ̄t,z,v, µ̄z,v) dρ̂t(z, v)dt

�
κ2

2αTI
(α+ γ−1β)

∫ T

0

∫

R2k
H(ρ̄t,z,v|µ̄z,v)dρ̂t(z, v)dt �

κ2

2αTI
(α+ γ−1β)

∫ T

0

∫

R2d
H(ρt|µ)dt.

� (3.23)

The last inequality follows from the tensorisation property of relative entropy. Since the en-
tropy of the modified Kramers equation (3.5) decreases in time, i.e. H(ρt|µ) < H(ρ0|µ), the 
final result follows by substituting this bound in (3.21).� □ 

3.5.  Wasserstein estimate

We now state the main Wasserstein estimate for the Langevin case.

Theorem 3.6.  Consider a coarse-graining map ξ which satisfies (3.8). Assume that the 
conditional stationary measure µ̄z,v satisfies the Talagrand inequality (2.23) uniformly in 
(z, v) ∈ R2k with constant αTI. Then for any t ∈ [0, T],

W2
2(ρ̂t, ηt) � ec̃t

(
W2

2(ρ̂0, η0) + 2(α+ 1)
κ2t
αTI

H(ρ0|µ)
)

,� (3.24)

where c̃ = 1 + max{(1 − 2γ),α}+ max{(3 + α), (3α+ 1)}‖ |∇z,vb| ‖∞ and κ is defined in 
(3.19).

The proof of theorem 3.6 is similar to the proof of the overdamped Langevin counterpart 
(theorem 2.23). The central ingredient, as in the overdamped case, is a coupling Θt ∈ P(R4k) 
of the coarse-grained and the effective dynamics


∂tΘ = −divz,v

(
J4k

(
b
v

)
Θ

)
+ γdivz,v

(
Θ

(
αb
γv

))
+ D2

z,v : Θ
(

αA 0
0 γβ−1A

)

Θt=0 = Θ0,
� (3.25)

where (z, v) = (z1, z2, v1, v2) ∈ R2k × R2k  and b : [0, T]× R4k → R2k, A : [0, T]×
R4k → R2k×2k are defined by

b(t, z1, v1, z2, v2) :=
(

b̂(t, z1, v1)

b(z2, v2)

)
,� (3.26)

A(t, z1, v1, z2, v2) := σσ� with σ(t, z1, z2) :=

(√
Â(t, z1, v1)√
A(z2, v2)

)
.� (3.27)

Here Θ0 is the optimal coupling of the initial data and D2
z,v, divz,v are differential operators 

on R4k.
The next result shows that the solution to (3.25) is a coupling of ρ̂t  and ηt . Since the proof 

strategy follows on the lines of the overdamped counterpart (see lemma 2.25) we only outline 
the proof here.

Lemma 3.7 (Existence of coupling).  Let Θ0 be the optimal Wasserstein-2 coupling 
of the initial data ρ̂0 and η0. Then there exists a family of probability measures (Θt)t∈[0,T] 
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which solves (3.25). Further Θt is a coupling of ρ̂t , ηt  and has bounded second moments for 
t ∈ [0, T].

Proof.  To prove this result we will first construct a coupling on R4d  denoted by Θ̃, which 
couples the original dynamics (3.5) and the lifted effective dynamics (3.18), and solves



∂tΘ̃ = −divq,p

(
Θ̃J4d

(
b̃
p

))
+ divq,p

(
Θ̃

(
αb̃
γp

))
+ D2

q,p : Θ̃
(
αÃ 0
0 γβ−1A

)

Θ̃t=0 = Θ̃0,

with Θ0 a probability measure with bounded second moment on R4d  and (Ξ⊗ Ξ)#Θ̃0 = Θ0. 
Here the variables q, p are elements of R2d  and the divq,p and D2

q,p are differential operators 
on R4d . The coefficients b̃ : R2d → R2d and Ã : R2d → R2d×2d are given by

b̃(q1, q2, p1, p2) :=
(
∇V(q1)

b̃(q2)

)

Ã(q1, q2, p1, p2) := σ̃σ̃T with σ̃ :=

(
Id d√
Ã(q2)

)
.

We define Θt := (Ξ⊗ Ξ)#Θ̃t. By using appropriate test functions, it follows that Θt solves 
(3.25). Note that the first marginal of Θ̃t is the full dynamics (3.5) and the second marginal is 
the lifted effective dynamics (3.18). This is easily checked by repeating the arguments in the 
proof of lemma 2.25. In particular, this implies that the first marginal of Θt is Ξ#ρt = ρ̂t and 
the second marginal is the effective dynamics ηt .� □ 

Now we prove a lemma required for the Wasserstein estimate.

Lemma 3.8.  The coupling Θ solving (3.25) satisfies

d
dt

∫

R4k

∣∣∣∣
(

z1

v1

)
−

(
z2

v2

)∣∣∣∣
2

dΘt � (α+ 1)
∥∥∥b̂(t, ·, ·)− b(·, ·)

∥∥∥
2

L2
ρ̂t

+ c̃
∫

R4k

∣∣∣∣
(

z1

v1

)
−

(
z2

v2

)∣∣∣∣
2

dΘt,

� (3.28)

where c̃ = 1 + max{(1 − 2γ),α}+ max{(3 + α), (3α+ 1)}‖∇z,vb‖∞.

Proof.  We have

d
dt

∫

R4k

∣∣∣∣
(

z1

v1

)
−

(
z2

v2

)∣∣∣∣
2

dΘt = 2
∫

R4k




z1 − z2

−(z1 − z2)

v1 − v2

−(v1 − v2)


 · J4k




b̂(t, z1, v1)

b(z2, v2)

v1

v2


 dΘt

− 2
∫

R4k

(
γ

(
v1 − v2

−(v1 − v2)

)
·
(

v1

v2

)
+ α

(
z1 − z2

−(z1 − z2)

)
·
(

b̂(t, z1, v1)

b(z2, v2)

))
dΘt

=2
∫

R4k

(
(z1 − z2) · (v1 − v2) + [(v1 − v2) + α(z1 − z2)] · (b(z2, v2)− b̂(t, z1, v1))− γ|v1 − v2|2d

)
Θt.

Here the diffusion term does not contribute since A = Â is a constant matrix. By adding and 
subtracting b(z1, v1) and using Young’s inequality we find
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d
dt

∫

R4k

∣∣∣∣
(

z1

v1

)
−

(
z2

v2

)∣∣∣∣
2

dΘt �
∫

R4k

[ ∣∣∣∣
(

z1

v1

)
−
(

z2

v2

)∣∣∣∣
2

+ (1 − 2γ)|v1 − v2|2 + α|z1 − z2|2
]

dΘt

+ (1 + α)‖b̂ − b‖2
L2
ρ̂t
+ 2‖∇z,vb‖∞

∫

R4k
(|v1 − v2|+ α|z1 − z2|)(|z1 − z2|+ |v1 − v2|)dΘt

�(1 + max{(1 − 2γ),α})
∫

R4k

∣∣∣∣
(

z1

v1

)
−

(
z2

v2

)∣∣∣∣
2

dΘt + (1 + α)‖b̂ − b‖2
L2
ρ̂t

+ ‖∇z,vb‖∞
∫

R4k
(3 + α)|v1 − v2|2 + (3α+ 1)|z1 − z2|2 dΘt

� c̃
∫

R4k

∣∣∣∣
(

z1

v1

)
−

(
z2

v2

)∣∣∣∣
2

dΘt + (1 + α)‖b̂ − b‖2
L2
ρ̂t

,

where c̃ := 1 + max{(1 − 2γ),α}+ max{(3 + α), (3α+ 1)}‖∇z,vb‖∞.� □ 

Proof of theorem 3.6.  Under the assumption that µ̄z,v satisfies the Talagrand inequality, 
and repeating the calculations as in lemma 2.27 we find

∥∥∥b̂(t, ·, ·)− b(·, ·)
∥∥∥

2

L2
ρ̂t

�
2κ2

αTI

∫

R2k
H(ρ̄t,z,v|µ̄z,v)dρ̂t(z, v).� (3.29)

We conclude the proof by substituting (3.29) into (3.28), applying a Gronwall argument and 
bounding the remaining integrated relative entropy term as in the proof of theorem 3.5.� □ 

3.6.  Passing to the limit in the regularization of the initial data

Recall from section 3.1 that our estimates in this section are for the approximation
{
∂tρ

M,α = (L Lan)∗ρM,α + α
(
divq(ρ

M,α∇V) + ∆qρ
M,α

)
,

ρM,α
∣∣
t=0 = ρM,α

0 := f M
0 µ,� (3.30)

of the Kramers equation (3.2). Here α > 0, f M
0 := Z−1

M max {min {f0, M} , 1/M}, ZM is the 
normalization constant which ensures that the initial datum is a probability measure and L Lan 
is the generator corresponding to the Kramers equation (3.2),

L Lanf := J2d∇H · ∇f − γp · ∇pf + γβ−1∆pf .

Let us recall the relative entropy estimate (3.20) and the Wasserstein estimate (3.24),

H(ρ̂M,α
t |ηαt ) � H(ρ̂M,α

0 |η0) +
κ2t

2αTI

(
α+ γ−1β

)
H(ρM,α

0 |µ),� (3.31)

W2
2(ρ̂

M,α
t , ηαt ) � ec̃t

(
W2

2(ρ̂
M,α
0 , η0) + 2(α+ 1)

κ2t
αTI

H(ρM,α
0 |µ)

)
.� (3.32)

Note that we have used the tensorization property of relative entropy to simplify (3.24) to 
arrive at the Wasserstein estimate above. We pass to the limit in these estimates in two steps: 
first α → 0 and second M → ∞.

As M → ∞, ZMf M
0 → f0 almost everywhere, and since 0 � ZMf M

0 µ � max{ f0, 1/M}µ, it 
follows by the dominated convergence theorem that ZMf0µ → ρ0 in L1, and consequently that 
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ZM → 1. Again by the dominated convergence theorem we then find that H(ρM,α
0 |µ) → H(ρ0|µ) 

as M → ∞. As H(ρ̂M,α
0 |η0) < ∞, we have ρ̂0 = ξ#ρ0 � η0 and since ξ is affine, 

ρ̂M
0 = ξ#ρ

M
0 � η0. Hence, we obtain H(ρ̂M,α

0 |µ̂) → H(ρ̂0|µ̂) and W2(ρ̂
M,α
0 , η0) → W2(ρ̂0, η0).

Using the convergence of ρM,α
0  to ρ0 we also have the convergence of the weak formulation 

of (3.30) to the weak formulation of the Kramers equation  (3.2). Note that there exists a 
unique solution to the original Kramers equation (3.2) under the assumptions (V1)–(V2) (see 
[Vil09, theorem 7]). Passing to the limit, first as α → 0 and then M → ∞ we have that the 
sequence ρM,α

t ∈ P(R2d) converges weakly to ρt  where ρt  is the solution for the Kramers 
equation (3.2). Using the lower-semicontinuity of relative entropy with respect to the weak 
topology and since ρ̂M,α

t ⇀ ρ̂t, similarly as in (2.88) and (2.89), for the original Kramers equa-
tion we have the following estimates

H(ρ̂t|ηt) � H(ρ̂0|η0) +
t κ2

αTI

(
γ−1β

)
H(ρ0|µ),

W2
2(ρ̂t, ηt) � ec̃t

(
W2

2(ρ̂0, η0) +
2 t κ2

αTI
H(ρ0|µ)

)
.

�
(3.33)

4.  Estimates under a scale separation assumption

4.1.  Scale-separated potentials

Let us first illustrate the dependence of the constant in the main results on the Fokker–Planck 
equation in the case of a potential satisfying certain scale-separation assumptions. In the first 
assumption below, we consider potentials consisting of a fast and a slow part, where the scale 
separation is encoded via a parameter ε. For simplicity, we will assume that the fast part of the 
potential is convex on the level set Σz for all z ∈ Rk, which is a sufficient condition to deduce 
functional inequalities (Log-Sobolev and Talagrand) with good scaling behaviour in ε.

Assumption 4.1 (Scale-separated potential).  A potential Vε satisfying assumption 
2.2 is called scale-separated, if there exists a coarse graining map ξ : Rd → Rk satisfying 
assumption 2.3 such that

Vε(q) =
1
ε

V0(q) + V1(q) and Dξ(q)∇V0(q) = 0 ∀q ∈ Rd.� (4.1)

Moreover, V0(q) is uniformly strictly convex on the level sets Σz = {ξ = z}, i.e. there exists 
δ > 0 such that

∀z ∈ Rk ∀q ∈ Σz ∀u ∈ kerDξ(q) : uTD2V0(q̄(z))u � δ|u|2.� (4.2)

Under the above assumption, the results of [OV00] imply a good scaling behaviour of the 
Talagrand and Log-Sobolev constant.

Lemma 4.2.  Under assumption 4.1, the Talagrand and the Log-Sobolev constants satisfy 
for some constant c  >  0 the estimate

αTI � αLSI �
δ

ε
.

We now provide estimates on the additional constants κ and λ in the relative entropy and 
Wasserstein estimate.
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Lemma 4.3.  Suppose Vε satisfies the scale separation assumption 4.1, then there is a con-
stant C independent of ε such that κH,λH,κW,λW � C as defined in (2.47), (2.48), (2.71) and 
(2.72) respectively.

Proof.  By the definition of the local mean force F in (2.19) and assumption (4.1) follows that 
F is independent of V0 and hence ε. Then the estimate follows from κH � supz∈Rk |∇Σz F| (see 
remark 2.16) and the regularity assumptions on V1 and ξ implied by assumptions 2.2 and 2.3.

The bound on λH follows by noting that DξDξ� � cId k  and ‖Dξ‖L∞(Rd) � C  from as-

sumption 2.3 and hence λH � 2 C2
√

c. The arguments for the estimates of κW and λW follow 

along the same lines.� □ 

Since all the constants inside of the main results theorems 2.15 and 2.23 are bounded, we 
can conclude the following result. Suppose Vε satisfies the scale-separation assumption 4.1, 
then there exists a constant C independent of ε such that the coarse-grained (2.28) and the 
effective dynamics (2.34) corresponding to the Fokker–Planck equation (2.5) satisfy

H(ρ̂t|ηt) � H(ρ̂0|η0) + C
(
1 + ε2)H(ρ0|µ).� (4.3)

and

W2
2(ρ̂t, ηt) � eCT (W2

2(ρ̂0, η0) + Cε2H(ρ0|µ)
)

.� (4.4)

Hence, in the setting of generic scale separated potentials, only the Wasserstein estimate 
provides an error estimate, which vanishes for ε → 0 provided the initial data of the effec-
tive dynamics matches the pushforward of the initial data ρ0. To illustrate the results on the 
Kramers equation, we further have to restrict the coarse-graining map to be affine.

4.2.  Coarse-graining along coordinates

A combination of assumption 4.1 with the additional assumption that ξ is affine, accounts to 
assuming that the potential Vε is scale separated along coordinates, i.e.

Vε(q) =
1
ε

V0(q1, . . . , qd−k) + V1(q),� (4.5)

with V0 : Rd−k → R being uniformly convex.
Before proceeding with the main results on the Kramers equation, we note, that in this case 

λH = λW = 0 and also the relative entropy estimate (4.3) takes the same form as (4.4), that is 
for some C  >  0 independent of ε for the Fokker–Planck equation, it holds

H(ρ̂t|ηt) � H(ρ̂0|η0) + Cε2H(ρ0|µ).� (4.6)

Hence, in the case of coordinate projections, the relative entropy estimate has the same struc-
ture as the Wasserstein estimate (4.4) for generic scale separated potentials.

The constant κ defined in (3.19) only depends on the Hessian of V1, which is assumed to be 
bounded by assumption 2.2. Hence, there exists a C  >  0 independent of ε, such that the coarse-
grained dynamics (3.15) and effective dynamics (3.16) for the Kramers equation (3.2) satisfy

H(ρ̂t|ηt) � H(ρ̂0|η0) + CεTH(ρ0|µ).� (4.7)

and

W2
2(ρ̂t, ηt) � eCT (W2

2(ρ̂0, η0) + CTεH(ρ0|µ)
)

.� (4.8)
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5.  Discussion

A quantitative estimate for the coarse-graining error between the coarse-grained and effective 
dynamics in the relative entropy sense for the overdamped Langevin was obtained before by 
Legoll and Lelièvre [LL10]. In this work, we generalise the results in [LL10] in four ways: 
(1) we consider both the overdamped Langevin and the full Langevin dynamics, (2) we also 
measure the error in the Wasserstein distance, (3) we extend the estimate to vectorial coarse-
graining maps ξ and (4) we prove global well-posedness for both the coarse-grained and the 
effective dynamics.

We now comment further on these and on open issues.
Large-deviation rate functional and quantification of coarse-graining error in the relative 

entropy sense. The main challenge that both [LL10] and this work encounter is to quantify the 
distance between two density profiles that are solutions of the coarse-grained and the effec-
tive dynamics. In [LL10] the authors achieved this goal using the relationship between the 
relative entropy and the Fisher information and functional inequalities. As we have shown in 
theorem 2.18 and lemma 2.22 (see also [DLPS17]) similar relations and functional inequali-
ties can be obtained via the large-deviation rate functional. It is the use of the large-deviation 
rate functional that allows us to generalise estimates in the overdamped Langevin to the full 
Langevin dynamics since a large-deviation principle is available for both dynamics. In fact, 
since a large-deviation principle holds true for many other stochastic processes [FK06], we 
expect that our technique can be extended to more general scenarios. For instance preliminary 
results along this line for Markov chains on discrete states spaces are contained in [Hil17].

The coupling method and quantification of coarse-graining error in the Wasserstein dis-
tance. In this work, we also measure the error in the Wasserstein-2 distance, which is a weaker 
measure of the error than the relative entropy one. However, the latter involves the large-
deviation rate functional that requires information at the microscopic levels and sometimes 
is non-trivial to obtain. On the other hand, any coupling between two probability measures 
will provide an upper bound for the Wasserstein distance between them. Suppose that μ and 
ν solve

∂tµ = div(b1µ) + D2 : a1µ and ∂tν = div(b2ν) + D2 : a2ν.

Then any γ that solves ∂tγ = div(bγ) + D2 : aγ, with

b(x, y) =
(

b1(x)
b2(y)

)
, a(x, y) =

(
a1(x) c(x, y)

c(x, y)T a2(y)

)

where c is a matrix such that a(x, y) is non-negative definite, will be a coupling between µt  
and νt . The basic coupling that is used in this work corresponds to c(x, y) =

√
a1(x)a2(y). 

This coupling often gives the optimal dissipation when applied to the Wasserstein-2 distance 
[CL89]. We expect that the coupling method (with different choice of coupling) can be applied 
to obtain estimates in difference distances such as the total variation and the Wasserstein-1 
[CL89, Ebe15].

Vectorial coarse-graining maps. The third generalisation of this work is that the coarse-
graining map ξ can be vectorial. For instance, the overdamped Langevin dynamics in Rd 
(d  >  1) itself can be derived as a vectorial coarse-grained model of the the full Langevin in 
R2d . Thus our work is applicable to a larger class of problems.

Global well-posedness of the coarse-grained and the effective dynamics. In this work (also 
in [DLPS17]) we consider a coarse-graining process is successful if the coarse-grained and the 
effective dynamics are globally well-posed. This criteria imposes conditions on the data and 
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the coarse-graining map. That is why we have required certain additional growth conditions 
on the potential V , the coarse-graining map ξ and assumed that ξ is affine in the Langevin case.

Non-affine and manifold-valued coarse-graining maps. In section 3, we have to restrict 
ourselves to affine coarse-graining maps ξ. The reason, as explained in remark 3.1, is that the 
vector field driving the effective dynamics obtained from a non-affine map ξ seems to have 
quadratic growth at infinity. Hence, we can not rule out explosion in finite time for the corre
sponding SDE and the well-posedness of the Fokker–Planck equation can not be ensured. 
For this reason the coarse-graining map (ξ(q), Dξ(q) p)� might need a revision and further 
investigation. In [LRS10, LRS12] the authors introduce a different coarse-grained momen-
tum; however this does not resolve the explosion issues. It would be interesting to understand 
what is a good choice for the coarse-grained momentum when ξ is non-affine. Another inter-
esting possibility for generalisation is to consider manifold-valued coarse-graining maps, that 
is ξ : Rd → M k, where M k is a smooth k-dimensional manifold. For this, this work is a first 
step considering Rk as tangent space on M k. The condition on ξ to be affine for |q| → ∞ can in 
the manifold setting be understood as a compatibility condition between different charts. Such 
manifold-valued coarse-graining maps appear in many practical applications. For instance in 
the case of the classical 3-atom model with a soft angle and stiff bonds [LL10, section 4.2] the 
natural coarse-graining map is the angle variable, i.e. ξ : R3d → S1.

Commutativity of coarse-graining and overdamped limit. For affine coarse-graining maps ξ 
one can show that the overdamped (high friction) limit of the Langevin coarse-grained dynam-
ics coincides with the coarse-grained overdamped Langevin dynamics. This result heavily 
relies on the fact that for affine ξ the effective coefficients do not depend on the coarse-grained 
momentum variable v. In the non-affine case, the effective coefficients do depend on v (recall 
remark 3.1). The question concerning commutativity of coarse-graining and overdamped limit 
in the general case is connected to the open issue of choosing an appropriate coarse-grained 
momentum.
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Appendix A.  Properties of the coarse-graining map

Lemma A.1 (ξ is affine at infinity).  Assume that ξ satisfies (C1)–(C3). There exists 
T ∈ Rk×d  and Cξ > 0 such that for all q ∈ Rd

|Dξ(q)− T| � Cξ

1 + |q|
.

Proof.  For x, y ∈ Rd  with |y| � |x|, we define γ to be the curve consisting of the line segment 
[x, |y|x/|x|] and the spherical arc connecting |y|x/|x| to y which we denote by � (|y| x/ |x| , y). 
Using condition (C3) from assumption 2.3, we obtain the bound

|Dξ(x)− Dξ(y)| �
∣∣∣∣
∫

γ

D2ξ(q) dγ
∣∣∣∣ � C

∫ |y|

|x|

ds
1 + s2 + C

∫

�(x|y|/|x|,y)

ds
1 + |s|2

� C
(
|arctan |x| − arctan |y||+ π|y|

1 + |y|2

)
.
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Interchanging the roles of x and y in the calculation above, for any x, y ∈ Rd

|Dξ(x)− Dξ(y)| � C
(
|arctan |x| − arctan |y||+ π

1 +max{|x|, |y|}

)
,� (A.1)

where we have used min{a/(1 + a2), b/(1 + b2)} � (1 +
√

2)/(1 + max{a, b}) for any 
a, b > 0. Since Dξ is bounded, for any sequence (yn) with |yn| → ∞ there exists a subse-
quence (ynk) such that Dξ(ynk) → T where T may depend on the subsequence (ynk). Applying 
(A.1) we conclude

|Dξ(x)− T| � |Dξ(x)− Dξ(ynk)|+ |Dξ(ynk)− T|

� C
(
| arctan |x| − arctan |ynk ||+

π

1 +max{|x|, |ynk |}

)
+ |Dξ(ynk)− T|

and thus in the limit k → ∞

|Dξ(x)− T| � C
(π

2
− arctan |x|

)
= C arctan

(
1
|x|

)
� C min

{
1
|x|

,
π

2

}
.

�

(A.2)

Hence, whenever for a sequence (xn) with |xn| → ∞ we have subsequence with Dξ(xnk) → T∗, 
then by the first inequality in (A.2) it holds T = T∗, which implies uniqueness of the limit.�□ 

Proof of lemma 2.4.  By using (2.16) and the co-area formula, for g ∈ W1,∞(Rk;R) we 
have
∫

Rk
ψξ(z)∇zg(z) dz =

∫

Rk
dz

∫

Σz

ψ(∇zg) ◦ ξ
dH d−k

Jac ξ
=

∫

Rd
ψ(q) (∇zg ◦ ξ) (q) dq.� (A.3)

Since Dξ has rank k we can invert DξDξ�, giving the projected gradient

∇zg ◦ ξ = (DξDξ�)−1 Dξ D(g ◦ ξ).

Substituting into (A.3) we find

−
∫

Rk
ψξ(z)∇zg(z) dz = −

∫

Rd
ψ(q)∇zg ◦ ξ(q) dq

= −
∫

Rd
ψ(q) (DξDξ�)−1(q)Dξ(q)D(g ◦ ξ)(q) dq

=

∫

Rd
g ◦ ξ(q) div

(
ψ

(
DξDξ�

)−1
Dξ

)
(q) dq

=

∫

Rk
g(z) dz

∫

Σz

div
(
ψ
(
DξDξ�

)−1
Dξ

) dH d−k

Jac ξ
.

This proves (2.17). Equation (2.18) follows by applying (2.17) columnwise.� □ 
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Appendix B.  Regularity of effective coefficients

Proof of lemma 2.12.  We will first prove that |∇zbi(z)| � C  for i ∈ {1, . . . , k}. For the 
ease of calculations we write

bi(z) =
∫

Σz

fidµ̄z =
1

µ̂(z)

∫

Σz

fiµ
dH d−k

Jac ξ
=:

ψξ(z)
µ̂(z)

, where fi := Dξi∇V − β−1∆ξi,

where we have used the explicit form of µ̄z in (2.13). By the chain rule follows

∇zbi =
∇zψ

ξ(z)
µ̂(z)

− bi(z)∇z log µ̂(z).� (B.1)

Using (2.20), the second term in the right hand side of (B.1) can be written as

−bi(z)∇z log µ̂(z) = bi(z)
∫

Σz

(
βDξ†�∇V − div(Dξ†�)

)
dµ̄z,� (B.2)

where µ(q) = Z−1 exp(−βV(q)) and Dξ† := Dξ�(DξDξ�)−� is the Moore-Penrose pseudo-
-inverse of Dξ. Applying lemma 2.4 to the first term in the right hand side of (B.1) we obtain

∇zψ
ξ(z)

µ̂(z)
=

1
µ̂(z)

∫

Σz

div(Dξ†�µfi)
dH d−k

Jac ξ

=

∫

Σz

[
Dξ†� (∇fi − βfi∇V) + fidiv(Dξ†�)

]
dµ̄z.

�
(B.3)

Substituting (B.2) and (B.3) into (B.1) we can write

∇zbi(z) =
∫

Σz

[
Dξ†�∇fi + (bi ◦ ξ − fi)

(
βDξ†�∇V − div(Dξ†�)

)]
dµ̄z.

�

(B.4)

Regarding the first term in (B.4),

∇fi = D2ξi∇V − D2V∇ξi − β−1∇D2ξi,� (B.5)

assumptions (C1)–(C3) on ξ and (V1)–(V2) on V  ensure that |∇fi|, |Dξ†| � C . The pseudo-
inverse X† of a matrix X ∈ Rk×d  with rank k and depending on a scalar parameter x satisfies

∂xX† = −X†∂xXX† + (Id d − X†X)∂xX�X†�X†,� (B.6)

and therefore |div(Dξ†�)| < C  by the assumptions on ξ. Using these observations in (B.4) it 
follows that

|∇zbi(z)| � C + β

∣∣∣∣
∫

Σz

[bi ◦ ξ − fi]Dξ†�∇V dµ̄z

∣∣∣∣+ C
∫

Σz

|bi ◦ ξ − fi| dµ̄z.

�

(B.7)

We have assumed that the stationary conditional measure µ̄z satisfies a Poincaré inequality 
with constant αPI, uniformly in z. Using the definition of bi, the final term on the right hand 
side of (B.7) can be estimated as
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∫

Σz

|bi ◦ ξ − fi|dµ̄z �
√

Varµ̄z( fi) �

√
1

αPI

∫

Σz

|∇Σz fi|2dµ̄z � C,� (B.8)

where Varρ(g) :=
∫ (

g −
∫

g dρ
)2

dρ is the variance. The last estimate in (B.8) follows from 
|∇Σz fi| � |∇fi| � C . Using the notation v� := (Dξ†�∇V)� the middle term in (B.7) can be 
estimated as

∣∣∣∣
∫

Σz

[bi ◦ ξ − fi] v� dµ̄z

∣∣∣∣ =
∣∣∣∣
∫

Σz

(
fi −

∫

Σz

fi dµ̄z

)(
v� −

∫

Σz

v� dµ̄z

)
dµ̄z

∣∣∣∣

�
√

Varµ̄z( fi)Varµ̄z(v�) � C,

where we have used (B.8) and a similar argument applied to v� noting that

|∂iv�| =

∣∣∣∣∣∣
d∑

j=1

∂i(Dξ†j�∂jV)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
d∑

j=1

(
∂iDξ†j�∂jV + Dξ†j�∂ijV

)
∣∣∣∣∣∣
� C.

We have now shown that |∇zb(z)| � C, and hence there exists a constant C  >  0 such that 
|b(z)| � C(1 + |z|) i.e. b has sub-linear growth at infinity. As a result b ∈ W1,∞

loc (Rk). Since Dξ is 
bounded, |A(z)| � C  by definition and following the same calculations as used to show bounds on 
∇zb it can be shown that |∇zA(z)| � C; combining these observations we have A ∈ W1,∞(Rk). 
Finally, since there exists a constant C  >  0 such that C−1Id k � DξDξ� � CId k, A satisfies 
similar bounds as well.� □ 
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