
Preface

In the autumn of 1985 ESMI (European Symposium on Mathematics in In-
dustry), the predecessor of ECMI, took place in Amsterdam. During that
meeting the ideas were born that eventually lead to the foundation of ECMI
as we know it now. Many successful meetings followed this ‘ECMI-1985’ and
during this period ECMI became a brand name for Industrial Mathematics.
The adulthood of ECMI is apparent from the many things it has achieved since
then, as a truly European institution devoted to promote Industrial Mathe-
matics in education and research. It took nearly 20 years to have another
ECMI meeting, the 13-th, held in the Netherlands again, now in Eindhoven,
June 2004. During the preparations for this meeting we were joined by the
European Network for Business and Industrial Statistics (ENBIS), an organ-
isation with objectives similar to those of ECMI. It enlarged the scope of the
meeting and opened up a number of opportunities for further co-operation.
For one thing, ECMI-people have less tradition in employing theory and meth-
ods from Stochastics. Yet new challenges in Science and Industry increasingly
cross borders between traditional mathematical areas. Multidisciplinarity ap-
plies to Industrial Mathematics as a whole and in fact Industrial Mathematics
is multidisciplinary par excellence.

The Technische Universiteit Eindhoven (TU/e) is a relatively young uni-
versity. Although not large, it recently came out as second in ranking of
European Universities of Technology (see Third European Report on S&T
Indicators 2003). Also the city of Eindhoven looks rather young, despite the
fact that it has an old history. This modern face of the city is probably typ-
ical for the spirit here and, for that matter, in the larger region. Also the
greater Eindhoven region does well as it ranks among the top three regions
in Europe regarding technological and industrial innovation. The theme of
this conference, Industrial Mathematics, is aptly fitting in with this. Indeed,
nowadays Mathematics is generally accepted as a Technology, playing a cru-
cial role in many branches of industrial activity, for optimising both processes
and products.



VI Preface

Since Industrial Mathematics is a vast and diverse area, each ECMI confer-
ence chooses a number of (application) themes to focus on. This time they were
Aerospace, Electronic Industry, Chemical Technology, Life Sciences, Materi-
als, Geophysics, Financial Mathematics and Water flow. The majority of the
subjects of the talks were on these topics indeed. In particular the talks of the
invited speakers were related to these main themes. They delivered excellent
lectures, most of which are reported in these proceedings. In alphabetical order
the speakers were Søren Bisgaard (Amherst, MA), Rainer Helmig (Stuttgart),
John Hinch (Cambridge), John Hunt (London), Chris Rogers (Cambridge),
Cord Rossow (Braunschweig), Fabrizio Ruggeri (Milano), Wim Schoenmakers
(Leuven), Bernard Schrefler (Padova), and Michael Waterman (Los Angeles,
CA). Moreover there was a plenary talk by Sabine Zaglmayr, the winner of
the Wacker price for the best thesis on Industrial Mathematics.

Organizing a meeting like this is a multi-person undertaking. During the
last three years a dedicated group of people has devoted much of their time
to making this event a success, eventually growing to quite a large number of
persons who were actively involved in the lubrication of it all at the meeting.
We are very grateful for their help. Special mention should be made of the help
we received from our university congress bureau and our CASA secretariat. It
goes without saying, however, that the actual success of this meeting was due
to the participants. The conference was attended by some 400 people, from all
continents, who altogether gave over 300 talks. There were excellent contribu-
tions by the invited speakers, a large number of high quality minisymposia,
and many interesting contributed talks. All speakers were invited to submit
a contribution to these proceedings, which therefore record the majority of
the talks. We are most grateful to the many reviewers who helped us in the
refereeing process.

At this place we would also like to thank the companies and institutions
that participated in the exhibition, which was conducive to providing a proper
atmosphere. We are particularly indebted to the many sponsors who made
it possible to keep the fees quite moderate and yet have a nice social pro-
gramme and affordable catering. The Local Organising Committee deserves
special thanks for the many smaller and larger things that they have done. In
particular I am personally very indebted to my two co-editors, Sandro Di Buc-
chianico and Mark Peletier. Their continuous enthusiasm, constructive ideas,
as well as their skills in technical editing have proven invaluable. On behalf of
all three of us I trust that these proceedings will be useful for all those who
are interested in the use and the usefulness of Mathematics in Industry.

Bob Mattheij
Eindhoven, February 2005
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Summary. Some years ago the national CFD project MEGAFLOW was initi-
ated in Germany, which combined many of the CFD development activities from
DLR, universities and aircraft industry. Its goal was the development and valida-
tion of a dependable and efficient numerical tool for the aerodynamic simulation of
complete aircraft which met the requirements of industrial implementations. The
MEGAFLOW software system includes the block-structured Navier-Stokes code
FLOWer and the unstructured Navier-Stokes code TAU. Both codes have reached
a high level of maturity and they are intensively used by DLR and the German
aerospace industry in the design process of new aircraft. Recently, the follow-on
project MEGADESIGN was set up which focuses on the development and enhance-
ment of efficient numerical methods for shape design and optimization. This paper
highlights recent improvements and enhancements of the software. Its capability to
predict viscous flows around complex industrial applications for transport aircraft
design is demonstrated. First results concerning shape optimization are presented.

1 Introduction

Aerospace industry is increasingly relying on advanced numerical flow sim-
ulation tools in the early aircraft design phase. Today, computational fluid
dynamics has matured to a point where it is widely accepted as an essen-
tial, complementary analysis tool to wind tunnel experiments and flight tests.
Navier-Stokes methods have developed from specialized research techniques to
practical engineering tools being used for a vast number of industrial problems
on a routine basis [51]. Nevertheless, there is still a great need for improve-
ment of numerical methods, because standards for simulation accuracy and
efficiency are constantly rising in industrial applications. Moreover, it is crucial
to reduce the response time for complex simulations, although the relevant ge-
ometries and underlying physical flow models are becoming increasingly com-
plicated. In order to meet the requirements of German aircraft industry, the
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national project MEGAFLOW was initiated some years ago under the lead-
ership of DLR [28, 29]. The main goal was to focus and direct development
activities carried out in industry, DLR and universities towards industrial
needs. The close collaboration between the partners led to the development
and validation of a common aerodynamic simulation system providing both
a structured and an unstructured prediction capability for complex applica-
tions. This software is still constantly updated to meet the requirements of
industrial implementations.

In the first phase of the project the main emphasis was put on the improve-
ment and enhancement of the block-structured grid generator MegaCads and
the Navier-Stokes solver FLOWer. In a second phase the activities were fo-
cused on the development of the unstructured/hybrid Navier-Stokes solver
TAU. Due to a comprehensive and cooperative validation effort and quality
controlled software development processes both flow solvers have reached a
high level of maturity and reliability. In addition to the MEGAFLOW ini-
tiative, considerable development and validation activities were carried out
in several DLR internal and European projects which contributed to the en-
hancement of the flow solvers. The MEGAFLOW software is used in the
German aeronautic industry and research organizations for a wide range of
applications. Due to the use of common software, the process of transferring
latest research and technology results into production codes has been consid-
erably accelerated.

Recently, based on the MEGAFLOW network the national project MEGA-
DESIGN (2004-2007) was set up [26]. Its main objective is to enhance and
establish numerical shape optimization tools within industrial aircraft design
processes. The project deals with several key issues including suitable tech-
niques for geometry parameterization, meshing and mesh movement methods,
efficiency and accuracy improvements of the flow solvers as well as flexible and
efficient deterministic and stochastic based optimizers.

The present paper describes the features of the MEGAFLOW software and
demonstrates its capability on the basis of several industrial relevant applica-
tions. Finally, the perspective and future requirements of CFD for industrial
applications are shortly outlined.

2 MEGAFLOW software

The MEGAFLOW software offers flow prediction capabilities which are based
on both block-structured and hybrid meshes. Details are given in [25].

2.1 Grid Generation

For the generation of block-structured grids the interactive system Mega-
Cads has been developed. Specific features of the tool are the parametric
construction of multi-block grids with arbitrary grid topology, generation of
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high-quality grids through advanced elliptic and parabolic grid generation
techniques, construction of overlapping grids and batch functionality for ef-
ficient integration in an automatic optimization loop for aerodynamic shape
design [12]. The limitation of MegaCads is the non automatic definition of
the block topology which for rather complex configurations may result in a
time consuming and labor intensive grid generation activity. Besides Mega-
Cads, the commercial software package ICEM-HEXA and specialized in-house
codes are used for specific applications.

In contrast to the block-structured approach, no major development activ-
ities have been devoted to the generation of unstructured meshes within the
MEGAFLOW project. A strategic cooperation, however, has been established
with the company CentaurSoft [3] which provides the hybrid grid generation
package Centaur. The software consists of three major parts. An interactive
program reads in the CAD data of the geometry under consideration, performs
some CAD cleaning if necessary and sets up the grid generation process. In a
second step the surface and volume grid are generated automatically. For vis-
cous calculations a quasi-structured prismatic cell layer with a specified num-
ber of cells around the geometry surface ensures high resolution of boundary
layer effects. In a third step grid adaptation may be used to locally refine grid
resolution. During the cooperation the Centaur grid generation software has
been substantially advanced for transport aircraft applications. Improvements
are underway to include for example the generation of non isotropic elements
and wake surfaces. Within the MEGADESIGN project the partner EADS-M
is developing fully automatic hybrid grid generation software which is adapted
to massively parallel distributed computers.

2.2 Flow Solvers

The main components of the MEGAFLOW software are the block-structured
flow solver FLOWer and the unstructured hybrid flow solver TAU. Both codes
solve the compressible three-dimensional Reynolds averaged Navier-Stokes
equations for rigid bodies in arbitrary motion. The motion is taken into ac-
count by transformation of the governing equations. For the simulation of
aero-elastic phenomena both codes have been extended to allow geometry
and mesh deformation. In the following sections the specific features of the
Navier-Stokes codes are briefly described.

Block-Structured Navier-Stokes Code FLOWer

The FLOWer-Code is based on a finite-volume formulation on block-structured
meshes using either the cell vertex or the cell-centered approach. For the ap-
proximation of the convective fluxes a central discretization scheme combined
with scalar or matrix artificial viscosity and several upwind discretization
schemes are available [27]. Integration in time is performed using explicit
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multistage time-stepping schemes. For steady calculations convergence is ac-
celerated by implicit residual smoothing, local time stepping and multigrid.
Preconditioning is used for low speed flows. For time accurate calculations
an implicit time integration according to the dual time stepping approach is
employed. The code is highly optimized for vector computers. Parallel com-
putations are based on MPI [6].

A variety of turbulence models is implemented in FLOWer, ranging from
simple algebraic eddy viscosity models over one- and two-equation models up
to differential Reynolds stress models. The Wilcox k-ω model is the standard
model in FLOWer which is used for all types of applications, while for tran-
sonic flow the linearized algebraic stress model LEA [42] and the nonlinear
EARSM of Wallin [52] have shown to improve the prediction of shock loca-
tions. Furthermore, the SST model of Menter [36] is available for a better
prediction of separating flows. All two-equation models can be combined with
Kok’s modification [23] for improved prediction of vortical flows. For super-
sonic flows different compressibility corrections are available. Recently, within
the EU project FLOMANIA Reynolds stress models based on the Wilcox
stress-ω model [53] and the so-called SSG/LRR-ω model, a combination of
the Wilcox stress-ω and the Speziale-Sarkar-Gatski model [47], have been im-
plemented into FLOWer [17]. Particularly the SSG/LRR-ω model has been
applied to a wide variety of test cases, ranging from simple airfoils to complex
aircraft configurations and from transonic to high-lift conditions. Generally
improved predictions have been obtained, while the numerical behavior of the
Reynolds stress models appeared to be as robust as that of two-equation mod-
els. Fig. 1 shows the predicted pressure and skin friction distribution obtained
with the Wilcox k-ω and with the SSG/LRR-ω model for the Aerospatiale A
airfoil at M∞ = 0.15, α = 13.3◦, Re = 2 × 106, demonstrating the improve-
ment by Reynolds stress modeling.

Fig. 1. Pressure distribution (near leading and trailing edge) and skin friction distri-
bution for Aerospatiale A airfoil ( M∞ = 0.15, α = 13.3◦, Re = 2× 106) calculated
with the Reynolds stress turbulence model implemented in FLOWer.

Besides the modeling accuracy for turbulent flows, the numerical robust-
ness of the respective transport equation turbulence models for complex ap-
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plications has been a major issue. In FLOWer numerical stability has been
enhanced by an implicit treatment of the turbulence equations and different
limiting mechanisms that can be activated by the user. The convergence be-
havior of the FLOWer-Code for a rather complex application is demonstrated
in Fig. 2(a). Results of a viscous computation for a helicopter fuselage are
shown [32]. The rotor is modeled through a uniform actuator disc. The grid
consists of 94 blocks and 7 million grid points. The residuals for density and
turbulence quantities are reduced several orders of magnitude. In this low
Mach number case the preconditioning technique has been employed.

(a) Viscous calculation for Dauphin heli-
copter fuselage at M∞ = 0.044, conver-
gence behavior of mass and k-ω turbu-
lence equations.

(b) Effect of Reynolds num-
ber on convergence for the
RAE 2822 airfoil at M∞ =
0.73, α = 2.8◦.

Fig. 2.

The fully implicit integration of the turbulence equations also ensures ef-
ficient calculations on highly stretched cells as they appear in high Reynolds
number flows [18]. Fig. 2(b) shows the convergence history of FLOWer for
the calculation of the viscous flow around the RAE 2822 airfoil at different
Reynolds numbers. The advantage of the fully implicit method compared to
the explicit multigrid scheme with point implicit treatment of source terms is
evident.

FLOWer is able to perform transition prediction on airfoils and wings us-
ing a module consisting of a laminar boundary layer code and an eN -database
method based on linear stability theory [30]. Fig. 3 shows the predicted and
measured force polars and transition locations of a subsonic laminar airfoil.
This approach substantially improves the quality of predicted force coeffi-
cients. The experimentally determined transition points are reproduced with
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high accuracy. The transition prediction capability has been extended to 2D
high-lift systems.

An important feature of FLOWer is the Chimera technique, which consid-
erably enhances the flexibility of the block-structured approach [21, 45]. This
technique mainly developed within the German/French helicopter project
CHANCE [46] enables the generation of a grid around a complex configu-
ration by decomposing the geometry into less complex components. Separate
component grids are generated which overlap each other and which are em-

(a) (b)

Fig. 3. Transition prediction with eN -database method for laminar Sommers airfoil
at M∞ = 0.1 and Re = 4× 106, (a) force polars calculated fully turbulent and with
transition, (b) computed and measured transition locations.

(a) (b) (c)

Fig. 4. Viscous computation about a 3D high-lift configuration using the Chimera
technique of the block-structured FLOWer-Code, M∞ = 0.174, α = 7◦ .
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bedded in a Cartesian background grid that covers the whole computational
domain. In combination with flexible meshes, the Chimera technique enables
an efficient way to simulate bodies in relative motion. The communication
from mesh to mesh is realized through interpolation in the overlapping area.
The search for cells which are used for interpolation is performed using an
alternating digital tree method. In the case when a mesh overlaps a body
which lies inside another mesh, hole cutting procedures have to be used in or-
der to exclude the invalid points from computation. Further simplification of
the grid generation procedure is achieved by a fully automatic Cartesian grid
generator. The grid generator places fine grids around the component grids
and puts successively coarsened grids around the fine grids. Patched grid in-
terfaces with hanging nodes are used at the interface between the grid blocks
of the Cartesian mesh. In the vicinity of the configuration the Cartesian grid
generator creates non isotropic cells which are adapted to the size of the cells
in the component grids. This ensures accuracy in the overlap regions. The
potential of the Chimera technique is demonstrated in Fig. 4 in case of the
viscous calculation around a 3D high-lift configuration. Separate component
grids have been generated for body, wing, flap and slat. The background grid
has been produced with the automatic Cartesian grid generator. With this
approach the time for grid generation has been considerably reduced. The
whole grid consists of 4 million points in total. Fig. 4(b) and Fig. 4(c) show
the distribution of lift versus angle of attack and lift versus drag, respectively.
The results obtained on the Chimera grid are compared with computations
carried out on a conventional block-structured grid and with experimental
data. It can be seen that the computations on the different meshes agree very
well and they are in quite good correlation to the experiments. Differences
between computations and experiments occur at the angle of attack where
lift breaks down.

Hybrid Navier-Stokes Code TAU

The Navier-Stokes code TAU [19, 49] makes use of the advantages of unstruc-
tured grids. The mesh may consist of a combination of prismatic, pyramidal,
tetrahedral and hexahedral cells and therefore combines the advantages of
regular grids for the accurate resolution of viscous shear layers in the vicin-
ity of walls with the flexibility of grid generation techniques for unstructured
meshes. The use of a dual mesh makes the solver independent of the type of
cells that the initial grid is composed of. Various spatial discretization schemes
were implemented, including a central scheme with artificial dissipation and
several upwind methods. The basic hybrid TAU-Code uses an explicit Runge-
Kutta multistage scheme in combination with an explicit residual smoothing.
In order to accelerate convergence, a multigrid procedure was developed based
on the agglomeration of the control volumes of the dual grid for coarse grid
computations.
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In order to efficiently resolve detailed flow features, a grid adaptation al-
gorithm for hybrid meshes based on local grid refinement and wall-normal
mesh movement in semi-structured near-wall layers was implemented. This
algorithm has been extended to allow also for de-refinement of earlier refined
elements thus enabling the code to be used for unsteady time-accurate adapta-
tion in unsteady flows. Fig. 5 gives a simple example of the process for viscous
airfoil calculation. First a flow solution is calculated on a basic grid (a). After
some refinement an adapted grid/solution is obtained (b). Changing the flow
parameters and specifying e.g. that the number of mesh points should not
increase any further, the de-refinement interacts with the refinement (c) and
finally the new shock position is resolved (d).

(a) initial state (b) adapted grif state 1

(c) intermediate state (d) sdapted grid state 2

Fig. 5. Demonstration of the dynamic mesh refinement and de-refinement capability
of the TAU-Code.

With respect to unsteady calculations, the TAU-Code has been extended
to simulate a rigid body in arbitrary motion and to allow grid deformation.
In order to bypass the severe time-step restriction associated with explicit
schemes, the implicit method based on the dual time stepping approach is
used. For the calculation of low-speed flows, preconditioning of the compress-
ible flow equations similar to the method used in FLOWer was implemented.
One of the important features of the TAU-Code is its high efficiency on par-
allel computers. Parallelization is based on the message passing concept using
the MPI library [6]. The code is further optimized either for cache or vector
processors through specific edge coloring procedures.
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The standard turbulence model in TAU is the Spalart-Allmaras model with
Edwards modification, yielding highly satisfactory results for a wide range of
applications while being numerically robust. Besides this model, a number of
different k-ω models with and without compressibility corrections are avail-
able. Also nonlinear explicit algebraic Reynolds stress models (EARSM) and
the linearized LEA model [42] have been integrated. Several rotation cor-
rections for vortex dominated flows are available for the different models. Fi-
nally, there are options to perform detached eddy simulations (DES) based on
the Spalart-Allmaras model [48] and so-called Extra-Large Eddy Simulations
(XLES) [24].

The explicit character of the solution method severely restricts the CFL
number which in turn often leads to slow convergence, especially in the case of
large scale applications. In order to improve the performance and robustness
of the TAU-Code, an approximately factored implicit scheme has been im-
plemented [16]. The LU-SGS (Lower-Upper Symmetric Gauss-Seidel) scheme
has been selected as a replacement for the Runge-Kutta scheme. In contrast
to fully implicit schemes, this method has low memory requirements, low op-
eration counts and can be parallelized with relative ease. Compared to the
explicit Runge-Kutta method, the LU-SGS scheme is stable with almost no
time step restrictions. An example of the performance improvement achieved
is given in Fig. 6, where two convergence histories for viscous calculations on
a delta wing are shown. The calculations were performed with multigrid on
16 processors of a Linux cluster. The figure shows the residual and the rolling
moment against iteration count. In terms of iterations LU-SGS can be seen
to converge approximately twice as fast as the Runge-Kutta scheme. Further-
more, one iteration of LU-SGS costs roughly 80% of one Runge-Kutta step.
This results in a reduction of the overall calculation time by a factor of 2.5.

Fig. 6. Convergence behaviour of the hybrid TAU-Code for calculations of viscous
flow around a delta wing at M = 0.5, α = 9◦. Comparison of the baseline Runge-
Kutta scheme (RK) and the implicit LU-SGS scheme.

As the Chimera technique has been recognized as an important feature
to efficiently simulate maneuvering aircraft, it has been also integrated into
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the TAU-Code [34]. In the context of hybrid meshes the overlapping grid
technique allows an efficient handling of complex configurations with movable
control surfaces (see Fig. 7). For the intergrid communication linear interpo-
lation based on a finite element approach is used in case of tetrahedral mesh
elements. For other types of elements (prisms, hexahedrons, pyramids) linear
interpolation is performed by splitting the elements into tetrahedrons. Like
in FLOWer, the search algorithm for donor cells is based on the alternat-
ing digital tree data structure. The current implementation of the Chimera
technique can handle both steady and unsteady simulations for inviscid and
viscous flows with multiple moving bodies. The technique is available in par-
allel mode. In Fig. 8 results of a viscous Chimera calculation for a delta wing
with trailing edge flaps are shown [43]. The component mesh of the flap is
designed to allow a flap deflection of ±15◦. The comparison of calculated and
measured surface pressure distributions at both 60% and 80% cord length
shows good agreement.

Fig. 7. Hybrid Chimera grid for delta wing with a movable flap.

Fig. 8. Viscous computation of a delta wing with trailing edge flap using the
Chimera option of the hybrid TAU-Code, surface pressure distributions for flap
deflection angle θ = 0◦ at 60% and 80% cord.
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3 Software validation

Software validation is a central and critical issue when providing reliable CFD
tools for industrial applications. Among others, the verification and validation
exercises should address consistency of the numerical methods, accuracy as-
sessment for different critical application cases and sensitivity studies with
respect to numerical and physical parameters. Best practice documentation is
an essential part of the work. Over the last few years the MEGAFLOW soft-
ware has been validated within various national and international projects
for a wide range of configurations and flow conditions (see e.g. [25, 40]). This
section shows sample results for a subsonic and transonic validation test case.

Flow prediction for a transport aircraft in high-lift configuration is still a
challenging problem for CFD. The numerical simulation addresses both com-
plex geometries and complex physical phenomena. The flow around a wing
with deployed high-lift devices at high incidence is characterized by the ex-
istence of areas with separated flow and strong wake/boundary layer inter-
action. The capabilities of the MEGAFLOW software to simulate two- and
three-dimensional high-lift transport aircraft configurations has been exten-
sively validated within the European high-lift program EUROLIFT I [39].
One of the investigated test cases is the DLR-F11 wing/body/flap/slat con-
figuration.

Fig. 9 highlights a comparison of lift and total drag results of the unstruc-
tured TAU-Code and the block-structured FLOWer-Code with experimental
data from the Airbus LWST low speed wind tunnel in Bremen, Germany.
Both, the block-structured grid generated by the DLR software MegaCads
and the hybrid mesh generated by FOI contain about 3 million grid points to
allow for a fair comparison of the methods.

Fig. 9. Viscous computations for DLR-F11 high-lift configuration at M∞ =
0.18, Re = 1.4× 106, lift as function of angle of attack and as function of drag.

Calculations for the start configuration at M∞ = 0.18 and Re = 1.4× 106

were performed with FLOWer and TAU using the Spalart-Allmaras turbu-
lence model with Edwards modification (SAE). In both cases preconditioning
was used to speed up steady state convergence and to improve accuracy at
the predominantly low speed conditions. In the linear range of the polar, the
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numerical results compare quite well with each other and with experimen-
tal data. At higher angle of attack differences occur between the TAU and
FLOWer results. TAU predicts the lift break down at a lower angle of attack,
which is in better agreement with the experimental results.

In the framework of the AIAA CFD Drag Prediction Workshop I [1], the
accuracy of the MEGAFLOW software was assessed to predict aerodynamic
forces and moments for the DLR-F4 wing-body configuration [38]. In Fig. 10
lift coefficient as function of drag and angle of attack for Case 2 (M∞ = 0.75,
Re = 3 × 106) calculated with FLOWer and TAU are presented. These re-
sults were obtained using grids generated in-house at DLR. On request all
calculations were performed fully turbulent. The FLOWer computations were
carried out on a grid with 3.5 million points using central discretization with
a mixed scalar and matrix dissipation operator and the k/ω -LEA turbu-
lence model. The TAU results are based on an initial grid containing 1.7
million points which was adapted for each angle of attack yielding grids with
2.4 million points. In addition, an adaptation of the prismatic grid towards
y+ = 1 was done. Central discretization with standard settings of artificial
dissipation was used. Turbulence was modeled with the one-equation model
of Spalart-Allmaras. As can be seen from Fig. 10 the fully turbulent FLOWer
computations over predict the measured drag curve by approximately 20 drag
counts. Investigations have shown [38] that inclusion of transition in the cal-
culation reduces the predicted drag by 14 drag counts, reducing the over
prediction of drag to approximately 6 drag counts. The results of the un-
structured fully-turbulent computations with TAU perfectly match with the
experimental data. However, as for the structured computations, hybrid cal-
culations with transition setting will reduce the predicted level of drag, in this
case by approximately 10 drag-counts. Fig. 10 also shows the comparison of
predicted and measured lift coefficient as a function of angle of attack. The
values calculated by FLOWer agree very well with the experiment, whereas
the results obtained with TAU over predict the lift almost in the whole range
of angle of attack.

For the pitching moment (Fig. 11) the results obtained with FLOWer agree
very well with experimental data. This is due to the fact that the surface pres-
sure distribution predicted with the FLOWer-Code is in good agreement with
the experiment. In case of the hybrid TAU-Code there are some discrepancies
between the predicted and measured surface pressures resulting in a signifi-
cant over prediction of the pitching moment. Further investigations [38] have
shown that the improved results obtained with the FLOWer-Code are mainly
attributed to a lower level of numerical dissipation (improved grid resolution
and matrix dissipation) combined with the advanced 2-equation k/ω -LEA
turbulence model.

Within the second AIAA drag prediction workshop [2] the hybrid TAU-
Code was further assessed with respect to performance calculations for a
wing/body/pylon/nacelle configuration at transonic flow conditions [11]. For
this exercise the Spalart-Allmaras one-equation turbulence model was used.
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Fig. 10. Viscous calculations for DLR-F4 wing/body configuration (AIAA DPW I,
case 2), CL(CD), CL(α).

Fig. 11. Viscous calculations for DLR-F4 wing/body configuration (AIAA DPW
I), CM (CL) polar, surface pressure.

Fig. 12. TAU results for DLR-F6 wing/body/pylon/nacelle configuration (AIAA
DPW II), M∞ = 0.75
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Fig. 13. Oil flow pictures (experiments) and streamlines (TAU results), DLR-F6
wing/body/pylon/nacelle configuration, wing lower and pylon inboard side, M∞ =
0.75, CL = 0.5.

The drag polar is predicted in good agreement with the experimental data
while the lift is constantly over predicted (see Fig. 12). A detailed analysis
of the flow features reveals that in principle all areas of flow separations on
the investigated DLR F6 configuration are identified, however, compared with
experiments the sizes of those areas are slightly under predicted (wing upper
side) or over predicted (wing lower side). Fig. 13 compares measured and pre-
dicted flow features near the pylon inboard side at the wing lower side. This
difference results in systematic deviations of the pressure distributions and
pitching moments.

4 Industrial Applications

The MEGAFLOW software is intensively used at DLR and the German air-
craft industry for many aerodynamic problems. Some typical large scale ap-
plications listed below demonstrate the capability of the software to support
aircraft and helicopter design.

Civil transport aircraft at cruise conditions

One key issue during the design of an enhanced civil aircraft is the efficient
engine-airframe integration. Modern very high bypass ratio engines and the
corresponding close coupling of engine and airframe may lead to substantial
loss in lift and increased installation drag. At DLR, numerical and experi-
mental studies have been devoted to estimate installation drag with respect
to variations of engine concepts and the installation positions [13, 41]. For nu-
merical investigations in this field both the block-structured FLOWer-Code
and the hybrid TAU-Code have been used. Fig. 14 shows the hybrid grid in
the symmetry plane for the DLR-F6 configuration [10]. The initial grid gener-
ated with Centaur consists of about 4.6 million nodes. Several solution based
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grid adaptation steps have been performed resulting in grids between 7.5 and
8.5 million nodes depending on the investigated engine concept. In Fig. 14
the lift as a function of the installation drag is plotted for three different
positions of the CFM56 long duct nacelle (M∞ = 0.75 and Re = 3 × 106).
The engines are represented by through-flow nacelles. Results predicted with
the TAU-Code (symbols) and measured in the ONERA S2MA wind tunnel
(lines) are shown. The agreement is very satisfactory demonstrating that the
influence on installation drag due to varying engines locations or sizes can be
accurately predicted by the TAU-Code [10].

Fig. 14. Prediction of engine-airframe interference drag using the TAU-Code, left:
hybrid grid for DLR-F6 configuration, right: lift as a function of installation drag
for three different position of CFM56 engine, M∞ = 0.75, Re = 3 × 106, symbols:
calculation, lines: experiment.

Viscous computations with the block-structured FLOWer-Code were per-
formed for the DLR-ALVAST configuration with turbofan engines for the
most interesting conditions ’Start of Cruise’ (SOC), and ’Through Flow Na-
celle’ (TFN) representing a flight-idle power setting [41]. Computations were
carried out at M∞ = 0.75, Re = 3 × 106 and with a constant lift coefficient
of CL = 0.5. Fig. 15 shows the impact of the power setting. Computed lines
of constant Mach number in the engine symmetry plane are shown. The pri-
mary differences caused by the SOC thrust condition are the strong velocity
increase in the jets up to supersonic speed and the resulting significant shear
layers at the jet boundaries due to the larger velocity differences. Fig. 15 also
shows corresponding computed and measured pressure distributions at the
wing cross section η = 33% (inboard of nacelle). The most significant differ-
ence between the SOC and TFN condition is a lower pressure level for SOC
in the mid chord area at the wing lower side. This influence is captured quite
well by the numerical simulation.
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(a) TFN (b) SOC (c)

Fig. 15. Viscous calculation of DLR ALVAST configuration with FLOWer at M∞ =
0.75, CL = 0.5, influence of thrust condition of turbofan engine, (a) and (b) constant
Mach number distribution for TFN and SOC, (c) surface pressure distribution at
cross section η = 33%.

Civil transport aircraft at high-lift conditions

Based on thorough development and validation efforts of the hybrid unstruc-
tured approach employing both the Centaur grid generation software and the
Navier-Stokes-Code TAU, complex high-lift flows become more and more ac-
cessible. As an example the flow around the DLR ALVAST model in high lift
configuration equipped with two different engine concepts, the VHBR (Very
High Bypass Ratio) and the UHBR (Ultra High Bypass Ratio) engine has
been computed [35]. The numerical simulations are focused on complex flow
phenomena arising from the engine installation at high-lift conditions. Special
attention was paid to a possible reduction of the maximum lift angle result-
ing from dominant three-dimensional effects due to engine installation. Fig. 16
displays the surface pressure coefficient of the ALVAST high-lift configuration
with installed VHBR and UHBR engine at an angle of attack of α = 12◦ in
take-off conditions. The computations were performed on a hybrid grid with
10 million points generated by Centaur. In Fig. 17(a) the vortex shedding
from the inboard side of the nacelle is shown. The vortex originates from the
rolling-up of the shear layer and crosses the slat and the wing upper side. Using
the computational data as input this vortex system could be identified with
PIV visualization in a recent wind tunnel campaign. Fig. 17(a) also shows the
impact of the two different engine concepts on the span wise lift distribution.
For the VHBR concept the lift loss on the wing due to engine mounting is
roughly compensated by the lift generated by the nacelle itself. For the UHBR
concept the wing lift loss is slightly stronger than for the VHBR. Nevertheless,
it is overcompensated by the higher lift carried by the large nacelle.

One key aspect of the development of a new transport aircraft is the de-
sign of a sophisticated and optimal high-lift system for take-off and landing
conditions. A possibility to increase maximum lift is the usage of small delta
wing like plates on the engine nacelles, the so-called nacelle strakes. These
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strakes generate vortices which run above the wing for high angles of attack.
These vortices influence the wing and slat pressure distributions and shift
the flow separations to higher angles of attack. At cruise flight conditions the
strakes should not produce any significant additional drag. Previous investi-
gations based on hybrid grid RANS solutions using the DLR TAU software
have shown that for civil transport aircraft the influence of the nacelle strakes
on lift and drag can be computed qualitatively [15]. In order to quantitatively
predict the lift increment due to the strakes, care must be taken generating
and adapting the grid with and without strakes. The idea has been to use
the final adapted grid of the configuration with nacelle strakes and to fill the
strakes with tetrahedral elements so that a nearly identical grid for the con-
figuration with and without strakes can be build. The initial grid generation
has been performed with Centaur. The element sizes have been controlled by
several sources in the region where the strake vortices appear. The near wall
region has been resolved by 25 layers of prismatic elements. The initial grid
contains approximately 13.05 million points. The TAU grid adaptation has
been used to insert additional points in areas of large gradients and to ful-
fill a y+ of nearly one. The three times adapted grid contains approximately
16.71 million points. The filling of the strake volume has been performed us-
ing customized tools based on MegaCads [12] and the NETGEN [4] software.
Fig. 17(b) shows the adapted grid in the vicinity of the nacelle strake. The
filled strake volume is visible. The solutions have been calculated using the
TAU-Code for the flow condition M∞ = 0.18, Re = 3 million and a between
8◦ and 16◦ . Fig. 17(c) demonstrates the resolution of the strake vortex and an
iso-vorticity plane for α = 10◦ . It has been shown that for this configuration a
lift increase of ∆CL ≈ 0.1 can be found both from the numerical calculations
and the experiments although the absolute maximum lift values differ [14].

Fig. 16. Viscous simulation of the ALVAST high-lift configuration with VHBR
(left) and UHBR (right) engine using the TAU-Code, surface pressure distribution,
M∞ = 0.22, α = 12◦, Re = 2× 106.
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(a) Engine interference for ALVAST high-lift configura-
tion with VHBR and UHBR engine M∞ = 0.22, α =
12◦, Re = 2 × 106 , left: nacelle vortex, right: lift distri-
bution of wing and nacelle.

(b) Civil transport high-lift configuration with nacelle
strakes, filled strake grid.

(c) Civil transport high-lift configuration with nacelle strakes,
calculated streamlines and iso-vorticity cut planes.

Fig. 17.
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Military aircraft

Concerning military aircraft applications numerical simulations for the X-31
configuration have been carried out with the TAU-Code [5]. These computa-
tions show the capability of the TAU-Code to simulate complex delta wing
configurations with rounded leading edges. Fig. 18(a) shows the numerically
obtained 3D flow field over the X-31 configuration indicating the complexity
of the vortex flow topology over the wing and the fuselage. Comparisons with
experimental data show good agreement regarding the vortex topology. In
Fig. 18(b) an oil flow picture of the X-31 clean wing from low speed experi-
ments is shown in comparison to the corresponding CFD result. The angle of
attack is α = 18◦ at a Reynolds number of 1.0 million. The attachment line
of the strake vortex and the main wing vortex as well as the separation line
of the main wing vortex near the leading edge is emphasized indicating that
the flow topology from the calculation fits quite well with the experiment.

Helicopter

At DLR large effort is devoted to the enhancement of the MEGAFLOW soft-
ware for helicopter applications. The development and validation activities
are carried out in the German/French project CHANCE [46]. They include
performance prediction of the isolated rotor in hover and forward flight as well
as the quasi-steady and time-accurate simulation of the complete helicopter
including engines and main and tail rotor.

The aerodynamic assessment of helicopter main rotors requires a com-
putational procedure with fluid-structure coupling including trim. The re-
sults which are presented here were obtained with a weak coupling (see [37])
between the RANS solver FLOWer and the comprehensive rotor simulation
code S4 in which the blade structure is modeled as a beam. The test case is
the four-bladed 7A-rotor with rectangular blades in high-speed forward flight
(MωR = 0.64, M∞ = 0.256 with an advance ratio of µ = 0.4). Fig. 18(c)
presents the grid system used while Fig. 18(d) compares the measured with the
predicted data. The overall agreement of the coupled solution (FLOWer/S4
coupling) with the experimental data is acceptable although the negative peak
in normal force around 120 azimuth is not well computed. This phenomenon
is subject of ongoing research. The results of the simplified blade element
aerodynamic module of S4 are presented by dashed lines in Fig. 18(d). It is
obvious that this simplified aerodynamic model is not able to capture the time
dependent blade load history.

A quasi-steady computation of the flow-field around the Eurocopter EC-
145 helicopter has been carried out [32, 31]. The effect of engines and rotors
has been simulated by means of in-/outflow boundary conditions and by actu-
ator discs respectively. As visualized in Fig. 19(a), the rotor downwash results
in an asymmetrical flow pattern on the fuselage surface. The figure shows
separation lines and singular points on the boot and tail boom. Moreover,
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(a) 3D flow field of the X-31
configuration at 18◦ angle of
attack, TAU-Code.

(b) X-31 clean wing, left: oil
flow visualization, right: surface
streamlines obtained with TAU-
Code.

(c) Chimera grid sys-
tem around 4-bladed
7A-rotor.

(d) Comparison of pre-
dicted and measured nor-
mal force and pitching mo-
ment coefficients versus az-
imuth for a high-speed for-
ward flight test case of the
7A rotor.

Fig. 18.

the right vertical stabilizer experiences a much higher loading as the left one.
In Fig. 19(b) the surface temperature distribution and a 3D-contour for tem-
perature of T = 60◦C are depicted. Again the rotor downwash produces an
asymmetrical temperature wake, which results in a single hot spot (T = 60◦C)
on the left horizontal stabilizer.



The MEGAFLOW Project – Numerical Flow Simulation for Aircraft 23

(a) (b)

Fig. 19. (a) CP -distribution and friction lines on the EC145 fuselage, visualisation
of separation areas on the boot and vertical stabilisers. (b) Temperature surface
distribution and 3D-contour (T=60◦C), visualisation of the impact of engine plumes
on horizontal stabilisers.

5 Multidisciplinary simulations

The aerodynamic performance of large transport aircraft operating at tran-
sonic conditions is highly dependent on the deformation of their wings
under aerodynamic loads. Hence accurate performance predictions require
fluid/structure coupling in order to determine the aerodynamics of the con-
figuration in aero-elastic equilibrium. Consequently, at DLR major effort is
currently devoted to couple the flow solvers FLOWer and TAU with numeri-
cal methods simulating the structure. The activities include the development
of efficient and robust grid deformation tools, accurate interpolation tools
for transferring data between the fluid grid and the structure grid as well as
the implementation of suitable interfaces between the flow solvers and the
structural solvers. Concerning structure, both high-fidelity models (ANSYS,
NASTRAN) and simplified models (beam model) are considered.

The importance of fluid/structure coupling is demonstrated in Fig. 20.
Within the European project HiReTT Navier-Stokes calculations were per-
formed for a wing-body configuration of a modern high speed transport type
aircraft at M∞ = 0.85 and Re = 32.5 × 106. The block-structured FLOWer-
Code was used on a grid with about 3.5 million points. The k/ω turbulence
model was employed. Two types of calculations were carried out. On the one
hand the aerodynamic behavior of the jig-shape was predicted. On the other
hand the aero-elastic equilibrium was determined by a fluid/structure cou-
pling. For this calculation the coupling procedure of the University of Aachen
(Lehr und Forschungsgebiet fr Mechanik) was used [8]. It is based on the
FLOWer-Code for the fluid and a beam model for the structure. From Fig. 20
it is obvious that good agreement with experimental data obtained in the
ETW can only be achieved with the fluid/structure coupling.

The improvement of maneuverability and agility is a substantial require-
ment of modern fighter aircraft. Most of today’s and probably future fighter
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aircraft will be delta wing configurations. The flow field of such configurations
is dominated by vortices resulting from flow separation at the wings and the
fuselage. The time lag between vortex position and state with respect to the
on-flow conditions of the maneuvering aircraft can lead to significant phase
shifts in the distribution of loads. Reliable results for the analysis of the flight
properties can only be achieved by a combined non-linear integration of the
unsteady aerodynamics, the flight motion and the elastic deformation of the
aircraft structure.

Within the DLR internal project SikMa [5, 44] a multidisciplinary sim-
ulation tool for maneuvering aircraft is being developed and validated. The
unstructured, time-accurate flow solver TAU is coupled with a computational
module solving the flight-mechanic equations and a structural mechanics code
determining the structural deformations. By use of an overlapping grid tech-
nique (Chimera), simulations of complex configurations with movable control
surfaces are possible. Fig. 21 shows an example of a multidisciplinary simu-
lation of coupled aerodynamics and flight-mechanics. In this simulation the
delta wing is released at a roll angle of zero degree and a pitching angle of
α = 9◦ while the trailing edge flaps are deflected to η = ±5◦ , respectively. On
the upper right side of the figure the pressure distribution is shown at a stage
where the flaps are fully deflected. On the upper left side the corresponding
pitching and rolling moment are depicted as a function of the roll angle. The
time histories of the rolling angle and the flap deflection angle are shown at
the bottom of Fig. 21.

Fig. 20. CP -distribution for different span wise sections for a wing/body configura-
tion, numerical results obtained for pre-deformed geometry (dashed line) and with
fluid/structure coupling (full line).
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6 Numerical optimization

For aerodynamic shape optimization, FLOWer and TAU offer an inverse de-
sign mode which is based on the inverse formulation of the small perturbation
method according to Takanashi [50]. The method has been extended to tran-
sonic flows [7] and is capable of designing airfoils, wings and nacelles in inviscid
and viscous flows.

In the context of regional aircraft development various wing designs for
transonic flow were performed at DLR with the inverse mode of the Navier-
Stokes solver FLOWer. As design target suitable surface pressure distributions
were specified subject to geometrical constraints and a given lift coefficient.
Fig. 22(a) shows the comparison of drag rise between an early baseline wing
and an improved wing as a function of Mach number. The reduction of drag in
the higher Mach number range is clearly visible. The constraint with respect
to the lift coefficient was satisfied.

The inverse design methodology coupled to the hybrid TAU-Code was
also applied to the design of wing-mounted engine nacelles [55]. Fig. 22(b)
shows results of the redesign of an installed nacelle. The aircraft geometry
under consideration is the DLR ALVAST wing/body/pylon/nacelle config-

Fig. 21. Coupled aerodynamics and flight mechanics simulation for a rolling delta
wing with trailing edge flaps using the TAU-Code.
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uration equipped with a VHBR engine. The initial nacelle geometry is set
up by the scaled profiles of the side section only. The prescribed nacelle tar-
get pressure distribution corresponds to the surface pressure distribution of
the installed VHBR nacelle. The redesign was performed for inviscid flow at
M∞ = 0.75, α = 1.15◦ and the stream tube area ratio εFAN = 0.96. Fig. 22(b)
shows surface pressure distributions and nacelle profiles in three circumferen-
tial sections. As can be seen, the prescribed pressure distributions are met in
all three sections. This demonstrates that the inverse design methodology is
capable of designing installed engine nacelles.

The inverse design method is very efficient; however it is restricted to
a prescription of a target pressure distribution. A more general approach is
the numerical optimization in which the shape, described by a set of design
parameters, is determined by minimizing a suitable cost function subject to
some constraints. At DLR high-lift system optimization is of major interest.
Hence, the MEGAFLOW software has been coupled to various optimization
strategies. As a demonstration results of a drag optimization for a 3-element
airfoil in take-off configuration [54] are presented in Fig. 23. A limit in pitch-
ing moment has been prescribed as secondary constraint. In total 12 design
variables are taken into account. These are slat and flap gap, overlap and
deflection. In addition, the slat and flap cut-out contours are parameterized
by three variables each. The optimization method is based on a deterministic
SUBPLEX strategy. The Navier-Stokes FLOWer-Code is used to predict the
flow field. The block-structured grid has about 80.000 grid points. In the left
part of Fig. 23 the initial and optimized slat and flap contours are shown,

(a) Inverse wing de-
sign using FLOWer,
drag rise lift as
function of Mach
number for base-
line configuration
and optimized
configuration.

(b) Redesign of an installed nacelle using the
TAU- Code, surface pressure distribution and
nacelle profiles in three circumferential sec-
tions.

Fig. 22.
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Fig. 23. Setting optimization of a 3-element airfoil using the FLOWer-Code.

in the right part the corresponding pressure distributions. The optimization
affects the element chord, setting and deflection angle as well as the angle of
attack. The optimization results in a decrease in total drag of 21%, while the
maximum lift is slightly improved by 2%.

Because detailed aerodynamic shape optimizations still suffer from high
computational costs, efficient optimization strategies are required. Regarding
the deterministic methods, the adjoint approach is seen as a promising al-
ternative to the classical finite difference approach (see e.g. [22]), since the
computational cost does not depend on the number of design parameters.
Accordingly, within the MEGAFLOW project an adjoint solver following the
continuous adjoint formulation has been developed and widely validated for
the block-structured flow solver FLOWer [20]. The adjoint solver can deal
with the boundary conditions for drag, lift and pitching-moment sensitivities.
The adjoint option of the FLOWer-Code has been validated for several 2D as
well as 3D optimization problems controlled by the (adjoint) Euler equations.
Within the ongoing MEGADESIGN project the robustness and efficiency of
the adjoint solver will be further improved, especially for the Navier-Stokes
equations. The adjoint solver implemented in FLOWer is currently transferred
to the unstructured Navier-Stokes solver TAU.

To demonstrate the capability of the adjoint approach to handle many
design parameters with low cost, the optimization of a supersonic transport
wing/body configuration has been carried out [9]. The baseline geometry is
based on the EUROSUP [33] geometry (Fig. 24), which is a supersonic com-
mercial aircraft of 252 seats capacity, designed for a range of 5,500 nautical
miles with supersonic cruise at Mach number M∞ = 2.0. The optimization
goal is to minimize the drag at a fixed lift coefficient of CL = 0.12. The fuse-
lage incidence is allowed to change in order to maintain the lift coefficient
but it should not be greater than 4 degrees to the onset flow. In order to
explore the full potential of the adjoint technique, no specific restrictions are
set to define the parameterization. 74 design variables were used to change
the twist, the thickness and the camber line at specific wing sections and 10
more design variables allowed changing the radial distribution of the fuse-
lage. A minimum allowable value of the fuselage radius and a minimum wing
thickness law were imposed in order to prevent unrealistic aircraft. After ge-
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Fig. 24. Shape optimization of supersonic transport aircraft at M∞ = 2.0 (drag
minimization at constant lift).

ometrical modifications, the intersection of wing and fuselage is recalculated
automatically by the DLR in-house grid generator MegaCads for each new
configuration. At M∞ = 2.0, the main aerodynamic effects are well predicted
using the Euler equations. Therefore, the aerodynamic states are computed
by FLOWer running in Euler mode. The constraint on the lift is handled
using the target lift mode available in FLOWer which automatically adjusts
the angle of attack to reach the desired lift. In the present optimization prob-
lem, the unique aerodynamic constraint is the lift, which is handled directly
by FLOWer and the geometrical constraints are automatically fulfilled dur-
ing the parameterization. Fig. 24 shows the evolution of the drag coefficient
during the optimization, where an optimization step includes the evaluation
of the gradient and the line search. About 8 optimization steps were neces-
sary to achieve the optimum, which represents 54 aerodynamic computations
and 8 adjoint flow evaluations. This approach is more than 11 times faster
than using brute force optimization based on finite differences. The optimum
configuration has 14.6 less drag counts than the baseline geometry. It can
be seen in Fig. 24 that FLOWer keeps the lift constant during the complete
optimization and the angle of attack decreases slightly by about 0.3 degrees.
The pitching moment decreases by about 2.8%. It is interesting to analyze the
evolution of the performance around the design point. The lower left picture
of Fig. 24 shows the polar both for the baseline and the improved geometries.
It can clearly be seen that there is an almost constant reduction of the drag
for the whole polar of the optimized geometry and not only at the main design
point (CL = 0.12).
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7 Conclusions and perspective

The main objective of the MEGAFLOW initiative was the development of a
dependable, effective and quality controlled software package for the aerody-
namic simulation of complete aircraft. Due to its high level of maturity, the
MEGAFLOW software system is being used extensively throughout Germany
for solving complex aerodynamic problems - especially in industrial develop-
ment processes. However, since industry is still demanding more accurate and
faster simulation tools, further development is required despite the high level
of numerical flow simulation established today. Four major fields of further
research activities may be identified:

The first field is the enhancement of numerical methods by new algorithms
and solution strategies. Here, accuracy, robustness, and efficiency have to be
addressed, while recognizing that these are contradicting requirements. In the
design process of the aerospace industry with its severe time constraints, the
difficult – with respect to required man-power usually unpredictable – set-up
of highly accurate computations can not be tolerated. However, to establish
numerical simulation during design, where decisions involving extreme eco-
nomical risks have to be made, accuracy and reliability are crucial, which is
why expensive wind tunnel testing is still indispensable. Furthermore, the effi-
ciency of numerical methods has to be substantially improved. Relying solely
on the progress of computational hardware is not an option, since over the
last two decades the size of the problems to be simulated increased in parallel
to or even faster than advancements in computer technology.

Second, the physical modeling of fluid flow needs further to be addressed.
Despite long-time efforts, the current status of modeling of turbulence and
transition is still inadequate for the highly complex flows to be simulated in
aircraft design. Due to the immense computational effort required, the direct
numerical simulation (DNS) or even Large Eddy Simulation (LES) of fluid
flow will not be a practical alternative even for the next four or five decades.
Therefore, reliable modeling of turbulence and transition will become decisive
to bring numerical simulation as a routinely used tool into the aeronautical
design process.

Third, the architecture of the simulation software is becoming more and
more a strategic issue. On the one hand the software architecture must thor-
oughly exploit computational capabilities like parallelism, which requires a
certain degree of dedication to a certain computational environment; on the
other hand the software should be portable to different hardware arrange-
ments. Furthermore, the software must be flexible with respect to coupling
with other disciplines and integration into optimization strategies to allow the
definition of an interdisciplinary simulation and optimization environment. At
last, the software architecture must allow continuous upgrading for algorith-
mic and modeling improvements.

The last field to be addressed is validation. This requires on the one hand
the thorough definition of suitable experiments by using most advanced mea-
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suring techniques. Especially for the envisaged simulation of unsteady flows
with moving bodies and actuated control surfaces, corresponding experimen-
tal data are lacking. On the other hand, due to unavoidable effects such as grid
dependency and limitations in physical modeling, the assessment of uncertain-
ties in numerical simulation and a resulting statement of reliable applicability
is becoming a major matter of future concern.

Development activities in the direction of the issues summarized above
have been initiated in the now ongoing German CFD project MEGADESIGN,
which is a follow-on project to the German MEGAFLOW initiative.
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Summary. The optimal profile of turbine blades is crucial for the efficiency of mod-
ern powerplants. The applied SQP algorithms are based on gradient information.
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1 Introduction

In power plants the aerodynamic optimization of turbine blades is crucial
for efficiency considerations. The profile of the turbine blade is described by
Bézier polynomials, where the coefficients are used as design variables in a
nonlinear optimization procedure. The fluid-mechanics are modeled by the
2D Euler equations. The gas flow through the blade row suffers from the
occurrence of shock-waves. These shock-waves produce high losses of energy
and therefore of efficiency. By optimizing the blade profile shock-waves can
nearly be avoided or remarkably reduced in their strengths.

2 Model Problem

As a model problem the flow through a nozzle with region Ω as in Fig. 1
will be considered . The fluid dynamics are governed by the 2D Euler gas
equations. With density ρ, momentum in x-direction m = pu, momentum in
y-direction n = pv and total energy E, the conservative variable vector U ,
the gas equations are written as a conservation law of hyperbolical type

∂U

∂t
+

∂

∂x
F (U) +

∂

∂y
G(U) = 0 (1)
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U =
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mu+ p
mv
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nu

nv + p
(E + p)v


 . (2)

For the present the design problem will be discussed for the stationary 2D
Euler equation

F (U)x +G(U)y = 0 (3)

Ω

Γ

Γ

Γ

Γ
1

2

3

4

Fig. 1. Two dimensional model problem

At the inlet Γ4 density ρ, inflow angle ∠(u, v), velocity v = 0 and pressure
p are given. At the outlet Γ2 pressure p is prescribed. At the boundaries Γ1

and Γ3 V
Tn = unx + vny = 0 holds for the velocity in the normal direction

n of δΩ = Γ1

⋃
. . .
⋃
Γ4. The upper wall is fixed whereas the lower wall Γ1

should be optimized via

y(x) =





0 : −0.5 ≤ x < 0∑4
i=1 αibi(x) : 0 ≤ x < 1

0 : 1 ≤ x < 1.5
(4)

The coefficients αi, i = 1, . . . , 4 are the design parameters. The functions bi
are chosen as bi(x) = xi+1(x−1)2. At Γ1 a pressure distribution is prescribed
as nominal pressure pd. The objective is to find αi such that the functional I
is minimized

I =
1

2

∫

Γ1

(p− pd)2 ds. (5)

To use efficient optimization algorithms like Sequential Quadratic Program-
ming (SQP) the gradient information has to be provided, see [9]

∂I

∂αi
=

∂I

∂U

∂U

∂αi
. (6)
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Whereas ∂I
∂U can be calculated analytically the sensitivities ∂U

∂α must be cal-
culated numerically. There are three different approaches to calculate the gra-
dient information: i) by finite differences, ii) via the sensitivity equation, iii)
by an adjoint method, see also [8, 7, 10].

3 Gradient Computation

3.1 Finite Differences

The approximation ∂U
∂α ≈

U(α+∆α)−U(α)
∆α by finite differences has several dis-

advantages. This method is too imprecise for our purpose if the mesh is not
parameterized. Additionally for every design parameter a new mesh must be
calculated.

3.2 Sensitivity Equation

Explicit differentiation of the Euler gas equations with respect to α results in
the sensitivity equation, see [5, 3, 2, 6]

∂s

∂t
+

∂

∂x
(
dF (U)

dU
s) +

∂

∂y
(
dG(U)

dU
s) = 0 (7)

with

s =
∂U

∂α
=




∂ρ
∂α
∂m
∂α
∂n
∂α
∂E
∂α


 =




ρα
mα

nα
Eα


 . (8)

This conservation law has to be solved for every design parameter α.

3.3 Adjoint Method

The principle of the adjoint method lies in solving a dual problem which leads
to the same result as the original problem. To state the dual problem for
the model problem (3), (4) a Lagrange formalism is implemented, see [10].
To achieve the full information for the adjoint equation the Euler equations
and the boundary conditions are coupled to the functional I via the Lagrange
multipliers Λ and µ.

I =
1

2

∫

Γ1

(p− pd)2 ds+

∫

Ω

ΛT (F (U)x +G(U)y) dΩ +

∫

Γ1

µV Tnds. (9)

Differentiation by αi leads to the adjoint equation

−(
∂F

∂U
)TΛx − (

∂G

∂U
)TΛy = 0 in Ω, (10)



Gradient Computations for Optimal Design of Turbine Blades 37

and the boundary conditions

ΛT (
∂F

∂U
nx +

∂G

∂U
ny)

∂U

∂αi
= 0 on Λk, k = 2, 3, 4, (11)

ΛT (
∂F

∂U
nx +

∂G

∂U
ny)

∂U

∂αi
+
∂p

∂U
(p− pd) ∂U

∂αi
+ µn

∂V

∂U

∂U

∂αi
= 0 on Γ1. (12)

After solving the adjoint equation only once one receives

dI

dαi
=

1

2

∫ 1

−1

(p− pd)2 dbi
dx

dx+

∫ 1

−1

µV n
dbi
dx

dx+

∫

Γ1

µV
∂n

∂αi
ds. (13)

In comparison to the sensitivity equation method where a system of differential
equations has to be solved for every αi a less costly scalar product has to be
solved for every αi.

4 Optimal Turbine Blade

As the Adjoint method has not yet been implemented in the optimization
algorithms of our industrial partner the following optimal design results were
achieved by using the sensitivity equation approach and an adopted SQP
solver [4]. Fig. 2 shows the starting profile and an optimal profile of a turbine
blade. Fig. 3 was generated with TASCflow, see [1], it shows the pressure
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Fig. 2. Starting profile (dotted) and optimal profile

distribution before and after the optimization process. The darker the region
the higher are the pressure values indicating shock regions. In Fig. 3 the
optimal profile on the right shows a significant less pressure value (dark grey:
initial profile, light grey: optimal profile).
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Fig. 3. Pressure distribution for starting and optimal profile
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Summary. In this work I present a technique of construction and fast evaluation
of a family of cubic polynomials for analytic smoothing and graphical rendering
of particles trajectories for flows in a generic geometry. The principal result of the
work was implementation and test of a method for interpolation of 3D points by
regular parametric curves, and fast and efficient evaluation of these functions for a
good resolution of rendering. For this purpose I have used a parallel environment
using a multiprocessor cluster architecture. The efficiency of the used method is
good, mainly reducing the number of floating-points computations by caching the
numerical values of some line-parameter’s powers, and reducing the necessity of
communication among processes. This work has been developed for the Research &
Development Department of my company for planning advanced customized models
of industrial burners.

Key words: computational fluid dynamics, cubic spline interpolation, par-
allel computing, parallel efficiency.

1 Introduction

Industrial and power burners have some particular requirements, as a cus-
tomized study of the geometry for combustion head and combustion chamber
for an optimal shape of the flame. Rapid prototyping for an accurate design
of the correct geometry involves a numerical simulation of the gas or oil flows
in the burner’s components.

The necessity of an high graphic resolution requires a large amount of par-
ticles paths for tracing the streamlines of flow. Hence the numerical compu-
tation is memory and cpu very expensive for the used hardware environment.
In a tipical simulation the number of paths to compute is some thousands,
and the number of geometrical points to interpolate for each path is some
thousands too. For the treatment of this large amount of data a parallel en-
vironment can be very useful.
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2 Fitting trajectories with cubic polynomials

We suppose to have a dataset output from pre-processing and processing
phases of a simulation, for example from numerical resolution of Navier-Stokes
equations or from Cellular Automaton models [1]. We would a fast and flexible
method to obtain from those data an accurate paths tracking of fluid particles
with a smooth 3D visualization of trajectories, possibly with continuous slope
and curvature. Our experience shows that Computational Fluid Dynamics
packages have some limits in this post-processing phase, principally due to a
rigid resolution of the initial mesh and to a small degree of parallelism.

Let S the number of 3D points for each trajectory and M the total number
of trajectories from simulation dataset. We have tested that usual interpola-
tion methods have some disadvantages for our aims: for example Bezier-like is
not realistic in case of twisting or diverging speed-fields; Chebychev or Least-
Squares-like are too rigid for a customized application; polynomial fitting is
simple but often shows spurious effects as Runge phenomenon [6]. We have
elaborated a spline-based technique.

We suppose S = 4xN. For every group of four points, the interpolation
is obtained by three cubic polynomials imposing four analytical conditions:
passage at Pk point, 1 ≤ k ≤ 3; passage at Pk+1 point; continuous slope and
curvature at Pk point. For smooth rendering and for avoiding excessive twist-
ing of trajectories, the cubics uk are added to the Bezier curve b associated
to the four points: vk = αb + βuk, 0 < α, β < 1 (Fig.1).

Fig. 1. Spline-based method with continuous slope and curvature; b is the Bezier
curve interpolating the four points.

In our simulations we have chosen α= β = 0.5 . Let b = As3+Bs2+Cs+D,
0 ≤ s ≤ 1, the Bezier curve of control points P1, ..., P4, and let uk =
at3 + bt2 + ct + d, 0 ≤ t ≤ 1, be the spline between two points. One can
see that the coefficients of this spline can be computed by a matrix-vector
product coeff = T ∗ p where coeff = (a, b, c, d), p = (Pk+1,Pk, B, C, 1) and
T is a 4 × 5 numerical matrix, constant for every groups of points and for
every trajectory. If we define the 4M× 5M global matrix
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G =




T 0 · · · 0
0 T · · · 0
...

...
. . .

...
0 0 · · · T




where 0 is a 4× 5 zero-matrix, and define the vector s = (Pk+1, Pk, B1, C1,
1, ..., Pk+1, Pk, BM, CM, 1), one can compute for every two-points group the
coefficients of cubic splines for all the M trajectories with the matrix-vector
product c = G ∗ s. The matrix G is sparse with density equal at most to
1/M; if M = 1000, the density of 0.001 is a very good value for obtain the
benefits of sparsity methods, mainly in computational total time and memory
allocation [2].

3 Computing splines

For computing the coefficients of all the splines involved in the simulation,
the complexity analysis shows a total number of operations of order M ∗N.
Using P computational processes on a multiprocessor environment, a useful
method is the distribution of M/P trajectories to every process. In this way
every process receives M/P rows of the matrix G for computing splines by
matrix-vector multiply. In a first experiment (fall 2003), we have used the
Linux cluster at CINECA, Bologna (Italy), equipped with Pentium III 1.133
GHz processors, and a software environment constituted by C programs and
MPI libraries [3]. The use of such parallel routines has been useful only for
startup of multi-processes and data distribution. Tests have shown a quasi-
linear speedup, in the sense of parallelism, for all the values of M and N respect
to the number P of used processes (Fig.2).

In a second experiment (winter 2003), we have used a multinode Windows
2000 cluster of our company, equipped with a total of 4 Intel Xeon 3.2 GHz
processors and 4 GB Ram, and a parallel environment using MATLAB 6.5
scripts on distributed package’s sessions on nodes. Tests have shown very high
performances for splines computation using the internal algorithms of sparse
matrix-vector multiply for the matrix G.

4 Valuating splines

After the computation of splines, we have focused on their valuations on a
suitable set of parameter’s values. This set can be chosen large enough to ob-
tain a fine sampling for an high graphic resolution. Consequently the amount
of computation can be very huge, so that it is necessary an adequate method
to valuate all the splines for all the trajectories.

Let V+1 the number of ticks for each spline valuation with a uniform
sampling; then the ticks are (0, 1/V, 2/V, . . ., (V-1)/V, 1). The values of



42 G. Argentini

Fig. 2. Speedup registered with Linux cluster at Cineca.

splines parameter t are (0, 1, 2, 3)-th degree powers of this array. The value
of a cubic at t0 can be view as a dot product:

at30 + bt20 + ct0 + d = (a, b, c, d).(t30, t
2
0, t0, 1)

This fact permits to consider the constant 4× (V + 1) matrix

T =




0 (1/V)3 · · · ((V − 1)/V)3 1
0 (1/V)2 · · · ((V − 1)/V)2 1
0 (1/V)1 · · · ((V − 1)/V)1 1
1 1 · · · 1 1




We consider the M× 4 matrix

C =




a1 b1 c1 d1

a2 b2 c2 d2

...
...

...
...

aM bM cM dM




where each row contains the coefficients of a spline interpolating two points
in a single trajectory. Then the M × (V + 1) matrix product E = C ∗ T
contains in each row the values of a cubic between two data points, for all the
M trajectories (Eulerian view). In a similar way on can consider a Lagrangian
view for computing the values of all the cubics in a single trajectory. It can be
easily shown that the total number of operations for computing all the values
along each trajectory is of order N×M× (V + 1).
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5 Computing values of splines

For the computation of the values we have used the cluster of our company
with multisessions of MATLAB package as parallel environment. It is fun-
damental for this step the improvement of performances due to the usage of
LAPACK level 3 Blas routines incorporated in Matlab [4].

Another feature of this method is the fact that the matrix T is constant,
hence it is computed only once, requires a small memory allocation so its
values can be stored permanently in the cache. With P, number of processes,
divisor of 3N, total number of two-points groups, the method used has been
the distribution of 3N/P matrices C to every process.

The performances of multiprocess products show a quite linear speedup
respect the P variable and a total computation time of order N×M; increasing
the value of M or N for a better resolution, the time spent on computation
doesn’t change if the value of processes is increased (Gustafson Law) [5].

6 Conclusions

These techniques have supplied good results for improving performances of
post-processing phase in CFD simulations. Further work is planned for imple-
menting a global matrix product for the splines evaluation, with the purpose of
using the sparse matrices benefits to reduce total execution time and memory
allocation.
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Summary. Optimal path-constrained trajectories of an ISS-based, three-link robot
are investigated with a monorail as an additional fourth and prismatic joint. This
results in a problem of optimal control for a multiple constrained nonlinear system
of differential-algebraic equations. After transformation into minimum coordinates,
the only remaining control is the acceleration of the end-effector along the prescribed
trajectory, replacing four actuator torques/forces in the original formulation. The
simpler structure is achieved at the price of introducing piecewise defined equations
of motion, two highly nonlinear control constraints and two state constraints of
first order. Switching points between partly linear and fully rotational motion are
optimized. Solutions are presented including touch points of the state constraints
with the two control constraints being active simultaneously. For the mathematical
treatment of those problems, new interior point conditions are derived.

Key words: differential-algebraic control problem, robotic motion

1 Introduction

To reduce time-consuming extravehicular activities onboard of the Interna-
tional Space Station ISS, a promising approach is to substitute robotic ma-
nipulators for missing manpower. Important steps to maintain operational
safety are monorails attached to the ISS structure and partly guiding the
robot’s motion, the spatial prescription of the end-effector trajectories and
motion planning strategies that take into account the reduced accuracy of the
linear motion compared to the rotational joints.

Optimal path-constrained trajectories of an ISS-based, three-link robot
are investigated with a monorail as an additional fourth and prismatic joint.
Operation of the highly accurate end-effector makes sense only while the low
accuracy monorail motion stops. This results in a problem of optimal control
for a multiple constrained nonlinear system of differential-algebraic equations.
Switching points between partly linear and fully rotational motion are opti-
mized simultaneously.
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2 Optimal Control Problem

Fig. 1 gives a schematic sketch of the robot with three rotational joints and
one prismatic joint. The αi (i = 1, 2, 3) denote the angles of the rotational

α1

d
F

τ1

-α2

α3

d
F

τ3

τ2

Fig. 1. Schematic side and top view of the investigated ISS-robot.

joints (with the respective actuator torques τi) and d the position of the pris-
matic joint (with the actuator force F ). Only two configurations are admitted:
Either the monorail is fixed and the three rotational joints are active for high-
precision manipulations or the outer rotational link is fixed and the monorail
is active for longer-distance motion. This results in piecewise defined equations
of motion of the following type

M(q)q̈ + k(q, q̇) = T (1)

with the state variables q = (d, α1, α2)T or q = (α1, α2, α3)T and the controls
T = (F, τ1, τ2)T or T = (τ1, τ2, τ3)T , depending on the active configuration.
M(q) denotes the mass matrix and k(q, q̇) the vector of centrifugal and Cori-
olis forces. State variables at initial time and at final time tf are prescribed:

q(0) = q0, q̇(0) = q̇0, q(tf ) = qf , q̇(tf ) = q̇f (2)

Control constraints read as follows:

|Ti| ≤ Ti0, i = 1, 2, 3 (3)

To avoid damage of the ISS structure during motion, the end-effector has to
follow a pescribed path r̃(s) ∈ R3 with the path coordinate s. This results in
equality constraints

r(q) = r̃(s) (4)

with the position of the end-effector r(q).
Minimum time solutions are looked for subject to the conditions (1)–(4).

This yields a differential algebraic system of differential index 3.

3 Transformation into Minimum Coordinates

To avoid severe mathematical problems from the algebraic constraints (4),
they are eleminated by transformation into minimum coordinates (cf. [1]).
Differentiating (4) twice with respect to time and substituting into (1) yields
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T = b(s)s̈+ c(s, ṡ) (5)

b̃(s) := M(q(s)) r−1
q (q(s)) , b(s) := b̃(s) r̃s(s) (6)

c(s, ṡ) := b̃(s)

[
r̃ss(s)ṡ

2 −
(
d

dt
rq(q(s))

)
q̇(s, ṡ)

]
+ k(q(s), q̇(s, ṡ)) (7)

With the new and only control u := s̈ and the new state variables x1 = s
and x2 = ṡ, the new differential equations are linear and very simple. The
difficulties are transformed into the constraints (3)

−Ti0 ≤ bi(s)s̈+ ci(s, ṡ) ≤ Ti0, i = 1, 2, 3 (8)

For bi(s) 6= 0, this yields the mixed control and state multi-constraint

umin(s, ṡ) := max
i

(umin,i(s, ṡ)) ≤ s̈ ≤ min
i

(umax,i(s, ṡ)) =: umax(s, ṡ)

with

umax,i(s, ṡ) :=
sign(bi(s))Ti0 − ci(s, ṡ)

bi(s)
,

umin,i(s, ṡ) :=
−sign(bi(s))Ti0 − ci(s, ṡ)

bi(s)

For a regular parameterization of r̃(s), i.e. |r̃s(s)| 6= 0, there is at least one
nonzero element bi(s) (cf. (6) with M and r−1

q regular). For bi(s) = 0, (8)
yields a pure state constraint: |ci(s, ṡ)| ≤ Ti0.

The result of the transformation is a well-structured optimal control prob-
lem:

I(u) = tf → min (9)

subject to the equations of motion

ẋ1 = x2 , ẋ2 = u , (10)

the boundary conditions

x1(0) = s0 , x2(0) = ṡ0 , x1(tf ) = sf , x2(tf ) = ṡf , (11)

the control constraints

g1(x1, x2, u) := u− umax(x1, x2)≤ 0 (12)

g2(x1, x2, u) := umin(x1, x2)− u ≤ 0 (13)

and the state constraints

h(x1, x2) := umin(x1, x2)− umax(x1, x2) ≤ 0 (14)

h̃(x1, x2) := |ci(x1, x2)| − Ti0 ≤ 0 for bi(x1) = 0, i = 1, 2, 3 (15)
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4 Optimal Control Theory

The optimal control problem (9)–(15) is transformed into a multi-point bound-
ary value problem in a well-known manner (see e.g. [3], [2])

ẋ1 = x2, ẋ2 = u∗, λ̇1 = −Hx1
= −λ2

∂u∗

∂x1
, λ̇2 = −Hx2

= −λ1 − λ2
∂u∗

∂x2

with the adjoint variables λ1, λ2 and the Hamiltonian H = λ1x2 + λ2u. The
optimal control u∗ is given by

u∗(x1, x2) =





umin(x1, x2) if λ2 > 0

umax(x1, x2) if λ2 < 0

using(x1, x2) if λ2 = 0 ∀ t ∈ [t1, t2] ⊆ [0, tf ]

At switching points ts of the control between umin and umax, the condition

λ2|ts = 0

holds together with the interior point conditions

x1(t−s ) = x1(t+s ), x2(t−s ) = x2(t+s ), λ1(t−s ) = λ1(t+s ), λ2(t−s ) = λ2(t+s )

Another type of switching occurs at time tc, if there is a change between
the configurations with partly linear and fully rotational motion. For tc fully
optimized, the interior point conditions derived from the generalized first order
necessary conditions of optimal control theory read as follows

x1,2(t−c ) = x1,2(t+c ), λ1(t−c ) = λ1(t+c ), x2(tc) = 0, H|t−c = H|t+c
If (14) becomes active, then both control constraints (12), (13) become

active too and the constraint qualification [3] doesn’t hold any more

rank




∂g1

∂u g1 0 0
∂g2

∂u 0 g2 0
∂h1

∂u 0 0 h


 6= 3 , h1(x1, x2, u) := ḣ(x1, x2) (16)

Classical optimal control theory for state constraints is not applicable here!
To overcome this difficulty, we observe that u is uniquely determined by

u = umin(x1, x2) = umax(x1, x2)

For a boundary arc on [t1, t2] ⊆ [0, tf ], t1 < t2, h1(x1, x2, u) = 0 serves
as an additional constraint and completely determines x1, x2 together with
h(x1, x2) = 0. Because x1, x2 also have to satisfy (10), in general x1, x2 are
overdetermined. Thus, no boundary arcs are expected (and also not detected).
General contact points, however, are possible, but only touch points are found.
Application of the generalized first order necessary conditions leads to the nu-
merically stable interior point conditions for a touch point at t = tt ∈ ] 0, tf [
even in case of (16)

x1,2(t−t ) = x1,2(t+t ), h|tt = 0, h1
∣∣
tt

= 0, H|t−t = H|t+t (17)
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5 Numerical Example

 -6
 -4

 -2
0

 -10

0

10
0

2

4

x [m]y [m]

z
 [

m
]

tc
t0

tf

Fig. 2. Robotic manipulator and the prescribed path for the end-effector.

For the example system in Fig. 2 a high precision numerical solution of the
transformed multi-point boundary value problem has been obtained by the
new multiple shooting code Janus [2]. Total time of motion is tf = 11.736 s,
after tc = 6.0314 s optimal switching from the partly linear to the fully rota-
tional motion takes place. The optimal solution in Fig. 3 contains one touch
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Fig. 3. The optimal control and the accompanying switching function.

point of the state constraint (TP) where (17) holds. The switching point of
configurations (SP) is also a switching point of the control. An interesting
detail: λ2 is jumping across zero, not continuously passing through it. By
backward transformation the actuator force and torques are easily obtained.
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Summary. The transmitting spherical reflector antenna (SRA) has a well-known
rigorous solution form as a second kind Fredholm system that is well conditioned
when truncated to a finite system. The size of such systems for extremely large
SRAs require specially designed highly efficient numerical algorithms to make their
analysis feasible. Two significant features of the system are that its convolution
format admits a computationally rapid implementation of the bi-conjugate gradient
method, and at high frequencies, a certain decoupling occurs. These features allow
an effective numerical treatment of apertures some thousands of wavelengths.

Key words: spherical reflector antenna, electromagnetics, method of regu-
larisation, iterative methods

1 Introduction

Reflector antennas have long been studied by mostly high-frequency asymp-
totic techniques; however none predicts the spatial electromagnetic (EM) field
distribution with uniform accuracy. On the other hand the lower frequency
Method of Moments becomes computationally impractical for apertures ex-
ceeding about one hundred wavelengths.

When treated as a classical mixed-boundary value problem the antenna
fields are expanded in spherical wave harmonics, and rigorous solutions for
both acoustic and electromagnetic diffraction from the SRA may be derived,
as in [3], Part 2. These rely heavily on the Method of Regularisation (MoR)
outlined in [3], Part 1. In both acoustic and EM cases we obtained second kind
Fredholm equations as infinite systems of linear algebraic equations (i.s.l.a.e.)
to be solved for some modified Fourier coefficients. These systems can be
solved very effectively with a truncation method. Rapid convergence with a
proper choice of truncation number Ntr delivers the Fourier coefficients with
predictable accuracy. It was shown in [3], Part 2, that four-digit accuracy
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for the acoustic SRA of radius a is obtained with Ntr = [2πa/λ] + 12 (λ
wavelength).

Regularisation of the corresponding EM problem for the SRA produces a
coupled pair of i.s.l.a.e. for the electric and magnetic Fourier coefficients. Ma-
trix element computation is based entirely on recurrence formulae, obviating
the need for time-consuming numerical integration, and direct solution meth-
ods for the linear system makes it feasible to investigate relatively large SRAs,
of aperture size D up to D/λ = 500 in the acoustic case, and D/λ = 250−300
in the EM case (see [3], Part 2).

It is highly desirable to treat even larger SRAs in the quasi-optical region
where 1000 ≤ D/λ ≤ 10000. The successful acoustic treatment in [2] does
not simply transfer to the EM case because of the strong imbalance in the
magnitude of electric and magnetic Fourier coefficients that prevents their
accurate calculation if the bi-conjugate gradient method (Bi-CG) is directly
applied; at the very highest frequencies, convergence fails.

In this regime, we show that the original system approximately decouples
so that primary beam diffraction can be described by a separate system for
each polarization; the methodology of [2] then provides an effective treatment
of the decoupled equations. We examine the error dependence on iteration
number, and analyse its accuracy for huge SRAs.

2 The Decoupled System at High Frequencies

Let θ0 be the polar angle describing the SRA angular size; its aperture di-
ameter and electrical size are D = 2a sin θ0 and D/λ = π−1ka sin θ0, where

k = 2π/λ. The GO-focal distance is f = 1
2a so f/D = (4 sin θ0)

−1
.

The solution described in [3], Part 2, for the transmitting SRA, excited by
a complex point Huygen’s source (CPHS), incorporates the so-called polari-
sation constants arising from TE- and TM-wave coupling. Their elimination
from the relevant equations ((4.180)-(4.183) of [3], Part 2) produces the fol-
lowing system to be solved for the unknown electric {Xn}∞n=1 and magnetic
{Yn}∞n=1 Fourier coefficients that are O

(
n−1

)
as n→∞: for m = 1, 2, 3, . . .,

Xm −
∞∑

n=1

(Xnεn + αn)
(
Rnm −

γ1

∆
Rn0R0m

)
= iγ2

∞∑

n=1

(Ynµn + βn)Qn0R0m,

(1)

Ym −
∞∑

n=1

(Ynµn + βn)
(
Qnm +

γ3

∆
Qn0Q0m

)
= iγ4

∞∑

n=1

(Xnεn + αn)Rn0Q0m.

(2)
The remaining coefficients in (1) and (2) are the “incomplete scalar products”

{
Qnm

Rnm
=

1

π

{
sin (n−m) θ0

n−m ± sin (n+m+ 1) θ0

n+m+ 1

}
; (3)
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the asymptotically small parameters εn = 1 + 4ikaψ′n (ka) ζ ′n (ka) (2n+ 1)
−1

,
µn = 1 − i (2n+ 1)ψn (ka) ζn (ka) /ka that are O

(
n−2

)
as n → ∞; the con-

stants arising from elimination of the polarisation constants

γ1 = 4ka (1−Q00) +Q00/ka, γ2 = 4ka/∆,

γ3 = 4kaR00 + (1−R00) /ka, γ4 = (∆ka)
−1
, (4)

where ∆ = 4kaR00 (1−Q00)−Q00 (1−R00) /ka; and coefficients arising from
the CPHS located at a complex point rs = d+ ib,

αn = 4ikatn (krs) ζ
′
n (ka) , βn = −i (2n+ 1) tn (krs) ζn (ka) /ka, (5)

where tn (krs) = (iψ′n (krs) + ψn (krs)) /krs, and ψn (z) =
√
πz/2Jn+ 1

2
(z),

ζn (z) =
√
πz/2H

(1)

n+ 1
2

(z) are the spherical Bessel functions in Debye notation.

The computation of the matrix elements in (1), (2) is rapid if recurrence
formulae are used, and matrix fill-time is reasonable when D/λ ≤ 300. As
D/λ increases, matrix inversion becomes prohibitively expensive. Moreover,
commonly available PCs do not possess the necessary memory capacity and
speed to process matrix equations of extremely large size. An alternative that
is time and memory efficient employs the Bi-Conjugate Gradient Method (Bi-
CG) in which the matrix-vector multiplications of the iterative algorithm are
effected by the FFT. This approach succeeded for the acoustic analogy of
extremely large SRAs (D/λ ≤ 5000) [2]. A similar attack on the coupled
equations (1), (2) failed because of the vastly differing magnitudes of the
electric and magnetic coefficients (‖Yn‖ � ‖Xn‖).

Principal plane patterns for various values of D/λ (up to 300) showed
that their deviation in symmetry vanishes quite rapidly as D/λ increases,
indicating decoupling between the TE- and TM-waves. The terms on the
right hand sides of (1), (2) containing Xn or Yn provide a perturbation to the
reduced system formed by their omission. A crude analytical estimate showing

that the perturbation is proportional toO
(

(D/λ)
−2
)

, in the sense of the norm

estimate, was numerically confirmed for various values of D/λ and θ0. Thus,
at high values of D/λ, the equations (1) and (2) become, approximately,

Xd
m −

∞∑

n=1

Xd
nεnR

d
nm =

∞∑

n=1

αnR
d
nm, (6)

Y dm −
∞∑

n=1

Y dn µnQ
d
nm =

∞∑

n=1

βnQ
d
nm, (7)

where m = 1, 2, 3, . . ., the superscript d indicating the decoupled system, and

Rdnm = Rnm − (R00)
−1
Rn0R0m; Qdnm = Qnm + (1−Q00)

−1
Qn0Q0m. (8)

The difference between solutions to system (1), (2) and systems (6), (7), trun-
cated to a finite order Ntr for four-digit accuracy, is measured by
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erX =
∣∣‖Xn‖ −

∥∥Xd
n

∥∥∣∣ / ‖Xn‖ , erY =
∣∣‖Yn‖ −

∥∥Y dn
∥∥∣∣ / ‖Yn‖ . (9)

Let us examine the SRA excited by a real Huygens source (b = 0) located
at rs = d + ib with d/a = 0.52 and θ0 = 35.13◦ (the Arecibo observatory
SRA angle). The dependence of erX , erY on D/λ is shown in Fig. 1(a). It
confirms the crude analytical estimate of the scale of decoupling. Radiation
patterns for various f/D ratios and electrical sizes D/λ were computed; for
any f/D value, even for small antennas (e.g., D/λ = 20, shown in Fig. 1(b)),
the radiation patterns coincide graphically (to within 1%). As D/λ increases,
the difference rapidly diminishes below the error due to truncation itself.
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Fig. 1. (a) The error measures erX , erY ; (b) the principal plane patterns D/λ = 20.

3 Algorithm Performance on the Decoupled System

The decoupled system (6), (7) has much in common with that describing
the acoustic case [2]; its form, as a discrete convolution, allows matrix-vector
products, performed iteratively by the Bi-CG algorithm, to be very efficiently
implemented with the discrete FFT. The matrix is not retained in memory;
it is represented by a simple vector requiring far less than the prohibitively
large storage needed by the full matrix. Thus computations with extremely
high rank systems become feasible, as in [2]. The convergence of the iterative
algorithm may be estimated using the difference of solutions XNi ,YNi and
XNi−1

,YNi−1
at steps Ni and Ni−1 via

erX (Ni) =
∣∣∥∥XNi −XNi−1

∥∥∣∣ / ‖XNi‖ , erY (Ni) =
∣∣∥∥YNi −YNi−1

∥∥∣∣ / ‖YNi‖
(10)

Figure 2(a) shows these error measures as a function of Ni with D/λ = 1500,
d/a = 0.52 and θ0 = 35.13◦; erX (Ni) and erY (Ni) fall below 10−8 when
Ni = 879 and Ni = 2699, respectively. Figure 2(b) shows the comparable
result for a huge SRA (D/λ = 12000) of matrix rank Ntr = 216 = 65536.
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Fig. 2. The error measures erX (Ni), erY (Ni) for D/λ = 1500 (a) and 12000 (b).

4 Conclusions

At high frequencies the equations describing the SRA are effectively decou-
pled, increasingly so as its electrical size grows. The decoupled approximation
is valid within engineering accuracy when D/λ ≥ 20. The analysis of large
SRAs is effectively and efficiently performed by the Bi-CG algorithm in which
matrix-vector multiplication is performed with discrete FFTs as illustrated
with an example with D/λ = 12000. Our calculations were also validated
against those of [1] on the performance of a sub-aperture of diameter 105
metres in the Arecibo reflector. This approach is also applicable to various
problems solved by the MoR [3].

References

1. A.W. Love. Radiation patterns and gain for a nominal aperture of 105 meters
in the Arecibo Spherical Reflector. IEEE Antennas Propagat. Mag., 43(1):20–30,
2001.

2. P.D. Smith, E.D. Vinogradova, and S.S. Vinogradov. Analysis of extremely large
spherical reflector antennas. In Proc. International Symposium on Electromag-
netic Theory, pages 730–732, Pisa, Italy, 2004.

3. S.S. Vinogradov, P.D. Smith, and E.D. Vinogradova. Canonical Problems in
Scattering and Potential Theory, Part 1: Canonical Structures in Potential The-
ory, Part 2: Acoustic and Electromagnetic Diffraction by Canonical Structures.
Chapman & Hall/CRC Press, Boca Raton FL, 2001, 2002.





Part II

Theme: Electronic Industry





Simulation and Measurement of Interconnects
and On-Chip Passives: Gauge Fields and
Ghosts as Numerical Tools

Wim Schoenmaker1, Peter Meuris2, Erik Janssens3, Michael Verschaeve4,
Ehrenfried Seebacher5, Walter Pflanzl6, Michele Stucchi7, Bamal Mandeep8,
Karen Maex9, and Wil Schilders10

1 MAGWEL wim.schoenmaker@magwel.com
2 MAGWEL peter.meuris@magwel.com
3 MAGWEL erik.janssens@magwel.com
4 MAGWEL michael.verschaeve@magwel.com
5 austriamicrosystems ehrenfried.seebacher@austriamicrosystems.com
6 austriamicrosystems walter.pflanzl@austriamicrosystems.com
7 IMEC michele.stucchi@imec.be
8 IMEC bamal.mandeep@imec.be
9 IMEC karen.maex@imec.be

10 PHILIPS wil.schilders@philips.com

Summary. This paper describes the present status of using lattice gauge and ghost
field methods for the simulation of on-chip interconnects and integrated passive
components at low and high frequencies. Test structures have been developed and
characterized in order to confront the simulation techniques with experimental data.
The solution method gives results that are in agreement with the measurements.
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tion, Ghost Fields

1 Introduction

With the further downscaling of deep-submicron CMOS devices a continuous
increase in transistors switching rates is achieved. This allows for faster circuits
and as a consequence, more powerful products become available to consumers.
The downscaling not only has an impact on the speed of information process-
ing as a results of fast switching times. Moreover, per unit chip area a much
larger number of active devices is encountered. In other words: the transistor
density has continuously increased over the years. This evolution was captured
in the famous Moore’s law [4] predicting that every 18 months the performance
of integrated circuits will double. Derivations of Moore’s law are that the cost
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per transistor will drop exponentially or that the clock frequency of the inte-
grated circuits will grow exponentially. It should be emphasized that Moore’s
statement has been the driver behind the tremendous growth of the semicon-
ductor industry, but it should also be stressed that Moore’s law extrapolates
an early observation, that at some instance will break down because physical
laws will be violated or economical constraints will not release the required in-
vestments for the technology development and manufacturing. In the present
work, we are primarily interested in the physical issues that will ultimately
prevent us from sustaining in agreement with Moore’s prediction. Actually,
our approach is based on the very conventional attitude to keep in pace with
the Moore’s law. As a consequence, design methodologies that worked fine in
the passed have to be upgraded to incorporate the new physical phenomena
that come with cranking up the frequencies and densifying the active devices.
Moreover, new interconnect technology is needed to guarantee that the gain
in switching speed is not annihilated by interconnects that suffer from too
much delay and loss. In order to achieve these goals a number of challenges
need to be addressed.

Which difficulties are to be expected?

The amount of difficulties coming with further downscaling of the integrated
circuit is huge. The interested reader can find a detailed account in the an-
nual revised International Technology Roadmap for Semiconductors [1]. Just
to mention a view : printing the small structures on Silicon, will require fur-
ther research in lithography. Keeping the source and drain well separated
and at the same time reducing the channel lengths of the transistors, will
require increasing control over the activation and diffusion of the dopants.
The engineering of the channel will require several modifications in order to
suppress the short-channel effect (SCE). The latter corresponds to lowering
of the threshold voltage and results into a less clearer distinction between the
on and off state of the transistor.

Apart from all the difficulties (”challenges”) that one encounters inside
the active devices or in-Silicon, there are also many issues to be dealt with for
the interconnects or the on-Silicon architecture. The transistor densification
requires that the interconnects have less spacing and cross talk becomes a
serious issue. Not only do interconnects act as receivers for signals in neigh-
boring runners, the currents in the runners are also re-distributed due to the
presence of signals in neighboring lines. This is the proximity effect. These
effects all occur as high-frequency. Of course, the well-known skin effect also
plays an important role on wide ( ∼ 1µm) interconnect at frequency of ∼ 20
GHz, which represents the wire bandwidth necessary to allow a correct prop-
agation of 1-2 GHz clock signals. Signal delay is an effect of major importance
and the technological way to reduce it, is by reducing the resistance of the
interconnects and to reduce the capacitances of the runners. The resistance
can be lowered by choosing different metallic materials (Al → Cu) and the
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capacitances can be lowered by using dielectric materials with a lower permit-
tivity (lowK materials). Here, a first hard limit is encountered from physics :
the lowest permittivity that ever can be reached is εr = 1, being the permit-
tivity of vacuum. The lowest values that are presently available are 1.7-2.3
and belong to porous materials that suffer from mechanical stability. There-
fore it is not evident that these materials are suitable for use in the back-end
processing.

The difficulties that we will address in this paper deal with design. Whereas
at low frequencies it suffices to characterize the interconnect layout by its
lumped resistance and lumped capacitance parameters, at high frequencies
the full electromagnetic characterization is required. It is desired that the de-
signer still has access to compact models that characterize the structures, the
building of these compact models requires a full electromagnetic analysis in the
frequency range of interest and in three spatial dimensions. Two-dimensional
considerations are too restrictive since modern interconnect layouts are done
in a multi-layer pattern. By inclusion of the frequency dependence, i.e. the
physics of the electromagnetic fields, above mentioned effects are captured.

2 The Maxwell Equations and the Drift-Diffusion
Equations

After having described the problem under consideration, we will give in this
section the physical equations corresponding to it. As was stated above, we
want to obtain compact models for given structures in three dimensions that
describe their current-voltage characteristics accurately. These characteris-
tics are the results of an interplay between electromagnetic fields and their
sources being the charge and current densities. The latter are described by
the Maxwell equations that are summarized below :

∇ ·D = ρ (1)

∇ ·B = 0 (2)

∇×E = −∂B

∂t
(3)

∇×H = J +
∂D

∂t
. (4)

In here, D, E, B, H, J and ρ denote the electrical induction, the electric
field, the magnetic induction, the magnetic field, the current density and the
charge density. The following constitutive equations relate the inductances to
the field strengths :

B = µH , D = εE . (5)
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The permittivity, ε, and permeability, µ and the constitutive equation that
relates the current J to the electric field and the carrier densities, are deter-
mined by the medium under consideration. For a conductor the current J is
given by Ohm’s law :

J = σE . (6)

At metallic contact, we assume that the contact is such a high quality con-
ductor, that the tangential electric field in the contact pad vanishes. In other
words at the contact, we have

n×E(x, t) = 0 , x ∈ contact . (7)

Furthermore, at the metallic contact pad it is assumed that the perpendicular
component of the magnetic induction B vanishes :

B · n = 0 , x ∈ contact . (8)

Outside the contact pads different boundary conditions can be explored. The
precise implementation depends on the problem under consideration and the
frequencies of interest. It should be stressed that the failure or success of a
high-frequency simulation strongly depends on the proper choice and treat-
ment of the boundary conditions. In the semiconducting regions, the current
J consists of negatively and positively charged carrier currents obeying the
current continuity equations.

∇ · Jn − q
∂n

∂t
= U(n, p) , (9)

∇ · Jp + q
∂p

∂t
= −U(n, p) . (10)

In here, the charge and current densities are

ρ = q(p− n+ND −NA) , (11)

Jn = qµnnE + kTµn∇n , (12)

Jp = qµppE− kTµp∇p (13)

and U(n, p) is the generation/recombination rate of charged carriers. The
current continuity equations provide the solution of the variables n and p. Up
to this point we have not faced the need for introducing the Fermi potentials as
well as the Poisson potential. These variables enter the description through the
boundary conditions. At ohmic contacts it is assumed that charge neutrality is
valid and that the applied bias is equal to the Fermi potential. In particular,
in the drift-diffusion model, the carrier densities are given in terms of the
Poisson and Fermi potential as

p = ni exp
q

kBT
(ϕp − V ) ,

n = ni exp
q

kBT
(V − ϕn) . (14)



Simulation and Measurement of Interconnects 61

Using the charge neutrality, the contacts are characterized by p − n + ND −
NA = 0 and ϕp = ϕn = Vapp, where the latter is the applied voltage. Since the
boundary conditions are formulated in terms of potentials, it makes sense to
introduce the magnetic vector potential A next to the electric scalar potential
V in the following way : The magnetic induction B is given by

B = ∇×A (15)

and using (3), the electric field is given by

E = −∇V − ∂A

∂t
. (16)

The Maxwell equations are expressed in terms of the potential formulation as
follows :

−∇ · ε
(
∇V +

∂A

∂t

)
= ρ (17)

∇×∇×A = µ0J− µ0ε
∂

∂t

(
∇V +

∂A

∂t

)
. (18)

Since the operator ∇×∇× has no inverse, the vector potential is not uniquely
defined and a gauge condition should be added. It is very appealing to use the
Coulomb gauge since in this gauge the Poisson equation remains unaltered. In
other words : the Poisson equation has no frequency-dependent terms. Thus
we obtain :

∇ · (εA) = 0 and −∇ · (ε∇V ) = ρ (19)

From (16) it follows that E and A should be considered on equal level.
As a consequence, since E is assigned to links of the computational grids,
this should also be the case for the variables A. This observation has far
reaching consequences. In order to compute link variables as fundamental un-
knowns, the corresponding discretization should reflect this point. Setting up
discretized equations for these variables amounts to assigning a pointer to
every link in the grid.

3 Gauge Fields and Ghost Fields

The discretization of Ampére’s equation (18) can be done by applying Stokes’
theorem twice [3]. In Fig. 1, this method is illustrated. Each link of the grid
provides one equation and one unknown, i.e. the projection of A along the
link : Aij = A · eij , where eij is the unit vector pointing from node i to node
j. However, the singularity of the ∇ × ∇× operator pops up as redundancy
in the system of equations, i.e. the equations are not independent. In fact,
the discretization of the gauge condition by applying Gauss’ theorem for each
node results into an additional system of equations that just eliminates the
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Fig. 1. Illustration of the discretization of ∇×∇×A .

redundancy. Although we could proceed with the system of equations (17, 18,
19), there is a serious drawback in this formulation. The combined system of
equations is not square, i.e. there are more equations for the link variables as
Aij than there are unknowns. The mismatch in the counting of the number
equations and the number of unknowns corresponds to the number of nodes in
the grid [6]. The lack of having a square matrix corresponding to the system
of equations for the the link variables obstructs the use of iterative linear
solvers, that are nowadays the workhorses is simulation [5]. However, from the
observation that the size of the mismatch is just equal to the number of nodes,
suggests that we could recover a square formulation by adding additional
degrees of freedom. To be more precise : for each node we need one additional
unknown. This strategy lies at the heart of the solving techniques exploited
by MAGWEL [2]. The feasibility of this approach was shown in [6, 7]. The
additional collection of unknowns has been named a ghost field : χ. Just as the
quantum ghost particles that are indispensable to formulate the problem in a
mathematical consistent and computable way, this ghost field has a classical
(non-quantum) basis and is also indispensable to formulate the problem in
an attractive numerical scheme. Whereas in the past, only analytical efforts
shaped our language to describe a physical problem we now enter into an era
in which the desire to address computational methods also contributes to the
language of physics. After inclusion of the ghost field, the equations (17, 18,
19) become

−∇ · (ε∇V ) = ρ (20)

∇×∇×A +∇χ = µ0J− µ0ε
∂

∂t

(
∇V +

∂A

∂t

)
(21)

∇2χ+∇ ·A = 0 (22)
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Finally, after applying a small-signal analysis by setting all variables X =
X0 + (XR + iXI) exp (iωt) we finally arrive at the system of equations that
may formally be given by equation (23) :

[
A(ω) B(ω)
C(ω) D(ω)

]
∗
[

X
Y

]
=

[
F
G

]
. (23)

In here, the vector X corresponds to the usual set of technology computer-
aided design (TCAD) variables and the vector Y corresponds to the electro-
magnetic (EM) extension to incorporate high-frequency effects, i.e.

X =



V
ϕp
ϕn


 , Y =

[
A
χ

]
. (24)

In particular the structure of the matrix becomes
[
A0 + ωA1 ωB
C0 + ωC1 D0 + ωD1 + ω2D2

]
. (25)

Starting from the formulation given above, a new simulation tool has been con-
structed that allows a detailed computation of the electromagnetic behavior
of on-chip structures, taking into account the presence of the semiconducting
substrates and the junctions therein. As can be observed from (25), we see
that at low frequencies a decoupling occurs. The B-matrix gets small and it
suffices to compute the solution X that can be inserted in the second equation
for Y. The feed-back of Y on the solution for X is negligible. In Fig. 2, the
convergence behavior is illustrated that is typically observed by iteratively
solving the TCAD and the EM problem.

Gauges and Ghosts : The History in a Nutshell

The history of gauge theories is a long and fascinating story. It is likely that
the story has not reached its end. Reflecting back on electromagnetism, the
first scientific formulation was done in terms of forces. The Coulomb law, ex-
perimentally verified by Cavendish, gives the forces acting between charges.
Similarly, the law of Biot-Savart that lies at the heart of describing magnetic
interactions is also expressed in terms of forces. A major breakthrough and
change in perception was introduced by Faraday, who puts emphasis on the
fields. In other words : whereas for forces it is always needed to have at least
two particle participating in the description of electromagnetic interactions,
the fields are modifications of the surrounding space of a single particle. The
reality of such vacuum modifications have become even more acceptable after
the discovery that light consists of electromagnetic waves. In order to compute
the properties of electromagnetic fields it turned out to be quite convenient
to introduce the scalar and vector potentials V and A. Note that this incor-
porates a next level of abstraction : the potentials are not uniquely defined
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Fig. 2. Convergence behavior of the TCAD and EM residuals in different frequency
ranges.

and equivalent descriptions exist by making the following substitutions or
performing a gauge transformation :

V (x, t)→ V ′(x, t) = V (x, t) +
∂Λ(x, t)

∂t
A(x, t)→ A′(x, t) = A(x, t) +∇Λ(x, t) . (26)

It was Hermann Weyls [8] great contribution to observe that this non-uniquess
is related to a symmetry principle : In each space-time point the local frame
that determines the real and imaginary part of a quantum-mechanical wave
function, may be arbitrary chosen. This means that the wave function can
be multiplied with an arbitrary phase factor g((x, t) = exp iΛ(x, t). This
is an element of the unitary group U(1). Weyl named this non-uniquenes
”Maszstab” (gauge) invariance. In 1954, C.N. Yang and R. Mills proposed
a model that generalizes the group U1) to a non-abalian group SU(2) The
Weinberg-Salam model for weak interactions is (1967) is the first successful
application of this idea. Soon the next success was recorded by applying the
Yang-Mills concepts to the strong interactions that resulted into the theory
of quantum-chromodynamics. Here the symmetry group is SU(3). Nowadays,
so-called gauge theories are the basis for our understanding of fundamental
interactions.

The use of gauge theories was very much enforced by the aim to understand
the elementary particles at the quantum level. However, the quantization of



Simulation and Measurement of Interconnects 65

gauge theories was hampered precisely because of the underlying gauge invari-
ance. A major achievement was realized by Fadeev and Popov, Feynman, ’t
Hooft and Veltman who were able to respect unitary principles by introducing
a fictitious particle, a ghost particle that is only present inside closed loops of
the scattering Feynman diagrams. The ghost particle paved the road towards
a consistent quantization of gauge theories.

With the advent of computers, the ghost particle also can play an impor-
tant role. This ghost field differs essentially from the quantum ghost field.
Whereas the latter carries energy, albeit only inside virtual processes, i.e. in-
side quantum loops, the ’computational’ ghost field is a zero-energy field. The
field exists, i.e. is different from zero, while the computation is still iterating
towards its solution. When arriving at the solution the computational ghost
field fades out.

Ghost fields may appear a nuisance in modern physics. However, if one
classifies ghost fields as indispensable computational but unphysical dynami-
cal variables or degrees of freedom, they have been used for many years. An
example is provided by the electromagnetic fields in the Lorentz gauge in free
space. The Green function of this field is :

G(k, ω) =
δµ,ν

|k|2 − ω2 + iε
, (27)

where δµ,ν with (µ, ν = 0, 1, 2, 3) is the Minkowski metric of space and time.

δµ,ν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (28)

Let the electromagnetic wave propagate in the z- direction. There are two
transversal components, Ax and Ay. Actually the time component, that cor-
responds to the δ00 = −1 weight of the Green function, is unphysical. This
part cancels the longitudinal component, i.e. δ33 = 1, that is also unphysical,
such that only the two physical transversal components remain. One can fairly
say that the fields V and Az are ghost fields for the description of electro-
magnetic waves in free space. An application of these ideas in computational
electromagnetism is provided by a transformation of the variables (V,A, χ) to
the variables (V,E), by using A = i

ω (E+∇V ). In this formulation, V can also
be viewed as a ghost field. Note that a ghost field is still needed to regulate
the singular operation ∇×∇×E.

4 Applications

In the section, we will present a number of applications. The examples illus-
trate how high-frequency effects are manifest in on-chip structures and how
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the environment consisting of the substrate and dielectric material will impact
the results. The first example shows that substrate currents are induced by
high-frequency signals in the runners above the substrate. The second exam-
ple discusses a metal-insulator-metal capacitor. It is shown that the lumped
element parameter, i.e. the capacitance varies as a function of the frequency.
The third example shows how co-planar strip lines can be characterized start-
ing from the Maxwell equations and the constitutive equations and deriving
the lumped-element parameters. In the fourth example, a full analysis is done
of a spiral inductor above a conductive substrate.

Substrate Currents.

A U-shaped conductor is positioned above a conductive substrate as is illus-
trated in Fig. 3. The conductor is biased with a high-frequency AC signal. An
alternating magnetic induction is injected in the substrate and Faraday’s law
implies that circular electric fields are generated in the substrate. Since the
substrate is conductive, eddy currents will flow. Naively, one might expect to
interrupt the flow of the eddy currents by putting insulating trenches in the
substrate. In Fig. 3, a ”+”-shaped trench is etched in the substrate. This will
indeed have some effect, however as can be seen in the Fig. 3, the eddy cur-
rents are still present. This is because displacement currents will be induced in
the trenches. This example illustrates that in order to characterize structures
that are composed of dielectrics and conductive materials at high-frequencies,
all terms in the Maxwell equations are needed for capturing the full physical
picture.

Fig. 3. 3D view of a U-turn structure above a conductive substrate (left). The
induced substrate current is shown (right).
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Metal-Insulator-Metal Capacitor

In Fig. 4, a 3D view of the MIM capacitor is show. Above a substrate, a
metallic layer is deposited. Next a thin layer or dielectric is deposited and next
a second metallic plate is deposited. Above this plate a ’thick layer of dielectric
material is deposited and the contact pad is attached. The contact pad is
attached to the second metallic plate of the condenser by a grid of vias that
are etched in the top dielectric layer. The vias are seen in Fig. 4. The structure
was designed, processed and characterized by austriamicrosystems. In Fig. 5
the comparison is shown of the measured and the simulated capacitance as
a function of the frequency. The plateau in the experimental data around 25
GHz is presently under study.

Fig. 4. 3D view of the Metal-Insulator-Metal (MIM) capacitor.

Co-planar striplines

The layout of the simulated coplanar line is shown in Fig. 6. This structure
represents a large on-chip wire, running between by two adjacent grounded
conductors; the silicon substrate is also grounded, but most of the fields are
supposed to be concentrated between the wire and the conductors. This struc-
ture is used to characterize the behavior of interconnect materials, namely
insulators and conductors, at high frequency. Input for the simulation are
material parameters such as the effective dielectric constant and loss tan-
gent of the insulator, the resistivity of the conductor and the geometry of
the structure, i.e. the wire width, length, spacing and the thickness of layers.
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Fig. 5. Comparison of the measured and simulated capacitor of the MIM structure
as a function of the frequency. The solid lines are measurements and dashed lines
are simulations.

Simulations of the structure without contact pads have been compared with
S-parameters measurements in a frequency range from 1GHz to 30GHz, after
de-embedding the parasitics originating from the pads. At these frequencies,
the skin effect and current crowding are present in the structure. Both effects
are clearly shown in Fig. 7. The simulation shows that, when using all terms
in the Maxwell equations, it is possible to capture the full physical picture
and determine the line parameters. In Fig. 8, Fig. 9 and Fig. 10, a compar-
ison is shown between the simulated line parameters and the measured line
parameters. Even at high frequencies, there is a very good match between
simulation and experiment. The line parameters R,L and C vs. frequency are
very important for estimating and designing the signal propagation on-chip.
The increase in resistance and the decrease in inductance is due both to the
skin effect and to the current crowding : the skin effect increases R, the cur-
rent crowding increases R and decreases L since there is a reduction of the
size of the inductance loop made by the wire and the return path on the two
conductors.

Spiral inductor

One of the standard examples of on-chip passives is the design of a spiral
conductor. The layout of the spiral is given in Fig. 11 spiral is realized in
the 0.35 µm technology of The structure under study is depicted in Fig. 12.
The design was carried out by austriamicrosystems in the framework of the
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Fig. 6. The layout of the coplanar line under study.

Fig. 7. The current distribution at 30GHz in the coplanar line under study.

CODESTAR project and the spiral was processed using the 0.35 µm technol-
ogy of austriamicrosystems.

The S-parameters of the spiral inductor have been measured and the Q-
factor was extracted from the data. The extracted and simulated results for
the Q-factor are shown in Fig. 13. The simulation was carried out using a
mesh of 44550 nodes, in a simulation domain of 1000 µm × 1000 µm × 307.56
µm, for 24 frequency points in a frequency range from DC to 23 GHz.

The simulation predicts the location of the resonance frequency. At this
frequency the electric energy equals the magnetic energy and the structure’s
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Fig. 11. The layout of the spiral inductor developed by austriamicrosystems.

Fig. 12. The geometry of the spiral inductor under study.

behavior changes from inductive to capacitive and the resulting quality factor
vanishes.
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5 Conclusions

This paper presented an approach to handle on-chip electromagnetic effects.
The underlying idea is that at high frequencies, the inductive parts of the elec-
tric fields are a substantial fraction of the total electric field. This is clearly
illustrated for the skin effect : at the inner part of the runner where the skin
effect is manifest, the inductive part of the electric field will compensate the
external electric field with the result that the total electric field vanishes. As
a consequence, no current is present. In general, at high frequencies the in-
ductive effects will be present ubiquitously. The computation of these fields
requires that the environment is faithfully included in the set up of the com-
putation. In particular, the simulation of part of the integrated circuits puts
severe demands on the structure editor. Whereas ”toy” problems can still be
edited using rather elementary building blocks, the industrial problems need
much more powerful tools to prepare the simulation. Within the EUI project
CODESTAR, a structure editor is developed that is capable of reading GDS
files. The latter contain the mask information that is needed to print the on-
chip structures. The geometrical data is very fine-detailed, since processing
constraints are also taken into consideration. For example, the vias that con-
nect the metal layers in Fig. 4, are drilled in a 0.35 micron technology. This
via structure introduces about 10.000 additional nodes in the grid. Keeping in
mind a rule of thumb that every node introduces 10 fundamental unknowns,
the computational burden that induced by the vias is tremendous. For that
reason mesh cleaning is a necessity and tools for that purpose have been devel-
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oped. Once that an appropriate mesh has been found, the computation of the
fields should be done. Now the boundary conditions come into the picture. For
TCAD-alike problems, the boundary conditions for the vector potential can
be chosen of the Dirichlet type. In the simulations that have been discussed
in this paper, the boundary conditions for the vector potental was chosen
to be Aij = 0 for the link ij being at the surface of the simulation domain
and χi = 0 for node i being at the surface of the simulation domain. Such
an approach requires a sufficient amount of space around the structures of
interest in order to capture the electromagnetic energy. This free-field space
adds additional grid nodes to the computational problem and hands-on ex-
perience has to be gathered to find sensible trade-off between accuracy and
speed. Our method to discretize the vector potential by taking into account
its geometrical meaning, i.e. by respecting the fact that it is a vector field,
contrary to a scalar field, turns out to be beneficial in the sense that even
rather crude meshes are able to grab the behavior of these fields under high-
frequency biases. There is a lesson to be learned from this observation : The
discretization of physical fields should be guided by the geometrical character
of the field under consideration. Many software tools implicitly take this as-
pect already into account. However, there are also numerous tools that ignore
the geometrical connection and assign vectors (one-forms) and surfaces (two-
forms) to the nodes of the computational grid. Our observations discourage
such implementations.
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Summary. Surface acoustic wave filters are widely used for frequency filtering in
telecommunications. These devices mainly consist of a piezoelectric substrate with
periodically arranged electrodes on the surface. The periodic structure of the elec-
trodes subdivides the frequency domain into stop-bands and pass-bands. This means
only piezoelectric waves excited at frequencies belonging to the pass-band-region can
pass the devices undamped.

The goal of the presented work is the numerical calculation of so-called “disper-
sion diagrams”, the relation between excitation frequency and a complex propaga-
tion parameter. The latter describes damping factor and phase shift per electrode.

The mathematical model is governed by two main issues, the underlying peri-
odic structure and the indefinite coupled field problem due to piezoelectric mate-
rial equations. Applying Bloch-Floquet theory for infinite periodic geometries yields
a unit-cell problem with quasi-periodic boundary conditions. We present two for-
mulations for a frequency-dependent eigenvalue problem describing the dispersion
relation.

Reducing the unit-cell problem only to unknowns on the periodic boundary
results in a small-sized quadratic eigenvalue problem which is solved by QZ-methods.
The second method leads to a large-scaled generalized non-hermitian eigenvalue
problem which is solved by Arnoldi methods.

The effect of periodic perturbations in the underlying geometry is confirmed by
numerical experiments. Moreover, we present simulations of high frequency SAW-
filter structures as used in TV-sets and mobile phones.

Key words: piezoelectric effect, periodic structures, Bloch theory, eigenvalue
problems.
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1 Introduction

This work deals with mathematical modeling and numerical simulation of
periodic piezoelectric Surface Acoustic Wave filters (briefly SAW-filters) and
results in the computation of so-called “dispersion diagrams”. We focus on
surface acoustic wave devices used for frequency filtering in wireless communi-
cation such as standard components in TV-sets and cellular phones. However,
there are many other application fields of SAW-devices as in radar and sensor
technology and non-destructive measurement.

A SAW filter consists of a piezoelectric substrate onto whose surface elec-
trode structures are evaporated. We want to concentrate on analyzing fre-
quency filtering effects caused by the periodic arrangement of the electrodes.
In practical periodic SAW-filters one arranges some hundreds up to some
thousands of electrodes periodically in order to gain the so-called stop-band
phenomena. The nature of periodic structures prohibits the propagation of
SAWs excited in several frequency ranges. The frequency domain is classified
into pass-bands, i.e. frequencies for which excited surface waves get through
the periodic piezoelectric device, and stop-bands, i.e. frequencies which can-
not pass trough. Therefore, the piezoelectric device can be used for frequency
filtering.

A fundamental and recommendable introduction to acoustic field prob-
lems, various (surface) wave modes and piezoelectricity is provided by Auld
in [3]. The numerical solution of piezoelectric systems via the finite element
method is treated e.g. by Lerch in [16]. An overview of the historical develop-
ment of SAW-devices is given in [19]. The principles of periodic SAW-devices
are treated in some IEEE papers like [12], however, in most of them only
pure-propagating modes are simulated.

The mathematical justification for the quasi-periodic field distribution is
given by Bloch-Floquet theory, which analyzes the spectral properties of ordi-
nary and partial differential operators on periodic structures. This theory was
developed by Bloch for solving special problems in quantum mechanics, where
one deals with periodic Schrödinger operators, and by Floquet for ordinary
differential equations. A description by physicists can be found in [17] and
in [2]. A functional analytic approach is provided by Simon and Reed [20].
The generalization to partial differential equations with periodic coefficients
was done by Bensoussan, Lions and Papanicolaou in [6] for real and elliptic
problems and by Kuchment [13], who applied the theory to scalar equations
on photonic and acoustic band-gap devices in [4].

Bloch-Floquet theory states that the solution on periodic structures can
be decomposed into quasi-periodic functions, so-called Bloch waves. Therefore
the problem can be restricted to the unit-cell, i.e. the domain including one
electrode. Successive arrangement of this unit-cell yields the original geometry.
In order to describe the original periodic system, appropriate quasi-periodic
boundary conditions have to be established.
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The unit-cell problem turns out to be a coupled-field eigenvalue prob-
lem depending on either the frequency or the complex propagation constant.
The numerical solution requires discretization, which is done by the Finite
Element Method (FEM), and the application of an eigenvalue solver. We in-
troduce step-by-step the mathematical tools for handling periodic structures,
i.e. formulating and incorporating appropriate boundary conditions and cor-
responding discretization methods.

We begin with the scalar wave problem and establish three different solu-
tion methods for computing the dispersion diagram. All these methods result
in non-hermitian eigenvalue problems of linear or quadratic form. Applying
the established methods to periodic structures on piezoelectric problems is for-
mally equivalent to the scalar wave model problem. However, the matrices get
indefinite and worse conditioned due to piezoelectric properties, which requires
special numerical treatment. Mathematical modeling results in two reasonable
versions of frequency-dependent eigenvalue problems, one of quadratic form
and the other one of generalized linear form. This requires special theory and
numerics of algebraic eigenvalue problems.

In [5] a recommendable collection of state-of-the-art direct and iterative
methods for large-scale eigenvalue problems is given. The book includes im-
proved algorithms and implementational details. Tisseur [23] specializes on
quadratic eigenvalue problems and Lehouqh [14] on Arnoldi and Implicit
Restarted Arnoldi Methods (IRAM). A collection of structure-preserving
methods is provided in [8].

The stated eigenvalue problems are solved numerically by our open-source
high-order Finite Element solver NGSolve [22] in combination with the mesh
generator Netgen [21]. For solving the occurring eigenvalue problems we link
the software packages Lapack [1], providing direct methods, and Arpack [9],
providing Implicit Restarted Arnoldi methods.

The main goal of this paper is the detailed derivation of a mathematical
model for surface wave propagation in periodic piezoelectric structures includ-
ing numerical solution methods and simulation of practical filter structures.
The paper is organized as follows. We start with the technical details of sur-
face acoustic wave filters including some first model assumptions, which are
based on physical considerations, in Section 2. An introduction to piezoelec-
tric equations is given in Section 3. To gain a detailed mathematical modeling
we treat the two main subproblems separately, those are wave propagation in
periodic media and the piezoelectric coupled field problem. In Section 4 we
derive mathematical tools and solution strategies for the dispersion context of
a scalar model problem with periodic coefficients. Section 5 starts with math-
ematical tools for the piezoelectric coupled field equations and results in com-
bining the solution methods derived in 4 to piezoelectric equations. Numerical
results are presented in Section 6. First, the effect of periodic perturbations
in the underlying geometry is confirmed. Second, we present simulations of
a high frequency SAW-filter structures as used in TV-sets or GSM-mobile
phones.
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2 Problem Description and First Model Assumptions

2.1 Surface Acoustic Qave Filters

We study a piezoelectric surface acoustic wave (SAW, Rayleigh-wave) device
as used for frequency filtering in telecommunications. The main components
of such devices are a piezoelectric substrate and two interdigital transducers
(IDT) (see Fig. 1). Such an IDT is a comb of electrodes evaporated on the
top surface of the piezoelectric crystal. Due to the underlying piezoelectric
substrate an IDT transforms an alternating voltage into mechanical deforma-
tions. An acoustic wave can be excited. Vice versa, mechanical vibrations of
the substrate evoke surface charges on the electrodes. An electric signal can
be measured at the receiving IDT.

Surface Acoustic Wave (SAW) Filter

Mechanical displacements:

Li Nb 0
Center frequency:
30 MHz - 3 GHz

3

Fig. 1. Principal SAW filter consisting of piezoelectric substrate and input/output
IDTs [15].

We focus on periodic SAW-filters where frequency filtering is achieved by
periodic arrangement of electrodes on the surface of the piezoelectric sub-
strate. If an acoustic wave propagates on the surface through the periodic
structure, it is partially reflected at each electrode. Depending on the excita-
tion frequency of the acoustic wave the reflected parts interfere constructively
or not. If there is huge number of electrodes and the reflections interfere con-
structively, the wave propagation is prohibited, although the reflections at
each electrode are very small. This effect occurs in whole frequency bands, so
called band-gaps or stop-bands.

Numerical simulation of the full three-dimensional device is not reasonable.
We already perform some model reduction on the geometric domain based on
physical considerations: We denote the direction of periodicity by (x), the
surface normal direction by (y) and their perpendicular direction by (z). The
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dimensional extension of electrodes in (z) – direction is huge in comparison
to the periodicity. Moreover, we assume homogenous material topology in (z)
– direction. We are mainly interested in the propagation of Rayleigh-waves
and their interaction with the periodic structure. These waves live near the
surface, the amplitude decreases rapidly within depth and becomes negligibly
small within the depth of a few wavelengths.

In general, surface waves are three-dimensional, but the relevant Rayleigh-
waves depend only on the sagittal plane, i.e. the plane spanned by the direc-
tion of propagation and the surface normal. Thus, the mechanical and electric
fields only depend on x and y coordinates. We can restrict the computational
geometry to two dimensions.

In practical SAW devices the IDTs consist of some hundreds up to some
thousands of electrodes. Therefore, extending the electrodes periodically to
infinity is a suitable approximation.

We choose the infinite 2-dimensional domain which is periodic in the x-
direction to model the piezoelectric substrate with a huge amount of periodi-
cally arranged electrodes. See Fig. 2.

piezoelectric substrate

period p

electrodes

x

y

Fig. 2. 2D periodic geometry

2.2 Quasi-periodic Wave Propagation and the Dispersion Diagram

We will see that in periodic structures the mechanical deformation u(x, t) and
the electric potential Φ(x, t) of surface acoustic waves can be decomposed into
quasi-periodic Bloch-waves of the form

u(x, t) = eiωte(α+iβ)xup(x), Φ(x, t) = eiωte(α+iβ)xΦp(x)

with the p-periodic functions up, Φp. The wave-propagation can be described
by the functional context between the frequency ω and the propagation pa-
rameter α+ iβ, which is of great interest for engineers designing SAW-filters.
The aim of this work is the full calculation of the dispersion diagram, which
gives the relation between ω, and the attenuation α and the phase shift β in
each periodic cell.

We can observe several wave modes in the dispersion diagram (see Fig. 3):
Surface waves belonging to pass- and stop-bands, but also bulk waves which
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Fig. 3. Dispersion diagram: structure with periodical arranged electrodes

are volume waves. For surface wave propagation the frequency domain is clas-
sified in pass-bands and stop-bands as follows:

Wave propagation occurs below the lower stop-band edge ω1. Surface waves
can pass the periodic structure undamped, i.e. they belong to the pass-band.

For stop-band frequencies ω ∈ (ω1, ω2) the wave reflections occurring at
each electrode, interfere constructively. The wave gets exponentially damped
(α 6= 0).

Above a certain frequencies ωc also bulk waves are excited by IDTs. A small
damping coefficient α is introduced, by the lack of energy into the material
caused by bulk waves. This effect is called “bulk wave conversion” and can
only be simulated if the model includes wave absorption of the material.

The dotted straight line in Fig. 3 shows the dispersion context in homoge-
nous materials, where no stop-band effects occur since there are no interfering
reflections.

3 The Piezoelectric Equations

Piezoelectric materials are characterized by the following two effects. The di-
rect piezoelectric effect states that a mechanical deformation of a piezoelectric
substrate evokes an electric field, which can be measured by charges on the
surface. The effect is reversible: a piezoelectric crystal shrinks or stretches, if it
is exposed to an electric field (converse piezoelectric effect). These phenomena
result from special asymmetries occurring in some crystalline materials (e.g.
in quartz by nature or in industrial produced ceramics). These effects cannot
exist in isotropic media, i.e. piezoelectric materials are always anisotropic. To
gain the piezoelectric equations we have to combine electrostatics and elasto-
dynamics. We state the equations in the three-dimensional space.
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Elasticity

For an impressed volume force density f(x) the elastic equation of motions
states that the mechanical displacement u and the mechanical stresses T are
related as

∂2u

∂t2
(x, t)− divxT = f(x). (1)

The elastic strains S are defined by the geometrical properties

S =
1

2
(∇u+ (∇u)t). (2)

Electrostatics

The electric field intensity E can be expressed by an electric potential Φ as

E = −∇Φ. (3)

Piezoelectric materials are insulators, i.e. there are no free volume charges.
Therefore electrostatics gives

−divD = 0 (4)

for the dielectric displacement vector D.

Piezoelectric material laws

We assume a linear piezoelectric coupling of elastic and electric fields, since
nonlinear coupling terms are negligible small. Extending Hook’s law and the
electrostatic equation for the dielectric displacement by the direct or respec-
tively the converse piezoelectric effect yields

Tij = cijklSkl − ekijEk,
Di = eijkSjk + εikEk,

(5)

where c denotes the mechanical stiffness tensor, ε the dielectric permittivity
tensor, e the piezoelectric coupling coefficient tensor.

We point out that the mechanical stiffness matrix and the permittivity
matrix are symmetric. Since the direct and converse piezoelectric effect are
symmetric, the coupling coefficients are equal for both effects. Due to sym-
metry considerations we can reduce the four material tensors: c to a 6 × 6
symmetric matrix, ε to a 3× 3 symmetric matrix and e to a 6× 3 matrix. We
refer the interested reader to [3] for more details on piezoelectric equations.
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4 A Scalar Model Problem

To get a better insight into the problem of wave propagation in periodic
media and to construct methods for the computation of dispersion diagrams
we start with a scalar model problem. We consider the scalar wave equation
with periodic coefficients. By the periodic arrangement of the cells Ωp

k =
[kp, (k + 1)p] × [0, H] we derive the strip Ω :=

⋃∞
k=−∞Ωpk , which is periodic

in (x1). This will be the underlying geometry modeling the infinite periodic
domain (see Fig. 4). We search for general solutions u(x, t) of the scalar wave
equation

∂2u
∂t2 (x, t)− divx(a(x)∇xu(x, t)) = 0 on Ω,

a(x) ∂u∂n (x, t) = 0 on ΓN ,
u(x, t) = 0 on ΓD.

(6)

Since we are interested in the structure of the solution space, we state no
initial conditions. The positive coefficient function a describes the periodical
properties of the material in x1-direction, i.e.

a(x1 + p, x2) = a(x1, x2) ∀ (x1, x2) ∈ Ω. (7)

The classical formulation requires higher regularity on the coefficients and on
the solutions. With regard to the weak formulation derived later we assume
the periodic coefficient a to be positive and piecewise constant. Moreover, the
arrangement of ΓN and ΓD is assumed to coincide with the periodic nature
of the domain, as shown in Fig. 4. Note that we state no radiation conditions
in x1-direction.

Fig. 4. Infinite periodical cluster 2D (Ω)

We can separate the time-dependency by shifting the problem to the fre-
quency domain. Therefore, we apply the time-harmonic ansatz

û(x, t) = û(x) eiωt. (8)

Form now on we suppress the hat-marker for the complex function û(x) ≡
u(x) and agree that to obtain physical results we have to consider the real
parts afterwards. The wave-equation (6) transforms to the following eigenvalue
problem with periodic-coefficient a(.):

Find the complex-valued eigensolutions u and eigenvalues ω ≥ 0 of

−div(a(x)∇u(x)) = ω2u(x) ∀x ∈ Ω. (9)
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4.1 Bloch’s Theorem and the Quasi-Periodic Unit-Cell Problem

The problem above states an eigenvalue problem with periodic coefficients in
an unbounded domain. Bloch-Floquet theory deals with the analysis of partial
differential operators with periodic coefficients.
Bloch theorem on the spectra of periodic operators

We assume the hermitian partial differential operator A : C2(Ω,C) →
C(Ω,C) to be invariant w.r.t. translations Tp of length p in x1-direction, i.e.

TpA = ATp with Tp : f(., .)→ f(.+ p, .) .

For every m-dimensional eigenspace EA(λ) := {v|Av = λv}, there exists a set
of Bloch waves (ϕi)1≤i≤m spanning EA(λ), i.e. satisfying

Aϕj = λϕj and ∃αj , βj ∈ R : Tpϕj = e(αj+iβj)pϕj . (10)

Lions [6] deals with elliptic operators, but restricts the solution space to the
case α = 0. The general case is treated in Kuchment [13].

Our problem requires the calculation of Bloch waves solving (9), which are
assumed to be quasi-periodic in x1-direction,

∃α, β ∈ R ∀ (x1, x2) ∈ Ω : u(x1, x2) = up(x1, x2)e(α+iβ)x1 (11)

with up being periodic, i.e. up(x1 + p, x2) = up(x1, x2) ∀ (x1, x2) ∈ Ω,
or equivalently

∃α, β ∈ R ∀ (x1, x2) ∈ Ω : u(x1 + p, x2) = u(x1, x2)ei(α+iβ)p. (12)

Apparently quasi-periodic Bloch waves are fully described by
� a periodic function up(·),
� the complex propagation constants α+ iβ.

Bloch’s theorem justifies a reduction of the infinite problem to one single
cell. We choose Ωp

0 and refer to the quasi-periodicity of the Bloch-waves by
introducing quasi-periodic boundary conditions on the interfaces ΓL = ∂Ωp−1∩
∂Ωp0 , ΓR = ∂Ωp0 ∩ ∂Ωp1 .

We state the quasi-periodic unit-cell problem in strong form as

−div(a∇u) = ω2u in Ωp
0 (13)

u = 0 on Γ0,D (14)

a
∂u

∂n
= 0 on Γ0,N (15)

γ u(x1, x2) = u(x1 + p, x2) for (x1, x2) ∈ ΓL (16)

−γ a(x1, x2)
∂u

∂nl
(x1, x2) = a(x1 + p, x2) ∂u∂nr (x1 + p, x2)

for (x1, x2) ∈ ΓL,
(17)

where γ := e(α+iβ)p and nl,nr denote the outer normal vectors on ΓL and ΓR,
respectively.
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4.2 The Mixed Variational Formulation

The variational formulation includes the real-valued or complex-valued Sobolev-
spaces

H1(Ωp0) := {u |
∫
Ωp0
|u|2 dx+

∫
Ωp0
|∇u|2 dx <∞} and

H1
0,D(Ωp0) := {u ∈ H1(Ωp0) |u = 0 on ΓD}. The weak formulation of (13)-

(15) in H1
0,D gives

∫
Ωp0
∇u∇v dx− ω2

∫
Ωp0
uv dx+

∫
ΓL
a ∂u∂nv ds+

∫
ΓR
a ∂u∂nv ds = 0,

where we assume a ∈ L∞(Ωp0). The incorporation of the quasi-periodic bound-
ary conditions (16)–(17) is done by a mixed formulation. First, we identify ΓR
and ΓL by a reference boundary Γ . Second, we define the trace-operators for
the restriction of left and right boundary, but with respect to the reference
boundary Γ , especially the superposition of the trace operator on Γl or Γr
and the identification of the boundaries with Γ :

trl : H1(Ω)→ H
1
2 (Γ )

u 7→ ul
,

trr : H1(Ω)→ H
1
2 (Γ )

u 7→ ur
.

Third, by introducing a new unknown for the normal-derivative with respect
to Γ

λ := a
∂u

∂nl
∈ H−

1
2 (Γ )

we can reformulate the weak formulation of (13)–(17) as non-symmetric
mixed variational formulation on the unit cell:

Find (u, λ) in H1(Ω)×H− 1
2 (Γ ) such that

∫
Ωp0
a∇u∇v dx− ω2

∫
Ωp0
uv dx + < trlv − γ trrv, λ > = 0 ∀v ∈ H1(Ω),

< trru− γ trlu, µ > = 0 ∀µ ∈ H− 1
2 (Γ ).

(18)
We used the duality product on Γ denoted by < ., . >:=< ., . >

H
1
2 (Γ )×H− 1

2 (Γ )
.

For regular functions this coincides with the L2-inner-product. The normal
derivative λ takes the role of a Lagrange-parameter.

4.3 The Frequency-Dependent Eigenvalue Problem

In the mixed variational problem (18) we are interested in possible solutions
(u, λ) in combination with the parameter-dependence on ω and γ. There are
two possibilities to extract a parameter-dependent eigenvalue problem:

1. Find all eigensolutions (u, λ) of (18) with positive eigenvalues ω2 depend-
ing on the parameter γ. If we want to calculate the whole dispersion con-
text, the EVP has to be stated depending on a complex parameter (α+iβ),
i.e. two real parameters. This approach is suitable if we state the problem
only for pass-bands, i.e. γ = eiβ .
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2. Find all eigensolutions (u, λ) of (18) with eigenvalues γ ∈ C depending on
the real-valued frequency ω. Since we are interested in general complex-
propagation parameters α + iβ, we choose this frequency-dependent ap-
proach.

Defining the frequency-dependent bilinear form

kω(u, v) :=

∫

Ωp0

a∇u∇v dx− ω2

∫

Ωp0

uv dx, (19)

we get an abstract version of the non-symmetric frequency-dependent
eigenvalue-problem for the quasi-periodic unit-cell problem:

Find eigenfunctions (u, λ) ∈ H1
0,D(Ωpp) ×H− 1

2 (Γ ) referring to the eigen-
value γ ∈ C

kω(u, v) + < (trl − γ trr)v, λ > = 0 ∀v ∈ H1
0,D(Ωp0 )

< (trr − γtrl)u, µ > = 0 ∀µ ∈ H− 1
2 (Γ )

(20)

dependent on the frequency ω ∈ R+.

4.4 Galerkin-Discretization of the Frequency-Dependent EVP

We assume a Galerkin-discretization Vh ⊂ H1
0,D(Ωp0) by H1-conforming finite

elements. The choice of a finite element base for H−
1
2 (Γ ) is more challenging.

If we consider a general discretization of the right and the left boundary we
are faced with the discretization of the dual space for the Lagrange-multiplier.
This can be done by Mortar finite elements as suggested in [7, 24].

If we use periodic meshes, in the sense that the left and the right boundary
are discretized equivalently, we can avoid the assembling of the FE-space for
the Lagrange-parameter and simply use nodal constraints on the boundary.
In that case, the degrees of freedom are directly connected and so the discrete
matrices of the trace-operators are simply identity matrices.

We define the discretized system matrix Kω := [Kω,jk] = [kω(ϕk, ϕj)] for
anH1-conforming finite-element base {ϕj} spanning Vh. The FE-discretization
of (20) (

Kω Tr tl
Trr 0

)(
uh
λh

)
= γ

(
0 Tr tr
Trl 0

)(
uh
λh

)
(21)

We classify the degrees of freedom corresponding to the left (l), the right
(r) boundary, and the remaining ones (“inner” degrees of freedom, i). The
dimensions nl = nr, ni are defined coinciding with this classification and
dim(Vh) =: n = ni + 2 · nl.

Considering the sparsity and the symmetry of the FE-matrices we arrive
at a parameter-dependent discretized generalized eigenvalue-system
of the following structure:
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Kω, ii K
T
ω, li K

T
ω, ri 0

Kω, li Kω, ll 0 I
Kω, ri 0 Kω, rr 0

0 0 I 0







ui
ul
ur
λ


 = γ




0 0 0 0
0 0 0 0
0 0 0 I
0 I 0 0







ui
ul
ur
λ


 . (22)

Remark 1. The generalized eigenvalue problem Ax = γBx defined in (22) has
the following properties:

1. The right-hand side matrix B has a large kernel (dim(kerB) = ni + nl),
which corresponds to infinite eigenvalues. There are ni + nl infinite and
2nl finite eigenvalues.

2. The eigenvalue-problem is symplectic, i.e. if γ is an finite non-zero eigen-
value then 1

γ is also an eigenvalue. One can exploit and preserve the spe-
cial structure by using structure-preserving computational methods as
proposed by Merhmann in [18].

3. Concerning dispersion diagrams we are mainly interested in eigenvalues
γ = e(α+iβ)p near the unit-circle, i.e. |γ| ≈ 1.

4.5 A Model Improvement by Absorbing Boundary Conditions

So far we have used standard boundary conditions on the bottom boundary of
the cell. Since we are interested in surface effects, we do not want to simulate
the whole thickness of the underlying substrate, we cut the domain a few
wavelengths away from the surface. The assumption of Dirichlet or Neumann
boundary conditions is not suitable, since these types of artificial boundary
introduce unnatural reflections. Moreover, damping effects in surface waves,
caused by bulk wave radiation effects, are only possible in models including
wave absorption into the substrate. These reflections can be avoided or at
least minimized by the choice of absorbing boundary conditions (ABCs).

First order absorbing boundary conditions are introduced by complex-
valued frequency-dependent Robin boundary conditions of the form

nT (a∇u) = iωu on Γbot.

This condition is exact for plane waves in outer normal direction n, but still
leads to partial reflections for general plane waves. This approach leads to the
complex-symmetric bilinear form

kABC

ω (u, v) :=

∫

Ωp0

a∇u∇v dx+ iωc (u, v)− ω2

∫

Ωp0

uv dx (23)

with c(u, v) :=
∫
Γbot

uv ds.

Quite recently the method of perfectly matched layers (PML) be-
came very popular. We do not want to go into a detailed description of this
method. In order to construct solution methods which can be also applied to
PML boundaries, we only point out its effect on the structure of the corre-
sponding bilinear form kω. Technically one introduces an artificial boundary
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layer in which the coefficients of the underlying PDE are extended into the
complex plane. On the infinite level PML perfectly absorbs plane waves in
any arbitrary direction. On the discrete level the quality of absorption can
be controlled by the choice of the FE-discretization. By this approach the
bilinear form extends to

kPML

ω (u, v) :=

∫

Ωp0

ã∇u∇v dx− ω2

∫

Ωp0

ρ̃uv dx (24)

with complex-valued parameters ã and ρ̃. This bilinear form is again complex-
symmetric.

Remark 2. By the choice of the proposed ABCs, the system-matrix Kω in
the generalized algebraic EVP (22) gets complex-valued and is complex-
symmetric.

4.6 Solution Strategies

In this section we want to construct two strategies for the solution of the
generalized algebraic EVP (22) for complex-valued and complex-symmetric
matrices Kω.

We state two reduced eigenvalue problems which still have the same finite
spectrum as the initial system. This is achieved by reducing infinite eigenvalues
referring from the large kernel of the right-hand-side matrix in (22).

The Inner-Node-Matrix Method

Substituting first ur = γul and then λ = −Kω, liui − Kω, llul leads to a
generalized non-hermitian linear eigenvalue problem of the form

(
Kω, ii Kω, il

K T
ω, ir 0

)(
ui
ul

)
= γ

(
0 −Kω,ir

−K T
ω,il −Kω,ll −Kω,rr

)(
ui
ul

)
. (25)

We point out that in above problem none of the two matrices is regular nor
symmetric, but by spectral transformation coinciding with µ := 1

γ−1 we get
the following equivalent problem:

Find eigenvectors

(
ui
ul

)
∈ Cni+nl w.r.t. the eigenvalues µ = 1

γ−1 :

(
0 −Kω, ir

−K T
ω,il −Kω,ll −Kω,rr

)(
ui
ul

)
= µ

(
Kω, ii Kω,il +Kω,ir

K T
ω,il Kω,ll +Kω,rr

)(
ui
ul

)
.

(26)
The right-hand-side matrix is obviously regular and complex-symmetric.
Moreover, all involved matrices are sparse.

An implementation of the implicitly restarted Arnoldi-algorithm is pro-
vided by the software-package ARPACK. The package includes an iterative
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solver for generalized non-hermitian eigenvalue Av = γBv which only re-
quires matrix-vector products and the application of the inversion. Therefore,
the sparsity of the FE-matrices can be exploited. In each frequency step we
have to perform a Sparse-Cholesky factorization of B.

The Schur-Complement Method

We start with the already reduced system stated in (25) and take the Schur-
complement with respect to the inner degrees of freedom. Using the classifi-
cation in inner, left, right degrees of freedom we state the Schur-complement
of Kω as

S := −
(
Kω,li,Kω,ri

)
K−1
ω,ii(Kil − γKir) +

(
Kω,ll 0

0 Kω,rr

)
. (27)

Substituting ui by ui = −Kω, ii−1(Kil − γKir)ul in (25) we result in the
following frequency-dependent quadratic eigenvalue problem:

Find eigenpairs (γ, ul) ∈ C× Cnl such that

γ2Slrul + γ(Sll + Srr)ul + S Tlr ul = 0. (28)

In each frequency step we first calculate the inverse of the sparse and complex-
symmetric matrix K−1

ω,ii by a Sparse-Cholesky-factorization and assemble the
Schur-complement. The quadratic eigenvalue problem is tackled by lineariza-
tion to a double-sized generalized eigenvalue problem, which is solved by the
QZ-method implemented in LAPACK.

5 Piezoelectric Equations and Periodic Structures

In this section we want to combine the three main modeling steps,

� the underlying piezoelectric equations, which lead to a coupled field prob-
lem of saddle-point structure (indefinite, but symmetric),

� absorbing boundary conditions for acoustic waves in piezoelectric media
in order to enable wave absorption of the substrate,

� acoustic wave propagation in periodic structures and its solution strategies.

Due to the governing piezoelectric equations mathematical modeling, analysis
and solution strategies get more technical. One has to overcome some problems
due to the indefinite saddle-point structure of piezoelectric equations. But the
quasi-periodic problem results in a formally equivalent eigenvalue problem,
which can be solved numerically with the methods introduced above.
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5.1 2-D Geometry and Anisotropic Materials

At first, we adopt the three-dimensional piezoelectric equations given in (1)–
(5) to the fact that surface waves only depend on the sagittal plain. This
was the justification to reduce the geometry to the plain spanned up by the
direction of surface wave propagation (x1) and the normal onto the surface
(x2). Due to the anisotropic properties of the material general surface waves
can polarize (particle motion) outside the sagittal plane. Even though all field
quantities only depend on the (x1, x2) – plane, a mechanical deformation in
(x3) – direction is possible. Therefore, the equations for the elastic strain (2)
and the electric field (3) simplify to

S(u) =
1

2

(
∇(x1,x2,x3)u(x1, x2) +

(
∇(x1,x2,x3)u(x1, x2)

)t)
, (29)

E = ∇(x1,x2,x3)Φ(x1, x2) =

(
∂Φ

∂x1
,
∂Φ

∂x2
, 0)t

)
. (30)

From now on we denote the equations (1),(29),(3),(29),(4) as the governing
piezoelectric equations for the three-dimensional mechanical displacement u =
(u1, u2, u3)t and the scalar potential Φ.

5.2 The Underlying Infinite Periodic Piezoelectric Problem

The cell-based periodic model geometry

The periodic geometry Ω can be described in terms of successive arrangement
of a unit-cell Ωp

0 (with diamx1
(Ωp0) = p) of an analogous structure as shown

in Fig. 5. We denote the translation of this cell parallel to the x1-axis as the
k-th cell Ωp

k := Ωpk := {y = (k.p, 0) +x|x ∈ Ωp
0} and achieve a representation

of an infinite periodic strip Ω by Ω :=
⋃∞
k=−∞Ωpk .

Each cell basically consists of a piezoelectric substrate Ωk,S with one evap-
orated electrode Ωk,E ; these two domains are disjoint but matching. In nu-
merical computation we will choose the model geometry shown in Fig. 4.

ΩΩ 0,S S

bot,0Γ

ΓrΓl

Ω E0, Ω E

p

topΓ

botΓ

p

p

p

The infinite periodic strp ΩThe unit−cellΩ 0
p

0Γ , top

Fig. 5. Underlying cell-based periodic geometry
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The piezoelectric equations with periodic coefficients on Ω

Shifted to the frequency domain by a harmonic ansatz, the piezoelectric equa-
tions for the mechanical displacement (u1, u2, u3) and the scalar potential Φ
are

−div
(
c :
(
∇u+ (∇u)t

)
+ ε : ∇Φ

)
= ω2ρu in Ω,

−div
(
et :

(
∇u+ (∇u)t

)
− ε : ∇Φ

)
= 0 in Ω,

(31)

with underlying periodic structure Ω and periodic coefficient matrices Tp c =
c, Tp e = e, Tp ρ = ρ. On the metallic electrodes ΩE the piezoelectric
coupling coefficient e is set to zero. Concerning the boundary conditions we
choose homogenous Dirichlet boundary condition for the potential on ΓE :=
∂Ω ∩ ∂ΩE =: ΓD in order to model short-circuited electrodes. The remaining
top-surface boundary is assumed to be charge-free. Concerning the mechanical
field the whole top-surface boundary is assumed to be stress-free. Therefore,
the following boundary conditions are claimed for (31)

short-circuited electrodes Φ = 0 on ΓE := ∂Ω ∩ ∂ΩE ,
stress-free: nt.T = 0 on Γtop,
charge-free: nt.D = 0, on Γtop\ΓE .

(32)

Absorbing BCs on Γbot (33)

with normal stresses nt.T := nt
(
c :

(
∇u + (∇u)t

)
+ e : ∇Φ

)
and normal

charges nt.D := nt
(
et :

(
∇u+ (∇u)t

)
− ε : ∇Φ

)
.

Solving the periodic problem again requires the computation of Bloch
waves. Therefore, it can be restricted to a piezoelectric unit-cell problem with
quasi-periodic boundary conditions for mechanical and electric field quanti-
ties. Analogous to the scalar model, we begin with the mathematical tools
required for the piezoelectric unit-cell problem with standard-boundary con-
ditions. The incorporation of the quasi-periodicity will be done in the second
step.

For sake of simplicity we assume the charge- and stress-free boundary
conditions

nt.T = 0, nt.D = 0 on Γbot (34)

on the bottom boundary in the first stage of modeling.

5.3 Piezoelectric Equations in Weak and Discretized Form

Restriction of the time-harmonic piezoelectric equations stated in (31),(32),(34)
onto the unit-cell Ωp

o and its weak formulations yields the following eigenvalue
problem.

Find eigensolutions (u, Φ) ∈
[
H1(Ωp0)

]3 ×H1
0,D(Ωp0) corresponding to the

eigenvalues ω2 such that ∀ v ∈ H1(ΩP0 )3 :=
[
H1(ΩP0 )

]3
, ∀Ψ ∈ H1

0,D(Ωp0)
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∫
Ωp0

(Bv)T : cBu +
∫
Ωp0

(S(v))t : et∇Φ dx = ω2
∫
Ωp0
ρ vtu dx

∫
Ωp0

(∇Ψ)t : eBu dx −
∫
Ωp0

(∇Ψ)t ε∇Φ dx = 0
(35)

Due to the large kernel in the right hand side the eigenvalue problem is de-
generated, which leads to infinite eigenvalues.

For the sake of simplicity we introduce the mechanical bilinear form
auu(u, v) :=

∫
Ωp0
S(v)t : c S(u) dx, the piezoelectric coupling bilinear forms

auΦ(u, Φ) = aΦu(Φ, u) :=
∫
Ωp0
St(u) : et∇Φ dx, the dielectric aΦΦ(Φ, Ψ) =∫

Ωp0
(∇Ψ)t ε∇Φ dx, and the mechanical mass bilinear form muu(u, v) :=∫

Ωp0
ρ vtu dx.

On the structure of piezoelectric discretized eigenvalue-problems

The discretization of H1(Ωp0)3 and H1(Ωp0) with conforming finite elements
yields a algebraic eigenvalue-problem of the special saddle-point structure

(
Auu AuΦ
AΦu −AΦΦ

)(
uh
Φh

)
= ω2

(
Muu 0

0 0

)(
uh
Φh

)
. (36)

The matrix blocks correspond to the mechanical, dielectric and piezoelectric
bilinear forms. Therefore, the problem is symmetric since the sub-matrices
satisfy Auu = Atuu, AΦΦ = AtΦΦ, AΦu = AtuΦ,Muu = M t

uu. The eigenvalue
problem is degenerated. It possesses dim(Φh) infinite eigenvalues.

The Schur-complement with respect to the potential Φh yields
(
Auu +AuΦA

−1
ΦΦAΦu

)
uh = ω2Muuuh,

which states a positive-definite eigenvalue problem. However, we will not pur-
suit this strategy, due to the computational costs for inverting AΦΦ.

5.4 The Quasi-Periodic Unit-Cell Problem

Due to Bloch’s theorem (general version stated in [13]) we use Bloch waves

u(x1, x2) = up(x1, x2)e(α+iβ)x1 with up p− periodic in x1

Φ(x1, x2) = Φp(x1, x2)e(α+iβ)x1 with Φp p− periodic in x1

as ansatz for the eigenfunctions in the periodic piezoelectric eigenvalue prob-
lem (31)–(32) together with either (33) or (34).

Therefore, the quasi-periodic unit-cell problem is stated by (31),(32)
and (33) or (34) restricted onto Ωp

0 together with the quasi-periodic boundary
conditions

γ u(x1, x2) = u(x1 + p, x2) for (x1, x2) ∈ ΓL,
−γ nt · T (x1, x2) = nt · T (x1 + p, x2) for (x1, x2) ∈ ΓL,

γ Φ(x1, x2) = Φ(x1 + p, x2) for (x1, x2) ∈ ΓL,
−γ nt ·D(x1, x2) = nt ·D(x1 + p, x2) for (x1, x2) ∈ ΓL,

(37)
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with γ := e(α+iβ)p.
Now, the solution strategy is formally equivalent to that presented for the

scalar model problem. We interpret the quasi-periodic unit-cell problem as
eigenvalue-problem for the propagation-constant γ while depending on the
frequency ω.

We identify the quasi-periodic boundaries Γl and Γr with a reference
boundary Γ . The corresponding trace operators trl and trr are defined as
the composition of the standard H1-trace operator onto ΓL and the bound-

ary identification of Γl or Γr with Γ : trl : H1Ω0
p → H

1
2 (Γl)

id→ H
1
2 (Γ ), and

vice versa for trr. The trace-operator on the three-dimensional mechanical
field u in H1(Ωp0)3 is defined component-wise as trlu := (trlu1, trlu2, trlu3)

in H
1
2 (Γ )3 := [H

1
2 (Γ )]3 Furthermore, by introducing new unknowns for the

normal fluxes on the left boundary with respect to Γ

λ := nt · T ∈ H− 1
2 (Γ )3 and ζ := nt ·D ∈ H− 1

2 (Γ ), (38)

we result in the frequency-dependent mixed variational formulation:

Find eigensolutions (u, Φ, λ, ζ) corresponding to eigenvalues γ ∈ C
with (u, Φ, λ, ζ) ∈ H1(Ωp0)3 ×H1

0,D(Ωp0)×H− 1
2 (Γ )3 ×H− 1

2 (Γ ) such

that ∀ v ∈ H1(Ωp0)3, ∀Ψ ∈ H1
0,D(Ωp0), ∀µ ∈ H− 1

2 (Γ )3, ∀ ν ∈ H− 1
2 (Γ )

auu(u, v) + auΦ(Φ, v)− ω2m(u, v) + < (trl − γ trr)v, λ > = 0

aΦu(u, Ψ)− aΦΦ(Φ, Ψ) + < (trl − γ trr)Ψ, ζ > = 0

< (γ trl − trr)u, µ > = 0

< (γ trl − trr)Φ, ν > = 0

(39)

is satisfied for given parameters ω2.
< ., . >

H
1
2 (Γ )×H− 1

2 (Γ )
, respectively.

Again, the introduced unknowns λ, ζ for the normal fluxes on Γl with
respect to Γ take the role of Lagrange-multipliers.

To gain a compact formalism we agree on the abbreviations ũ := (u, Φ) ∈
H1

0,D4
(Ωp0)4 := H1(Ωp0)3 ×H1

0,D(Ωp0), and ṽ := (v, Ψ), and on the frequency-
dependent piezoelectric bilinear form

kω(ũ, ṽ) := kω
(

(u, Φ), (v, Ψ)
)

:= auu(u, v) + auΦ(Φ, v)− ω2m(u, v)

+ aΦu(u, Ψ)− aΦΦ(Φ, Ψ).

(40)

An abstract version of the non-symmetric frequency-dependent eigenvalue
problem for the quasi-periodic unit-cell problem can be stated.
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Find eigensolutions (ũ, λ̃) ∈ H1
0,D(Ωp0 )4 × H−

1
2 (Γ )4 corresponding to

eigenvalues γ ∈ C such that

kω(ũ, ṽ) + < λ̃, (trl − γ trr)ṽ > = 0 ∀ ṽ ∈ H1(Ωp0)4

< (γ trl − trr)ũ, µ̃ > = 0 ∀ µ̃ ∈ H− 1
2 (Γ )4

(41)

is satisfied for given parameters ω2.
The duality-product < ., . > refers to < ., . >

H
1
2 (Γ )4×H− 1

2 (Γ )4
.

Model extension to absorbing boundary conditions

In case of piezoelectric equations absorbing boundary conditions are a bit
challenging. The degeneration of the frequency-dependent eigenvalue problem
causes some technical difficulties. However, we only state the formal charac-
teristics of the extended system bilinear forms

kABC

ω := a
(
(u, Φ), (v, Ψ)

)
+ i ω c

(
(u, Φ), (v, Ψ)

)
− ω2m

(
(u, Φ), (v, Ψ)

)
, (42)

kPML

ω := ã
(
(u, Φ), (v, Ψ)

)
− ω2 m̃

(
(u, Φ), (v, Ψ)

)
. (43)

The absorbing bilinear form c(., .) is positive-definite. The complex-valued
PML-bilinear forms ã(., .) and m̃(., .) are complex-symmetric.

The discretized eigenvalue problem

Analogous to the scalar case, we assume matching meshes on the left and the
right boundary. Therefore, a discretization of H−

1
2 (Γ )4 by Mortar-Elements

can be avoided. We can use nodal constraints for the Lagrange-parameter and
the discrete trace-operators corresponding to trl and trr simplify to identity
matrices.

Discretization of H1
0,D(Ωp0) for the frequency-dependent piezoelectric bilin-

ear form is done in the way already described for (36). Galerkin-discretization
of (41) leads to parameter-dependent discretized generalized eigenvalue-
system (compare with (22))




Kω, ii K
T
ω, li K

T
ω, ri 0

Kω, li Kω, ll 0 I
Kω, ri 0 Kω, rr 0

0 0 I 0







ũi
ũl
ũr
λ


 = γ




0 0 0 0
0 0 0 0
0 0 0 I
0 I 0 0







ũi
ũl
ũr
λ


 , (44)

where each ṽi refers to 4 degrees of freedom (ui1, u
i
2, u

i
3, Φ

i) and each classi-
fied (i, l, r) matrix block is of the following (complex)-symmetric saddle point
structure

Kω,α,β =

(
Kω,α,β, uu KT

ω,α,β, Φu

Kω,α,β, Φu −Kω,α,β, ΦΦ

)
for α, β ∈ {i, l, r}. (45)
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Standard boundary conditions on the bottom leads to real-valued matrices,
absorbing ones to complex-valued ones. We agreed on suppressing the h-
subscript denoting the discrete level.

Due to the abstract formulation of the scalar and the piezoelectric eigen-
value problem we can apply the solution strategies of the scalar model, i.e. the
Inner-Node-Matrix method or the Schur-Complement method in Subsection
4.6.

6 Numerical Results

In case of a 2-dimensional geometry the implementation of the Schur-Comple-
ment method together with a Sparse-Cholesky-Factorization is suitable. How-
ever, if one thinks about simulations on 3-dimensional geometries, one have
to perform the Inner-Node-Matrix method.

The Schur-Complement method is implemented in the high order FE-
Solver NGSolve [22] using an LAPACK eigenvalue solver (zgeev, dggev) [1].

6.1 The Scalar Model Problem

We use the scalar model problem to examine the specific influence of periodic
perturbation on surface wave propagation. Therefore, we determine the dis-
persion context for 3 different problem types based on the geometry shown in
Fig. 4:

1. Wave propagation in homogenous media, where we assume homogenous
Neumann BCs on the top and the surface (ΓD = ∅, ΓN := Γtop ∪ Γbot)
(see Fig. 6).

2. Wave propagation in periodic media, where periodic perturbations are sim-
ulated by periodically arranged homogenous Dirichlet- and Neumann-BCs
on the top surface (see Fig. 4). The homogenous Dirichlet conditions is
used as imitation of short-circuited electrodes, where a vanishing potential
can be assumed (see Fig. 7).

3. Wave propagation in periodic media with first order absorbing boundary
conditions on the bottom surface Γbot. The periodic structure is modeled
as described in item 2. See Fig. 8.

In the three following dispersion diagrams complex propagation constants
which belong to pass-bands are drawn in gray, those belonging to stop-bands
in black. These diagrams include both bulk waves and surface waves. The
classification can be performed by examining the corresponding eigenvectors.

In the homogenous case, there are no stop-bands. We gain pure imaginary
propagation constants iβ corresponding to continuous pass-bands.
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Fig. 6. Scalar model: dispersion relation in a homogenous structure.

Fig. 7. Scalar model: Dispersion relation in a periodic structure.

Fig. 8. Scalar model: Dispersion relation in a periodic structure with ABC.
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6.2 Simulation of a Piezoelectric Periodic Structure

Since the dispersion diagram gives information on many parameters of wave
propagation, which are used in other models and simulations, we want to
determine the eigenvalues very accurately. Our main aspects are frequency
domains where the dimension of the unit-cell is in the range of half the wave-
length. Therefore, higher order polynomials should approximate these waves
very accurately even for coarse meshes. However, the entering corners of the
electrodes and the jumping coefficients cause singularities in the solution.
These singularities cannot be resolved simply by increasing the polynomial
order of the ansatz functions, but only by a special local mesh-refinement
denoted as hp-refinement. Both methods consist of two main steps. First the
computation of an inverse (SC-method) or respectively a Sparse-Cholesky
decomposition. Second the solution of an eigensystem, here the decrease of
degrees of freedom is very important for decreasing computational times.

Fig. 9. Special local refinement at singularities

We simulate the dispersion context of a TV-filter structure as used in prac-
tice with Lithium-Niobate substrate and aluminum short-circuited electrodes.
The topology is chosen as shown in Fig. 4. On the bottom first order absorb-
ing boundary conditions are assumed. We used 52 elements of polynomials
order p = 4 and an hp-refinement of 3 levels, which results in 4 ·609 degrees of
freedom. Fig. 10 shows a two-dimensional plot of the dispersion context near
the stop-band of the chosen filter structure. On the left the context between
the frequency and the attenuation-constant α per cell is drawn, while on the

Fig. 10. Dispersion context of piezoelectric structure with periodic arranged elec-
trodes.
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right the context between frequency and phase shift β in each cell. Above
the upper stop-band edge we can observe an increased attenuation caused by
bulk wave radiation, which is enabled by absorbing boundary conditions at the
bottom and does not occur in simulations including only standard boundary
conditions.

7 Conclusions

We gave a full detailed modeling for piezoelectric surface acoustic wave filters.
We started with developing mathematical tools for periodic structures for
the scalar wave equation. In order to reduce the computation domain while
allowing wave absorption we introduced absorbing boundary conditions at the
artificial bottom boundary. By an abstract formulation we achieved that the
developed methods are directly applicable on the piezoelectric field equations.

With the Inner-Node-Matrix and the Schur-Complement method we pro-
vided and implemented two solution strategies. The Schur-Complement method
is suitable for solving the dispersion context for the three dimensional piezo-
electric equations with an underlying two dimensional geometry strategy.
However, if one wants to extend the model to 3 dimensional geometries, iter-
ative algorithms using only matrix-vector products are recommendable. This
is provided by the Inner-Node-Matrix method.

Another possible model improvement would be gained by perfectly matched
layers which allow an improved wave absorption into the material. We showed
that the introduced methods are still applicable in such models.

The developed algorithms can be also applied to other problem fields in-
cluding periodic structures like Maxwell’s equations for simulating photonic
crystals.

By numerical experiments we compared the dispersion diagrams of ho-
mogenous versus periodic structures and observed the classification of the
frequency domain into pass- and stop-band in the later one. Finally, we sim-
ulated a piezoelectric structure as used for frequency filtering in common
TV-sets.
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Diffraction Grating Theory with RCWA or the
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Summary. Diffraction gratings are often used in optical metrology. When an elec-
tromagnetic wave is incident on a grating, the periodicity of the grating causes a
multiplicity of diffraction orders. In many metrology applications one needs to know
the diffraction efficiency of these orders. Since the period of a grating is often of the
same order of magnitude as the wavelength, it is needed to solve Maxwell’s equations
rigorously in order to obtain these diffraction efficiencies. Two of those methods are
the rigorous coupled-wave analysis (RCWA) and the C method.
In this paper a comparison is made between RCWA and the C method with respect
to accuracy and speed. Restrictions are made to one-interface problems, which means
that only two media are involved separated by one interface, and only gratings are
considered with a periodicity in only one direction.

Key words: diffraction gratings, C method, RCWA.

1 Introduction

When the grating’s period is of the same order of magnitude as the wave-
length, rigorous methods are required to solve Maxwell’s equations. At the
time Jean Chandezon introduced his method [1, 2], another method called
rigorous coupled-wave analysis (RCWA), was already widely used [3, 4]. The
main question remains when one should use RCWA or the C method. Al-
though both methods have a completely different approach for solving the
grating problem, it is widely known, that solving eigenvalue problems is the
most computationally expensive operation in both methods. That is why this
paper concentrates on the computations of the eigenvalue problems to select a
criterion for the usage of a certain method. Therefore, the differences between
the methods will be discussed and, as an example, a sinusoidal grating is used
to illustrate the criterion.
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2 Mathematical problem

An infinitely long, one-dimensional grating with only one interface is shown in
Fig. 1. One-dimensional implies that the grating is periodic, say with period
Λ, in the x-direction and constant in the y-direction. The fact that the grating
is assumed to be infinitely long, allows a restriction to only one period. The
domain exists of two media, denoted by Ω1 (usually air) and Ω2 (dielectric or
metal). The boundaries are denoted by Γm for m = 1, ..., 5.

Fig. 1. Left: three dimensional representation of the diffraction grating; right: the
domain of interest.

The media are assumed to be linear with respect to the electromagnetic fields,
homogeneous, isotropic, time-invariant, dispersion-free, source-free and non-
magnetic. The electromagnetic fields are assumed to be time-harmonic, which
implies that the initialization phase is neglected. The incident field is either TE
or TM polarized. All these assumptions reduce the local Maxwell equations
to a generalized Helmholtz equation [2].

∇2F (x, z) + k2n2(x, z)F (x, z) = 0, (1)

where F is either the electric field Ey for TE polarized light or the magnetic

field Hy for the TM case. The parameter n =
√
ε(x, z)µ0 is the refractive

index and k = ω
√
ε0µ0 is the wave number.

On boundaries Γ1 and Γ3, the outgoing wave condition holds, which means
that the fields have to be finite for z → ±∞. The restriction to only one
period gives a pseudo-periodic boundary condition at Γ2 and Γ4 by invoking
the Floquet-Bloch theorem.

F (x, z) = F (x+ Λ, z) exp(i sin θ), 0 ≤ x < Λ, −∞ < z <∞. (2)

The last boundary is Γ5 and on this interface, the tangential components of
the electromagnetic fields are continuous.

3 Solution methods

From general grating theory it is known that above and below the grating
grooves, the Rayleigh expansion holds as a solution of the field:
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F (x, z) =
∞∑

m=−∞
Am exp(ikxmx+ ikzmz), (3)

where the Am are the reflection coefficients in the upper half-space or the
transmission coefficients in the lower half-space and kxm and kzm are known
coefficients. This Rayleigh expansion is a direct consequence of the outgoing
wave condition, the pseudo-periodic boundary condition and the Helmholtz
equation that holds in the upper and lower half-space. The reason the Rayleigh
expansion does not hold inside the grating grooves is that the complex permit-
tivity is not a constant, but a function of x and z. This leads to an eigenvalue
problem in both methods. The details of the methods are discussed separately.

� RCWA
By eliminating the z-dependency of the complex permittivity, it is possible
to write the solution inside the grooves as a Fourier expansion, since only
a dependency on the periodic coordinate x is present. The way RCWA ac-
complishes this, is by slicing up the grating domain such that inside each
slice, the permittivity only depends on x. At the boundaries between two
slices, the tangential components of the electromagnetic fields are contin-
uous. In this way, the unknown reflection and transmission coefficients of
the upper and lower half-space can be connected to each other and de-
termined. However, introducing the Fourier expansion in the Helmholtz
equation gives an eigenvalue problem of size 2N + 1 for both TE and TM
polarization for every slice.

� C method
The C method uses a completely different approach. The method uses the
idea that if the grating interface were flat, the Rayleigh expansions would
be valid for the entire domain, except at the interface. The C method
ensures the grating interface to be flat by introducing a new coordinate
system. A restriction of the method is that the interface can be described
by a function of x, i.e. z = a(x). There are parametric descriptions, but
that is only for stability purposes. The coordinate transformation is given
by

u = x, v = y, w = z − a(x). (4)

The periodicity is preserved in the coordinate u and the grating interface
is now described by a flat line given by w = 0. However, in the generalized
Rayleigh expansion, a new unknown turns up. By substituting this expan-
sion into the transformed Helmholtz equation, an eigenvalue system has
to be solved for each medium, but since TE and TM polarization cannot
be separated this time, the size is 4N + 2.

Figure 2 illustrates how the two methods handle the mathematical model
obtained in Section 2. The main differences between the C method and RCWA
are:
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Fig. 2. Schematic representation of the way the RCWA and C method remove the
z dependency.

� There is one eigenvalue problem per layer of size 2N + 1 for RCWA vs.
one per medium of size 4N + 2 for the C method.

� RCWA solves one eigenvalue system for each polarization state, while the
C method solves one eigenvalue system for both TE and TM polarization
simultaneously.

� RCWA approximates the grating interface, while the C method does not.
� RCWA can handle all types of diffraction gratings, including overhang-

ing gratings, while the C method is restricted to interfaces which can be
described by a function of the periodicity coordinate.

A general eigenvalue system of size p× p takes O(p3) flops. For the C method
only two eigenvalue systems have to be solved of twice the size of the eigenvalue
systems obtained with RCWA, but when RCWA uses q layers it also has q
eigenvalue systems. Altogether, this implies that RCWA may have 8 times
more layers than the number of media for the C method to have an equal
number of computations.

4 Results

To show the results, test case 2 from [2] has been used. It concerns a sinusoidal
grating with a period equal to twice the wavelength. The refractive index of
the upper medium is 1 (air), while the one of the lower medium is 1.5 (dielec-
tric). The amplitude of the sine equals the size of the wavelength.

Figure 3 shows the results of RCWA for several values of N and several num-
bers of layers q. It can be seen that it is not the number of harmonics N
that determines the diffraction efficiency mostly, but the number of layers q.
To have the relative difference between RCWA and the C method below 1%,
RCWA already needs 15 to 20 layers, while for 0.1% 50 to 80 layers are neces-
sary. It should be noticed that the layer thickness has been chosen equidistant.

To conclude, this paper shows that the number of layers needed to approxi-
mate the grating to obtain an accurate (defined by user) result, is the most
important criterium and not the number of harmonics. Secondly, for general
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Fig. 3. Diffraction efficiencies of the -2nd and -1th diffraction order as a function of
the number of layers and the number of harmonics (left) and if N = 14 a comparison
with the C method.

grating profiles the C method will obtain the answer with less computational
efforts if RCWA uses more than 10 layers to approximate the grating profile.
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Summary. A numerical study of domain wall relocation during slow voltage switch-
ing is presented for doped semiconductor superlattices. Unusual relocation scenarios
are found and interpreted according to previous theory.
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1 Introduction

Semiconductor superlattices are essential ingredients in fast nanoscale oscilla-
tors, quantum cascade lasers and infrared detectors. Quantum cascade lasers
are used to monitor environmental pollution in gas emissions, to analyze
breath in hospitals and in many other industrial applications. A semicon-
ductor superlattice (SL) is formed by growing a large number of periods with
each period consisting of two layers, which are semiconductors with different
energy gaps but having similar lattice constants, such as GaAs and AlAs. The
conduction band edge of an infinitely long ideal SL is modulated so that it
looks like a one-dimensional (1D) crystal consisting of a periodic succession
of a quantum well (GaAs) and a barrier (AlAs). Vertical charge transport
in a SL subject to strong electric fields exhibits many interesting features,
and it is realized experimentally by placing a doped SL of finite length in the
central part of a diode (forming a n+-n-n+ structure) with contacts at its
ends. In this paper, we study the relocation of electric field domains which
appear in a strongly doped, dc voltage biased SL when the voltage is switched
between two different values. Our model consists of a system of spatially
discrete drift-diffusion equations (DDE) for the electric field and current, an
algebraic constraint representing voltage bias, initial and boundary conditions
[2]. By numerically solving this model, we find that the current through the
SL exhibits very different patterns involving several mechanisms for relocating
electric field domains, depending on the way the voltage is switched.
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2 The Sequential Tunnelling Model

We use the discrete drift-diffusion model described in the review paper [2]. It
consists of the following Poisson and charge continuity equations:

Fi − Fi−1 =
e

ε
(ni −Nw

D), (1)

dni
dt

= Ji−1→i − Ji→i+1, (2)

for the average electric field −Fi and the two-dimensional (2D) electron den-
sity ni at the ith SL period (which starts at the right end of the (i − 1)th
barrier and finishes at the right end of the ith barrier), with i = 1, . . . , N . Here
Nw
D , ε, −e and eJi→i+1 are the 2D doping density at the ith well, the average

permittivity, the electron charge and the tunnelling current density across the
ith barrier, respectively. The SL period is l = d + w, where d and w are the
barrier and well widths, respectively. Time-differencing (1) and inserting the
result in (2), we obtain the following form of Ampere’s law:

ε

e

dFi
dt

+ Ji→i+1 = J(t). (3)

The space-independent unknown function eJ(t) is the total current density
through the SL. Quantum mechanical calculations show that the constitutive
relation for the tunnelling current density eJi→i+1 is [2]

Ji→i+1 =
niv(Fi)

l
−D(Fi)

ni+1 − ni
l2

. (4)

The nonlinear smooth functions of electric field, v(F ) and D(F ) have dimen-
sions of velocity and diffusivity, respectively, and their explicit expressions
can be found in Appendix A of [2]. It is important to mention that the drift
velocity v(F ) has a first local maximum at (FM , vM ), (FM and vM are both
positive), it is positive for positive F , and v(0) = 0. Fig. 1 shows v/vM as a
function of F/FM . D(F ) > 0 for non-negative F .

Substituting (1) and (4) in (3), we find the DDEs:

dFi
dt

+v(Fi)
Fi − Fi−1

l
−D(Fi)

Fi+1 − 2Fi + Fi−1

l2
=
e

ε

[
J − Nw

Dv(Fi)

l

]
, (5)

with i = 1, . . . , N . Bias and boundary conditions are

F0 = FN+1 = ρcJ,
1

N

N∑

i=1

Fi =
V (t)

Nl
, (6)

in which ρc > 0 and V (t) > 0 are the resistivity of the contacts and the voltage,
respectively. To analyze this model, it is convenient to render all equations
dimensionless. We adopt FM , Nw

D , vM , vM l, eN
w
DvM/l and εFM l/(eN

w
DvM ) as
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Fig. 1. Dimensionless current density (or drift velocity) versus F/FM and boundary
conditions E = ρJ for ρ = 4 and ρ = 6. Stable stationary solutions are found for
J1 < J < J2 (dashed lines). Current density unit is eJ0 = eNw

DvM/l = 2.88 A cm−2.

units of Fi, ni, v(F ), D(F ), eJ and t, respectively. Typical SL parameters as in
[1] are b = 4 nm, w = 9 nm, FM = 6.92 kV cm−1, Nw

D = 1.5×1011cm−2, vM =
156 cm s−1, vM l = 2.03 × 10−4 cm2 s−1 and eJ0 = eNw

DvM/l = 2.88 A cm−2.
For a circular sample with a diameter of 120 µm, the units of current and
time are 0.326 mA and 2.76 ns, respectively. The nondimensional equations
of the model are:

dEi
dt

+ v(Ei)
Ei − Ei−1

ν
−D(Ei)

Ei+1 − 2Ei + Ei−1

ν
= J − v(Ei), (7)

1

N

N∑

i=1

Ei = Φ, E0 = EN+1 = ρJ. (8)

Here we have used the same symbol for dimensional and dimensionless quan-
tities except for the electric field (F dimensional, E dimensionless). The pa-
rameters ν = eNw

D/(εFM ), ρ = ρcevMN
w
D/(lFM ), and Φ = V/(FMNl) are di-

mensionless doping density, contact resistivity and average electric field (bias),
respectively. For the above mentioned 9/4 SL, ν ' 3. The contact resistivity
ρ will be selected in certain ranges to be specified below and the variation of
Φ will be explained in the next Section.

3 Switching Scenarios

Numerical solution of the equations (7) - (8) with different initial field profiles
shows that (for constant Φ) the stable field profiles {Ei} are time-independent,
step-like and increasing with i: typically they consist of two flat regions called
electric field domains separated by an abrupt transition region called a domain
wall or charge monopole [2]. The current–voltage diagram for these stable
solutions is depicted in Fig. 2.
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Fig. 2. Current–voltage diagram showing stationary branches and applied voltage
step. The unit of voltage is 0.36 V.

The electric field profiles of each branch of solutions in Fig. 2 differ in the
location of their domain wall: counting branches in the direction of increasing
voltage, the profiles of the jth branch have their domain wall located in the
(N − j + 1)th SL period. Notice that for certain values of the voltage, several
branches with different current are possible (multistability). If we switch the
voltage from a value Vini corresponding to one branch to a final value Vfin =
Vini+∆V corresponding to different branches, the domain wall has to relocate
in a different SL period. During switching, V (t) = Vini+V̇ t, with V̇ = ∆V/∆t,
and ∆t is the ramping time. We now study what happens during switching
for different values of ∆t.

The case of very small ∆t (nanoseconds) and small ∆V (spanning two
branches) was studied theoretically in [1]. In this paper, we consider much
larger values of ∆t and ∆V , and observe several new phenomena. If ∆t is in
the range of microseconds and ρ is appropriate, the current oscillates with
time, as shown in Fig. 3 for ∆V as depicted in Fig. 2. For a fixed doping
density ν there are two currents J1 and J2 (marked in Fig. 1) such that a
domain wall in an infinitely long SL remains stationary if J1 < J < J2, and
it moves to the right (resp. left) if J < J1 (resp. J > J2) [3].
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Fig. 3. Current density for (a) ρ = 4 and (b) ρ = 6. The unit of time is 2.76 ns.
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Let ρj , j = 1, 2, be such that v(ρjJj) = Jj . During voltage switching, the
current changes as in Fig. 3(a) if ρ < ρ1, and as in Fig. 3(b) if ρ1 < ρ < ρ2. If
ρ > ρ2, there are no stationary solutions and the current oscillates periodically
in time, as in the Gunn effect [2].

Our simulations show that the electric field profile corresponding to
Fig. 3(a) consists of slow change of a step-like profile during the finite time
intervals in which the current increases followed by a rapid motion of the
domain wall, one SL period to the left, when the current is near its local max-
imum value (which is larger than J2). The domain wall motion is followed by
a drop in the current. This situation lasts until the end of switching and the
number of maxima of the current is equal to the number of branches skipped
during voltage switching. For ρ1 < ρ < ρ2, Fig. 3(b) shows that the num-
ber of current maxima during switching is half the (even) number of branches
skipped during voltage switching. Near each current maximum (with J > J2),
the domain wall traverses one SL period to the left. Immediately afterwards,
a pulse of the electric field is created at the injecting left contact and travels
to the end of the SL accompanied by the motion of the old domain wall to the
right. This is the tripole-dipole scenario discovered in [1] and characterized by
a succession of double peaks of the current followed by a succession of single
peaks. The novelty is that voltage switching continues after the domain wall
has arrived at a stable location and the same process continues until t = ∆t.
Then the number of current peaks larger than J2 is half that in Fig. 3(a). If
∆t is smaller than a critical value, there is only one large current peak during
switching followed by the double peaks - single peak succession typical of only
one tripole-dipole scenario.
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Summary. A nonlocal (quantum) drift-diffusion equation for the electric field and
the electron density is derived from a Wigner-Poisson equation modelling quantum
vertical transport in strongly coupled semiconductor superlattices, by using a con-
sistent Chapman-Enskog procedure. Numerical solutions for a device consisting of
a n-doped superlattice placed in a n+-n-n+ diode under a constant voltage bias are
presented and compared with those obtained by using a semiclassical approximation.

Key words: Superlattices, Chapman-Enskog, quantum drift-diffusion equa-
tion.

Industrial uses of semiconductor superlattices (SLs) include fast nanoscale
oscillators, terahertz and infrared detectors and quantum cascade lasers. The
Wigner-Poisson system for 1D electron transport in the lowest miniband of a
strongly coupled SL is:

∂f

∂t
+
i

~

[
E
(
k +

1

2i

∂

∂x

)
− E

(
k − 1

2i

∂
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)]
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+
ie

~

[
W

(
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1

2i

∂

∂k
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)
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(
x− 1

2i

∂

∂k
, t

)]
f = Q[f ], (1)

ε
∂2W

∂x2
=
e

l
(n−ND), (2)

n =
l

2π

∫ π/l

−π/l
f(x, k, t)dk =

l

2π

∫ π/l

−π/l
fFD(k;n)dk, (3)

fFD(k;n) =
m∗kBT
π~2

ln

[
1 + exp

(
µ− E(k)

kBT

)]
. (4)

Here f , n, ND, E(k), l, kB , T , W , ε, m∗ and e > 0 are the one-particle
Wigner function, the 2D electron density, the 2D doping density, the mini-
band dispersion relation, the SL period, the Boltzmann constant, the lattice
temperature, the electric potential, the SL permittivity, the effective mass of
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the electron, and minus the electron charge, respectively. The left-hand side
of (1) can be straightforwardly derived from the Schrödinger-Poisson equation
for the wave function in the miniband using the definition of the 1D Wigner
function: f(x, k, t) =

∑∞
j=−∞

∫
ψ(x+ jl/2, y, z, t)ψ(x − jl/2, y, z, t)eijkldx⊥

[(ψ(x, x⊥, t) =
∑
q,q⊥

a(q, q⊥, t)ϕq(x)eiq⊥.x⊥ , x⊥ = (y, z), is a superposition
of the Bloch states corresponding to the miniband]. The collision term −Q[f ]
in (1) is the sum of νe

(
f − fFD

)
, which represents energy relaxation towards

a 1D effective Fermi-Dirac (FD) distribution fFD(k;n) (local equilibrium),
and νi[f(x, k, t)− f(x,−k, t)]/2, which accounts for impurity elastic collisions
[4]. For simplicity, the collision frequencies νe and νi are fixed constants. Ex-
act and FD distribution functions have the same electron density, thereby
preserving charge continuity as in the Bhatnagar-Gross-Krook (BGK) colli-
sion models [2]. Then the chemical potential µ depends on n and is found by
inverting the exact relation (3).

It is convenient to derive the charge continuity equation and a nonlocal
Ampère’s law for the current density. The Wigner function f is periodic in
k; its Fourier expansion is

∑∞
j=−∞ fj(x, t) e

ijkl. Defining F = ∂W/∂x (minus

the electric field) and the average 〈F 〉j(x, t) = 1
jl

∫ jl/2
−jl/2 F (x + s, t) ds, it is

possible to obtain the following equivalent form of the Wigner equation

∂f

∂t
+

∞∑

j=−∞

ijl

~
eijkl

(
Ej

∂

∂x
〈f〉j + e 〈F 〉j fj

)
= Q[f ], (5)

where E(k) = ∆ (1 − cos kl)/2 is the tight-binding dispersion relation (∆
is the miniband width) and v(k) = ∆l

2~ sin kl is the miniband group veloc-
ity. Integrating this equation over k yields the charge continuity equation
∂n
∂t + ∂

∂x

∑∞
j=1

2jl
~ 〈Im(E−jfj)〉j = 0, from which we can eliminate the elec-

tron density by using the Poisson equation and integrating over x, thereby
obtaining the nonlocal Ampère’s law for the total current density J(t):

ε
∂F

∂t
+

2e

~

∞∑

j=1

j〈Im(E−jfj)〉j = J(t). (6)

To derive the QDDE, we shall assume that the electric field contribution
in (5) is comparable to the collision terms and that they dominate the other
terms (the hyperbolic limit) [4]. Let vM and FM be the electron velocity and
field positive values at which the (zeroth order) drift velocity reaches its max-
imum. In this limit, the time t0 it takes an electron with speed vM to traverse
a distance x0 = εFM l/(eND), over which the field variation is of order FM , is
much longer than the mean free time between collisions, ν−1

e ∼ ~/(eFM l) = t1.
We therefore define the small parameter ε = t1/t0 = ~vMND/(εF 2

M l
2) and

formally multiply the first two terms on the left side of (1) or (5) by ε [4].
After obtaining the number of desired terms, we set ε = 1. The solution of (5)
for ε = 0 is calculated in terms of its Fourier coefficients as
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f (0)(k;F ) =
∞∑

j=−∞

(1− ijF/τe) fFDj
1 + j2F2

eijkl, (7)

where F = 〈F 〉1/FM , FM = ~
el

√
νe(νe + νi) and τe =

√
(νe + νi)/νe.

The Chapman-Enskog Ansatz for the Wigner function is [4]:

f(x, k, t; ε) = f (0)(k;F ) +

∞∑

m=1

f (m)(k;F ) εm, (8)

ε
∂F

∂t
+
∞∑

m=0

J (m)(F ) εm = J(t). (9)

The coefficients f (m)(k;F ) depend on the ‘slow variables’ x and t only through
their dependence on the electric field and the electron density. The electric
field obeys a reduced evolution equation (9) in which the functionals J (m)(F )
are chosen so that the f (m)(k;F ) are bounded and 2π/l-periodic in k. Differen-
tiating the Ampère’s law (9) with respect to x, we obtain the charge continuity

equation. Moreover the condition,
∫ π/l
−π/l f

(m)(k;n) dk = 2π f
(m)
0 /l = 0, m ≥ 1,

ensures that f (m), m ≥ 1, do not contain contributions proportional to the
zero-order term f (0). Inserting (8) and (9) into (5), we find the hierarchy:

Lf (1) = −


∂f

(0)

∂t
+

∞∑

j=−∞

ijlEjeijkl
~

∂

∂x
〈f (0)〉j



∣∣∣∣∣∣
0

(10)

Lf (2) = −


∂f

(1)

∂t
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∞∑

j=−∞

ijlEjeijkl
~

∂

∂x
〈f (1)〉j



∣∣∣∣∣∣
0

− ∂

∂t
f (0)

∣∣∣∣
1

, (11)

and so on, where Lu(k) ≡ ie~−1
∑∞
−∞ jl〈F 〉jujeijkl + (νe + νi/2)u(k) +

νiu(−k)/2, and the subscripts 0 and 1 in the right hand side of these equations
mean that ε ∂F/∂t is replaced by J − J (0)(F ) and by −J (1)(F ), respectively.

The solvability conditions for the linear hierarchy of equations yield J (m) =
2e
~
∑∞
j=1 j〈Im(E−jf (m)

j )〉j , which can also be obtained by insertion of (8) in
(6). In the tight-binding dispersion relation case, the leading order of the
Ampère’s law (9) is

ε
∂F

∂t
+
evM
l
〈nMV (F)〉1 = J(t), (12)

V (F) =
2F

1 + F2
, vM =

∆l I1(M)

4~τeI0(M)
, M

(
n

ND

)
=
I1(µ̃) I0(M)

I1(M) I0(µ̃)
, (13)

Im(s) =

∫ π

−π
cos(mk) ln

(
1 + es−δ+δ cos k

)
dk, (14)

provided δ = ∆/(2kBT ) and µ̃ ≡ µ/(kBT ). Here M (calculated graphically in
Fig. 1 of [4]) is the value of the dimensionless chemical potential µ̃ at which (3)
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holds with n = ND. The drift velocity vMV (F) has the Esaki-Tsu form with a
peak velocity that becomes vM ≈ ∆lI1(δ)/[4~τeI0(δ)] in the Boltzmann limit
[5] (In(δ) is the modified Bessel function of the nth order).

To find the first-order correction in (9), we first solve (10) and find J (m)

for m = 1. The calculation yields the first correction to (12) (here ′ means
differentiation with respect to n) [4]

ε
∂F

∂t
+
evM
l
N
(
F,
∂F

∂x

)
= ε

〈
D

(
F,
∂F

∂x
,
∂2F

∂x2

)〉

1

+ 〈A〉1 J(t), (15)

A = 1 +
2evM

εFM l(νe + νi)

1− (1 + 2τ2
e )F2

(1 + F2)3
nM, (16)
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∆lτe
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〉
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1

+ F
〈
nM2(1− 4F2

2 )

(1 + 4F2
2 )2

∂〈F 〉2
∂x

〉

1

,

−4~vM (1 + τ2
e )F(nM)′

∆lτe(1 + F2)

〈
nM 1−F2

(1 + F2)2

∂〈F 〉1
∂x

〉

1

, (19)

C =
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(nM2)′

1 + 4F2
2

∂2F

∂x2

〉

1

− 2F
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(nM2)′F2

1 + 4F2
2

∂2F
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〉

1

,

+
8~vM (1 + τ2

e )(nM)′F
∆lτe (1 + F2)

〈
(nM)′F
1 + F2

∂2F

∂x2

〉

1

. (20)

Here M2(n/ND) ≡ I2(µ̃) I0(M)/[I1(M) I0(µ̃)] and F2 ≡ 〈F 〉2/FM . If the
electric field and the electron density do not change appreciably over two
SL periods, 〈F 〉j ≈ F , the spatial averages can be ignored, and the nonlocal
QDDE (15) becomes the local generalized DDE (GDDE) obtained from the
semiclassical theory [4]. The boundary conditions for the QDDE (15) (which
contains triple spatial averages) need to be specified on the intervals [−2l, 0]
and [Nl,Nl + 2l], not just at the points x = 0 and x = Nl, as in the case of
the parabolic GDDE. Similarly, the initial condition has to be defined on the
extended interval [−2l, Nl + 2l].

Fig. 1 shows the evolution of the current during the self-sustained os-
cillations that appear when the QDDE (15) and (2) are solved for bound-
ary conditions ε∂F/∂t + σF = J at each point of the intervals [−2l, 0] and
[Nl,Nl + 2l] and appropriate dc voltage bias. The contact conductivity σ is
selected so that σF intersects eNDvMV (F/FM )/l on its decreasing branch,
as in the theory of the Gunn effect [1]. Parameter values correspond to a 157-
period 3.64 nm GaAs/0.93 nm AlAs SL at 5K, with ND = 4.57× 1010 cm−2,
νi = 2νe = 18×1012 Hz under a dc voltage bias of 1.62 V. Cathode and anode
contact conductivities are 2.5 and 0.62 Ω−1cm−1, respectively.
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Fig. 1. (a) Current (J0 = evMND/l) vs. time during self-oscillations, and (b) fully
developed dipole wave. Solid line: QDDE, dashed line: GDDE. Parameter values:
x0 = 16 nm, t0 = 0.24 ps, J0 = 1.10× 105 A/cm2.

We observe that the field profile of the dipole wave during self-oscillations
is sharper in the case of the GDDE than in the case of the QDDE. The local
spatial averages appearing in the QDDE have a smoothing effect on the sharp
gradients of the electric field. This smoothing effect produces rounder and
smaller dipole waves in the QDDE, as compared to the same solution for the
GDDE. The equal-area rule as in the theory of the Gunn effect hints that
smaller waves are faster [3], resulting in a slightly larger frequency for the
self-oscillations in the QDDE (37.6 GHz) than in the case of the GDDE (36.8
GHz).
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Summary. Some propositions for approximation of the controllability and observ-
ability gramians for nonlinear systems are presented. This enables a balancing type
model reduction to be performed for nonlinear systems in the same manner as for
linear systems.

Key words: gramians, controllability, observability, Lyapunov equations

1 Introduction

Nonlinear systems arise in all aspects of engineering - aeronautics, chemical
and processing industries, high-speed electronics and so on. The complexity
of modern systems is such that their simulation may involve the solution of
several thousands of non-linear coupled ordinary (ODE) or partial differential
equations (PDE). This can prove computationally arduous both in terms of
speed and memory requirements even with state-of-the-art workstations. To
this end, model reduction techniques are of paramount importance in that
they permit repetitive and iterative simulation for both design and optimiza-
tion purposes to proceed in a reasonable time-frame.

Typically, all but one of the continuous variables of the PDE are discretised
and the system can be written in the form of a (very large size) system of ODE:

ẋ = f(x) +Bu(t) (1)

y = h(x(t)) (2)

where f : Rn → Rn and h : Rn → Rq are nonlinear functions, u(t) ∈ Rp is
regarded as an input to the system and y(t) ∈ Rq is an output. The goal in
model reduction is to replace the n–dimensional system (1)–(2) with a system
of much smaller dimension k � n, such that the input-output behavior of the
reduced order system satisfactorily represents the behavior of the full system.
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Now while model reduction techniques for linear systems abound, general
user-friendly robust reduction techniques for nonlinear systems remain to be
found. The existing methods for model order reduction of nonlinear systems
can be classified as follows: A. Empirical methods. These methods use exper-
imental or simulation data for the input-output behavior of the system [3]; B.
Volterra methods. These are based on polynomial expansion of the nonlinear
function f(x) and taking into account the first several terms of the expansion
[4, 2]; C. Trajectory approximation methods. Included here are the so called
Proper orthogonal decomposition and Piecewise polynomial approximation.

One approach for linear reduction familiar, in particular, to control en-
gineers is balanced truncation. It involves the determination of two specific
matrices, namely the controllability and observability gramian matrices, which
when balanced enable the important states in a system to be determined and
those of lesser importance for the input-output mapping to be eliminated.
For nonlinear systems, the computation of exact gramians is impractical so
empirical or approximate constant gramians are required in lieu of the ex-
act solutions. This enables a balancing type model reduction process to then
proceed for nonlinear systems in the same manner as for linear systems. In
what follows a new approach for the determination of approximate empirical
gramians will be discussed.

2 Linear time-varying systems

The gramians for Linear time-varying systems (LTVS) provide a motivation
for constructions suitable for nonlinear systems. For a LTVS

ẋ(t) = A(t)x(t) +B(t)u(t), y(t) = C(t)x(t) (3)

the fundamental solution is defined as the solution of:

Θ̇(t) = A(t)Θ(t), Θ(0) = I (4)

where I is the corresponding identity matrix. For example, if A is a constant
matrix, (as for the linear time invariant system – LTIS) then one simply
recovers the very well known solution Θ(t) = exp(At). The Controllability
and the Observability gramians are [5]:

P =

∫ ∞

0

Θ−1(−τ)B(−τ)BT (−τ)Θ−1T (−τ)dτ (5)

Q =

∫ ∞

0

ΘT (τ)CT (τ)C(τ)Θ(τ)dτ (6)

Strictly speaking, the gramians for LTVS must depend on t as shown
in [5]. However, for the purposes of model reduction, constant gramians are
preferred and the constant versions (5) and (6) are used as approximations.
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The expressions in (5) and (6) are generalisations of the gramians for LTIS
where Θ(t) = exp(At):

P =

∫ ∞

0

eAτBBT eA
T τdτ, Q =

∫ ∞

0

eA
T τCTCeAτdτ. (7)

3 Nonlinear systems

One approach for construction of empirical gramians is outlined in the paper
[3]. However, instead of considering delta-inputs, it is more natural to analyze
the system in the vicinity of an equilibrium point when u(t) = 0 . Consider
the vicinity of an isolated asymptotically stable equilibrium point (steady–
state solution) which is supposed to be a constant solution and is chosen for
simplicity at x = 0, i.e. f(t, 0) ≡ 0, [1].

In what follows, it is proposed to make use of an approximation for the
most natural object – the fundamental solution Θ of (1) that would generalize
the exp(At) term for linear systems (f(x) = Ax). This is reasonable since the
projection Krylov spaces for linear systems are generated by their fundamen-
tal solution exp(At). The constructions would, in general, depend on Θ for
negative times which is unavoidable. For linear systems, of course, there is a

simplification since
(
eA(−t))−1 ≡ eAt so this does not present a limitation but

in general, Θ−1(−t) 6= Θ(t) , cf. (5).
Let xilm(t) be the solution of (1) with u ≡ 0 and with initial condition

xilm(0) = cmTlei. It is assumed that this initial condition does not take the
system outside the region of attraction of the equilibrium point x = 0. Then
the ’state-space average’ of the ’nonlinear’ fundamental solution may be de-
fined as:

〈Θ(t)〉 =
1

rs

s∑

m=1

r∑

l=1

n∑

i=1

1

cm
xilm(t)eTi T

T
l (8)

where M ≡ {c1, c2, . . . , cs} is a set of s positive constants, Tn ≡ {T1, T2, . . . , Tr}
– a set of r orthogonal n×n matrices and En ≡ {e1, e2, . . . , en} a set of stan-
dard unit vectors in Rn. The purpose of using these sets is an attempt to
ensure that the entire region of feasible values of initial inputs/states is cov-
ered and probed. The set En defines the standard directions and the set Tn

defines ’rotations’ of these directions. The set M introduces different scales
for each direction of the initial states/inputs.

The following constructions of empirical controllability and observability
gramians are now suggested:

Definition 1. For the system in (1) – (2), the empirical controllability gramian
is defined as:

P̃ =

∫ ∞

0

〈Θ(−τ)〉−1B(−τ)BT (−τ)〈Θ(−τ)〉−1Tdτ (9)

where 〈Θ(t)〉 is as described in (8).
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Of course, this construction requires that 〈Θ(−τ)〉 is invertible for all τ ≥
0. (9) is obviously a generalisation of (5).

Definition 2. For the system in (1) – (2) the empirical observability gramian
is defined as:

Q̃ =

∫ ∞

0

zT (τ)z(τ)dτ (10)

where z(τ) ∈ Rn is given by:

z(t) =
1

rs

∑

i,l,m

1

cm
yilm(t)eTi T

T
l

and yilm(t) is the output which corresponds to an initial state xilm(0) = cmTlei
and a zero source term.

Both gramians (9) and (10) when applied to LTVS (or LTIS) thus result
in the usual gramians i.e. (5) and (6).

4 Illustrative numerical example

The ladder of Fig. 1 represents a heat flow model [6]. The voltage at the
m-th node represents the temperature on a rod at a distance, proportional
to m (i.e. the distance is being discretized). The (input) voltage at node
1 represents the heat source. The nonlinearities represent the conductivity
dependence on the temperature. The output is taken as the average voltage
at all nodes, representing the average temperature of the rod. The choice of
different parameters of the circuit represents different spatial or environment
conditions [6]. The nonlinear resistor introduces quadratic nonlinearity at each
node inl(v) = gv2 for v > 0. Varying g can change the magnitude of the
nonlinearity. The condition v > 0 is achieved by taking the input current
u(t) > 0. The other parameters are C = r = 1.

The example enables confirmation of the effectiveness of the reduction
based on the proposed empirical gramians – Fig. 2.

(v)i nl(v)i nl (v)i nl (v)i nl

2 n1

U(t)

r r r

C C C C

r r

Fig. 1. Circuit with quadratic nonlinearity
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Fig. 2. Comparison between output from nonlinear model (n = 100, g = 10) and
reduced order k = 3 models – step input: (a) solid line-original nonlinear model; (b)
dashed line – reduced order model, reduction based on the novel empirical gramians
(9) and (10); (c) dotted line – reduced model, with gramians based only on the linear
part of the system.
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Electrolyte Flow and Temperature
Calculations in Finite Cylinder Caused by
Alternating Current
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Summary. The distribution of electromagnetic fields, forces and source term of
temperature induced by an alternating axially-symmetric system of electric current
in a cylinder of a finite length with 6 electrodes has been investigated and calculated
in [2, 1].

In this paper the three-phase alternating current with phase shift 120 degree is
fed to every of 9 discreate circular conductors-electrodes, which are placed on the
internal wall of the cylinder. The motion of electrolyte and temperature distribution
in a cylinder has been calculated in dependence of the arrangement of electrodes .

Key words: Magneto-hydrodynamic flow, temperature, electrolyte, cylinder.

1 Introduction

In many technological applications it is important to mix and heat an elec-
troconductive liquid, using various magnetic fields. One of the modern areas
of applications developed during last years is effective use of electrical energy
produced by alternating current in production of heat energy. This process is
ecologically clean. Devices based on this principle are developed during last
ten years. This work presents the mathematical model of one of such devices.
It is a finite cylinder with 9 metal coils-electrods positioned on its inner surface
with a fixed distance one from the other. By connecting those coils to three–
phase alternating current, they irradiate energy. If this cylinder is placed, for
example, in a house heating system together with a small electromotor which
rotates water in the entry of cylinder and pumps water through it, we obtain
an effective, compact and ecologically clean house heating device.
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2 Mathematical Model

In this work we considere a finite cylinder Ω̃ = {(r, z) : 0 < r < a, 0 < z < Z}
with 9 metal coils-electrodes Li = {(r, z), r = a, z = zi}, 0 < zi < Z, i =
1, 9, positioned on its inner surface with a fixed distance one from the other.
Alternating current with density ji = j0 cos(ω̃t + (i − 1)θ), is fed to every of
9 discrete circular conductors.

Here j0 is the amplitude, ω̃ = 2πf, f are the angular frequency and
frequency of the alternating current, θ is the phase (usually θ = 1200, f =
50Hz) and t is the time (j0 ≈ 106 A

m2 ).
The current creates in the weakly conductive liquid-electrolyte axial Fz

and radial Fr components of the electromagnetic force (Lorentz’ force).
For calculating the electromagnetic fields, the averaging method over the

time interval 2π/ω̃ = 1/f is used. The averaged values of force < Fr >,
< Fz > give rise to a liquid (electrolyte) motion.

At the inlet of the cylinder we have a uniform velocity U0 ≈ 0.1m
s , but the

swirl velocity is taken as the induced by the rigid body rotation with angular
velocity Ω0 ≈ 4s−1.

The liquid have following parameters:

kinematic viscosity ν ≈ 10−5 m2

s , density ρ ≈ 1000 kg
m3 , the electric conduc-

tivity σ ≈ 100Ω−1m−1, the specific heat capacity c ≈ 4000 J
kg.K , the heat

conductivity λ ≈ 0.6 W
m.K and the heat exchange coefficient α ≈ 12 W

m2.K .
The radius a of the cylinder is 0.05m, the length Z of the cylinder is 0.35m.

The axially-symmetric stationary Navier-Stokes equations for vorticity
function ω, hydrodynamic-stream function ψ and circulation W in the cylin-
drical coodinates (r, ϕ, z) are used in the non-dimensional form with swirl
number Γ , Reynolds number Re and Taylor number Te [1].

These equations were put in the dimensionless form scaling all the lengths
to r0 = a (the inlet radius of the tube), the axial velocity vz to U0( the uniform
inlet axial velocity), swirl velocity to W0 = r0V0, the azimuthal velocity vϕ to
V0 = r0Ω0, the vorticity ω to ω0 = U0/r

2
0 and stream function ψ to ψ0 = U0r

2
0.

In the part of the inlet (z = 0, 0 ≤ r < r1) the axial streams are assumed
to have a uniform velocity U0 : W = ω = 0, ψ = 0.5r2;
in the other part of the inlet (z = 0, r1 ≤ r ≤ 1) the swirl velocity profile
is induced by the rigid body rotation with the angular velocity Ω0 : W =
r2, ω = 0, ψ = 0.5(r2

1 + β(r2 − r2
1)),

where β ≈ 0.1 is the velocity ratio of the coaxial free stream velocity to axial
jet velocity U0.

The steady heat transport equation with source terms jϕ and with con-
stant properties ([1] heat convection is neglected) contain the heat sources
parameter KT , Biot number Bi, Prandtl number Pr, Peclet Pe and Eckert

Ecnumbers. The dimensionless temperature T = T̃−Ta
Tb−Ta , where Ta = 293K,

Tb = 353K are external and permissible temperatures, T̃ is dimensional tem-
perature.
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3 The Finite-Difference Approximations and Numerical
Results.

The presence of large parameters of first order derivatives (Γ,Re, Pe) in the
systems of differential equations couses additional numerical difficulties for the
application of the general finite-difference methods . Thus special monotonous
approximations are constructed [3], using functions of matrix and the expo-
nential functions s(x) = x/(exp(x)−1) > 0, s′(x) = ds

dx < 0(s(0) = 1, s′(0) =
−0.5) with Patankar approximations [4]. We consider an uniform grid with
steps h1, h2 in the r, z directions. The coresponding finite difference scheme
[2] is calculated with the under relaxation method.

As the basis for the calculations of 9 circular conductors Li are chosen,
which are arranged in the axial direction at the points zi = 0.2i, i = 1, 9.
The results of numerical experiments was obtained in the case of h1 = h2 =
0.1, r1 = 0.5, Γ ∈ [0, 8], Re = 500, KT = 1.2, P r = 67, P e = 103, Ec =
10−8, l = Z/a = 3.

The values of averaged forces < Fz >, < Fr >, curl of forces < fϕ > and
maximal value of the source function < j2

ϕ > depending of the arrangement
of 9 conductors by numbering nj = [123456789] are in the Table 1.

Table 1. The extremal values of averaged forces and curl of forces

Nr. nj < Fz > < Fr > < fϕ > < j2
ϕ >

1 [123456789] [-17.7;1.10] [-11.9;11.9] [-1.4;122] 2.49
2 [135792468] [-1.10;17.7] [-11.9;11.9] [-122;0.6] 2.49
3 [147258369] [-69.0;3.50] [-50.5;50.5] [-49.;200] 12.9
4 [761835924] [-51.1;46.6] [-36.8;40.6] [-247;132] 12.1
5 [531642789] [-28.3;47.5] [-21.8;26.3] [-193;195] 9.70
6 [478591623] [-31.4;15.4] [-20.3;20.3] [-59.;188] 8.83
7 [963852741] [-3.50;69.0] [-50.5;50.5] [-200;49.] 12.9
8 [258147369] [-69.0;3.50] [-50.5;50.5] [-49.;200] 12.9
9 [369147258] [-69.0;3.50] [-50.5;50.5] [-49.;200] 12.9

We obtain for the dimensionless values of ψmax, Wmax, ω ∈ [ωmin, ωmax]

Tmax, Tav =
1

l

∫ l

0

∫ 1

0

rT (r, z)drdz depending of different connection of elec-

trods and of the parameter Γ by Te = 0.1 following selected results:
1. Conductors are series connected, one after another nj = [123456789]

(see in the Table 1, Nr.1):
Γ = 0, ψmax = 0.20, ω ∈ [−1.1, 6.9], Tmax = 0.052, Tav = 0.027, – on
the cylinder surface by the electrode developed small vortex, induced by the
Lorentz force;

2. Conductors are connected to each other skipping two of them, the ends
of 3 wires are in the begin of electrodes nj = [147258369] (see in the Table 1,
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Nr.3):
a) Γ = 0, ψmax = 0.38, ω ∈ [−9.0, 70], Tmax = 0.50, Tav = 0.43, Fig. 1 shows
big vortex by the last electrod, induced by Lorentz force, Fig. 3 shows the
distribution of temperature;
b) Γ = 8, ψmax = 0.29, ω ∈ [−16, 80], Wmax = 0.72, Tmax = 0.53, Tav = 0.45,
Fig. 2 shows that this vortex decreases and at the inlet of the cylinder the
vortex-breakdown from the swirling jets develops([2]), the distribution of the
temperature is more uniform;

3. The first 6 conductors are connected to each other skipping one of them,
but the last 3 are series connected nj = [531642789] (see in the Table 1, Nr.5):
Γ = 0, ψ ∈ [−0.13, 0.18], ω ∈ [−35, 7], Tmax = 0.12, Tav = 0.10, Fig. 4 shows
big vortex by the first electrods, induced by Lorentz force, but the temperature
is small;

4. The ends of 3 wires are in the end of electrods, nj = [963852741] (see
in the Table 1, Nr.7):
a) Γ = 0, ψ ∈ [−0.32, 0.16], ω ∈ [−107, 32], Tmax = 0.26, Tav = 0.20, – we
can see big vortex by the first electrods (similar with case 3.);
b) Γ = 1, ψ ∈ [−0.83, 0.17], ω ∈ [−108, 414], Wmax = 0.52, Tmax =
0.24, Tav = 0.18, – the vortex by the electrods decreases and gets up.

4 Conclusion.

1. The results of the numerical experiments with 9 circular conductors re-
ported here had give some new physical conclusions on the flow behavior
and distribution of temperature in the cylinder.

2. The averaged values of the electric field, electromagnetic forces, the az-
imuthal component of the curl of forces’ vector and the heat source are
calculated for different arrangement of the electrodes.

3. Using monotone finite-difference schemes for calculations, the average in
the time axially-symmetric motion of electrolyte and the temperature dis-
tribution in a cylinder have been obtained:
1) the vortex formation inside the cylinder ;
2) the distribution of temperature depending of arrangement of the elec-
trods (the maximal dimensionless temperature for the conductors con-
nected to each other skiping two of them (nj = [147258369]) is 10 times
higher than in the case when the conductors are connected in series).
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Fig. 1. The stream functions nj =
[147258369], ψ ∈ (0.00, 0.38), Γ = 0
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Fig. 2. The stream functions nj =
[147258369], ψ ∈ (0.00, 0.29), Γ = 8
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Fig. 3. Temperature nj = [147258369],
Tmax = 0.50, Γ = 0
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Fig. 4. The stream functions nj =
[531642789], ψ ∈ (−0.13, 0.18), Γ = 0
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Summary. Numerical aspects for solving of certain problem arising in gyrotron
theory are discussed. Particularly, finite-difference schemes using quasistationariza-
tion and method of lines were applied and the relevant results analyzed.

Key words: Finite-difference schemes, method of lines, gyrotrons, quasis-
teady solutions, Robin’s boundary conditions, spectral problems.

1 Introduction

Gyrotrons are microwave sources whose operation is based on the stimulated
cyclotron radiation of electrons oscillating in a static magnetic field. Gyrotron
oscillators can have a wide application, including radars, advanced commu-
nication systems, technological processes, atmospheric sensing, ozone conser-
vation, artificial ionospheric mirror, extra-high-resolution spectroscopy, etc.
However, the main application of powerful gyrotrons is electron cyclotron res-
onance plasma heating in tokamaks and stellarators and the noninductive
current drive in tokamaks. Extensive literature exists on various aspects of
these devices, see [3].

Competition between the amplitudes of nonstationary gyrotron oscilla-
tions fs and the complex transverse momentum of electrons p in different
modes (s = 1, . . . ,m) can be described by the following nonlinear system of
equations [1, 4]





∂p

∂x
+ i(|p|2 − 1)p = i

∑

s

fs exp(i∆sx+ Ψs),

∂2fs
∂x2

− i∂fs
∂t

+ δsfs = Is
1

4π2

∫ 2π

0

∫ 2π

0

p exp[−i(∆sx+ Ψs)] dΘ0 dΦ.

Here i is the imaginary unit, x ∈ [0, L] and t ≥ 0 is the normalized axial and
time coordinates, for every number of mode s the corresponding ∆s is the
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frequency mismatch, δs describes variation of the critical frequencies, Is is the
dimensionless current, Ψs is the phase of the mode.

This system of equations has to be supplemented by the standard initial
conditions p(0) = exp(iΘ0),

fs(0, x) = fs0(x), (1)

where fs0(x) are given complex functions, and by the boundary conditions for
the field at the entrance and at the exit to the interaction space in the cavity
of gyrotron

fs(t, 0) = 0,
∂fs(t, L)

∂x
= −iγsfs(t, L), (2)

where γs are positive parameters which describe the wave number at the
resonators exit.

The word combination “competition between the amplitudes of oscillations
in different modes” is used in the sense that most of these modes vanishes in
direction of axis x which is located along the length of the gyrotron cavity.

The boundary condition of Robin’s type at the resonators exit causes addi-
tional difficulties for the numerical simulation, particularly for the construct-
ing of difference schemes. Moreover, these schemes require many hours of
computing time for every single set of gyrotron operating parameters and this
severely restricts the parameters space which could be investigated. It was dis-
covered that the results of the computations depend in a nontrivial manner
on the chosen spatial and temporal step-lengths. In particular it was noticed
that the temporal step-length cannot be taken too small, otherwise unstable
and unpredictable results were obtained.

In order to study peculiarities of used numerical methods it is appropriate
to investigate the single mode case having also special restrictions to the
variable p.

If |p|2 = 1 + C, (C = const ≤ 0), and in the single-mode approximation
(m = 1 and subscripts in designations are omitted) the nonlinear system of
gyrotron equations reduces to the following form:

i
∂f

∂t
=
∂2f

∂x2
+ δf − iIe−i∆∗x

∫ x

0

f(t, ξ)ei∆∗ξ dξ, (3)

where∆∗ = ∆ + C, with corresponding to (1) and (2) initial and boundary
conditions.

Using the designation y(t, x) =
∫ x

0
f(t, ξ)ei∆∗ξ dξ and the transformation

f̄ = ei∆∗xf the integro-differential equation (3) can be written in the form of
the system of two partial differential equations





∂f̄

∂t
= −i

(
∂2f̄

∂x2
− 2i∆∗

∂f̄

∂x
+ (δ −∆2

∗)f̄

)
− Iy(t, x)

∂y

∂x
= f̄(t, x),

(4)
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with the following conditions:

f̄(t, 0) = 0,
∂f̄(t, L)

∂x
= −i(γ −∆∗)f̄(t, L),

f̄(0, x) = ei∆∗xf0(x).

(5)

The numerical simulation of the problem (4), (5) in the case I = 0 and δ =
const was investigated in the article [2]. Now we are presenting observations
for the general case.

2 Numerical Simulation

2.1 Quasistationarization

We represent the quasisteady solution of the problem (4), (5) in the form

f̄(t, x) = g(x) exp(iαt), y(t, x) = w(x) exp(iαt), (6)

where α is a complex number α = α1+iα2 (α2 is a temporal damping factor: if
α2 > 0, the solution of (4) decreases in time, if α2 < 0, this solution increases,
and for α2 = 0 this solution is oscillating in time).

Substituting the (6) into equation (4) and conditions (5), we obtain the
Sturm-Liouville problem for the system of two ordinary differential equations





g′′(x)− 2i∆∗g
′(x) + λ̃g(x)− Iiw(x) = 0

w′(x) = g(x)

g(0) = w(0) = 0, g′(L) = −i(γ −∆∗)g(L),

(7)

where λ̃ = α+ δ −∆2
∗ is complex eigenvalue.

If δ = const then for the nontrivial solution of problem (7) we obtain a
transcendental complex equation for calculating the eigenvalue λ̃

µ3κ3(µ2 − µ1) + µ2κ2(µ1 − µ3) + µ1κ1(µ3 − µ2) = 0, (8)

where κj = (µj − i(∆∗ − γ)) exp(µjL), µj , j = 1, 2, 3, are the three roots of
the following complex cubic equation:

µ3 − 2i∆∗µ
2 + λ̃µ− Ii = 0,

and number the roots of the equation (8) λ(k), k = 1, 2, . . . by increasing
their real parts. It is seen that the parameter δ affects only the values of
α1, i.e., determines mainly the spatial, but not the temporal behavior of the
function f .

The corresponding complex eigenfunctions g(k)(x) can be obtained from
the problem (7) and the quasisteady solution for every eigenvalue λ(k) =
α(k) − δ +∆2

∗ in the form
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f (k)(t, x) = exp(−i∆∗x)g(k)(x) exp(iα(k)t).

From α
(k)
2 = Im(λ(k)) > 0 follows that asymptotically the solutions tends to

zero, if t tends to ∞. In practice δ is not a constant, but has the form

δ(x) =

(
sinh

(
L

2

))− 1
2

sinh

(
x− L

2

)
.

2.2 Method of Lines

For approximation of the derivatives we considered:

� Uniform grid with the grid points

xj = jh, j = 0, n, (9)

where h = L/n is the space step;
� Nonuniform grid with the grid points as the roots of the Chebyshev poly-

nomials of the second kind

xj = 0.5L(1− cos(πj/n)), j = 0, n. (10)

Considering only the spatial discretization (the variable x is discretized
and the variable t is continuous) and using the matrix D,D2 of derivatives
in the grids (9),(10) (see, [2]) we obtain the system of ordinary differential
equations in the following matrix-vector form:

dfh
dt

= Gfh, fh(0) = f0h, (11)

whereG = B−IE−(D−1E+), B = −i(D2+δE), E± = diag(exp(±i∆∗xh)).
The solution fh = fh(t) of the problem (11) can be obtained in two forms:

� Using matrix-exponent function

fh(t) = exp(Gt)f0h;

� Using the spectral decomposition of matrix G = RD0R
−1, where D0 is

the diagonal eigenvalues matrix, R is the eigenvectors matrix with corre-
sponding eigenvectors in the columns of the matrix

fh(t) = R exp(D0t)(R
−1f0h). (12)

It were appeared that for any n first n1 < n eigenvalues well coincide
with the roots of the equation (8), but some last n2 = n − n1 eigenvalues
were “parasitic” (see the example in [2]). These n2 eigenvalues substantially
differ from the precise ones and can cause inaccuracy for the calculated value
of fh(t). Consequently they must be excluded from the evaluation (12). For
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this purpose we used the spectral decomposition method for the solving the
system (11) in one of the following forms

fh(t) = R∗ exp(D∗0t)(R
−1f0h)∗,

or
fh(t) = R∗ exp(D∗0t)(R

′
∗R∗)

−1R′∗f0h,

where R∗ is the matrix R without the last n2 columns, R′∗ is the transpose
matrix of R∗, D∗0 is the quadratic matrix of D0 without the last n2 columns
and rows and (R−1f0h)∗ is the vector-column (R−1f0h) without the last n2

rows.

3 Conclusions

Numerical experiments show that for uniform grid the two level approximation
in the time the time step τ must be small. Therefore for the finite-difference
scheme the number of grid points increased (n ≥ 200) and large computer time
is required. So, more suitable is to use the nonuniform grid and algorithm of
method of lines, which is modified using the spectral decomposition method
without some last inaccurate eigenvalues.

Our observations make possible more efficiently to numerically solve the
general system of equations for arbitrary number m of gyrotron oscillation
modes.
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Summary. A deterministic solution method for the coupled Boltzmann-Poisson
system regarding spatially two-dimensional problems is presented. The method is
based on a discontinuous piecewise polynomial approximation of the carrier dis-
tribution function. The conduction band of silicon is modelled by a non-parabolic
six-valley model. In particular, we applied the multicell method to simulate the tran-
sients of a silicon MESFET. The results are compared to Monte Carlo simulations.

Key words: Electron transport, semiconductors, kinetic theory.

1 Introduction

According to the shrinking size of modern semiconductor devices, a detailed
kinetic description of the occurring transport processes becomes indispensable.
This is achieved on semiclassical grounds by the coupled Boltzmann-Poisson
system. Solving this coupled nonlinear system is a difficult, challenging task
owing to its complicated mathematical structure.

The stochastic Monte Carlo (MC) technique is widely used, because of its
direct physical interpretation and its ease to include various physical effects.
However, this technique suffers from the disadvantages of statistically noisy
results and an inefficient simulation of transients. Therefore, the development
of alternative, deterministic methods, which are accompanied with less com-
putational burden, has become an active field of research.

In 2003, Carillo et al. [1] were successful in applying a high-order shock-
capturing scheme (WENO) as proposed in [4] to the Boltzmann transport
equation (BTE). This non-oscillatory upwind finite difference scheme pre-
vents so-called shocks of the carrier distribution function, which can appear
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according to the hyperbolic nature of the BTE. Their simulation results of a
one-dimensional n+-n-n+-silicon diode are in excellent agreement with MC-
calculations but with the advantage of saving CPU time and a noise-free
resolution. Recently, we were able to reproduce their results by using an even
faster deterministic multicell method, which is based on a discontinuous piece-
wise polynomial approximation of the carrier distribution function [2]. In this
paper, we extend the multicell method to spatially two-dimensional problems.

The paper is organized as follows. The underlying physical model of silicon
is shortly described in Sect. 2. We sketch the multicell method in Sect. 3 and
finally apply it to a two-dimensional short channel silicon MESFET. The nu-
merical results are compared to Monte Carlo data obtained with the Damocles
code [3].

2 Physical Assumptions

We consider a non-parabolic multivalley model for the conduction band of
silicon by considering six equivalent valleys lying around the six energy minima
along the ∆-directions of the first Brillouin zone. In the principal axis system
of the ellipsoidal shaped isoenergetic surfaces, the dispersion relation regarding
the electron energy ε reads

γ = ε(1 + αε) =
~2

2m0
k∗2. (1)

Here, we introduced the nonparabolicity parameter α, the free electron mass
m0 and the starred wave vector k∗i = (m0/mi)

1/2ki, i = 1, 2, 3 with m1 =
m2 = mt and m3 = ml denoting the transversal and longitudinal effective
mass of the electrons, respectively.

The transport of the electrons in each single valley under the impact of
an electric field E is governed by the BTE for the corresponding space-,
momentum- and time-dependent electron distribution function fα(r,k, t):

∂fα

∂t
+ v

∂fα

∂r
− eE

~
· ∂f

α

∂k
= C[fα] + Ci.v.[f

α, fβ ] α, β = 1, . . . , 6 . (2)

Here, e is the elementary charge, v denotes the group velocity of the electrons,
C[f i] and Ci.v.[f

α, fβ ] labels the collision operators according to intra- and
intervalley scattering processes. The electric potential Φ(r, t) is determined by
the Poisson equation

∆rΦ(r, t) =
e

ε0κs
[n(r, t)− nd(r)] , (3)

where ε0 denotes the vacuum permittivity and κs is the dielectric constant
of the considered semiconductor. The particle densities of the electrons and
donors are represented by n and nd, respectively. The system of BTE’s couples
nonlinearly to the Poisson equation via E = −∇rΦ and
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n(r, t) =
1

4π3

∫

1.BZ

dk f(k, r, t), (4)

where the integration is extended over the first Brillouin zone (1.BZ).
We assume the electrons to interact only with phonons and neglect

electron-electron and impurity scattering. The phonon gas is considered to
remain in permanent equilibrium at the lattice temperature T . By consider-
ing a non-degenerate electron gas, the collision operator typically reads

C[f ] =
V

8π3

(∫
P (k′,k)f(k′)d3k′ −

∫
P (k,k′)f(k)d3k′

)
, (5)

where P (k′,k) represents the transition rate from state k′ to k and V de-
notes the volume of the crystal. Isotropic transition rates for acoustic and
optical phonon scattering are obtained by applying the deformation potential
approximation as given in [5].

3 The Multicell Method for Spatially Two-Dimensional
Problems

The mathematical structure of the collision integrals [5] suggests to express
the BTE in spherical coordinates of the starred wave vector k∗. Moreover,
to ensure that the particle conservation is established by the derived model
equations, we introduce a distribution function weighted by the density of
states:

ψ(k, t) = γ1/2(1 + 2αε)f(k, t). (6)

The method is based on a partition of the whole phase space into tiny cells.
The energy ε, the polar angular variable θ = cosϑ and the azimuthal angular
variable ϕ are equidistantly discretized as follows:

εν = ν∆ε, ν = 0, . . . , Nε, ∆ε = εmax/Nε

θµ = −1 + µ∆θ, µ = 0, . . . , Nθ, ∆θ = 2/Nθ

ϕσ = σ∆ϕ, σ = 0, . . . , Nϕ, ∆ϕ = 2π/Nϕ

Bν = [εν−1, εν ], Bµ = [θµ−1, θµ], Bσ = [ϕσ−1, ϕσ].

Here, we introduced a maximum value εmax for the energy. In the case of the
spatial x and y variables we use a non-uniform grid Bλ = [xλ−1, xλ], ∆λ

x =
xλ−xλ−1, λ = 1, . . . , Nx and Bη = [yη−1, yη], ∆η

y = yη− yη−1, η = 1, . . . , Ny,
which allows us to refine the grid resolution in spatial regions, where rapid
variations are expected, e.g., at junctions. For a compact presentation, we
introduce the vector π = (ε, θ, ϕ, x, y), the multi-indices γ = (ν, µ, σ, λ, η) and
N = (Nε, Nθ, Nϕ, Nx, Ny). Next, we assume the distribution function to be
constant within a cell Bγ = Bληνµσ = Bν ×Bµ ×Bσ ×Bλ ×Bη:
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ψα(π, t) ≈
N∑

γ=1

ψαγ (t)χBγ (π) (7)

with the characteristic function χBγ (π) and the time-dependent unknowns
ψαγ (t).

By using this Ansatz (7) and integrating the resulting BTE over each single
cell, a linear system of ordinary differential equations (ODE’s) is established.
In order to perform the numerical evaluation of the collision operators, we as-
sumed the phonon energies to be integer multiples of the energy discretization
length ∆ε. According to the definition (6), each equation can be physically
interpreted as a particle continuity equation of a certain cell. However, when
integrating the advection terms (left hand side of the BTE), the problem arises
to evaluate the discontinuous function (7) at the boundaries of the cells Bγ .
The correct way of determinating it in the appearing boundary terms is indi-
cated by the characteristics of the advection terms, which is equivalent to an
application of an upwind scheme. A simple forward Euler scheme turned out
to be sufficiently accurate for performing the time integration of the result-
ing system of linear ODEs. The Poisson equation is solved self-consistently at
each time step by applying a finite element Galerkin approach.

4 Numerical Results

We simulate a two-dimensional silicon MESFET shaped as indicated in Fig. 1
with the applied potentials at source Vs = 0 V, gate Vg = −0.8 V and drain
Vd = 1 V. The donor densities are chosen as n = 1017 cm−3 and n+ = 3×1017

cm−3. Figure 2 shows the distribution of the electron density and the mean
energy per electron in the MESFET at steady state. Finally, a comparison
between deterministic and MC results for the particle density for certain cut
lines of the MESFET is presented in Fig. 3.

y

100

100100

200

10
0n+ n+

Gate DrainSource

20
0

x600

n

Fig. 1. Schematic illustration of the simulated Si-MESFET. Lengths are given in
nm.
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MESFET. (–): MC data; (×): multicell method.
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Summary. Vector Fitting (VF) is an iterative technique to construct rational ap-
proximations based on multiple frequency domain samples, introduced by Gustavsen
and Semlyen [1, 3]. VF is nowadays widely investigated and used in the Power Sys-
tems and Microwave Engineering communities. Numerical experiments show that
VF has favorable convergence properties. However, so far, no theoretical proof for
its convergence, or conditions to guarantee convergence, have been published. This
paper gives a description of a general iterative Least-Squares framework for rational
approximation and shows that VF fits into this framework.

Key words: Vector Fitting, rational interpolation, System Identification,
Least-Squares.

1 Introduction

In System Theory, it is common practice to approximate the frequency do-
main response of a Linear Time-Invariant system (LTI system) by a rational
pole-zero function. Finding such an approximation is inherently a difficult
problem due to the non-linearity of the approximant. To remove the non-
linearity, the denominator is often fixed at some well-chosen polynomial or
the system is linearized in some way. Of course, this can degrade the quality
of the approximant, or can even make accurate approximation impossible.

VF consists of an iterative pole relocation scheme. In each iteration step a
linear Least-Squares (LS) problem is solved, to come up with more accurate
approximations of numerator and denominator. New estimates of the poles
are based on the approximations of the previous iteration.

In this contribution we position the VF technique in a broader LS rational
approximation framework. This way, we want to facilitate further exploration
of the theoretical properties of the VF technique. Furthermore, we offer some
insight into the initial choice of pole locations of the VF algorithm. For com-
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pleteness, we note that the iteration treated in this paper is related to the
Sanathanan and Koerner iteration [2].

2 An iterative scheme for solving rational LS problems

Suppose that we are trying to approximate a function H by a model of the
form

H̃(s) =

∑N
i=1 αifi(s)∑D
j=1 βjgj(s)

=:
p(s, α)

q(s, β)
(1)

where the fi and gj are fixed basis functions for the nominator and denomina-
tor respectively. Furthermore, αi and βj are unknown coefficients. To resolve
the ambiguity in the definition, it is possible to choose αN = 1 for example.
The p and q serve as an abbreviation, α and β are shorthands for the tuples
(α1, . . . , αN ) and (β1, . . . , βD), respectively.

Now suppose we have sampled H at certain points (sk)nk=1. Our goal is to

approximate H by a function of the form H̃ in an LS sense:

argminα,β

n∑

k=1

∣∣∣H(sk)− H̃(sk)
∣∣∣
2

(2)

The problem with this formulation is that both numerator and denomina-
tor contain unknown variables αi and βj , so basic techniques for solving LS
problems do not apply.

It is tempting to rewrite the LS problem as

argminα,β

n∑

k=1

∣∣∣∣∣∣

N∑

i=1

αifi(sk)−H(sk)

D∑

j=1

βjgj(sk)

∣∣∣∣∣∣

2

(3)

which is a simple linear LS problem of the form argminx‖Ax − b‖l2 . Unfor-
tunately this formulation is not equivalent with problem (2). Rewriting (2)
gives:

argminα,β

n∑

k=1

1

|q(sk, β)|2
|p(sk, α)−H(sk) q(sk, β)|2 (4)

which resembles (3), except for the weighting factor
1

|q(sk, β)|2
.

The following iterative scheme can be applied: Start by setting |q(s, β (0))| =
1. Calculate the sequences α(t) and β(t) by iteratively solving

argminα(t),β(t)

n∑

k=1

1∣∣q(sk, β(t−1))
∣∣2
∣∣∣p(sk, α(t))−H(sk) q(sk, β

(t))
∣∣∣
2

(5)

(which is a basic LS problem in α(t) and β(t)) for t = 1, 2, . . . Note that the
weighting factor is approximated by the denominator from the last iteration.
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3 The Vector Fitting methodology

In this section we will repeat the classical formulation of the VF methodology.
Suppose we want to approximate the function f : C→ C by a rational function
and that f is known at a fixed set of sample points (sk)nk=1. Now take an
arbitrary function σ : C→ C and assume that both σ(s)f(s) and σ(s) can be
approximated by rational functions using the same set of poles (ai)

D
i=1 (and

linear and constant terms). Formally, we have:



f(s)σ(s)

σ(s)


 =




∑D
i=1

ci
s− ai

+ e+ h s

∑D
i=1

c̃i
s− ai

+ 1


 (6)

We can now multiply the second row by f(s) and evaluate the system in each
of the samples sk. If we assume the poles of ai are fixed beforehand, we get a
system of linear equations in the unknowns (ci, c̃i, e, h) by equating the first
row with the second row. This system is overdetermined if a lot of samples
are available. In that case it can be solved using classical LS techniques.

We now proceed by writing both σ(s) f(s) and σ(s) in function of their
zeros and poles:

(
f(s)σ(s)
σ(s)

)
=




∏D+1
i=1 (s− zi)∏D
i=1(s− ai)

∏D
j=1(s− z̃j)

∏D
i=1(s− ai)




(7)

Dividing the first row by the second, we get an approximation for f of the
form:

f(s) =

∏D+1
i=1 (s− zi)∏D
j=1(s− z̃j)

(8)

Note that the zeroes of σ became the poles of our approximation.
The above procedure can be applied in an iterative fashion: the poles found

in the last iteration can be inserted in equation (7) as guesses for the actual
poles (ai)

D
i=1. Eventually, we want this procedure to converge. By this we

mean that the guessed poles ai become close enough to the real poles of f . In
that case σ will be approximately 1 and we have found an approximation for
f .

One problem that remains is the choice of the initial pole locations. This
problem will be addressed in Section 5.

4 How VF fits in

Fix D (the degree of the denominator), fix (ai)
D
i=1 (the starting poles) and set

N = D + 2. Now choose the following basis for the first iteration:
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fi(s) = gi(s) =
1

s− ai
for i = 1, . . . , D

fD+1(s) = gD+1(s) = 1 fD+2(s) = s

(9)

First note the following:

span 〈f1, . . . , fD+2〉 =
CD+1[s]

∏D
i=1(s− ai)

(10)

span 〈g1, . . . , gD+1〉 =
CD[s]

∏D
i=1(s− ai)

(11)

where Ck[s] denotes the polynomials in s of degree equal or less than k. If
a polynomial p(s) ∈ Ck[s], it’s always possible to factor p completely, i.e.

p(s) =
∏k
i=1(s− xi) for certain xi ∈ C.

Now using the basis functions specified in (9) we can proceed with the
iterative method proposed in Section 2. The first iteration produces two sets

of coefficients α
(1)
i and β

(1)
i . Using (10) and (11) we can rewrite p and q as

p(s, α(1)) =

∏D+1
i=1 (s− z(p,1)

i )
∏D
i=1(s− ai)

q(s, β(1)) =

∏D
j=1(s− z(q,1)

j )
∏D
i=1(s− ai)

(12)

The second iteration (using q(s, β(1)) as a weighting factor, as in Sect. 2)
produces p(s, α(2)) and q(s, β(2)). (12) can be applied to these new functions
(just replace the 1’s by 2’s). At first sight this does not really resemble the
vector fitting methodology. Rewriting the defining equation (5) of the iterative
scheme shows the following:

n∑

k=1

∣∣∣∣∣

∏D
i=1(sk − ai)∏D

j=1(sk − z(q,1)
j )

∣∣∣∣∣

2 ∣∣∣∣∣

∏D+1
i=1 (sk − z(p,2)

i )
∏D
i=1(sk − ai)

−H(sk)

∏D
j=1(sk − z(q,2)

j )
∏D
i=1(sk − ai)

∣∣∣∣∣

2

(13)
which simplifies to

n∑

k=1

∣∣∣∣∣

∏D+1
i=1 (sk − z(p,2)

i )
∏D
j=1(sk − z(q,1)

j )
−H(sk)

∏D
j=1(sk − z(q,2)

j )
∏D
j=1(sk − z(q,1)

j )

∣∣∣∣∣

2

(14)

Using (10) and (11) with ai replaced by z
(q,1)
j , we see that the LS problem

we solve in the second iteration is exactly that solved in the vector fitting
technique:

n∑

k=1

∣∣∣∣∣∣

D∑

i=1

ci

(sk − z(q,1)
i )

+ e+ h sk −H(sk)

D∑

j=1

dj

(sk − z(q,1)
j )

−H(sk) γ

∣∣∣∣∣∣

2

where γ is chosen 1.
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5 Initial pole placement

In order to get a system of linear equations that is not too badly conditioned,
it is important to choose the initial poles at good locations. As all samples lie
on the complex axis, choosing poles too far to the left in the complex plane
makes the real part of the poles dominate the matrix entries

1

sk − ai
=

1

j(ωk − Iai)−Rai
≈ −1

Rai
which renders all entries equally small.

Ideally, one would like to put the initial poles close to some of the sample
points. Doing so makes some of the elements in the linear systems matrix
significantly larger than all the other elements. This improves conditioning of
the system. Of course the limiting case, where we let the poles coincide with
some sample points, produces a matrix with some elements infinitely large
and all others zero. In that case all information would be lost.

Therefore, we suggest to place poles on a line, parallel and close to the
imaginary axis in order to get good conditioning. Originally, pole placement
on a line through the origin was suggested [1]. To our experience this gives
similar results.

The VF methodology also introduces the flipping of the poles around the
imaginary axis between each two iterations in order to obtain a model which
has all its poles in the left half-plane. In the context of system identification,
this means that the modeled system is stable. Flipping a pole to the left half
plane is equivalent to multiplying the approximant by the all-pass function

F (s) =
s− p

s− (−Rp+ Ip) |F (jω)|2 =
|ω − Ip|2 + |Rp|2
|ω − Ip|2 + | − Rp|2 = 1

where p is a pole. This means that the amplitude of the system remains the
same, only the phase changes.
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Summary. Krylov subspace methods are well-known for their nice properties, but
they have to be implemented with care. In this article the mathematical conse-
quences encountered during implementation of Krylov subspace methods in an ex-
isting layout-simulator are discussed. Briefly, the representation in a circuit is visited
and two methods to avoid parts of the redundancy are drawn.
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1 Introduction

Wireless applications are gaining interest in the electronic industry nowadays.
Integration plays a more and more important role in the design of these appli-
cations. Technologies like SoC and RF-SiP are needed to meet the demands
set by the consumer market. All this makes an accurate and fast modelling of
the electromagnetic (EM) effects of passive electronic structures needed.

The EM analysis of arbitrary shaped layouts can be calculated with exist-
ing tools. One specific example of such a tool was the drive for our research.
The Boundary Element Models initially generated by this tool can be simply
too large to be handled. Several reduction methods can be applied to make
the treatment of these models feasible.

In stead of the already implemented reduction method, Krylov subspace
methods, like the methods presented in [4] and [5], were proposed to be imple-
mented in the layout simulator. These methods were chosen because of their
well-known properties with respect to preservation of stability and passivity.
In this article mathematical consequences encountered during implementation
are discussed.
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2 Equation setting

We consider the following set of equations:

[
C 0
0 −L

]
d

dt

[
v
i

]
+

[
G PT

P −R

] [
v
i

]
=

[
B
0

]
u (1)

In this system the values for the capacitive elements are in the matrix C ∈
IRn×n, the inductive values are in L ∈ IRm×m. The matrices G ∈ IRn×n

and R ∈ IRm×m represent the resistive values. P ∈ IRm×n is an incidence
matrix consisting of 1’s, −1’s and 0’s. We denote by u the input signal. The
state space vector consists of voltages v and currents i. In this way the system
represents an RCL-circuit. Despite the precise formulation in (1), the methods
mentioned in this paper are generally applicable to systems of this form:

C
d

dt
x(t) = −Gx(t) + Biu(t)

y(t) = BT
o x(t). (2)

These are not specific for circuits.
The latter system is a Linear Time Invariant system. Because the matrix

C can be singular, this can be a Differential Algebraic Equation (DAE). A
common way to solve these systems is to transform them to the frequency
domain with a Laplace transform:

(G + sC)X(s) = BiU(s)

Y(s) = BT
o X(s); (3)

After elimination of the state space vector X(s) a transfer function is obtained:

H(s) = BT
o (G + sC)−1Bi (4)

This function gives a direct relation between the input and the output of
the system and is therefore representative for the behaviour of the system
in frequency domain. If the system has more than one inputs and outputs,
the transfer function is a matrix representing the transfers from one port to
the other. Typically, one tries to approximate the behaviour of this transfer
function.

3 Model Order Reduction

The aim of Model Order Reduction is to capture the essential features of a
large model into a much smaller approximation. Thus, the large system is
replaced by a smaller approximation, with the same amount of input signals,
i.e. ports in terms of a circuit and a comparable behaviour.
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The idea behind Krylov subspace methods is to generate a (basis for a)
Krylov space. A Krylov space is defined as:

Kn(b,A) = [b,Ab, . . .Anb] (5)

Next an orthonormal basis of this small space is calculated and the system
matrices are projected onto this basis. Due to space limitations for the publica-
tion, we refer the reader to [3] for the issues induced by the orthogonalisation
of the Krylov space.

If a system has more than one port, then B is a matrix; the number of the
columns in B is equal to the number of ports, say p. In that case the Krylov
space consists of blocks: with every iteration a block of p columns is added to
the Krylov space. This makes our approximation p columns and rows larger.

Well-known Krylov subspace methods in chronological order of publication
are PVL [2], PRIMA [5] and Laguerre-SVD [4]. PVL and PRIMA make use
of the fact that the transfer function can be written as:

H(s) = BT
o (G + sC)−1Bi = BT

o (I− (s− s0)A)−1R (6)

with A = −(G + s0C)−1C and R = (G + s0C)−1Bi. With this formulation
a Krylov space is generated, which represents the moments of the transfer
function:

Kq(R,A) = [R,AR, . . .AqR] (7)

Laguerre-SVD is based on the fact that the transfer function can be expanded
into scaled Laguerre functions in frequency domain:

H(s) = LT (G + sC)−1B =

2α

s+ α
LT

∞∑

n=0

(
(G + αC)−1(G− αC)

)n
(G + αC)−1Bi

(
s− α
s+ α

)n
(8)

From this expansion very naturally a definition for a Krylov subspace arises.
The starting vector is then R = (G + αC)−1Bi and the generating matrix
A = (G + αC)−1(G− αC). Then the Krylov space is defined as in (7).

Advantages of Krylov subspace methods are that they are very generally
applicable, because C and G do not need to be regular. Furthermore, they are
relatively cheap. Because it can be proven that the moments in the moment
expansion of the transfer function are preserved, the methods are accurate.
For PRIMA and Laguerre-SVD it is proven that stability and passivity of
the system are preserved during reduction. Especially this last property is
important in the implementation of Model Order Reduction methods into the
layout simulator. PVL convergences faster than PRIMA, but stability can be
lost in this methods. Therefore, in this setting PVL is left out of consideration.

In spite of these advantages, there are some severe disadvantages known for
Krylov subspace methods. First of all no error bound is known in general. For
PVL a bound is known and published in [1]. In PRIMA and SVD-Laguerre it
is not known when to stop. Hence, easily an unnecessarily large approximation
is generated.
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4 Validation of results

Because the original model can be represented as a circuit, an RCL-circuit,
and because the EM layout simulator uses a representation of its reduced
model in a circuit, it is desired to represent our reduced model in terms of
a circuit. This circuit representation enables us to use the speed of existing
circuit simulators, in evaluating the behaviour of the reduced model.

In the original model, see (1) the state space vector consisted of voltages
and currents. After projecting the system onto a smaller space, these voltages
and currents are mixed and therefore the physical meaning of the reduced
model is lost. Hence, it is not possible to represent the system without making
use of controlled sources or controlled components. Nevertheless, we obtained
a circuit representing the reduced model and this representation is tested and
compared to the output of the layout simulator. The results in frequency
domain can be made as accurate as wanted, together with the increasing size
of the reduced system. More important is that the results for a transient
analysis is stable. This was not the case for the existing reduction method,
which gave a good approximation in frequency domain, but could be instable
in time domain.

5 Redundancy

Next to the already mentioned disadvantages of Krylov subspace methods,
there is another drawback to Krylov subspace methods. Because they do not
carefully choose the needed information, a lot of information is incorporated
in the smaller model which is not needed for a good approximation. So, even
if we stopped the iterative process in time, the models are redundant. In our
research we found two ways to avoid parts of this redundancy, without too
much computational expenses.

The first proposal is a deflation of converged columns. Sometimes it can
happen that a column is generated which already existed in the space. At
that moment we want to stop iterating with this direction and want to be
able to proceed with the other columns in the block. This convergence should
be treated with care, because if we violate the basic property of Krylov spaces,
the small approximation can become really cumbersome. In the Block Arnoldi
Algorithm, used to generate the Block Krylov space a specialized QR, i.e. a
rank-revealing QR step is substituted. In this way smaller approximations
with the same transfer function can be generated.

Our second proposal is to remove insignifant poles, via an eigendecom-
position of the reduced system. Because the reduced system is small, a full
eigendecomposition can be calculated cheaply:

CV = GVΛ. (9)
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Here the diagonal matrix Λ ∈ Cq×q consists of the eigenvalues, where q is
the size of the reduced system. The associated eigenvectors are in V ∈ C q×q.
Once this decomposition is obtained, the transfer function can be written in
a pole-residue expansion:

H(s) = c+

q∑

j=1

rj
s− pj

, (10)

with r and p ∈ C.
We saw that in this sum there are terms which do not contribute to the

transfer function. This can be either because rj is very small or pj is very
large. These poles are removed, which comes down to removing the associated
columns from V. Complex poles are always removed in conjugate pairs. Naxt
a real basis is generated for the eigenvector matrix. This is finally used to
project our reduced system on.

6 Conclusions

In this article we presented the mathematical challenges of implementing
Krylov subspace methods in an existing layout simulator. We showed that
Krylov subspace methods are efficient for the given examples, but have to
implemented with care. Several adjustments can be implemented to the ex-
isting methods, to make them more efficient. There is an obvious need for
realization. Realization enables the application of Model Order Reduction in
time domain simulations of the EM behaviour.
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Summary. Several iterative methods have been tested in nonlinear DC analysis of
industrial electronic circuits.
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1 Introduction

Modern electronic circuits are typically large, consisting of thousands of tran-
sistors and other components. For the simulation of these large, nonlinear
circuits, efficient iteration methods are needed. Choosing the nonlinear itera-
tion method for a circuit simulator, we have to take into account the special
properties of both the circuit equations and the circuit simulator, in our case,
APLAC (www.aplac.com).

The DC analysis of APLAC is based on the (modified) Newton–Raphson
(NR) method. It has fast local convergence, but, especially in cases where the
initial guess for the nonlinear iteration is poor, NR iteration may diverge or
the convergence may be extremely slow. Usually, other methods with strong
convergence properties (e.g., homotopy methods) are slow, while faster meth-
ods (e.g., methods that approximate the inverse of the Jacobian matrix) have
convergence problems. Therefore, one has to compromise between speed and
reliable convergence.

Our goal is to find a method or a combination of methods that converges
robustly enough for badly scaled DC analysis and is also reasonably fast.

In APLAC, transistors and other nonlinear components are modeled such
that the current functions and their first derivatives are available. Therefore,
the Jacobian matrix and the gradient are easy to obtain, but, e.g., the con-
struction of the Hessian matrix would need expensive numerical computation.
In addition, the Jacobian matrices are sparse and often nearly singular.

We concentrate on some trust region and tensor methods [1, 7], which
should be efficient in the case of nearly singular Jacobian matrices and do not
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need the computation of Hessian matrices. We also improve the convergence
of the methods using a non-monotone strategy and compare their efficiency
to NR and some conjugate gradient (CG) methods. All the methods have
been implemented in the in-house development version of APLAC using the
Matlab C-function libraries. Simulations with real-life circuits are presented.

2 Equation formulation

The nonlinear circuit equations for DC analysis can be written in the algebraic
form

f(x) = 0, (1)

where x is the vector of the unknown voltages and currents. Function values
and derivatives can be directly obtained from the model equations. If we define
the objective function as

F =
1

2
‖f(x)‖22 =

1

2
f(x)Tf(x), (2)

the gradient is
g = ∇F = JTf(x), (3)

where J is the Jacobian matrix. The Hessian matrix

H = ∇2F =
∂g

∂x
=
∂
(
JT
)

∂x
f(x) + JTJ (4)

is possible to obtain, but it would need expensive numerical computation and,
therefore, methods using the Hessian are omitted.

In this paper we study damped iterations

xk+1 = xk + λk∆xk, (5)

with the damping factor λk, 0 < λk ≤ 1. The update ∆xk is

∆xNR
k = −J−1

k fk, (6)

∆xSD
k = −JTk fk = −gk, (7)

∆xCG
k = −gk + βk−1∆xk−1, (8)

for NR, steepest-descent (SD), and CG methods, respectively. In CG, formulas
for β are called Fletcher–Reeves, Polak–Ribière, and Dai–Yuan formulas and
are given as [2, 5]

βFR
k−1 =

‖gk‖2
‖gk−1‖2

, βPR
k−1 =

gTk yk−1

‖gk−1‖2
, βDY

k−1 =
‖gk‖2

dTk−1yk−1
, (9)

respectively, where yk−1 = gk − gk−1.
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3 Line-search methods

For global convergence, a line search is performed in the step direction, i.e.,
adjust λk such that

‖f(xk + λk∆xk)‖ < ‖f(xk)‖ . (10)

4 Trust-region methods

A trust region B = {x | ‖x− xk‖ ≤ δ }, where δ is the trust-region radius, is
the region where the linear or quadratic model m(x) is assumed to approxi-
mate f(x). In the trust-region methods, the iteration step, ∆xk, is obtained
by minimizing the model within the trust region:

min
‖∆x‖≤δ

m(xk + ∆x). (11)

The trust-region radius, δ, is adaptively adjusted during the iteration.

5 Non-monotone strategy

The monotone-decrease requirement (10) is sometimes too strict. It may pro-
duce unnecessary line searches or trust-region reductions and, thus, slow down
the iteration. This can be avoided using a non-monotone strategy, which has
been effectively used within iterative line-search methods [4] and trust-region
methods [3].

The idea of a non-monotone strategy is very simple. Instead of demanding
the function norm to be smaller than the norm in the previous iteration, it is
required to stay below the maximum of M + 1 earlier norms, i.e.,

‖f(xk+1)‖ < max
0≤j≤m(k)

‖f(xk−j)‖. (12)

where m(0) = 0 and m(k) = min [m(k − 1) + 1,M ]. This loosens the too strict
decrease conditions, but ensures that the function norm is reduced within M
iterations and that the iteration does not diverge.

6 Dog-leg method

Dog leg (DL) [6] is a trust-region method that combines the NR and SD
methods. If the NR step is inside the trust region, it is accepted as a trial step.
Otherwise, the point that minimizes the objective function in the direction of
SD, the Cauchy point, is computed. If the Cauchy point is outside the trust
region, a damped SD step to the trust-region boundary is taken. When the
Cauchy point is inside the trust region, a step is taken to the trust region
boundary between the Cauchy point and the NR point.

The non-monotone strategy can be applied to this method, too.
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7 Tensor methods

Tensor methods with line search were presented in [7]. In [1], tensor methods
with 2D trust-region methods were introduced.

In these methods, the quadratic model is

m(x + ∆x) = f(xk) + Jk∆x + 1/2Tk∆x∆x, (13)

where Tk is the tensor obtained from interpolating past function values. Al-
though a quadratic model is used, there is no need for the Hessian matrix.
The iteration update ∆x is found by minimizing ‖m(x + ∆x)‖.

The tensor methods with line-search and 2D trust-region methods were
implemented according to [1]. The non-monotone strategy was applied to
these methods, too.

8 Results

NR, DL, and tensor with line-search and 2D trust-region methods, were im-
plemented with monotone and non-monotone strategies, but the three CG
methods with monotone line search only. All the methods were implemented
in APLAC using the Matlab C-library functions. Simulations were performed
with relevant industrial and benchmark circuits (Table 1). The DC analyses
with CG methods did not converge or stopped at the maximum number of
iterations. The results of NR and DL iterations are presented in Table 2 and of
tensor methods in Table 3. In Tables 2 and 3, “nc” stands for no convergence
and “max” for maximum number of iterations used. The DL method seemed
to be the best.

Table 1. Test circuits.

Cir. nodes BJTs MOSFETs

1 53 – 74
2 117 17 42
3 124 8 14
4 177 41 –
5 475 – 88
6 475 104 41
7 518 148 –
8 721 96 –
9 2200 254 179
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Table 2. Simulation results with NR and DL methods.

Newton–Raphson Dog Leg
monotone non-monotone monotone non-monotone

Cir. iter. CPU/s iter. CPU/s iter. CPU/s iter. CPU/s

1 240 25.1 12 2.1 max – 27 3.0
2 max – max – 30 3.3 68 5.7
3 10 1.8 21 2.3 17 2.1 14 2.0
4 max – nc – 242 17.8 75 6.7
5 max – max – 161 30.8 75 16.7
6 nc – nc – 80 23.3 121 34.5
7 nc – 185 89.0 nc – nc –
8 38 15.0 47 17.0 65 20.3 36 12.4
9 nc – nc – 285 323.0 266 303.0

Table 3. Simulation results with tensor methods.

Line Search 2D Trust Region
monotone non-monotone monotone non-monotone

Cir. iter. CPU/s iter. CPU/s iter. CPU/s iter. CPU/s

1 max – 21 2.6 24 3.3 159 21.8
2 max – max – max – 98 11.8
3 23 2.6 nc – 26 3.2 max –
4 max – nc – max – max –
5 nc – nc – max – nc –
6 nc – nc – nc – max –
7 nc – max – nc – max –
8 54 21.7 52 21.2 max – max –
9 nc – nc – 185 236.0 112 142.0
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Summary. The efficient implementation of the FDTD algorithm in C, particularly
the data types and nested loops required, is discussed. The different constructs were
run on four computer platforms indicating significant performance improvement
with proper implementation. The extent of the improvement depends on the data
type, compiler and computer used.
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1 Introduction

The finite difference time-domain (FDTD) method for solving Maxwell’s equa-
tions discretises the six field components in space and time and uses difference
equations to simulate the electric and magnetic fields in the time domain [6].
For cosimulation with a lumped element (LE) circuit simulator like Aplac1,the
current density is divided into two parts: the conduction current density in
the dielectric medium and the current introduced by the LE circuit into a
given region in the medium [5]. The field and material parameter values are
stored in arrays whose position in the array represents the location in space
at a given time. These values are updated using values from the previous time
point. Hence, the FDTD algorithm entails accessing and updating floating
point numbers in several three dimensional (3D) arrays.

In the following, the implementation of two array types, a 3D array and
a one dimensional array referred to here as vector, and their traversal in
two different ways are discussed. The program, written in C [3], emulates the
FDTD algorithm. The times taken to traverse the array types in the two ways
by the optimally compiled program are compared. Traversing is performed in a
manner natural to the language and in another more efficient way. It turns out
that the execution speed of the program is compiler-dependent, and judicious
programming [1] can improve execution speed significantly.

1See www.aplac.com.
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2 Implementing the Data Types and Array Traversing

In this discussion, double precision numbers are updated by the FDTD algo-
rithm but the conclusions are true for single precision, too. The 3D array and
vector can be allocated statically, whence the number of grid points in the x,
y and z directions must be known at compile time, or, preferably, dynami-
cally with the malloc() function where this data is required only at run time
[4, pp. 945–946]. A vector can be used instead of the 3D array in Fig. 3 by
arranging the data, for example, as illustrated in Fig. 1.

0, 0, 0 1, 0, 0 · · · X, 0, 0 0, 1, 0 1, 1, 0 · · · X, Y, 0 0, 0, 1 · · · i, j, k · · · X, Y, Z

Fig. 1. A vectorised 3D array.

As in the 3D array, the coordinate (i, j, k) specifies a position in the vector
of length XY Z as well, but now the position is explicitly calculated as

location = XY · k +X · j + i = X(Y · k + j) + i. (1)

The statement *(*(*(ar3d+k)+j)+i) accesses an element in the 3D array
ar3d with three additions and dereferences, while for the vector, from (1), two
additions and multiplications suffice. So, it seems the vector is more efficient.

The ultimate criterion for choosing an array type for programming the
FDTD algorithm depends on how efficiently the array is traversed. Another
desirable feature is code readability. This discussion is limited to traversing the
entire 3D computational space. The efficiency of the two nested loop imple-
mentations discussed below for the two data types are compared in Section 3.

The standard code to traverse a 3D array and a vector from point (is, js, ks)
to point (ie, je, ke) is given in Fig. 2. Assigning three auxilliary pointers, dep
= ar3d, row = *dep and col = *row, as shown in Fig. 3, speeds up travers-
ing. This scheme maximises memory access in unit strides resulting in better
performance since the next array (memory) location is simply obtained by
incrementing the current position value by one.

for (k=ks; k<=ke; k++) {
for (j=js; j<=je; j++) {
for (i=is; i<=ie; i++) {
*(*(*(ar3d+k)+j)+i) = 1.0;}}}

for (k=ks; k<=ke; k++) {
for (j=js; j<=je; j++) {
for (i=is; i<=ie; i++) {
*(ar1d+X*(Y*k+j)+i) = 1.0;}}}

Fig. 2. Standard code fragments to traverse a 3D array (left) and a vector (right).

Moving computations from the inner to the outer loops or altogether outside
(a technique called frequency reduction [2, Section 12-5.2]) results in further
speed up. For the vector, rearranging (1) to allow for frequency reduction and
replacing the operators =, * and + with the computationally cheaper binary
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dep

row

col ∗

?

∗∗

-6

∗ ∗ ∗

-6*dep

*row
0, 0, 0 1, 0, 0 2, 0, 0 · · · X, 0, 0

0, 1, 0 1, 1, 0 2, 1, 0 · · · X, 1, 0

0, 2, 0 1, 2, 0 2, 2, 0 · · · X, 2, 0
.
.
.

.

.

.
.
.
.

...
0, Y, 0 1, Y, 0 2, Y, 0 · · · X, Y, 0

0, 0, 1 1, 0, 1 2, 0, 1 · · · X, 0, 1

X, 1, 1

X, 2, 1
...

X, Y, 1

0, 0, Z 1, 0, Z 2, 0, Z · · · X, 0, Z

X, 1, Z

X, 2, Z
...

X, Y, Z

···

···

Fig. 3. Pointers to the first column and row in the first matrix of a 3D array. The
numbers in the boxes are the position coordinates in the array.

operator += results in an efficient method for traversing the array. The refined
code fragments for the two array types are given in Fig. 4.

The loop structure for the two data types is similar so that macros im-
plementing either one form or the other can be defined, as shown in Fig. 5.
Writing the program in this macro language allows the development of easily
maintainable FDTD software that is portable on several platforms and always
having the optimum data type for efficient nested loop traversing.

double ***dep, **row, *col;
...

dep = ar3d + ks;
for (k=ks; k<=ke; k++) {
row = *dep + js;
col = *row + is;
dep++;
for (j=0; j<=je; j++) {
for (i=0; i<=ie; i++) {
*col++ = 1.0;}
row++;
col = *row + is;}}

int adi, adj, adk; double *ptr;
...
adi = X - ie - 1 + is;
adj = (Y - je - 1 + js)*X;
adk = (Y*ks + js)*X + is;
ptr = ar1d + adk - adj;
for (k=ks; k<=ke; k++) {
ptr += adj;
for (j=js; j<=je; j++) {
for (i=is; i<=ie; i++) {
*ptr++ = 1.0;}

ptr += adi;}}

Fig. 4. Refined code for traversing a 3D array (left) and a vector (right).

3 Comparison of the Two Data Types

Memory overhead, larger for the 3D array than the vector, is negligible com-
pared to the field and material parameter array requirements. Traversing
speeds for the two array types using the standard and refined loop imple-
mentations were compared by compiling the code on the four platforms with
the compilers in Table 1. As this work aims to implement an FDTD field
simulator as part of Aplac, the compilation options were those used for Aplac.

The arrays were allocated statically and dynamically and were traversed
alone and as members of a structure. The starting time t0 and the time after
105 traversals t1 were recorded using C’s standard library function clock()

to find (t1− t0)/CLOCKS PER SEC. The resulting times are given in Table 2(a).
Time differences in the performance of the two data types are not big

enough to be definitive, but it is clear the refined loops are faster. The run
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Table 1. The platforms, compilers and optimisation options used.

Processor Operating System

Digital AlphaPC 164LX 533 MHz Digital UNIX OSF1 V4.0D (Rev. 878)

HP D270/2 (2× PA RISC 2.0 D270) HP-UX B.10.20 A 9000/871

Sun Ultra 2 UPA/SBus (2 × SUNW, Ultra-
SPARC 200 MHz)

SunOS Release 5.5.1 [UNIX(R) System V Re-
lease 4.0]

AMD Athlon(tm) 800 MHz Processor Linux version 2.2.16-22

Compiler Compilation command and options Platform

DEC C V5.6-071 cc -std -O5 -Olimit 3000 Alpha

HP C Preproc. A.10.32.17
HP C Compiler A.10.32.17 cc -Aa -Onolimits HP-UX
HP Linker ld B.10.33

WorkShop Compilers C 4.2 cc -fast -O4 -xtarget=ultra2/2200 Sun

Gnu CC gcc ver. 2.96 2 gcc -ansi -O Linux

2 Test code compilation with gcc versions 2.96 and 3.3.1 with -O3 optimisation gave faster exe-
cution, but the general result was the same. However, gcc 2.96 -O3 causes Aplac to malfunction.

times of the stand-alone arrays were significantly faster than those for the ar-
rays in the structure, implying that operation -> is expensive. Also, the larger
the array dimension in the innermost loop the faster the array is traversed.

A second test was run, now traversing seven arrays in the refined loops only,
performing the following calclulation emulating an FDTD update equation:

*p=0.9*(*p)+0.8*(*(q++)*(*(r++)-*(s++))-*(t++)*(*(u++)-*(v++)));

p, q, r, s, t, u and v are pointers to an element in seven different arrays, either
3D or a vector. This test result is given in Table 2(b), which indicates that the
vector is the obvious choice in the Alpha computer and, though the difference
is not as dramatic, in the Sun and Linux computers. In the HP-UX computer,
however, the choice is the 3D array. This unexpected result indicates that
the compiler (and probably the platform, too) has a marked bearing on the
traversing efficiency and so also on the choice of the array type.

#define DeclVars double ***dep,**row,*ptr
#define UseArray(a) double ***(a)
#define SetPtrTo(a) dep=(a)+ks
#define IncrKPtr row=*dep+js;ptr=*row+is;\

dep++
#define IncrJPtr row++;ptr=*row+is

#define DeclVars int adi,adj,adk;double *ptr
#define UseArray(a) double *(a)
#define SetPtrTo(a) adi=X-ie-1+is;\

adj=(Y-je-1+js)*X;adk=(y*ks+js)*X+is;\
ptr=(a)+adk-adj

#define IncrKPtr ptr+=adi
#define IncrJPtr ptr+=adj

DeclVars; UseArray(arr);
...
SetPtrTo(arr);
for (k=ks; k<=ke; k++) {
IncrKPtr;
for (j=js; j<=je; j++) {

for (i=is; i<=ie; i++) {
*ptr++ = 1.0;}

IncrJPtr;}}

Fig. 5. Macros to implement looping for the 3D array (top-left) and vector (top-
right), and the resulting macro code for nested looping (bottom-centre).
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Table 2. (a) Time taken to traverse one array 105 times. ‘Std.’ refers to the standard
and ‘Ref.’ to the refined nested loops. (b) Time taken to traverse seven arrays as
part of a data structure, i.e., s->a, 105 times using the refined nested loop.

No. of arrays: 1 Array size: 50 × 20 × 10

Static Dynamic Static DynamicArray
Std Ref. Std Ref. Std Ref. Std Ref.

Alpha HP-UX
***ar3d 3.17 - 4.53 4.08 6.47 - 15.98 6.58
*ar1d 3.38 2.58 3.33 2.57 6.40 6.77 6.41 6.85

s->ar3d - - 4.65 4.33 - - 20.64 6.51
s->ar1d - - 3.25 2.65 - - 12.25 6.70

Sun Linux
***ar3d 7.73 - 26.19 8.70 4.83 - 13.58 4.81
*ar1d 7.20 7.29 6.81 8.75 6.75 4.70 6.07 4.70

s->ar3d - - 36.44 7.85 - - 16.69 5.80
s->ar1d - - 21.48 7.70 - - 10.23 4.85

(a)

Array Alpha HP-UX
size 1D 3D 1D 3D

50×20×10 76.96 112.68 2522.73 569.42
50×10×20 74.56 110.98 2482.34 253.81
20×50×10 72.36 114.25 2100.40 182.17
20×10×50 75.18 116.75 2078.75 660.35
10×50×20 79.01 138.28 2559.74 546.42
10×20×50 76.00 132.66 2336.87 673.79

Sun Linux
50×20×10 172.92 179.67 245.19 252.01
50×10×20 172.38 181.06 250.19 257.17
20×50×10 172.14 183.55 246.84 271.48
20×10×50 173.79 184.60 247.59 271.49
10×50×20 175.75 191.56 252.38 303.79
10×20×50 175.51 192.35 247.17 303.84

(b)

4 Conclusions

A 3D array and a vector, implemented in C, were traversed in two differently
realised nested loops with the FDTD algorithm in mind. Traversing times for
the two array types, indicating program efficiency, show that the array type
choice is compiler and computer platform dependent. Although the compiler
optimises the program for speed, manipulating the loops using compiler pro-
gramming techniques results in more efficient code. A macro language may be
used to program the algorithm allowing development of easily maintainable
code having the optimum data and program structure on several platforms.
Programming in other languages will probably give similar timing results.
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Thermal Modeling of Bottle Glass Pressing
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Summary. Finite element approximation in space and Crank-Nicolson approxima-
tion in time are used to model incompressible creeping flow of molten glass with
temperature dependent viscosity. Iso-P triangle elements and second degree approx-
imation of temperature and velocity fields are applied. Localized thermal behavior
is captured with adaptively refined unstructured mesh.

Key words: Glass pressing, thermal modeling, finite elements.

1 Introduction

In bottle manufacturing, a gob of molten glass is formed into a parison in a
plunger and mold machine. Most of the used analysis techniques are based
on experimentally acquired knowledge [1]. On the other hand, mathematical
modeling can prove a decisive factor in production optimization, e.g., [2, 3].
Therefore, this article reports on the study aiming at acquiring further in-
sight into thermomechanical aspects of glass forming by means of numerically
simulating the involved processes.

2 Physical model

Thermodynamics The glass density ρ and specific heat cp are assumed con-
stant based on the experimental data [4] and [6], respectively. Furthermore,
the concept of “effective” heat conduction [6] is used to model heat transfer
within the molten glass. That is, q = −κ grad (T ), where T is the absolute
temperature of the glass. Moreover, heat convection within the glass and the
viscous dissipation are neglected due to the creeping nature of the glass flow.
Finally, boundary heat transfer is modeled according to q · n = α

[
T − T̄

]
,

where n is the unit vector normal to the boundary, T̄ is the temperature of
the boundary and α is the convection coefficient.
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Fluid dynamics Based on extensive experimental data analyzed in [1] glass is
modeled as an isotropic incompressible Newtonian viscous fluid. The Cauchy
stress tensor T is T = −pI + 2µD′, where p is the pressure, I is the unit
second order tensor and D′ is the deviatoric part of the velocity gradient. The
dynamic viscosity µ depends on the temperature according to the experimen-

tally established Fulcher relation log
µ

µ0
= −a+b

103

T − T0
, where the numerical

values of the constants depend on the glass composition. Furthermore, dimen-
sions of a typical parison (length ∼ 0.1m) and duration of a typical forming
cycle (time ∼ 1s) suggest that the glass flow is creeping, so inertial and con-
vective accelerations are neglected. Nonpenetration and full slip boundary
conditions are assumed along the mold and the plunger, and material surface
kinematics is assumed along the free surface. Plunger kinematics is prescribed,
that is, linearly diminishing plunger velocity is imposed. Finally, attention is
focused on the axisymmetric problem described with reference to the cylin-
drical coordinates (r, z) along the unit vectors (er, ez), respectively.

Equations of motion In what follows P is the interior of the computational
domain, ∂P is the boundary of P , ∂P p, ∂P f , ∂Pm and ∂P s are parts of ∂P
corresponding to plunger, free surface, mold and symmetry axis, respectively.
The glass behavior is described by the solution of

ρė+ div (q) = 0 @ P, t > 0, (1a)

div (v) = D · I = 0 @ P, (1b)

div (T ) = 0 @ P, (1c)

satisfying the thermal initial and boundary conditions

T = T 0 @ t = 0, (2a)

− κgrad (T ) · n = α
[
T − T̄

]
@ ∂P p, ∂P f , ∂Pm, (2b)

− κgrad (T ) · n = 0 @ ∂P s, (2c)

and the flow boundary conditions

[v − v̄] · n = 0, T · [t⊗ n] = 0 @ ∂P p, ∂Pm, ∂P s, (3a)

T · [n⊗ n] = pext, T · [t⊗ n] = 0 @ ∂P f . (3b)

In these expressions v̄ is the velocity of the boundary and n and t are the
unit vectors normal and tangent to the corresponding components of ∂P ,
respectively.

Free surface kinematics The position of the free surface ∂P f at time t is
implicitly represented by f = f̄ (r, z, t) = z− η̄ (r, t) = 0. The material surface
assumption together with a neglected convective term enforce the motion of
the free surface in accordance with the solution of

ḟ = −∂η
∂t

+ z = 0 @ t > 0, (4)

η = 0 @ t = 0. (5)
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3 Finite element model

Thermal problem The space finite element approximation of Equation (1a) is
developed by means of Galerkin weighted residual formulation with six node
triangle shape functions Nj (r, z):

MṪ + ST = F @ t > 0, (6a)

Mij =
∑

e

∫

P e
ρcpNiNj dv

e, (6b)

Sij = −
∑

e

∫

P e
grad (Ni) · [−κgrad (Nj)] dv

e +
∑

e∈∂P

∫

∂P e
NiαNj da

e, (6c)

Fi = −
∑

e∈∂P

∫

∂P e
NiαT̄ dae, (6d)

T = T 0 @ t = 0. (6e)

In these expressions, P e is a generic finite element domain and ∂P e is its
boundary. Equations (6a) describe an ordinary initial value problem that is
conveniently solved by Crank-Nicolson finite difference scheme [5] with time
step ∆t:

[
M +

1

2
∆tS

]
Tn+1 = −∆tFn +

[
M − 1

2
∆tS

]
Tn. (7)

Finally, boundary and initial conditions are imposed and the resulting alge-
braic linear equations are solved leading to the nodal values T n+1 of the glass
temperature at time tn+1.

Flow problem Following the guidelines of Babuška-Brezzi condition [7] the
pressure p is approximated in terms of three-node triangular shape functions
Np
j (r, z), while the velocity components vr and vz are approximated in terms

of six node triangle shape functions N v
j (r, z). The mixed finite element ap-

proximation of (1b)– (1c) is

AX = 0, Aij =

[
Svvij S

vp
ij

Spvij 0

]
,Xj =

[
Vj
Pj

]
,Vj =

[
V rj
V zj

]
, (8a)

Svvij =
∑

e

∫

P e
−
[
Nv
i,r 0 1

rN
v
i N

v
i,z

0 Nv
i,z 0 Nv

i,r

]
µ




2Nv
j,r 0

0 2Nv
j,z

2
rN

v
j 0

Nv
j,z Nv

j,r


 dve, (8b)

Svpij =
∑

e

∫

P e
−Nv

i

[
Np
j,r

Np
j,z

]
dve, (8c)

Spvij =
∑

e

∫

P e
Np
i

[
Nv
j,r + 1

rN
v
j N

v
j,z

]
dve. (8d)
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In these expressions, e.g., Ni,r designates
∂Ni
∂r

, etc. Finally, boundary con-

ditions are imposed and the resulting algebraic linear equations are solved
leading to the nodal values of the glass velocity and pressure. Rank of the
coefficient matrix must be monitored carefully while solving (8a) since the de-
scribed flow finite element fails the patch test when too many velocity degrees
of freedom are constrained [7].

Mesh deformation problem Thermomechanical behaviour of the glass during
the pressing involves large displacements of the material. Consequently, the
Lagrangian finite element mesh used for solving the thermomechanical prob-
lem undergoes significant distortion and most certainly becomes invalid unless
special care is taken. At present, complete reconstruction of the mesh is used
followed by projecting the temperature from deformed mesh onto new mesh
by means of Taylor series truncated after the linear term.

4 Results

The initial geometry of mold and plunger used at this stage of the study are
depicted in metric units on the left of Fig. 1. The finite element mesh was
adaptively refined toward the external boundaries of the computational do-
main in order to resolve sharp changes of the temperature and the viscosity.
Consequent subplots of this picture present the calculated temperature and
the radial and axial velocities, respectively. The mesh and the calculated tem-
perature at the half pressing time t = 0.6 s and at the end of the pressing
t = 1.2s are presented on the left and the right of Fig. 2, respectively.

mesh temperature vr vz

Fig. 1. Mesh and velocity components at t = 0, temperature at t = 0.03 s
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Fig. 2. Mesh and temperature: left t = 0.6s, right t = 1.2s

5 Conclusions

The results presented in this article extend our insight into the behavior of
the molten glass during the pressing stage of bottle manufacturing. Two ma-
jor observations are obvious already at this early stage of the study. First,
the glass temperature is significantly affected by the heat convection across
the rigid boundaries and the free surface. Secondly, the changes of the glass
viscosity due to the thermal inhomogeneity considerably affect the glass flow
pattern. From the conceptual point of view, our analysis shows real potential
for the purposes of process optimization.
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Summary. The simulation of circuits including signals with widely separated time
scales can easily become very time-consuming. To avoid this, a multidimensional
signal model was developed. The resulting system of network equations can be solved
very efficiently by a method of characteristics. We investigate the applicability of
this method to circuits including digital signal structures. Moreover, systems given
in linear-implicit form are solved using the multidimensional approach.

1 Introduction

Signals with widely separated time scales often arise in radio frequency ap-
plication. To describe such signals more efficiently, a multidimensional model
has been developed, which transfers the circuit’s differential-algebraic equa-
tions (DAE) to a multirate system of partial differential-algebraic equations
(MPDAE). A specially tailored method of characteristics has already been
sucessfully used to solve MPDAE-modelled network equations governed by
semi-explicit DAEs including harmonic signals [4].

Now, we want to apply the method of characteristics to MPDAE-modelled
switched capacitor (SC) circuits. In those circuits, transistors are driven by
high frequency pulses, which are characterized by a digital signal structure.

In the first test example of a switched capacitor filter, the applicability of
the method to the non-harmonic, strongly nonlinear signals is investigated.
The second circuit of the Miller integrator serves to simulate network equa-
tions, which are given in linear-implicit form.

2 Switched capacitor filter

The first test example is the switched capacitor filter depicted in Fig. 1. A
sinusoidal input signal charges the first capacitor driven by the pulse pa and
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C1 C2
Vin

M1 M2

pa pb
1 2

~

in

Fig. 1. Switched capacitor filter
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pulse a
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Fig. 2. Pulses pa and pb

this charge is transmitted to the second capacitor driven by the pulse pb. The
transistors work as switches and the pulses have to be complementary to each
other as shown in Fig. 2. The equations for the two nodes are in ODE form
given by

−IDS(upa , uin, u1, 0) + IDS(upb , u1, u2, 0) + C1u̇1

+ CGSO ·W · d(u1 − upa)

dt
+ CGDO ·W · d(u1 − upb)

dt
= 0 (1)

−IDS(upb , u1, u2, 0) + C2u̇2 + CGSO ·W · d(u2 − upb)
dt

= 0 (2)

with overlap capacitances CGSO, CGDO and transistor width W . For the
drain to source current IDS(ugate, udrain, usource, ubulk) of the MOS-transistors
M1 and M2, a level-1 model by Stichman-Hodges is used [1].

The pulses work at the fast time scale T2 = 3·10−5 s, whereas the sinusoidal
input Vin oscillates with T1 = 10−3 s. To describe these widely separated time
scales more efficiently, a multidimensional signal model is applied. A detailed
description of this modelling approach can be found in [2].

3 Multidimensional approach

To decouple the different time scales of the switched capacitor circuit, a cor-
responding variable is assigned to each of them. For two different time scales
this approach generalizes a two-tone signal s(t) to a so-called multivariate
funtion (MVF) ŝ(t1, t2), for example

s(t) = sin

(
2π

T1
t

)
sin2

(
π

T2
t

)
; ŝ(t1, t2) = sin

(
2π

T1
t1

)
sin2

(
π

T2
t2

)
.

The original signal can always be reconstructed by s(t) = ŝ(t, t).
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Applying this multidimensional signal model to the SC-filter circuit trans-
fers the network-ODE (1)+(2) to a multirate partial differential equation
(MPDE):

(C1 + CGSO ·W + CGDO ·W )

(
∂u1(t1, t2)

∂t1
+
∂u1(t1, t2)

∂t2

)

= IDS(upa(t2), uin(t1), u1(t1, t2), 0)− IDS(upb(t2), u1(t1, t2), u2(t1, t2), 0)

+ CGSO ·W · dupa(t2)

dt2
+ CGDO ·W · dupb(t2)

dt2
(3)

(C2 + CGSO ·W )

(
∂u2(t1, t2)

∂t1
+
∂u2(t1, t2)

∂t2

)

= IDS(upb(t2), u1(t1, t2), u2(t1, t2), 0) + CGSO ·W · dupb(t2)

dt2
. (4)

As the PDE is of hyperbolic type, we are able to apply the method of
characteristics described in [4]. The ODEs arising in the characteristic system
of the MPDE are solved via discretization along the characteristic curves,
which are straight lines in the direction of the diagonal. Boundary conditions
are given by the periodicity of the MVFs. The simulation results for node 2,
which coincide with solutions generated by Matlab-routines, are shown in
Fig. 3.

Thus, the application of the method of characteristics to network equa-
tions including digital signal structures works successfully. In the following,
we investigate a system given in a linear-implicit form.
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Fig. 3. MPDE-solution (left), reconstructed ODE-solution (right)
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4 Miller integrator

The Miller integrator in Fig. 4 produces the negative integral of the input
signal at node 3. The sinusoidal input with period T1 = 10−5 s is sampled
periodically with T2 = 25 · 10−9 s. Pulses pa and pb have a similar behaviour
as above (see Fig. 2).

C1
C2Vin

−+

M2

pa pb

M1

Vbb
|+

1 2

3

vbb

~

in

Fig. 4. Miller integrator

How the index of the network equations may depend on the value of tech-
nical circuit parameters is investigated in [3]. In our example, the network
equations are an index-1 DAE-system. Again, bivariate functions are intro-
duced for all state variables and sources, which leads to multirate partial
differential-algebraic equations (MPDAE) given in a linear-implicit form:

C1 ·
(
∂u1(t1, t2)

∂t1
+
∂u1(t1, t2)

∂t2

)
= IDS(upa(t2), uin(t1), u1(t1, t2), vbb)

− IDS(upb(t2), u1(t1, t2), u2(t1, t2), vbb) (5)

C2 ·
(
∂ [u2(t1, t2)− u3(t1, t2)]

∂t1
+
∂ [u2(t1, t2)− u3(t1, t2)]

∂t2

)

= IDS(upb(t2), u1(t1, t2), u2(t1, t2), vbb) (6)

0 = u3(t1, t2) + 1000 · u2(t1, t2) (7)

with a negative substrate bias voltage vbb.
Again, the method of characteristics described in the previous section was

used to solve the system. Also for this example, the one-dimensional solution
reconstructed from the MPDAE-solution coincides well with a corresponding
Matlab-solution of the original network equations. Figure 5 shows the sim-
ulation results for node 1. Thus, equations given in linear-implicit form can
also be solved via the multidimensional approach.
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Fig. 5. MPDAE-solution (left), zoom into DAE-solution (right)

5 Conclusions

The approach via characteristic systems was successfully applied to MPDAE-
modelled pulsed signals in switched capacitor circuits. Not only harmonic but
also digital-like signals can be simulated using the described method of char-
acteristics. In addition, network equations given in linear-implicit form can be
solved as well as explicit ones. In any case, the efficiency of the multidimen-
sional approach and of the specially tailored method can be exploited.
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Summary. We present a modification of a well-known mathematical model based
on the Rigorous Coupled-Wave Analysis (RCWA) that can be used to solve optical
diffraction problems on periodic structures (both 1-D and 2-D gratings with approx-
imated layer-structure). The algorithm calculates the reflected and transmitted field
which in turn determine the diffraction efficiencies for all reflected and transmitted
orders.

Results created with a Matlab implementation of the modified RCWA algorithm
(MSolver) show excellent overlap with other published and measured data.

Key words: Rigorous Coupled-Wave Analysis, RCWA, Diffraction grating

1 Introduction

Lithography often uses gratings for various metrology tasks such as alignment,
overlay metrology and CD metrology. With the tightening requirements on
metrology accuracy it becomes increasingly more important to understand
the behaviour of the grating in the metrology application using a rigorous
mathematical diffraction model.

In order to understand the complexity of the grating problem, it is nec-
essary to realize that nowadays gratings have complex profiles and consist of
all kinds of different materials. Real-life lithography does not produce sym-
metric profiles with sinusoidal, rectangular or trapezoidal grooves for very
high and very low groove frequencies. Moreover in the visible region and for
shorter wavelengths the finite conductivity complicates the grating response
and requires more complex mathematical models.

The RCWA algorithm is often used because of its good convergence and
relatively simple implementation. The algorithm uses a layered structure to
approximate the grating profile but for the material properties no approxima-
tions are used.
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This paper presents a modified version of the RCWA algorithm which
solves optical diffraction problems better for the case of highly conducting
materials. For a full derivation of the discrete equations from Maxwell’s equa-
tions, see [1, 2]. The modification in Sect. 3 from equation (6) on (based
on material from [3]) makes the RCWA algorithm converge faster. Presented
numerical results show that the modified method converges much faster, es-
pecially for metallic gratings.

2 The model

First consider the diffraction problem in Fig. 1 which leads to Maxwell’s equa-
tions which are the basis for the RCWA algorithm. This is the standard model
with the standard assumptions: A linearly polarized electromagnetic field with
angle ψ is obliquely incident at an arbitrary angle of incidence θ and at an
azimuthal angle ϕ upon a dielectric or lossy grating. The grating is assumed
to be infinitely long in the periodic x-direction with a period Λ. The grating
grooves along the y-direction are also assumed to be infinitely long. In the
example below only two different media are present with refraction indices nI
and nII .

f

q
yE i n c

x

z
y

m e d i u m  I I

m e d i u m  I

k

L
Fig. 1. One-dimensional periodic grating in R3

Fig. 2 shows how a general grating is approximated by a multilayered
grating. Note that all calculations can be restricted to only one period. In
each layer the material constants only depend on the horizontal x-coordinate
and are independent of the vertical z-coordinate. Furthermore the different
media are assumed to be homogeneous, linear and isotropic.
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Fig. 2. Layered one-dimensional grating in [−Λ
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3 The equations and boundary conditions

Assuming that no primary or external sources are present and considering only
time-harmonic field quantities, Maxwell’s equations applied to the discrete
model in Fig. 2 and the constitutive relations can be reduced3 to the following
equations for each grating layer i:

∂

∂z
Ei,x(x, z) = −jωµ0Hi,y(x, z) +

∂

∂x
Ei,z(x, z), (1a)

∂

∂z
Hi,y(x, z) = −jωε̃i(x)Ei,x(x, z), (1b)

∂

∂x
Hi,y(x, z) = jωε̃i(x)Ei,z(x, z). (1c)

All the electric field components Ei can be eliminated so that for each layer
only one equation for the y-component of the magnetic field Hi remains:

∂2

∂z2
Hi,y(x, z) = −k2

0

ε̃i(x)

ε0
Hi,y(x, z)− ε̃i(x)

ε0

∂

∂x

(
ε0

ε̃i(x)

∂

∂x
Hi,y(x, z)

)
. (2)

On the left and right of the domain the pseudo-periodic boundary conditions
are applied and above and below the grating Rayleigh’s radiation condition
is used. Finally at the layer interfaces the continuity of the tangential elec-
tromagnetic field components are preserved. This can be reformulated in the
following set of equations for the magnetic field:

Hi,y(x,Di) = Hi+1,y(x,Di), (3a)

1

ε̃i(x)

∂

∂z
Hi,y(x,Di) =

1

ε̃i+1(x)

∂

∂z
Hi+1,y(x,Di). (3b)

3Only TM polarized incident light in a planar diffraction case is considered here.
For more details on other diffraction cases see [4]
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The complex permittivity ε̃i(x) within each layer is expanded in a Fourier
series. The incident magnetic field H inc

y is assumed to be one plane wave and
the magnetic field expansions for each grating layer are given by equation (4):

Hinc
y (x, z) = n1

(
ε0

µ0

) 1
2

e−jk0n1(x sin θ+z cos θ), (4a)

H1,y(x, z) = n1

(
ε0

µ0

) 1
2 ∑

n

Rne
−j(kxnx−k1,znz) +Hinc

y (x, z), (4b)

Hi,y(x, z) = n1

(
ε0

µ0

) 1
2 ∑

n

Ui,n(z)e−jkxnx, (4c)

HK+2,y(x, z) = n1

(
ε0

µ0

) 1
2 ∑

n

Tne
−j(kxnx+kK+2,zn(z−D)). (4d)

Note that these expansions already satisfy the pseudo-periodic boundary con-
dition and Rayleigh’s radiation condition. Substituting these expansions into
(2) and truncating the equations results in:

d2

dz′2
U i(z

′) = Ei (KxPiKx − I) U i(z
′). (5)

However equation (5) does not uniformly preserve the continuity of the appro-
priate field components across the discontinuities in one layer of the complex
permittivity function. This is caused by the way in which the Fourier series are
used in the truncated equations. We propose to use the truncated equations:

d2

dz′2
U i(z

′) = P−1
i

(
KxE

−1
i Kx − I

)
U i(z

′). (6)

This proposal is based on [3] which suggests that these truncations are bet-
ter when there are discontinuities in one layer of the permittivity function.
Equation (6) is not derived from (2) but from the basis equations (1) after
multiplying (1b) with 1/ε̃i(x). So instead of first eliminating the electric field
components, substituting the expansions and truncating the equations, we
now start with substituting the expansions in (1), truncating the equations
and then eliminating the electric field components.

Finally the complex reflected and transmitted field amplitudes are deter-
mined by calculating eigenvalues and eigenvectors of equation (6) and using
the boundary conditions (3) at the layer interfaces. An enhanced transmit-
tance matrix approach is used to calculate the reflected and transmitted field
amplitudes in a stable way [2].
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4 Numerical results

In this example a simple binary gold grating with TM polarized incident light
is used. All the important grating parameters can be found in Fig. 3. The
convergence of the original RCWA algorithm is compared with the modified
RCWA algorithm in Fig. 4. Here the diffraction efficiency of the 0th reflected
order versus the total number of orders retained in the expansions is plotted.
Note that the diffraction efficiency is just the amount of energy relative to the
incident field. Clearly the modified RCWA algorithm converges much faster.
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5 Conclusions

The original RCWA algorithm is worked out in detail for all diffraction cases
and is extended with Fourier factorization rules from [3] which also improved
convergence for the C-method. The modified RCWA algorithm now also per-
forms well for TM polarized light on metallic gratings.

A Matlab implementation of the modified RCWA algorithm (MSolver)
shows good overlap with other published and measured data.
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Summary. One of the fields of engineering science in which numerical simulation
is playing a role of increasing importance is the design of piezoelectric transduc-
ers. Efficient techniques to solve the forward problem of computing the mechanical
displacements and electric potential for a given configuration play a crucial role in
the design itself, but also in the related problem of identifying the correct mate-
rial parameters. In this paper we consider the iterative solution of linear systems
arising from a Finite-Element discretisation of the piezoelectric forward problem
with the Generalised Minimal Residual method in combination with incomplete LU
decomposition and inexact block diagonal preconditioning.

Key words: symmetric indefinite, piezoelectricity, iterative solver, GMRES,
ILU, inexact block preconditioner.

1 Introduction

The coupling between the mechanical and electrical field in piezoelectric ma-
terials makes them very interesting for the design of sensors and actuators.
Piezoelectric transducers can be found in a multitude of applications ranging
from ultrasound devices in medical imaging and industrial cleaning over force
and acceleration sensors to surface acoustic wave filters and micro-pumps to
name only a few.

Design and optimisation of such actuators and sensors today rely to a
large part on numerical simulation. Key issues here are of course efficiency and
accuracy. The latter is influenced not only by the precision of the discretisation
and solution process, but also by the precision of the material parameters
entering the model. Thus, simulation based parameter identification is a topic
of increasing relevance.

?This work has been supported by the Deutsche Forschungsgemeinschaft under
Grant number Ka 1778/1–1.
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Both the simulation of piezoelectric materials, as well as the inverse prob-
lem of parameter identification rely on the ability to efficiently solve the re-
lated forward problem, i.e., to determine for given material parameters and
boundary conditions the resulting electric field and mechanical displacements.
The discretisation of this problem by means of the Finite-Element method
(FEM) leads to a linear system with a symmetric but indefinite matrix. In
this paper we consider the iterative solution of this system with the Gener-
alised Minimal Residual (GMRES) method and report on results with ILU(k)
and inexact block diagonal preconditioning.

2 Mathematical Model

In the case of a piezoelectric material the connection between the electric
potential Φ and the mechanical displacements d is given by a system of four
partial differential equations

%
∂2d

∂t2
− BT

(
cEBd + eT gradϕ

)
= 0

−div
(
eBd− εSgradϕ

)
= 0 .

(1)

In (1) cE , εS and e denote the tensors of elasticity, dielectricity and piezo-
electric coupling. B represents a first order differential operator that is the
transpose of the divergence of a dyadic. System (1) can be discretised with a
standard Finite-Element approach using nodal Ansatz functions. For details
see e.g., [4]. The resulting linear system for the stationary part of the problem
takes the form (

M P
PT −E

)(
u
ϕ

)
=

(
fm
fe

)
, (2)

where M represents the mechanics block, −E the electrostatics block and
P the piezoelectric coupling part. The vectors ϕ and u contain the expan-
sion coefficients of the discrete electric potential and mechanical displacement
in terms of the Finite-Element basis. The vectors fm and fe arise from the
boundary conditions for the mechanical and electrical unknowns. It is known
that a standard FEM discretisation of the mechanical and electrical part of
the problem will lead to symmetric positive definite matrices M and E. Thus,
from (2) we can expect the problem matrix to be symmetric, but indefinite.
This can also be seen from the example spectrum plotted in Fig. 2.

3 Iterative Solution

We consider the iterative solution of (2) with the help of the GMRES method.
Starting from an initial guess x(0) the method computes in each step a
new iterate by x(k) = x(0) + Qkv

(k). Here Qk ∈ Rn×k is a matrix whose
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columns form an orthonormal basis of the Krylov subspace Kk(A, r(0)) =
span{r(0), Ar(0), A2r(0), . . . , Ak−1r(0)} and v(k) ∈ Rk is chosen such that the
norm of the new residual ‖b−Ax(k)‖2 is minimal.

The advantage of GMRES is its stability, i.e., it is guaranteed to con-
verge. There is a grain of salt to this, however. The Arnoldi process used for
computing the basis Qk requires storing all previous base vectors and the or-
thonormalisation becomes increasingly costly with each step. Thus, one often
re-starts the method after m iterations discarding the old Krylov subspace.
This is denoted as GMRES(m). For more details on GMRES see e.g., [5].

In this paper we employ right-preconditioning to improve convergence
speed, i.e., we replace the linear system Ax = b by a preconditioned sys-
tem Ãy = b with Ã = AP−1 and x = P−1y, and consider the following two
methods for preconditioning. The first approach is an ILU(k) preconditioner.
Here one chooses P = LU , where L and U are the lower/upper triangular
factors of an incomplete LU decomposition A = LU − R. The notion ILU(k)
indicates that the level of fill-in allowed in the factors L and U is determined
by its “distance” from the original sparsity pattern, for more details see e.g.,
[1]. Computation of the decomposition was performed with the Euclid method
from the hypre library, see e.g., [3].

Our second approach consists in using an inexact block diagonal precon-
ditioner (BDP). We set

P−1 =

(
M̃−1 0

0 −Ẽ−1

)
. (3)

Here M̃ = LU comes from an ILU(k) decomposition of M alone, while Ẽ−1 is
derived implicitly by solving a linear system with E by one cycle of algebraic
multigrid, see e.g., [2].

4 Numerical Experiments

For our numerical experiments we consider as test problem the unit cube
Ω = (0, 1)3 with an electrode of fixed unit potential on top. The Dirichlet
boundary conditions are given by

ux, uy, uz, ϕ = 0 for z = 0

ux = 0 for y = 0

uy = 0 for x = 0

ϕ = 1 for z = 1 and 0 6 x, y 6 1/2 .

(4)

The remaining boundary conditions are of homogeneous Neumann type. We
assume the cube to consist of the lead-zirconate-titanate ceramic PZT-4. Its
material tensor consists of ten free parameters
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Fig. 1. Electric potential distribution
in the unit cube for boundary condi-
tions (4).

Fig. 2. Logarithmic plot of magni-
tude of eigenvalues of the system ma-
trix from (2) for test problem with 8
elements.
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e31 e31 e33 . . . . . ε33




(5)

which are approximately on the order of 1010 (cEkj), 10−10 (εii) and 100 (ekj).
This leads to a large difference in the magnitude of the matrix entries and a
bad conditioning, as can be seen in Fig. 2.

In order to test the convergence of the solver we use a discretisation with
243 hexahedral elements and tri-linear basis functions. This leads to a prob-
lem with about 60.000 unknowns. We start from x(0) = 0 and stop once
‖b− Ax(k)‖2/‖b‖2 < 10−6. The convergence speed for full, i.e., un-restarted,
GMRES with both approaches for preconditioning is plotted in Fig. 3. For
comparison we also give the convergence rate for unpreconditioned GMRES.
We note that due to the bad conditioning some form of preconditioning is
definitely necessary. Figures 4 and 5 give estimates for the costs and storage
requirements of the solution process. The ILU(k) preconditioner achieves a
fast convergence especially for larger values of k, however, these induce sig-
nificantly higher memory costs. Restarting does not significantly improve this
situation. The inexact block diagonal approach on the other hand is not as
good as the ILU preconditioner for small k, but for larger ones its arithmetic
costs are nearly as small, while its memory costs are considerably smaller.

For the future we plan to evaluate the two approaches on larger problems
and compare them against sparse direct solvers and iterative methods based
on a Schur complement.
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Fig. 4. Approximate costs to solve
the linear system in arithmetic oper-
ations.

Fig. 5. Estimate of storage require-
ments for solution approach.
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Summary. Transport phenomena in a submicron npn silicon bipolar junction tran-
sistor are described by using an extended hydrodynamic model for the electrons,
combined with a solution of the drift-diffusion model for the holes. Under suitable
scaling assumptions, the above model reduces to the energy transport model, or
to the Navier-Stokes-Fourier model, in which all the transport coefficients are now
explicitly determined. The validity of the constitutive equations is investigated by
using Monte Carlo simulations.

Key words: Electron transport, semiconductors, kinetic theory.

1 Introduction

Along with the reduction of horizontal dimensions, the vertical profile of sili-
con bipolar junction transistors (hereafter BJT) has been scaled aggressively
over the last decade. Since in a npn BJT the minority carriers in the (p)
base are electrons, if the base thickness is order of electron mean-path le ('
10-20 nm), the electron transport is quasi-ballistic, i.e., only few collisions
take place across the base region. In this case hot electrons phenomena hap-
pen in the device, which must be controlled by the CAD designer. In this
regime, the standard drift-diffusion equations (hereafter DDE) is not able to
simulate these devices because they do not include the carriers energy as a
dynamic variable. In order to set up a judicious transport model, we observe
that the massive holes are confined in the (p) base in local thermal equilib-
rium, being minority carriers in all the device. For this reason, in the quasi
ballistic regime, a transport model can be constructed by taking a solution of
the DDE for the holes and an extended hydrodynamic model (EHM) for the
electrons, in which more moments of the distribution function are considered,
in order to capture the hot electron effects in the device. An extended hydro-
dynamic model for unipolar devices, formed by thirteen balance equations for
the physical unknowns density, momentum, temperature, stress deviator, heat
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flux has been introduced [1, 6], whose main peculiarity is to be physics-based,
i.e., free of any fitting parameters. The above model, under suitable scaling
hypothesis, reduces to the energy transport model (ETM), and to the Navier-
Stokes-Fourier model (NSF) in which now all the transport coefficients are
determined. In this paper we want to check, by means of Monte Carlo (MC)
simulations, obtained with the Damocles code [3], the validity of the above
models for the description of a realistic ultra-thin base npn 2D bipolar junc-
tion transistor (BJT) operating in quasi ballistic regime.

2 The Extended Hydrodynamic Model

Balance equations for one spherical parabolic conduction band, are usually
obtained by taking suitable moments of the Boltzmann transport equation
(BTE) [1]. A system of 13 equations in the 13 unknown moments n (den-
sity), Vi (velocity), T (temperature), σ<ij> (stress deviator), qi (heta flux)
is obtained providing constitutive equations for the high-order fluxes and the
production terms are given.

The closure problem can be tackled with the help of the variational method
known as maximum entropy principle, which allows the determination of the
non-equilibrium distribution function, and consequently, of the constitutive
relations. This system is named extended hydrodynamic model (EHM). The
details of this procedure can be found in [1, 6]. Since the production terms
are the moments over the collisional operator of the BTE, the collision mech-
anisms must be defined. We assume that the electrons interact with phonons
(optical and acoustic) [2] and neglect the electron-electron and impurity scat-
terings.

3 Limit Models

From the EHM, under suitable scaling hypothesis, we can obtain some well
known limit models, where now the transport coefficients are completely de-
termined. A generalization of the phenomenological constitutive equations of
Navier-Stokes-Fourier can be obtained by applying the Maxwellian iteration
technique in which, the stress deviator σ<ij> and the heat flux qi appearing
in the balance equations, can be expressed in terms of the variables {n, Vi, T}.
One obtains for the first iterate [6]

qi = −κ ∂T
∂xi
− α

β
nkBTVi, σ<ij> = 0, (1)

where κ is the thermal conductivity, α and β are average collisions rates. The
equation (1) is a generalization of the Fourier law for heat conduction with an
extra convective term. The second iterate gives a generalization of the usual
Navier-Stokes law for the stress deviator
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σ<ij> = −2µ
∂V<i
∂xj>

− 4

5

1

γ

∂q<i
∂xj>

− 16

15

ξ

γ
L̂<ij> +

16

15

1

γ

6∑

η=1

Aη
4∑

r=1

L2r+1
<ij>

[
(Nη + 1)H+

2r+1 +NηH
−
2r+1

]
(2)

where µ = nkBT/γ is the shear viscosity, and now all the transport coeffi-
cients are explicitly evaluated. Another macroscopic model, simpler respect
to the hydrodynamic model but more accurate than the drift-diffusion one, is
the energy transport model, which is based on the balance equations for the
density and the average energy W 1. If one considers a time scale such that the
energy W is not yet relaxed to its equilibrium value then, from the EHM, one
obtains an Energy Transport Model (ETM) [5]. The constitutive equations
for the velocity and energy-flux Si are of the form

Vi = D11(W )
∂ logn

∂xi
+D12(W )

∂W

∂xi
+D13(W )

∂ϕ

∂xi
(3)

Si = D21(W )
∂ logn

∂xi
+D22(W )

∂W

∂xi
+D23(W )

∂ϕ

∂xi
, (4)

where the diffusion coefficients Dij are now exactly determined.

4 Numerical Results

In order to validate the above models, we consider the 2D silicon npn BJT
structure shown in Fig. 1, operating in quasi ballistic regime (see [4] for the
details). The device is at room temperature (TL=300 K) and operates in the
direct region with Ve = 0 V, Vc=2.5 V, and Vb=0.9 V. The closure relations for
the high-order fluxes, and the production terms have been checked successfully
in [4].

In Fig. 2 we report the constitutive relations for the heat flux equation
(1), and for the stress deviator equation (2). We note that the heat flux is not
well verified in the base-collector junction, where the electric field exhibits
very high values, and inside the collector. The heat flux constitutive equation
has peak values greater than the corresponding MC data, up to one order of
magnitude. This phenomena can be justified by the fact that the Fourier
law has been obtained by a linearization of the balance equations, which
leads to constitutive equations valid for small gradients. Regarding to the
stress deviator, we have some agreement in the emitter and in the last part of
the collector, but the behaviour is completely different in the base-collector
junction. For the ETM, we report in Fig. 3 with (ooo) the constitutive relations
for the velocity and the energy flux given by equations (3), (4), in which the

1The average energy is related to the temperature T by the following relation:
W = 3

2
nkBT + 1

2
nm?V 2
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Fig. 1. Cross-section of the npn BJT used in the simulation. The electrical contacts
are marked with thick lines. The different doping regions of the device are labelled
by n and p. The dashed line is the cross-section at x = 0.175 µm.
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Fig. 2. On the left: spatial profile for the heat flux q2/n obtained by MC simulations
(***) at cross section x = 0.175 µm. With (ooo) we plot the Fourier equation (1) in
which the values of the MC moments have been substitute. On the right the same
figure for the stress deviator σ<22>/n, with the Navier-Stokes equation (2).

MC moments have been substituted. In the same figure we plot with (***) the
same quantities obtained by MC simulations, and those obtained by using the
simulator DESSIS, with (xxx). DESSIS is a TCAD (by ISE) simulator, based
on a standard DDE or an ETM with adjustable transport coefficients (the
default parameters for silicon have been used in our simulations ). We notice
that the constitutive equations data (ooo) are noisy: in fact if we substitute the
MC moments {n,W}, and their derivatives into equations (3)and(4), an extra
numerical error is generated. Qualitatively we can say that the constitutive
equations and the DESSIS data differ with respect to the MC data. All the
velocities underestimate the MC data, whereas the energy fluxes overestimate
the MC data. In conclusions we proved that a generalized Navier-Stokes-
Fourier model was not able to reproduce correctly the heat flux near the base-
collector junction where the electric field exhibits very high values, and inside
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Fig. 3. On the left: spatial profile for the velocity Vy obtained by MC simulations
(***) at cross section x=0.175 µm. With (ooo) we plot the energy transport consti-
tutive equation for the velocity (3); with (xxx) we plot the same quantity obtained
with the energy transport simulator in DESSIS. On the right: the same figure for
the energy flux Sy/n, with the energy transport constitutive equation for the energy
flux (4).

the collector, where hot electrons effects can be relevant. Also the constitutive
equations for an ETM, deduced from the EHM, fail to reproduce the MC data.
The proposed EHM for the electrons, coupled with a solution of the DDE
for holes, seems to be the best candidate for describing the quasi ballistic
transport in a submicron BJT, as proved numerically in [4].
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Summary. In radio frequency (RF) application, electric circuits often exhibit mul-
titone signals, where time scales differ by several orders of magnitude. Thus circuit
simulation by means of transient analysis becomes inefficient. A multivariate model
yields an alternative strategy considering amplitude as well as frequency modulation.
Consequently, a warped multirate partial differential algebraic equation (MPDAE)
has to be solved using periodic boundary conditions. Thereby, the determination of
a local frequency function is crucial for the efficiency of the model. For this purpose,
two special choices of continuous phase conditions are applied as additional bound-
ary conditions. Numerical simulations show that these continuous phase conditions
identify local frequency functions, which are physically reasonable.

Key words: multirate partial differential algebraic equation, phase condi-
tion, circuit simulation, frequency modulation, radio frequency.

1 Introduction

Numerical simulation of electric circuits rests upon a network approach, which
yields systems of differential algebraic equations (DAEs), see [2]. In RF ap-
plication, generated signals often exhibit widely separated time scales. For
example, a slow oscillation may vary the amplitude of a carrier wave. There-
fore a transient integration of the DAE system becomes costly, since the fastest
rate restricts the step size.

A signal model using multivariate functions (MVFs) decouples the time
scales and thus provides an alternative strategy. Consequently, Brachtendorf
et al. [1] introduced a multirate partial differential algebraic equation (MP-
DAE), which allows the simulation of amplitude modulated signals in forced
oscillators. If the circuit also includes autonomous time scales, frequency mod-
ulation may result, too. Narayan and Roychowdhury [4] generalised the model
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into a warped MPDAE for this case. Accordingly, a time-dependent local fre-
quency function arises, which influences essentially the signal representation.
However, an appropriate choice of the local frequency is unknown at the be-
ginning.

We use continuous phase conditions to determine the local frequency func-
tion by the behaviour of corresponding MVFs. Thereby, the idea is to control
the phase in slice planes of the MVF. This strategy yields additional bound-
ary conditions for the warped MPDAE system in time domain. We apply this
technique to a forced Van der Pol oscillator.

2 Multivariate Signal Model

To illustrate the multidimensional signal model, we consider a simple multi-
tone oscillation

x(t) =
[
1 + α sin

(
2π
T1
t
)]

sin
(

2π
T2
t+ β sin

(
2π
T1
t
))

(1)

for parameters 0 < α < 1, β > 0. If T1 � T2 holds, then a high-frequency
oscillation arises, where amplitude as well as frequency is modulated by a slow
oscillation. Hence we need many time steps to resolve this signal accurately.
Alternatively, an own variable is introduced for each separate time scale, which
yields directly the biperiodic function

x̂1(t1, t2) =
[
1 + α sin

(
2π
T1
t1

)]
sin
(

2πt2 + β sin
(

2π
T1
t1

))
, (2)

where the second period is transformed to 1. We can completely reconstruct
the original signal via x(t) = x̂1(t, t/T2). This representation (2) is called a
MVF of the multitone signal (1). Unfortunately, the MVF (2) exhibits many
oscillations in the rectangle [0, T1[×[0, 1[ for large parameters β. Thus we
include only the amplitude modulation part in a MVF, i.e.,

x̂2(t1, t2) =
[
1 + α sin

(
2π
T1
t1

)]
sin (2πt2) . (3)

Now the function features a simple behaviour in [0, T1[×[0, 1[. Therefore we
can represent this MVF with sufficient accuracy using relatively few grid
points. The frequency modulation part is modelled by a separate function

Ψ(t) =
t

T2
+

β

2π
sin
(

2π
T1
t
)
. (4)

Now we are able to reconstruct the signal (1) applying x(t) = x̂2(t, Ψ(t)). The
derivative ν := Ψ ′, which is a T1-periodic time-dependent function, can be seen
as a local frequency of the signal. Thus we obtain an efficient representation
by means of this model.

Using the inappropriate MVF (2), the reconstruction formula indicates
a local frequency ν ≡ 1/T2. It follows that the choice of a local frequency
function is not unique and critical for the efficiency of the MVF model.
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3 Warped MPDAE System

In general, an electric circuit is modelled by a DAE system of the form

dq(x)

dt
= f(x) + b(t)

(
x(t),b(t),q(x), f(x) ∈ Rk

)
, (5)

where x denotes unknown voltages and currents. The input signals b shall
be T1-periodic. We assume that x is a multitone signal of the discussed type.
Applying the multivariate model, the DAE changes into the MPDAE

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f(x̂) + b(t1)

(
x̂(t1, t2) ∈ Rk, ν(t1) ∈ R

)
(6)

with the MVF x̂ of x. It follows that a (T1, 1)-periodic MPDAE solution

yields multitone DAE solution via x(t) = x̂(t,
∫ t

0
ν(τ)dτ). Thereby, the T1-

periodic local frequency ν is a priori unknown and thus the system (6) is
underdetermined. Houben [3] proposed minimum conditions, which reduce
oscillatory behaviour in MVFs, to fix this function.

Alternatively, we try to control the phase in each slice plane of the MVF for
constant t1. A unifying effect shall produce simple MVF representations. Since
the local frequency is a scalar function, we consider just a single component
of the MVF x̂ = (x̂1, . . . , x̂k)T , for example the first one. Now feasible choices
for continuous phase conditions are

x̂1(t1, 0) = η (η ∈ R) for all t1 (7)

or
∂x̂1

∂t2

∣∣∣∣
t2=0

= 0 for all t1. (8)

Consequently, we add either (7) or (8) to the biperiodic boundary conditions in
a time domain method. Thus the resulting technique is cheaper in comparison
to a minimisation procedure. The existence of MVFs satisfying one of the
phase conditions can be motivated by transformations of MPDAE solutions.

4 Numerical Simulation

As benchmark, we consider a forced Van der Pol oscillator of the form

ẋ = y
ẏ = −10(x2 − 1)y + (2πz)2x
0 = z −

[
1 + 1

2 sin
(
2π10−3t

)]
,

(9)

which represents a DAE system of index 1. A multitone solution arises and
we employ the warped MPDAE model. Numerical solutions are obtained by a
time domain technique, which is based on characteristic curves, see [5]. Let νa
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and νb be the local frequencies, which are caused by the phase conditions (7)
and (8), respectively. Figure 1 illustrates these functions, which are nearly the
same (|νa − νb| < 10−3). Since the frequencies respond to the input, they are
physically reasonable. The corresponding MVFs x̂ and ŷ are shown in Fig. 2.
The solutions belonging to the two phase conditions differ mainly by a trans-
lation in t2-direction, which reflects that (6) is autonomous in the variable t2.
Although x̂ exhibits nearly constant amplitude, ŷ includes amplitude modula-
tion. Finally, Fig. 3 displays the reconstructed DAE solution x together with a
reference solution of (9). We observe a phase shift in later cycles. Nevertheless,
the other signal properties coincide at any time.

0 200 400 600 800 1000
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0 200 400 600 800 1000
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−2

0
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4

x 10−4
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Fig. 1. Local frequency νa (solid line) together with input signal (dashed line) (left)
and difference of local frequencies νa − νb (right).
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Fig. 2. MPDAE solutions using phase condition (7) (left) and (8) (right).
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Fig. 3. DAE solution x integrated by trapezoidal rule (solid line) and interpolated
by MPDAE solution (dashed line) in time intervals [0, 10] (left) and [700, 710] (right).

5 Conclusions

A multivariate model for analysing oscillators, which produce amplitude as
well as frequency modulated signals, has been presented. The arising MPDAE
system demands the identification of an appropriate local frequency func-
tion. Numerical simulations demonstrate that continuous phase conditions are
able to determine physically reasonable local frequencies. Thus corresponding
MVFs exhibit a simple structure and the model becomes efficient. Underlying
existence theorems using the phase conditions still have to be researched.
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Summary. The maximum entropy moment systems of the Boltzmann equation is
only solvable with physically unrealistic restrictions on the choice of the macroscopic
variables. We show that no such difficulties appear in the semiconductor case if
Kane’s dispersion relation is used for the energy band of electrons. As an application
the 5-moment model is discussed.

Key words: maximum entropy moment closure, semiconductor Boltzmann
equation, Kane’s dispersion relation.

1 The Maximum Entropy Moment Systems for
Electrons in Semiconductors

In a semi classical approximation, a kinetic description of electrons in a semi-
conductor is given by a transport equation for the one particle distribution
function f(t,x,k), which represents the probability of finding an electron at
time t in an elementary volume dxdk, around position x and with crystal
momentum k,

∂f

∂t
+ vi(k)

∂f

∂xi
− e

~
Ei

∂f

∂ki
= C[f ]. (1)

Here e is the absolute value of the electron charge, k represents the crys-
tal momentum of the electron and E is the electric field which is related
to the electron distribution by Poisson’s equation: E = −∇ϕ, ε∆ϕ =
−e(ND − NA − n), where ϕ is the electric potential, ε is the permittivity of
the semiconductor, ND and NA are respectively the donor and acceptor den-
sity, and n is the electron density. The latter is related to f by n =

∫
B
fdk, B

being the first Brillouin zone. The right hand side C[f ] in (1) is the collision
operator, which takes into account scattering of the electrons with acoustical
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and optical phonons and with impurities. The electron velocity v(k) depends
on the electron energy E by the relation v(k) = 1

~∇kE . In general, the ex-
pression of E (the so called band structure) depends on the material and is
very complicated. A rough approximation is given by the parabolic band while
a more refined model is given by Kane’s dispersion relation which takes into
account the non-parabolicity at high energies

E(k) =
1

1 +
√

1 + 2 α
m∗ ~2|k|2

~2|k|2
m∗

=

√
1

4α2
+
~2|k|2
2αm∗

− 1

2α
, k ∈ R3 (2)

where α is the non-parabolicity parameter. The corresponding electron ve-
locity is v(k) = 1√

1+ 2α
m∗ ~2|k|2

~
m∗k. In the mathematical modelling of electron

transport in semiconductors the Kane dispersion relation is considered as one
of the best analytical approximation to the real energy band.

Besides the electron density n, other physically relevant quantities are the
average electron velocity, energy and energy-flux

u =
1

n

∫

R3

v(k)f dk, W =
1

n

∫

R3

E(k)f dk, S =
1

n

∫

R3

v(k)E(k)f dk.

To generalize this observation, we introduce general weight functions ai :
R3 7→ R and the corresponding moments ρi = 〈f, ai〉 , i = 1, . . . ,m where 〈·, ·〉
denotes k integration. We split the vector of weight functions a into two sub-
groups. The first m1 components of a are chosen as (P1(v(k)), . . . , Pm1

(v(k)))
where P1, . . . , Pm1

are linearly independent polynomials with P1(v) = 1, and
the remaining m2 components give rise to energy moments (E(k)Q1(v(k)),
. . . , E(k)Qm2

(v(k))) where, again,Q1, . . . , Qm2
are linearly independent poly-

nomials and Q1(v) = 1.
Multiplying (1) with weight functions a = (a1, . . . , am)T and integrating

over k, we obtain equations for the moments

∂ρ

∂t
+

∂

∂xj
〈f, vja〉 = 〈C[f ] + γE · ∇kf,a〉 , γ = e/~. (3)

The system would be closed if the particle distribution could be expressed
in terms of the moment vector ρ as f(t,x,k) = F (ρ(t,x),k) A method to
obtain such a relationship is the maximum entropy approach where F (ρ,k)
is taken as solution of the problem

maximize H(f) = −〈f, log f − 1〉 with f ≥ 0 and 〈f,a〉 = ρ (4)

It is important to remark that the maximum entropy distribution represents,
in a statistical sense [3], the least biased estimator of the exact distribution f
on the base of the knowledge of a finite number of moments of f .

For general ai, the formal solution of (4) is obtained with the method
of Lagrange multipliers. We introduce the Lagrange functional L(f,λ) : =
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H(f) − λ · (ρ− 〈f,a〉) where λ is the vector of Lagrange multipliers. The
necessary condition that all directional derivatives vanish in the maximum fλ
leads to fλ = exp(λ·a). Finally, the Lagrange multipliers λ are chosen in such
a way (if possible) that the moment constraints ρ = 〈fλ,a〉 are satisfied which
gives rise to a function λ = λ(ρ). We then introduce F (ρ,k) = fλ(ρ)(k).

Depending on the choice of weight functions ai, it can happen that problem
(4) is not always solvable, [4, 5, 2, 7].

2 Solvability of the Maximum Entropy Problem

In order to state our main result, we first reformulate (4). For notational
convenience, we measure E , k,v in units 1/(2α),

√
m∗/(2α~2), and 1/

√
2αm∗

which leads to E(k) =
√

1 + |k|2 − 1, v(k) = k√
1+|k|2

. Note that for large

k, v(k) is bounded and E(k) grows only linearly due to the estimates

|v(k)| < 1, |k| − 1 ≤ E(k) ≤ 2|k|+ 1. (5)

Based on E and v and two sets {P1, . . . , Pm1
}, {Q1, . . . , Qm2

} of linearly
independent polynomials with P1 = Q1 = 1, we define the weight functions
as

a = (P1(v), . . . , Pm1
(v), EQ1(v), . . . , EQm2

(v))T . (6)

Since the assumption of a three-dimensional k-space is not relevant for our
argument, we assume k ∈ Rd. The moment set related to the weights ai is
generated by the functions in F = {f ≥ 0 : f 6≡ 0, |a|f ∈ L1(Rd)}. The
corresponding moments are collected in M = {〈f,a〉 : f ∈ F}. Using this
notation and the definition of the entropy functional H(f) = −〈f, log f − 1〉 ,
we can restate (4) as

maximize H(f) subject to f ∈ F and 〈f,a〉 = ρ (7)

Our main result is

Theorem 1. The maximum entropy moment problem (7) is uniquely solvable
for any ρ inside the open, convex cone M. The solution is an exponential
density exp(λ · a) for some λ ∈ Rm depending on ρ.

To give an idea of the proof, first we observe that, up to normalization,
every f ∈ F can be viewed as a probability density.

Moreover, if P and R are probability measures on the Borel sets B on Rd,
such that P has a density with respect to R, i.e., P (A) =

∫
A
pR dRwithA ∈ B,

the relative entropy (or I-divergence) is defined as I(P ||R) =
∫
pR log pR dR.

Reformulating the maximum entropy problem in terms of relative entropy,
one can get the proof of the main theorem by using a results of Csiszár [1]
for measurable spaces. Here we skip all the technical details (the interested
reader is referred to [6]).
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3 The Euler-Poisson Model

As an example of application we analyze the Euler-Poisson model in the case
of Kane’s dispersion relation. It is based on the same moments employed in
ideal gas dynamics, that is density n, average velocity u and average energy
W

∂n

∂t
+
∂(nui)

∂xi
= 0,

∂(nui)

∂t
+
∂(nU ij)

∂xj
= −enEjHij + nCiu, (8)

∂(nW )

∂t
+
∂(nSj)

∂xj
= −enukEk + nCW , (9)

where U ij = 1
n

∫
R3 fv

ivjdk, H ij = 1
n

∫
R3

1
~f

∂vi
∂kj

dk, Ciu = 1
n

∫
R3 C[f ]vidk,

CW = 1
n

∫
R3 C[f ]E(k)dk.

For the 5-moment case the weight function vector is a = (1,v, E) and the
corresponding Lagrange multipliers are given by the vector λ = −

(
λ,λv, λW

)
.

The MEP distribution function reads fλ = exp
(
−λ− λvi vi − λW E

)
and one

has the straightforward characterization of the cone Λ (which is obviously
convex and open) Λ =

{
λ = −

(
λ,λv, λW

)
: λ ∈ R5, λW > 0

}
. By writing

dk = m∗

~3

√
2m∗E(1 + αE)(1 + 2αE)dE dΩ with dΩ elementary solid angle,

the explicit relation between the Lagrange multipliers and the macroscopic
variables are given by

u3 =
1

d0

∫ ∞

0

v(E)e−λ
W E√E(1 + αE)(1 + 2αE)

[
sinh z

z2
− cosh z

z

]
dE (10)

W =
1

d0

∫ ∞

0

Ee−λW E
√
E(1 + αE)(1 + 2αE)

sinh z

z
dE , z = λv3 v(E) (11)

n = π
(2m∗)3/2

~3
e−λd0, d0 =

∫ ∞

0

e−λ
W E√E(1 + αE)(1 + 2αE)

sinh z

z
dE

It is relevant only to study the dependence of λv3 and λW on u3 and W
because λ plays only the role of a normalization factor. We want to in-
vestigate whether the moment cone, that is the set of moment for which
the MEP distribution there exists, is sufficiently large for concrete appli-
cations. To this aim we have numerically checked the invertibility of the
rectangle

{
(W,u3) ∈ [0.04, 0.35]× [−1.2× 105, 1.2× 105]

}
under the mapping

(u3,W ) 7→ (λv3, λ
W ) implicitly defined by the relations (10)-(11). W is ex-

pressed in eV , u3 in m/sec, λv3/
√
m∗ in 1/

√
eV and λW in 1/eV . The nu-

merical analysis (see figure) shows that the moment cone contains the above
rectangle and therefore it is sufficiently wide to enclose the relevant physical
region of velocity and energy.
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Summary. Two main approaches are known for the reduced order modelling of
linear time-invariant systems: Krylov subspace based and SVD based approxima-
tion methods. Krylov subspace based methods have large scale applicability, but do
not have a global error bound. SVD based methods do have a global error bound,
but require full space matrix computations and hence have limited large scale appli-
cability. In this paper features and short-comings of both types of methods will be
addressed. Furthermore, ideas for improvements will be discussed and the possible
application of Jacobi-Davidson style methods such as JDQR and JDQZ for model
reduction will be considered.

Key words: reduced order models, eigenvalue problems.

1 Introduction

Dynamical systems and control systems arise from, for instance, partial dif-
ferential equations and electrical circuits. Simulation and controller design for
large scale systems can become extremely expensive in storage requirements
and computations. A way to reduce these costs is to use reduced order mod-
els (ROMs), which preserve key characteristics of the original system, but are
significantly smaller in dimension. This paper will summarize the two main ap-
proaches for reduced order modelling, Krylov subspace based and SVD based
approximation methods, together with features and shortcomings. Further-
more, ideas for improvements will be discussed and the possible application
of Jacobi-Davidson style methods such as JDQR and JDQZ for model reduc-
tion will be considered.

In Section 2, the reduced order modelling problem will be stated. In Section
3, existing ROM methods will be described. Section 4 explores the application
of Jacobi-Davidson style methods to ROM problems and concludes.
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2 Reduced Order Modelling Problem

In this paper linear time-invariant (LTI) systems will be considered:

{
C dx(t)

dt = Gx(t) +Bu(t)
y(t) = Lx(t) +Mu(t)

(1)

where x(t) ∈ RN is the state vector, u(t) ∈ Rm is the input function and
y(t) ∈ Rp the output. The matrices C,G ∈ RN×N are system matrices. The
matrices B ∈ RN×m, L ∈ Rp×N and M ∈ Rp×m are distribution matrices.
The number of state variables (the order of the system) is denoted by N . The
number of input and output variables are denoted by m and p respectively.

The problem is to find an approximating system, the reduced order model:

{
C̃ dx̃(t)

dt = G̃x̃(t) + B̃u(t)

ỹ(t) = L̃x̃(t) + M̃u(t)
(2)

with x̃(t) ∈ Rn, u(t) ∈ Rm ỹ(t) ∈ Rp, C̃, G̃ ∈ Rn×n, B̃ ∈ Rn×m, L̃ ∈ Rp×n
and M̃ ∈ Rp×m. Note that the number of inputs and outputs is the same as
for the original system, and that the input itself is not changed. The ROM
should satisfy the following requirements (see also [1]):

� The order of the system is strongly reduced: n� N .
� The approximation error ||y − ỹ||, in appropriate norm, must be small.
� Important properties such as passivity and stability are preserved.
� The procedure for computing the ROM must be computationally efficient

and numerically stable, and ideally has an automatic convergence test.

Physical realizability of the ROM may be an additional requirement.

3 Reduced Order Modelling Methods

SVD based and Krylov subspace based approximation methods will be de-
scribed briefly in this section. From now on, SISO (m = p = 1) systems are
considered. For an extended overview, see [1].

SVD based methods

Let C = I and M = 0 and G be stable in (2). The singular values of the
Hankel operator

H : u(t) 7→
∫ 0

−∞
LeG(t−τ)Bu(τ)dτ t ≥ 0,

are equal to the square roots of the eigenvalues of a product of two symmetric
positive-definite matrices P,Q ∈ RN×N (the Gramians) [5]. Hence, the Hankel
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singular values σHi = λ
1/2
i (PQ), i = 1 . . .N form a discrete set. These Hankel

singular values play a role for dynamical systems similar to the role singular
values play for matrices. A reduced order model is constructed by truncating
the original system in such a way that the n largest Hankel singular values
are preserved. In order to do this, first the matrices P and Q must be solved
from two Lyapunov equations

GP + PGT +BBT = 0, GTQ+QG+ LTL = 0 (3)

Then, in order to truncate, a balancing transformation that diagonalizes both
P and Q must be computed. This balancing transformation is computed using
the standard SVD.

SVD based methods have the disadvantage that dense matrix computa-
tions are required to solve the two Lyapunov equations, so that large scale
application is not attractive: the number of operations is O(N 3). However, sta-
bility and passivity are preserved for the SVD-based methods, and moreover,
there is a global error bound [5]:

||H(s)−Hn(s)||L∞ = sup
ω
σmax(H(iω)−Hn(iω)) ≤ 2

N∑

i=n+1

σHi

For more details about the balancing transformation and the Hankel op-
erator, the reader is referred to [5].

Krylov subspace based methods

The transfer function of a linear dynamical system (2) is defined as the Laplace
transform of the impulse response (for simplicity M = 0):

H(s) = L(sC −G)−1B = L(I − (s− s0)A)−1R

with A = −(G + s0C)−1C and R = (G + s0C)−1B. Note that it is assumed
that sC − G is a regular pencil and that s0 is chosen such that G + s0C is
nonsingular. A series expansion of H around s0 is

H(s) =
∞∑

i=0

mi(s− s0)i, mi = LAiR.

Krylov subspace based methods construct a ROM by matching moments mi:

H̃(s) =

∞∑

i=0

m̃i(s− s0)i, m̃i = L̃ÃiR̃,

with mi = m̃i, i = 0, . . . , n for appropriate n� N .
Explicit computation of the moments mi = LAiR is numerically unstable:

within a few iterations the vector AiR will approximate the eigenvector cor-
responding to the dominant eigenvalue. Krylov subspace methods circumvent
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this difficulty by constructing an orthonormal basis for the Krylov subspace
Kn(A,R) = span{R,AR, . . . , An−1R}.

Let the columns of Vn ∈ RN×n form an orthonormal basis for Kn(A,R),
i.e., V Tn Vn = I and span(Vn) = Kn(A,R). The ROM is now constructed by
the state transformation x→ Vnx̃:

{
(V Tn CVn)dx̃(t)

dt = (V Tn GVn)x̃(t) + (V Tn B)u(t)
ỹ(t) = (LVn)x̃(t)

Two well-known methods based on Krylov subspaces are Padé via Lanc-
zos (PVL) [3] and PRIMA [7]. PVL exploits the connection between the Bi-
Lanczos process and Padé approximation. After n iterations of the process
(two matrix-vector products per iteration), 2n moments are matched, while
limited storage of iteration vectors is needed. However, the process may suffer
from breakdowns and does not guarantee preservation of stability and passiv-
ity (see [2] for remedies). PVL does not provide the reduced system matrices.

PRIMA constructs an orthonormal basis for the Krylov subspace Kn(A,R)
using Arnoldi iterations. After n iterations of the PRIMA process, n moments
are matched. Storage and orthogonalization of the iteration vectors is needed,
but the procedure is numerically stable and preserves stability and passivity.
The reduced system matrices can easily be obtained from the PRIMA process.

4 New Research Directions

A method that combines the large scale applicability and stability of Krylov
subspace methods with the global error bound and stability/passivity preser-
vation of the SVD based methods may be fruitful. A first attempt to such a
method, approximate balanced reduction, has been made in [9], but has not
yet produced a robust and efficient method.

One may also consider Jacobi-Davidson methods [8]. The Jacobi-Davidson
method is an efficient method for computing eigenpair approximations (θi, ui)
near a specific target for Ax = λx, provided a good preconditioner is available
for the correction equation. This correction equation

(I − uiu∗i )(A− θiI)(I − uiu∗i )t = −(Aui − θui) (4)

has to be solved to modest accuracy every iteration of the Jacobi-Davidson
process. Note that the pair (θi, ui) is selected as a Ritz-pair and changes every
iteration. The search space for ui of the Jacobi-Davidson process is extended
orthogonally with t.

Now suppose that the transfer function is of the form H(s) = L(sI −
A)−1R. If the transfer function is computed exactly, then (sI −A) has to be
inverted for a range of values of s. Since this is not feasible for large systems,
reduced order models are needed. With s replaced by θi, the operator (sI−A)
is equal to −(A − θiI). This suggests that the search space built during the
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Jacobi-Davidson process may contain useful information for approximate in-
version. The idea is to start Jacobi-Davidson processes for several targets and
to combine the relevant parts of the search space into a new space. This new
space can be used to construct a reduced order model, similar to the Krylov
subspace based methods. Because the transfer function is evaluated for values
s = iω, the dominant eigenvalues are the eigenvalues closest to the imaginary
axis. The dominance of the actual contribution to the transfer function also
depends on the component of R in the direction of the corresponding eigen-
vector. This information has to be taken into account in the Jacobi-Davidson
process.

An advantage of the Jacobi-Davidson approach is that matrix inversions
are avoided. PRIMA and PVL need the LU -decomposition of G + s0C for
this, while the JDQZ method [4] for generalized eigenproblems works with G
and C directly. The JDQZ method computes a partial generalized Schur form
for the generalized eigenproblem Gx = λCx. Similarly to the original Jacobi-
Davidson method, the JDQZ method may be used for transfer functions of
the form H(s) = L(sC −G)−1R, where C is allowed to be singular. Because
of singularity of C, there may be eigenvalues at infinity, which are not of
practical interest. Harmonic Petrov values can be used to avoid computing
these eigenvalues. Another possibility is to use purification techniques [6].
An open issue is the construction of good preconditioners, which are of vital
importance to the convergence of the Jacobi-Davidson process.
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Summary. This paper presents a new Runge-Kutta type integration method that
is well-suited for time-domain simulation of oscillators. A unique property of the
new method is that its damping characteristics can be controlled by a continuous
parameter.

Key words: DRK method, time domain, oscillator simulation.

1 Introduction

In the case of weakly non-linear circuit behaviour, oscillators can be simulated
in the frequency domain, using e.g,. the Harmonic Balance method. In the case
of strongly non-linear circuit behaviour, they are to be simulated in the time
domain, using e.g., the BDF-methods or the Trapezoidal Rule (TR). If the
start-up behaviour of an oscillator is to be observed, a time domain method
is even mandatory. However, the BDF methods exert a considerable damping
on an oscillatory solution of the circuit equations. The TR method, when used
on oscillators, does not exert any damping at all for all frequencies (which is
also not wanted). To remedy this situation, an integration method would be
preferred that has some damping to avoid numerical instability, but still so
small that its effect on the oscillation can be neglected. In the next sections,
DRK methods will be investigated as potential candidates for such methods.

2 DRK methods

We apply a Diagonal Runge-Kutta (DRK) method to a general DAE of the
form

g(t, ẋ,x) = 0. (1)
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Given a step size h and an initial value x0, the DRK method computes a
sequence {xn}, where xn is an approximation to the solution at t = nh.
Given (aii) and (bi), xn+1 is computed from xn as follows

g
(
tn + haii,X

(i)
n ,xn + haiiX

(i)
n

)
= 0, (2a)

xn+1 = xn + h

s∑

i=1

biX
(i)
n . (2b)

The quantities X(i)
n are called the stages of the DRK method, and s is called

the stage count. Note that (2a) constitutes an Implicit Euler step with step-
size haii. So in essence, a DRK method is a linear combination of Implicit
Euler steps.

2.1 Order conditions

For the ODE ẋ = f(x), f ∈ C∞(R,R) we have g(t, ẋ, x) = ẋ − f(x) = 0 ,
leading to the following DRK procedure:

X(i)
n = f(xn + haiiX

(i)
n ), for i = 1 . . . s, (3a)

xn+1 = xn + h
s∑

i=1

biX
(i)
n . (3b)

The order conditions up to order k are now found by equating, for arbitrary
f , the following terms at the point h = 0 (see [1]):

djxn+1

dhj
=
djx(tn + h)

dhj
, for j = 0 . . . k. (4)

In [3] it is shown that this is only possible up to order 2. Then, the following
order conditions should be satisfied:

s∑

i=1

bi = 1,
s∑

i=1

biaii =
1

2
. (5)

The fact that DRK methods are limited to such low orders, appears to make
them quite unappealing. In contrast to the common approach in Runge-Kutta
theory, as presented in e.g., [1], we do not aim for maximising of the order of
the method. Rather we balance the desire for a high order against the goal of
obtaining a method that does not damp out oscillations.

2.2 Stability conditions

To study stability we apply the DRK-methods to the Dahlquist test equation

ẋ = λx, λ ∈ C.
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Let xn+1 be computed from xn with the DRK method using step size h > 0.
Then

ζ(hλ) :=
xn+1

xn
= 1 +

s∑

i=1

bihλ

1− aiihλ
(6)

defines the amplification factor. For a DRK method to be usable as an in-
tegration method for oscillator problems, ζ(hλ) should satisfy the following
conditions:

|ζ(jω)| . 1 , ω ∈ R, (7a)

|ζ(z)| < 1 for <(z) < 0, (7b)

lim
<(z)→−∞

ζ(z) = 0, (7c)

It can be shown that once condition (7a) is satisfied, and ζ(z) is analytic in
the left half of the complex plane, then also condition (7b) is satisfied (see [2]).
Assuming for the moment that condition (7a) is satisfied, then to also satisfy
condition (7b) the poles of ζ(z) need to be in the right half of the complex
plane. This leads to the following restriction on the coefficients aii:

aii > 0 for i = 1, . . . , s. (8)

Note that even with this restriction satisfied, we still need to check on any
proposed set of coefficients whether (7a) is satisfied. Applying condition (7c)
to (6) leads to:

s∑

i=1

bi
aii

= 1, (9)

which embodies another restriction on the DRK coefficients.

3 Two-stage Example

To have a DRK method suitable for oscillator simulation, the coefficients aii
and bi should satisfy order and stability conditions as derived in the preceding
sections. For two stages already solutions with one degree of freedom exist.
For this particular case, the set of equations to be solved is:

b1 + b2 = 1, b1a11 + b2a22 =
1

2
,

b1
a11

+
b2
a22

= 1, (10a)

a11 > 0, a22 > 0. (10b)

In the sequel, we denote γ := a22 as the degree of freedom. We then find the
following solution to (10):

b1 =
2γ2 − 3γ + 1

2γ2 − 4γ + 1
, b2 =

−γ
2γ2 − 4γ + 1

, a11 =
2γ − 1

2γ − 2
, a22 = γ, (11a)

γ ∈ (0,
1

2
) ∪ (1,∞), γ 6= 1

2±
√

2
. (11b)
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It remains to be checked if this set of coefficients satisfies the condition (7a).
To that end, we investigate

ζ(jω) =
b1/a11

1− ja11ω
+

b2/a22

1− ja22ω
, (12)

from which we find (see [3])

|ζ(jω)|2 = 1− ω4γ2(1− 2γ)2

(1 + γ2ω2)[4(1− γ)2 + ω2(1− 2γ)2]
. (13)

Hence, |ζ(jω)| ≤ 1, which implies condition (7a). Note that by making γ small
enough, |ζ(jω)| can be brought arbitrarily close to 1. For γ → 0 the method
approaches the midpoint rule.

The stability diagrams for various values of γ are shown in Fig. 1. This
figure clearly illustrates the fact that γ can be used to control the amount
of damping on the imaginary axis. Furthermore, it shows that by sufficiently
decreasing the value of γ the amount of damping can be brought as close to
zero as we require.

4 Alternative Formulation

Using the transformation X̃
(i)

n = xn + haiiX
(i)
n for i = 1, . . . , s and assuming

that (9) holds, we obtain the following alternative formulation of the DRK
method:

g


tn + haii,

X̃
(i)

n − xn
haii

, X̃
(i)

n


 = 0, (14a)

xn+1 =
s∑

i=1

bi
aii
X̃

(i)

n , (14b)

The numerical robustness of this alternative formulation is better than the
one of the standard formulation, as it avoids the summation of relatively small
quantities to the current approximation in the update equation (see (2b)). It
thereby circumvents the unnecessary loss of accuracy. For the two-stage case,
considered in the previous section, the coefficients (11) satisfy condition (9).
So (14) holds for this case, with the following expressions for its coefficients:

b1
a11

=
2(γ − 1)2

2γ2 − 4γ + 1
,

b2
a22

=
−1

2γ2 − 4γ + 1
, (15)

with the coefficients a11, a22 and the restrictions on γ the same as in (11).
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5 Conclusions

We developed a Diagonal Runge-Kutta algorithm that is particularly suited
for transient simulation of oscillators, in the sense that it does not damp out
any oscillation present in the solution of the circuit equations. In fact it has
been shown that its damping characteristics can be controlled by a dedicated
parameter. The new algorithm allows designers to better simulate oscillators,
or to detect unwanted oscillation earlier than would be the case with standard
integration methods.
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Fig. 1. Stability diagram of the DRK method in the complex hλ-plane.
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Summary. Adaptive stepsize control is used to control the local errors of the nu-
merical solution. For optimization purposes smoother stepsize controllers are wanted,
such that the errors and stepsizes also behave smoothly. We consider approaches
from digital linear control theory applied to multistep BDF-methods.
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1 Introduction to error control

Transient simulation of electrical circuits is done by integration of the following
implicit Differential-Algebraic Equation

d

dt
[q(t,x)] + j(t,x) = 0, j(0,x(0)) = 0, (1)

where q, j : R × Rn → Rn are nonlinear functions that represent the charges
and currents in the circuit, while x is the state vector. Because the BDF
multistep-methods are the default methods used by analog circuit simulators,
we will concentrate on these methods. While Runge-Kutta methods often
contain an embedded reference method to estimate the local error, for the
k-step BDF-method this can be done by means of the prediction q̂n which is
based on the extrapolation of the previous k+1 values of q. For the time-grid
{ti, i = 0, . . . , N} with time steps hi = ti − ti−1 we obtain the estimate

r̂n =
hn

tn − tn−k−1
‖q(tn,xn)− q̂n‖. (2)

If this estimate r̂n is larger than a given tolerance level TOL, the current step
is rejected. Otherwise, the solution xn is accepted and the next numerical
solution can be computed at a new timepoint.
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The following stepsize controller is very commonly used for integration
methods of order p:

hn =

(
ε

r̂n−1

) 1
p+1

hn−1, (3)

where ε = θ TOL. It is based on the assumption that the error estimate
satisfies the model

r̂n = ϕ̂nh
p+1
n , (4)

where ϕn is an unknown variable which is independent of hn. This model is
a good description for onestep methods and also a first-order approximation
for the BDF-methods.

However, it appears that the controller from (3) may produce rather ir-
regular error and stepsize sequences, which will decrease the effectiveness in
optimization.

2 Control-Theoretic Approach to Stepsize Control

It is possible to use control-theoretic techniques for error control. In [2] this
idea has been applied to onestep methods where we have the simple model
(4). The logarithmic version of the onestep error model is

log r̂n = (p+ 1) log hn + log ϕ̂n. (5)

Indeed, this implies that the sequence log r̂ = {log r̂n}n∈N can be viewed
as the output of a digital (i.e., discrete) linear control system, where log h =
{log hn}n∈N is the input signal and log ϕ̂ = {log ϕ̂n}n∈N is an unknown output
disturbance. In general, one can denote all finite linear models for log r̂ by

log r̂ = G(q) log h+ log ϕ̂, (6)

where q is the shift-operator, with q(log hn) = log hn+1 and G(q) being a
rational function of q:

G(q) =
L(q)

K(q)
=

λ0q
M + · · ·+ λM

qM + κ1qM−1 + · · ·+ κM
. (7)

For the one-step model (5), we have G(q) = p+1. The input log h is computed
on base of the previous values of the output log r̂ and the reference log ε.

All linear controllers can be denoted by

log h = C(q)(log ε− log r̂), (8)

where C(q) is a rational function of q:

C(q) =
B(q)

A(q)
=

β0q
N−1 + · · ·+ βN−1

qN + α1qN−1 + · · ·+ αN
. (9)

For the controller (3) we have that C(q) = 1
p+1

1
q−1 .
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3 Derivation of Process Model for BDF-Methods

Unfortunately, for the multistep BDF-methods, it is not possible to derive a
linear model of the form of (6). In this case, we have the following nonlinear
model for log r̂

log r̂n = 2 log hn+log(hn−1+hn)+· · ·+log(hn−p+1+· · ·+hn)+log ϕ̂n−log p!.
(10)

Note that log r̂n also depends on the previous stepsizes, because it is a mul-
tistep method. In [4] it is tried to approximate this model by the previous
model for onestep methods. If the stepsizes only have small variations, also
linearization can be used [1]. In [3] it is proved that the linearized model is
equal to

log r̂n =

p−1∑

k=0

(γp − γk) log hn−k + log ϕ̂n, γ0 = −1, γk =
k∑

m=1

1

m
. (11)

This model can also be cast in the form of (6), where

G(q) =
(1 + γp)q

p−1 + (γp − γ1)qp−2 + · · ·+ (γp − γp−1)

qp−1
. (12)

4 Design of Finite Order Digital Linear Stepsize
Controller

Consider the error model in (6), which is controlled by the linear controller (8).
It is assumed that G(q) is already be known, while C(q) still must be designed.
Now, the closed loop dynamics are described by the following equations:

{
log h = Ur(q) log ε+ Uw(q) log ϕ̂,
log r̂ = Yr(q) log ε+ Yw(q) log ϕ̂.

(13)

where by (7), (9) the transfer functions satisfy

Ur(q) = B(q)K(q)
A(q)K(q)+B(q)L(q) , Uw(q) = −B(q)K(q)

A(q)K(q)+B(q)L(q) ,

Yr(q) = B(q)L(q)
A(q)K(q)+B(q)L(q) , Yw(q) = A(q)K(q)

A(q)K(q)+B(q)L(q) .
(14)

Thus, the poles of the system are determined by the N + M roots of the
characteristic equation

R(q) ≡ A(q)K(q) +B(q)L(q) = 0.

If the poles lay inside the complex unity circle, the closed loop system is
stable. Suitable choices are R(q) = (q − r)N+M or R(q) = qN+M − rN+M

for r ∈ [0, 1) [3]. Assume that A(q), B(q) can be factorized like A(q) = (q −
1)pA(q+ 1)pRÃ(q) and B(q) = (q+ 1)pF B̃(q). Then, the order of adaptivity is
equal to pA, while the stepsize and error filter orders are pR and pF [2]. The
coefficients of Ã, B̃ can be computed from

(q − 1)pA(q + 1)pRÃ(q)K(q) + (q + 1)pF B̃(q)L(q) = R(q). (15)
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5 Numerical Experiments

Consider the circuit which corresponding equations are given by:

CV̇1 + 1
RV1 − sin(ω1t)− 1

R1
(V2 − V1) = 0,

1
R1

(V2 − V1)− iE = 0,

V2 − V3 = 0,
iE − 1

R2
(V4 − V3) = 0,

CV̇4 + 1
RV4 − sin(ω2t)− 1

R2
(V3 − V4) = 0.

Parameters Value
ω1

5
2π · 103

ω2
1
4π · 103

R 10
C 10−3

R1 1
R2 1

A transient simulation along [0, 0.08] is computed by a circuit simulator, while
several stepsize controllers are used. Because the theory only holds for fixed
integration order, the integration order is kept fixed at p = 3. By default,
the simulator uses the controller (3) with a buffer such that the stepsize re-
mains constant for small variations (case 1). This control action is removed
for the other cases, because it destroys the characteristic behaviour of the
designed controller. For all controllers we have R(q) = (q − r)N+M . The
smoothness of the stepsize and error sequence is quantified by the number

s(x) =
√∑N

m=1(xm − xm−1)2/‖x‖2. Table 1 shows the results of the several

testcases. For this circuit case 4 produces the smoothest results. Note at the
decline of the number of rejections for the cases 1, 2 and 6 with pA = 1 and
pF = pR = 0. Figure 1 shows the results for cases 1 and 4.

Table 1. Numerical results.

Case N M pA pF pR r # stepsizes # rejections
# Newton
iterations

s(log r̂) s(log h)

1 1 0 1 0 0 0 1258 222 1480 1.17 0.57
2 1 0 1 0 0 1

2
1277 198 1475 0.82 0.38

3 2 0 2 0 0 1
2

990 609 1599 1.14 0.83
4 2 0 1 1 0 1

2
1053 0 1053 0.57 0.10

5 2 0 1 0 1 1
2

1198 0 1198 0.75 0.22
6 3 2 1 0 0 1

2
1015 0 1015 1.01 0.32

An important question is whether the new designed controllers also have
a better performance if variable order is used. For many tested cases it was
possible to get smoother results for a slightly increased or even decreased
computational effort [3].
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Fig. 1. Results of error sequences for cases 1 and 4 in Table 1.

6 Conclusions

If the error model is linear, control theory can indeed improve the smoothness
of the results. For multistep BDF-methods applied to smooth problems, where
the stepsizes have small variations, the linearized model works well. For more
stiff problems it is better to use the one-step model.

The process model depends on the integration order. The designed con-
trollers are also applicable to variable integration order. From the experiments
it turns out that it is not attractive to use higher order adaptive controllers,
while filtering can be attractive.
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Summary. The stabilization of a Bunsen flame above the burner rim is simulated
using the method of characteristics. Oscillations of the flame front and of its area
due to flow oscillations are computed.

Key words: Bunsen flame, kinematic condition, method of characteristics.

1 Introduction

Combustion devices based on premixed flames have low emissions of pollutant
gas. In the particular case of a Bunsen burner, the natural gas is premixed
with air before combustion, giving a conical shaped flame that can be cooled
such that the emission of pollutants is low. However, the sensitivity of Bunsen
flames to flow oscillations leads to unwanted effects such as combustion in-
stabilities and noise. Understanding and prediction of noise production is an
important task in designing efficient, noise free combustion devices. This re-
quires a transfer function which correlates the oscillations in the flow velocity
and in the heat release rate. Given that the flow velocity fluctuations affect
the flame by changing its area, which is proportional with the heat release
rate, the first step in determining the transfer function consists of computing
the instantaneous area of the flame. Thus, the determination of the location
and of the shape of the flame front is required.

2 Flame front dynamics

The complete simulation of combustion dynamics is difficult and requires pow-
erful computer resources. However, the main features of the flame response to
flow oscillations can be captured with a reduced model based on the following
assumptions. First, we assume that the flame is a surface which separates the
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burnt from the unburnt gas. This surface is referred to as the flame front.
Next, we assume that the flame front moves at constant velocity, the laminar
burning velocity SL, in the direction normal to its surface towards the un-
burnt gas and, that it does not influence the flow, which is prescribed. Since
the Bunsen flame is conical, we assume that the flame and the flame oscilla-
tions are axisymmetric. The flame front can be described as the level set of
some combustion variable G, i.e., G(r, z, t) = G0 where r and z are the ra-
dial and axial coordinates, respectively, and t is the time. Assuming the flame
front is nowhere vertical, z can be expressed as a function of r and t, i.e.,
z = z(r, t). The motion of the flame front can be described by the kinematic
relation,

∂z(r, t)

∂t
+ u

∂z(r, t)

∂r
− v + SL

√(
∂z(r, t)

∂r

)2

+ 1 = 0, (1)

where u and v are the radial and axial components of the gas velocity, respec-
tively (see e.g. [1]). Solving (1) allows us to investigate the shape and the area
of the flame.

The analytical solution of (1) in the case of a Poiseuille flow, which is a
reasonable approximation for a flow in a duct, is described below.

3 Solution in the case of a Poiseuille flow

The flow is approximated with a Poiseuille flow, i.e.,

u(r, z, t) = 0, v(r, z, t) = v0

(
1−

(
r

R

)2)
, (2)

where v0, (v0 > SL) and R denote the maximum velocity of the flow and the
duct radius, respectively. Introducing the notation p := ∂z/∂r and q := ∂z/∂t,
we obtain from (1) the following canonical form,

F (r, t, z, p, q) := q − v0

(
1−

(
r

R

)2)
+ SL

√
p2 + 1 = 0. (3)

Equation (3) is a nonlinear first order PDE. Given the initial conditions
z(r, 0) = Z0(r), p(r, 0) = Z ′0(r), it is possible to find an analytical solu-
tion for (3) by using the method of characteristics ([2]). This method re-
duces (3) to a system of five coupled ODEs. They hold along the character-
istics, parametrized by s, and take initial values on the initial line t = 0,
parametrized by σ. The unknowns of the system are t(s, σ), r(s, σ), p(s, σ),
q(s, σ) and z(s, σ). After a first evaluation the system reduces to a system of
only three equations because t(s, σ) = s and q can be decoupled.

The following dimensionless variables are introduced, r∗ := r/R, t∗ := t/τ ,
σ∗ := σ/R, z∗ := z/R, τ := R/SL and v̂ := v0/SL. The scaled ODE system
(we omitted the ∗) reads
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dr

dt
=

p√
p2 + 1

, r(0, σ) = σ, (4a)

dz

dt
= v̂(1− r2)− 1√

p2 + 1
, z(0, σ) = Z0(σ), (4b)

dp

dt
= −2v̂r, p(0, σ) = Z ′0(σ). (4c)

The formal solution procedure for system (4) is as follows. First, from (4a) and
(4c) we find the expression for p(r, σ) along the characteristics. By substitution
in (4a) we find the location of the characteristics in an implicit form t = t(r, σ).
From (4a) and (4b) we find the axial displacement along the characteristics,
z(r, σ). Finally we invert the implicit relation t = t(r, σ) to find σ = σ(r, t)
and replace it in the expression for z(r, σ) to find the axial displacement z(r, t)
of the flame front. For t(r, σ) and z(r, σ) the following expressions have been
found, respectively,

t(r, σ) = −
∫ r

σ

c(σ)− v̂x2

√(
c(σ)− v̂x2

)2 − 1
dx, (5)

z(r, σ) = Z0(σ) + v̂t(r, σ) +

∫ r

σ

1 + v̂x2(c(σ)− v̂x2)√(
c(σ)− v̂x2

)2 − 1
dx, (6)

where c(σ) =
√

1 + Z ′0(σ)2 + v̂σ2 ≥ 1. These integrals can not be evaluated
analytically, instead they can be formulated in terms of elliptic integrals, see
[3]. To find the axial displacement z(r, t), σ as a function of r and t is needed.
This is possible only if the Jacobian, J(r, σ) = ∂t(r, σ)/∂σ 6= 0. For the
initial condition Z0(r) = 0, Z ′0(r) = 0 this is indeed the case. Moreover, this
condition guaranties that no cusps in the flame front are created.

Since the velocity has a parabolic profile and vanishes at the burner rim,
there is a region where the laminar burning velocity is bigger than the gas
velocity. In this region the flame is pushed into the tube which contradicts
with the movement of the real flame. To simulate the stabilization of the
flame above the burner rim we apply the following procedure only on the
domain where the gas velocity is bigger than the laminar burning velocity,
i.e., 0 ≤ r ≤ δ. Here δ is such that v̂(1 − δ2) = 1, i.e., δ =

√
1− v̂−1. Since

the inversion of (5) cannot be performed analytically, we use the following
numerical approach. Let us introduce uniform discretizations for the space
and time domains, i.e. rj = j∆r, ti = i∆t, with the grid size ∆r = δ/M
and the time step ∆t = 1/N , i = 1, . . . , N , j = 1, . . . ,M . For a given rj and
a given ti we find the corresponding σi,j by solving (5) through the secant
method (the corresponding σi,j > rj , for i = 1, . . . , N , j = 1, . . . ,M). The
axial displacement of the flame corresponding to the point rj at the moment
ti, z(rj , ti) is then z(rj , σi,j). For values of σ > δ the corresponding axial
diplacement is negative. If for an rk the corresponding σi,k > δ we compute the
axial displacement as z(rk, ti) = z(rk, δ). This condition implies the fixation
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of the flame above the burner. Indeed, z(δ, ti) = z(rM , σi,M ) and since δ =
rM < σi,M , from the previous condition we conclude that z(δ, ti) = z(δ, δ) = 0
for i = 1, . . . , N . According to the present analytical model the flame reaches
a stationary position after starting from an initial flat profile. The stationary
position of the flame is numerically identical whith the steady solution of (1),
which validates our results. An illustration of the stationary flame given by
the system (4) is presented in Fig. 1.(a).

4 Flame response to flow perturbations

After the flame reaches its stationary position a perturbation is imposed in
the gas velocity, of the form

v0

(
1−

(
r

R

)2)
ε sinωt, (7)

where ε and ω are the relative amplitude and the frequency of the velocity
perturbation, respectively. Scaling the variables, the equation for the axial
displacement of the flame front becomes

∂z

∂t
− v̂(1− r2)(1 + ε sin ω̂t) +

√(
∂z

∂r

)2

+ 1 = 0, (8)

where ω̂ := ωR/SL. Assuming the perturbations in the gas velocity of small
amplitude, the solution z(r, t) of (8) can be expanded in an asymptotic expan-
sion ([2]). Substituting the asymptotic expansion into (8) and collecting the
terms of the same order leads to a system of equations. The small amplitude
perturbation allows us to consider only the leading and the first order equa-
tions of the system. The leading order solution can be replaced by the steady
solution of the (1) and the first order equation is a linear advection equation
which is solved by using the upwind scheme. Combining the solutions of the
leading and of the first order equations we arrive at an analytical numeri-
cal description of the flame front. The perturbation of the flame around the
stationary position of the flame front can be seen in Fig. 1.(b), (c), (d).

The area of the flame can be computed easily by evaluating the formula

A(t) = 2π

∫ δ

0

r

√(
∂z

∂r

)2

+ 1 dr, (9)

using the trapezoid approximation. The area oscillates at the same frequency
as the velocity perturbation, but a phase difference exists between the two
oscillations, see Fig. 2. The noise production can be evaluated by computing
the phase difference between the two oscillations and the amplitude response
(amplitude of area oscillations/amplitude of velocity oscillations) as function
of frequency (see [4]).
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Fig. 1. Flame front dynamics. (a) Bunsen flame reaching its stationary position. (b),
(c), (d) Oscillation of the flame front (solid line with bullets) around the stationary
position (solid line). Here v̂=5, ω̂ = 4, ε = 0.1 (b) t = 0, (c) t = 0.672, (d) t = 1.472.
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Fig. 2. Variation in time of the area of the flame (solid line with bullets) and of
the velocity of the flow in the center of the duct (solid line), (normalized with the
initial values). Here v̂=5, ω̂ = 4, ε = 0.1.
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Summary. A generalized definition is given for the time index and a new prototype
example is introduced, which serves as a general case for the computation of the time
index for a hierarchy of molten carbonate fuel cell models, including a 2D model.
The time indices are computed by a new approach using linear integral equations.
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time index, fuel cell, MCFC, integral equation.

1 Time Index: Definition and Prototype Example

Consider a singular PDE: Find u(t, z) with time t ∈ [0, T ] and spatial coordi-
nate z ∈ Ω = [0, 1]d, d ∈ {1, 2, 3} s.t.

Aut + Ψ(u, uz, uzz, t, z) = 0 on [0, T ]×Ω (if d = 1) (1)

(A is a given constant matrix, e.g. A = diag(I,O)) and initial conditions

A[u(0, z)− g(z)] = 0 (2)

and nonlinear boundary conditions

h(u(t, 0), u(t, 1), uz(t, 0), uz(t, 1)) = 0 (if d = 1). (3)

For d ≥ 2 Eq. (1) reads

Aut + Ψ(u, uz1 , . . . , uzd , uz1z1 , . . . , uzdzd , t, z) = 0. (4)

We always assume in the following that the singular PDE is of parabolic-
hyperbolic type, that the nonlinear boundary conditions (especially for the
hyperbolic coordinates of u) are suitably posed and that the singular PDE
has a solution.

The following definition is a generalization of [3] and [1]:
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Definition 1. If the matrix A is regular, the (differential) time index is de-
fined to be νt := 0. Otherwise the (differential) time index νt is the smallest
number of times, the singular PDE must be differentiated with respect to time
t in order to determine ut = ϕ(t, z, u, uz, uzz, . . .︸ ︷︷ ︸

spatial derivatives only

) with a contin-

uous function ϕ.

The knowledge of the time index is important for the choice of a suitable
numerical solution method.

Prototype Example 1. d = 1. Find scalar functions u(t, z), w(t, z), v(t, z) > 0,
w̄(t, z), v̄(t, z) > 0 s.t. the singular PDE (with positive constant λ)

ut = λuzz + ψ1(u,w, v) (5a)

wt = −vwz + ψ2(u,w, v) (5b)

0 = vz + ψ3(u,w, v) on [0, T ]×Ω (5c)

w̄t = v̄w̄z + ψ4(u, w̄, v̄) (5d)

0 = v̄z + ψ5(u, w̄, v̄) (5e)

with initial conditions u(0, z) = g1(z), w(0, z) = g2(z), w̄(0, z) = g4(z)
and boundary conditions uz(t, 0) = 0, uz(t, 1) = 0, and w(t, 0) = wleft(t),
v(t, 0) = vleft(t), w̄(t, 1) = w̄right(t), v̄(t, 1) = v̄right(t).

Computation of the time index νt: Partial differentiation of Eq. (5c) with
respect to time yields

0 = vzt +
∂ψ3

∂v
vt +

∂ψ3

∂u
ut +

∂ψ3

∂w
wt. (6)

Plugging in the r.h.s. of Eqs. (5a, 5b) yields

0 = [
∂

∂z
+
∂ψ3

∂v
][vt] + α(u,w, v, uzz, wz). (7)

By a similar computation one gets

0 = [
∂

∂z
+
∂ψ5

∂v̄
][v̄t] + ᾱ(u, w̄, v̄, uzz, w̄z). (8)

If ∂ψ3

∂v = 0 and ∂ψ5

∂v̄ = 0 then

vt(t, z) = vleft(t)−
∫ z

0

α(u,w, v, uzz, wz)|(t,z̃) dz̃, (9)

v̄t(t, z) = v̄right(t) +

∫ 1

z

ᾱ(u, w̄, v̄, uzz, w̄z)|(t,z̃) dz̃, (10)

therefore time index νt = 1.
Otherwise integration yields linear Volterra integral equations of the sec-

ond kind
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0 = vt(t, z) +

∫ z

0

k(t, z̃)vt(t, z̃) dz̃ + β(u,w, v, uzz, wz)|(t,z) (11)

with k(t, z̃) = ∂ψ3

∂v , β(u,w, v, uzz, wz)|(t,z) =
∫ z

0
α(u,w, v, uzz, wz)|(t,z̃) dz̃ −

vleft(t) for the unknown function b(z) = vt(t, z) and

0 = v̄t(t, z) +

∫ z

1

k̄(t, z̃)v̄t(t, z̃) dz̃ + β̄(u, w̄, v̄, uzz, w̄z)|(t,z) (12)

with k̄(t, z̃) = ∂ψ5

∂v̄ , β̄(u, w̄, v̄, uzz, w̄z)|(t,z) =
∫ z

1
ᾱ(u, w̄, v̄, uzz, w̄z)|(t,z̃) dz̃ −

v̄right(t) for the unknown function b̄(z) = v̄t(t, z).
Both linear Volterra integral equations (11, 12) of the second kind can be

solved uniquely (and depend continuously on t, k, k̄, β, β̄) for b(z) and b̄(z),
therefore time index νt = 1.

The result still holds for vector functions w and w̄.

2 Time Index of Dynamic Fuel Cell Models

Three application examples of 1D respectively 2D families of dynamic models
of molten carbonat fuel cells (MCFCs) from [2, 1, 5], fit into the setting of
the prototype example 1.

Example 2. Simple 1D family of dynamic models of MCFCs: Find tempera-
tures θs, θa, θc, molar fractions xa,j , xc,j (j ∈ {1, . . . , 7}) and molar flows ga, gc
(with va := gaθa and vc := gcθc) for fixed potential differences Φa, Φe, Φc s.t.
to the singular PDE

∂θs
∂t

= λ
∂2θs
∂z2

+ ϕ1(θs, θa, θc, xa, xc, Φa, Φe, Φc) , (13a)

∂θa
∂t

= −va
∂θa
∂z

+ ϕ2(θs, θa, xa, Φa) , (13b)

∂xa,j
∂t

= −va
∂xa,j
∂z

+ ϕ3,j(θs, θa, xa, Φa) , j = 1, . . . , 7 , (13c)

0 =
∂va
∂z

+ ϕ4(θs, θa, xa, Φa) , (13d)

∂θc
∂t

= vc
∂θc
∂z

+ ϕ5(θs, θc, xc, Φc) , (13e)

∂xc,j
∂t

= vc
∂xc,j
∂z

+ ϕ6,j(θs, θc, xc, Φc) , j = 1, . . . , 7 , (13f)

0 =
∂vc
∂z

+ ϕ7(θs, θc, xc, Φc) , (13g)

boundary conditions
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∂θs
∂z

(t, 0) =
∂θs
∂z

(t, 1) = 0 (14a)

θa(t, 0) = θa,in(t), ga(t, 0) = ga,in(t) (14b)

xa,j(t, 0) = xa,j,in(t) , j = 1, . . . , 7 , (14c)

θc(t, 1) = θc,in(ga(t, 1), xa(t, 1), θa(t, 1), ga(t, 0), xa(t, 0)) , (14d)

xc,j(t, 1) = xc,j,in(ga(t, 1), xa(t, 1), ga(t, 0), xa(t, 0)) , j = 1, . . . , 7 , (14e)

gc(t, 1) = gc,in(ga(t, 1), xa(t, 1), ga(t, 0), xa(t, 0)) , (14f)

and initial conditions

θs(0, z) = θs,0(z), θa(0, z) = θa,0(z), θc(0, z) = θc,0(z), (15a)

xa,j(0, z) = xa,j,0(z), xc,j(0, z) = xc,j,0(z) , j = 1, . . . , 7 . (15b)

Although the boundary conditions are slightly more complicated compared to
example 1, the result νt = 1 still holds [1].

Example 3. A more detailed 1D family of dynamic models of MCFCs: Find
additionally potential differences Φa, Φe, Φc and cell voltage V (t) s.t. to a
singular PDE consisting of (13a-13g, 14a-14f, 15a-15b ) and

∂Φa
∂t

=
(
i− ia(θs, xa, Φa)

)
/ca , (16a)

∂Φe
∂t

= −
(
i− ie(Φe)

)
/ce , (16b)

∂Φc
∂t

= −
(
i− ic(θs, xc, Φc)

)
/cc , (16c)

dV

dt
=
( ∫ 1

0

i(t, z̄) dz̄ − Icell(t)
)
/cv , (16d)

0 = −Φa(t, z) + Φe(t, z) + Φc(t, z)− V (t) (16e)

and initial conditions

Φa(0, z) = Φa,0(z), Φe(0, z) = Φe,0(z), Φc(0, z) = Φc,0(z), V (0) = V0. (17)

Twice partial differentiating (16e) with respect to t and substituting the
r.h.s. of (16a–16d) each time is necessary to get an equation where ∂i

∂t appears:

β
∂i

∂t
(t, z)+

∫ 1

0

∂i

∂t
(t, z̄)dz̄+ψ(θs,zz, θa,z, . . . , Φc,z, θs, . . . , Φc,

dIcell

dt
) = 0 (18)

with a suitable function ψ and β := cv
ca

+ cv
ce

+ cv
cc

. Considering t as a pa-
rameter, this is a linear Fredholm integral equation of second kind for the
function ξ(z) := ∂i

∂t (z, t). The associated homogeneous integral equation

β ξ(z) +

∫ 1

0

ξ(z̄) dz̄ = 0 (19)
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has the unique solution ξ(z) ≡ 0, since β 6= −1 for the given data. Therefore
Eq. (18) is uniquely and continuously solvable for ∂i

∂t . As a result we obtain
time index νt = 2 [1].

Example 4. Simple 2D family of dynamic models of MCFCs: Find functions
u(t, z) (temperature of the solid), v(t, z) > 0, v̄(t, z) > 0 (temperature times
molar flow of the gas in the anode and cathode gas channel) and w(t, z),
w̄(t, z) (temperature and molar fractions of the gas in the anode and cathode
gas channel) s.t. the singular PDE (with positive constant λ)

ut = λ∆u+ ψ1(u,w, v) (20a)

wt = −vwz1 + ψ2(u,w, v) (20b)

0 = vz1 + ψ3(u,w, v) on [0, T ]× [0, 1]2 (20c)

w̄t = v̄w̄z2 + ψ4(u, w̄, v̄) (20d)

0 = v̄z2 + ψ5(u, w̄, v̄) (20e)

with initial conditions u(0, z) = g1(z), w(0, z) = g2(z), w̄(0, z) = g4(z) and
boundary conditions ∂u

∂n |∂Ω = 0, and w(t, 0, z2) = wwest(t, z2),
v(t, 0, z2) = vwest(t, z2), w̄(t, z1, 1) = w̄north(t, z1), v̄(t, z1, 1) = v̄north(t, z1).

A slight change in the notation of example 1 yields time index νt = 1.
The perturbation index of a linearized version of this PDAE is computed

in [4].
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Brennstoffzellensystemen mit Methoden der Nichtlinearen Dynamik.

References

1. K. Chudej, P. Heidebrecht, V. Petzet, S. Scherdel, Schittkowski, K., H.J. Pesch,
and K. Sundmacher. Index analysis and numerical solution of a large scale non-
linear PDAE system describing the dynamical behaviour of molten carbonate
fuel cells. Z. Angew. Math. Mech., accepted for publication (2004).

2. P. Heidebrecht. Modelling, analysis and optimisation of a molten carbonate
fuel cell with direct internal reforming (DIR-MCFC). Dissertation, Otto-von-
Guericke-Universität Magdeburg, Magdeburg, 2004.

3. W. Lucht and K. Debrabant. On quasi-linear PDAEs with convection: Applica-
tions, indices, numerical solution. Applied Numerical Mathematics, 42:297–314,
2002.

4. J. Rang and K. Chudej. A perturbation index for a singular PDE model of a fuel
cell. Report, Technische Universität Clausthal, 2004.

5. K. Sternberg, K. Chudej, and H.J. Pesch. Molten Carbonate Fuel Cell: Simulation
and Optimization of a Partial Differential-Algebraic Dynamical System.



On the Modeling of the Phase Separation of a
Gelling Polymeric Mixture

F.A. Coutelieris, G.A.A.V. Haagh, W.G.M. Agterof, and J.J.M. Janssen

Unilever Food Research Center, Oliver van Noortlan 120, 3130 AC, Vlaardingen,
The Netherlands jo.janssen@unilever.com

Summary. The gelation of polymer mixtures under constant cooling rate has been
found to be an attractive product structuring mechanism for the food industry. As
applications become wider, a predictive method for the process is warranted. To
this end, we apply the so-called ‘Sγ concept’ in a CFD module for the modeling
for microstructure formation of gelling mixtures, where moments of the particle size
distribution are evaluated using the local flow conditions as obtained from CFD
simulations for the processes considered. The major driving force for these processes
is the competition between phase separation, gelation and hydrodynamic phenom-
ena such as break-up and coalescence. Based on theoretical investigations, analytical
expressions for the source terms representing the hydrodynamics (break up and coa-
lescence of the droplets) as well as the gelation process were produced. Constitutive
models are developed to incorporate the effects of phase separation and gelation
on the rheology of the phases. The simulations for different cooling rates clarified
the inter-relationships between the competitive mechanisms by depicting the time
interval of the domination of each.

1 Introduction

Modeling of phase separation is usually based on the Flory-Huggins theory
while the kinetics of phase separation is often reasoned from Cahn-Hilliard
theory [6, 3]. Actually, there is a lack of models for gelling systems. This
study aims at the description of the phase separation of polymer mixtures in
an inhomogeneous flow what is the situation under practical conditions. The
approach we take is the so-called ‘Sγ concept’ where an arbitrary number of
moments is used to describe the drop size distribution [8, 2, 9]. The essence
of the method is that the evolution of the moments of a distribution can be
analyzed using a transport equation consisting of a convective term, which can
be coupled to the local flow characteristics through the source terms. Since
no experimental data are available for gelling systems under inhomogeneous
flow, the results and the relative discussion could be actually considered as a
demonstration of the abilities that our analysis presents.
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2 Theory

The domain (particle) size distribution can be described by a collection of
moments of the distribution as

Sγ = n

∞∫

0

dγ P (d) dd, (1)

where n is the total number density and P (d) is the size distribution of the
droplets. In accordance to experimental observations [1], the droplet size often
often follows log-normal distribution. The main advantage of the Sγ function
is that they satisfy the transport equations [8]:

∂ Sγ
∂ t

+ u · ∇Sγ = si (2)

where u is the local velocity vector in the process equipment, which can be ob-
tained from the CFD flow calculations and si denotes the source terms which
represent the change in the particle size distribution as a result of local phe-
nomena such as break-up, coalescence and particle growth as a consequence
of the phase separation. Thus, the source term of (2) can be expressed as

si = sbr + scl + sgr (3)

where sbr, scl and sgr are the respective source terms that can be modeled
explicitly. The break-up source term is given as in [2],

sbr =

∞∫

0

[
dγ

τbr (d)

(
Nf (d)

3−γ
3 − 1

)]
nP (d) dd for d > dcr, (4)

where dcr denotes a critical diameter as determined by the critical capillary
number for laminar flow. These relationships depend on the viscosity ratio
and the flow type, as has been discussed extensively [7].

By considering the change in Sγ due to a single coalescence event,
∆Sclγ (d, d′), between two droplets of diameters d and d′, respectively, and
using the Smoluchowski collision rate, the coalescence source term is given as
([2, 4]):

scl =
(

2γ/3 − 2
) (6ϕ

π

)2

kcoll urel (deq) Pcoal (deq) dγ−4
eq (5)

By assuming that the phase separation inside the binodal is due to spinodal
decomposition, leaving nucleation and growth out of consideration and that
the temperature decrement is the driving force for phase separation and gela-
tion, the growth source term can be written as:
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sgr = dγ−3 exp(
γ2σ̂2

2
)

6

π

dϕ

dt
− γ

(
H0t

− 2
3

)
Sγ−1 (6)

Based on the well-known Flory model [6], the gelation kinetics were modeled
accordingly to [5]. In brief, the reversible cross-link model reduces to a re-
versible dimerisation of individual cross-links depending on the functionality
of each polymer, f , on the fraction of sites that can form cross-links, χ, as
well as on the initial number of moles of polymer per unit volume, N . The
kinetics of the gel fraction can be described as a binary chemical reaction:

dχ

dt
= kfNf(1− χ)2 − kbχ (7)

where kf is the forward rate for cross-link formation and kb is the backward
rate for dissociation.
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Fig. 1. Flowchart of the simulation algorithm

3 Results and Discussion

The flowchart of the simulation algorithm is shown in Fig. 1. The mixture
gelatin-dextran-water is used as atypical example of the polymeric mixture
of interest. To overcome the complications of inhomogeneous flow conditions
in this initial study, a simple shear flow between two parallel plates of dis-
tance 0.1m has been considered. Initially, the flow (of velocity 0.1m/sec) is
isothermal at 45oC and a homogeneous shear flow is present at a rate of shear
of 1 s-1. At the same time, both the upper and the lower wall are cooled
at a specified cooling rate to 20oC. The gelling system has been modeled
for two different cooling rates: a high (30oC/min) and a low one (3oC/min).
Since the temperature decrement is the driving force for the phase separation
and gelation processes, the cooling rate influences significantly the time scale
of the processes, and, therefore, on the composition of the mixture and the
corresponding rheological properties.
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Fig. 2. Droplets’ size (d32) distribution for high and low cooling rates

The time evolution of the droplet size is presented in Fig. 2. The effect of
the cooling rate on the mixture’s microstructure is clear at the initial time
period where a rapid increment of the droplets’ size can be observed. Local
maxima followed by local minima were observed for both the high and the
cooling rates due to the competition between the hydrodynamic phenomena
and the gelation. Finally, the droplets’ size increases monotonically after the
local minimum. This dynamical behavior of the system is clarified in Fig. 3a,
where the relative significance of the source terms is shown for the case of
high cooling rate. The source terms have been normalized by the summa-
tion of them at each time step, in order to be directly comparable. For the
fast cooling rate, one can observe that, during the first 50 sec, the coalescence
dominates and, therefore, the droplets’ size increases presenting its local max-
imum at the same time. As the cooling effect terminates at t = 50 sec, the
break up becomes significantly competitive to the coalescence for a period
of about 20 sec and, finally, it dominates up to t = 75 sec, where the local
minimum of the droplets size is presented. Then, grow-up starts to become
competitive and it dominates after t = 120 sec, where a monotonic decrement
of the domain size is presented. The competition between phase separation
and gelation is responsible for the progressive weakening of the break up pro-
cess, corresponding directly to a more smooth increment of the domain size.
The above mechanism is further evaluated by the observations for the low
cooling rate (Fig. 3b).

4 Conclusion

In the present work, the Sγ concept has been applied to predict the mi-
crostructure formation in gelling polymer mixtures, which is governed by the
competition between phase separation, gelation and hydrodynamic phenom-
ena such as break-up and coalescence. The phase separation has been modeled
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Fig. 3. Relative significance of source terms for high (a) and low (b) cooling rates

as spinodal decomposition, which affects the drop size distribution through
the growth of domain sizes during spinodal decomposition and the increase
in the volume fraction of the dispersed phase. Gelation has been modeled by
using a reversible gelation kinetics description. Both phase separation and
gelation significantly affect on the droplets’ size, which is also influenced by
the quench rate. Simulations for a shear flow that is cooled at two specified
cooling rates have been carried out to demonstrate the competition between
phase separation, gelation, and hydrodynamics (break-up and coalescence) in
gelling two-phase systems.
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Iso-Surface Analysis of a Turbulent Diffusion
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Summary. We analyze the evolution of a diffusion flame in a turbulent mixing
layer. The location of the flame-center is defined by the “stoichiometric” interface.
Geometrical properties such as its surface-area, wrinkling and curvature are char-
acterized using an accurate numerical level-set quadrature method. This allows to
quantify flame-properties as well as turbulence modulation effects due to coupling
between combustion and turbulent transport. We determine the active flame-region
which is responsible for the main part of the chemical processing in the flame.

Key words: Turbulence, combustion, iso-surface analysis, flame properties.

1 Introduction

In various combustion processes turbulent diffusion flames arise. These are
characterized by a thin, distorted and lively evolving region where the con-
ditions for combustion, such as presence of chemical species at appropriate
concentration and temperature, are fulfilled. We will consider combustion in
a turbulent mixing layer with stylized chemical reaction process. This model
can be treated in full detail and provides an impression of the dominant tur-
bulence modulation that arises from the coupling between the fluid-flow and
the chemical reaction equations. Important global flame-properties will be
quantified in detail by applying a new iso-surface quadrature method.

The central region of a diffusion flame may be visualized by monitoring the
so-called “stoichiometric” interface. In a turbulent flow this interface develops
into a complex, highly wrinkled surface. Fundamental properties such as the
flame’s surface-area and its wrinkling can be appreciated roughly by visual
inspection. However, in order to become meaningful, a quantitative method of
analysis is required. In this paper we will apply a new method for numerical
integration over complex level-sets and show that an accurate impression of
these properties and trends associated with variations in physical parameters
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can be obtained. Access to these fundamental aspects can be used as under-
pinning of theoretical and modeling studies aimed at better understanding of
the combustion process or to allow more complex flames to be simulated.

The organization of this paper is as follows. In Section 2 we will introduce
the model used to describe a diffusion flame in a temporal mixing layer. Sec-
tion 3 is devoted to a description and application of the method of iso-surface
analysis of the flame-center and the determination of the active flame region
is discussed together with some concluding remarks.

2 Diffusion flame in a mixing layer

In this section we will introduce the mathematical model describing the flame
problem studied in this paper. Subsequently, we will introduce the temporal
mixing layer [3] and visualize the evolution of the flame.

The computational model is composed of the compressible flow equations
for ideal gases, coupled to a system of advection-diffusion-reaction equations.
The dimensionless equations can be expressed as

∂tρ+ ∂j(ρuj) = 0 (1)

∂t(ρui) + ∂j(ρuiuj) + ∂ip− ∂jσij = 0 ; i = 1, . . . , 3 (2)

∂te+ ∂j((e+ p)uj)− ∂j(σijui) + ∂jqj − hkωk = 0 (3)

∂t(ρck) + ∂j(ρckuj)− ∂j(πkj)− ωk = 0 ; k = 1, . . . , Ns (4)

where ρ denotes the fluid mass-density, ui the velocity in the xi direction, e
the total energy density, ck the k-th chemical species concentration and Ns

the number of species respectively. In order to close this system of equations,
additional constitutive equations need to be provided. The viscous fluxes are
specified by σij = Sij/Re and πkj = ∂jck/(ReSc) with rate of strain tensor
given by Sij = ∂iuj + ∂jui − (2/3)δij∂kuk. The Reynolds (Re) and Schmidt
(Sc) numbers characterize the strength of the viscous fluxes relative to the
nonlinear convective contributions. The equation of state specifies the pressure
p through e = p/(γ−1)+ρuiui/2 where γ ≈ 7/5. Finally, the heat flux vector
qj = −∂jT/{(γ− 1)RePrM2} where Pr is the Prandtl number, M the Mach
number and the temperature T follows from the ideal gas law ρT = γM 2p.
We will use Re = 50, M = 0.2, Pr = 1 and consider different values for Sc in
the sequel.

The source terms in the species and energy equation represent the chemical
processes that take place. The chemical reactions are characterized by reaction
rates ωk and the heat released in these reactions is given by hkωk in which
hk is the specific enthalpy associated with species k. The chemical reaction
rate ωk is assumed to be determined by an Arrhenius law. We will consider
a single reaction in which fuel F reacts with oxidizer O to yield product P :
F + O → P . For this particular reaction we may express the reaction-rates
as [1]
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ω1 = −(ρcF )(ρcO)DaO exp(−Ze
T

) ; ω2 = αω1 ; ω3 = −ω1(1 + α) (5)

where we introduced the Zeldovich number Ze, put DaO = Da/WO with Da
the Damköhler number and Wi the molecular weight of species i. In addition,
α = WO/WF and use was made of WP = WF +WO. The source term for the
energy equation may be written as

hjωj = h1ω1 + αh2ω1 − (1 + α)h3ω1 = ω1(h1 + αh2 − (1 + α)h3) = Qω1 (6)

where Q will be referred to as the effective standard enthalpy of formation.
In total this model requires four additional parameters: DaO, Ze, Q and α.
We will assume α = 1, Ze = 1, DaO = 1 and study variations in Q.

Fig. 1. Evolving stoichiometric surface cF − cO = 0 in a turbulent mixing layer.
The snapshots are taken at t = 15, 35, 55, 75 (from left to right).

The consequences of combustion on turbulence may be illustrated with
the canonical flow in a temporal mixing layer. In this flow two parallel fluid
streams with different velocities merge and rapidly mix [3]. Initially, we con-
sider the upper stream to contain fuel (cF = 1, cO = 0) and the lower stream
to contain oxidizer (cO = 1, cF = 0). We adopt explicit Runge-Kutta time-
stepping and finite volume discretization. The ‘center’ of the flame is defined
through the “stoichiometric surface” cF − c0 = 0 as shown in Fig. 1.

3 Iso-surface analysis of turbulent flame properties

To quantify basic properties of an evolving diffusion flame we concentrate on
“global” variables, such as the flame-area or wrinkling. The global variable
corresponding to a density function f and a level-set S(a, t) is defined as

If (a, t) =

∫

S(a,t)

dA f(x, t) =

∫

V

dx δ(F (x, t)− a)|∇F (x, t)|f(x, t) (7)

where V is a fixed and arbitrary volume which encloses the level-set S(a, t)
defined as the set where F (x, t) = a for a “level-function” F . The formulation
in (7) was used as the basis of the numerical quadrature method in [2].
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Fig. 2. Evolution of A (top), W (middle) and C (bottom) for the flame in Fig. 1
at 323 (solid), 643 (dashed) and 963 (dash-dot) with Sc = 10 and Q = −1 (a).
Heat-release variations (b): solid: Q = 0, dashed: Q = −100 at Sc = 50.

For a diffusion flame the level-set function F = cF − cO. To determine
the surface-area A of the flame we adopt fA = 1. A measure for the global
“curvature” C is obtained using as density

fC(x, t) = ∇ · n ; n(x, t) =
∇F (x, t)

|∇F (x, t)| (8)

where n denotes the unit normal on the flame surface. The ‘wrinkling’ W is
obtained using fW (x, t) = |∇ · n|. In Fig. 2(a) we show estimates for A, C
and W obtained at different resolutions. Already at a resolution of 963 an
acceptable accuracy is obtained which was further confirmed by results on
finer grids. In Fig. 2(b) we varied the heat release parameter Q and Schmidt
number Sc. Evidently, a strong heat release induces a significant reduction in
the area and wrinkling of the flame.

Motivated by the interpretation of the stoichiometric surface, we may
introduce a “thick” active flame region around this surface, defined by
S(a) = {x ∈ R3| |cF − cO| ≤ a} in which the parameter a is referred to
as the stoichiometric interval width. The fuel processing-rate ΓF associated
with S(a) is

ΓF (a, t) =

∫ a

−a
ds

∫

cF−cO=s

dA ωF (x, t) (9)

The processing rate ΓF arises mainly from nearby iso-surfaces cF − cO = s
where s runs from −a to a. When a increases ΓF increases as well with a max-
imum at a = 1. This allows to define the ε-flame-region by ΓF (a, t)/ΓF (1, t) =
ε from which a(ε, t) may be solved.

In Fig. 3 we collected the evolution of the stoichiometric interval width
a. After the transitional stages a fairly constant value of a defines the active
flame region. The corresponding physical space region increases with time, as
shown in Fig. 4.
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Fig. 3. Effective flame region corresponding to 75 % (top), 50 % (middle) and 25 %
(bottom) of the total processing rate on 323 (solid), 643 (dashed) and 963 (dash-dot).
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Fig. 4. Active flame region corresponding to 50% of the total combustion. A char-
acteristic slice is shown at t = 15, 35, 55, 75 (from left to right).

In summary, we introduced a simple combustion model and studied a
turbulent diffusion flame in a temporal mixing layer. The coupling between
the combustion and the turbulent transport induces a significant modulation
of the turbulent flow properties, e.g., characterized by a strongly reduced
spreading rate of the mixing layer. Using a new method for integration over
geometrically complex evolving level-sets, basic properties such as flame-area,
wrinkling, curvature and active flame region were quantified.
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T. Götz1 and J. Struckmeier2

1 Department of Mathematics, University of Kaiserslautern,
Erwin–Schrödinger–Str. 48, D–67663 Kaiserslautern, Germany.
goetz@mathematik.uni-kl.de

2 Department of Mathematics, University of Hamburg, Bundesstr. 55, D–20146
Hamburg, Germany. struckmeier@math.uni-hamburg.de

Summary. Recently, Burger and Capasso [M3AS 11 (2001) 1029–1053] derived a
coupled system of partial differential equations to describe non–isothermal crystal-
lization of polymers. The system is based on a spatial averaging of the underlying
stochastic birth–and–growth process describing the nucleation and growth of single
crystals. Using an appropriate scaling of the original system, we derive a simplified
model which only consists of a reaction–diffusion equation with memory for the un-
derlying temperature, such that the degree of crystallization can be explicitly given
by a time integration of the temperature–dependent growth and nucleation rate.
Numerical simulations indicate that the reduced model shows at least qualitatively
the same behavior like the original model.

Key words: Crystallization of polymers, scaling properties, temperature
equation with memory.

1 Introduction

The control and optimization of polymer crystallization in industrial appli-
cations requires an appropriate understanding of the physical–chemical phe-
nomena occurring during the process. Hence, the mathematical modeling and
simulation is an important task and there exists a large variety of different
approaches in this direction. A recent overview on such models can be found
in [2].

In the present work we are concerned with a pure deterministic model for
non–isothermal polymer crystallization recently proposed by Burger and Ca-
passo in [1]. The model consists of a system of partial differential equations for
the crystalline volume fraction ξ = ξ(x, t), the mean free surface distributions
v = v(x, t) and w = w(x, t) of crystals as well as the underlying temperature
field θ = θ(x, t) in a two–dimensional domain.
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In dimensionless form the system reads as

θ̇ = κ∆θ + Lξ̇ (1a)

ξ̇ = γ (1− ξ) a(θ) v (1b)

v̇ = λ div (a(θ)w) + δ a(θ) b(θ) (1c)

ẇ = λ∇(a(θ) v) (1d)

subjected to the initial

θ(x, 0) = θ0(x) (2a)

ξ(x, 0) = 0 (2b)

v(x, 0) = 0 (2c)

w(x, 0) = 0 (2d)

and boundary conditions

− ∂θ
∂n

= β (θ − θout) (3a)

v = −wT · n . (3b)

Inspecting typical values of the parameters for isotactic polypropylene, we
obtain the following scalings: L = O(1), κ/λ = O(1), γ/δ = O(1) and κ/δ =
ε� 1.

Choosing the time scale of the nucleation process, i.e. δ = 1 and introduc-
ing the function u(x, t) = − ln(1− ξ(x, t)), we obtain the system

θ̇ = ε∆θ + γLe−ua(θ)v (4a)

u̇ = γa(θ)v (4b)

v̇ = ε div (a(θ)w) + a(θ) b(θ) (4c)

ẇ = ε∇(a(θ)v) . (4d)

On the other hand, we could also consider the time scale of the diffusion,
which means κ = 1. However, in industrial and technological applications one
is usually more interested in the effects related to the nucleation and increase
of crystallinity rather than in the mere diffusion process. Therefore we will
focus in our subsequent discussion on the nucleation time scale.

2 Temperature Equation with Memory

If we define Φ(x, t) = (v(x, t), w1(x, t), w2(x, t))T we may formulate (4c)
and (4d) as a quasilinear first order hyperbolic system, see also [1]. Assuming
a′(θ) = O(1) and ∇θ = O(1) we can solve (4c) and (4d) using the method of
characteristics and obtain
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v(x, t) =

∫ t

0

a(θ)b(θ) ds+O(ε2) and w(x, t) = O(ε) . (5)

Integrating (4b) together with the initial condition (2b) and substituting the
results into (4a) yields (up to higher order terms in ε) the following temper-
ature equation with memory

θ̇ = ε∆θ + γLe−ua(θ)

∫ t

0

a(θ)b(θ) ds (6)

where u = u(x, t) is now defined by

u(x, t) = γ

∫ t

0

a(θ)

(∫ s

0

a(θ)b(θ) dτ

)
ds . (7)

Hence, for ε� 1, the initial–boundary value problem given by the system (1)–
(3) may be substituted by the single reaction–diffusion equation (6) with
memory together with (7) and initial and boundary conditions (2a) and (3a),
respectively.

Similar models have also been derived by Kolmogoroff and Avrami, see [3]
and references therein.

3 Numerical Results

As numerical scheme to solve (6) we use a first order explicit time integration
together with a standard 5–point stencil for the Laplace operator. To ensure
stability of the scheme and non–oscillating modes in the numerical approxi-
mates we should satisfy the condition ε2k/h2 < 1/8, where k and h denote the
step size in time and space, respectively. Because we apply a first order time
integration the time step is chosen much smaller than given by the condition
above in order to obtain a sufficiently accurate integration of the source term
in the temperature equation.

For the growth and nucleation rates we use a(θ) = b(θ) = exp [−κ(θ − θref)]
which describes the temperature dependence of the growth and nucleation rate
observed in experiments at least qualitatively, see [4].

We perform two different simulations on the rectangle [0, 1]× [0, 2]: in the
first one we use the constant cooling temperature θout = 0, in the second one
the cooling temperature is θout = 0 on the left and upper as well as θout = 1
on the right and lower boundary of the rectangle. The initial temperature
is homogeneous on the rectangle, i.e. θ0(x) = 2, and we use the parameters
L = 1/3, β = 10, κ = 3 and θref = 1/2. The step size in space is given by
h = 1/40, the time step equal to k = 0.16 and, finally, ε = 10−4.

Figures 1 and 2 show the temperature and crystalline volume fraction for
the two different profiles of the cooling temperature mentioned above. In both
cases one observes a sharp front in the crystalline volume fraction moving in
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Fig. 1. Temperature (up) and crystalline volume fraction (down) for t = 400, 800.

time from the boundary into the interior domain. Like in [1] we do not observe
such a moving front in the temperature fields, which indicates that the cooling
at the boundary dominates the effect of latent heat during the crystallization
process and confirms the validity of our asymptotic induced model reduction.

The influence of a non–uniform cooling temperature along the boundary
is clearly indicated comparing the results shown in Figs. 1 and 2. Whereas
the results in Fig. 1 seem to be completely symmetric with respect to the line
y = 1, the non–uniform cooling temperature yields a shift of the higher crys-
talline volume fraction toward the lower cooling temperature at two boundary
segments.

4 Conclusion

In the previous sections we discussed a deterministic model to describe the
crystallization process of polymers. Referring to a recent work of Burger and
Capasso we reconsidered the scaling properties of the model. Our main result
is the reduction of the original model to a single reaction–diffusion equation
with memory for the underlying temperature field. In the reduced model the
crystalline volume fraction is obtained by integrating growth and nucleation
rate over the temperature history. Our numerical results showed that the
reduced model shows at least qualitatively the same behavior like the original
model.
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Fig. 2. Temperature (up) and crystalline volume fraction (down) for t = 400, 800.

A major goal in the mathematical modeling of polymer crystallization is
the computation of an optimal control, in our case the cooling temperature
along the boundary of the spatial domain, such that the crystallization is
as uniform as possible. Here one may use our simplified model which may
reduce the theoretical as well as numerical work when applying optimization
strategies for partial differential equations. Results on the optimal control
problem are currently under investigation.
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discussions on the subject.
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Summary. The aim of this work is to introduce and numerically solve an axisym-
metric mathematical model for thermoelectrical simulation of an induction heating
furnace.

Key words: Numerical methods, finite elements, induction heating, eddy
current, phase change.

1 Introduction

The induction heating technique is widely used in the metallurgical industry in
an important number of applications, such us metal smelting or purification
systems. In general, an induction heating system consists of one or several
inductors and metallic workpieces to be heated. The inductors are supplied
with alternating current which induces eddy currents and heats the workpiece
by means of Joule effect. The overall process is very complex and involves
different physical phenomena: electromagnetic, thermal with change of phase
and hydrodynamic in the liquid metal. Thus, numerical simulation represents
an important tool to optimize the design of induction furnaces and understand
their behavior. Indeed, we can find several publications devoted to numerically
solving some of the previous problems (see [2] and references therein). From
the mathematical point of view, it is needed to solve a coupled non linear
system of partial differential equations which arises from a thermal-magneto-
hydrodynamic problem.

In this paper, we will focus our attention on the thermoelectrical simulation
of a cylindrical induction heating furnace. In particular, we will solve the heat
transfer equation in transient state coupled with an eddy current problem.
The main contribution with respect to previous thermoelectrical models ([2])
consists in introducing the change of state of the thermal problem, which leads
to a nonlinearity in the heat equation.
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The outline of the paper is as follows. By assuming cylindrical symmetry,
we start describing the thermoelectrical model in a radial section of the do-
main. Finally, we propose a finite element method for its numerical solution
and we present numerical results obtained for an industrial furnace used in
silicon purification with our two-dimensional code.

2 Mathematical modelling

The induction coil of the furnace is replaced by m cylindrical rings in order to
consider the problem in an axisymmetric setting (see Fig. 1). We shall denote
by Ω0 the workpiece to be heated, Ω1, Ω2, . . . , Ωm the turns of the coil and
Ωa the air around the conductors. This notation refers, in fact, to any radial
section of these sets.

2.1 The electromagnetic submodel

The electromagnetic model is the so-called eddy current model which is ob-
tained from the Maxwell’s equations under the assumptions of low-frequency,
harmonic regime and no charge density,

curl H = J, (1)

iωB + curl E = 0, (2)

div B = 0, (3)

div D = 0, (4)

where, H, D, J, B and E are the complex amplitudes associated with the
magnetic field, the electric displacement, the current density, the magnetic
induction and the electric field, respectively; ω is the angular frequency. The
system above is completed with the constitutive relations B = µH and D =
εE, where µ is the magnetic permeability and ε is the electric permittivity.
We also need the Ohm’s law which sets that J = σE inside conductors (where
σ is the electric conductivity) and J = 0 in air.

We are interested in solving these equations by using a cylindrical coordi-
nate system (r, θ, z) with the z−axis coinciding with the axis of the cylinder.
From now on, we assume cylindrical symmetry, i.e. we suppose that none
of the fields depends on the angular variable θ. We further assume that the
current density field has non-zero component only in the tangential direction
eθ,

J(r, θ, z) = Jθ(r, z) eθ. (5)

From (3) we deduce that B = curl A, where A is the called magnetic vector
potential which we choose to be divergence-free. From (1) and (5), we have,

A(r, θ, z) = Aθ(r, z)eθ.
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Then, by using the expressions of curl and div operators in cylindrical
coordinates, we can write the eddy current problem in terms of Aθ, as follows:

−
(
∂

∂r
(

1

µr

∂(rAθ)

∂r
+

∂

∂z
(

1

µ

∂Aθ
∂z

)

)
+ iωσAθ =

σCk
r

in Ωk, k = 0, . . . ,m.

−
(
∂

∂r
(

1

µr

∂(rAθ)

∂r
+

∂

∂z
(

1

µ

∂Aθ
∂z

)

)
= 0 in Ωa.

We notice that Ck ∈ C, k = 0, . . . ,m are actually unknown constants. We
refer the reader to [1] for details about the computation of the constants Ck
and a detailed deduction of the above equations.

In order to apply a finite element method to numerically solve the previ-
ous problem, we shall consider a rectangular box in the (r, z)-plane enclosing
the induction heating system, and large enough for the magnetic field to be
small at the boundaries of the box (see Fig. 1). Thus, the electromagnetic
computational domain is Ω = Ωa∪Ω0∪Ω1∪· · ·∪Ωm. The natural symmetry

Fig. 1. Sketch of the workpiece and the coil. Boundary conditions of the thermo-
electrical problem.

condition along the revolution axis Γ ed is Aθ = 0 (see Fig. 1). On the lines
which are perpendicular to this axis we impose ∂(rAθ)/∂z = 0 and following
[2], on the boundary Γ eR of the box which is parallel to the symmetry axis, we
impose the Robin condition

∂(rAθ)

∂r
+Aθ = 0.

2.2 The thermal submodel

The above model must be coupled with the heat equation in order to study the
thermal effects in the workpiece. The thermal model is obtained from the heat
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transfer equation in transient state with change of phase since in general, the
metal in the crucible can change of phase during the heating process. Hence,
by assuming cylindrical symmetry, we have the equation,

ė− 1

r

∂

∂r

(
rk(r, z, T )

∂T

∂r

)
− ∂

∂z

(
k(r, z, T )

∂T

∂z

)
=
|Jθ|2
2σ

(6)

where T is the temperature, t is the time, k is the thermal conductivity and
ė =: (∂e/∂t)+v(x, t) ·grad e denotes the material time derivative of enthalpy.
We remark that the enthalpy density e is expressed as a function of temper-
ature by means of a multivalued function which depends on different physical
parameters (see [1]). In this paper, we will assume that the velocity of the
liquid metal v is null.

The computational domain of the thermal model, Ω0, is a radial section of
the workpiece. The boundary of Ω0 splits into two parts: the symmetry axis
and the rest, denoted by Γ tR. We consider the following boundary conditions:

k(x, T )
∂T

∂n
= 0 on the symmetry axis,

k(x, T )
∂T

∂n
= η(Tc − T ) + γ(T 4

r − T 4) on Γ tR,

where η is the coefficient of convective heat transfer, Tc and Tr are the ex-
ternal convection and radiation temperatures, coefficient γ is the product of
emissivity by Stefan-Boltzman constant and n is the outward unit normal
vector to the boundary.

3 Numerical solution

To integrate the equation (6) in time, we use a one-step implicit scheme. We
denote by ∆t = tn+1 − tn the time step and by Xn(r, z) the spatial position
occupied at time tn by the material point which is at position (r, z) at time
tn+1. Thus, at each time step we have to solve the following weak problems:

(WTP) For each n = 0,1,. . . , find a function T n+1 such that
∫
Ω0

1
∆t e

n+1Wrdrdz +
∫
Ω0
k(r, z, Tn+1) gradTn+1 · gradW rdrdz =

∫
Γ tR

(η(Tc − Tn+1) + γ(T 4
r − (Tn+1)4))Wr dΓ +

∫
Ω0

1
∆t e

n ◦XnWrdrdz+
∫
Ω0

1
2σ(r,z,Tn+1) |Jn+1

θ |2Wrdrdz, for all test function W.

(WEP) Find a complex function An+1
θ satisfying An+1

θ = 0 on Γ ed and

∫
Ω

(
1

µ(Tn+1)r

∂(rAn+1
θ )

∂r
1
r
∂(rḠ)
∂r + 1

µ(Tn+1)

∂An+1
θ

∂z
∂Ḡ
∂z

)
rdrdz

+
∫
Ω

iωσ(Tn+1)An+1
θ Ḡ rdrdz +

∫
Γ eR

1
µ(Tn+1)A

n+1
θ Ḡ dΓ

=
∑m
k=1

∫
Ωk
σ(Tn+1)CkḠ dr dz, for all test function G null on Γ ed .
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For the spatial discretization of problems (WTP) and (WEP) we consider
continuous piecewise linear finite element spaces associated with triangular
meshes of the domain for both fields Aθ and T . Notice that, at each time
step, a coupled nonlinear system must be solved because of the heat source
term is the Joule effect and physical parameters depend on temperature. We
refer the reader to [1] to a detailed description of the iterative algorithms used
to deal with the different non-linearities present in the problem.

Finally, we present some numerical results corresponding to the simulation
of an industrial furnace used for silicon purification. We consider that the
piece to be heated is silicon powder contained in a graphite crucible and both
initially at 30 oC. Figure 2 shows the modulus of the current density and
the temperature in silicon and graphite after 6 minutes, when the stationary
state has been reached. We refer the reader to [1] for see the geometrical and
physical data as well as other numerical results.

Fig. 2. Modulus of current density (left) and temperature (right) in the workpiece.
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Summary. Thermal explosion of diesel fuel droplets in the presence of thermal ra-
diation is studied. The process is presented in terms of the dynamics of a multi-scale
and singularly perturbed system, which is analyzed using the geometrical version of
the Method of Integral Manifolds. Analytical estimates of the total ignition delay
times in two limiting cases are obtained. The influence of the thermal radiation on
the heat transfer and ignition delay time are clarified.
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1 Introduction

The problem of thermal explosion in a gas containing fuel droplets is widely
studied ([5, 9, 4]). In most cases these studies have been based on the ap-
plying computational fluid dynamics (CFD) packages ([4, 10]). An alternative
approach to the problem is based on analytical studies of equations describing
the limiting cases. The present study is focused on the latter approach. The
zero-order approximation of the geometric version of the asymptotic Method
of Integral Manifolds (MIM), developed in ([3, 6]), is used to study this pro-
cess and to obtain analytical expressions for the total ignition delay, where
appropriate. The effects of thermal radiation is taken into account, since the
influence of the latter on heat transfer between droplets and gas can be notice-
able in diesel engines. The classification of the possible thermal behavior of
the system is suggested, and the impact of thermal radiation on the thermal
explosion dynamics is clarified. Since thermal ignition delays seem to be typ-
ical for most explosive two-phase system, due to the heat exchange between
the phases, we singled them out, as important characteristics of the model.
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2 Physical model

We consider the ignition of spray as an explosion problem, where the droplets
are regarded as the source of endothermicity. The main physical processes
incorporated in the model are the evaporation of droplets, thermal radia-
tion and highly exothermic oxidation reaction. The medium is modelled as a
spatially homogeneous mixture of an optically thick, combustible gas with a
mono-dispersed spray of evaporating fuel droplets. With a view to application
of the results to diesel engines, we assume that gas pressure is constant. The
system is assumed to be adiabatic.

The heat flow from gas to droplets is assumed to consist of two parts: con-
vection and radiation heat flows. We assume that the thermal conductivity of
the liquid phase is much greater than that of the gaseous phase, and the vol-
ume fraction of the liquid phase is much less than that of the gaseous phase.
Thus, the heat transfer coefficient of the mixture is controlled by the thermal
properties of the gaseous component. It is assumed that the burning process
takes place in the gaseous phase only, and it is described by the first order
exothermic reaction. Droplets velocities are neglected in the analysis. There-
fore Nusselt (Nu) and Sherwood (Sh) numbers, describing the heat and mass
transfer processes accordingly, are taken to be equal to 2. These assumptions
allow us to describe the system by the following system of equations::

cpgρgαg
dTg
dt

=
ρgQf
Cfs0

W − 4πR2
dndG (Tg, Ts) (1)

W ≡ αgCfA exp

(
− E

RuTg

)

d
(
R3
d

)

dt
= − 3R2

d

LρL
G (Tg, Ts) (2)

αg
dCf
dt

= −W +
4πR2

dndCfs0
Lρg

G (Tg, Ts) (3)

G (Tg, Ts) = Lhmµf (Cfs − Cf ) (4)

G (Tg, Ts) ≡
(
hc (Tg − Ts) + k1σ

(
T 4
g − T 4

s

))

k1 = Rbd
(
7 · 104 − 20 · Tg

)
,

where c is the specific heat capacity, ρ is the density, α is the dimensionless
volumetric phase content, Q is the specific combustion energy, Cfs0 is the
initial value of the fuel vapor molar concentration near the surface of the
droplets, W is the chemical reaction term, Rd is the radius of the droplets,
n is the number of droplets per unit volume, T is the temperature, L is the
latent heat of evaporation, µ is the molar mass, hc and hm are convective
heat transfer coefficients describing heat and mass fluxes respectively, σ is
the Stefan-Boltzmann constant. The subscript g refers to gas mixture; f –
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combustible gas component of the mixture; p – constant pressure; s – to the
saturation line; 0 – the initial state; c – convection; m – mass transfer.

The initial conditions are the following: Ts|t=0 = Ts0, Tg|t=0 = Tg0,

Rd|t=0 = Rd0, Cf |t=0 = Cf0, Cfs0 = Ps0 (RuTs0)
−1

, Ru is the universal gas
constant.

Following Semenov [8] we have introduced following dimensionless vari-
ables:

θg =
E

RuTg0

Tg − Tg0
Tg0

, θs =
E

RuTg0

Ts − Tg0
Tg0

, r =
Rd
Rd0

, η =
Cf
Cfs0

. (5)

Appropriate initial conditions are: θg|τ=0 = 0, θs|τ=0 = θs0, rd|τ=0 =
rd0 = 1, η|τ=0 = η0, and τ = t · t−1

react.
After the substitution of the variables (5) into Equations (1)-(4) and the

application of Frank-Kamenetskii’s simplification [1] followed by the use of
the appropriate energy integral, we present the initial system of equations in
the following form:

γ
dθg
dτ

= η (r) exp (θg)− ε1 (θg − θs)
(
r + ε3r

2+b
)

(6)

1

ε2

dr3

dτ
= −ε1 (θg − θs)

(
r + ε3r

2+b
)

(7)

(σ∗1 + σ∗2) (θg − θs) +
Tg0
Ts0

η = exp

((
Tg0b

∗

Ts0

)
θs +

(
Tg0
Ts0
− 1

)
Lµf
Tg0Ru

)
(8)

For the problem under consideration the parameters γ and ε−1
2 are ex-

pected to be small. Therefore, the set of equations (6)-(8) represents singu-
larly perturbed system of ODEs, and the geometric version of the Method of
Integral Manifolds (GVMIM) ([3, 6]) is expected to be applicable.

Following the GVMIM, every phase trajectory of the system can be sub-
divided into the fast and slow parts. The fast parts are characterized by the
high rate of change of one of the system variables while the others keep their
initial values. At the slow parts the variables are almost constant compared
with the fast parts. These parts can be identified with the integral manifolds,
the location of which represents a separated problem. The general theory of
integral manifolds states that the zero-order approximation of such manifold,
termed as the slow surface, lies in the γ-vicinity of its exact place. It is a curve
in the two-dimension case ([7, 2]).

The points dividing the slow curve into stable and unstable parts are called
turning or stationary points. The slow curve has horizontal tangent at these
points. The trajectory approaches the stable part of the slow curve and starts
moving along it. The ‘motion’ along the stable part can take place until a
turning point of the system is approached.
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2.1 Fast gas temperature: ε2γ � 1

In this case the slow curve of system (6)-(8) is presented by the following
equation:

Ω (θs, r) = η (r) exp θg (θs, r)− ε1 (θg (θs, r)− θs)
(
r + ε3r

2+b
)

= 0, (9)

where the function θg (θs, r) can be obtained from the Clapeyron-Clausius law
(8), and η (r) is determined by the energy integral of the system.

According to the definition given in the previous section, the turning points
(θTΩ, rTΩ) of the slow curve are determined by the equation:

Ω (θTΩ, rTΩ) =
∂Ω

∂θs
(θTΩ, rTΩ) = 0.

Equation (7) can be written in the following form:

dr3

dτ
= −ε1ε2 (θg (θs, r)− θs)

(
r + ε3r

2+b
)

(10)

From Equation (9) it follows that:

η (r) exp θg (θs, r) = ε1 (θg (θs, r)− θs)
(
r + ε3r

2+b
)

(11)

Substitution of Equation (11) into Equation (10) and the following in-
tegration gives the following expression for the dimensionless ignition delay
time:

τdelay = −
rTΩ∫

rd0

1

(δ − 1)

dη (r)

η (r) exp (θg (θs, r))
(12)

2.2 Fast droplet radius: ε2γ � 1

In this case the equation (7) is used to determine appropriate slow curve.
Based on the physical background of the problem we can expect that the
difference (θg (θs, r)− θs) is positive. Hence, the slow curve the slow curve is
determined by the equation r = 0.

Remembering that in this case the dimensionless droplet temperature θs
does not change, i.e. θs ≡ θs0, the integration of Equation (7) gives the fol-
lowing expression for the dimensionless ignition delay time:

τdelay = −
0∫

rd0

3r2dr

ε1ε2 (θg (θs0, r)− θs0) (r + ε3r2+b)
(13)
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3 Conclusions

Heating, evaporation and ignition of diesel fuel droplets is studied. The geo-
metric version of the Method of Integral Manifolds is used to investigate the
impact of thermal radiation on the heat transfer between the droplets and
gas. Analytical expressions for the delay time are obtained in two limiting
cases.

The dependence of the system behavior on the values of its parameters is
studied. The main type of the system behavior, the thermal explosion with
delay, is investigated. Asymptotic analysis of the problem leads to two distinct
scenarios: fast gas temperature and fast droplet radius. The analysis of the
model allows us to conclude that in the parametric regions, where the first
of the above-mentioned scenarios takes place, thermal radiation increases the
delay time. Additionally, the delay time increases with the increase of the
droplets number and of the dimensionless parameter ε1, and decreases with
the increase of the droplet radius and of the dimensionless parameter ε3. A
similar study has been performed in the parametric regions, where the second
scenario takes place. In this case, thermal radiation decreases the delay time.
Additionally, the delay time decreases with the increase of the droplets number
density and the dimensionless parameters ε1 and ε3. It increases with the
increase of the droplet radius.
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Summary. An outline of the Local Defect Correction (LDC) method is given. The
method is combined with a procedure to construct an orthogonal, curvilinear fine
grid and it is applied to the thermo-diffusive model for laminar flames.

Key words: local defect correction, orthogonal curvilinear grid, laminar
flames, thermo-diffusive model

1 Introduction

Boundary value problems (BVPs) can have solutions which exhibit very rapid
variations in a relatively small part of the domain. Moreover, these so-called
high activity regions are often of irregular shape. This certainly applies to
laminar flames, where the solution varies very rapidly in the flame front, a thin
region separating the burnt and unburnt gas mixture. A numerical solution
method for such BVPs requires a grid that is very fine in the vicinity of the
high activity region. One way to deal with such problems is to use the Local
Defect Correction (LDC) method. Roughly speaking, the method combines
a global coarse grid solution with a local fine grid solution, to improve the
accuracy. Because of its irregular shape, a curvilinear fine grid is an obvious
choice to cover the high activity region.

We have organised our paper as follows. In the next section we give a brief
outline of the LDC method. Then, in Section 3, we describe a procedure to
construct an orthogonal, curvilinear grid, and finally, in Section 4, we apply
the method to the thermo-diffusive model for laminar flames.

2 An outline of LDC

In this section we present a brief outline of LDC; a more detailed discussion
can be found in e.g. [5, 1, 4].
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Consider the BVP

L[u] = f, x ∈ Ω, (1a)

B[u] = g, x ∈ ∂Ω, (1b)

where Ω ⊂ Rd (d = 2, 3) is a simply connected domain, L a linear elliptic
operator and B a boundary operator, either of Dirichlet or Neumann type.
Let us define a discretisation of (1) on a uniform (coarse) grid of size H,
denoted by ΩH , covering Ω, i.e.

LH [uH ] = fH , (2)

where the right-hand side fH contains both the source term f and the con-
tribution of the boundary conditions.

Suppose, u changes very rapidly in a small, irregular subdomain Ω ′ ⊂ Ω.
In this high-activity region, the grid size H is definitely too large to capture
the behaviour of u, so we formulate a new discrete BVP on Ω ′ by covering it
with an orthogonal, curvilinear grid of characteristic grid size h. The discrete
problem reads

Lh[uh] = fh − GhΓPh,H [uH |Γ ], (3)

where the second term in the right-hand side of (3) represents the interpolation
of the coarse grid solution uH on the interface Γ = ∂Ω′\∂Ω. The operator
Ph,H is an interpolation operator, Lh is the discretisation of (1a), reformulated
in the curvilinear coordinates defined in Ω ′, and GhΓ is the part operating
on grid points on Γ . The numerical approximations on both grids can be
combined into the composite grid solution wH,h as follows

wH,h(x) :=

{
uH(x) if x ∈ ΩH\Ω′H ,
RH,h[uh](x) if x ∈ Ω′H ,

(4)

where RH,h is the restriction operator from the local coarse grid Ω ′H to the
fine grid Ω′h.

From wH,h we can compute the following approximation d̃H of the local
discretisation error of (2) on Ω ′H

d̃H(x) =

{
0 if x ∈ ΩH\Ω′H ,(
LH [wH,h]− fH

)
(x) if x ∈ Ω′H .

(5)

Once d̃H has been computed, we can add it to the right hand side of (2),
resulting in the equation

LH [ũH ] = fH + d̃H . (6)

Solving (6), we expect to get a better numerical approximation of (1). The
procedure above can be repeated several times, giving rise to an iterative
method. Convergence of this method is very fast, usually only one or two
iterations are required [1].
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3 Constructing an orthogonal curvilinear grid

The procedure in this section is based on [3]. The starting point is a non-
orthogonal coordinate system: one family of coordinate lines will be kept,
the other one will be transformed into a set of lines orthogonal to the first
set. We will restrict ourselves to 2D domains. Consider the position vector
x = x(ξ, η) in a non-orthogonal coordinate system. Suppose, we want to
keep the η-lines and we want to construct a family of coordinate lines, the
ζ-lines say, perpendicular to them. To do so, we introduce a function k(ξ, η),
being constant along the new ζ-lines. Since the covariant base vector ∂x/∂ξ
is tangent to the η-lines, the orthogonality condition between the ζ- and the
η-lines can be formulated as

∇k× ∂x

∂ξ
= 0. (7)

Substituting ∇k, expressed in (ξ, η)-coordinates, into (7), we get the hyper-
bolic equation

∂k

∂η
+ F (ξ, η)

∂k

∂ξ
= 0, F (ξ, η) :=

(∂x

∂ξ
,
∂x

∂η

)
/
∣∣∣∂x

∂ξ

∣∣∣
2

. (8)

We have scaled the (ξ, η)-coordinates such that the corresponding grid sizes
are equal to 1. For the discetisation of (8) we use central differences centred
around the point (ξ, η + 1

2 ).
The procedure to solve (8) is briefly as follows; see Fig. 1. We compute

the function ξ∗(ξ, η) that is the value of ξ to which the point (ξ, η) must be
displaced along an η-line to get a trajectory orthogonal to it. Suppose we know
ξ∗(ξ, η) and we want to determine ξ∗(ξ, η+ 1), subject to the initial condition
ξ∗(ξ, 1) = ξ. We set

k(ξ, η + 1) = ξ, (9)

and solve the discretisation of (8) for k(ξ, η) by a backward step. After this
we know k and ξ∗(ξ, η) on the (ξ, η)-points (in fact, ξ∗(ξ, η) = ξ) and ξ∗(ξ, η)
on the (ζ, η)-points from the previous solution step. Then, k(ξ∗, η) at the
(ζ, η)-points can be computed by a four-point Lagrangian interpolation. Fur-
thermore k is constant on the orthogonal trajectories (k(ζ, η) = k(ζ, η + 1))
and, because of (9), k = ξ on the (η + 1)-line. From this we get

ξ∗(ξ, η + 1) = k(ζ, η + 1) = k(ζ, η) = k(ξ∗(ξ, η), η).

From the Cartesian coordinates of the (ξ, η + 1)-points and the values of
k(ζ, η + 1) and k(ξ, η + 1), we can get get the Cartesian coordinates of the
(ζ, η)-points by inverse interpolation.

We have applied the above procedure to a non-orthogonal grid system,
where the η-lines are smoothed level curves of the course grid solution of (2).
An advantage of this approach is that we do not need much grid points along
the η-lines, since the solution is virtually constant along these lines.
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Fig. 1. Coordinate systems (ξ, η) (solid lines) and (ζ, η) (dashed lines).

4 The thermo-diffusive model for laminar flames

Consider a laminar flame, propagating in an infinitely long tube. The thermo-
diffusive model is a simplification of the conservation laws describing laminar
flames. The main assumptions/approximations underlying the model are: the
isobaric and constant density approximations and one-step chemistry [6]. In
[2], it has been shown that this model allows for a travelling wave solution. If
we furthermore assume a unit Lewis number, the propagation of the flame is
governed by the following BVP

−∇2T +
(
V0 + V cos(πy/2L)

)
∂T
∂x = ω(T ), x ∈ R, 0 < y < L, (10a)

T (−∞, y) = 0, T (∞, y) = 1, ∂T
∂y (x, 0) = ∂T

∂y (x, L) = 0, (10b)

where T is a dimensionless temperature, V0 the (unknown) velocity of the
travelling wave and V cos(πy/2L) the velocity of the gas flow. The source
term in the right-hand side of (10a) is given by

ω(T ) = 1
2β

2(1− T ) exp
(
− β(1−T )

1−α(1−T )

)
, (11)

with α and β nondimensional parameters.
An expression for the speed V0 can be obtained by integrating (10a) over

the whole computational domain Ω. This way we find

V0 =
1

L

∫∫

Ω

ω dS − 2V

π
. (12)

Depending on the value of V , it is possible that V0 + V cos(πy/2L) < 0 in
some part of the domain, resulting in an inversion of the flow, which is thus
directed from the burnt towards the unburnt gases.

We have solved the BVP (10) on the finite domain Ω = (−6.1, 6.1)×(0, 4),
for the parameter values α = 0.83, β = 10 and V = 3. After one LDC iteration
the velocity V0 converges to the value −0.4292. Figure 2 shows the coarse and
fine grids used and Fig. 3 shows the computed temperature field.
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Summary. This contribution deals with the mathematical modelling of a high tem-
perature molten carbonate fuel cell (MCFC) and serves as a basis for the following
three contributions of this mini-symposium. After a motivation and a short intro-
duction into the working principle of the MCFC, the most important equations of
the model are presented. This model is applied for optimisation purposes and as a
basis for the derivation of reduced models specifically designed for different tasks.

Introduction

The molten carbonate fuel cell (MCFC) consumes fuel gases containing hy-
drogen, carbon monoxide and light hydro-carbons to produce electric energy.
In addition to its high electric efficiency, its operating temperature of about
600◦C makes the MCFC a suitable candidate for the coupled production of
electricity and heat in stationary applications. Due to its insensitivity with
respect to carbon monoxide, it is very flexible with respect to fuels giving the
MCFC a high flexibility concerning its applications.

In Germany, the company MTU CFC Solutions has developed a 250 kWe
MCFC system, called “Hotmodule” [1, 2]. Its electric system efficiency of
about 50% is unsurpassed by conventional systems in this power class, and it
has proven its feasibility and reliability in more than 20 successful field trial
plants in Germany, Europe, Japan and the US. Currently, the project is head-
ing towards commercialisation, with the planned start of a series production
of economically competitive systems in 2006.

Although the Hotmodule has proven its reliability, there is still some op-
timisation potential left. As the Hotmodule is a high temperature fuel cell,
the temperature distribution inside the stack is of crucial importance to the
system performance. Too high temperatures cause material damage, while too
low temperatures make the system inefficient. Unfortunately, information on
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this vital state from measurements is incomplete and difficult to get, so other
ways of achieving reliable data are required, for example by using a state ob-
server. Furthermore, the operating conditions for steady state operation and
for load changes are determined empirically. This is mainly because the states
inside the cell are not well known and thus large safety factors are applied.
Consequently, the system is not operated in its optimal point and load changes
are performed only in small steps. Finally, the optimal reforming concept is
not clear. Three different methods of producing hydrogen from methane exist:
external, indirect internal and direct internal reforming. Which combination of
these three offers the best system performance is yet unknown. Thus, system
design tools are needed.

All of these aims require mathematical models of strongly differing de-
tail level and complexity. For example, the optimisation of input conditions
requires a detailed steady state model, which must be quick to solve never-
theless, the design of an observer requires a dynamic model with only a few
equations, and system design tools demand steady state models that are as
simple as possible. Consequently, the number of models required to solve these
questions is high.

To reduce the modelling effort, one single reference model is derived, from
which all other required models are obtained either by physical simplifications
or by mathematical reduction methods. The advantages of this hierarchical
modelling strategy are clear: the overall modelling effort is reduced and the
individual model variants are comparable to each other. Results obtained
from one model can be transferred to another one more easily, and system
parameters in different models have identical physical meanings.

In the following, we will shortly outline the basic working principle of the
MCFC and give a short introduction into the model equations we apply.

MCFC Working Principle

The working principle of the Molten Carbonate Fuel Cell is illustrated in
Fig. 1.. It consists of two porous metallic electrodes, and a liquid electrolyte
between them, which in the case of the MCFC is molten carbonate. Above
and below the electrodes channels are located, through which gaseous reac-
tion educts and products are transported. The anode channel is fed with a
preheated mixture of desulphurised natural gas, that is mainly methane and
steam. Methane is converted in the reforming process to a hydrogen-rich gas
mixture at the reformer catalyst which is placed inside the anode channel:

CH4 + 2H2O⇐⇒ CO2 + 4H2

Then hydrogen enters the porous anode electrode, where it meets the carbon-
ate ions from the electrolyte melt. There these substances react to produce
carbon dioxide, water and two free electrons according to the following oxi-
dation reaction:
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H2 + CO2−
3 ⇐⇒ H2O + CO2 + 2e−.

At typical MCFC temperatures, the conversion of the reforming process is
severely limited by its chemical equilibrium. This limitation is overcome by
the continuous removal of hydrogen by the electrochemical oxidation reaction.
In addition to the direct mass integration between the reforming process and
the oxidation, the endothermic reforming process receives its required heat
from the exothermic oxidation reaction. Thus these two are coupled twofold.

The anode exhaust gas is mixed with air and the unoxidised components
are fully oxidised in a catalytic combustion chamber. Because air is fed in
excess, the exhaust gas of the combustion chamber still contains a significant
amount of oxygen. This gas is then fed to the cathode channel where the
electrochemical reduction reaction takes place. There, new carbonate ions are
produced from carbon dioxide, oxygen and two electrons:

2e− + 1/2O2 + CO2 ⇐⇒ CO2−
3

The carbonate ions are transported towards the anode electrode through the
electrolyte. The cathode exhaust gas leaves the system.

With this, a source of electrons is available at the anode electrode and
electrons are consumed at the cathode electrode, so both electrodes can be
electrically connected via any electric load and thus the cell serves as an
electric energy supply device.

Fig. 1. Working principle of the MCFC
with direct internal reforming.
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of the reference model consisting
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bustion chamber and a reversal
chamber. Also indicated are the
input parameters of the system.

The Reference Model

The reference model basically describes a spatially two-dimensional sin-
gle MCFC in cross-flow configuration at galvanostatic operating mode (see
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Fig. 2.). In addition to the cell, a catalytic combustion chamber is consid-
ered. The model is based on the balances of mass, charges and energy and
fulfills the corresponding laws of conservation. It can be used to simulate the
composition and flow of the gas inside the anode and cathode channels, pre-
dicts temperature distributions in both gas phases and in the solid parts of
the cell and calculates the cell voltage and current density distribution. It is
completely formulated in terms of dimensionless parameter groups [3, 4].

The model contains equations of different types, all of them have non-linear
source terms:

� several hyperbolic partial differential equations (PDEs), describing the
concentrations and temperatures in the gas phases,

∂χ

∂τ
= −γ ∂χ

∂ζ
+ σχ (χ, ϑ, ...) (1)

∂ϑ

∂τ
= −γ ∂ϑ

∂ζ
+ σϑ (χ, ϑ, ...) (2)

� one parabolic PDE, describing the temperature in the solid cell parts,

∂ϑs
∂τ

=
∂2ϑ

∂ζ2
+ σϑs (χ, ϑs, ϕ) (3)

� two ordinary differential equations (ODEs) with respect to the spatial
coordinate, describing the gas flow,

0 = −∂ (γϑ)

∂ζ
+ σγ (χ, ϑ, ...) (4)

� three ODEs with respect to time, describing the changes of the electric
potential,

∂ϕ

∂τ
= i− ia (χ, ϑs, ϕ) (5)

� one integral equation, defining the total cell current as the integral of the
cell current density ∫

ζ

i (ζ) dζ = Icell (6)

The model is completed by a number of implicit and explicit algebraic equa-
tions, and a set of initial and boundary conditions.

Simulation Results and Model Applications

The presented model is able to simulate transient, spatially distributed con-
centration and temperature profiles, gas flows, current density distribution
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Fig. 3. Steady state temperature profile inside the cell’s solid parts. The temper-
ature range displayed here corresponds to a range from 894 K (621◦C) to 954 K
(681◦C). Note that the anode gas flows along the ζ1-coordinate, while the cathode
gas flows along ζ2.

and the cell voltage. As an example, Fig. 3. shows the simulated steady state
temperature profile of the cell under certain operating conditions.

With this, the model includes all details being necessary to solve the open
questions raised in the introduction. On the one hand it can be directly used
for optimisation of input conditions and system design, and on the other hand
it serves as a basis for the derivation of reduced models suitable for purposes
like conceptual system design and control design. As an example, the reduction
of this model by mathematical means for the design of an observer is presented
by Mangold et al. [5].
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Summary. The reduction of exhaust particulate emissions from diesel vehicles is
a great upcoming challenge. As a result of their harmful effects, new legislation on
diesel vehicles has been introduced throughout the world specifying low emission-
levels. Today, the use of diesel particulate filter (DPF) in addition to engine mod-
ifications is the favoured method to fulfil these criteria. The principle of a DPF is
based on the accumulation of particles in the alternating open and closed channels
of the filter. The pressure drop over the DPF increases with time. This increase is
associated with the rise of fuel consumption. For this reason, the deposited filter
cake must be occasionally regenerated. To minimise complex and expensive inves-
tigations on test benches, a mathematical model has been developed describing the
loading and regeneration behaviour of a DPF. The model is integrated in a commer-
cial CFD-Code using user-defined subroutines (UDS). The CFD-Code was used for
the calculation of the fluid flow and the particle tracks of different kinds of particles
(e.g. soot, additives) in a two-dimensional model of the DPF. Thus, the axial and
radial structure of the deposited particles on the filter can be determined. In the
UDS models are implemented to calculate the pressure loss, the separation efficiency
and the regeneration behaviour. Comparing the simulation results with the results
gained experimentally, it can be seen that both sets of data concur. Further devel-
opment concerning the implementation of a subroutine to describe the long-term
behaviour and transport of the deposited particles will be carried out.

Key words: Numerical simulation, CFD, diesel particulate trap, filtration,
regeneration

1 Introduction

Low fuel consumption combined with an excellent performance characterise
modern passenger cars with direct injecting diesel engines. Conversely, the
particle emissions from such engines are assumed to be a significant health
hazard. According to the information currently available, diesel particle filters
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combined with engine modifications are the favoured method to lower these
emissions to the level of petrol engines. The principles upon that most filter
systems are based nowadays are essentially the same: Particles are collected
in a ceramic filter with a large filter surface. In this study a Silicon-Carbide
(SiC) wall-flow filter with a honeycomb structure is used, whereby the chan-
nels are mutually locked in a checkerboard fashion. Due to the accumulation
of particles in and on the channel walls the pressure drop over the DPF in-
creases with time. This increase is associated with a rise in fuel consumption.
For this reason, the deposited filter cake must be occasionally regenerated.
Since the exhaust gas temperature under normal operation conditions is not
sufficient for filter regeneration, the filters must be regenerated either using
catalytic additives lowering the reaction ignition temperature or alternatively
by increasing the temperature in the filter e.g. using methods of post-injection
of fuel or electrical heaters [2, 1]. Another method for regenerating a DPF is
the continuous regeneration (CRT), where nitrogen dioxide is used to oxidise
the deposited soot in the filter.
A goal of this study is to set up a computational model that will allow the
description of the loading and the regeneration behaviour in a DPF including
transport phenomena of the deposits in the filter channel. In this article the
examination is restricted to the loading, filtration and regeneration processes.

2 Simulation model

In order to limit the computational effort the loading and regeneration be-
haviour will only be performed at one channel of the DPF like shown in Fig. 1.
Only one inlet channel and one outlet channel of the DPF are investigated.
Therefore, symmetrical flow conditions within the channels are assumed, so
that the modelling of only half of the channel is sufficient. Since non-stationary
filtration processes with a variable height of the particle surface cannot be
simulated using commercial CFD-codes, the computation is accomplished by
combining a commercial CFD-code with self-defined program routines for a
two-dimensional computational grid. The following describes the procedure
of the simulation, as outlined in Fig. 2, in greater detail. After the computa-
tion of the flow and temperature field by the CFD-code, the particle tracks
are calculated using an Euler-Lagrange approach. These information are the
input data for the following user defined subroutines. Knowing the position
of the separated particles on the ceramic wall and on the deposits already
formed, the surface layer height and the flow resistance over the DPF can be
computed. Regenerating the DPF leads to a decrease of the deposited mass
and the pressure drop. After adjusting the computational grid according to
the changed surface layer geometry the steps specified above are accomplished
again. This procedure is repeated, until the desired period of operation or an
inadmissible exhaust gas pressure drop is reached. Theses computations are
performed under quasi-stationary conditions, which means that within one
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time step the flow conditions are assumed to be constant. The steps done
during the simulation of the soot loading are represented in Fig. 3. After
computing the particle tracks with the Euler-Lagrange model, the sites of de-
posit on the ceramics and the surface layer are known. For reasons of limited
computation time only a limited number of particle tracks can be computed.
The laminar flow characteristics in the filter channel allow an interpolation
between the computed particle deposition sites to produce deposition sites of
fictitious particles. A reduction of the number of computed particle tracks can
be accomplished leading to a reduced calculation time and a faster formation
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of the surface deposit layer. Limited storage capacities require further an ef-
fective use of storage resources. Since particle size distributions with several
distribution classes are used for the exhaust, the reduction of the particle size
distribution is performed by a so-called RRSB distribution (Rosin-Rammler-
Sperling-Bennett). Thus, the distribution is described by the maximum and
the minimum particle diameter and two parameters describing the RRSB. By
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Fig. 3. Simulation of the loading behaviour

computing the particle tracks the position in axial direction of the filter chan-
nel is specified. The radial position of the deposited particle in the surface
layer and in the ceramic material has to be determined separately.

3 Results

Comparing specific computed values with experimental results validated the
filtration model. The experiments were performed in cooperation with the
FKFS at the University of Stuttgart on a engine test bench (5 cylinder engine,
2.7 litres). As DPF, an Ibiden SiC filter of the dimensions 5.66“ x 6“ was used.
The experiments were accomplished using sulphur-free fuel (< 10 ppm) with
added iron or cerium-based additives.
Fig. 4 shows the pressure drop over the DPF as a function of the loading
time for 3 different operating points for loading the DPF. The loads as well as
the revolutions per minute were varied. The comparison between computation
results and experimental data shows a good agreement.

4 Conclusion and Outlook

As shown, the developed computational model is able to simulate filter loading
for experiments performed on engine test benches. The successful simulation of
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Fig. 4. Computation of a engine test bench cycle - Pressure drop over the DPF vs.
loading time

the observed, time-dependent pressure drop confirms the assumptions used.
The validation of the deposit layer height along the filter channel and the
regeneration events are currently done. In the near future, models describing
ash-transport and ageing processes are to be implemented into the program.
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Summary. A model was applied on experimental data to study the mass trans-
port of oxygen diffusing through the oil phase and the packaging materials as well
as the oxidation reactions. A nonlinear system was numerically solved for various
combinations of materials, temperatures, and light availability, by adopting a typi-
cal Newton method, in conjunction with a multi-step up-winding finite differences
scheme. The probability of the packaged olive oil not to reach the end of its shelf
life (Psafe) and its time evolution, was in very good agreement with the experimen-
tal data. Psafe was proposed as a reduction indicator for shelf life predictions at
“real-life” conditions. Exposure to light at any pattern could significantly stimulate
the oxidative degradations, only assisted by elevated temperatures and presence of
oxygen. Plastic containers showed particularly higher protective role when oil was
stored at light, while glass was the most protective material when oil was stored at
dark.

1 Introduction

The type of material (plastics, glass, tin), the storage conditions (light, tem-
perature) and the storage period can significantly influence the quality of olive
oil [6]. In addition to the comprehensive experimental work on the oxidation
of olive oil, [2] proposed a model based on the development of hydroperoxides
as a function of both time and location in the package for a quick estimation of
the product’s response. [3] and [4] presented a two-dimensional model for the
oxidation process of olive oil packaged in plastic bottles but without consider-
ing the diffusion of the flavor compounds in the oil phase and specific oxidative
reactions. Furthermore no further refinement in terms of storage conditions,
i.e. temperature and light was made. [8] presented an experimentally-based
descriptive model for the shelf life of packaged olive, limited to chemical pro-
cesses occurring inside the oil mass with the inadequacy of not incorporating
the mass transport of the most oxidation-characteristic compounds due to
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diffusion as well as the interactions of the packaging materials with the flavor
compounds.

2 Experimental

Extra virgin olive oil was placed in 500 mL PET, 500 mL PVC (Novapack,
Co., Paris, IL, USA) or 500 mL glass bottles (Fisher Scientific Co., New Jersey,
USA). The properties of the packaging materials were previously evaluated
[8]. Half of the bottles were stored in dark and the other half were exposed
to fluorescent light (four 40 W fluorescent light bulbs were placed at 30 cm
above the bottles), all in controlled environment chambers at 15, 30 or 40◦C.
Separation and identification of hexanal was according to the previously de-
veloped methodology [8]. Statistical analysis was performed using commercial
software (SASr Proprietary Software Release 8.2, TS2M0, SAS Institute Inc.,
Cary, NC, USA).

3 Theory

In order to explain the oxidation process, a representative model for the evo-
lution of hyperoxide in the packaged olive oil, based on the main chemical
reactions:

O2
ka−→
hv

O−3 (1)

RH +O−3
kb−→ ROOH

RH +O2
kc−→ ROOH (2)

related to the oxidative degradation inside the oil phase, was applied. By
assuming that the oil is quiescent, all the hyperoxide (ROOH) taking place in
the above-mentioned reactions is finally transformed to hexanal, which could
also be sorbed by the polymeric packaging materials and as quasi-steady state
for the intermediate product O−3 , the mass transport can be described by the
following set of differential equations:

∂CO2

∂t
= DO2,mix

∂2CO2

∂x2
− ξkaCO2

− kcCO2
CRH (3)

∂CRH
∂t

= −ξkaCO2
− kcCO2

CRH (4)

∂Chexanal
∂t

= Dhexanal,mix
∂2Chexanal

∂x2
+ ξkaCO2

+ kcCO2
CRH (5)

∂CO2

∂t
= DO2,wall

∂2CO2

∂x2
, (6)

∂Chexanal
∂t

= Dhexanal,wall
∂2Chexanal

∂x2
(7)
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along with the appropriate boundary conditions in the oil-packaging interface.
The boundary value problem described above was discretized in space and

time using a non-uniform finite-difference scheme [9]. A numerical algorithm,
that involves a typical Newton method for non-linear systems [1] in conjunc-
tion with the finite differences scheme, was modified and adopted to handle
non-linearity. The system was solved numerically with precision of order of
1015 for a range of storage temperatures (15◦C, 30◦C and 40◦C), for various
packaging materials (glass, PET, PVC) and light conditions (light, dark). The
values for the parameters were taken from the relative literature [10, 5, 7, 3, 8].
When necessary, numerical interpolation or extrapolation was applied on the
experimentally measured values.

Based on the concentration profiles of hexanal, the probability for the olive
oil to reach the end of its shelf life during a certain time period is analogous to
the ratio of the areas below and above an arbitrarily defined quality threshold.
In other words, the probability of the oil to reach its self-life during the time
period [t1, t2] is analogous to the ratio of the relative areas, which on the other
hand can be expressed by integrals of the spatially averaged hexanal concen-
tration. Thus, we can define the probability, Psafe, for the oil not reaching
the end of its shelf life period during the same time period [t1, t2], as:

Psafe = 1−

t2∫
t1

〈Chexanal〉 (t)dt
t2∫
0

〈Chexanal〉 (t)dt
(8)

where t1 is the time when concentration reaches one critical value, considered
as an upper limit for the quality acceptance. The brackets denote spatial
averaging, and the upper edge of the integrals, t2, has been set to 12 or 24
months in this study.

4 Result and Discussion

The experimentally measured values for hexanal [8] were used for the valida-
tion of the mathematical model. The agreement between model predictions
and experimental data (discrete points) can be considered as sufficient since
the averaged relative difference varies from 5.6% to 32.8% according to relative
calculations (Fig. 1).

Figure 2 shows the time evolution of Psafe for oil stored for 24 months
at temperatures of 15◦C, 30◦C and 40◦C for every 12 hours alternating light.
In addition, the time evolution of Psafe for oil stored at temperatures of 15,
30 and 40◦C alternating every 4 months, and under continuous dark or light
are also shown. The probability Psafe after 24 months decreased significantly
with the temperature increment, independently on the light conditions and
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Fig. 1. : Time evolution of the spatially averaged hexanal concentration in the oil
phase, < Chexanal >

oil, for various packaging materials at 15◦C (a1, a2), 30◦C (b1,
b2) and 40◦C (c1, c2). Subscripts indicate the light conditions (1=dark, 2=light).
Comparison of the experimental measurements (discrete points) with the simulations
(solid lines
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Fig. 2. Time evolution of Psafe for oil stored for 24 months at temperatures of
15◦C (a), 30◦C (b) and 40◦C (c) and daily alteration of light and dark and for oil
stored at temperatures of 15, 30 and 40◦C, alternating every 4 months, and under
continuous dark (d) and continuous light (e).

the material. Elevated temperatures (40◦C) combined with light, revealed an
initial highly stimulated oxidation for oil stored in all packaging materials.
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5 Conclusion

A satisfactory agreement of the model to the experimental results was shown
through the low values of their relative differences (< 33% for any combination
of storage conditions). By joining this accurate model with the Psafe factor,
enough evidence was obtained to support the benefits of storing the olive
oil under continuous dark and low temperatures. For packaged olive samples
stored at light, for the same storage temperature glass was a significantly less
protective material, while PVC showed a higher protective role, although not
that different to PET, most probably due to its higher oxygen diffusivity. The
alternating presence of light had clearly reduced the probability of the oil to
reach the end of its shelf life, compared to continuous light exposure.
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Summary. A reduced nonlinear model of a planar molten carbonate fuel cell is
presented. The model is derived from a spatially distributed dynamic model of the
cell by applying the Karhunen Loève Galerkin procedure. The reduced model is of
considerably lower order than the original one and requires much less computation
time. The comparison between the two models shows that the reduced model can
describe the dynamic of the temperature field with sufficient accuracy and has good
extrapolation qualities with respect to changes in the model parameters.

Key words: molten carbonate fuel cell, dynamic simulation, reduced model,
spatially distributed system, Karhunen-Loève decomposition, state observer.

1 Introduction

The molten carbonate fuel cell (MCFC) is a high-temperature fuel cell op-
erated at 600◦C - 700◦C. Due to its high operation temperature, the MCFC
offers advantages for the co-generation of heat and electricity. Currently, the
development and operation of MCFCs as of other high temperature fuel cells
is mainly based on experimental and empirical knowledge. However, model
based process control and process design strategies can lead to a much better
use of the fuel cells’ capacities and increase the efficiency of the system, if suit-
able dynamic process models are available. Only very few detailed dynamic
MCFC models have been published [2, 3, 4]. Those models consist of sys-
tems of algebraic and nonlinear partial differential equations in several space
coordinates and are too complex for many process control purposes. The pur-
pose of this contribution is to derive a reduced nonlinear dynamic model of
a MCFC by applying the Karhunen-Loève-Galerkin method to the reference
model. The reduced model is validated in test simulations by comparison with
the reference model.
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2 Spatially Distributed Reference Model of the MCFC

In this work, a planar cross-flow MCFC with direct internal reforming is con-
sidered. The model of the process used here is based on the following assump-
tions:

� Spatial gradients of the concentrations and of the temperature are consid-
ered in two space coordinates in the direction of the gas flows.

� As the dynamics of the temperature equations is much slower than that
of the mass and charge balances, only the temperature equations is con-
sidered to be dynamic, the mass and charge balances are assumed to be
at steady state.

� Temperature differences between the gases and the solid parts are ne-
glected. This leads to a pseudo-homogeneous energy balance.

� The electrochemical reactions on anode and on cathode side are described
by Butler-Volmer kinetics.

An energy balance of the system leads to a partial differential equation for
the temperature that has the following structure:

0 = (ρcP )d
∂T

∂t
− cAP ṅ

A

Ly

∂T

∂y
− cCP ṅ

C

Lz

∂T

∂z
+ λd

(
∂2T

∂y2 +
∂2T

∂z2

)

+iA
(

(−∆hAR)

IRT
−∆ΦA

)
+ iC

(
(∆hCR)

IRT
−∆ΦC

)
+
ICell
LyLz

∆ΦM (1)

+(−∆hRR)rR + (−∆hWR )rw =: Res(T )

The first line in (1) contains terms caused by convective and dispersive heat
transport. The terms in the second and in the third line are nonlinear sources
caused by the chemical and electrochemical processes inside the fuel cell. The
evaluation of those terms requires the solution of mass and charge balances
which complete the reference model. A detailed description of the model is
given in [7].

3 Derivation of the Reduced MCFC Model

For model reduction of parabolic partial differential equations (PDEs) like (1),
orthogonal projection methods have become a frequently used technique [5, 1].
The basic idea is to represent the unknown variable, e.g., the temperature T ,
by an infinite sum of products of time dependent amplitude functions Ti(t)
and orthonormal, space dependent basis functions ϕi(y, z):

T (t, y, z) =
∞∑

i=1

Ti(t)ϕi(y, z), (2)
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A model reduction is achieved by approximating the infinite sum by a finite
series

T̃ (t, y, z) :=
NT∑

i=1

T̃i(t)ϕi(y, z). (3)

Clearly, the approximation (3) will not solve the PDE (1) exactly, but a
nonzero residual will remain. In order to get conditions for the time func-
tions T̃i(t), the projections of the residual Res in (1) onto the basis functions
are required to vanish, i.e.,

Ly∫

y

Lz∫

z

Res(T̃ ) ϕi(y, z)
!
= 0, i = 1, . . . , NT . (4)

This approach approximates the PDE (1) to NT ordinary differential equa-
tions. It reduces the infinite dimensional system to a finite dimensional one
with NT dimensions, which is much easier to solve numerically.

For the model reduction of the MCFC model, not only the profile of the
temperature, but also those of the molar fractions in the anode and in the
cathode gas channels, as well as the profiles of the total molar flow rates
have to be approximated by basis functions. The resulting reduced model is
a low-order differential algebraic system of differential index one. The qual-
ity of the reduced model, i.e., its deviation from the original model, mainly
depends on two factors. The first one is the number of terms considered in
the approximations of the spatial profiles. The second is the choice of the
basis functions. A good approximation of the complete model by a low or-
der reduced model is achievable, if suitable problem-specific basis functions
are chosen. In this contribution, basis functions are derived numerically by
applying the Karhunen-Loève decomposition method. The Karhunen-Loève
decomposition (K-L decomposition) was originally developed for the descrip-
tion of stochastic data [6]. For the solution of partial differential equations,
the K-L decomposition method can be used to generate basis functions for the
Galerkin procedure [9] from simulation results with the original model taken
at discrete time points, so-called snapshots. The K-L decomposition extracts
the most typical or characteristic structure from these snapshots in the form
of empirical eigenfunctions ϕi(y, z). As shown in [9], the basis functions can
be expressed as:

ϕi(y, z) =

N∑

j=1

αij
T · vj(y, z) (5)

In the above equation, N is the number of time points, for which simulation
data are available; vj(y, z) denotes a snapshot taken at time point j; αij is the

j-th component of an eigenvector αi ∈ IRN given by:

CMαi = λiα
i, (6)
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where CM is a symmetric N ×N matrix whose elements are defined as

CM
ij =

1

N

Ly∫

y=0

Lz∫

z=0

vi(y, z)vj(y, z)dydz. (7)

The eigenvalue λi may be interpreted as a measure of how well an eigenfunc-
tion ϕi is able to approximate the time average of the snapshots
[9]. In this sense, the eigenfunction ϕ1 corresponding to the largest eigenvalue
λ1 is the most typical structure of the snapshots.

In order to determine suitable basis functions for the MCFC model, the
response of the complete model to an increase of the cell current and to a
subsequent decrease to the original value is computed numerically by using the
method of lines. For the temperature profile, between 1 and 5 basis functions
are chosen. For the other variables of the reduced model, two basis functions
for each gas are found to be sufficient.

4 Validation of the Reduced Model

Test simulations are made in order to validate the reduced model by com-
parison with the original model. Special emphasis is laid on the extrapolation
qualities of the reduced model. An example is shown in Fig. 1. It is found
that already the approximation of the temperature profile by a single basis
function leads to a quite satisfactory behaviour of the reduced model. The
temperature error becomes very small, if 5 basis functions are used for the
temperature. In all simulations shown in Fig. 1, the cell voltage of the reduced
model matches the result of the complete model nearly perfectly. The K-L de-
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Fig. 1. Validation of the reduced model by a test simulation with a randomly
varying cell current; (a) maximum temperature error of the reduced model; (b) cell
voltage of the reduced model and the reference model
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composition technique leads to a considerable reduction in terms of the order
of the system as well as in terms of the computation time. After a spatial
discretization, the complete model consists of about 12, 000 equations. The
simulation shown in Fig. 1 requires about 43,000s of CPU time on a PC with
the complete model. In comparison, the reduced model consists of 25 equa-
tions, if 5 temperature basis functions are used. Its numerical solution takes
about 380s of CPU time on the same PC. The decrease of the computational
time achieved by the model reduction is not quite as strong as the decrease
of the order of the system. The reason is that the evaluation of the reduced
model equations is more complicated as it requires a numerical quadrature.

5 Conclusions

A reduced model of an MCFC is obtained by applying the Karhunen-Loève
Galerkin method to a two-dimensional spatially distributed cross-flow model
of the cell. The basic idea of the method is to approximate the profiles of the
spatially distributed variables by basis functions obtained from test simula-
tions with a detailed reference model. For the MCFC model considered here,
this technique proves to be successful. The reduced model produces results
that are very close to those of the original model, but it reduces the compu-
tation time by a factor of more than 100. Due to its properties, the reduced
model is suitable for applications in the field of model based process control.
An example is the state and parameter estimator described in [8].
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Summary. We present the results of the numerical simulation of the first stages of
the melting from a side of a gallium slab by adding to the heat transfer and to the
melt flow the description of the effects of the deformations of the solid phase. The
experiment by Gau and Viskanta in [4] has been considered.

Key words: Phase change, Deformations, Convection, Potential Functions

1 Introduction

In recent experiments of melting of pure metals [5], it seemed that the melt
convection flow might be responsible of the structural variations in the solid
portion close to the phase interface. However the physical quantities observed
are very small and may be easily spoiled by experimental errors. In other
words the nature of such processes indicate that mathematical and numeri-
cal assessments are necessary. Actually, mathematical model for liquid/solid
phase transitions it has been built for the description of the dynamics of the
liquid and solid (velocity field of the liquid and deformation field of the solid),
the heat transport phenomena and the evolution of the phase front [1]. This
model has already provided results in excellent agreement with the analytical
solution [7] in the case of the solidification of a water layer.
Here, we approach the two-dimensional case. At this scope we have reformu-
lated the mathematical model with the use of potential functions that allow to
meet more easily the incompressibility constraint. As starting numerical test
we have simulated the initial time steps of the experiment of the melting of
a pure gallium slab described by Gau and Viskanta in [4]. This experiment is
particularly suitable in order to identify the effects of the solid deformations in
addition to those due to melt convection as it has been numerically simulated,
not including the solid dynamics, by many specialists in the literature of the
recent past years (included by one of the authors [2]). The new formulation
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of the model is sketched in Sect. 2 and the numerical results are shown and
discussed in Sect. 3.

2 Governing Equations and Reformulation

The equations governing the evolution of a continuum sample undergoing liq-
uid/solid (L/S) phase transition have to describe the conservation laws of
momentum, of energy and of mass; for their structure we refer to the books
on classical mechanics (e.g., [8]). A set of equations for each single phase is
obtained together with the jump conditions for the balance of momentum, en-
ergy and mass across the phase interface. In the jump condition for the energy
conservation law (the so-called Stefan condition [3]), most important is the
contribution due to the release or the adsorption of latent heat corresponding
respectively to the solidification or the melting processes.

In our model the liquid and the solid are described as an incompressible
viscous fluid and an isotropic linearly elastic material [8]. This choice allows
to keep average the level of difficulty of the final system of equations to be
solved. Obviously, for the solid, a more appropriate model would be one de-
scribing correctly the specific material symmetry but, here, we aim to provide
a first insight to the effects of the mechanical response of the solid within the
transition process. Adding simplifying assumptions are: i) the density of the
liquid and of the solid may be assumed equal, ii) the radiating heat is negli-
gible, iii) liquid and solid interfacing particles do not slip over each other, iv)
the material coefficients of the two phases may be assumed to be constant.
With t the time and (x, y) the space cartesian coordinates, let us call DF , DS

and Γ (t) the domains occupied respectively by the melt, by the solid and by
the phase interface. Introducing the Boussinesq and Fourier approximations,
the governing equations of the melt flow, holding in DF , result:

ρ
dv

dt
= −∇p+ µF∇2v − ρ[1− αF (TF − Tp)]g (1)

∇ · v = 0 (2)

ρcF
dTF
dt

= kF∇2TF + µF
[
(
∂u

∂x
)2 +

1

2
(
∂u

∂y
+
∂v

∂x
)2 + (

∂v

∂y
)2
]

(3)

where v = (u, v), p, TF and ρ denote the velocity, the pressure, the tempera-
ture of the melt and the density of the sample, respectively. These equations
are coupled with the following ones for the solid holding in DS :

ρ
∂2U

∂t2
= µS∇2U− ρ[1− αS (TS − Tp)]g (4)

∇ ·U = 0 (5)
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ρcS
∂TS
∂t

= kS∇2TS , (6)

where U and TS denote the displacement and the temperature of the solid,
respectively. The symbols c, k and α with the appropriate subscript (F or
S) indicate respectively the heat capacity, the conductivity and the thermal
expansion coefficients for the liquid and the solid, whereas µF , λ and µS are
the viscosity coefficient of the melt and the Lamé constants of the solid. The
jump conditions, that hold in Γ (t), appear:

vF = vS (7)

(−pI + µF (∇vF + (∇vF )T )) · n̂ = λ∇ ·USI + µS(∇U + (∇U)T ) · n̂ (8)

−ρΛ(vF · n̂− un)− kS∇TS · n̂ + kF∇TF · n̂ = 0 (9)

where n̂ denotes the normal unitary vector on Γ (t) and Λ the latent heat.
The set of equations (1) – (9) is completed by initial and boundary values
according to the specific test case.

By observing that the vectors v and U are both required to be solenoidal,
we have reformulated the above model on the basis of the Helmoltz-Hodge
decomposition in order to meet more accurately and easily such constrain.
This procedure is well known and experimented in fluid dynamics and leads to
the scalar potential / stream function / vorticity formulation [6]. We propose
to extend this approach also to the treatment of the solid by introducing the
new unknowns, ϕ, χ and ι linked to U by these relations:

U = (−∂χ
∂y

+
∂ϕ

∂x
,
∂χ

∂x
+
∂ϕ

∂y
) ι =

∂Uy
∂x
− ∂Ux

∂y
. (10)

Accordingly, we transform the equation (4) by applying the curl operator. In
doing so, (5) reduces to a simple Poisson equation for ϕ and ι results solution
of a scalar equation (instead of the vector equation (4) defining U).

3 Numerical Test and Conclusions

We solved this model by a finite difference method based on a time Euler
scheme and centered second order space schemes; front-fixing was used to
handle the moving boundary. We adopted the initial and boundary values
corresponding to the Gau and Viskanta experiment [4], describing the melting
of a rectangular pure gallium slab heated on a vertical side; the other vertical
side is lightly undercooled and the horizontal ones are insulated. Here, we
show shots of the simulation of the first time instants obtained on a space
grid 60× 10 both in the solid and in the fluid domain. The maximum allowed
time step was ∆t = 10−7. In Figs. 1 and 2 we plot the streamlines in the melt
and the displacement vector field in the solid at time t = 16 sec and t = 56 sec,
respectively. In Fig. 3 the profiles of the velocity components of the melt at
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three values of y are sketched. Compared to those in absence of deformations
[2], streamlines indicate an intensification of the upper mechanisms leading to
faster melting than on the bottom. The melt flow is still multicellular. The
non-zero velocities of the melt at the phase boundary are significant. The
displacement field of the solid, essentially null far from the phase boundary,
is the kinematical response of the solid to the pulling action of the melt.
According to the hyperbolic nature of the momentum equation for the solid,
displacements become oscillatory with time due to the unsteady excitation
induced by the melt at the phase boundary. The (lengthy!) simulation of the
remaining time interval of the experiment (up to 19 mins.) is still under process
and, together with a mesh refinement analysis will be object of a future paper.
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Fig. 1. Streamlines (melt) and displacement vector field (solid) at t = 16 sec.
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Fig. 2. Streamlines (melt) and displacement vector field (solid) at t = 56 sec.
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Fig. 3. The velocity components of the melt versus x at three different levels at
t = 56 sec.
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Summary. This work presents a dimensionless analysis of mass transport equations
in fixed-bed absorbers. Focus is centered in isothermal and incompressible problems,
with special attention to nonlinear adsorption and desorption processes that take
place at absorbent particles. The general differential–algebraic equation system is
expressed in dimensionless form, and the model is particularized into four different
formulations. The model is analyzed and used to simulate a standard industrial test
efficiently. Formulations are selected depending on the relative importance of the
different physical phenomena involved in each part of test.

Key words: dimensionless analysis, activated carbon filter, convection – dif-
fusion – reaction equation, numerical simulation, mass conservation, adaptive
modelling.

1 Introduction

Modelling adsorption and desorption in fixed–bed absorbers is of high interest
in several industrial applications and consequently it has been widely studied
(see [1, 2, 3] among many others). In the automotive sector, activated carbon
filters called canisters are used to reduce the emission of hydrocarbons (HC)
from the fuel tank. The production of these filters requires the verification
of several quality and efficiency indicators. One of them is provided by the
Working Capacity test (WC). This test measures the mass of butane that
can be adsorbed by a canister at a prescribed loading – unloading sequence
(imposed flows of a butane mixture and clean air respectively).

The transport of HC along the filter and the adsorption – desorption in the
activated carbon particles requires accurate description of two spatial scales:
the macro scale, for the canister itself with characteristic lengths of decime-
ters, and the micro scale (two orders of magnitude smaller, in the order of
millimeters) for the activated carbon pellets. A model with two phases for
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each scale is considered here. The conservation mass of a single-solute is im-
posed at both scales. The spatial coordinates are averaged in a representative
elementary volume [4] and equations of both scales are expressed in dimen-
sionless form. After that, the micro scale equation is transformed into a system
of two ordinary differential equations by imposing a spatial discretization of
its weak form, which is defined in assumed spherical particles and incorpo-
rates appropriate boundary conditions (see [1] for a description of the related
Homogeneous Surface Diffusion Model). The resulting algebraic – differen-
tial equation system is integrated numerically by an stabilized fractional step
method in realistic finite element simulations.

2 Dimensionless model

Dimensionless form of mass balance equations is expressed in terms of the
following variables: x = x′/L, t = V t′/L and v = v′/V , where L and V
are reference values for length and velocity, and x′, t′ and v′ represent di-
mensional spatial coordinates, time and interparticle velocity respectively.
Mass transport equations depend on the unknowns c(x, t) = c′(x′, t′)/cref,
q̄(x, t) = q̄′(x′, t′)/qref, and qR(x, t) = q′R(x′, t′)/qref, where qref and cref are
reference values, and c′, q̄′ and q′R are equal to the interparticle concentration,
the mean value (in the particle) of the mass adsorbed by unit of clean carbon
mass, and the same magnitude but in the external surface of the particles.

On one hand, transport in the macro scale is given by the following di-
mensionless equation:

∂c

∂t
+ v ·∇c = ∇ ·

(∇c

Pe

)
−
(

St

BiEd
+ rεp

∂L(q̄)

∂q̄

)
∂q̄

∂t
(1)

where ∇ is the gradient operator with respect to x, and the following dimen-
sionless numbers are used: Peclet, Pe, Biot, Bi, and Staton, St. The surface
diffusion modulus is denoted by Ed, the porosity ratio by rεp , and the dimen-
sionless Freundlich isotherm by L(q̄). The parameters are defined as

Pe =
V L

D
, Bi =

kfcrefR

Dsqrefρs(1− εp)
, St =

kfL(1− εf)

V Rεf
, Ed =

LDs

V R2
,

rεp =
1− εf

εf
εp , L(q̄) =

1

A1/n
q̄′1/n , A = A′

cnref

qref
,

(2)

where D is fluid diffusion, kf the film mass transfer coefficient, R the par-
ticle radius, Ds the surface diffusion, ρs the clean carbon density, εf and εp

the interparticle and the intraparticle porosities, and A′ and n the isotherm
coefficients.

On the other hand, the dimensionless transport equations at the micro
scale are found from the spatial discretization of the surface diffusion equation
at particle level complemented with Robin boundary conditions:
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∂q̄

∂t
= 3BiEd (c− L(qR))

∂qR

∂t
= 10BiEd (c− L(qR)) + 35Ed (q̄− qR) .

(3)

Note that diffusion of the intraparticle fluid phase is neglected, both to keep
the model simple and because it is not relevant in gas absorbtion modelling
[3]. The formulation of the model corresponding to equations (1) and (3) is
called the three Variables Formulation (3VF). A first simplification of the

model follows from St/(BiEd) >> rεp
∂L(q̄)
∂q̄ , which is verified with reference

values given in table 1. However, note that the reaction term in equation (1)
remains nonlinear due to the coupling with equations (3). A linear model is
found only with linear isotherms (i.e., n = 1).

Apart from this obvious simplification three options can be developed,
first assuming that diffusion inside particles, Ds, is large enough to consider
q̄ = qR. This case is referred as the first two Variables Formulation (2VF–A),
and its reaction term depends on the film mass transfer coefficient, kf, but
it does not on Ds. The second approach in characterized by the hypothesis
c = L(qR), which corresponds to the assumption that kf is large enough to
consider Dirichlet conditions at the particle external surface. This formulation
will be referred as 2VF–B and it depends on St/Bi and therefore on Ds,
but it does not on kf. Finally the third formulation imposes simultaneously
the hypothesis of 2VF–A and 2VF–B: q̄ = qR = L−1(c). The model is then
independent of kf and Ds. It will be referred as 1VF because it only depends
on one variable. In this case, two equivalent formulations can be used, one in
terms of c and the other in terms of q̄. Both can be further simplified using
the isotherm relationship presented in equation (2), assuming that Pe is large
and the following inequalities:

St

BiEd
>> (1 + rεp)

(
∂L−1(c)

∂c

)−1

and
St

BiEd
>> (1 + rεp)

∂L(q̄)

∂q̄
, (4)

which are true for reference values, see table 1. Then, typical nonlinear first–
order hyperbolic equations are obtained.

The solutions of these equations may present shocks when a high value of
the unknowns precedes lower ones along the characteristics. In a one dimen-
sional problem, with zero initial conditions and a boundary condition equal
to cin, or equivalently q̄in = A(cin)n, chocks with the following velocities are
found for each 1VF formulation:

vc
sh =

BiEd

St

(cin)1−n

An(2− n)
and vq̄

sh =
BiEd

St

(q̄in)
1
n−1

A
1
n

. (5)

Note that these two velocities are in general not equal (except for n = 1). In
order to determine which formulation is preferable, a global mass balance cri-
terium is used: In a one-dimensional problem, for any of time, the accumulated
flow–in through the boundary should be equal to the mass inside the domain,
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Table 1. Dimensionless parameters for loading (left) and unloading (right)

Pe Ed A n rεp Pe Ed A n rεp
105 2.1 0.8 0.31 1.36 107 0.021 1.04 0.31 1.36

St Bi St/Bi BiEd St/(BiEd) St Bi St/Bi BiEd St/(BiEd)
50.3 0.083 603.3 0.17 292 0.51 0.084 6.03 0.002 292

i.e. between the boundary and the position of the shock front. This condition
can be expressed as vshM(q̄in) = L(q̄in), where M(q̄) = St/(BiEd)q̄ is the
approximation to the mass by unit of volume in dimensionless form under
hypothesis of equations (4); the general expression is given by M(c, q̄) =
c+rεpL(q̄)+St/(BiEd)q̄. The c–based 1VF formulation verifies the condition
only for n = 1, instead, the q̄–based verifies the global mass balance for all n.
Thus, the adequate 1VF is the q̄–based formulation.

2.1 Dimensionless analysis

In this subsection, three relevant considerations about the dimensionless struc-
ture of the model are highlighted. First, note that hypothesis of equations (4),
which have been used for 1VF analysis, allows to simplify also 2VF and 3VF
formulations (although, as commented before, they remain nonlinear except
for n = 1). Moreover, as St/(BiEd) indicates the relative importance of the
mass adsorbed with respect to the mass present in the interparticle fluid fase,
hypothesis of equations (4) are expected to apply to all usual absorbent me-
dia. Recall that this ratio of dimensionless numbers is independent of reference
velocity, V .

Second, the Biot number, Bi, which is also independent of V , indicates
the relative importance of kf with respect to Ds. Previous works, see [1],
present the following classification: high dependence on kf for Bi << 1, high
dependence on Ds for Bi >> 100, and relevance of both effects for Bi ∈
[0; 100]. In the model presented here, first case, Bi << 1, corresponds to
2VF–A formulation, which is governed by St, BiEd and the other parameters
of equations (2). Second case, Bi >> 100, corresponds to 2VF–B formulation,
which depends on St/Bi, Ed and the other parameters. And third case, Bi ∈
[0; 100], to the general 3VF, which depend on all dimensionless parameters
defined in equations (2).

Finally, note that the influence of reference velocity is restricted to Pe, St

and Ed. Low velocities imply small Pe and large St and Ed. As large St and
Ed are also found with large kf and Ds, the 1VF formulation is expected to
be the most appropriated for low velocities. Note that in this case the model
depends basically on St/(BiEd), and on Pe, for velocities in the order of L/D
or smaller.
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3 Application: Working Capacity test

The model presented in previous section has been used to simulate the WC
test. Each regime of the test (loading and unloading) is modelled with a differ-
ent formulation. The representative dimensionless numbers for each regime are
summarized in table 1. Note that, on one hand, St/(BiEd) verifies hypothesis
of equations (4), thus simplified formulations can be considered. Moreover,
note that in both cases Bi << 1 thus 2VF–A or 1VF are expected. And
finally, remark that 1VF is more likely to be appropriate for loading than
2VF–A, because of the low velocities, at least compared with those of unload-
ing. On the other hand, P−1

e is much smaller than one (and therefore than
St/(BiEd)), therefore interparticle diffusion is expected to be not relevant in
any of both regimens, except, locally, in regions with very low velocities. It
has been verified that the results obtained with calibrated parameters and real
3D–canisters, and using the same formulation throughout the domain (1VF
for loading and 2VF–A for unloading) are satisfactory.

4 Conclusions

A mathematical model for transport and adsorption – desorption of hydro-
carbons in activated carbon has been presented and analyzed. The model has
been apply to the numerical simulation of the Working Capacity test with
canisters (automotive filters for hydrocarbons in gas phase). Different formu-
lations of the model are proposed for each part of the test, obtaining realistic
results with complex tridimensional geometries.
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Summary. For studying the impact of a hight pressure vapor on a concrete wall,
we propose a stationary 3D homogenized model. We show that the interface evolves
as a (shock or rarefaction) wave accordingly with the mobility coefficient values M .
Moreover, we prove the existence of a finite asymptotical position for the interface
when t goes to +∞.

Key words: asymptotic expansion, multiphasic flows, Riemann’s problem
for the interface.

1 Motivating Problem and Mathematical Model

The aim of this paper is to provide a simple mathematical model for account-
ing for what have been reported in experimental studies ([3]): when a concrete
wall is subjected to a steady isothermal hight pressure of water vapor, only a
finite thickness of the wall is affected by the vapor penetration. Such a situa-
tion could arise when accidental context in nuclear power plants is considered.
The simplifying physical hypotheses we are assuming to hold true are:
- the concrete wall can be represented with a porous medium made of par-
allelepiped pores, the thickness of which is negligible compare to the length
and to the height. The height is also negligible compare to the length. Thus a
Karman-Kozeny model can be used ([1, pp. 164–165]) and the 3D flow in the
pore is reduce to a 2D one.
- The vapor viscosity η2 is constant and large compare to the dry residual air
viscosity η1.
- Only a small part of the vapor can condense in the pores.
The previous simplifying physical hypotheses lead us to consider a small mo-
bility coefficient for the experimental data. Nevertheless, the mathematical
model derived in this paper also applies for large mobility coefficients. For a
general mathematical model we refer to [2] for example.
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In a previous paper [7], a mathematical model has been proposed for the
injection of resin in thin mold, neglecting the surface tension and assuming
that, almost everywhere in a pore the injection front is a regular curve. This
last assumption is relevant for the injection of a much viscous fluid than
the residual one [5]. Here, since we have gases, no surface tension has to be
considered. Starting from this mathematical model, we add some terms due
to the vapor condensation, and we show that the vapor injection front reaches
an asymptotic limit, which compared to experimental results shows a good
qualitative agreement. We consider a constant filter velocity Q(t) = q and thus
a constant average injection velocity in the pore domain Ω = (0, ε)× (0, L).
Thus the pore is constituted of Ω1(t) full of dry air and Ω2(t) where the
vapor is. The pore is rescaled and for a fixed z, we denote by x2 the abscissae
of points of the interface Γ (t) = Ω1(t)∩Ω2(t) which have z as height. We also

η η

X 2

symmetry axis

12

Z

L

assume the two following hypotheses to be satisfied.

� The interface Γ (t) ⊂ Ω is symmetric with respect to the axis z = 1
2 ;

� For fixed t Γ (t) is described with a continuous function
a : (x2, t) 7−→ z = a(x2, t) ∈ [0, 1

2 ].

Let M =
η1

η2
be the constant mobility coefficient, and let the flux function of

the conservation law of which the interface is solution, fM be defined by:

fM (a) =
a2(2a− 3)

(M − 1)(8a3 − 12a2 + 6a)−M .

Denoting by w the flow velocity and by wa the velocity of the interface Γ
at point (x2, a(x2, t)) we have wa(a(x2, t)) = w(x2, a(x2, t)). In [7] (Theorem
3) it is proved that the function a is the unique entropic solution of a Rie-
mann problem and the following expression for the velocity of the interface is
obtained:

wa(a(x2, t)) =




q f ′M (a(x2, t)) if M ∈ [0; 3

2 ]{
q f ′M (a(x2, t)) if a(x2, t) ∈ [0, αM ]
q f ′M (αM ) if a(x2, t) ∈ [αM ,

1
2 ]

if M > 3
2

(1)

where αM ∈]0, 1
2 [ is such that fM is strictly convex in [0, αM ] and strictly

concave in [αM ,
1
2 ]. Since the velocity wa only depends on z (and implicitly

of x2), it is straightforward to verify that: the average velocity for fixed z
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1
x2

∫ x2

0
wa(a)dξ = wa(a). In the following, this relation will be generalized to

the case with condensation. Let δ(t) be the fraction of vapor which condenses
and denoting by pi the initial pressure, by T the temperature and by pvs(T )
the saturated vapor pressure, then δ(t) is given by ([6] p. 247): δ(t) = δ ={

pi−pvs(T )
pi

if pi ≥ pvs(T )

0 if pi ≤ pvs(T )
.

We assume that δ is small, and that the vapor viscosity η2 is not modified,
and thus remains constant.

Let w be the velocity flow without condensation, the velocity flow with
condensation v is defined by:

v(x2, z)=w(x2, z)− k(x2, z, t)e2 (2)

where k(x2, z, t) accounts for the change due to condensation and is given by:

k(x2, z, t) =

{
δ∗x2 ∈ Ω2(t)
δ∗x2(z, t) ∈ Ω1(t)

with δ∗ = pi−pvs(T )
pvs(T ) . Consequently we get

for the interface velocity: v(x2, a(x2, t)) = v(x2, 1− a(x2, t)) which writes:

v(x2, a(x2, t)) = wa(a(x2, t))− δ∗x2 (3)

Along the axis z = a with a fixed in [0; 1
2 ], the interface mean velocity

va(x2, a(x2, t)) implicitly depends on t and verifies:

va(x2) =
1

x2

(∫ x2

0

(wa(a)− δ∗ξ)dξ
)
.

It follows that at time t, the interface point with abscissae x2 corresponding
to z = a(x2, t) is solution to:

x2 = va(x2)t =
1

x2

(∫ x2

0

(wa(a)− δ∗ξ)dξ
)
t (4)

Solving (4) with respect to x2, we get the following result: the interface evolves
as a rarefaction wave according to M ∈ [0, 3

2 ]

x2 =





(
qf ′M (z)

1+ δ∗
2 t

)
t if 0 ≤ z ≤ 1

2

(
qf ′M (1−z)

1+ δ∗
2 t

)
t if 1

2 ≤ z ≤ 1

(5)

For (M > 3
2 ) there exists αM ∈]0, 1

2 [ such that the interface evolves as a shock
and rarefaction wave attached at the entrance of the pore according to:

x2 =





(
qf ′M (z)

1+ δ∗
2 t

)
t if 0 ≤ z < αM ;(

qf ′M (αM )

1+ δ∗
2 t

)
t if αM ≤ z ≤ 1− αM(

qf ′M (1−z)
1+ δ∗

2 t

)
t if 1− αM < z ≤ 1

(6)

Furthermore the following asymptotic property holds.
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Lemma 1. When t goes to +∞ the interface Γ reaches the following position:

for M ∈ [0, 3
2 ], x2 =

{
2q
δ∗ f

′
M (z) if 0 ≤ z < 1/2

2q
δ∗ f

′
M (1− z) if 1/2 < z ≤ 1

;

for M ≥ 3
2 , x2 =





2q
δ∗ f

′
M (z) if 0 ≤ z < αM

2q
δ∗ f

′
M (αM ) if αM ≤ z ≤ 1− αM

2q
δ∗ f

′
M (1− z) if 1− αM < z ≤ 1

(7)

Denote by b : (x2, t) 7−→ z = b(x2, t) the function describing the interface
without condensation (i.e., δ∗ = 0). For fixed z by comparing the abscissae

x2 given by (4), then we have: z = b(x2, t) = a
(

x2

1+ δ∗
2 t
, t
)

= a(X2, t) where

the change of variable X2 = x2

1+ δ∗
2 t

is used. Since b is solution to a Riemann

problem, it follows that a verifies:




∂a(X2, t)

∂t
+ q

∂

∂X2

(
fM (a(X2, t))

1 + δ∗
2 t

)
= 0 in ]0,+∞[×]0, T [

ad = a(X2, 0) = 1
2 for X2 > 0; ag = a(X2, 0) = 0 for X2 < 0

(8)

Arguing in the same way as in [4], we prove there exists a unique entropic
solution to (8). This section is ended with figures depicting the z-curves (z =
a(x2, t)) of the interface for t from 0s to 1000s with a time step of 100s and
the asymptotic position. Three values of M are presented with q = 1 and
δ∗ = 0.01.

Fig. 1. Left: M=0, δ∗ = 0.01, q = 1; Center: M = 1, δ∗ = 0.01, q = 1; Right:
M = 5, δ∗ = 0.01, q = 1.

2 Comparisons with Experimental Data

in the same way as in [7], where we have used the proposed model 5) on each
pore, when M ∈ [0, 3

2 ] the mean position X2moy of the interface is defined by
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X2moy (t) = 2t

∫ 1
2

0

(
qf ′M (z)

1 + δ∗
2 t

)
dz =

qt

1 + δ∗
2 t
. (9)

The experimental case we consider is a cylindrical sample of concrete, the
height of which is 1.3 m and the radius of which is 0.25 m. On the top of the
cylinder a pressure of water vapor of 15 bars is applied with a temperature
equals to 200◦C. The residual gas inside the cylinder is dry air.

The physical values of the parameters used are: a mobility coefficient

M = 0, δ∗ =
p∗i − pvs(473 )

p∗i
≈ 0. 5% and the filter velocity q is evalu-

ated to be : q ≈ 8 × 10−4m/s. Then we find the following curve for the

average macroscopic interface vapor-air: t 7→
(

2 0.08
2−2×0.005+0.005t (1− 0.005)

)
t

the asymptotic position of which is : lim
t→+∞

x(t) = 2 0.08(1−0.005)
0.005 ≈ 32 cm. This

result is in good agreement with the experimental data reported in [3]: the
thickness of the wall influenced by the vapour penetration is about 25% of
the total thickness of wall even for long time period.
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Summary. We implement a multigrid algorithm to solve the radiative heat transfer
equations in glass production. The time, angle and space coordinates are discretized
using Crank-Nicolson, discrete-ordinate and Galerkin methods, respectively. Based
on the same mesh hierarchy for both heat conduction and radiative transfer, our
multigrid algorithm consists on using the Newton-Gmres and Atkinson-Brakhage
solvers as smoothers on the coarse meshes.

1 Introduction

Developing efficient and accurate techniques to solve Radiative Heat Transfer
(RHT) equations attracts many researches from several applications as, radi-
ation hydrodynamics, combustion, or glass manufacturing. In this later field,
Rosseland approximation could be the most cheap (as far as the efficiency is
concerned) solution for such equations. However, this approximation fails to
resolve accurately the boundary layers in the cooling processes. In non dif-
fusive limits (optically thin material) only the solution of the full radiative
heat transfer can provide high quality products. In this paper, we present a
multigrid algorithm to approximate the full RHT problem in three dimen-
sional enclosure. The algorithm consists on linear and nonlinear multigrid
techniques. Thus using same mesh hierarchy for both radiative transfer and
heat conduction, the linear system arising from the discretization of radiative
transfer is solved by multigrid method using the Atkinson-Brakhage approxi-
mate inverse as a preconditioner. On the other hand a multigrid solver, using
Newton-Krylov as a smoother, is used for the discretized heat conduction. In
both methods linear systems are solved only on the coarse mesh.

The main contribution of the present work is the application of efficient
multigrid methods developed in [4, 3] to the three-dimensional RHT problem
arising in glass cooling process. Computational results are shown for a cooling
glass cube using optical spectrum of 283 frequency bands.
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2 Radiative Heat Transfer in Glass Manufacturing

In this section we briefly recall the RHT equations used in glass cooling pro-
cesses. For details on physical aspects and also mathematical studies we refer
the reader to [2, 5, 1] and further references are cited therein. Thus the set of
equations used in our numerical study is given by

ρc
∂T

∂t
−∇ · (k∇T ) = −

∫ ∞

λ0

∫

S2

κ(λ)
(
Bglass(T, λ)− Iλ

)
dΩdλ, (1)

∀λ > λ0 : Ω · ∇Iλ + κ(λ)Iλ = κ(λ)Bglass(T, λ), (2)

kn · ∇T + h(T − Tb) = επ

∫ λ0

0

(
Bair(Tb, λ)−Bglass(T, λ)

)
dλ, (3)

Iλ(x̂, Ω) = %(n ·Ω)Iλ(x̂, Ω′) + (1− %(n ·Ω))Bair(Tb, ν), n ·Ω < 0, (4)

T (0,x) = T0(x), (5)

where ρ is the density, c denotes the specific heat capacity, x = (x, y, z)T the
position vector, t the time, T the temperature, Iλ the spectral intensity, k the
thermal conductivity, κ the absorption coefficient, λ the wavelength, h is the
convective heat transfer coefficient, Tb is a given temperature of the surround-
ing, n denotes the outward normal in x̂ on the boundary and ε the mean hemi-
spheric surface emissivity in the opaque spectral region [0, λ0], where radiation
is completely absorbed. Bm(T, λ) is the spectral intensity of the black-body
radiation given by the Planck’s function in a medium m. In our simulations
we used data provided by Schott Glaswerke in Germany and are as follows:

ρ = 2200 kg/m3, c = 900 J/kgK

k = 1, h = 0.001, ε = 0.92

T0 = 1000 K, Tb = 300 K

Bm(T, ν) = nm
2~c20
λ5

(
e~c0/λkT − 1

)−1

nair = 1, nglass = 1.46 10−6
101
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Spectral absorption: 283 bands

Fig. 1. Physical data for glass manufacturing.

In (4), Ω′ = Ω − 2(n · Ω)n is the specular reflection of the ordinate Ω =
(ν, η, ξ)T , % ∈ [0, 1] is the reflectivity obtained according to the Fresnel’s law.
Thus, for an incident angle θ1 given by cos θ1 = |n ·Ω| and Snell’s law

nair sin θ2 = nglass sin θ1,

the reflectivity %(µ), µ = |n ·Ω|, is defined as follows

%(µ) =





1

2

(
tan2 (θ1 − θ2)

tan2 (θ1 + θ2)
+

sin2 (θ1 − θ2)

sin2 (θ1 + θ2)

)
, if |sin θ1| ≤

nair

nglass
,

1, otherwise.
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3 Multigrid Solution Procedure

The multigrid solver for RHT equation consists on writing the equations (1)-
(5) in formal way as a fixed point problem for the temperature T only

T = H
(∫ ∞

λ0

∫

S2

κ(λ)
(
Bglass(T, λ)− S

(
Iλ, Bglass(T, λ)

))
dλ

)
, (6)

where H(Q) is solution operator for the heat conduction problem

ρc
∂T

∂t
−∇ · (k∇T ) = −Q, (7)

subject to boundary condition (3) and initial condition (5); and S(Iλ, q) is
the solution operator for the radiative transfer problem

∀λ > λ0 : Ω · ∇Iλ + κ(λ)Iλ = κ(λ)q, (8)

subject to boundary condition (4). Note that both problems (7) and (8) can
be discretized and solved separately with different discretizations and solvers.
In the present work, we have implemented the multigrid solver from [4] to
solution operator S, while the solution operator H has been carried out us-
ing mutigrid techniques from [3]. Hence, given a hierarchy of nested meshes,
fine-to-coarse (restriction) and coarse-to-fine (prolongation) intergrids trans-
fer operators the Newton’s iteration applied to (6) results in

T
(k+1)
h = T

(k)
h −R′h

(
T

(k)
h

)−1Rh
(
T

(k)
h

)
, (9)

where Rh is the nonlinear residual associated to fixed point problem (6). The
subscripts H and h refer to the coarse and fine mesh, respectively.

An iteration (9) requires, at each time step, both solution of heat conduc-
tion (7) and radiative transfer (8). Dividing the spectrum in finite bands with
piecewise constant absorption, using discrete-ordinates and Galerkin methods
for discretization of the angle and space coordinates the equation (8) can be
reformulated as a linear system for the mean intensity ϕ =

∫
S2 IλdΩ

(
I−Ah

)
ϕh = bh, (10)

Compare [4] for the construction of the schur matrix A and the right-hand
side b. In (10), I denotes the identity matrix. The multigrid method we used
to solve the linear system (10) can be carried out by the following iterations

ϕ
(k+1)
h = ϕ

(k)
h + Bh

Hr(k), Bh
H = I + (I−AH)−1Ah, (11)

where r = bh − (I −Ah)ϕh is the residual associated to (10) and Bh
H is the

Atkinson-Brakhage approximate inverse which can be viewed as a smoother.
Using Crank-Nicolson and Galerkin methods for time and space discretiza-

tions, equation (7) is transformed to a steady nonlinear heat problem. To solve
this problem the Newton’s iterations (9) are used along with the Atkinson-
Brakhage approximate inverse as a preconditioner in solving the linear system
for Newton’s directions. For more details on the formulation of these methods
and their implementation we refer the reader to [4, 3].
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4 Results

We present numerical results for a cooling of glass cube. The cube is 1m length
and time duration of the cooling process is 10 sec. The glass parameters used
in our simulations are those listed in Fig. 0. These data are kindly suggested
by ITWM Kaiserslautern. A wavelength interval of 283 bands, as shown in the
right column of Fig. 0, is considered. For the discrete-ordinates we used the
Sn-approximation sets with n(n+2) directions, the space domain is discretized
into N grid points in each dimension and a time step of ∆t = 0.01 sec is used
in computations.

In Fig. 2, we plot the temperature distribution on a part of the cube (for
better insight) and the temperature profile along a cross section at y = z =
0.5 m. We used S8-set with 80 directions, N = 80 grid points in the finest
mesh and N = 20 grid points in the coarsest mesh. For comparison, we have
included the results obtained by the Rosseland approach. It is clear that the
Rosseland approximation is unable to capture the correct cooling behavior.
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Fig. 2. Temperature distribution on the cube (left) and a section at y = z = 0.5 m
for the computed solution by RHT equations and Rosseland approach (right).

Fig. 3 (left) summarizes the computational cost of the multigrid method.
The computational cost is distributed in four stages constituting the multi-
grid algorithm: RTE denotes the percent of the total CPU time to solve the
radiative transfer equation (8). Gmres represents the percent of CPU time in-
volved in the Gmres method for solving linear system in (9). Grids denotes the
percent of CPU time required for prolongation and restriction by intergrids
transfer. Newt refers to the percent of CPU time employed in the Newton’s
algorithm. This includes Jacobian approximation, backtracking linesearch and
construction of the right-hand side in (7). The percentage breakdown shown
in Fig. 3 (left) is based on a total CPU time of 8 hours assuming no display.

The main features reported in this figure are on one hand, both Newton’s
operations and the intergrids transfer procedures require very little computa-
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Fig. 3. Computational cost of the multigrid algorithm for RHT equations.

tional cost compared to the CPU time needed for the Gmres solver. On the
other hand, most of the computational effort goes into solving the radiative
transfer problem (8). Therefore, reducing the CPU time in numerical meth-
ods for RHT equations (1) – (5) can be hold by constructing more efficient
preconditioned iterative solvers for the linear system (10).

Our next concern is to test the influence of spectral discretization on the
efficiency of multigrid method. To this end, we have run the algorithm using
different Sn sets of discrete-ordinates. In Fig. 3 (right), comparison of run
times for S2, S4, S6 and S8 sets are given as a function of gridpoints number
N used in computations. As can be seen from Fig. 3 (right), the use of higher
order discretizations for the unit sphere leads to considerable increase in the
computational work in multigrid algorithm.
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Summary. This paper describes the modelling of the toner behaviour in the devel-
opment nip of the Océ Direct Imaging print process. The discrete element method is
used as the simulation tool for a quantitative description of the system. The interac-
tion rules and the associated parameters are determined for the toner particles and
the surfaces of the development rollers. The model is validated with print quality
results. It is shown that it is possible to achieve quantitative agreement between
DEM simulations and experimental print quality results.

Key words: DEM, electromagnetism, toner.

1 Introduction

The Océ Color Technology is called Direct Imaging (DI). The heart of the
image development process is formed by a Direct Imaging Unit. The print
quality of the DI technology is primarily determined by the toner flow in the
region between a DI-drum and an imaging roller; see Fig. 1. The collection
of toner between the DI-drum and the imaging roller is called the DI toner
assembly. The simulation of toner deposition conducted here is based on the
discrete element method, first proposed by Cundall [2] in 1971. In the discrete
element method (DEM) all toner particles as well as the rollers, are considered
discrete elements. Each element interacts with its neighbouring elements and
its surroundings. These interactions are modelled on a microscopic scale: the
motion of each particle is tracked numerically. Every time step the forces that
act on a particle are summed and from this the speed and the displacement of
the particle is calculated by integration of Newton’s second law of motion. The
macroscopic behaviour of the toner flow and print output is then simulated
using DEM.
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Fig. 1. The DI toner assembly.

2 Force Models

In this section, we set up models for forces between toner particles. The nature
of these forces are due to collisions, friction, adhesion, and electromagnetic
actions.

2.1 Geometry

In DEM simulations all discrete elements have to be provided with a geometry
to indicate the shape of the real object. A toner particle is described by n
clustered spheres. More realistic toner geometries can thus be achieved by
increasing the number of clustered spheres that form one toner particle.

2.2 Collisions

DEM simulations involve modelling each collision between particles and be-
tween particles and the boundary objects. During a collision, having a certain
contact time, particles deform, energy is dissipated in the form of heat, and
particles restore to their original shape. A collision is modelled by penetra-
tion of the objects during collision. The penetration is described as a certain
overlap ξ between two objects and models the temporary deformation of the
objects during collision. A range of contact force models are available which
approximate the collision dynamics to various extents, and are of the general
form

Fn = −kξα − γ d
dt

(ξβ), (1)

where Fn is the normal force between the colliding particles during the colli-
sion. The linear spring-dashpot model (α = β = 1) approximates the collision
dynamics to a good extent.

Collisions between particles are in general not head-on, and the particles
have angular velocity. Therefore, shear also has to be taken into account.
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The shear contact force component Fs is generally modelled with a Coulomb
friction model:

Fs = −µdFnsign(vs),vs 6= 0,

|Fs| < µsFn,vs = 0,
(2)

where µs is the coefficient of static friction, Fn the normal force at the contact
(Fn > 0 always), vs the relative tangential velocity of the two particles, and
µd the coefficient of dynamic friction (µd < µs).

2.3 Adhesion Force

When two materials are brought into each others vicinity, they exert an at-
tracting force onto each other. This force is referred to as the adhesion force.
Hamaker’s theory [3] is used here.

2.4 Magnetic Force

The general expression for the magnetic force F mag is [4]

F mag = (m · ∇)B, (3)

with m the magnetic moment of the particle and B the external magnetic
induction. In the DI toner assembly the magnetic field originates from two
sources: the field from the magnets within the imaging roller Bm and the field
from the magnetized surrounding toner particles Ba. So, in general, we can
write

F mag = (m · ∇)(Bm + Ba). (4)

2.5 Electric Force

To enable electric field toner development, the electric force exerted on the
toner particle by the externally applied field strength on the toner particle
must be stronger than the magnetic force on that particle. Unfortunately,
because of their quadratic nature, electric forces cannot be determined by
superposition. We adopt here the approach of [1] and [5] and use bispherical
coordinates to solve the problem of calculating the force on a conducting toner
particle in the field of an infinitely large electrode.

2.6 Charge Model

When a pixel has to be printed, a voltage difference is applied between the
imaging roller and a track in the DI-drum. This voltage difference causes toner
particles in the DI toner assembly to get charged and to experience an electric
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force towards the DI-drum, which is stronger than the magnetic force towards
the imaging roller. An SiOx layer, a dielectric layer above the conducting
tracks, makes sure that the electric charge on the toner does not leak to the
conducting tracks. Due to the dynamics of the DI toner assembly conducting
paths are formed and broken. The conducting paths consist of toner-toner
contacts and toner-imaging roller contacts. In a first-order approach it is as-
sumed that the electrical contacts can be treated as ideal electric resistances
and capacities, and that no charge is transferred in the direction along the
ring electrodes through the DI toner assembly.

3 Results

We are now able to calculate and visualize the behaviour of the DI toner
assembly, which consists of at most 10,000 particles, for a time frame of about
15ms in approximately one night on a PC. As an example we will show here
the results for printed dots. Printed dots, also referred to as pixels, do not
have perfectly sharp edges. The quality of pixels can be expressed in terms of
edge sharpness. Distinction can be made between normal edge sharpness rn in
the direction of the ring electrodes of the DI-drum and axial edge sharpness
ra directed perpendicular to the ring electrodes of the DI-drum.

The ultimate goal is a tool that can predict aspects of print quality cor-
rectly. The normal edge sharpness rn can be split into sharpness of the front
edge rn,f and sharpness of the back edge rn,a. We will show as an example
case the results for the normal edge sharpness when applying DEM for the
settings of the black development unit of the Océ CPS700. A total number
of fifty simulations were run, where in each simulation a line was printed.
From these fifty printed lines an average coverage curve is calculated. From
this average curve a sigmoid fit is calculated. The sigmoid fit and the exper-
imentally determined coverage profile for the black unit of the Océ CPS700
are displayed in Fig. 2. Good agreement between the experimental results and
the simulation results is observed.

4 Conclusion

The dominating forces in the DI toner assembly are due to collisions, friction,
adhesion, and electromagnetic actions; all other forces such as gravitational
forces and forces due to air flow are neglected. We have derived models for
these forces. The force models form the interaction rules between toner par-
ticles themselves and between toner particles and rollers.

The parameters of the force models are determined by using experimental
data. In cases that no experimental data is available, experiments are set
up for the determination of the correct values of the parameters. The model
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Fig. 2. The calculated and measured average coverage curve for the black unit of
the Océ CPS700.

parameters form the distinction between the description of the print process
of the DI technology and other processes.

The discrete element method has been used for simulating the behaviour
of the DI toner assembly in the development nip of the Océ Direct Imaging
print process. It is shown that by determining the appropriate interaction rules
and the associated parameters, it is possible to gain quantitative agreement
between experimental and simulation results, specifically on important aspects
as print quality.

The result of the project will be used within Océ as a design tool for
fundamentally new ideas in the field of toner development, as a substitute for
time-consuming experiments and as an educational tool for new researchers
in the field of toner development.
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Summary. Drying in porous structures is simulated with a 2-D pore network model
that accounts for various processes at the pore-scale (mass transfer by advection and
diffusion in the gas phase, viscous flow in liquid and gas phases and capillary effects
at the gas-liquid interface). We further study the effect of capillarity-driven viscous
flow through macroscopic liquid films. It is shown that film flow is a major transport
mechanism in drying of porous media, its effect being dominant when capillarity
controls the process, which is the case in typical applications.

1 Introduction

Drying of porous materials is of interest in many industrial applications such
as coatings, food, paper, textile, wood, ceramics, soil remediation and oil re-
covery. Traditional descriptions of the process rely on phenomenological ap-
proaches, in which the porous medium is a continuum, the dependent vari-
ables, like moisture content, are volume-averaged quantities and the relation
of fluxes to gradients is via empirical coefficients. Such approaches essentially
ignore the effect of the pore microstructure, which is of key importance for
a quantitative understanding of the two-phase flow process. Many pore-scale
mechanisms are involved and should be taken in account: the motion of in-
dividual gas-liquid menisci residing in the pore space; diffusion in the gas
and the liquid phase; viscous flow in both phases; capillarity and liquid flow
through connected films. In earlier experiments using glass-bead packs [3], vis-
cous forces and liquid films were found to be important. Existing pore-network
models address mostly slow drying, controlled by capillarity and diffusion, ig-
noring advection and/or viscous effects [1, 2]. They also neglect the significant
role of liquid films. In the first part of this paper we present results from a
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pore network simulator that accounts for all major mechanisms at the pore
scale except liquid films. A detailed description of this first part can be found
in [6]. In the second part, we propose a mathematical model that accounts for
viscous flow in the liquid films. This part is a short description of the detailed
study by [5].

2 Pore network modeling of drying without the presence
of liquid films

Consider the isothermal drying of a fractured porous medium initially satu-
rated with a volatile liquid that is trapped in the pore space due to capillary
forces and may vaporize as a result of an injected purge gas. As the actual
overall problem is quite complex, we consider a 2-D square pore network with
all but one boundaries impermeable to flow and mass transfer (Fig. 1(a).). At
any time during the process, evaporation at the liquid-gas interface leads to
the receding of the liquid front (evaporating interface (I) or percolation front
(P) in Fig. 1(a)). In general, three different spatial regions can be identified:

(i) a far-field region consisting of the initial liquid (CC);
(ii) a region where the liquid phase is disconnected (DC); and
(iii) a near-field region with continuous gas phase and the liquid in the form

of films, the thickness of which is progressively reduced towards a “totally dry”
regime.

In Fig. 1(a), the network consists of pore bodies connected via pore throats.
A liquid pore is invaded by gas when the pressure difference across its throats
exceeds the capillary pressure threshold. Two dimensionless parameters, a
diffusion-based capillary number, CaD, and a Péclet number, Pe, in addition
to the various geometrical parameters of the pore network, mainly characterize
the problem. CaD expresses the ratio of viscous to capillary forces, based on
a diffusion-driven velocity, while Pe expresses the ratio of inertial to diffusion
forces. Liquid films are neglected in this formulation.

We discuss two runs on a 50 × 50 pore network that are characteristic of
the two limiting regimes that develop in this process. In the first run, the gas
flow rate (and the Pe value) through the fracture is very low (Pe = 0.66). In
this case capillary forces are dominant and mass transfer occurs primarily by
diffusion. In the second run the purge gas is injected at a very high flow rate
(Pe = 596). In this case, viscous forces dominate at the liquid-gas interface
while mass transfer occurs primarily by advection. In the low Pe case, every
cluster follows the Invasion Percolation (IP) pattern, in which the next throat
to be invaded by gas is that with the smallest capillary threshold among all
perimeter throats of that cluster. For high Pe, the process is controlled by
viscous forces and capillarity is negligible at early times. Phase distribution
patterns deviate substantially from IP and almost follow a piston-like displace-
ment (PD). However, as the liquid-gas interface recedes in the pore network,
viscous forces become weaker and the process gradually becomes of IP type,
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(a) Schematic representation of a
drying process in a 2D matrix driven
by the injection of a purge gas
through a fracture along the upper
side of the matrix

(b) Schematic of liquid and
gas phase patterns, indicat-
ing the various types of pores
in drying used in this study

Fig. 1.

namely controlled by capillarity. Drying curves for the process have also been
obtained showing (as expected) that the overall drying rate is much smaller
in the high Pe case. For details see [6].

Fig. 2. Profiles of the rescaled film radii for CaF = 10−4 (left) and CaF = 1 (rigth)
at two different stages of the process. Liquid clusters are in black, the fully dry
region is in blue.



296 A.G. Yiotis et al.

3 The effect of liquid films

In this section we study the role of wetting films in the context of drying.
Our focus is on the effect of viscous flow through the liquid films that develop
at the corners of the pore network assuming that the velocity of the purge
gas is negligible. In the presence of films, the pore space can be characterized
by three kinds of pores (close-ups in Fig. 1(b)): pores L, fully occupied by
liquid, pores G, fully occupied by gas, and pores F, occupied by gas but also
containing liquid films. Here, we account for viscous effects both in the films
(F pores), as well as in the continuous liquid phase (region L).

The thickness of each liquid film can be parameterized by its radius of
curvature r, which is a function of time and distance. Assuming local capillary
equilibrium at the film interface, we can show that the liquid pressure in the
film is inversely proportional to its thickness [5]. Any gradient in the film
thickness along the capillary results in a pressure gradient along the liquid
films. A capillarity-induced flow develops along the film from the cross-section
where the film is thicker towards the cross-section where the film is thinner. [5]
introduced the capillary number in the form CaF = πDCe2µlβ

ρlC∗r0γ
. This capillary

number expresses the ratio of the viscous forces due to flow driven by mass
transfer to capillary forces.

The gas region of the network contains F pores adjacent to capillaries that
contain films (film region) and G pores adjacent to dry capillaries (dry region)
(Fig. 1(b)). Assuming that we know the location of the percolation front P at
any time, we can solve the full problem using the simple transformation [5]:

Φ ≡ ρ3 + ζCaF
1 + CaF

(1)

that satisfies the Laplace equation in regions G and F. We assume that the
film thickness ρ is approximately constant at the percolation front P, i.e. Φ = 1
and that drying is driven by imposing Φ = 0 at the open side of the network
(Φ = 0 at the open end of the network). Using the above transformation,
the solution of the Laplace equation determines the profiles of the film radius
and the concentration, the rates of drying through each film, as well as the
location of the interface I, where the films terminate and evaporation occurs.

Phase Distribution Patterns
For values of CaF less than order of 1 (typical case in most physical prob-
lems) the effect of the capillary number on the phase distribution patterns is
negligible. In that range, the patterns follow IP rules. The left panel in Fig. 2
shows two snapshots of the percolation front for CaF = 10−4 that correspond
to IP patterns. As the capillary number increases, the patterns should even-
tually depart from IP, particularly at the early times of the process. However,
the right panel of Fig. 2 shows that even for CaF = 1 the pattern is almost
identical to IP. It takes larger values, of the order of CaF = 10 for the ef-
fect to be pronounced [5]. Then, the pattern exhibits the expected behavior
of viscous ”stabilization” [4]. It follows that under typical conditions and for
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all practical purposes, the drying front can be accurately described as an IP
front.

Extent of liquid films
For low values of CaF , the films extend all the way to the open boundary
(where practically all evaporation occurs, Fig. 2-left panel). By contrast, when
CaF is of order 1, the films are short and the film tips (evaporation interface
I) reside closer to the liquid cluster interface P (Fig. 2-right panel). This leads
to the formation of a completely dry region G, the extent of which increases
with time.

Drying Curves
The overall drying rate at the open side of the pore network is found to scale
as CaF+1

CaF
. The drying rate increases as CaF decreases and the film tips are

closer to the open boundary. At smaller values of CaF , capillarity helps to
transport liquid over larger distances and to keep the film extent longer.

4 Conclusions

We present results from a 2-D pore network model for isothermal drying in
porous media that includes mechanisms like mass transfer by advection and
diffusion in the gas phase, viscous flow in liquid and gas phases and capillary
effects at the gas-liquid menisci in the pore throats. In a further step, we
proceed to study the effect of capillarity-driven flow in macroscopic liquid
films. Using a novel transformation, it was found that film flow is a major
transport mechanism, its effect being dominant when capillarity controls the
process, which is the case in typical applications.
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Introduction

Mathematical modelling of coupled creeping incompressible Stokes flow and
low permeability Darcy flow still presents mathematical and practical chal-
lenges. In this paper, we present a finite element model for the prediction
and quantitative analyses of the hydrodynamic behaviour of deadend pleated
cartridge filters used in aeronautical applications. Elemental discretisation in
this scheme is based on the use of unequal order approximation functions for
velocity and pressure fields. We show that this discretisation generates uni-
fied stabilisation for both Stokes and Darcy equations and prevents ‘numerical
locking’ whilst preserving the geometrical flexibility of the computational grid.

Mathematical Statement of the Combined Stokes/Darcy
Flow Regimes

Consider a flow model consisting of the following equations,

A(u) +∇p = f (1)

∇ · u = 0 (2)

in Ω, where Ω ⊂ <2 is a bounded domain with a continuous boundary Γ , u is
the velocity vector, f is the body force vector and p is the pressure. Depending
upon the choice of operator A, we obtain two different flow models,

1. A(u) = IηK−1u, where I is the identity matrix, η is the viscosity of the
fluid, K is the permeability of the medium, which is the Darcy equation

2. A(u) = −2∇ · ηD(u), where D(u) is the symmetric part of the veloc-
ity gradients tensor, η is the viscosity of the fluid, which is the Stokes
equation.
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In the modelling of incompressible flow the Ladyzhenskaya-Babuska-Brezzi
(LBB) stability condition must be satisfied [4]. This poses a severe restriction
on the type of approximating spaces that can be used. In the context of
the finite element method, different models based on various strategies have
been developed which satisfy the LBB condition. They range from the least
squares Galerkin technique to the use of elements generating unequal order
interpolation functions for the field unknowns and schemes which depend on
a perturbed continuity equation representing slightly compressible fluids [5].
However, some of these techniques fail whilst the others are too complex and
pose severe problems for their applicability to modelling of combined flow
within cartridge filters [3]. In order to avoid the problems with time stepping
schemes, we have used unequal order interpolation functions for velocities and
pressure. In this scheme, the incompressibility constraint can be used without
any modifications (i.e. eqn (2) remains as ∇ · u = 0). In addition to the re-
quirement of LBB criterion, it is also known that due to the incompatibility of
the operators in the Stokes and Darcy equations, the approximating function
spaces used for the numerical solution of these equations need to be differ-
ent. Essentially, as explained by [1], the Darcy equation should be treated as
an elliptic Poisson equation where the degrees of freedom should be kept as
low as possible. The corresponding approach for the Stokes equation, which
would correspond to the use of constant (discontinuous) approximation for
the pressure and linear approximation for the velocities, results in generating
trivial solutions for the velocity. Our numerical experiments demonstrate that
this phenomenon, called numerical locking, can be resolved by using a mixed
P2/P1 approximation for the field variables in the coupled flow regimes. There-
fore, the present scheme is developed utilising C0 continuous Taylor-Hood
element which is a member of the bubble element family [2] and which cor-
responds to such approximations for velocities and pressure. The element by
element satisfaction of inf-sup condition is a necessary and sufficient criterion
for the stable and accurate solution of combined free/porous flow problem.
This condition is based on the definition of the distance between the exact
and finite element approximation defined as,

d(u, Vh) = inf
vh∈Vh

‖u− vh‖ = ‖u− ũh‖

Therefore we need to find conditions on Vh so that,

‖u− uh‖ ≤ cd(u, Vh)

where c is a constant independent of h
In the absence of body forces, the creeping, steady state, isothermal flow

of a non-Newtonian fluid in coupled free/porous regimes can be described by
the Stokes and Darcy equations respectively. To couple the two different flow
regimes, the Darcy equation is imposed effectively as the boundary condition
for the Stokes equation at the free/porous interface (and vice-versa in the
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porous/free interface). For a complete mathematical model and the numerical
linking procedure, the readers can refer to [3].

Results and Discussions

The fluid is considered to be a shear-thickening generalised Newtonian fluid
with a power law index of 1.15. The consistency coefficient in the power law
model is taken to be 80 Pa.s and the density of the fluid is assumed to be
970 kg/m3. The porous matrix is assumed to be homogeneous and isotropic
with a permeability value of 10−12 m2. In the first case, a single pleat with an
idealised shape of a filter cartridge is taken as a domain under consideration
as shown in Fig. 1. The thickness of the pleat is 0.59 mm and is very small
compared to the dimensions of the overall domain, which are 0.005m width
and 0.020m overall length. The predicted pressure field for this domain is
shown in Fig. 2. The simulated pressure drop in both the free flow regions
is nearly zero and the sole contribution to the overall pressure drop value is
by the porous matrix where a gradual variation in the pressure drop can be
observed in the flow direction. The developed pressure field in a porous region
is shown as an enlarged view at the top in Fig. 2. The nature of the pressure
variations can be well supported by the velocity vectors over the domain shown
in Fig. 3. The flow is observed to be almost parabolic towards the end of the
first free flow region. As soon as the fluid approaches the curved boundaries of
the porous region, it gets diverted due to the sudden obstruction. Maximum
amount of the fluid finds its direction towards the narrow channel formed
by the straight part of the porous pleat and the solid impermeable walls of
the domain. The fluid then intrudes through the porous walls and plug flow
behaviour is observed throughout the porous matrix. In the second free flow
domain, the flow again tends towards a parabolic pattern and near the exit it
becomes fully developed.

To validate the model, the results were compared against the analytical
solutions. Simulations were carried out for the combined Stokes-Darcy flow
inside a rectangular duct (Fig. 4). The range of permeability values used in
these simulations varies from 10−8m2 to 10−12 m2. The analytical solutions
were obtained by calculating the pressure drop in the porous regime in the
flow direction using the x-component of Darcy’s relation. Simulated pressure
drop figures (as listed in Table 1) were obtained and the analytical pressure
drops tally very closely, indicating the validity of the developed model.

Finally, a quarter section of an actual cartridge assembly is considered
as a problem domain. Since the pleated cartridge is symmetrical, a quarter
section can represent the whole cartridge domain. The cartridge filter assembly
consists of three distinct flow regimes. The outer region is the free flow zone
between the metal casing and the surface of the porous cartridge. The porous
zone is made of the cartridge itself, whereas the inner region is the free flow
zone between the porous cartridge and the inner core through which the clean
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fluid exits. The inlet flow velocity of 0.1 m/s is applied at the inlet i.e. on
the periphery of the first free flow zone. Stress free boundary conditions are
imposed at the outlet. Again the fluid properties are identical to those used in
the previous case. Line of symmetry boundary conditions are imposed on the
vertical and horizontal straight sides of the domain. The predicted pressure
distribution over the domain is illustrated in Fig. 5. It is evident from Fig. 5
that the nature of developed pressure field exactly corresponds to the pressure
variation observed in a single pleat domain shown in Fig. 2. The continuity of
mass is preserved with the discrepancy between inflows and outflows is only
0.22%.
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Fig. 1. Schematic Representation of an
Idealised Pleat of a Pleated Cartridge

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 2. Predicted Pressure Dis-
tribution (Pa) in a Single Pleat
Domain

Fig. 3. Predicted Velocity Flow Field in
the Single Pleat Domain
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Fig. 4. Boundary Conditions on
the Stokes/Darcy/Stokes Rectan-
gular Flow Domain

Conclusions

A finite element model for the solution of the combined free/porous flow prob-
lem has been developed without imposition of any artificial boundary condi-
tions at the free/porous interface. It has been concluded that the numerical
scheme provides a highly robust and reliable method for the combined flow
simulation without any mathematical problems arising from stability require-
ments, numerical locking or time stepping. The discrepancy between the inlet
and outlet flows is found to be less than 0.22% confirming the validity of the
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Fig. 5. Predicted Pressure Field Distribution (Pa) in the Quarter Cartridge Domain
of Pleated Cartridge Assembly

Table 1. Comparison of Simulated and Analytical pressure drops at different per-
meability values

Permeability Pressure Drop according Simulated Pressure
(m−2) t0 Darcy’s Law (Pa) Drop(Pa)

10-8 6.00E+05 6.1307724E+05

10-9 6.00E+06 6.0000598E+06

10-10 6.00E+07 5.9848202E+07

10-11 6.00E+08 5.9832319E+08

10-12 6.00E+09 5.9830001E+09

developed model. It is expected that through the utilisation of more sophisti-
cated and powerful members of this bubble element family, relatively coarse
meshes can be used to maintain computing economy.

References

1. E. Burman and P. Hansbo. A unified stabilized method for Stokes’ and Darcy’s
equations. Technical report, Chalmers Finite Element Center, Chalmers Univer-
sity of Technology, Göteborg, Sweden,, 2002.
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Summary. The Process Plant Layout (PPL) problem involves decisions concerning
the spatial allocation of equipment items and the required connections among them,
[3]. The objective of the PPL problem is to determine the optimal spatial allocation
of equipment items and the required connections between them. PPL problems have
mostly been solved by heuristic rules but in recent years significant research effort has
been put on more rigorous methods, mainly based on mathematical programming
techniques. The resulting problem is often subsequently discretised in linear form and
solved using linear solvers. In this paper, a non-linear approach to the general PPL
problem is investigated. A comparative study between different non-linear solvers is
carried out and the performance of the solvers is evaluated.

1 Introduction

Optimal plant layout is of great concern both during design of new indus-
trial facilities and for retrofit of existing plants. The geometry of the PPL
problem results in large scale combinatorial optimisation problems requiring
significant computational effort for their solution. New solution strategies as
well as formulation enhancement techniques to cut down the computational
complexity is, thus, a research topic of great relevance in order to enable solu-
tion of large scale industrial PPL problems. The PPL problem has previously
been solved as discretised Mixed Integer Linear Programming (MILP) prob-
lems using candidate areas to represent the plant floor area, thereby avoiding
non-linear area constraints. Solving the PPL problem as a Mixed Integer Non-
Linear Programming (MINLP) problem is one way of approaching the PPL
problem from a new angle and at the same time achieving better solution
quality. The MINLP approach presented in this paper may also be used as a
foundation for different efficient solution approaches such as spatial decompo-
sition methods.
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2 Problem formulation

The PPL problem formulation used in this study is based on the formula-
tions of [5]. The objective function consists of a number of cost drivers: 1)
Fixed connection costs for the connections between the items,[C c

ij ]. 2) Dis-

tance dependent pumping costs for the connected items, [Cvij , C
h
ij ]. 3) Fixed

floor construction cost for each floor, [FC1]. 4) Area dependent floor con-
struction cost for each floor, [FC2]. And 5), area dependent land cost for the
plant area [LC]. The objective function formulated mathematically is shown
in equation (1) where NF is the total number of floors, TDij the total rectilin-
ear distance between items i an j. Variables Rii, Lii, Aii and Bii are used to
determine the relative distance between items i and j, horizontally. A rectan-
gular shape is used as the floor area. In the MINLP approach the dimension
of the floor area, FA is determined as a bilinear function (4). While in the
MILP approach, candidate areas are used in order to discretise the problem
in linear form. For MILP solutions, the floor area is determined as shown in
eq. (2) and (3) where AR1, . . . , ARn is a set of proposed, candidate areas. Qs
is a binary variable equal to one if area s is selected; 0 otherwise.

∑

i

∑

j 6=1/fij=1

[
CcijTDij + CvijDij + Chij(Rij + Lij +Aij +Bij)

]
+

+ FC1 ·NF + FC2 ·NF · FA+ LC · FA (1)

FA =
∑

s

ARsQs (2)

∑

s

Qs = 1 (3)

FA = Y max ·Xmax (4)

To avoid equipment items being allocated outside the plant area and to pre-
vent unit overlap, the area constraints presented in [4] were used, the disjunc-
tive non-overlapping constraints thus being transformed to conjunctive form
using big-M constraints.

3 Non-Linear Solution Approaches

The following MINLP solvers were used in the comparative work:
1) GAMS/SBB using the Non-Linear Branch and Bound Method.
2) GAMS/Dicopt using the Outer Approximation method.
3) a-ECP using the Generalised Extended Cutting Plane Method.

SBB is based on the Non-Linear Branch and Bound method. One NLP prob-
lem is solved in each node. As NLP solver, a NLP code, Conopt, [2] was used.
SBB tend to require unreasonable CPU time for solution due to the large num-
ber of non-linear function evaluations required to obtain the solution. This is
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because a large number of nodes must be visited, and a NLP problem must
be solved in each node.

Dicopt, based on the Outer Ap-
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Fig. 1.

proximation method (OA) using an
augmented penalty function [6], over-
estimates the entire feasible region
by using supports generated by solv-
ing an alternating sequence of MILP
and NLP.

The alpha-ECP code uses the
Generalised Extended Cutting Plane
method [8]. Alpha-ECP encapsu-

lates the optimal solution by cutting planes from non-linear constraints and
supports from a reduction constraint when solving a sequence of MILPs,
shown in Fig. 1.

When using the alpha-ECP (Fig. 1), the reduction constraints are gained
when solving a sequence of MILPs. the MILPs may be solved only to integer
feasible MILP solutions (but the final MILP to optimality). Alpha-ECP offers
reasonable CPU time as well as good solution quality for the investigated PPL
problems. Concerning CPU time, Dicopt appears to be the most efficient of
the solvers presented in this paper.

The global optimization code GGPECP (Generalised Geometric Program-
ming Extended Cutting Plane [7]) was used to obtain the global optimum for
the illustrative problems. The GGPECP method is able to handle signomial
constraints (in this case; bilinear terms) rigorously. The GGPECP code is
based on a transformation approach [1] integrated in the Extended Cutting
Plane (ECP) method [8]. The solution results obtained using the non-linear
formulation is compared to the results, obtained by dicretising the non-linear
model, and solving the resulting model using a linear solver. Solution qual-
ity and CPU time is evaluated and compared. In the discretised linear case
the Mixed Integer Linear Programming (MILP) solver CPLEX, version 8.0 is
used.

4 Illustrative examples

To enable comparison between the MINLP solvers, two sets of problems were
solved. The first set of problems are based on a PPL problem with a 5 unit
instant coffee process (ex.1), shown in Fig. 2. The other set is based on a 7
unit ethylene oxide plant (ex.2), shown in Fig. 3.

To highlight the difference in solution performance between the MINLP
approach versus an MILP approach, the illustrative problems were also solved
using the discretised MILP approach. Two different discretisation grids were
used when solving the problems using the MILP approach. In table 1 the
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solution data for the examples is displayed. Table 1 shows the CPU time and
the solution quality for each solver.

The different discretisation grids are:
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a) coarse grid, fast solution at the expense
of the solution quality, 25 candidate areas.
b) fine grid, better solution quality at the
expense of the CPU time, 100 candidate
areas.

The solution quality is displayed as a
percentage of the global optimum, values
over 100% being sub-optimal. Problems 1i
are different versions of ex.1 and problems
2i are different versions of ex.2. The major
differences being equipment item dimen-
sions and connection costs.

As the MILP approach, using a fine
discretisation grid, tend to require exhaus-
tive CPU times, the second set of examples (ex.2) is only solved using the
coarse discretisation grid. The coarse grid results in far less complex problems
and better solution performance at the expense of the solution quality.

5 Conclusions

The PPL problem can
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Fig. 3.

be formulated as non-convex
MINLP or as discretised
MILP problems. In this
study some solution ap-
proaches for the PPL prob-
lem, formulated as MINLP
problems were investigated.
Solving a PPL problem as an MINLP problem generally result in better
solution quality (with the same computational effort). The performance of
three different MINLP solvers was investigated using two different sets of PPL
problems. The Outer Approximation method using an augmented penalty
function, as well as the Extended Cutting Plane method, appears to handle
the problems well providing good quality solutions within reasonable CPU
times. The non-linear Branch and Bound method on the other hand seem
to require excessive CPU time for solution. The solution data of all MINLP
solvers was compared to solution data of the same problems solved using a
discretised linear approach.

Acknowledgement. The first author gratefully acknowledges the financial support
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Table 1. CPU time and solution quality for ex.1 and 2

ProblemMILP(cpoarse) MLIP (fine) Gams (Dicopt) Gams(SBB) a-ECP
CPUs Quality CPUs Quality CPUs Quality CPUs Quality CPUs Quality

1-1 11.8 113% 120.4 101% 25.7 104% 130.9 194% 19.5 100%
1-2 43.4 135% 314.1 108% 8.1 100% 2000∗ 100% 12.6 126%
1-3 12.4 111% 126.1 103% 4.5 100% 2000∗ 107% 13.9 100%
1-4 33.6 114% 195.9 104% 13.9 103% 2000∗ 100% 113.4 102%
1-5 9.1 121% 103.6 107% 7.1 102% 2000∗ 120% 45.9 100%
1-6 5.2 114% 82.9 105% 3.3 106% 683.3 103% 13.7 100%
1-7 4.2 138% 41.5 105% 2.4 138% 1691.4 128% 18.1 100%
1-8 25.3 108% 498.8 104% 4.1 100% 2000∗ 100% 24.7 100%
1-9 1.7 128% 458.8 108% 4.1 106% 2000∗ 106% 5.2 105%
1-10 3.7 135% 39.4 107% 2.9 109% 2000∗ 119% 21.7 100%

Mean 1 15.0 122% 198.2 105% 7.61 107% 835.2 118% 28.87 103%

2-1 773.7 109% – – 576.2 100% 42300∗ 100% 125.8 100%
2-2 3359.94 106% – – 850.8 100% 43200∗ 104% 1776.7 100%
2-3 53262.8 109% – – 273.58 100% 43200∗ 100% 875.57 100%
2-4 1472.69 107% – – 150.0 101% 10661.3 101% 819.01 100%
2-5 14074.5 109% – – 8276.4 100% 14200.3 106% 27354 105%
2-6 12517.1 104% – – 6994.7 100% 11237.3 114% 4205.5 101%
2-7 6379.67 106% – – 9817.7 101% 16939.5 103% 5470.7 105%
2-8 6311.02 102% – – 514.06 101% 17990.4 111% 121.11 100%
2-9 2.6 111% – – 38.3 100% 6390.2 107% 16.7 100%
2-10 8110.45 102% – – 43200∗ 107% 43200∗ 108% 10325 107%

Mean 2 10626.4 107% – – 3054.7 101% 12903.2 105% 5109 102%
*means that the CPU time limit was reached, 2000s for example 1i and 43200 for 2i
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Summary. We present a simple mathematical model of fluid flow in a Scraped-
Surface Heat Exchanger (SSHE). Specifically we consider steady isothermal flow of
a Newtonian fluid around a periodic array of pivoted scraper blades in a channel with
one stationary and one moving wall, when there is an applied pressure gradient in a
direction perpendicular to the wall motion. The flow is fully three-dimensional, but
decomposes naturally into a two-dimensional transverse flow driven by the boundary
motion and a longitudinal pressure-driven flow.

Key words: Mathematical Modelling, Scraped-Surface Heat Exchanger

1 Scraped-Surface Heat Exchangers (SSHEs)

Scraped-surface heat exchangers (SSHEs) are widely used in the food indus-
try to cook, chill or sterilize certain foodstuffs quickly and efficiently without
causing unwanted changes to the constitution, texture and appearance of the
final product. A SSHE is essentially a cylindrical steel annulus whose outer
wall is heated or cooled externally; the foodstuff is driven slowly by an axial
pressure gradient along the annulus, and a “bank” of blades rotating with the
inner wall (the “rotor”) is used to scrape it away from the outer wall (the
“stator”), preventing fouling, and maintaining mixing and heat transfer. The
blades typically are arranged in groups of two (180◦ apart) or four (90◦ apart);
sometimes pairs of blades are “staggered” axially. The processes that take
place inside SSHEs are complex; operating conditions vary with context, and
operators are guided largely by experience and empirical correlations. Typi-
cally SSHEs are used on highly viscous foodstuffs; examples include purées,
sauces, margarines, jams, spreads, soups, baby-foods, chocolate, mayonnaise,
caramel, fudge, ice-cream, cream and yoghurt. Such foodstuffs commonly be-
have as non-Newtonian materials, typically being shear-thinning, viscoplastic
and/or viscoelastic, as well as being inhomogeneous, and possibly undergoing
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Fig. 1. Geometry of the transverse flow problem.

phase changes; also they often have a strongly temperature-dependent viscos-
ity. Moreover, both convection and dissipation of heat can be significant in a
SSHE. Extensive literature surveys are given by Härröd [2, 3], and features of
the behaviour have recently been analysed by Stranzinger et al. [4], Fitt and
Please [1] and Sun et al. [5]. However, despite their widespread use, under-
standing of the behaviour of the material inside SSHEs is still incomplete.

In the present work we shall concentrate on the fluid flow rather than
the heat transfer inside a SSHE, and so we shall restrict our attention to
isothermal flow.

2 Transverse Flow

First we consider steady two-dimensional flow of an isothermal incompressible
Newtonian fluid of viscosity µ in a long parallel-sided channel of width H in
which there is a periodic array of inclined smoothly pivoted thin plane blades,
the flow being driven by the motion of one wall of the channel parallel to itself
with speed U (> 0), the other wall being fixed. Body forces are neglected.

We introduce Cartesian axes Oxyz as shown in Fig. 1, with the wall y = 0
moving with velocity U i, and the wall y = H fixed. Suppose a thin plane
freely pivoted blade occupies 0 ≤ x ≤ L, with its pivot fixed at (xp, hp),
where 0 ≤ xp ≤ L and 0 < hp < H � L, and suppose that the separation
between the blades is ` (≥ 0), so that the portion L ≤ x ≤ L + ` of the
channel contains no blades. Let α (which may be positive or negative) denote
the angle of inclination of the blade to the x axis, as shown in Fig. 1. In the
lubrication-theory approach used here we will assume that |α| � 1; then the
blade is given by y = h(x) for 0 ≤ x ≤ L, where h(x) = hp + α(x− xp).

For steady flow the blade is in equilibrium, subject to forces due to the
fluid, the pivot, and (in general) the walls of the channel. Here we consider
cases where the ends of the blade are not in contact with the moving wall
y = 0 of the channel, so that 0 < h0, h1 ≤ H, where h0 = h(0) and h1 = h(L).
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We denote the velocities, pressures and volume fluxes (per unit width in
the z direction) by uk i + vk j , pk and Qk, where k = 1 denotes values in
0 ≤ x ≤ L, 0 ≤ y ≤ h, k = 2 denotes values in 0 ≤ x ≤ L, h ≤ y ≤ H,
and k = 3 denotes values in L ≤ x ≤ L + `, 0 ≤ y ≤ H. A lubrication
approximation gives

u1 =
[6Q1y + Uh(h− 3y)](h− y)

h3
, (1)

u2 =
6Q2(H − y)(y − h)

(H − h)3
, (2)

u3 =
[6Q3y + UH(H − 3y)](H − y)

H3
, (3)

p1 =
6µU

α

(
1

h1
− 1

h

)
− 6µQ1

α

(
1

h 2
1

− 1

h2

)
+ pL, (4)

p2 =
6µQ2

α

[
1

(H − h1)2
− 1

(H − h)2

]
+ pL, (5)

p3 =
6µ(UH − 2Q3)

H3
(x− L) + pL, (6)

Q1 =

∫ h

0

u1 dy = −h
3p1x

12µ
+
Uh

2
, (7)

Q2 =

∫ H

h

u2 dy =− (H − h)3p2x

12µ
, (8)

Q3 =

∫ H

0

u3 dy =−H
3p3x

12µ
+
UH

2
. (9)

Setting x = 0 in (4) and (5) and x = L + ` in (6), we obtain three represen-
tations of p0 − pL:

p0 − pL = −6µU

α

(
1

h0
− 1

h1

)
+

6µQ1

α

(
1

h 2
0

− 1

h 2
1

)

= −6µQ2

α

[
1

(H − h0)2
− 1

(H − h1)2

]
=

6µ(UH − 2Q3)`

H3
.

(10)

Expressions for the Qk (k = 1, 2, 3) and p0 − pL are obtained by solving (10)
and the global mass conservation condition Q1 +Q2 = Q3.

The moment of the forces on the blade about the pivot due to the pressure
is of the form M = Mk, where

M =

∫ L

0

(x− xp)(p1 − p2) dx. (11)

For equilibrium of the blade we require M = 0, which leads to a lengthy
algebraic transcendental equation determining α when L, `, H, xp and hp
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are prescribed. Once α is known, the complete solution is determined. This
solution allows us to describe all the qualitative features of the transverse flow.
In particular, we can determine when the blades are in contact with the walls
of the channel. In addition we can calculate the forces on the blades and on
the walls of the channel, and hence make useful estimates of the torque and
power required to turn the rotor.

3 Longitudinal Flow

In a SSHE the material being processed not only undergoes flow in the trans-
verse direction (caused by the rotation of the rotor), but also is driven by
an imposed axial pressure gradient along the annular gap between stator and
rotor. To model this fully three-dimensional flow we consider the effect of al-
lowing flow along the channel in the z direction, in addition to the flow in the
(x, y) plane, discussed above. We take the blades to be long in the z direction
so that the lubrication approximation may again be used. It is found that the
motion in the z direction uncouples from that in the (x, y) plane. Thus with
velocities and pressures denoted by uk i + vk j + wk k and Pk for k = 1, 2, 3
(with uk, vk, wk and Pk functions of x, y and z), we find that

w1 =
G

2µ
y(h− y), w2 =

G

2µ
(H − y)(y − h), w3 =

G

2µ
y(H − y), (12)

and Pk = −Gz + pk, where G = −∂Pk/∂z is the (constant) prescribed
axial pressure gradient, and the velocity components uk = uk(x, y) and
vk = vk(x, y) and the pressure contributions pk = pk(x, y) are exactly as
given for the transverse (two-dimensional) flow described above. The volume
flux of fluid in the z direction across the section 0 ≤ x ≤ L+ `, 0 ≤ y ≤ H is
given by

Qz =
GH

24µ

[
L
(
2(h 2

0 + h0h1 + h 2
1 )− 3H(h0 + h1)

)
+ 2H2(L+ `)

]
. (13)

The force (per unit axial length) in the z direction on the blade due to the
fluid is given by Fz = GHL/2, and the forces (per unit axial length) in the z
direction on the portions 0 ≤ x ≤ L+ ` of the lower wall y = 0 and the upper
wall y = H due to the fluid are

F0 =

∫ L

0

µ
∂w1

∂y

∣∣∣∣∣
y=0

dx+

∫ L+`

L

µ
∂w3

∂y

∣∣∣∣∣
y=0

dx =
G

4
[2H`+ (h0 + h1)L] (14)

and

FH = −
∫ L

0

µ
∂w2

∂y

∣∣∣∣∣
y=H

dx−
∫ L+`

L

µ
∂w3

∂y

∣∣∣∣∣
y=H

dx =
G

4
[2H(L+`)−(h0+h1)L],

(15)
respectively.
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4 Summary

In this short paper we presented a simple mathematical model of fluid flow
in a SSHE. Specifically we considered steady isothermal flow of a Newtonian
fluid around a periodic array of pivoted scraper blades in a channel with one
stationary and one moving wall, when there is an applied pressure gradient in a
direction perpendicular to the wall motion. The flow is fully three-dimensional,
but decomposes naturally into a two-dimensional transverse flow driven by
the boundary motion and a longitudinal pressure-driven flow. In the future
we plan to extend our analysis to include other practically important features
neglected in this simple model, including blade wear and, of course, non-
isothermal effects.
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Summary. The transmission line matrix (TLM) for simulating sound wave prop-
agation in stationary and moving media is presented. TLM is inherently a time-
domain approach which does not require solution of a differential equation. TLM
and FEM are compared in terms of accuracy and computational complexity. It is
concluded that TLM may represent a more efficient alternative to FEM when pre-
dicting acoustic fields in stationary media. Furthermore, applicability of TLM to
moving media is examined. A TLM model of 2D moving media based on the idea
of [3] is introduced.

Key words: Transmission line matrix, wave propagation, moving media, fi-
nite element method.

1 Introduction

Various technical systems (e.g. ultrasonic flowmeters) represent large simu-
lation problems which require solution of acoustic fields in stationary and
moving media. The existing tools based on the finite element method (FEM)
often do not allow to perform a full 3D analysis due to the extensive size of
the solution domain with respect to the characteristic acoustic wavelength (see
[1]). Furthermore, usage of the boundary element method (BEM) is limited
by unavailability of the appropriate integral formulations.

An alternative method, the transmission line matrix (TLM), is presented
here. It enables simulation of acoustic wave propagation in fluid media and
may reduce the memory demands in comparison with the FEM. It can be
coupled with another method (such as FEM) which provides the necessary
input data along the boundary of the solution domain typically representing
a fluid-structure interface.

TLM was originally developed for problems in the electromagnetic domain.
The theoretical background was laid by [4] who introduced discrete circuit
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models for Maxwell’s equations in order to study electromagnetic waveguides.
Since then the method has been applied to solution of various problems de-
scribed by wave and diffusion equations.

An overview of TLM for simulating acoustic wave propagation in station-
ary media is given by [2], where the author proposed a derivation of TLM
which relies on a physical model of the field effects based on the well-known
Huygens’ principle. One can say that TLM replaces the approximate numeri-
cal solution of the governing partial differential equation (when using FEM, for
example) by an approximate physical model which can be solved accurately.

In [3] Connor showed that this intuitive approach enables an extension of
the standard TLM to moving media. He demonstrated the idea in the case
of a 1D moving medium. In this paper, a TLM model of 2D moving media is
developed and validated by means of FEM. Furthermore, the standard TLM
model of 3D stationary media is verified.

2 TLM Model of Stationary Media

According to Huygens, a wavefront consists of a number of secondary point
sources which radiate elementary spherical waves. The envelope of these waves
forms a new wavefront. Wave propagation can be explained as a repetition of
this basic mechanism.

In order to implement this process in a digital computer, the field must
be discretized in time and space. One obtains the discrete Huygens’ princi-
ple which, according to [2], is a synonym for the TLM model. In the TLM
model, the continuous acoustic medium is replaced by a regular (equidistant)
network of elementary transmission lines (elements). A pressure pulse prop-
agates through the element and reaches the adjacent intersection (node) at
the next time step. Due to the impedance discontinuity present at the node,
scattering occurs. The energy of the incident pulse is radiated in all four di-
rections in such a way that energy conservation holds. Therefore, TLM is an
inherently stable method. Furthermore, conservation of field continuity at the
node requires the polarity of the back-scattered pulse to be the opposite. This
process is illustrated in Fig. 1.

transmission scattering

p -p/2 p/2

p
/2

p
/2

Fig. 1. Transmission and scattering of a pressure pulse in a 2D TLM model
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The acoustic quantities can be identified from the numerical equivalence
of TLM and the finite-difference-time-domain (FDTD) discretization of the
wave equation (see [5]).

In order to validate the 3D TLM model, a simulation setup depicted in
Fig. 2 is considered. A square piston source of the dimension 10 × 10 mm is
placed at the end of a water channel entering a large water domain (phase
velocity c = 1500 m/s). The piston vibrates uniformly in the normal direction
and radiates an ultrasonic pulse of the central frequency 100 kHz into the
channel. The pulse propagates through the channel and diffraction occurs at
the channel opening.

75

10

2

1

37.5

vibrating piston

observation
points

Fig. 2. 3D validation setup and its FEM model
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Fig. 3. Comparison of the TLM and FEM results in the 3D validation setup

In Fig. 3, the acoustic pressure predicted by TLM is compared to the FEM
result at the two observation points. One can see that the results achieved with
TLM and FEM correspond very well. In both cases, the element size of λ/30
was selected, where λ denotes the characteristic acoustic wavelength and is
equal to 15 mm here. Nevertheless, the FEM simulation using a commercial
explicit solver consumed 960 MB of computing memory, whereas the TLM
simulation using an interpreted MATLABr code cost only about 80 MB.
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3 TLM Model of Moving Media

Following the basic concept of [3], the 2D TLM model of moving media is pre-
sented here. The presence of flow in a medium causes the waves to propagate
at different velocities in different directions. In order to include this kind of
anisotropy into the TLM model, additional unidirectional elements connecting
the adjacent nodes are introduced (see Fig. 4).
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Fig. 4. 2D TLM model of moving media and the scattering scheme.

The parameters m and n denote the relative admittances of the original
bidirectional elements and the parameters a and b the relative admittances of
the new unidirectional elements. By means of a and b, the admittance of the
medium can be biased for waves propagating in opposite directions. Therefore,
the propagation velocities also become different, in this manner simulating the
effect of flow. See [6] for details.

In order to validate the 2D TLM model of moving media, the acoustic
field generated by a vibrating piston in a uniform shear flow is computed and
compared with the results of a FEM simulation (see Fig. 5 left). The piston
vibrates uniformly in the normal direction with the amplitude 10−8 m and
the frequency 100 kHz. Water (c = 1500 m/s) fills the half-plane above the
piston and flows parallel at the velocity v = 300 m/s.

The comparison of the FEM and the HIRM results is made in the com-
plex plane for amplitudes and phases of the harmonic signals received at
the distance 35 mm from the center of the piston face in the angular range
0◦ ≤ θ ≤ 180◦ (see Fig. 5 right). The displayed TLM results show a certain
θ-dependent deviation from the reference FEM results. However, from the
qualitative point of view these results are fully satisfactory.

4 Conclusion

Application of TLM to simulation of sound wave propagation in stationary
and moving media has been described. It has been demonstrated that TLM
may represent a more efficient alternative to FEM when calculating acoustic
fields in stationary media. However, its major disadvantage—the requirement
of an equidistant discretization—must be handled by special techniques.
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Fig. 5. Validation of the 2D TLM model of moving media (left: setup, right: results)

Furthermore, first TLM results for 2D moving media have been presented.
Their accuracy is satisfactory, but it seems it can be improved by deriving
more precise procedures for setting the TLM parameters m, n, a and b. The
used concept can be expanded to the 3D space easily. In the future, the effi-
ciency of TLM for moving media is to be evaluated with respect to FEM.
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Summary. We develop a lubrication model for the viscous drop spreading with
evaporation. It is then solved in the quasi-static case and the numerical method is
used in the parameter identification in the application to DNA chips.

Key words: drop spreading, evaporation, parameter identification, DNA
biochips.

1 Introduction

The capability to deliver biochip Probe Arrays in a controlled manner across
a given 2D substrate (silicium, glass strands, etc) is very important for the
industrial production of biochips. In the case of DNA Probe Arrays, one deals
with synthetic oligonucleotide sequences typically 12 to 60 base in length,
complementary to DNA strands, which presence one wants to detect. One of
the possible manufacturing procedures is to pose drops, containing dissolved
probes, on the prepared support. After evaporation of the solvent the probes
are locally fixed. This procedure depends on many factors, mainly on the drop
spreading and solvent evaporation. In this paper we introduce a mathemati-
cal model which permits to describe the spreading of a drop on a horizontal
surface, in the presence of the evaporation. It is the first step in modeling
the fixing of the probes on a 2D predefined region of a substrate. In Section
2 we will use the Navier-Stokes equations and the detailed study of the free
surface to write the physical model. It is then reduced to its lubrication ap-
proximation. Finally we present numerical simulations of the spreading and
determination of the parameters from experimental results.
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We note that the regime when the evaporation dominates the spreading
is studied in [2] and [5] In our approach both phenomena are present and we
get very good agreement with the experimental results from [3] .

2 The physical model and the lubrication approximation

We consider the spreading of an axisymmetric liquid drop over a smooth
isothermal solid surface. During spreading the evaporation takes place. The
spreading is a free boundary incompressible flow described by the Navier-
Stokes equations

div v = 0 and ρ

(
∂v

∂t
+ (v∇)v

)
= −∇p+ µ∆v − ρgk (1)

valid in the drop. In (1) ρ is the mixture density, gk is the gravitational vector
and µ its viscosity. v = (ur, uz) is the fluid velocity and p is the pressure. The
drop is initially axisymmetric with respect to the axis {x = 0} ∩ {y = 0}
and posed on the surface {z = 0}. On the solid surface {z = 0} we impose
the no-slip condition v = 0. The free surface is defined by {z = h(r, t)}. The
boundary conditions are 2 dynamic conditions and the kinematic condition.
We suppose no shear at the free surface and we have

µ

1 + (∂h∂r )2

{[(
∂h

∂r

)2

− 1

](
∂uz
∂r

+
∂ur
∂z

)
+2

∂h

∂r

(
∂ur
∂r
− ∂uz

∂z

)}
= σnτ = 0.

(2)
Next we suppose the free surface surrounded by a tiny layer of the evaporated
vapour. Hence following the Kelvin’s law ([1, p. 53] ) we have on the free
boundary pc = peq exp{2V κ/(kT )}, where κ is the mean curvature and V is
the molar volume of the volatile substance in the liquid phase. This implies
the second dynamic condition

pc = −σnn = p− 2µ

1 + (∂h∂r )2

{(
∂h

∂r

)2
∂ur
∂r

+
∂uz
∂z
− ∂h
∂r

(
∂uz
∂r

+
∂ur
∂z

)}
(3)

It is supposed that in the ambient air there is only a weak concentration of
the volatile solvent. Consequently, the mass loss due to the evaporation is
given by a surface flux kevap(p − peq) (see [5] and [8, Equation 7] ). Let ρs
be the solvent density. Then a simple mass conservation argument gives the
kinematic condition

∂h

∂t
+ ur

∂h

∂r
− uz =

kevap
ρs

(p|z=h(r,t) − peq)
√

1 +

(
∂h

∂r

)2

(4)

We refer to [5] for a model with a general function Js(r, t), which is in our
situation equal to kevap(p− peq).
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The interaction of the drop with the surface {z = 0} is characterized by the
dynamical contact angle θ, measured from the drop. We make the classical
lubrication hypothesis of the small dynamical angle ϑ, which is identified
with the apparent contact angle. Then ∂rh is small, 2κ ≈ −∆rh and pc ≈
peq − γ∆rh, γ = peqV/(kT ). The spreading is axially symmetric for all t > 0.

The triple contact line, between the solid, the drop and the ambient air,
is located at r = a(t). Initially, a(0) = a0, h(r, 0) = h0(r) and h(a0) = 0. The
contact condition and the value of the apparent contact angle ϑ are given by

h(a(t), t) = 0;
∂h

∂r
(a(t), t) = − tanϑ;

dh0

dr
(a0) = − tan θ0 ≈ −θ0 (5)

The dynamic contact-line boundary condition relating the apparent contact

angle ϑ to the contact line speed U =
da

dt
is given by the modified “Tanner

law”
U = κ0(ϑ− θA)m, ϑ > ϑA (6)

where ϑA is the static advancing contact angle, ϑR is the static receding
contact angle and κ0 > 0 is a constant, estimated in [4] to be 1

10

(
π
4

)m γ
µ . The

theory predicts m = 3 (see [4] or [6]) or values close to 3.
Now, with ε = h0(0)/a0, we use the following scales

U(ε) = κ0θ
m
0 ; T (ε) = a0

U(ε) , r
∗ = r

a0
, t∗ = t

T (ε) , h
∗(r∗, t∗) = h(r,t)

a0ε

z∗ =
z

a0ε
, a∗(t∗) =

a(t)

a0
, Θ(t∗) =

ϑ(t)

θ0
, ΘA =

ϑA
θ0
, V ∗ =

V0

2πεa3
0

u∗r(r
∗, t∗) = ur(r,t)

U(ε) , u
∗
z(r
∗, t∗) = uz(r,t)

εU(ε) , p
∗ = a0ε

2(p− peq)/(µU(ε)).

(7)

When these scalings are introduced into the governing equations, we obtain,
at leading order when ε → 0 the classical lubrication approximation (see [6]
and [7]), but with the evaporation effects. As usual, we skip the stars for the
lubricated problem. These effects enter into the lubricated kinematic condition
and they give the change in the volume of the drop. For the change of the
volume we have



V (t) =

∫ a(t)

0
2πrh(r, t) dr; V (0) = V0 =

∫ a0

0
2πrh0(r) dr,

1

2π

dV

dt
=

−kevap
∫ a(t)

0
(p|z=h − peq)r

√
1 + (∂h∂r )2 dr ≈ kevapa(t)∂h(a(t),t)

∂r

(8)

The effective kinematic condition, which includes the evaporation effects, is

uz =
∂h

∂t
−
{

ε

U(ε)a0

kevap
ρsγ

∆rh− ur
∂h

∂r

}
(9)

In our situation, θ0/ε = O(1), the capillary number Ca = µU(ε)
γε3 ≈

C µκ0

γ εm−3 << 1, and we are interested in the quasi-static situation when
the triple line moves slowly. This situation, in absence of the evaporation, is
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studied in [6] . Here we expend once more the solutions to the lubricated ap-
proximation with respect to the capillary number Ca. For the leading order
terms we get the following effective system from [6] , in which we added the

evaporation effects. Let Bo=
ρga2

0

γ
be the Bond’s number, Kevap =

kevap
ρsγ

.

Then we search for the functions h(r, t) (the rescaled height), λ(t), V (t) (the
rescaled volume) and a(t) (the rescaled radius), such that for r ∈ (0, a(t)) and
t ∈ (0, T )





λ(t) = Bo h(r, t)− 1

r

∂

∂r

(
r
∂h(r, t)

∂r

)
; h(a(t), t) = 0

∂h

∂r
|r=0 = 0; Θ(t) =

[
da

dt
(t)

]1/m

+ΘA = −1

2

∂h

∂r
(a(t), t)

a(0) = 1;
dV

dt
= Kevap · 2πa(t)

∂h(a(t), t)

∂r
, V (0) = V ∗.

(10)

Now we go back to the dimensional variables. The system (10) reduces to the
following Cauchy problem for {V (t), a(t)} on (0, T ):





da(t)

dt
= κ0

(
arctan

( V (t)
√
BoI1(a(t)

a0

√
Bo)

πa0a(t)2I2(a(t)
a0

√
Bo)

)
− ϑA

)m
, a(0) = a0,

dV (t)

dt
= −4πK

V (t)
√
BoI1(a(t)

a0

√
Bo)

a(t)I2(a(t)
a0

√
Bo)

, V (0) = V0,

(11)

where K = 2πa0Kevap/
√
Bo. From a, ϑ and V it is easy to reconstruct the

effective pressure and velocities. The effective drop height h is given by

h(r, t) =
V (t)

π

I0

(
a(t)
a0

√
Bo
)
− I0

(
r
a0

√
Bo
)

a2(t)I2

(
a(t)
a0

√
Bo
) , 0 ≤ r ≤ a(t), 0 ≤ t ≤ T. (12)

3 Numerical results and comparison with experimental
results

The difficulty with the drop spreading is that a number of parameters are
unknown. It is possible to observe experimentally the height h and the foot
area D(t)/π = a(t)2/2 at various times during spreading. From these data we
identify the parameters Bo, Kevap, m, κ0 and ϑA. In the quasistatic situation,
the Bond’s number Bo determines the shape of the drop. It is estimated from
the initial data and for our experiments we have Bo = 12. Data from [3] are
presented in Fig. 1. Let Λ = (K, κ0, m, ϑA) be the vector containing the
parameters to identify. We first interpolate the data. Let H et D be the inter-
polation polynomials, corresponding respectively to the measurements of the
height and of the diameter squared divided by 2. We introduce a subdivision
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Fig. 1. Experimental data and simulation results.

of [0, T ] in N intervals [ti, ti+1], with ti = iτ , 0 ≤ i ≤ N − 1 and with the
discretization step τ = T/N . Then the cost functional to minimize is set to

J(Λ) =
1

2

N∑

i=1

(
|Di −Di(Λ)|2 + |Hi − hi(Λ)|2

)
(13)

with Di = D(ti), Di(Λ) = D(Λ, ti), Hi = H(ti) et hi(Λ) = h(Λ, ti). Using
a non-linear Least Squares method, initiated with λ0= (1, 1, 3, 1), giving
J(Λ0) = 3.3512, we got for the minimum of the cost functional J(λ∗) =
0.1093. This value corresponds to Λ∗= (0.9912, 0.8324, 3.0860, 1.1039), and
the solution is depicted with a continuous line in Fig. 1.
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Summary. We propose and evaluate a method for the recognition of airborne fungi
spores. We suggest a similarity-based object-recognition method to identify spores
in a digital microscopic image. We do not use the gray values of the case, but the
object edges instead. The similarity measure measures the average angle between the
vectors of the template and the object. Case generation is done semi-automatically
by manually tracing the object, automatic shape alignment, similarity calculation,
clustering, and prototype calculation.

1 Introduction

Airborne microorganisms are ubiquitously present in the various fields of in-
door and outdoor environments. The potential implication of fungal contam-
inants in bioaerosols in occupational health is recognized as a problem in
several working environments. Besides the detection of parameters relevant to
occupational and public health, in many controlled environments the number
of airborne microorganisms has to be kept below the permissible or recom-
mended values (e.g. in clean rooms, operating theaters, domains of the food
and pharmaceutical industry). The continuous monitoring of airborne biolog-
ical agents is consequently a necessity, as well for the detection of risks for hu-
man health as for the smooth sequence of technological processes. We describe
our first results on the way to develop an automatic image-interpretation sys-
tem for the detection and interpretation of airborne fungi spores. We describe
the developed method for the similarity-based recognition of objects that are
probably fungi spores in digital images. Future work will concentrate on clas-
sifying the objects. For our study we used six different fungi spores.

2 Fungi Images

Six fungal strains representing species with different spore types were used for
the study (Fig. 1). The strains were obtained from the fungal stock collection
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Alternaria Alternata Aspergillus Niger Rhizopus Stolonifer

Scopulariopsis
Brevicaulis

Ulocladium Botrytis Wallenia Sebi

Fig. 1. Images of Fungal Strains

of the Institute of Microbiology, University of Jena/ Germany and from the
culture collection of JenaBios GmbH. A database of images from the spores
of these species was produced.

3 Similarity-Based Object Recognition

The objects in the image are highly structured. Our study has shown that
these images, represented in Fig. 1, cannot be segmented by thresholding.
Biomedical applications have the special characteristic that one object can
have a great variation in appearance. Therefore the appearance of this object
cannot be generalized by one model as, is well known from model-based object
recognition. Instead we decided to apply a similarity-based object recognition
procedure for the detection of objects in the image.

The similarity-based object recognition method uses templates that gener-
alize the original contour of the objects and matches these templates against
the contour of the objects in the image. During the match a score is calculated
that describes the goodness of the fit between the object and the case. We
did not use the gray values of the case, but used the object edges instead.
For the score of the match between the case and the image we modified the
normalized cross correlation in order to measure the average angle between
the vectors of the case and the object.

3.1 Similarity Measure

We propose a similarity measure based on the cross correlation, using the
direction vectors of an image [4]. This approach requires the calculation of the
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dot product between each direction vector of the case mk = (vk, wk)
T
, k =

1, . . . , n and the corresponding image vector ik = (dk, ek)
T

:

s1 =
1

n

n∑

k=1

mk · ik =
1

n

n∑

k=1

< mk, ik >=
1

n

n∑

k=1

(νk · dk + wk · ek) (1)

The similarity measure of Equation (1) is influenced by the length of the
vector. That means that s1 is influenced by the contrast in the image and the
case. In order to remove the contrast, the direction vectors are normalized
to the length one by dividing them through their gradient. Note that this
normalization differs from the normalized cross correlation (NCC): The NCC
normalizes each pixel value by the expected mean of all values of the consid-
ered pixels. Therefore it is sensitive to nonlinear contrast changes, whereas
our method is not. Contrast changes can be ignored if the absolute value of
the dot product is calculated:

s2 =
1

n

n∑

k=1

|mk · ik|
‖mk‖ · ‖ik‖

(2)

3.2 Template Generation

A detailed description of the case generation can be found in [2]. The acqui-
sition of the templates is done semi-automatically. Prototypical images are
displayed to an expert. The expert manually traces the contour of the ob-
ject with the help of the cursor of the computer. Afterwards the number of
the contour points is reduced for data-reduction purposes by interpolating the
marked contour by a 1st order polynomial. The marked object shapes are then
pair-wise aligned using Procrustes Algorithm [1]. From the set of shapes gen-
eral groups of shapes are learnt by clustering. Single-linkage technique is used
for clustering [3]. The prototype of each cluster is calculated by estimating
the mean shape of the set of shapes in the cluster. Each of these prototypes
is the representative of a group of similar shapes and will be used as an case
template for the recognition process.

3.2.1 Shape Alignment

The aim of the alignment process is to compare the shapes of two objects
in order to define a measure of similarity between them. Consider two shape
instances P and O defined by the point-sets pi ∈ R2, i = 1, 2, ...N1, and oj ∈
R2, j = 1, 2, ...N2 respectively. The basic task of aligning two shapes consists
of transforming one of them ( say P ), so that it fits in some optimal way the
other one ( say O ). Generally the shape instance P = {pi(x, y)}i=1...N is said
to be aligned to the shape instance O = { oj (x, y)}j=1...N if a distance d(P,O)
between the two shapes can not be decreased by applying a transformation
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Ψ to P . The alignment of shapes is limited to a similarity transformation in
order to eliminate differences in the translation, the rotation and the scale of
the two shapes P and O. In our application we use the Procrustes distance,
a least-squares type distance function:

D(P,O) =

N∑

i= 1

∥∥∥∥
(pi − µP )

σP
−R(θ)

(oi − µO)

σO

∥∥∥∥
2

(3)

where θ is the rotation matrix, µp and µo are the centroids of the objects P
and O, respectively and σP and σO are the sums of squared distances of each
point-set from their centroids.

3.2.2 Clustering and Prototype Calculation

The alignment of every possible pair of objects in our database leads us to
N × N pair-wise distances between N shape instances. This matrix is the
input for the single-linkage hierarchical cluster analysis [6]. As a result of this
process we have divided our set of shape instances {P1, P2, . . . , PN} into k
clusters C1, C2, . . . , Ck. Each clusters Ci, i = 1, 2, . . . , k consists of a subset
of ni shape instances. For each cluster we need to compute a prototype µ that
will be the representative of the cluster. This prototype can be calculated by
computing the mean over all shapes in a cluster.

4 Results

We applied our method to six different airborne fungi spores (see Fig. 1). We
labeled a total of 60 objects for each of the six fungal strains. These objects
were taken for the case generation according to the procedure as described
in Sec. 3. The result was a data base of cases. These cases were applied to
images for the particular class which consist of unknown objects.

The threshold for the score was set to 0.8. The recognition rate is defined
as the ratio of the number of correct recognized objects to the total number
of objects in the image. The results of the matching process are shown in the
Tables 1. The highest recognition rate can be achieved for the objects Rhizopus
Stolonifer and Scopulariopsis Brevicaulis, since the variation of their shape is
expressed well by the number of cases. For those classes where the variation
of the shape of the objects is high, the number of the cases is also high. In
the other cases the recognition rate shows that we do not have enough cases
to recognize the classes with good recognition rate (see Alternaria Alternata
and Ulocladium Botrytis). Therefore we need to increase the number of cases.
For this task we should like to develop an incremental procedure for the case
acquisition in our tool.
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Table 1. Results of Matching

Classes Name of the cases Recognition Rate

Alternaria Alternata 34 81.0

Aspergillus Niger 5 89.0

Rhizopus Stolonifer 22 96.2

Brevicaulis Scopulariopsis 8 98.2

Ulocladium Botrytis 30 85

Wallenia Sebi 10 78.8

5 Conclusions

We have described our method for the recognition of airborne fungi spores in
digital microscopic images.

We used a similarity-based recognition method. The case is represented
by edges and not by the gray-level itself. The similarity measure is based on
the scalar product and is invariant against illumination changes and contrast
changes. The case generation was done semi-automatically by manually trac-
ing the contour of the object, automatic shape alignment, shape clustering,
and prototype calculation. For future research we intend to develop an incre-
mental case-acquisition procedure that should ensure that we can learn the
natural shape variability over time.
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BIOGEFA” is sponsored by the German Ministry of Economy BMWI under the
grant number 16IN0147.
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Summary. Miniaturized robotic manipulators are a key element in future high-
precision minimally invasive surgery and telesurgery. This development is supported
by the rapidly decreasing size of robotic sensors and actuators. Severe limitations
are currently induced by the drives of the micro-joints.

The present paper deals with the optimal control of an advanced six-sectional
branched manipulator. Joints are driven by weak, but fast, and strong, but slow,
actuators acting in parallel. This results in the new and challenging problem of
constrained optimal control of multibody systems subject to rivalling controls. For
efficient treatment the differential equations of the state and adjoint variables are
recursively defined. Geometric constraints lead to state constraints of second order.
The complete problem of optimal control is transferred into a piecewise defined,
highly nonlinear multi-point boundary value problem. The numerical solution of the
boundary value problem is by the advanced multiple shooting method JANUS.

Key words: Rivalling optimal control, robot-assisted surgery

1 Introduction

For further development of high-precision minimally invasive surgery (e.g. in
brain surgery) there is an urgent need for new types of robotic manipulators
consisting of miniaturized artificial fingers and hands of increasing complexity.
One of the major technical difficulties consists in the development of suitable
drives for the micro-joints of the robots. Either actuators are fast and efficient,
but produce only small specific forces (e.g. piezo actuators), or they are able
to generate high specific forces, but with a slow rate of change or at the cost
of relatively high power consumption (e.g. shape memory alloys).

The present paper deals with the optimal control of an advanced branched
manipulator consisting of two fingers with three joints each mounted on a
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joint base. Joints are driven by weak, but fast, and strong, but slow, actuators
acting in parallel. For the mathematical treatment of this model, a challenging
optimal control problem for cooperating robots has to be solved under control
and state constraints and – for the first time – for rivalling controls. From the
point of view of optimal control and numerical analysis, this model contains all
the relevant difficulties. New control strategies are developed and the structure
of the complicated configuration is fully exploited.

2 Manipulator Model

Fig. 1 shows a sketch of the geometry of the two-finger hand with three joints
at each finger, in total with six degrees of freedom. Joint angles are denoted by
qi, angular velocities by q̇i and actuator torques by ui. As usual, dots indicate
time derivatives. The torques ui, i = 1, . . . , 6, are the controls.

-q5 -q2

-q6 -q3

u6

u5

u3

u2

q1

q4-π u1

u4

ε

Fig. 1. Model of the two-finger hand: front view (left) and top view (right)

The equations of motion are given by

M
(
q(t)

)
· q̈(t) + r

(
q(t), q̇(t)

)
= u(t) , M ∈ IR6×6, t ∈ [0, tF ] (1)

with the mass matrix M and the function r containing all the gravity, cen-
trifugal and Coriolis forces.

The evaluation of the equations of motion is efficiently done by the Newton-
Euler-algorithm – a recursive formulation which uses geometric informations
to evaluate the equations of motion [3].

3 Optimal Control

3.1 Rivalling Control

In the case of the micro-robot there are two controls acting on the same
joint: a weak, but efficient control is rivalling with a strong, but inefficient
control. Efficiency in this case means low energy consumption. Therefore, the
respective control ui is split in two new controls

ui = uwi + usi

with the weak control uwi and the strong control usi .
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3.2 Optimal Control Theory

The (energy) optimal control problem for the model developed in Sect. 2 can
be stated as follows:

I
(
u(t)

)
=

∫ tF

0

∑
i

(
(uwi )

2
+ βi (usi )

2
)

||umax||2
dt −→ min (βi > 1 ∨ βi = 0) (2)

The final time tF has to be fixed. Weight factors βi > 1 put controls with
higher energy consumption at a disadvantage, the scaling factor ‖umax‖2 is a
measure of the maximum energy. The objective function I has to be minimized
subject to the equations of motion (1), boundary conditions BC for q and q̇ and
the prescribed control constraints and state constraints. With the Hamiltonian

H =

∑
i

(
(uwi )

2
+ βi (usi )

2
)

||umax||2
+ λT ẋ x :=

(
q
q̇

)
(3)

the optimal control problem is transformed into the following boundary-value-
problem:

(
E6 O
O M

)
· ẋ(τ) =

(
q̇

u(τ)− r(x(τ))

)

λ̇ = −Hx = −
(
∂

∂x
ẋ

)T
· λ





+ BC (4)

λ denotes the adjoint variables, En := diag(1, . . . , 1) ∈ IRn×n. The controls
uwi , u

s
i are derived from the optimality condition Hu = 0 ⇒

0 = Huwi
:=

2uwi
||umax||2

+ λT
(

∂

∂uwi
ẋ

)
(5)

0 = Husi
:=

2βiu
s
i

||umax||2
+ λT

(
∂

∂usi
ẋ

)
(6)

and the Legendre-Clebsch-Condition (Huu positiv semidefinite).
The matrix

(
∂
∂x ẋ

)
is calculated by a modified Newton-Euler-algorithm.

It is this decisive modification [4] which increases computational efficiency
dramatically over e.g. symbolic differentiation and makes the full application
of the calculus of variations possible in practice.

4 Optimal Control Constraints

4.1 Constraints

The control constraints can be stated as follows
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|u | ≤ umax |uw,s | ≤ uw,smax (7)

A state constraint of order two is derived by bionic considerations (cf. Fig. 1)

| q1 − q4 + π | ≤ ε (8)

If geometrical obstacles are present, state constraints of order two of the fol-
lowing type occur

h(X,Y, Z) ≤ 0 ∈ IRm (9)

After transformation from work space (cartesian coordinates X,Y, Z) to joint
space by using manipultor kinematics [3], these constraints read as

h(X,Y, Z) −→ h(q)

By definition state constraints of order p have the following properties

h(x) ≤ 0 ,
∂

∂u

(
∂p

∂tp
h

)
6= 0 ,

∂

∂u

(
∂i

∂ti
h

)
= 0 for i = 1, . . . , p− 1 (10)

State constraints are treated according to the lemma of Bryson et al. [1] by
forming the extended Hamiltonian with the Lagrangian multiplier ν:

H̃ =

∑
i

(
(uwi )

2
+ βi (usi )

2
)

||umax||2
+ λT ẋ+ ν

∂p

∂tp
h

The multiplier ν and the control u are calculated from H̃u = 0 and hp = 0.

4.2 Numerical Realisation

An explicit and possibly instable inversion of the mass matrix M in (1) can
be avoided because also hp is a linear function of q̈. Defining q̈ as a further
unknown, u and ν can be calculated by solving a system of linear equations:
Adding (1) to the equations H̃u = 0 and hp = 0, we obtain the following
well-structured system with the equation hp = 0 in the last row


D1 M O
D2 O hpu
∗


 ·



u
q̈
ν


 =



−r(q, q̇)
−
(
∂
∂u ẋ

)T
λ

∗


 , D1 = −E6, D2 =

2

‖umax‖2
· E6

An active state constraint of order two can be interpreted as a DAE of dif-
ferential index three. To avoid numerical difficulties Baumgarte-stabilisation
or extensions are possible. In our calculations no relevant drift-off was ob-
served (rel. deviation < 10−8).

Recursive formulations and the solution of a sequence of systems of linear
equations provide an elegant way to transform the optimal control problem
into a multi-point-boundary-value-problem without ever explicitely formulat-
ing the respective, extremely complicated ODE system. Numerical solution of
the boundary-value-problem is by the multiple-shooting method JANUS [2].
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5 Example: Constrained Motion and Rivalling Control

In the following example tF = 0.137 [s] is fixed and two rivalling controls are
considered: u2 = uw2 + us2, β2 = 5, u5 = uw5 + us5, β5 = 3 and β1 = β3 =
β4 = β6 = 0. Initial and final position of the robotic manipulator are fixed.
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Fig. 2. Example problem: Controls as a function of τ := t/tF
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Summary. A mathematical and numerical model to predict the non-linear be-
haviour of concrete as multiphase porous material is proposed. The model can be
usefully applied to several practical cases: evaluation of concrete performance in the
high temperature range, e.g. during fire, to early stages of maturing of massive con-
crete structures, to shotcrete in tunnelling, and to durability. All the important phase
changes of water and chemical reactions, i.e. adsorption-desorption, condensation-
evaporation, and hydration-dehydration, as well as the related heat and mass sources
or sinks are considered. Changes of the material properties caused by temperature
and pressure changes, concrete damage or carbonation, fresh concrete hardening, as
well as coupling between thermal, hygral and mechanical phenomena are taken into
account. This model further allows to incorporate sorption hysteresis. Some relevant
applications of the model will be shown in this work.

Physical and mathematical model

Moist concrete is modelled as a multi-phase material, which is assumed to
be in thermo-dynamic equilibrium state locally. The voids of the skeleton are
filled partly with liquid water and partly with a gas phase. The liquid phase
consists of bound water, which is present in the whole range of moisture
content, and capillary water, which appears when water content exceeds the
upper limit of the hygroscopic region, Sssp. The gas phase is a mixture of dry
air and water vapour, and is assumed to be an ideal gas. The chosen primary
variables of the model are: gas pressure pg, capillary pressure pc = pg − pw
(pw denotes water pressure), temperature T , displacement vector of the solid
matrix u, and finally carbon dioxide concentration ρd if carbonation process is
considered, while the internal variables are: degree of cement hydration Γhydr,
when hydration or dehydration phenomena are analysed, degree of carbona-
tion Γcarb, when carbonation is taken into account and mechanical damage d
and thermo-chemical damage V when damaging-deterioration processes are
considered.
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Hence, the general mathematical model of chemo-hygro-thermo-mechanical
processes consists of four or five balance equations, depending on the problem
analysed. They are completed by an appropriate set of constitutive and state
equations, and some thermodynamic relationships. Considering that in this
work we do not take into account the case of concrete subjected to carbon-
ation phenomenon (durability mechanics) and that in the case of concrete
structures exposed to high temperatures in the range below 600 − 700◦C we
can neglect the term related to decarbonation process, the final form of the
set of governing equations is:
• Mass balance equation of the dry air

− nD
sSw
Dt

− βs (1− n)Sg
DsT

Dt
+ Sgdiv vs +

Sgn

ρga
Dsρga

Dt
+

1

ρga
div Jgag

+
1

ρga
div (nSgρ

gavgs)− (1− n)Sg
ρs

∂ρs

∂Γhydr

DsΓhydr
Dt

=
ṁhydr

ρs
Sg (1)

• Mass balance equation of the water species

n (ρw − ρgw)
DsSw
Dt

+ (ρwSw + ρgwSg)αdiv vs + Sgn
Dsρgw

Dt
+ div Jgwg + div (nSwρ

wvws) + div (nSgρ
gwvgs) + (2)

− (ρwSw + ρgwSg)
(1− n)

ρs
∂ρs

∂Γhydr

DsΓhydr
Dt

=
ṁhydr

ρs
(ρwSw + ρgwSg − ρs)

• Enthalpy balance equation of the multi-phase medium

(ρCp)eff
∂T

∂t
+
(
ρwC

w
p vw + ρgC

g
pvg

)
· grad T − div (λeffgrad T ) =

− ṁvap∆Hvap + ṁdehydr∆Hdehydr (3)

• Linear momentum conservation equation of the multi-phase medium

div (σ − αpsI) +ρg = 0 (4)

where the effective stresses σ′′ is given by:

σ = (1−D)Λ0 : (εtot − εth − ε0) (5)

where the parameter D is the total damage resulting from various mate-
rial deterioration processes of different nature: mechanical, thermo-chemical,
purely chemical. The term ε0 is formed by two different contributions: chem-
ical strains accounting for thermo-chemical deterioration process in case of
elevated temperatures or chemical reactions in all the other cases, and creep
strains accounting for mid-long term creep in durability problems and thermal
creep in high temperature ranges:

ε0 = εchem + εcreep (6)
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The mass balance equation of carbon dioxide has to be added to the previ-
ous ones if carbonation phenomenon is analysed. Furthermore, three (or more)
evolution equations, corresponding to the internal variables related to the evo-
lution processes included in the model, can be added to the above described
governing equations:

• Hydration/Dehydration process evolution law
When dehydration process is considered (temperature higher than 105◦C),
taking into account its irreversibility, one may assume that the degree of
dehydration depends on the maximum value of temperature reached during
heating:

Γdehydr (t) = Γdehydr (Tmax (t)) (7)

while, when hydration process is analyzed (below 105◦C) the hydration degree
is defined in the following way:

Γhydr =
χ

χ∞
=

mhydr

mhydr∞
(8)

where mhydr means mass of hydrated water (chemically combined), χ is the
hydration extent and χ∞ , mhydr∞ are the final values of hydration extent
and mass of hydrated water, respectively.

• Thermo-chemical damage evolution equation (high temperature) The pa-
rameter V takes into account both effects of concrete dehydration (chemical
component) and material cracking (mechanical component) on material degra-
dation and the Young’s modulus decrease with increasing temperature. It is
obtained from the experimental results, and is a function of the maximum
temperature reached during heating because of the irreversible character of
the material structural changes:

V (t) = V (Tmax (t)) (9)

• Mechanical damage evolution equation
The mechanical damage parameter d is expressed in terms of the equivalent
strain, ε̃ , and it is given by equations of the classical non-local, isotropic
damage theory,

d (t) = d (ε̃ (t)) (10)

Similarly to what has been stated for governing equations, if carbonation
process is taken into account in the modelling of concrete behaviour, it is
necessary to define the corresponding evolution equation. For a full description
of the model and its mathematical formulation, see [16, 9, 18].
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1 Numerical solution

The governing equations of the model (1)-(4) are discretised in space by means
of the finite element method, [29, 30, 16]. The unknown variables are expressed
in terms of their nodal values as,

pg (t) ∼= Np p̄g (t) , pc (t) ∼= Np p̄c (t) ,
T (t) ∼= Nt T̄ (t) , u (t) ∼= Nu ū (t) .

(11)

The variational or weak form of the model equations, was obtained in [16] by
means of Galerkin’s method (weighted residuals), and can be written in the
following concise discretised matrix form,

Cij (x)
∂x

∂t
+ Kij (x) x = fi (x) ,with (12)

Kij =




Kgg Kgc Kgt 0
Kcg Kcc Kct 0
Ktg Ktc Ktt 0
Kug Kuc Kut Kuu


 ,Cij =




Cgg Cgc Cgt Cgu

0 Ccc Cct Ccu

0 Ctc Ctt Ctu

0 0 0 0


 , fi =





fg
fc
ft
fu




,

(13)

where the vectors xT =
{
p̄g, p̄c , T̄ , ū

}
and fi(x) and the non-linear matri-

ces Cij(x),Kij(x) are defined in detail in [16, 9, 18].
The time discretization is accomplished through a fully implicit finite differ-
ence scheme (backward Euler),

Ψ i
(
xn+1

)
= Cij

(
xn+1

) xn+1 − xn

∆t
+ Kij

(
xn+1

)
xn+1 − fi

(
xn+1

)
= 0,

(14)

where superscript i(i = g, c, t, u) denotes the state variable, n is the time
step number and ∆t the time step length. The non-linear equation set (14) is
linearised and solved by means of a monolithic Newton-Raphson type iterative
procedure [16, 9, 18, 30, 25]:

Ψ i
(
xkn+1

)
= −∂Ψ

i

∂x

∣∣∣∣
Xk
n+1

∆xkn+1, xk+1
n+1 = xkn+1 +∆xkn+1, (15)

where k is the iteration index and
∂Ψ i

∂x
is Jacobian matrix.

Application of the model to young concrete

From the macroscopic point of view, hydration of cement is a complex inter-
active system of competing chemical reactions of various kinetics and ampli-
tudes. They are associated with complex physical and chemical phenomena
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at the micro-level of material structure, see e.g. [24, 25], resulting in consider-
able changes of macroscopic concrete properties. Kinetics of cement hydration
(hydration rate) cannot be described properly in terms of equivalent age nor
maturity of concrete, if the effect of the reaction rate on temperature (and/or
relative humidity) depends upon the hydration degree [25], or chemical affinity
of the reaction is affected by temperature variations (and/or relative humid-
ity) [28, 12]. Hence, another thermodynamically based approach has been used
instead, similarly as proposed by Ulm and Coussy [27, 28]. In this approach
the hydration extent is the advancement of the hydration reaction and its rate
is related to the affinity of the chemical reaction through an Arrhenius-type
relationship, as usual for thermally activated chemical reactions:

dχ

dt
= Ãχ (χ) exp

(
− Ea
RT

)
(16)

where Ãχ(χ) is normalized affinity (it accounts both for chemical non-
equilibrium and for the nonlinear diffusion process), Ea - hydration activation
energy, andR - universal gas constant. Equation (16) can be rewritten in terms
of hydration degree, defined as in (8), and relative humidity by means of a
function βϕ(ϕ), (ϕ is the relative humidity):

dΓhydr
dt

= ÃΓ (Γhydr)βϕ (ϕ) exp

(
− Ea
RT

)
(17)

An analytical formula for the description of the normalized affinity of the
following form,

ÃΓ (Γhydr) = A1

(
A2

κ∞
+ κ∞Γhydr

)
(1− Γhydr) exp (−η̄ Γhydr) (18)

was proposed by Cervera et al. [6] and is used in our model. The coefficients
A1, A2 and can be obtained from the temperature evolution during adiabatic
tests.
As far as creep is concerned, fresh concrete is modelled as a visco-elastic
material by use of the rate (incremental) formulation of solidification theory
[2, 3]. In this theory concrete maturing is attributed to a growth of the volume
fraction of load-bearing hydrated cement, which itself is considered as a non-
aging visco-elastic material. Usually, the creep on these non-aging constituents
is described by a Kelvin chain with a finite number N of Kelvin units. In this
case the spectrum is discrete and its identification from test data is an ill-
posed problem. To overcome this problem a continuous retardation spectrum
technique has been introduced into the model. This means that a continuous
Kelvin chain model with infinitely many Kelvin units and retardation times
spaced infinitely closely, has been used [3].
It is important to underline that we model hygro-mechanical interactions (i.e.
capillary shrinkage phenomenon) using effective stresses defined as:
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σ = σ + αpsI, (19)

where α is the Biot’s constant and ps is the solid pressure:

ps = χwss (pw + swsJsws) + (1− χwss )
(
pg + sgsJsgs

)
(20)

where χwss is the fraction of skeleton area in contact with water, J sws, J
s
gs the

average curvatures of the solid-water and solid-gas phase interfaces, respec-
tively, obtained by integrating the point curvature over the interface within
the macro scale volume, and sws, sgsare interfacial tension like terms.
Solid pressure accounts for the pressure exerted by pore fluids on solid skele-
ton. This component of the stress tensor causes an additional deformation of
the skeleton (shrinkage strains), hence one can expect that it will contribute
to creep strains, as well. Indeed, some experimental studies of autogenous
deformations of concrete at early ages, e.g. [17], suggest that a part of the
material strains in such a situation (i.e. without any external load) can be
explained only by creep deformations due to capillary forces.

Numerical simulation of self-desiccation process

The numerical example deals with self-heating and self-desiccation phenomena
in sealed, cylindrical concrete samples made of ordinary and HPC concretes
(60 cm long and with diameter of 4 cm), placed in adiabatic conditions. These
specimens have been used for testing of autogenous relative humidity change
and autogenous deformation, during first 30 days of concrete maturing. The
simulation results are compared with available experimental data concerning
temperature changes during cement hydration. The deformation is usually
measured in a middle part of a sample, which is unaffected by edge effects,
hence the element performance is modeled as a 1-D axisymmetric problem.
The mesh with 26 (26 × 1) eight-node serendipity finite elements of variable
sizes (decreasing towards to the surface and to the axis) was used for space
discretisation of the sample. Simulations were performed for two types of con-
crete: OC tested by Bentz et al. [4] and HPC tested by Laplante [15], which
were also used by Cervera et al. [6] for validation of their thermo-chemo-
mechanical model of concrete at early ages. The composition of these two
types of concrete were similar to those used by Baroghel-Bouny et al. [1] dur-
ing their measurements of hygral properties, i.e. sorption isotherms, intrinsic
and relative permeability, thus we assumed these data in our simulations.
Main material properties (for dry concrete after 28-days of maturation) used
in our calculations are summarized in Table 1. The heat and mass sources re-
lated to concrete maturing are expressed as a function of the hydration rate by
means of relation (17), where normalized affinity was described by (18) with
the parameters determined in [6, 7], see Table 1. Initially, the cylinder has
a temperature T0 = 293.15K and relative humidity 0 = 99.9% for OC, while
0 = 99.0% for HPC. It is assumed that the hydration process started about
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2-3 hours before, hence the sample had already a certain shape rigidity and
initial hydration degree was equal to 0.1. The external surfaces of the sample
are sealed and adiabatic. Results of our simulations concerning the changes of
temperature, relative humidity and degree of hydration during initial stages
of concrete maturing are shown in Figs. 1(a) and 1(b) for OC and HPC. In
HP concrete we observe considerably lower values of relative humidity at ini-
tial stages of maturing, that shows for HPC concrete an influence of relative
humidity on the hydration process and the related autogenous changes of
temperature and moisture content (i.e. self-heating and self-desiccation phe-
nomena) are of importance. The temperature histories for the analyzed types
of concrete are compared to the experimental results from literature [4, 15],
showing their good agreement. The temperatures obtained from simulations
for HPC for time t 12h are visibly higher than the experimental ones, what
is caused by not perfectly adiabatic conditions during the test, as mentioned
in [7]. One should underline that the present model takes also into account
hygral phenomena, and in particular phase changes and related to them heat
effects, which were not considered in [27, 28, 6, 7]. For a deeper investigation
of this aspect see [10].

Table 1. Characteristic properties of different types of concrete(in dry state, after
28 days of maturing) used in numerical simulations

Parameter Symbol Unit OC HPC

Water / cement ratio w/c [-] 0.45 0.35
Aggregate / cement ratio c/a [-] 4.0 4.55
Silica fume / cement ratio s/a [-] 0.00 0.09
Porosity n [%] 12.2 8.2
Intrinsic permeability k [m2] 3 · 10− 18 1 · 10− 18
Activation energy Ea/R4 [K] 5000 4000
Parameter A1 in eq. (13) A1 [1/s] 7.78 · 104 1.11 · 103
Parameter A2 in eq. (13) A2 [-] 0.5 · 10− 5 41 · 10− 4
Parameter k∞ in eq. (13) k∞ [-] 0.72 0.58
Parameter η in eq. (13) η [-] 5.3 6.0 (4.7)
Heat of hydration Qhydr∞ [MJ/m3] 202 172
Apparent density ρeff [kg/m3] 2285 2373
Thermal conductivity λeff [W/mK] 1.5 1.78
Young’s modulus E [GPa] 24.11 39.61
Compressive strength fc [MPa] 26 70
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2 Application of the model to concrete structures in
high temperature environments

The model has been applied to the analysis of behaviour of concrete structures
under severe temperatures and pressures conditions. In these conditions con-
crete structures experience spalling phenomenon, which results in rapid loss of
the surface layers of the concrete at temperature exceeding about 200-300◦C.
As a result, the core concrete is exposed to these temperatures, thereby in-
creasing the rate of heat transmission to the core part of the element and in
particular to the reinforcement, what may pose a risk for the integrity of con-
crete structure. It is commonly believed that the main reasons of the thermal
spalling are: build-up of high pore pressure close to the heated concrete sur-
face as a result of rapid evaporation of moisture, and the release of the stored
energy due to the thermal stresses resulting from high values of restrained
strains caused by temperature gradients. Nevertheless, relative importance of
the two factors is not established yet and still needs further studies, both
experimental and theoretical.

The results of the research performed up to now show, that the fire per-
formance of concrete structures is influenced by several factors, like initial
moisture content of the concrete, the rate of temperature increase (fire in-
tensity), porosity (density) and permeability of the concrete, its compressive
strength, type of aggregate, dimensions and shape of a structure, its lateral
reinforcement and loading conditions. The HSC structures are particularly
affected by this phenomenon. In fact, HSC provides better structural perfor-
mance, especially in terms of strength and durability, compared to traditional,
normal-strength concrete (NSC).
However, many studies, showed that the fire performance of HSC differs from
that of NSC which exhibits rather good behaviour in these conditions. An un-
loaded sample of plain concrete or cement stone, exposed for the first time to
heating, exhibits considerable changes of its chemical composition, inner struc-
ture of porosity and changes of sample dimensions (irreversible in part). The
concrete strains during first heating, called load-free thermal strains (LFTS)
are usually treated as superposition of thermal and shrinkage components,
and often are considered as almost inseparable. LFTS are decomposed in
three main contributions:
• Thermal dilatation strains,

dεth = βs (T ) dT (21)

• Capillary shrinkage strains,

dεsh =
α

KT
(dxwss pc + xwss dpc) I (22)

where KT is the bulk modulus of the porous medium,
• Thermo-chemical strains,
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Fig. 1.

dεtchem = βtchem (V ) dV (23)

where βtchem (V ) = ∂εtchem(V )
∂V is obtained from experimental tests (V is the

thermo-chemical damage parameter).
As far as the first contribution is concerned, the strains are treated in a manner
usual in thermo-mechanics, but considering the thermal expansion coefficient
βs as a function of temperature. Shrinkage strains are modelled by means of
the effective stress principle in the form derived in [9, 18, 16], (19), which
for materials with very small pores and well developed internal pore sur-
face, where water is also present as a thin film (like for example in concrete),
presents a coefficient χwss instead of the classical saturation S.
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In this way, the (capillary) shrinkage represents a load for the skeleton of
the material and the related strains are not computed directly in the strain
decomposition as it is usual in the classical phenomenological approaches.
This coefficient is a function of saturation S and takes into account the dis-
joining pressure which is important in the range of saturation in which only
a thin film of water is adsorbed to the wall of the pores. This treatment of
the shrinkage strains is more consistent from thermodynamic point of view.
In heated concrete, above the temperature of about 105◦C, starts the ther-
mal decomposition of the cement matrix, and at higher temperatures also of
aggregate (depending on its type and composition). This is a consequence
of several complicated, endothermic chemical reactions, called concrete de-
hydration. As their result a considerable shrinkage of cement matrix (called
chemical shrinkage) and usually expansion of aggregate are observed. Due to
these contradictory behaviour of the material components, cracks of various
dimensions are developing when temperature increases, causing an additional
change of concrete strains (usually expansion). These strains are modelled as
function of thermo-chemical damage which takes into account the thermo-
chemical deterioration of the material.

Also the so called LITS has been considered in the computation. During
first heating, mechanically loaded concrete exhibits greater strains as com-
pared to the load-free material at the same temperature. These additional
deformations are referred to as load induced thermal strains (LITS), [14]. A
part of them originates just from the elastic deformation due to mechanical
load, and it increases during heating because of thermo-chemical and mechan-
ical degradation of the material strength properties. The time dependent part
of the strains during transient thermal processes due to temperature changes,
is generally called thermal creep.

The formulation employed into the model is due to Thelandersson [26]
in its original form, here modified using a coefficient βtr(V ) as a function
of thermo-chemical damage V (and not constant) and the effective stresses
instead of total stresses, coupling in this way the thermo-chemo-mechanical
damage model and capillary shrinkage model with thermal creep model.

dεtr =
β̄tr(V )

fc(Ta)
Q : σ̃ dV (24)

in eq. (15) Q is a fourth order tensor, is the effective (in the sense of damage
mechanics) stress tensor and finally fc is the compressive strength of the mate-
rial at 20◦C. The model in this form can be successfully applied to several real
cases, e.g. the case of fire in tunnels [23]. For further details see [8, 9, 18, 13, 5].
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3 Numerical simulation of cylindrical specimen exposed
to high temperature

This example deals with a comparison between numerical results, obtained us-
ing the model described in the previous sections, and experimental results, ob-
tained from compressive tests carried out in United States in the laboratories
of NIST (i.e. National Institute of Standard and Technology) [19, 21, 22, 20].
The main goal of this comparison is to show the capability of the code to
assess spalling phenomena, in particular occurrence of explosive spalling in
concrete structures subjected to elevated temperatures.

The specimens were cylinders with diameter of 100mm and height of
200mm, have been tested using three test methods, representing the thermo-
mechanical loading conditions: stressed test method (specimens were preloaded,
with a load equal to 40% of final compressive strength at room temperature,
and then heated), unstressed test method (specimens were directly heated
until the time of compressive test), residual property test method (the speci-
mens were heated up to the target temperature and kept at this temperature
for a certain period; then they were cooled and tested at room temperature,
i.e. at residual conditions).

Five target temperatures: 100◦C, 200◦C, 300◦C, 450◦C and 600◦C were
reached during the tests by means of furnace heating rate of 5C/min, in steady
state conditions. In this case “steady state” is defined as the temperature state
when the temperature at the centre of the specimen is within 10◦C of the pre-
selected target temperature T and the difference between the surface and
centre temperatures of the concrete specimen is less than 10◦C.

For further details concerning mix compositions and tests procedures (set-
up, instrumentation of the specimens, temperature control), see [19, 21, 22,
20].

Our attention was focused on specimens made of concrete type 1, herein
indicated as MIX1 in unstressed conditions with a target temperature equal
to 450◦C. In fact, for unstressed tests, explosive spalling occurred in all MIX1
specimens heated to 450◦C. Initial and boundary conditions used in numerical
simulation are listed in [11]. Figure 2(a)A shows the temperature differences
between the surface and the centre of the specimens measured during the
tests and the corresponding numerical results. The accordance between nu-
merical and experimental results is quite good. The first part of heating shows
a strange behaviour with temperature difference between core and surface
practically zero for more than one hour.

Figure 2(b)D provides information about damaging of the specimen during
heating. Specifically, it shows the history of total damage in three different
points (on the surface, in the centre and in the middle of the radius).

Figure 2(a)B shows developments (in three points) of the gas pressure
versus temperature compared to the water vapour pressure developments in
saturated conditions (red line). The time range between 120 and 150min seems
to be the critical range during which the material achieves a state favourable to
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spalling occurrence; the specimen experienced explosive spalling right in this
range of time. Corresponding to the maximum value of ∆T , a sharp increase
of mechanical damage parameter d (with a maximum value equal to 80%)
may be observed. Similarly to the increase of mechanical damage, the peak
of gas pressure corresponds to the maximum value of temperature differences
∆T .

The presented results of numerical simulations, show that both pore pres-
sure and thermally induced strains can be identified as responsible for the
spalling occurrence, and that they play a primary or secondary role depend-
ing on the particular conditions prevailing. For the analysed HPC concretes,
the MIX 1 specimens, having lower value of the w/c ratio, spalled explosively
mainly due to the high gas pressure value and relatively high level of thermo-
chemical deterioration.
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Conclusions

A general model for the non-linear modelling of concrete behaviour has been
presented in this work. All relevant mass and heat transport phenomena,
chemical reactions, phase changes as well as their mechanical effects are taken
into account. The richness of the model allows for its application to several
practical cases such as the analysis of hydration and aging processes in massive
concrete structures and the analysis of the response of concrete structures
exposed to high temperatures.

References

1. V. Baroghel-Bouny, M. Mainguy, T. Lassabatere, and O. Coussy. Character-
ization and identification of equilibrium and transfer moisture properties for
ordinary and high-performance cementitious materials. Cement Concrete Res.,
28:1225–1238, 1999.

2. Z.P. Bazant and S. Prasannan. Solidification theory for concrete creep. J. Eng.
Mech., ASCE 115:1691–1725, 1989.

3. Z.P. Bazant and Y. Xi. Continuous retardation spectrum for solidification theory
of concrete creep. J. Eng. Mech., ASCE 121:281–288, 1995.

4. D.P. Bentz, V. Waller, and F. de Larrard. Prediction of adiabatic temperature
rise in conventional and high-performance concretes using a 3-d microstructural
model. Cement Concrete Res., 28(2):285–297, 1998.

5. M. Bianco, G. Bilardi, F. Pesavento, G. Pucci, and B.A. Schrefler. A frontal
solver tuned for fully-coupled non-linear hygro-thermo-mechanical problems. In-
ternational Journal of Numerical Methods in Engineering, 57(13), 2003.

6. M. Cervera, J. Olivier, and T. Prato. A thermo-chemo-mechanical model for
concrete. J. Eng. Mech., ASCE 125(9):1018–1027, 1999.

7. M. Cervera, J. Olivier, and T. Prato. A thermo-chemo-mechanical model for
concrete. i: Damage and creep. J. Eng. Mech., ASCE 125(9’):1028–1039, 1999.

8. D. Gawin, F. Pesavento, and B.A. Schrefler. Modelling of hygro-thermal be-
haviour and damage of concrete at temperature above the critical point of water.
Int.J.Numer, 26:537–562, 2002.

9. D. Gawin, F. Pesavento, and B.A. Schrefler. Modelling of hygro-thermal be-
haviour of concrete at high temperature with thermo-chemical and mechanical
material degradation. Comput. Methods Appl. Mech. Engrg., 192:1731–1771,
2003.

10. D. Gawin, F. Pesavento, and B.A. Schrefler. Hygro-thermo-chemo-mechanical
modelling of concrete at early ages. part i: Hydration and hygro-thermal phe-
nomena. in parparation, 2004.

11. D. Gawin, F. Pesavento, and B.A. Schrefler. Modelling of deformations of high
strength concrete at elevated temperatures. Materials and Structures/Concrete
Science and Engineering, 37(268), 2004.

12. O.M. Jensen and P.F. Hansen. Influence of temperature on autogenous deforma-
tion and relative humidity change in hardening cement paste. Cement Concrete
Res., 29:567–575, 1999.



350 B.A. Schrefler, D. Gawin, and F. Pesavento

13. G. Khoury, C.E. Majorana, F. Pesavento, and B.A. Schrefler. Thermo-hydro-
mechanical modelling of high performance concrete at high temperatures. Mag-
azine of Concrete Research, 54(2), 2002.

14. G.A. Khoury. Strain components of nuclear-reactor-type concretes during first
heating cycle. Nuclear Engineering and Design, 156:313–321, 1995.

15. P. Laplante. Mechanical properties of hardening concrete: A comparative anal-
ysis of classical and high strength concrete. PhD thesis, Ecole Nationale des
Pontes et Chausses, 1993.

16. R.W. Lewis and B.A. Schrefler. The Finite Element Method in the Static and
Dynamic Deformation and Consolidation of Porous Media. Wiley & Sons, 1998.

17. P. Lura, O.M. Jensen, and K. van Breugel. Autogenous shrinkage in high-
performance cement paste: an evaluation of basic mechanisms. Cement Concrete
Res., 32(2):223–232, 2003.

18. F. Pesavento. Non-linear modelling of concrete as multiphase porous material
in high temperature conditions. PhD thesis, University of Padova, 2000.

19. L.T. Phan. Fire performance of high-strength concrete: a report of the state-of-
the-art. Res. Report NISTIR 5934, page 105, 1996.

20. L.T. Phan and N.J. Carino. Effects of test conditions and mixture proportions on
behavior of high-strength concrete exposed to high temperature. ACI Materials
Journal, 99(1), 2002.

21. L.T. Phan, D. Duthinh, and E. Garboczi. Proc. int. workshop on fire perfor-
mance of high-strength concrete. In NIST Special Publication 919. Gaitherburg
(MD) USA, NIST, feb 1997. NIST Special Publication 919.

22. L.T. Phan, J.R. Lawson, and F.L. Davis. Effects of elevated temperature expo-
sure on heating characteristics, spalling, and residual properties of high perfor-
mance concrete. Materials and Structures, 34, 2001.

23. B.A. Schrefler, P. Brunello, D. Gawin, C.E. Majorana, and F. Pesavento. Con-
crete at high temperature with application to tunnel fire. Computation Mechan-
ics, 29:43–51, 2002.

24. G. de Schutter. Influence of hydration reaction on engineering properties of
hardening concrete. Mater. Struct., 35:453–461, 2002.

25. G. de Schutter and L. Taerwe. General hydration model for Portland cement
and blast furnace slag cement. Cement Concrete Res., 25(3):593–604, 1995.

26. S. Thelandersson. Modeling of combined thermal and mechanical action on
concrete. J. Eng. Mech., ASCE 113(6):893–906, 1987.

27. F.-J. Ulm and O. Coussy. Modeling of thermo-chemo-mechanical couplings of
concrete at early ages. J. Eng. Mech., ASCE 121(7):785–794, 1995.

28. F.-J. Ulm and O. Coussy. Strength growth as chemo-plastic hardening in early
age concrete. J. Eng. Mech., ASCE 122(12):1123–1132, 1996.

29. O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 1: The
Basis, Butterworth-Heinemann. Oxford, 2000.

30. O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 2: Solid
Mechanics, Butterworth-Heinemann. Oxford, 2000.



Modelling the Glass Press-Blow Process

S.M.A. Allaart-Bruin, B.J. van der Linden, and R.M.M. Mattheij

Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands sbruin@win.tue.nl

Summary. For the modelling of the glass press-blow process level set functions
are used. Special difficulties arise due to velocity gradients in the domain. A re-
initialisation procedure for unstructured triangular meshes is adapted to these dif-
ficulties and is applied.

Key words: Level Set Method, glass forming process.

1 Introduction

A typical stage in the manufacturing of container glass is the blowing stage.
At this stage a preform of hot glass is transferred to a blow mould. There it is
first given time to sag sufficiently far. Finally pressurised air is used to inflate
the preform to form the final bottle or container shape.

This paper briefly describes the equations modeling this stage of the pro-
cess. In Section 3 a new re-initialisation procedure of the level set function
is described. The model is applied to a two dimensional test problem in Sec-
tion 4. We end with some conclusions.

2 Governing equations

The following mathematical model is used to describe the blowing stage of
the production process of bottles and jars. Let the domain Ω ⊂ R2 be the
interior of the mould. Every point x ∈ Ω is either in air or in glass.

We denote time by t, velocity vector by v, pressure by p, the dynamic
viscosity by µ and the gravitational force by g. After non-dimensionalising
and using the dimensionless Reynolds (Re) and Froude (Fr) numbers, the
flow can be described by the Stokes equation together with conservation of
mass:
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∇ · (µ(x)∇v) +
Re(x)

Fr(x)
g = ∇p, (1)

∇ · v = 0. (2)

The viscosity of glass strongly depends on temperature. The temperature de-
pendence of the glass viscosity can be described by the Vogel-Fulcher-Tamman
relation [2]. The temperature T can be described by the dimensionless energy
balance equation

Pé(x)

(
∂T

∂t
+ v · ∇T

)
= ∇2T, (3)

where Pé is the dimensionless Péclet number.
The typical values of glass and air that we use for this problem are: typical

length scale L = 10−2 m, typical velocity V = 10−2 m/s, typical viscosity for
glass µglass = 104 Pa s and air µair = 10−5 Pa s, typical densities ρglass =
2.5 · 103 kg/m3 and ρair = 1 kg/m3, typical temperature jump ∆T = 350

�
C,

typical specific heat for glass cpglass
= 1.2 · 103 J/(kg K) and air cpair

= 103

J/(kg K), typical heat conductivities κglass = 2.75 W/(m K) and κair = 10−2

W/(m K). This results in the following values for the Reynolds, Froude and
Péclet number for glass (gl) and for air (a)

Regl = Rea = 2.5 · 10−5, Frgl = Fra = 10−3, Pégl = 1.1 · 102 and Péa = 10.

Actually, the Reynolds number of air is much bigger, but we replace the
air by a fictitious fluid, with viscosity 4 Pa s and the same mass density as
air; so Re = 2.5 · 10−5 in the fictitious fluid. Note that the viscosity of the
fictitious fluid is much smaller than the viscosity of glass. The inertia terms
in the fictitious fluid domain can be neglected, while the pressure drop is still
negligible compared to the pressure drop in the glass domain.

The glass position is modelled by two level set functions ϕ1(x, t) and
ϕ2(x, t). These level set functions each capture a glass-air interface and are
convected by the flow velocity

∂ϕi
∂t

+ v · ∇ϕi = 0 for i = 1, 2. (4)

At every time t the corresponding interfaces Γi(t) are given implicitly by
ϕi(x, t) = 0.

To solve (1), (2), (3) and (4) uniquely we have to prescribe initial and
boundary conditions. For glass we assume no-slip when it touches the mould,
and for air we prescribe a free-slip boundary condition.

The model is discretized by a finite element method which uses a mesh
consisting of triangles.
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3 Re-initialisation of the level set function

Two level set functions are used to describe the position of the glass. Due to
velocity gradients these level set functions become less accurate in describing
the interfaces as time evolves. Initially the level set function ϕ(x, t) is defined
as the signed euclidean distance function to the corresponding interface Γ (t),
i.e.

ϕ(x, 0) :=

{
d(x, Γ (0)), if x in air,

−d(x, Γ (0)), if x in glass.
(5)

When time evolves the initially nicely shaped level set function can develop
steep gradients at one side and can become almost constant on the other side
of the domain. This could lead to additional numerical difficulties.

We would like to compute a function d̂(x) which is a distance function
and which at the zero level of d(x) coincides with Γ (t). Then we replace on
every time step ϕ(x, t) with this new function. This idea of interrupting a
level set calculation and rebuilding a new level set function is referred to as
re-initialisation. There are several ways to accomplish this re-initialisation [3].
Existing methods use a structured grid consisting of squares or cubes. Our
computational mesh consists of unstructured triangles. The re-initialisation
procedure used in our computations is based on the Fast Marching Method
[3].

Fast Marching Methods rely on building the solution outward, starting
with a boundary value. More precisely, knowing one or two value of d̂ within
an element we would like to compute the value of d̂ at the third node. Consider
Fig. 1, where a line l and a triangle ABC with angles α, β and γ are shown.
The assumption is made that the values of d are known at points A and B,
where dA and dB are distances from line l to points A and B respectively.
Furthermore, we assume that dA ≥ dB .

dB

A α

C

c

δ
β

B

a

b

dA

−dA

dB

l

Fig. 1. Fast Marching Method as re-initialisation.

First, the angle δ is computed by sin(δ) = dA−dB
c . Secondly, observe that

sin(δ + β) = dC−dB
a . This results in the following update equation
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dC = a sin(δ + β) + dB . (6)

We have to make sure that the shortest distance from C to the line l passes
trough the interior of the triangle. Hence we require

0 ≤ a cos(δ + β)

cos(δ)
≤ c. (7)

If (7) is not satisfied we take dC = min {dA + b, dB + a}.
In addition to a triangle with two known values, also triangles with one

known d value should be considered. The updating is then done as follows.
Assume that the value at A is known, then the values at B and C are assigned
as dB = dA + c and dC = dA + b, respectively.

Clearly in (6) we compute the exact distances from point C to line l if the
distance dA and dB are exact. In practice, the line l is just a line segment of
finite length and dA and dB are approximations of the distances. So dC is just
an approximation of the real distance.

4 Results

The mathematical model is applied to a two dimensional problem. The reason
to consider this problem is that in practice the glass thickness of a bottle in
circumferential direction varies. We would like to see what is the influence of
a temperature gradient on this thickness variation.

The numerical tests are performed with the package Sepran [1]. In this
example a quarter of a cross-section of a bottle in the axial direction is con-
sidered. At the small arc of our domain (inflow boundary) a pressure is pre-
scribed. The large arc can be considered as the mould, while the other do-
main boundaries are symmetry axes. We prescribe a temperature gradient
in circumferential direction. For this purpose a variable θ is used, defined as
θ := arctan

(
y
x

)
. The initial temperature field in the domain is defined as

T (θ) := Tav + 2
θ∆T

π
− ∆T

2
, (8)

where Tav is the average temperature in the domain. Hence Tav + ∆T
2 is the

maximum temperature and Tav − ∆T
2 is the minimum temperature in the

domain. In our computations we choose Tav = 975
�
C and for ∆T we take

different values, namely 10
�
C and 20

�
C.

The computational mesh used consists of 1867 triangular elements. The
initial position of the glass is a ring. The results are shown in Fig. 2. The first
plot is the final position of the glass, when we have a ∆T of 10

�
C. We see

that the resulting layer of glass is not uniform. At the top left corner, where
the maximum temperature is achieved, the glass is much thinner than at
the bottom right corner. This shows that even a relatively small temperature
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gradient, results in a large differences in thickness, approximately a factor
1.4. For the second and third plot a ∆T of 20

�
C is used. The second plot

shows the moment just before glass touches the mould. We see that the glass
will touch the mould first at the lowest temperature (bottom right corner).
The last plot shows that the variations in thickness increase when the initial
temperature gradient is increased. For an initial gradient of 20

�
C the thickness

varies almost by a factor 2.
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5 Conclusions

The model described here is used to study the blowing phase of the press-blow
process of glass. It is implemented and tested to a two-dimensional problem.

The test, a cross-section of a bottle in axial direction, shows that small
temperature gradients have a significant impact on the final thickness dis-
tribution. This is one of the main reasons we have to consider a full three
dimensional model to study the blowing phase.
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Summary. We consider a model for laser surface remelting, a process to improve
the surface quality of steel components. The mathematical model consists of the two-
dimensional heat equation for temperature and an ordinary differential equation
for the liquid phase. The equations are coupled via source terms. We study the
efficient numerical simulation using adaptive grids, which are especially well-suited
for problems with moving heat sources. To account for the local high activity due
to the heat source, we introduce local uniform grids and couple the solutions on the
global coarse and local fine grids using the local defect correction (LDC) technique.

Key words: local defect correction, heat treatment, laser remelting.

1 Introduction

Laser surface modification is a widely used technique to increase the strength
of the surface of mechanical parts such as cutting tools, gears, machine parts
etc. There are several ways to alter the properties of the part at hand. The
techniques include laser cladding, laser surface alloying, and laser heat treat-
ment. In laser cladding, a high power density is used on a surface to fuse a
metal onto another metal. This increases the wear and corrosion resistance of
the part. Laser surface alloying is similar to surface melting, but elements are
added to the melt pool to change the chemical composition of the surface. Fi-
nally, laser heat treatment covers both hardening and surface remelting. These
methods improve mechanical properties through microstructural changes. The
typical depth of the hardened layer is 0.1–0.2 mm. In this paper we will model
and simulate the last technique. Figure 1 sketches the remelting process.

In this paper, we will use the following model for laser surface remelting.
We consider a rectangular domain Ω = (0, L) × (0,M) and solve the heat
equation in the space time domain Ω × (0, tE) with end-time tE viz.

ρc(T )
∂T

∂t
− div (k(T ) gradT ) = −ρLda

dt
in Ω × (0, tE), (1)
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laser

workpiece

Fig. 1. Laser surface remelting

da

dt
=

1

τ(T )
(aeq(T )− a) . (2)

In (1), ρ is the density, c is the specific heat, T is the temperature, k is the
heat conductivity, L is the latent heat of the liquid phase, and a is the liquid
phase. The function aeq in (2) is defined by

aeq(T ) =





0, for T < Ts (Ts: only solid in equilibrium),
linear, for Ts < T < Tl,
1, for T < Tl (Tl: only liquid in equilibrium).

We model the laser via the boundary condition at the top of the domain

−k∂T
∂n

=




κPF (x− vt), at the top of the domain,
µ(T − T0), at the bottom,
0, at the left and at the right.

(3)

Here, κ is the absorption coefficient, P is the radiation power, and F is the
radiation flux defined by F (x) = α1 exp(−α2x

2). The velocity v of the laser
beam is assumed to be constant during the simulation. The initial condition
for the problem is T = T0, a = 0. A typical solution of the initial value
problem will have large differences in geometric scales: the temperature is
very high near the spot at the surface where the laser beam is located and will
drop sharply and be almost constant in the larger part of the computational
domain. It is evident, that a computational grid for a problem of this type
should reflect the solution behavior, i.e., it should have many grid points with
fine spacing near the laser, and it may be (much) coarser elsewehere.

2 Local grid refinement

The typical depth of the top layer is only 0.1–0.2 mm whereas the computa-
tional domain may extend several centimeters. As we have seen, a high spatial
resolution is required at the laser position, whereas lower resolution suffices
in the rest of the domain. Naturally, the usage of a global uniform fine grid is
computationally inefficient. An obvious choice would be to use a truly nonuni-
form refined grid. However, uniform grids have several advantages over truly
nonuniform grids: uniform grids can be represented by simple data structures,
simple accurate discretization stencils exist for uniform grids and fast solution
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techniques are available for solving the system of equations resulting from dis-
cretization on uniform grids. For these reasons, so-called local uniform grid
refinement techniques have been introduced in which a coarse base grid cover-
ing the whole computational domain is locally uniformly refined. Some of the
better-known techniques are adaptive mesh refinement (AMR) [3]; fast adap-
tive composite grid (FAC) [7]; local rectangular refinement (LRR) [2]; local
uniform grid refinement (LUGR) [8]; and finally local defect correction (LDC)
[4]. For our simulations we use an extended version of the LDC method. This
technique has a number of advantages. First, the method uses many small
structured grids instead of a single unstructured grid (as opposed to LRR).
This results in low memory usage and a natural route for parallelization. Our
method uses structured grids only. We solve the boundary value problem on
a composite grid without explicitly forming the discretization (as opposed to
FAC, LRR). Finally, one of the distinctive features of the LDC method is
the two-way coupling between grids. It is common in local refinement tech-
niques that the coarse grid solution is used to define boundary conditions for
the local fine grid. While this one-way communication suffices for hyperbolic
problems [3], it is essential for elliptic problems to transfer information from
the fine to the coarse grid, too. As is noted in e.g. [6], the naive approach of
only coarse-to-fine communication gives the accuracy of the coarse grid alone.

3 Local defect correction

In the LDC method the discretization on the composite grid is based on a
combination of standard discretizations on several uniform grids with different
grid sizes that cover different parts of the domain. At least one grid, the coarse
grid, should cover the entire domain, and its grid size should be chosen in
agreement with the relatively smooth behavior of the solution outside the
high activity areas. Apart from this global coarse grid, one or several local fine
grids are used which are also uniform. Each of the local grids covers only a
(small) part of the domain and contains a high activity region. The grid sizes
of the local grids are chosen in agreement with the behavior of the continuous
solution in that part of the domain. The coarse grid solution is used to provide
artificial boundary conditions at the interfaces between grids.

The LDC method is an iterative process: the basic global discretization is
improved by the local discretizations defined in subdomains. The update of
the coarse grid solution is achieved by adding a defect correction term to the
right hand side of the coarse grid problem. The defect term is an estimate of
the local discretization error of the coarse grid discretization. At each iteration
step, the process yields a discrete approximation of the continuous solution on
the composite grid. The discrete problem that is actually being solved is an
implicit result of the iterative process. Therefore, the LDC method is both a
discretization method and an iterative solution method. A detailed description
of the LDC algorithm can be found in [1].
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Temperature Melt pool Layer

Fig. 2. Numerical results for the first simulation

4 Simulations

To perform numerical simulation of the surface remelting process, we dis-
cretize the differential equations (1)–(2) in time using the θ-method. By using
this time discretization, we transform the continuous problem into a series of
elliptic boundary value problems that we can solve using the LDC technique.
For the space discretization, we use finite differences. The area of refinement
is automatically chosen based on (smoothed) temperature values. To solve the
resulting nonlinear problems on structured grids, we use a damped Newton
solver in which the Jacobi matrix is found via numerical differentiation and
the resulting linear systems are solved with BiCGSTAB.

In our first example, we solve the initial value problem on the rectangular
domain Ω = (0, 5) × (0, 2). The global coarse grid is a structured grid with
50 grid points chosen equidistant in horizontal, 40 grid points chosen with
geometrical refinement in vertical direction. The grid sizes in vertical direction
are smallest near the surface; from bottom to top they decrease with a factor
of 0.975. We use one level of refinement and the grid sizes for the local grid are
half those of the global. We present plots of the temperature field projected
on the grid lines of the composite grid, the surface melting, and the formation
of the hardening layer in Fig. 2.

Observing the temperature field during the simulation in the first example,
one notices that it takes some time for the workpiece to reach maximum
surface temperature. Also, since the temperature drops due to self-cooling
of the workpiece, the temperature peaks near the right side of the domain,
as it is more difficult to loose heat there. This is reflected in the resulting
hardening layer in Fig. 2: it is shallow at the left, deeper at the right side of the
domain. This occurs even more so if we perform the same simulation for a more
challenging problem. In our second example we consider a domain containing
a hole. To obtain better results, we employ proportional integral differential
(PID) control. Recall that the laser is modeled via the boundary condition
at the top, according to −k∂T/∂n = κPF (x− vt). We will use the radiation
power P as a control variable. We define the error e as e(tn) = T ∗−Tmax(tn),
in which T ∗ is the desired maximum temperature at the surface, Tmax(tn) the
real maximum temperature in the simulation. Next we set the power at the
next time level to P (tn+1) = kP e(tn) + kI

∫ tn
0
e(t) dt+ kD ė(tn), in which the

three parameters kP , kI , and kD are tuned based on a step response of the
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Fig. 3. Numerical results for the second simulation: temperature (top), hardening
layer (bottom), surface temperature and laser power during PID control

system, see [5] for details as well as a nonlinear variant of PID control for this
problem. This results in a more uniform hardening layer, as can be observed
from Fig. 3. We also present the laser power and resulting surface temperature
found with PID control in the figure.
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Summary. We consider minimizing the mass of an injection moulding machine,
fulfilling certain constraints. The deformation of its frame is described by the plain
stress state equations for linear elasticity. The minimization problem is a nonlin-
ear constrained one. When the design parameters change, then also the shape will
change. Generating a new finite element mesh for each single shape leads to a non-
differentiable objective. Here we deform the mesh elastically.

Key words: shape optimization, structural mechanics, finite elements

1 Modeling the problem

Various methods for structural optimization using finite elements are given
in Haslinger, Mäkinen [5]. For shape optimizaion problems see e. g. Delfour,
Zolésio [1] First results of the authors can be found in [2, 3]. The frame of
an injection moulding machine is sketched by its 2D-cut Ω in Fig. 1. The
primary goal of the design phase is to minimize the mass of the frame. Let
V0 =

{
v ∈ H1(Ω) | v = 0 on ΓD, meas ΓD > 0

}
denote the set of admissible

displacements where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅. The displacement field
u ∈ V0 fulfills the variational equation

a(ρ;u, v) = F (v) for all v ∈ V0 , with (1)

a(ρ;u, v) =

∫

Ω

ρ
∂ui
∂xj

Eijkl
∂vk
∂xl

dx, F (v) =

∫

Ω

〈f, v〉 dx+

∫

ΓN

g v ds

where Eijkl denotes the elasticity tensor, f the volume force density and g the
surface force density on the part ΓN of the boundary ∂Ω. The design problem
reads as follows with σvM(u) the v. Mises stress, σten(u) the tensile stress:

?This work was partially supported by the Austrian Science Fund - ’Fonds zur
Förderung der wissenschaftlichen Forschung (FWF)’ - SFB F013 ’Numerical and
Symbolic Scientific Computing’, Project F1309
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Fig. 1. Cross section of the original shape

∫

Ω

ρ dx −→ min
u,ρ

subject to a(ρ;u, v) = F (v) for all v ∈ V0

0 < ρ ≤ ρ ≤ ρ, a.e. in Ω

σvM(u) ≤ σvM
max, σten(u) ≤ σten

max a.e. in Ω

α(u) ≤ αmax

(2)

The change in the shrinking angle of the clumping unit (vertical edges on
top, called wings) is denoted by α(u).

We discretize the problem by triangular finite elements with piece-wise
constant shape functions for approximating ρ and piece-wise quadratic ones
for approximating u. We denote the discrete approximation of ρ and u again
by ρ and u. The upper limits on the angle and the stresses are treated either
as constraints or as soft limits. Furthermore, the pointwise constraints on σvM

and σten are replaced by using a higher order `p norm. Treating the upper
limits as soft constraints leads to:

mass(ρ) + ω1

(
max (‖σvM‖p − σvM

max, 0)
)2

+ ω2

(
max (‖σten‖p − σten

max, 0)
)2

+ ω3

(
max (α− αmax, 0)

)2 −→ min
u,ρ

subject to K(ρ)u = F and ρ ≤ ρ ≤ ρ .

(3)

2 A short sketch on the optimization strategy

Problem 3 is a special case of

J(u, ρ) −→ min
u,ρ

subject to K(ρ)u = f(ρ) and ρ ≤ ρ ≤ ρ ,
(4)

where ρ denotes the vector of design parameters and u the solution of the gov-
erning finite element (FE) state equation with K(ρ) symmetric and positive
definite. u can be formally eliminated which leads to
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J̃(ρ) = J(K−1(ρ) f(ρ), ρ) −→ min
ρ

subject to ρ ≤ ρ ≤ ρ .
(5)

The SQP optimizer used in our code, see e.g. Nocedal, Wright [6], is based on
a Quasi-Newton approximation of the Hessian using a modified BFGS update
formula following Powell [7].

3 Calculating the gradient for shape optimization

In [3] a hybrid implementation of the gradient was presented. Here we im-
plement the full gradient calculation in a 2D shape optimization problem,
preventing also the problem of remeshing that causes non-differentiability.
The shape under investigation is similar to the one in Fig. 1. This shape can
be easily described by corner points (x– and y–coordinates), circular parts of
the boundary (x– and y–coordinates of the center plus the radius) connected
with straight lines, see Fig. 2. Our set of design parameters P contains all

(p_x, p_y)

(m_x, m_y)

r

Fig. 2. Possible usage of design parameters in Shape Optimization

these parameters px, py, mx, my, r subject to box constraints. More details
on topics discussed in the following sections can be found in the master thesis
by Rathberger [8].

3.1 A second look at the gradient

If we pick an arbitrary design parameter p ∈ P and assume that our objec-
tive J depends only on the mass, the displacement in certain points and the
resulting van Mises stress σvM (handling of tensile stresses analogously) we
obtain:

J = J(p, u(p), σvM(p, u(p))) (6)

The total differential with respect to design parameter p reads as
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dJ

dp
=
∂J

∂p
+
∂J

∂u
· du
dp

+
∂J

∂σvM
·
(
∂σvM

∂p
+
∂σvM

∂u
· du
dp

)

=
∂J

∂p
+

∂J

∂σvM
· ∂σ

vM

∂p
+

(
∂J

∂u
+

∂J

∂σvM
· ∂σ

vM

∂u

)
· du
dp

(7)

Again, we want to eliminate the term du
dp by differentiating the state equation

Ku = f with respect to the design variable p and we get

du

dp
= K−1

(
df

dp
− dK

dp
· u
)
. (8)

Inserting equation (8) into equation (7) results in

dJ

dp
=
∂J

∂p
+

∂J

∂σvM
· ∂σ

vM

∂p
+

+

(
∂J

∂u
+

∂J

∂σvM
· ∂σ

vM

∂u

)
·K−1

(
df

dp
− dK

dp
· u
)

=
∂J

∂p
+

∂J

∂σvM
· ∂σ

vM

∂p
+

+

〈
K−1 ·

(
∂J

∂u
+

∂J

∂σvM
· ∂σ

vM

∂u

)
,
df

dp
− dK

dp
· u
〉

(9)

where we have used the fact that K is symmetric in the last transformation.
The three principal parts of the derivative in (9) have to be investigated
separately, which can be found in [4].

4 Numerical results for the shape optimization problem

The formulation for the design problem was already introduced in Section 1
with the only difference that now the geometry Ω changes but the thickness ρ
remains constant. We do not take into account the hole in the middle of
the C-frame because we want to simplify the geometry. We use a mesh with
828 triangular finite elements. Considering all the constraints from Section 1,
the critical constraints are the angles of the wings. Although σ11 can reach
critical values on some single elements, on most elements the constraints on
the stresses are automatically fulfilled if the constraints on the angles are
fulfilled. In the optimal design both wings almost reach their maximal allowed
deformation, see Fig. 3. The final design fulfills all constraints and the mass
has been reduced to 81.83% of the original value. For the original mass of
5.4223t that means a weight reduction of 985.1kg. The optimization process
required 79 iterations and 43.2 seconds for a set of 29 design parameters.
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Fig. 3. Comparison of the original and of the final deformed geometry
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Summary. This work deals with the motion of a long slender elastic fiber in a
turbulent flow. Neglecting the fiber effect on the turbulence, a centered differen-
tiable Gaussian field is derived for the randomly fluctuating component of the flow
velocity. The construction of the initial double-velocity correlation tensor is hereby
based on the k-ε model and Kolmogorov’s universal equilibrium theory. Its dynamic
is described by Taylor’s hypothesis of frozen turbulence. Using an empirical drag
coefficient, the developed fluctuation field leads to a correlated stochastic force that
can numerically be treated as white noise with flow dependent amplitude.

Key words: Fiber dynamics; Turbulence; k-ε model; Kolmogorov’s universal
equilibrium theory; Double-velocity correlation tensor; White noise

1 Motivation

The understanding of fiber-fluid interactions is of great interest for textiles
manufacturing in the melt-spinning process of nonwoven materials. The qual-
ity of the nonwoven material depends on the dynamics of hundreds of indi-
vidual endless polymer fibers that are curled and entangled by turbulent air
flows. Fiber-turbulence interaction is governed by many, very complex factors,
e.g. nature of flow, turbulent length scales, concentration and size of fibers.
For the application, we may assume that the turbulence is not significantly
affected by the fibers. Thus, the turbulent flow is determined under neglect of
suspended fibers, and its effect is studied on a single long slender fiber.

2 Fiber Dynamics

Consider a slender elastic fiber of length L and diameter d, d/L � 1, sus-
pended in a highly turbulent air stream. Its dynamic is described by the
Kirchhoff-Love equations for the motion of a Cosserat rod capable of large
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bending deformations [1]. In terms of these the fiber slenderness allows the
formulation of a wavelike system of nonlinear PDEs of 4th order with the
algebraic constraint of inexensibility

ω ∂ttr(s, t) = ∂s[T (s, t) ∂sr(s, t)]− Sb ∂ssssr(s, t) + ω g + fair(r(s, t)) (1)

(∂sr(s, t))2 = 1. (2)

Here, r : [0, l]× R+
0 → R3 might be interpreted as center line with arc length

s and time t, ω denotes the line weight. The inner forces stem from bending
stiffness Sb and traction T that acts as Lagrangian multiplier in the system.
The external forces arise from gravity g and aerodynamics f air.

The description of the fiber dynamics relies essentially on the model for the
drag force fair imposed on the fiber by the turbulent flow. The high Reynolds
number flow (with Re based on d) and the presence of small vortices indicated
by the relation η < d (with Kolmogorov’s length of turbulence η) motivate
the use of the empirical Taylor drag [5]. As f air lies in the plane spanned by
fiber’s tangent and relative velocity between fluid and fiber, vrel = u − ∂tr,
we decompose fair = fn

air + ft
air into a normal fn

air and a tangential part

ft
air with respect to the fiber’s position, t = ∂sr

‖∂sr‖2 , n = vrel−(vrel·t)t
‖vrel−(vrel·t)t‖2

fn
air = 0.5 ρ dCn ‖vn

rel‖2 vn
rel, Cn = 1 + 4

√
ν/(d ‖vn

rel‖2)

ft
air = 0.5 ρ dCt ‖vt

rel‖2 vt
rel, Ct = 5.4

√
ν ‖vn

rel‖2/(d ‖vt
rel‖22)

with density ρ and kinematic viscosity ν of the fluid.

3 Construction of Fluctuating Flow Velocity

Consider the flow to be subsonic, highly turbulent with small pressure gra-
dients and Mach number Ma < 1/3. It can be modeled as an incompressible
Newtonian fluid using the Navier-Stokes equations (NSE). Solving NSE with
Direct Numerical Simulation (DNS) gives the exact velocity field needed for
the determination of the force. However, DNS presupposes the resolution of
all vortices ranging from the large lT, energy-bearing ones to the smallest
η, viscously determined Kolmogorov vortices, lT/η = Re3/4. In spite of re-
cent high speed performances, this fact leads still to its impracticality in case
of high Re number flow. Stochastic models in contrast represent a reason-
able compromise between accuracy and computational efficiency [2]. They are
based on the Reynolds-averaged Navier-Stokes equations (RANS) where the
instantaneous velocity u is expressed as sum of mean ū and fluctuations u′

u(x, t) = ū(x, t) + u′(x, t). (3)

Applying in particular the standard k-ε model yields a deterministic descrip-
tion of mean velocity ū, turbulent kinetic energy k and dissipation rate ε.
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Thereby, the variables k and ε might be interpreted as parameters of a differ-
entiable random field representing the fluctuations u′

k(x, t) =
1

2
E[u′(x, t) · u′(x, t)], ε(x, t) = ν E[∇u′(x, t) : ∇u′(x, t)]. (4)

Definition 1. A turbulent flow is said to be a centered R3-valued random
field (u′x,t, (x, t) ∈ R3 × R+

0 ) where u′x,t ∈ L2(Ω,A,P) represents the velocity
fluctuation on the probability space (Ω,A,P). Its correlation tensor

Γ(x, t,y, τ) = E[u′(x, t)⊗ u′(y, τ)], (5)

corresponds with the covariance E[u′x,t u′y,τ ], where E[.] denotes the mean.

In the following we focus on Gaussian flows that are uniquely determined by
their correlation tensor. Assuming locally homogeneous and isotropic turbu-
lence the dynamics of Γ is modeled by an advection equation whose solution
coincides with Taylor’s hypothesis of frozen turbulence [4]

Γ(x, t,y, τ) = Γ̂(x− y, t− τ) = Γ0(x− y − ū(t− τ)). (6)

To construct its initial condition we note that in case of incompressibility the
tensor of 2nd order can be expressed by a single 1D function c ∈ C∞(R+

0 )

Γ0(z) = (c(z) +
z

2
∂zc(z)) I− ∂zc(z)

2z
z⊗ z, z = ‖z‖2. (7)

Theorem 1. Assume turbulent kinetic energy k and dissipation rate ε to be
constant. Let (u′x,t, (x, t) ∈ R3 × R+

0 ) be an isotropic, homogeneous and in-

compressible Gaussian flow. Choose its correlation function c ∈ C∞(R+
0 ) as

c(z) =
2

z3

∫ ∞

0

G(κ)

[
sin(κz)− cos(κz)κz

κ3

]
dκ (8)

where G ∈ C2(R+
0 ) is given by

G(κ) =





Kκ
−5/3
1

∑6
j=4 aj ( κκ1

)j κ < κ1

Kκ−5/3 κ1 ≤ κ ≤ κ2

Kκ
−5/3
2

∑9
j=7 bj ( κκ2

)−j κ < κ2

(9)

with

∫ ∞

0

G(κ) dκ = k and

∫ ∞

0

κ2G(κ) dκ =
ε

2ν
.

The parameters are a4 = 230/9, a5 = −391/9, a6 = 170/9, b7 = 209/9,
b8 = −352/9, b9 = 152/9 and K = ε2/3/2.

Then, (u′x,t, (x, t) ∈ R3×R+
0 ) is differentiable and fulfills the requirements

of Kolmogorov’s energy spectrum E (Fig. 1) as well as of the k-ε model (4).

The run of the energy spectrum E being a function of wave number κ results
mainly from Kolmogorov’s universal equilibrium theory [3] that states the
existence of an inertial subrange between the wave number of energy κe and
dissipation κd. Here, E is described by E(κ) = CK ε

2/3κ−5/3, κ ∈ (κe, κd)
according to Kolmogorov’s 5/3-Law.
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Fig. 1. Sketch of energy spectrum for isotropic turbulence

4 Stochastic Force Model

The modeling of the turbulence effects on the fiber is geared to the splitting
of the velocity field u into mean ū and fluctuating part u′ (3). Introducing
the mean relative velocity by v̄rel = ū− ∂tr, Taylor expansion of fair yields

fair(v̄rel + u′) = fair(v̄rel)︸ ︷︷ ︸
f̄ , deterministic

+∇fair(v̄rel) u′︸ ︷︷ ︸
f ′, stochastic

+O((u′)2). (10)

where ‖u′‖2∞ is usually less than 1% of the absolute velocity [4] and thus
negligible small. The deterministic force f̄ results from ū of RANS and ∂tr
of (1), (2), whereas the stochastic force f ′ inherits its properties from the
fluctuation field u′ of Sect. 3 due to linearity. In particular, we gain f ′ by
restricting u′ on the fiber

f ′(s, t) = ∇fair(v̄rel(r(s, t), t)) u′(x, t)|x=r(s,t). (11)

Dimensional analysis of fiber and turbulence reveals three characteristic
scales. The smallest vortices of size η do absolutely not affect the fiber due to
its bending stiffness. On the scale of the energy-bearing vortices lT in contrast,
inner and outer forces are in balance so that the arising entanglement play a
decisive role for the fiber dynamic. Over fiber length L, the outer forces, in
particular f̄ coming from the mean flow, dominate the fiber. As we are only
interested in a macroscopic description of the fiber motion, it is sufficient to
model the turbulence effects of the meso scale lT on the macro scale L instead
of resolving them explicitely. Asymptotic analysis of the correlation functions
with respect to lT/L� 1 shows that

f ′approx(s, t) = ∇fair(v̄rel(r(s, t), t)) D(r(s, t), t) w(s, t) (12)

based on white noise, w(s, t) ' N (0, I), is a good approximation for (11). The
fluctuation dependent amplitude D ∼

∫
z c(z) dz contains the information of

the correlations and carries thus all crucial data of the meso scale.
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5 Numerical Results with White Noise

Inserting (12) in (1) yields a nonlinear stochastic PDE with additive Gaussian
noise. One representative of its solution for a short temporal sequence is visu-
alized in Fig. 2. Apart from usual buckling effects that arise due to gravity and
move upwards because of the hyperbolic character of the system (Fig. 2, top),
the stochastic force causes additionally fiber entanglement on different scales,
random loops and a wide swinging range (Fig. 2, down). The computed statis-
tic quantities, e.g. mean fiber velocity, standard velocity deviation, swinging
range, coincide hereby quite well with the experimental measurements.

Fig. 2. Fiber dynamic without (top) and with (down) stochastic force f ′
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Summary. The conventional material from which silos are usually constructed is
steel, and the existing codes and standards on these structures reflect the design
criteria appropriate for an isotropic material. This paper deals with the design op-
timisation of the silos made from composite materials. The purpose of the present
study is to perform the design optimisation of cylindrical composite silos loaded
with the unsymmetrical external pressure caused by the action of wind. The design
methodology is outlined, and the effectiveness of the optimisation is demonstrated
using a particular example. In this case, the resultant optimised design produced
a 29% saving in wall thickness, and thus material cost, in comparison with the
non-optimised wall thickness.

1 Introduction

The standards applicable to the structural design of steel silo structures that
have the form of a shell of revolution are presented in reference [2]. This code
represents the basis of design, including fundamental requirements, reliabil-
ity differentiation, limit states, actions and environmental effects, material
properties, geometrical data, modelling of the silo for determining action ef-
fects, etc. Levels of rigour required for the design of silo structures depend on
the reliability of the structural arrangement and the susceptibility to differ-
ent failure modes. The following actions should be considered in the ultimate
limit state design of a silo [2]: filling and storage of particulate solids, dis-
charge of particulate solids (discharge loads), wind when the silo either full or
empty, snow, imposed actions or deformations (live loads), thermal loads, im-
posed deformation (foundation settlement). The optimum design procedures
addressing the first two cases (filling, storage, and discharge axisymmetric
loading) which include buckling and strength analysis of cylindrical compos-
ite silos were set out in reference [3]. The purpose of the present study is to
perform the design optimisation of cylindrical composite silos loaded with the
unsymmetrical external pressure caused by the action of wind.
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2 Silo Geometry, Wall Material Structure and Loading
Conditions

Typical silo design including a cylindrical main holding section and a conical
hopper is shown in Fig. 1, where H and dc are the height and diameter of the
cylindrical part of the structure. The wind actions set down in [1]. The empty
silo shell is subjected to wind pressure on the windward side over an arc of and
over the rest of the shell to a suction load as shown in Fig. 2 (θ ∈ [−30◦,+30◦]).
The pressure variation around an isolated silo may be defined in terms of the
circumferential coordinate, with its origin at the windward generator (see
Fig. 2):

p = ρV 2
∞Cp

where

Cp = −0.7 + 0.2dc/H + 0.4 cos θ + (1.1− 0.25dc/H) cos 2θ+

(0.42− 0.06dc/H) cos 3θ − (0.14− 0.04dc/H) cos 4θ − 0.08 cos 5θ

ρ is the density, and Vinf is the wind velocity [1]. The pressure distribution,
p(z, θ) is approximately assumed as constant over the height of the silo (see
Fig. 1).

Fig. 1. Silo geometry and loading.

 

+

-
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Fig. 2. Wind pressure distribu-
tion.

The composite material that is considered for the silo wall is a laminate,
consisting of the helical layer with ±ϕ fibre orientation and hoop layer (ϕ =
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90◦) (see Fig. 1). Here the ±ϕ layer is considered as an angle-ply orthotropic
layer consisting of an even number of alternating plies with angles +ϕ and
−ϕ. The structure of this layer is typical for the process of helical filament
winding [4]. The introduction of 90◦ oriented layers is based on the simplicity
and cost efficiency of the implementation of circumferential filament winding
for a cylindrical silo, combined with the fact that this type of reinforcement
would be used conventionally to withstand the applied internal pressure due
to filling, storage, and discharge of particulate solids. Correspondingly, the
design variables are the helical angle, ϕ and thicknesses of the layers, i.e., h90

and hϕ.

3 Design Optimisation of The Cylindrical Section of The
Silo

Minimisation of the material cost as a part of the cost effective silo design was
considered as the objective for optimisation. Thus, the minimum mass of the
silo structure was selected as the objective function. In terms of the design
variables introduced earlier the minimum value of the objective function will
be delivered if the following condition is satisfied:

h = h90 + hϕ → min (1)

where h is the total thickness (which determines the weight and effectively the
cost). The buckling constraint due to wind loading is imposed on the design
variables. Buckling analysis of the composite cylindrical section of the silo
subjected to the lateral pressure caused by the wind load has been performed
using MSC Patran finite element software package. Optimum design procedure
was based on the construction and analysis of the feasible domains for the
design variable ϕ, h90 and hϕ. Critical values of the parameter h90 were found
for given loading conditions (wind velocity), V∞, helical angle ϕ and thickness
hϕ. from the finite element buckling analysis. The cylinder was modelled with
four-node laminate elements. Linear eigenvalue analyses have been performed
to determine the buckling (critical) loads and buckled shapes of the cylindrical
part of silo. The corresponding critical values of h90 were found using the
bisection method for given values of helical angle and thickness. These values
determined the boundaries of the feasible domains for the design variables, ϕ
h90 and hϕ in the corresponding three-dimensional design space. Owing to the
specific analytical form of the objective function (1), it is possible to locate
the optimum values for the design parameters hϕ and h90 for every value
of the reinforcement angle ϕ. The contour lines, h = hcont of the objective
function(1) are determined by the equation

h90 = hcont − hϕ (2)

for each value of the angle ϕ. Geometrically, this equation represents a family
of planes oriented at angles of 45◦ to the coordinate planes(hϕ, ϕ) and (h90, ϕ)
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for different values of hcont , or the corresponding families of lines oriented
at angles or to the axes hϕ and h90 of the two-dimensional coordinate frames
for given values of angle ϕ. This allows the optimum values of the design
parameters within the given feasible domains to be found.

4 Example

The relevant geometric and material property data for the particular design
example considered in this study are: silo height H = 7000 mm, diameter
dc = 2600 mm. Composite material (glass-epoxy) properties: E1 = 44 GPa,
E2 = 9.4 GPa, G12 = 4 GPa, ν21 = 0.26.

The cylindrical shell was modelled and meshed using laminated shell ele-
ments (MSC Patran): 36 elements for the circumference and 20 elements for
the length of the cylinder. The bottom section of the shell was considered
clamped and the top one reinforced with the rigid ring. Buckling analyses
were performed for the critical wind velocity of 100 km/h. Typical buckling
mode is shown in Fig. 3. The corresponding critical values of h90 were de-

 

Fig. 3. Buckling mode under the
wind action.

Fig. 4. Critical thicknesses h90 and hϕ.

termined using the design procedure described in Section 3. Based on these
calculations the limiting critical surface h̄90(ϕ, hϕ) was built up and opti-
mum values of the design parameters found using conditions specified by the
equations (1) and (2). Graphical interpretation of the solution is illustrated in
Fig. 4, where all the above-mentioned components (the objective function con-
tour lines and constraints) are plotted for ϕ = 0◦, 20◦, 40◦, 60◦, 90◦ As can

be seen, the optimum point has the coordinates ĥ90 = 1.28 mm, ĥϕ = 0.
Accordingly, the corresponding minimum thickness of the shell occurs for
h = ĥ90 = 1.28 mm. The maximum total thickness lying on the design surface
is h = 1.8mm, which is 29% higher than the minimum value. Comparison
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of this result with the optimum design solution obtained in [3] for the same
composite cylindrical shell subjected to the axial compressive load caused
by filling/storage/discharge (axisymmetrical loading) shows that the thick-
nesses required to meet the wind buckling limiting constraints are less than
those determined by the axial buckling and radial deflection. As was shown
in [3], the optimum design parameters were equal to ϕ̂ = ϕ, ĥϕ = 0, and

ĥ90 = 3.44 mm for angles ϕ > 15◦ and provided the same constant value of
the objective function h = hϕ + h90 = 3.44 mm. The minimum thickness of
the shell, h = 3.32 mm was delivered by the following parameters: ϕ̂ = 0◦,
ĥϕ = 2.9 mm and ĥ90 = 0.4216 mm. As can be seen, the shell thickness values
obtained for the axisymmetrical case [3] are well above the critical surface
h̄90(ϕ , hϕ) constructed in the case under consideration (wind-loaded shell)
(see Fig. 4).

5 Conclusions

Results of the analysis performed in this study indicate that the optimum
reinforcement orientation for the composite silo shell operating under wind
load is determined by the angle ϕ = 90◦. The corresponding thickness of
the wall can be found from the buckling analysis for the specific shell geom-
etry (dc/H). In general, the design solution for composite cylindrical silo is
controlled mainly by the buckling condition under axial load and the radial
deflection constraint.

Acknowledgement. The author is grateful to Mr Nicolas Aval (SUPAERO, France)
for helping to conduct finite element computations related to this study.
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Summary. In this paper, we perform a linear stability analysis using normal modes
on the two-dimensional system of two superposed fluids confined between two infinite
plates in the presence of a large temperature gradient. The movement of the fluids is
characterized by a combination of inertial and buoyancy forces, thus we are dealing
with a mixed convection problem. The results of the linear stability analysis show
that for large wave numbers, the small amplitude waves travel with the interface
velocity .

Key words: Float glass, mixed convection, stability analysis.

1 Mathematical Formulation

The float glass process, since its invention by Allistair Pilkington in 1952,
is used to manufacture thin long high quality sheets of glass. However, the
increasing demand of thinner glass has dramatic consequences over its optical
quality. Our work was motivated by a series of investigations performed over
the finite products which showed the existence of many short wave patterns,
probably affecting strongly its optical quality.

Convective instabilities for two superposed fluids was treated by many
authors in terms of thermocapillarity and buoyancy effects [5]. In the case of
horizontal temperature gradient, the basic profile is not trivial, giving rise to
a complex flow and a non-linear vertical temperature profile [4].

Short wave limits were first investigated in [3]. Since then, various works
analyze the stability of small amplitude waves for different kind of models
[1, 2]. In this paper, we emphasize the mixed convection effects over the sta-
bility of two superposed fluids that have different characteristics (kinematical
viscosity, density).



Two-Dimensional Short Wave Stability Analysis of the Floating Process 377

1.1 Governing system of motion

Two immiscible, incompressible, viscous fluids, labelled j = 1, 2, are confined
between two planes subject to a large horizontal temperature gradient. The
upper fluid is denoted with 2 and the lower fluid with 1.

The equations that govern the system of motion are mass, momentum and
energy coupled with the Boussinesq approximation:

∇ · uj = 0, ρ̄j

[
∂uj
∂t̄

+ (uj · ∇)uj

]
= −∇p̄j + µj∆uj − ρ̄jg (1)

∂Tj
∂t̄

+ (uj · ∇)Tj = αj∆Tj , j = 1, 2 (2)

where uj = (ūj , w̄j) is the velocity, g = (0, g), g is acceleration due to the
gravity, p̄j is the pressure, µj is the dynamic viscosity, ρ̄j is the density, αj is
the thermal diffusivity and Tj is the temperature of the fluid for each phase.

The Boussinesq approximation is plugged into the gravity term and charac-
terizes the thermal expansion of each fluid, ρ̄j = ρj [1− βj (Tj − Tref )] , j =
1, 2, where βj is the thermal expansion coefficient and T cref is the smallest
temperature of the system.

The system is coupled with the interface (z̄ = h̄(x̄, t̄)) and boundary con-
ditions. The interface moves with the velocity of the flow, whereas normal
and tangential stresses are continuous through the interface. We assume no-
slip and no-penetration at the interface. Heat transfer condition ensures that
fluxes and temperatures are equal at the interface. Moreover, we prescribe the
mass flow rate conditions and the kinematical condition at the interface.

We make dimensionless the velocities, distance, time, pressures for both
fluids with respect to U the speed of the upper plate, d2 the height of the
upper fluid layer, d2/U , µ1U/d2. Non-dimensional temperatures are given by

θ =
T−T cref
∆Tref

, where T href and T cref are the largest and respectively the smallest

temperatures of the system. In the float glass process these temperatures
correspond with inlet and outlet temperatures of the float bath. We denote
with ∆Tref the difference between T href and T cref , (i.e. ∆Tref = Thref − T cref ).

We express all the non-dimensional numbers of the upper fluid with respect
to the non-dimensional numbers of the lower fluid. Moreover, we introduce the
following notation: d = d1

d2
, µ = µ2

µ1
, ρ = ρ2

ρ1
, α = α2

α1
, β = β2

β1
, κ = κ2

κ1
.

1.2 Basic flow

The system of motion for the basic flow has the form:

∂3Uj
∂z3

= Nj
∂Θj
∂x

, Uj = Uj(z), Θj = Θj(x, z) (3)

Uj
∂Θj
∂x

= Mj

(
∂2Θj
∂x2

+
∂2Θj
∂z2

)
, j = 1, 2 (4)
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coupled with the following interface and boundary conditions:

U1(0) = U2(0), µU ′2(0) = U ′1(0), Θ1(0) = Θ2(0), κΘ′2(0) = Θ′1(0) (5)

U1(−d) = 0, U2(1) = 1, Θ1(−d) = Θ0
c + xΘ1

c , Θ2(1) = Θ0
h + xΘ1

h (6)

where N1 = Gr/Re, N2 = ρGrβ/(µRe), M1 = 1/(RePr), M2 = α/(RePr).
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Fig. 1. The velocity (left) and temperature (right) profiles for the basic flow.

The solutions of the above system are represented in Fig. 1. In the case
when temperature gradient plays no role (Gr = 0), the velocity and tempera-
ture profiles look similar like in the classic case for low Prandtl numbers (i.e.,
small kinematical viscosity). Further, the temperature gradient in the horizon-
tal direction is increased and the lower fluid starts to move due to buoyancy
effects. For large values of the Grashof number, the profiles describe exactly
the recirculation of the fluid in the stable case.

2 The Disturbance System of Motion.

We obtain the stability system by perturbing the basic flow by infinitesi-
mal disturbances, linearizing and searching for solutions proportional with
eik(x−ct), where k is the wave number and c is the wave speed. Further, we
introduce the stream function defined by ũj =

∂ϕj
∂z , w̃j = −ikϕ̃j , j = 1, 2 and

we obtain the Orr-Sommerfeld and the energy equations which governs the
stability of the basic flow.

ϕ
(iv)
j −2k2ϕ

′′
j +k4ϕj = ikReDj(Uj−c)(ϕ

′′
j−k2ϕj)−ikReDjϕj

∂2Uj
∂z2

+ikEj
Gr

Re
θ̃j

(7)

ikθ̃j(Uj − c) + ϕ′j
∂Θj
∂x
− ikϕj

∂Θj
∂z

=
Fj

RePr

(
∂2θ̃j
∂z2

− k2θ̃j

)
(8)

where D1 = 1, D2 = ρ/µ, E1 = 1, E2 = ρβ/µ, F1 = 1, F2 = α and j = 1, 2.
The system is coupled with the following interface and boundary conditions:
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ϕ1 = h̃(c− U1), ϕ2 = h̃(c− U2)→ ϕ1 = ϕ2 (9)

ϕ′1 + h̃
∂U1

∂z
= ϕ′2 + h̃

∂U2

∂z
, µ

(
ϕ
′′
2 + k2ϕ2

)
= ϕ

′′
1 + k2ϕ1 (10)

ϕ
′′′
1 − µϕ

′′′
2 − 3k2(ϕ′1 − µϕ′2)−

−ikRe1

[
(U1 − c) (ϕ′1 − ρϕ′2) + ϕ1U

′
1

(
ρ

µ
− 1

)]
= ik3 Re

We
h̃ (11)

θ̃1 = θ̃2, κ

(
ikh̃

∂Θ2

∂x
− ∂θ̃2

∂z

)
= ikh̃

∂Θ1

∂x
− ∂θ̃1

∂z
(12)

(BC) z = −d: ϕ1 = ϕ′1 = θ̃1 = 0; z = 1: ϕ2 = ϕ′2 = θ̃2 = 0

3 Short Wave Limit

In the short wave limit, we are looking for waves which has amplitude and
wavelength at the same order of magnitude, although much smaller than the
characteristic length. In order to keep x and z scales at the same order we
change our perspective from the macroscopic to microscopic approach by con-
sidering that d/dz ∼ O(k) with k →∞.

The eigenvectors of the perturbation system of motion should remain
bounded, thus we are looking for solutions in the form, ϕ1, θ1 ∼ O(ez);
ϕ2, θ2 ∼ O(e−z).

Using the asymptotic expansions with respect to k, the wave number, we
look for the solutions of the form ϕj = ϕj0+ 1

kϕ
j
1+ 1

k2ϕ
j
2+. . ., with 1/k → 0 and

the dimensionless numbers fixed. Analogously we study asymptotic expansions
of θ̃j , c, h̃ with j = 1, 2.

Further, we obtain the leading order system of motion. The real positive
wave speed c0 is the analytical solution of the system. The wave propagates
faster when the upper layer is less viscous than the lower fluid layer. Instability
occurs whereas the inertia of the lower fluid decreases and buoyancy dominates
the flow, hence the disturbance propagates faster when the viscosity effects
dominate the lower fluid domain.

The wave velocity grows for higher values of Grashof number, so the tem-
perature destabilizes the system (Fig. 2 (left)). The wave propagates faster
when the upper fluid is less viscous than the lower fluid. This results is verified
for the no-temperature case, where the wave propagates in the direction of
the less viscous flow [2]. At this level, surface tension has no effect over the
leading order eigenvalue.

The analytical solution of the first order system, (the imaginary eigenvalue
c1), is the parameter which influence directly the stability of our problem.
From Fig. 2 (right), we can see that the more viscous fluid layer slows down the
growth of the disturbance stabilizing the flow, as well as the surface tension.
The stability of the system is decreasing with temperature gradient.
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Fig. 2. The wave speed c0 with respect to the viscosities ratio for different values of
the Grashof number (left) and the eigenvalue c1 with respect to the viscosities ratio
for different values of the Reynolds number (right).

Moreover, in our particular case (d = 5), the system is unstable for all
values of the viscosity ratio. Inertia stabilize the flow when the upper layer is
much more viscous than the lower layer. The disturbances decrease in mag-
nitude when the upper layer increases in thickness. The surface tension has
a stabilizing effect, which is in perfect agreement with the classical theory.
When the influence of the surface tension decreases (i.e., large Weber num-
ber) the viscosity apparently plays no role in the stability. Moreover, large
temperature gradient and high inertia destroy any effect that may appear due
to the viscosity difference.

A prior investigations over the model used in this paper showed that in the
long waves limit the system is stable, result which is in perfect agreement with
the literature and the real float glass process. Although, the small amplitude
waves are found to be unstable, strongly influenced by the governing factors.
The short waves travel with the interface velocity forming patterns of standing
waves, which later can be seen in the finite products of the process.
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Summary. The question of interest in the present study is the inverse problem
for high precision glass forming, i.e. ‘How to design the mould and the temperature
regime so that at the very end of the forming process we will get at room temperature
a prescribed glass geometry with a precision in the order of the Micron?’ The aim
is to eliminate from the manufacturing process the costly and time-consuming post-
processing when the final shape does not conform precisely to the desired one.

Key words: glass forming, stress/structural relaxation, optimization

1 Description of the forward problem

The present study focuses on the cooling stage of the glass forming process
and provides a method based on computer-aided simulations to optimize the
cooling treatment in order to keep the residual stresses below a given admis-
sible threshold and identify the required initial geometry of the glass piece so
that after cooling, it matches precisely the desired one.

The case treated here corresponds to an optical device and the thermo-
mechanical analysis is performed using the commercial Finite-Element code
Ansys. The geometry and boundary conditions are shown on Figure 1. The
glass piece has a symmetry of revolution and occupies the domain Ω bounded
by the surface Γ = Γ1∪Γ2∪Γ3∪Γ4 at t = 0. It is assumed to be initially stress-
free and with uniform temperature T0 = 873.15 K. Radiative heat transfer
is ignored so that the temperature field within the glass piece is dictated by
the heat diffusion equation. Moreover, heat is lost to the surrounding through
convective heat transfer characterized by a constant coefficient of heat trans-
fer h. In this optimization problem, the time-dependent temperature of the
surrounding Ta(t) is the control used to minimize an objective function yet to
be defined.

Upon cooling, the glass behavior undergoes drastic changes. At high tem-
perature (T > Tg + 100 K) it behaves like a Newtonian liquid while at lower
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Fig. 1. Initial glass piece geometry with corresponding Finite Element mesh and
boundary conditions. The deformed glass geometry (after cooling) with the associ-
ated map of the residual Von Mises stresses is also shown.

temperatures (T < Tg − 50 K), classical linear elasticity applies. In the inter-
mediate temperature range, the glass is best described as a viscoelastic solid
where stress and structure relaxation occur. The state of the structure of the
glass is characterized by the fictive temperature Tf (x, t) a concept well estab-
lished after the work of [2]. Accordingly, constitutive laws may be expressed
in the following integral form,

sij(x, t) = 2

∫ t

0

G (ξ(x, t)− ξ(x, t′)) ∂eij(x, t
′)

∂t′
dt′ , (1)

σ(x, t) = 3K (ε(x, t)− εth(x, t)) , (2)

where sij , σ and eij , ε are the deviatoric and volumetric parts of the stress
and strain tensor respectively. The bulk modulus K is chosen to be con-
stant while the shear modulus G is a function of the elapsed reduced time,
ξ(x, t)−ξ(x, t′). A classical Arrhenius model is used to represent the influence
of the temperature on the relaxation behavior so that the relaxation time is
expressed as:

ξ(x, t) =

∫ t

0

τref
τ(T, Tf , t′)

dt′ =

∫ t

0

e
∆H
R

„
1
T0
− β
T (x,t′)−

1−β
Tf (x,t′)

«

dt′ , (3)

where τref and τ(T, Tf , t
′) are the relaxation times at the initial temperature

and the temperature T , respectively. β is a constant (0 < β < 1), ∆H the
activation energy and R the ideal gas constant. The shear modulus and fictive
temperature are expressed in the form of Prony series, viz
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G(ξ) = G∞ +
n∑

i=1

Gie
−ξ/λi with Gi = νi(G0 −G∞) and

n∑

i=1

νi = 1 , (4)

Tf (x, t) =

m∑

i=1

ωiTf i(x, t) with

m∑

i=1

ωi = 1 . (5)

In eqs. (4) and (5), G0 and G∞ are the initial and final shear moduli, respec-
tively, while Gi and ωi are weights and λi are constants associated with a
discrete relaxation spectrum in shear. Tf i are the partial fictive temperatures
and these must satisfy the following ODE, [1]:

dTf i
dt

= −Tf i − T
µi

dξ

dt
, (6)

where µi are constants associated with a discrete structural relaxation spec-
trum. Finally, the thermal strain in eq. (2) is given by:

εth = αg (T − T0) + (αl − αg) (Tf − T0) , (7)

where αg and αl are the coefficients of thermal expansion of solid and liquid
glass respectively. The glass transition occurs around Tg = 773.15 K.

The glass piece is assumed to be traction free and slides without friction on
its base. Numerical simulations proceed by first computing the temperature
field until the temperature in the glass is uniform and equal to the room
temperature (293.15 K) and then impose it as a load to the structural analysis.
A typical map of the residual Von Mises stresses can be seen on Figure 1.

2 Optimization of the cooling curve

A first step in the identification of the required initial shape consists in opti-
mizing the cooling curve in order to reduce the permanent stresses produced
by temperature gradients. To this end, the algorithm proposed by [3] was
employed which attempts to reduce the total cooling period while keeping
residual stresses below a prescribed threshold, σadm.

As seen on Figure 2, three regions define the cooling curve. The stresses
only have the ability to relax in the first region characterized by Tg − 50 <
Ta < Tg + 100. The optimization is therefore restricted to this part of the
cooling curve. In the region to be optimized, the cooling curve is defined by
N = 7 key-points with locations (i∆t, Ti), i = 1, . . . , N , where ∆t is a time
interval. The initial and final temperatures are fixed to Ta(t = 0) = T0 and
Ta(tf = (N + 1)∆t) = 723.15K and the temperature is interpolated linearly
between the key-points. The optimization problem has therefore N+1 degrees
of freedom, namely the N values of the temperature Ti and ∆t.

The aim of the optimization is to reduce the total cooling time tf subject
to the constraint that the maximum value of the Von-Mises stresses should not
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Fig. 2. (a): Initial and optimized cooling curves for σadm = 5 × 106 Pa, σadm =
5× 107 Pa; (b): Convergence history of the proposed algorithm for each line Γi.

exceed σadm at room temperature. Moreover, realistic cooling curves should
be monotonically decreasing and the slope bounded by a constant κ = 1K/s
in order to avoid exceedingly large temporary stresses. Accordingly, the opti-
mization problem is formulated as follows:

min
Ti,∆t

tf (1 + P1 + P2 + P3) , (8)

where the Pi correspond to the penalty functions associated with each con-
straint. These are given by:

P1 =




C1

max
x∈Ω

(σVM (x,t=te))−σadm
σadm

if max
x∈Ω

(σVM (x, t = te)) > σadm

0 if max
x∈Ω

(σVM (x, t = te)) ≤ σadm

P2 =

{
C1

Ti+1−Ti
T0

if Ti+1 > Ti

0 if Ti+1 ≤ Ti
, P3 =

{
C1

Ti+1−Ti
κ∆t if ||Ti+1 − Ti|| > κ∆t

0 if ||Ti+1 − Ti|| ≤ κ∆t

The constant C1 is chosen to be equal to 106. The Nelder-Mead simplex direct
search method from Matlab was adopted to minimize eq. (8).

The initial and optimized cooling curves for σadm = 5 × 106 Pa and
σadm = 5×107 Pa are shown on Figure 2 (a). As expected when the constraint
on the maximum admissible Von Mises stress is least severe, a much quicker
cooling is possible. The shape of the cooling curve for σadm = 5×106 Pa is also
as expected: after an initial rapid cooling, the temperature remains approx-
imately constant. This feature allows the stresses to relax to the admissible
level. Finally, the map of the residual Von Mises stresses when σadm = 5×106

Pa shown on Figure 1 confirms that, the level of stress is kept below σadm.
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3 Identification of the required initial geometry

In order to describe the algorithm which tackles the inverse problem of identi-
fying the required initial geometry, notations are introduced. Let M d

1 , . . . ,M
d
L

denotes the L boundary nodes of the desired glass geometry at room temper-
ature. The required initial geometry is found by updating the location of the
boundary nodes M j

i iteratively (the superscript indicates the iteration num-

ber). At each iteration N j
i corresponds to new location of the node M j

i in the

deformed geometry and Uj
i is the associated displacement. The algorithm is

defined in pseudo-code notation as follows:

1. for i=1 to L {
OM1

i = OMd
i ; ON1

i = OM1
i + U1

i ; ∆1
i = OMd

i −ON1
i ; } j=2;

2. Do {
for i=1 to L {
OMj

i = OMj−1
i + ∆j−1

i ; ONj
i = OMj

i + Uj
i; ∆j

i = OMd
i − ONj

i; }
j=j+1;}
While max(||∆j

i||) > ε

Stated in simpler terms, the initial guess for the required initial boundary node
locations is taken to be the location of the nodes of the desired geometry at
room temperature. At each iteration the residual vector (∆j

i) which measures
how far the deformed geometry is from the desired one is evaluated and added
to the previous guess of the required initial boundary node location.

This algorithm was tested for the case when the desired geometry at room
temperature corresponds to the initial geometry on Figure 1 and the cooling
treatment is as shown on Figure 2 (a) with σadm = 5 × 106 Pa. The conver-
gence history is displayed on Figure 2 (b). For each of the Γi of the contour

Γ , the maximum of the Euclidean norm of ∆j
i is plotted against the number

of iteration. The convergence rate is around two decades per iteration which is
very satisfactory and the Micron threshold is achieved after three iterations.
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Summary. A nonlinear first-order PDE describing the displacement of a glass sur-
face subject to solid particle erosion is presented. The analytical solution is derived
by means of the method of characteristics. Alternatively, the Engquist-Osher scheme
is applied to compute a numerical solution.

Key words: solid particle erosion, kinematic condition, single PDE of first
order, characteristic-strip equations, Engquist-Osher scheme

1 Introduction

Some modern television displays have a vacuum enclosure, that is internally
supported by a glass plate. This plate may not hinder the display function.
For that reason it has to be accurately patterned with small trenches or holes
so that electrons can move freely from the cathode to the screen. One method
to manufacture such glass plates is to cover it with an erosion-resistant mask
and blast it with an abrasive powder. In Section 2 we present a nonlinear
first-order PDE modelling this so-called solid particle erosion process. Next,
in Section 3, we present the analytical solution using the method of charac-
teristics. Alternatively, in Section 4, we briefly describe a numerical solution
procedure.

2 Mathematical Model for Powder Erosion

In this section we outline a mathematical model for solid particle erosion, to
produce thin trenches in a glass plate; for more details see [4].

Consider an initially flat substrate of brittle material, covered with a line-
shaped mask. We introduce an (x, y, z)-coordinate system, where the (x, y)-
plane coincides with the initial substrate and the positive z-axis is directed



A Mathematical Model for the Mechanical Etching of Glass 387

into the material. A continuous flux of alumina (Al2O3) particles, directed
in the positive z-direction, hits the substrate at high velocity and removes
material. The position z = ζ(x, t) of the trench surface at time t is governed
by the kinematic condition

ζt + Φ(x)f(ζx) = 0, 0 < x < 1, t > 0, (1)

where x is the transverse coordinate in the trench, and where Φ(x) is the
particle mass flux, which will be specified later. The spatial variables ζ and
x are scaled with the trench width and the time t with a characteristic time
needed to propagate a surface at normal impact over this width. The function
f = f(p) in (1) is defined by

f(p) := −
(
1 + p2

)−k/2
, (2)

with k a constant (2 ≤ k ≤ 4). A theoretical model predicts the value k = 7/3,
[3]. Equation (1) is supplemented with the following initial and boundary
conditions:

ζ(x, 0) = 0, 0 < x < 1, (3a)

ζ(0, t) = ζ(1, t) = 0, t > 0. (3b)

The boundary conditions in (3b) mean that the trench cannot grow at the
ends x = 0 and x = 1.

3 Analytical Solution Method

We can write equation (1) in the canonical form

F (x, t, ζ, p, q) := q − Φ(x)
(
1 + p2

)−k/2
= 0, (4)

with p := ζx and q := ζt. The solution of (4) can be constructed from the
following IVP for the characteristic-strip equations [1]

dx

ds
= Fp = Φ(x)

kp

(1 + p2)k/2+1
, x(0;σ) = σ, (5a)

dt

ds
= Fq = 1, t(0;σ) = 0, (5b)

dζ

ds
= pFp + qFq = Φ(x)

1 + (k + 1)p2

(1 + p2)k/2+1
, ζ(0;σ) = 0, (5c)

dp

ds
= −(Fx + pFζ) = Φ′(x)

1

(1 + p2)k/2
, p(0;σ) = 0, (5d)

dq

ds
= −(Ft + qFζ) = 0, q(0;σ) = Φ(σ), (5e)
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where s and σ are the parameters along the characteristics and the initial
curve, respectively. Note that the solution of (5b) and (5e) is trivial, and we
find t(s;σ) = s and q(s;σ) = Φ(σ).

In order to model the finite particle size, which makes that particles close
to the mask are less effective in the erosion process, we introduce transi-
tion regions of thickness δ. We assume that Φ(x) increases continuously and
monotonically from 0 at the boundaries of the trench to 1 at x = δ, 1− δ. The
parameter δ is characteristic of the (dimensionless) particle size and a typical
value is δ = 0.1. We adopt the simplest possible choice for Φ(x), i.e.,

Φ(x) =





x/δ if 0 ≤ x < δ,

1 if δ ≤ x ≤ 1− δ,
(1− x)/δ if 1− δ < x ≤ 1.

(6)

As a result of (6), the growth rate of the surface position close to the mask is
smaller than in the middle of the hole. Since Φ(0) = Φ(1) = 0, we obtain from
(5) the solutions x(t; 0) = ζ(t; 0) = 0 and x(t; 1) = 1, ζ(t; 1) = 0, implying
that the boundary conditions (3b) for ζ are automatically satisfied.

By introducing transition regions, we create intersecting characteristics.
Therefore, the solution of (4) can only be a weak solution and it is anticipated
that shocks will emerge from the edges x = δ and x = 1 − δ. Let x = ξs,1(t)
and x = ξs,2(t) denote the location of the shocks at time t originating at x = δ
and x = 1 − δ, respectively. Each point (ξs,i(t), t) (i = 1, 2) on these shocks
is connected to two different characteristics that exist on both sides of the
shocks. The speed of these shocks is given by the jump condition

dξs,i
dt

[p] = −[Φ(x)(1 + p2)−k/2], (i = 1, 2), (7)

where [p] denotes the jump of p across the shock. Thus, we can distinguish the
following five regions in the (x, t)-plane: the left transition region 0 ≤ x ≤ δ
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Fig. 1. Characteristics and shocks of (5), for δ = 0.1 and k = 2.33.
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(region 1), the right transition region 1 − δ ≤ x ≤ 1 (region 2), the interior
domain left of the first shock (region 3), the interior domain right of the second
shock (region 4) and the region between the two shocks (region 5); see Fig. 1.
Note, that the location of the shocks depends on the solution through (7).

We can derive the analytical solution of (5) in the regions 1, 3 and 5,
coupled with a numerical solution of (7). The solution in the other two region
follows by symmetry; for more details see [4]. The results are collected in
Fig. 2, which gives the solution for ζ and p at time levels t = 0.0, 0.1, . . . , 1.0 for
δ = 0.1 and k = 2.33. This figure nicely displays the features of the solution: a
slanted surface in the transition regions, a flat bottom in the interior domain
and a curved surface in between. Also, inwardly propagating shocks are clearly
visible.
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Fig. 2. Analytical solution for the surface position (left) and its slope (right). Pa-
rameter values are δ = 0.1 and k = 2.33.

4 Numerical Solution Method

Alternatively, we will compute a numerical solution of (1). To that purpose,
we cover the domain [0, 1] with control volumes Vj = [xj−1/2, xj+1/2) of equal
size ∆x = xj+1/2 − xj−1/2. Let xj be the grid point in the centre of Vj .
Furthermore, we introduce time levels tn = n∆t, with ∆t being the time
step. Let ζnj denote the numerical approximation of ζ(xj , t

n). A finite volume
numerical scheme for (1) can be written in the generic form

ζn+1
j = ζnj −∆tΦ(xj)F

(
pnj−1/2, p

n
j+1/2

)
, (8)

with pnj±1/2 a numerical approximation of p(xj±1/2, t
n) and F = F (p`, pr)

the numerical flux function, that we assume to depend on two values of p.
The numerical flux F

(
pnj−1/2, p

n
j+1/2

)
is an approximation of f(p(xj , t

n)).
We approximate pnj±1/2 by central differences and take the Engquist-Osher
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numerical flux function [2]. For our particular function f(p), which is not
convex, it reduces to

F (p`, pr) =





f(p`) if p`, pr ≥ 0,

f(pr) if p`, pr < 0,

f(0) if p` < 0 ≤ pr,

f(p`) + f(pr)− f(0) if pr < 0 ≤ pr.

(9)

The numerical solution computed with (8) and (9) is presented in Fig. 3. It
is computed for k = 2.33 and δ = 0.1 with grid size ∆x = 5× 10−3 and time
step ∆t = 5 × 10−3. Clearly, it is an accurate approximation of the exact
solution in Fig. 2. Finally, both the analytical and numerical solution are in
good qualitative agreement with experimental results; see also [4].
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Fig. 3. Numerical solution for the surface position. Parameter values are δ = 0.1
and k = 2.33.
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Summary. This article discusses mathematical outlines of the numerical project
combining particle method with radiation models in order to simulate glass cool-
ing process. Its initial part gives a sketch of the particle Finite Pointset Method
(FPM) [1], the next one debriefs the radiation models considered to implement in
the method framework and the final one presents some preliminary, qualitative re-
sults of current research.
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1 Project

Current research concentrates on numerical simulations of glass cooling pro-
cess. Glass has many applications and some of them raise high demands in
respect to its expected quality and properties. Hence, there is a strong in-
terest of glass-industry in tools which could help to master controlling and
time-predicament of this process. The ultimate goal of this project is possible
creation of industrially applicable tool addressing this subject. Technically we
try to achieve this by combining the power of FPM, a method extensively
developed at Fraunhofer Institut [1], with radiation models presented briefly
in the next section [2].

During cooling glass undergoes a transition from viscous fluid to amor-
phous solid body. Therefore at the initial stages of the process we have to
deal with moving boundaries. That is the place where mesh-free methods can
be helpful. Their main advantage is that they allow to avoid the mesh and all
mesh-related operations, like reconstructions and/or surface tracking, which
significantly simplifies code structure. Simply, the changes in surface geometry
may be followed by straightforward observation of moving particles.

The cooling itself obviously involves heat transfer by conduction or/and
radiation. While the first mechanism does not create any problems from ma-
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thematical standpoint then the situation is different for radiation. The latter
one is dominant for high temperatures, so is required for full description, and
its 3D and global character creates additional difficulties which must be solved
in order to deal with it successfully.

2 FPM

FPM is a particle method, where particles used as a representation of a system
carry physical properties (energy, momentum, etc.) and possess their own
characteristics (density, temperature, velocity etc.). The prescribed quantities
change according to the governing equations:

� mass conservation equation

dρ

dt
+ ρ · ∇u = 0 (1)

� momentum equation

d(ρu)

dt
+ (ρu) · ∇u = ∇(S)−∇(p) + ρg (2)

� energy equation

d(ρE)

dt
+ (ρE) · ∇u = ∇(S · u)−∇(p · u) + ρg · u (3)

� eventual additional conditions (e.g. incompressibility constraint).

Other most important features of the method may be itemized as follows:

� Particles are understood only as a mathematical representation of
macroscopic fluid elements (they are NOT fluid elements in a physical
sense).

� Approximation by Weighted Least Squares (WLS) – allows to compute
values of physical fields and discretise differential operators at arbi-
trary point of the computational domain using only particles (no mesh
necessary here).

� Boundary conditions introduced by boundary particles (possessing proper
characteristic: density, velocity, etc.) and boundary elements (segments
composing poly-line in 2D, patches in 3D).

3 Radiation models

FPM in our project is a general dynamics engine for solving set of equa-
tions describing time behavior of the considered system. This section presents
shortly the models of radiation that are supposed to extend the capabilities
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of the basic program by delivering all radiation-related data required for time
integration of the problem.

The main task is to solve following Energy Transfer Equation (ETE):

cmρm
∂T

∂t
= ∇ · (kh∇T − q(r, T )) (4)

with boundary condition:

kh
∂T

∂n
= h(Ta − T ) + επ

(
na
ng

)2

·
∫

opaque

[B(Ta, λ)−B(T, λ)] dλ (5)

where cm is a specific heat at constant pressure, ρm density, kh thermal
conductivity, T temperature, n refractive index (a–surrounding, g–glass), B
Planck’s function and λ wavelength. We are particularly interested in function:
q which represents radiative heat flux. All models mentioned in following sec-
tions have only one purpose: determine q or more specifically ∇·q (divergence
of radiative heat flux).

3.1 Rosseland approximation

This rather straightforward approximation describes the radiative term in a
diffusion-like manner:

q = −krad∇T, (6)

where

krad = 16n2σ
3κros

T 3 and 1
κros(T ) =

R∞
0

1
κ(λ)

dB(T,λ)dλ
d TR∞

0
dB(T,λ)dλ

d T

Its main disadvantage is that its usage, though easy, should be restricted only
to optically thick media which not always takes place in industrial applica-
tions.

3.2 Radiative Transfer Equation (RTE) approximations

The next approximations may be classified into a single category as having a
common point: all try to find directly ∇ · q(r, T ) using additional Radiative
Transfer equation (RTE):

Ω · ∇I(r, Ω) = κB(T (r))− κI(r, Ω) (7)

with boundary condition (b.c.):

I(r, Ω) = %I(r, Ω′) + (1− %)B(Ta)) (8)

Here I stands for intensity, r for position, Ω a direction unit vector (versor),
Ta surrounding temperature, % reflectivity and B(T ) is a Planck’s function
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integrated over wavelengths. Found intensity function may be used directly
for calculation of div (q) according to formula:

∇ · q(r, T ) = κ

[
4π B(T (r))−

∫

S2

I(r, Ω)dΩ

]
(9)

(S2 means integration over unit sphere).

Formal Solution (FS)

The approximation uses the fact that formally the solution of equation (7)
may be written as:

I(r, Ω) = B(Ta) exp (−κd(r, Ω)) + κ

Z d(r,Ω)

0

B(T (r− sΩ)) exp (−κs) ds (10)

(with d(r, Ω) as a distance between point r and boundary in given direction)
and further:

I(r, Ω) = B(Ta) exp (−κd(r, Ω)) +B(T (r)) (1− exp (−κd(r, Ω)))

− 1

κ

dB(T (r))

dt
∇T (r) ·Ω [1− (1 + κd(r, Ω)) exp (−κd(r, Ω))] .

(11)

Improved approximation

In this method the divergence of the radiative heat flux may be computed
explicitly from (see [2]):

∇ · q(r) = κ [B(T (r))−B(Ta)] ·
Z

S2

(1− ρ(Ω)) exp(−κd(r, Ω))dΩ

−dB(T )

dT
·
Z

S2

(1− %(Ω)) exp(−κd(r, Ω))∇T ·ΩdΩ

−∇ ·
„

1

κ

dB(T )

dT
A · ∇T

«
,

(12)

where

A =

0
@
a1 0 0
0 a2 0
0 0 a3

1
A (13)

ai(r) =

Z

S2

Ω2
i [1− (1 + κkd(r, Ω)) exp(−κkd(r, Ω))]dΩ. (14)

Ray tracing

This methods seeks for approximate solution of RTE in a step-wise manner
following the rays along the points rl, l = 0 ... n (r0 – boundary, rn = r). In
this case we obtain formula:

I(rl+1, Ωi) = [I(rl, Ωi)−B(T (rl))] exp(−κhl) +B(T (rl+1))− (15)

−B(T (rl+1))−B(T (rl))

κhl
(1− exp(−κhl)),

hl = |rl+1 − rl|
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4 Results

Numerical schemes presented in previous sections were used in preliminary
simulations of glass cooling. The result temperature fields (initial and inter-
mediate one) are presented on Fig. 1. The observed behavior of temperature
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Fig. 1. Cooling from initial constant temperature of T0 = 873K. Temperature
fields for two time instants (left – initial, right – intermediate). Both pictures are
normalised in respect to the latter time.

field was satisfactory. It allows to hope that full simulations, actually in prepa-
ration, will yield also good quantitative results.
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Summary. We introduce a novel multiscale approach for reservoir simulation as
an alternative to industry-standard upscaling methods. In our approach, reservoir
pressure and total velocity is computed separately from the fluid transport. Pressure
is computed on a coarse grid using a multiscale mixed-finite element method that
gives a mass-conserving velocities on a fine subgrid. The fluid transport is computed
using streamlines on the underlying fine geogrid.

Key words: multiscale methods, porous media, upscaling, streamlines.

1 Introduction

The size of geomodels used for reservoir description typically exceeds by sev-
eral orders of magnitude the capabilities of conventional reservoir simulators
based upon finite differences. These simulators therefore employ upscaling
techniques that construct coarsened reservoir models with a reduced set of
geophysical parameters. In this way the size of the simulation model is re-
duced so that simulations can run within an acceptable time-frame.

Streamline methods are gaining in popularity and have a potential of sim-
ulating much larger reservoir models than what is possible using traditional
finite difference simulators. Streamline methods are based upon a fractional
flow formulation, where the model is split into an elliptic/parabolic pressure
equation and hyperbolic fluid transport equations. For immiscible, incom-
pressible fluids and negligible gravity and capillary forces, the equations read

∇ · v = q, v = −Kλt∇p, (1)

ϕ
∂S

∂t
+∇ · fw(S)v = qw. (2)

Here p denotes pressure, v the total velocity, S water saturation, K rock
permeability, λt(S) total mobility, and ϕ rock porosity. The two equations are
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solved sequentially: first the pressure equation (1) is solved to give a velocity
field, by which the saturations can be transported according to (2), and so
on.

A major obstacle in applying streamline methods to large geomodels is the
need for accurate and efficient solution of the pressure equation (1). In par-
ticular, the pressure solver must be locally (and globally) mass-conservative
and should handle: (i) irregular grids that conform to geological structures;
(ii) strongly heterogeneous and anisotropic formations; and (iii) flows with
large dynamic aspect ratios. Mixed finite element methods (MFEM) and
multi-point flux-approximation finite-volume methods (MPFA) are examples
of methods that handle these properties, and cover the most widely used
methods for elliptic problems where mass preservation is an issue.

Here we present a new simulation method for incompressible, immiscible
two-phase flow on Cartesian grids. Pressure and velocities are computed using
a multiscale, mixed finite-element method (MsFEM) [1, 3], where the pressure
is computed on a coarse grid and a mass-conservative velocity field is computed
on the underlying fine grid, using numerically constructed base functions with
subgrid resolution on the coarse grid. Together with streamline computation
of fluid transport, this gives an efficient and robust method that resolves
detailed flow patterns on the underlying fine grid. A more detailed study of
this multiscale method is presented in [2]. Our main point here is to indicate
that the combination of multiscale pressure solvers and streamline methods
has a great potential for bridging the gap between high-resolution geomodels
and the capabilities of current reservoir simulators.

2 Streamline Method

Streamlines are flow-paths traced out by a particle being passively advected by
an external flow field such that the streamline is tangential to the flow velocity
at every point. The streamlines can be parametrised by the time-of-flight τ ,
which measures the travel time along each streamline. In our case,

v · ∇τ = ϕ or equivalently ∂τ = ϕ/|v| ds. (3)

Together with the bistream functions ψ and χ, which satisfy u = ∇ψ × ∇χ,
the streamlines define a formal spatial coordinate transform. Applied to the
saturation equation (2), for which u = v/ϕ, this transformation gives

St + f(S)τ = 0. (4)

Streamline simulators compute the fluid transport by solving one-dimensional
equations like (4) along streamlines in 3D. Here we use a very efficient front-
tracking method [6] to solve (4). The method starts from piecewise initial data,
approximates the flux function by a piecewise linear function, and solves the
corresponding Cauchy problem exactly.
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3 Multiscale Mixed Finite-Elements

The mixed formulation of (1) over a domain Ω ∈ IR3 reads: find (p, v) ∈
L2(Ω)×H1,div

0 (Ω) such that

∫∫∫

Ω

(Kλt)
−1v · u dx−

∫∫∫

Ω

p ∇ · u dx = 0,

∫∫∫

Ω

l ∇ · v dx =

∫∫∫

Ω

ql dx,

(5)

for all u ∈ H1,div
0 (Ω) and l ∈ L2(Ω). In a mixed-finite element method,

the approximation space for v is spanned by a finite set of base functions
{ψ} ⊂ H1,div

0 (Ω); for instance, a set of piecewise linear functions as in the
Raviart–Thomas elements of lowest order. In the multiscale method, the base
functions are computed numerically by solving a subgrid problem for each
interface Γij between two coarse grid blocks Ti and Tj

(∇ · ψij)|Ti =

{
1/|Ti|, if

∫
Ti
q dx = 0,

q/
∫
Ti
q dx, otherwise,

(∇ · ψij)|Tj =

{
−1/|Tj |, if

∫
Tj
q dx = 0,

−q/
∫
Tj
q dx, otherwise

(6)

with no-flow boundary conditions ψij ·n = 0 on ∂(Ti∪Tj). These numerically
generated base functions guarantee a velocity approximation with subgrid res-
olution. The approximation is mass conservative on the subgrid if the subgrid
problems (6) are solved with a mass-conservative method. The base functions
ψij will generally be time dependent since they depend on λt, which is time
dependent through S(x, t). For incompressible two-phase flow it is sufficient
to regenerate only a small portion of the base functions in each pressure step
since the mobility only varies significantly near strong saturation fronts.

4 Numerical Results

To demonstrate that our multiscale method is a viable and robust approach,
we present numerical results for Model 2 in the tenth SPE comparative solu-
tion project [4]. The model was designed as a benchmark for various upscaling
techniques and contains a stack of two heterogeneous formations, see Fig. 1.
Both formations have large permeability variations, 8–12 orders of magnitude,
but are qualitatively different. The Tarbert formation is smooth, and there-
fore not too hard to upscale. The Upper Ness formation is fluvial with narrow
and intertwined flow channels of high permeability.

We compare our simulation results with a reference solution obtained by
direct simulation on the fine grid using a standard two-point finite-volume
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Fig. 1. Schematic of the reservoir model used in [4]. The reservoir dimensions are
1200 × 2200 × 170 ft., and the model consists of 60 × 220 × 85 grid cells. The top
and bottom plots to the right depicts the logarithm of the horizontal permeability
in the top layer of the Tarbert formation and the bottom layer of the Upper Ness
formation.

method. We also compare with the nested gridding method of Gautier et
al. [5], which can be considered as the upscaling-based analogue of our method.
In the nested-gridding method the absolute mobility (Kλt) is upscaled by
solving local flow problems. Secondly, the pressure equation is solved on the
coarse grid using the upscaled absolute mobilities. Finally, the coarse-grid
fluxes are used to determine boundary conditions for local subgrid problems
that are solved to obtain a mass-conservative velocity on the subgrid scale.
The fluid transport is solved using streamlines for all three methods.

Figure 2 shows a plot of the fraction of water in the produced fluid (water
cut) as a function of time for 2000 days of production. The time steps are 25
days up to day 250, 50 days up to day 500, 100 days up to day 1000, and then
200 days. The performance of our multiscale method is remarkably good; the
match is almost exact for all four producers and the fine-scale flow channels
are reproduced to a large extent as can be seen in Fig. 3. Although the nested-
gridding method has subgrid resolution, it does not account for the coupling
between fine-grid and coarse-grid effects and therefore fails to reproduce the
individual water cuts correctly.
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Fig. 2. Water cut curves after 2000 days of simulation.
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Fig. 3. Water saturation in the bottom layer after 800 days.
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1 Introduction

Any academic working in mathematics, physics or engineering will know ex-
amples of bright PhD students who have turned their backs on the profession
that nurtured them, and sought out instead the more uncertain but more lu-
crative world of financial services. What do they find themselves doing when
they get there? This largely depends on the job they get (for a large investment
bank is a diverse employer, with many different roles and required skills), but
most often banks are employing people with outstanding quantitative skills
because those are the skills they need.

In particular, a big part of the business of an investment bank is in making
and selling various derivatives1. A very simple example is a (zero-coupon)
bond, where the seller undertakes to pay 1 at a fixed time T in the future,
in return for a payment (typically less than 1!) made by the buyer at time
0. In more complicated examples, the amounts to be paid can be random, as
in a European put option, which gives the buyer the right to sell one unit of
a named stock at a specified time (the expiry of the contract) for a specified
price (the strike price). However, the holder is not compelled to exercise this
right, so he will clearly do so at expiry if and only if the stock is trading for
less than the strike, because he is then able to buy the stock, and pocket the
difference between the current price and the strike price he gets by selling it
to the option writer. The timings of payments can also be random, as in an
American put, where the holder of the option is allowed to sell the stock for
the strike price at any time before the expiry of the option.

What should be the price the bank charges for a derivative? At one level,
the answer is ‘As much as the market will bear!’ but competition precludes
arbitrary profit, and the bank needs to have some idea of how cheaply they can
sell the derivative and still make a profit. Quite viable models and methods

1A derivative is a well-defined financial deal between two parties where the tim-
ings and amounts of payments to be made are specified in the contract.
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exist to help banks answer such questions, and the job of a quant (as your
former PhD student is now known) is to use such models to come up with
prices, and to extend them to deal with the novel derivatives that are often
requested by clients. Such models will be used to find lower bounds for the
prices the banks will charge. In very liquid (active) markets, the actual price
charged may be very close to that computed in the model, but in less liquid
markets it will typically be a lot higher. This is because the bank does not
simply sell a derivative and then wait for events to determine what their part
of the deal is going to cost them; they engage in hedging, which is to say they
take some offsetting position in other financial assets so as to cancel out (as
best they can) any gains and losses to be made on the derivative. If the market
is highly liquid, they are better able to do this than in an illiquid market, and
the price charged reflects this. Indeed, it is largely true that the price a bank
will charge for a derivative is the cost they face in hedging it, rather than
anything that a model tells them.

So pricing and hedging forms a large part of the work your former PhD
student will be doing. In this introductory paper, we will see in Section 2 some
of the basic notions of pricing developed from a perfectly plausible (though
slightly unconventional) axiomatic standpoint; and we will see in Section 3
how the resulting expressions suggest an approach to modelling asset prices.
This approach (known as the potential approach) is again rather unconven-
tional, but has overwhelming advantages in the modelling of complex cross-
currency derivatives (for example), that more conventional approaches strug-
gle with; Section 5 explains why. The potential modelling approach is actually
extremely general, and specific choices have to be made to apply it in prac-
tice - these are discussed in Sections 4 and 6. We discuss how such models
can be calibrated in Section 7, and present the results of such a calibration
in Section 8. As befits an unconventional approach, the form that hedging
takes (explained in Section 9) is also unconventional, but perfectly tractable.
Section 10 concludes and presents further directions for research.

Very little that is in this paper is new; indeed, most of it is in one or more
of [6, 5, 7, 9, 10]. I have said that the potential approach is unconventional,
and it is; for fine expositions of the conventional approach to derivative pricing
and hedging you can consult [1, 4, 2] (for an account with more emphasis on
the economic origins), or many others - there are plenty. These accounts will
tell you a lot about how pricing and hedging is done today; this account will
tell you a little about how it may well be done tomorrow.

2 Generalities about pricing

We put ourselves in a filtered probability space (Ω, (Ft)t≥0,P)) and consider
market pricing operators (πtT )0≤t≤T for contingent claims2:

2A contingent claim is local jargon for a random variable.
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πst : L∞(Ft)→ L∞(Fs) (0 ≤ s ≤ t).

The idea is that if Y is some bounded random variable which is Ft-measurable,
then the time-s market price of Y is πst(Y ), again a random variable (because
what we had observed up to time s would affect what we thought this contin-
gent claim was worth), and again bounded - obviously.

We shall assume that the pricing operators (πst)0≤s≤t satisfy certain ax-
ioms:
(A1) Each πst is a bounded positive linear operator from L∞(Ft) to L∞(Fs);
(A2) If Y ∈ L∞(Ft), Y ≥ 0, then

π0t(Y ) = 0 ⇐⇒ P (Y > 0) = 0.

(no arbitrage)
(A3) For 0 ≤ s ≤ t ≤ u, Y ∈ L∞(Fu), X ∈ L∞(Ft),

πsu(XY ) = πst(Xπtu(Y ))

(intertemporal consistency)
(A4) If (Yn) ∈ L∞(Ft), |Yn| ≤ 1, Yn ↑ Y then πst(Yn) ↑ πst(Y ) (continuity)

Remarks. Axiom (A1) says that the price of a non-negative contingent
claim will be non-negative, and the price of a linear combination of contingent
claims will be the linear combination of their prices - which are reasonable
properties for a market price. Axiom (A2) says that a contingent claim that
is almost surely worthless when paid, will be almost surely worthless at all
earlier times (and conversely) - again reasonable. The third axiom, (A3), is
a ‘consistency’ statement; the market prices at time s for XY at time u, or
for X times the time-t market price for Y at time t, should be the same, for
any X which is known at time t. The final axiom is a natural ‘continuity’
condition which is needed for technical reasons.

Theorem 1. Assuming Axioms (A1)–(A4), there exists a strictly positive
process (ζt)t≥0 such that the pricing operators πst can be expressed as

πst(Y ) =
Es
[
ζtY

]

ζs
(0 ≤ s ≤ t). (1)

If we also assume (A5) For all 0 ≤ s ≤ t, πst(1) ≤ 1 (where 1 denotes the
constant function identically equal to 1) then ζ is a positive supermartingale:

ζs ≥ Esζt (0 ≤ s ≤ t)

Remarks. This result is the famous ‘Fundamental Theorem of Asset Pric-
ing’ (FTAP) - or at least its conclusion is the same as that of the FTAP, though
its hypotheses are quite different. The FTAP is proved from the hypothesis
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that the market does not admit any arbitrage3. This is a perfectly sensible ax-
iomatic staring point, but not the only one possible, and the approach taken
here shows that if we adopt the equally-sensible axioms (A1)–(A4) (which
need no subtle modification for a continuous-time setting), then we harvest
the conclusion of the FTAP using little more than basic measure theory. No-
tice how short the proof is!

Proof. Firstly, for any T > 0, the map

A 7→ π0T (IA)

defines a non-negative measure on the σ-field FT , from the linearity and pos-
itivity (A1) and the continuity property (A4). Moreover, this measure is ab-
solutely continuous with respect to P, in view of (A2). Hence there is a non-
negative FT -measurable random variable ζT such that

π0T (Y ) = E[ζTY ]

for all Y ∈ L∞(FT ). Moreover, P[ζT > 0] > 0, because of (A2) again. Now we
exploit the consistency condition (A3); we have

π0t(XπtT (Y )) = E[XζtπtT (Y )] = π0T (XY ) = E[XY ζT ].

Since X ∈ L∞(Ft) is arbitrary, we deduce that

πtT (Y ) = Et[Y ζT ]/ζt,

as claimed. The final statement that ζ is a positive supermartingale under
(A5) is now immediate.

Remarks. (i) The form (1) shows that if we write Yt ≡ πtT (Y ) for some
fixed Y ∈ L∞(FT ) then

ζtYt = Et[ζTY ] is a martingale.

Conventionally, the process ζ (known as the state-price dnsity process) is rep-
resented as

ζt = exp(−
∫ t

0

rsds)Zt,

where rt is the instantaneous rate of interest at time t, and Zt is a positive
martingale, which is interpreted as a change of measure, from the reference
probability P to some new ‘pricing’ probability, also referred to as an equivalent
martingale measure, because it is equivalent to the original measure (both have

3The intuitive idea of an arbitrage as ‘something for nothing’ is easy to formalise
mathematically in discrete time, but the exact definition for a continuous-time set-
ting was elusive and subtle, and was indeed a key part of the difficulty experienced
in proving this celebrated result. See Delbaen-Schachermayer [3] for the definitive
form.
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the same null sets), and because in the new measure the discounted prices of
all traded assets become martingales.

(ii) Though we have looked at pricing systems which are linear in the con-
tingent claim, there is good reason not to restrict exclusively to this property,
because individual agent’s prices for contingent claims are generally concave
- you might be prepared to pay

�
2 for 1l of icecream, but does this mean

you would be prepared to pay
�
200 for 100l of icecream?! Taking this into

account leads us into ideas of economic equilibrium; often, the anaylsis of an
equilibrium can be enormously complicated, and the equilibrium prices ar-
rived at will depend on the nature of all the agents in the market. However,
the equilibrium prices, being marginal prices, will be linear in the contingent
claim.

3 The potential approach

Theorem 1 and the form (1) of the price of a contingent claim suggests a
simple and natural approach to modelling (and pricing) in a financial market:
model ζ!

The process ζ is a positive supermartingale (if we make the natural further
assumption A5). The expression (1) allows us to write down the price B(t, T )
at time t of a zero-coupon bond maturing at later time T ; in this case, Y ≡ 1,
so we have

B(t, T ) = Et[ζT ]/ζt. (2)

If we make the further assumption (financially very natural) that as the ma-
turity T of the bond tends to infinity the current value of it tends to zero,
we see that the positive supermartingales ζ that we are considering have to
satisfy the further condition

lim
T→∞

EζT = 0; (3)

a positive supermartingale satisfying this condition is called a potential,
whence the name of this approach. Under a mild further condition4 a po-
tential can be represented as

ζt = Et[A∞ −At] = Et(A∞)−At (4)

for some previsible increasing integrable process A. The potential approach
therefore requires us to find tractable forms of previsible increasing process to
build models. We do not need to look very far; by (1), prices are to be expressed
in terms of conditional expectations of random variables whose values are yet
to be revealed, and for tractability we will want such conditional expectations
to be expressible simply in terms of a few variables. Thus we are inevitably
drawn towards modelling in the context of Markov processes.

4Explicitly, that the process ζ should be of class (D) - see, for example, [10].
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4 Markov processes and potentials

If (Xt) is a Markov process on a state space X , and f : X → [0,∞), then for
any α > 0 we may consider the increasing process

At =

∫ t

0

e−αsf(Xs) ds. (5)

This is adapted and continuous (therefore previsible), and under mild condi-
tions on f (uniform boundedness will be sufficient but far from necessary) it
will also be integrable. From the discussion of Section 3 we can use this to
build a pricing model; we find that

ζt = Et
[ ∫ ∞

t

e−αsf(Xs)ds
]

= e−αtRαf(Xt), (6)

where (Rα)α>0 is the so-called resolvent5 of the Markov process.
Though this is not by any means the only way that we could use a general

Markov process to build a potential pricing model (see [6] for other ideas), it
is sufficiently explicit for us to appreciate immediately how flexible and simple
this modelling methodology will be:

(i) We can choose any non-negative function f on the state space, and any
positive α.

(ii) The decomposition (4) of ζ into a martingale less an increasing process
takes a very simple form. If we make the usual interpretion of the supermartin-
gale ζ as the product of a positive change-of-measure martingale Z times the
discount factor exp(−

∫ t
0
rsds), then we have two decompositions of ζ using

Itô’s formula:

dζt = ζt(dMt − rtdt)
= dNt − e−αtf(Xt)dt,

where M and N are two local martingales, so equating the finite-variation
parts gives us

rt =
f(Xt)

Rαf(Xt)
, (7)

an explicit expression for the spot-rate process r as a function of the underlying
Markov process X.

(iii) There are few examples where the resolvent of a Markov process can be
written in closed form (though see Section 6). Nevertheless, using the relation

Rα = (α− G)−1

5Equation (6) is the definition of the resolvent. This is an important and familiar
concept from the theory of Markov processes; see, for example, [8].
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between the resolvent and the infinitesimal generator G of the Markov process,
we may build examples by firstly choosing g ≡ Rαf and then recovering f by
the recipe f = (α−G)g. There is no guarantee that the f so constructed will
be non-negative, but choice of α allows considerable leeway here. See [6] for
this approach in use in a number of examples.

Before we take up the theme of explicit construction of models based on
Markov chains, we digress to point out how simply foreign exchange (and
more general asset classes) can be incorporated in the potential approach.

5 Foreign exchange in the potential approach

Suppose now that we wish to consider the pricing of assets in many countries at
once, each asset’s price being expressed in the currency of its home country.
This kind of problem arises quite frequently in practice; we may be asked
to price a swap which swaps floating USD interest payments for fixed EUR
interest payments. In a conventional approach to such a problem, one would
firstly build a model for the interest rates in the US, then a a model for the
interest rates in Euroland, and then try to model the USD/EUR exchange
rate. Even using extremely simple models, a conventional approach would need
one driving Brownian motion for the USD yield curve, one for the EUR yield
curve and one for the exchange rate - three Brownian motions in total. Bearing
in mind that a pricing calculation is in effect an integration, we are beginning
to hit problems of dimensionality; a pricing calculation is an integration over
three dimensions, and a pricing calculation for an American-style option is
an optimal stopping problem in three dimensions. Add to this the facts that
no-one would use a one-factor model to model the USD yield curve (unless
forced to by tractability considerations); and that there might well be some
knockout feature based on some other exchange rate, and the complexity of
pricing such an asset becomes very real.

Or at least it does if you want to use a conventional approach. But let’s
see how easy it becomes using the potential approach. To introduce some
notation, suppose that

1 unit of currency j = Y ijt units of currency i

Now if (Sjt ) is a traded asset in country j, then

ζjt S
j
t is a martingale;

also, by converting its currency-j price into currency i, it becomes a traded
asset in country i, and so

ζitY
ij
t S

j
t is a martingale.

Therefore
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N ij
t ≡

ζitY
ij
t

ζjt

is a martingale orthogonal to the space of martingales of the form ζ jSj . Thus
we can express the exchange rate Y ij as

Y ijt =
N ij
t ζ

j
t

ζit
.

In a complete market, N ij must be constant, so we have the simple and
appealing result that in a complete market, the exchange rate between two
countries is the ratio of the state-price densities in the two countries. More
generally, there is the possibility of some exchange-rate risk not hedgeable
through other assets, represented by the martingale N ij .

The beauty of the potential approach based on Markov processes is that
adding another country does not mean adding extra sources of randomness;
we simply need to build another state-price density over the same Markov
process, which requires us only to choose a new f and α. Thus adding extra
countries to the model deos not need to cause problems of dimensionality
(though one may well find that the treatment of the martingales N ij needs
to be handled cleverly so as not to lose the simplicity of the methodology.)

6 Markov chain potential models

What makes a good model for an academic is not the same as what makes
a good model for a practitioner. The academic is looking for something with
simple features and closed-form expressions for basic derivatives, whereas the
practitioner recognises that most derivative prices and hedges will have to be
computed numerically, so demands quick and accurate numerical algorithms
for doing these calculations, and a decent fit to market data. It seems in
general that the better a model is for one purpose the worse it is for the
other!

When it comes to using the potential approach and a Markovian model, we
see from (1) that any pricing calculation is an integration, and that if we are to
do this numerically then we have somehow to compute a finite weighted sum
over the state space of the Markov process. Since this is so, it seems natural
to work from the start with a Markov process with a finite state space, that
is, a Markov chain!

Making the assumption that the state space X is a finite set of size N has
several very clear advantages:

(i) the generator of the chain is a N ×N matrix Q, in terms of which the
transition semigroup can be expressed as

(pt(x, y))x,y,∈X = exp(tQ);
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(ii) all calculations reduce to calculations with finite matrices, and are
therefore fast;

(iii) no splining of functions onto some finite subset of X will ever be
needed;

(iv) pricing of American-style options becomes an optimal-stopping prob-
lem for a finite Markov chain, which is easy to handle;

(v) we are not restricted to possibly irrelevant propoerties of the underlying
process (such as path continuity in the case of a diffusion).

Opposed to this are two disadvantages:
(i) the size of the parameter space is O(N 2), so gets quite large quite

quickly;
(ii) a given model will only admit N possible values for the price of any

given asset.
This latter is apparently quite restrictive, because if we were working with

a 9-state chain, then the model says that only 9 possible yield curves could
ever be observed, which is simply incompatible with a casual daily observation
of the interest rates reported in any decent newspaper. Our resolution of this
is to interpret those prices as being in some sense a ‘market average’ of the
‘pure’ prices that would apply if we knew with certainty what state we were in.
We shall explain in more detail how this may be handled in the next Section
on calibration, where we address the key question, ‘ Does this work?’

7 Calibration

The methodology outlined here is very similar to that of [9], with a couple of
important variations that substantially improve the performance of the fitting.
The first is to drop the restriction to symmetrizable Markov chains, used in
[9] to ensure that the diagonal matrices to be computed remain real, and the
second is to allow the constant α of Section 4 to become a function of the
state. Thus inatead of the additive functional A defined at (5), we shall be
using

At =

∫ t

0

exp
(
−
∫ s

0

α(Xu)du
)
f(Xs) ds.

This change was introduced as a result of experience with the calibration
presented in [9]; the goodness of fit seemed to depend quite sensitively on the
(previously assumed constant) value of α, and thus allowing α to depend on
state seemed a natural (and as it turned out helpful) variation to consider.

The model is parametrised by a vector6 θ. On day n we have a vector yn of
observations7. If the model were correct, the value of this observation vector
yn would be exactly equal to the model values Y (Xn, θ), but we suppose

6For us, θ is the stacked vector of the off-diagonal entries of Q, the vector g ≡
(α−Q)−1f and the vector α for each country involved.

7These observations will be market prices of certain assets.
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that the log(yn) are log Y (Xn, θ), plus some independent Gaussian noise. We
adopt a Bayesian standpoint, and suppose that the initial law of X is given by
π = (πi)

N
i=1, and the initial law of θ is given by density f0(θ); conceptually, θ is

unchanging with time, even though our knowledge of it varies8. The notation
zn ≡ (z0, . . . , zn) serves to make formulae more compact.

Based on the assumptions above, and ignoring irrelevant constants, the
likelihood Λn of (Xn,yn, θ) is

Λn ≡ Λn(Xn,yn, θ)

= f0(θ) πX0

n∏

j=1

pXj−1Xj (sj ; θ) exp[−b(yj , Y (Xj ; θ))] (8)

where pij(s; θ) = Pθ(Xs = j|X0 = i), and b(y, y′) ≡ 1
2 log(y/y′)·V −1 log(y/y′),

where V is the covariance matrix of the Gaussian errors. We have also used the
notation sj = tj−tj−1 for the time between the (j−1)th and jth observations.
We shall be more interested in the posterior distribution of (Xn, θ) given yn,
so we introduce the notation

Ln(x,yn, θ) =
∑

Xn:Xn=x

Λn(Xn,yn, θ), (9)

and notice that

Ln(x,yn, θ) =
∑

ξ

Ln−1(ξ,yn−1, θ)pξx(sn; θ) exp[−b(yn, Y (x; θ))]. (10)

It is clear that for the Markov chain model in mind this expression will be
far too complicated to allow exact analysis, so we make some simplifying
assumptions, specifically we assume that the likelihood Ln has the product
form

Ln(x,yn, θ) = πn(x,yn) ln(θ,yn). (11)

The justification is that if we have seen so much data that we have a pretty
good idea what the values of the parameters must be, then the values of θ
will largely be determined by the long-run historical average behaviour of
the system. On the other hand, the posterior distribution of Xn will be more
influenced by recent history, because of the ergodicity of the Markov chain, and
so some approximate conditional independence is reasonable; recent history
tells us all we can know of Xn, distant history tells us all we can know of θ.
We shall further assume that

ln(θ,yn) ∝ exp(−1

2
(θ − θ̂n) · Sn(θ − θ̂n)) (12)

for some positive-definite symmetric matrix Sn. If we think that we have
nearly identified the true value of θ, then such a quadratic approximation to
the likelihood is quite natural.

8We shall soon consider what happens if we modify this assumption.
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The values θ̂n, Sn, and πn(·,yn) are computed recursively, using (11).

Supposing that we know already θ̂n−1, Sn−1, and πn−1(·,yn−1), returning to
(10) and using (11) gives

Ln(x,yn, θ) =
∑

ξ

πn−1(ξ,yn−1) ln−1(θ,yn−1)pξx(sn; θ) exp[−b(yn, Y (x; θ))]

∝
∑

ξ

πn−1(ξ,yn−1) pξx(sn; θ) exp[−b(yn, Y (x; θ))]

. exp
[
−1

2
(θ − θ̂n−1) · Sn−1(θ − θ̂n−1))

]
(13)

Sum this expression over x, and numerically pick θ to maximise; the max-
imising value is our new estimate θ̂n of θ. By computing the second derivative
matrix with respect to θ at θ̂n we find the value of Sn, and finally we get πn
from

πn(x,yn) ∝
∑

ξ

πn−1(ξ,yn−1)pξx(sn; θ̂n) exp[−b(yn, Y (x; θ̂n))].

Strictly speaking, the posterior πn for Xn should be obtained by integrating
the likelihood (13) with respect to θ, but we approximate this by assuming

that the posterior distribution for θ can be replaced by the point mass at θ̂n,
to avoid the need to integrate over a large number of dimensions.

As we indicated in the previous Section, this approach was modified in
one vital respect; the model values Y (x; θ) were replaced by averaged values,
averaging with respect to the weights

∑

ξ

πn−1(ξ,yn−1) pξx(sn; θ). exp
[
−1

2
(θ − θ̂n−1) · Sn−1(θ − θ̂n−1))

]

8 Evidence from bond data

The data used here is daily yield curve data covering the period from 2nd
January 1992 to 1st March 19969.

For each day we have values of the yield of bonds with maturity 1 month,
3 months, 6 months, 1 year, 2 years, 5 years, 7 years and 10 years. We shall
use daily yield curve data for three currencies; these are sterling (GBP), the
US dollar (USD) and the German Mark (DEM).

This introductory account is not the place to present an exhaustive analysis
of the results of the fit. We simply report that on average the fitted values
were within 2-5 basis points10 of the actual values, with extreme bad fits of

9We are grateful to Dr Simon Babbs for supplying the GBP and DEM data. The
USD data was taken from the website http://www.stls.frb.org/fred/index.html

101 basis point = 10−4.
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the order of 25 basis points for some bonds on some days. The number of
states of the Markov chain used was not large, varying between 5 and 11.
What we did find is that the calibration was good up to a point, and then
the methodology we were using would ‘lose the plot’ - this would typically be
after 15-20 days of running the algorithm. The graph of the mean error per
fitted bond price (using N = 9) indexed by day is given in Fig. 1.
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Fig. 1. Mean absolute deviation of prices of 8 bonds in 3 countries.

We see here two plots, one starting on day 700, which seems to stay close
to the data until about day 718, after which it goes astray. Also plotted is the
result of a fit begun on day 717, which tracks the data well until about day
736, when it in its turn loses the data. This instability of the fitting process is
of course very undesirable; recent work on improvements of the methodology
allow us to track the data with a mean error per fitted bond of 2-5 basis
points over prolonged periods; we manage to hold this quality of fit over all
the subsets of the data that we have tried (currently up to 150 trading days).

This is a remarkably good fit based on an extremely simple model, using
only 9 possible states. At one level, it is surprising that such a simple system
can do such a good job (if we were able to fit to within 1 basis point, then we
would have something that could be traded off). On the other hand, Fig. 2
show why this may not be so surprising; a plot of 1-month LIBOR along with
the Bank of England’s base rate shows close agreement; if 1m LIBOR is really
very close to the base rate, then we should be able to do a good job modelling
interest rates if we had done a good job modelling the base rate, and it is
not unreasonable to consider a model for the base rate that takes only a few
possible values - indeed, we expect that whatever today’s base rate is, the base
rate in three months from now will differ by 25, 50, 75 or 100 basis points!
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9 Hedging

In conventional models, the standard way to hedge a derivative is to delta-
hedge it. The idea here is to compute the differential of the price of the deriva-
tive with respect to the prices of the underlying instruments (so in the case of
a put option, we differentiate with respect to the stock price). The differential
tells us how many units of the underlying to hold to protect (to leading order)
against the moves in the underlying. In the case of a complete market, this
hedging methodology is exact, in the sense that if we follow it perfectly, then
we will perfectly replicate the contingent claim we were trying to hedge.

If we are using a Markov chain potential model, the notion of differentiat-
ing has no meaning, nevertheless the philosophy of immunising our portfolio
against possible changes will work just as well. Suppose that we have a deriva-
tive Z, and hedging instruments z(1), z(2), . . .. Suppose that if the state of the
chain at time t is i and it jumps to j then the value of Z changes by ∆Zij(t).
Then what we will do is to hold wr(t) units of asset r so that

∆Zij(t) +
m∑

r=1

wr(t)∆z
(r)
ij (t) = 0 ∀j (Xt = i).

Thus whatever jumps of the chain occur, our hedging portfolio will be immune
to them. Of course, we do not in practice claim to be able to know Xt, but
thie does not alter the hedging methodology; we would now make a portfolio
of more hedging assets so as to ensure that

∆Zij(t) +

M∑

r=1

wr(t)∆z
(r)
ij (t) = 0 ∀i, j.

Following this recipe in the case of (say) a 9-state chain would entail taking a
position in 72 different hedging instruments (if that many were available!) So

Fig. 2. 1m LIBOR and Bank of England base rate
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we see that the practice of this methodology may not be quite so simple as
the theory, but we can expect that the general approach will be as effective
as the delta-hedging methodology is for diffusion-based models.

10 Conclusions and future directions

This brief introduction to the potential approach has shown that this mod-
elling methodology has clear advantages:
(i) pricing is easy;
(ii) hedging is easy;
(iii) handling many currencies is easy;
(iv) calibration is perfectly feasible.

It is my belief that if there is ever to be a universal modelling methodology,
it will have to look something like this. By ‘universal’ I mean a model that will
account for all the different asset classes that an investment bank deals with
- equity, foreign exchange, fixed income, commodities, credit risks - and the
reason that a bank would like such a model is principally for what is known as
risk management (though more properly called risk measurement). This refers
to the regulatory requirements placed on the bank to assess the riskiness of
their positions, and this needs to be understood on a firm-wide basis, as well
as by business unit. The potential approach to modelling really can embrace
such a wide swathe of the bank’s business, and even if the calculations may
have to be approximate to deal with such a wide sweep, at least the approach
is consistent over the whole, rather than being some patched-together pastiche
of wholly different models.

So far, the potential approach has been tested only on some bond data,
and the next stage of the checking has to be to try to fit other fixed-income
derivatives, then extend to other asset classes, notably equities. The only
obstacle here is in obtaining decent data to work with, as many of the products
that are important for calibration are not traded on exchanges, so price data
is hard to come by. But given such data, we can more further to the final
verdict on the potential approach: is it simply the right way to model prices,
or is it a nice idea that cannot cope with the full complexity of the real data?
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Summary. In the seventies of the previous century, the reinsurance treaty ECO-
MOR used to enjoy some limited popularity. However, since then the treaty has been
largely neglected by most reinsurers, partly because of its technical complexity. In
this paper, we give results pertaining to asymptotic properties of this reinsurance
form. In particular, we formulate asymptotic estimates for the tail of the distribution
of the ECOMOR-quantity. Furthermore, we give its weak laws.
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tribution, reinsurance treaty, ECOMOR.

1 Introduction

Assume that {X1, X2, . . .} forms the sequence of successive claim sizes in
an homogeneous portfolio. This means that the random variables are inde-
pendent and identically distributed (i.i.d.) as generated by the distribution
F of a generic random variable X. The consecutive claims occur according
to a counting process {N(t); t ≥ 0} which is, for convenience, assumed to
be independent of the claim size process {Xi; i ≥ 1}. These claims deter-

mine the aggregate claim amount in the random sum SN(t) :=
∑N(t)
i=1 Xi.

We denote by (X∗1 , X
∗
2 , . . . , X

∗
N(t)) the order statistics of the random vector

(X1, X2, . . . , XN(t)) of successive claim sizes up to time t.
One of the main goals of a reinsurance treaty is the coverage against large

claims. It is somewhat surprising that classical reinsurance contracts (pro-
portional, surplus, excess-of-loss, stop-loss) are not expressed in terms of the
largest claims. This may be due to the mathematical intractability of the latter
quantities. We will indicate how extreme value theory is capable to overcome
part of this problem. We restrict our attention to ECOMOR. For an extended
version of the present work as well as for the largest claims reinsurance treaty,
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we refer to [5]. For an overview of most of the currently employed reinsurance
forms with their properties, see [7].

The reinsurance treaty ECOMOR (excédent du coût moyen relatif) has
been introduced in 1950 by the French actuary Thépaut [8]. The treaty, defined
by the upper order statistics of the random sample, uses as reinsured amount
the quantity:

Rr(t) :=
r∑

i=1

X∗N(t)−i+1 − rX∗N(t)−r =

N(t)∑

i=1

{
Xi −X∗N(t)−r

}+

, r ≥ 1, t ≥ 0

(1)
if N(t) > r and Rr(t) := 0 otherwise. The quantity Rr(t) is thus a function
of the r + 1 upper order statistics X∗N(t)−r ≤ · · · ≤ X∗N(t). The second form

in (1) indicates that ECOMOR can also be considered as an excess-of-loss
treaty with the (r + 1)th largest claim as a (random) retention. The number
of reinsured claims is equal to the deterministic value r while their values are
diminished by the random retention X∗N(t)−r. Note that the first line insurer
carries the responsibility for the random retention.

For a survey of the literature on ECOMOR, we refer to [5]. Most of the
relevant papers are given within a Poisson-Pareto setting. The first publication
that deals with an analytic treatment of the weak convergence of Rr(t) is [6].
For a probabilistic approach to the same problem, see [4].

We first state results dealing with the asymptotic equivalence between the
tail of the claim size distribution F and the tail of the distribution of Rr(t) for
a fixed t ≥ 0. We then deal with the distribution of the quantity Rr(t) when
t tends to infinity, touching on the question of convergence in distribution.
The latter results are particularly important when one wants to replace the
complicated distribution of Rr(t) by a simpler expression.

2 Results

We formulate four types of results: bounds, asymptotic equivalence, weak con-
vergence and moment convergence. All these results are proved in Ladoucette
et al. [5].

2.1 Bounds

We start by giving an asymptotic upper bound for the ratio of the tail of
the distribution of Rr(t) and that of the generic variable X. For most of the
concepts below, see [3] or [4]. Recall that a distribution F with support (0,∞)
is in the class S of subexponential distributions if

lim
x→∞

1− F ∗2(x)

1− F (x)
= 2
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where F ∗2 denotes the 2-fold convolution of F with itself. We then have the
following result.

Theorem 1. Assume that F ∈ S and that E
{
eεN(t)

}
< ∞ for some ε > 0.

Then for t ≥ 0 we have

lim sup
s→∞

P[Rr(t) > s]

P[X > s]
≤ EN(t).

The condition on N(t) means in particular that the probability of a large
number of claims in [0, t] is exponentially small. In the other direction, we only
need weaker conditions on F and on N(t). A distribution F on R belongs to
the class L of long-tailed distributions if for all y ∈ R:

lim
x→∞

1− F (x+ y)

1− F (x)
= 1.

It is well known that S is a proper subset of L on the positive half-line, see
for example Embrechts et al. [4].

Theorem 2. Assume that F ∈ L and that EN r(t) < ∞. Then for t ≥ 0 we
have

lim inf
s→∞

P[Rr(t) > s]

P[X > s]
≥ EN(t).

2.2 Asymptotic Equivalence

Here we give a result that states the asymptotic equivalence between the tail
of the distribution of the quantity R1(t) and that of the generic claim size X
under the long-tailed assumption.

Theorem 3. Assume that F ∈ L and that EN(t) <∞. Then for t ≥ 0:

P[R1(t) > s] ∼ EN(t)P[X > s] as s→∞.

With a stronger assumption, we also get a further extension. The last part
involves the maximum X∗N(t) of the random sample as well as the random
sum SN(t).

Theorem 4. Assume that F ∈ S and let t ≥ 0 be fixed.

(i) If EN(t) <∞, then:

P[R1(t) > s] ∼ EN(t)P[X > s] as s→∞.

(ii) If E
{
eεN(t)

}
<∞ for some ε > 0, then for every fixed r ≥ 2:

P[Rr(t) > s] ∼ EN(t)P[X > s] as s→∞.

(iii)If E
{
eεN(t)

}
<∞ for some ε > 0, then for every fixed r ≥ 1 we have

P[Rr(t) > s] ∼ P[X∗N(t) > s] ∼ P[SN(t) > s] ∼ EN(t)P[X > s] as s→∞.
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2.3 Weak Convergence of Rr(t)

In this subsection, we deal with the asymptotic behaviour of P[Rr(t) > a(t)s]
for an appropriate norming function a(t) when t → ∞. It is not surprising
that we need the weak convergence of the largest claim but for a deterministic
sample size. As shown for example in Beirlant et al. [2], this is guaranteed
under the extremal domain of attraction condition expressed in terms of the
tail quantile function U of the claim size distribution F which is defined by
U(y) := inf{x : F (x) ≥ 1− 1/y}. The distribution F on R with tail quantile
function U belongs to the extremal class Cγ(a) if there exists a constant γ ∈ R
and an ultimately positive auxiliary function a(.) such that

lim
x→∞

U(ux)− U(x)

a(x)
=

∫ u

1

vγ−1 dv =: hγ(u)

for all u > 0. In addition, we need to assume that the claim number process
is mixed Poisson, i.e., {N(t); t ≥ 0} = {Ñ(Λt); t ≥ 0} where the mixing
variable Λ is nonnegative and {Ñ(t); t ≥ 0} is a homogeneous Poisson process
with intensity 1, independent of Λ. It is convenient to formulate the weak
convergence in terms of Laplace transforms.

Theorem 5. Let r ≥ 1 be fixed. Assume that F ∈ Cγ(a) with γ ∈ R and that
{N(t); t ≥ 0} is a mixed Poisson process with mixing random variable Λ.
Then for θ ≥ 0 we have

lim
t→∞

E
{

exp

(
−θRr(t)

a(t)

)}
=

1

r!

∫ ∞

0

wr qr+1(w)

(∫ 1

0

e−θw
−γhγ(1/z) dz

)r
dw,

where qr+1(w) := E
{
e−wΛΛr+1

}
.

Due to the explicit expression for the function qr+1, it is easy to check that the
right-hand side equals 1 when θ = 0. The limiting distribution can be given
explicitly in the case r = 1. However, no inversion of the Laplace transform
seems possible for general r ≥ 2 except for the case γ = 0 for which we can
readily show that we end up with a limiting gamma distribution.

2.4 Moment Convergence

By using a similar approach as in Theorem 5, we can derive the expressions
for the limiting value of the first few moments. For instance, we get for the
mean:

lim
t→∞

ERr(t)
a(t)

=
Γ (r − γ + 1)

(r − 1)!(1− γ)
E {Λγ}

under the condition γ < 1, where Γ denotes the gamma function. Similarly
for the moment of second order, we get:
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lim
t→∞

E
{
R2
r(t)

}

a2(t)
=
{1 + r(1− 2γ)}Γ (r − 2γ + 1)

(r − 1)!(1− γ)2(1− 2γ)
E
{
Λ2γ

}
,

where we need to assume γ < 1/2. Writing the limiting results in this form
permits us to illustrate the role played by the mixing random variable Λ.

3 Conclusion and Remarks

We finish with a few observations.

(i) There is some need to get further information on the accuracy of the
approximations given above. For example, it would be interesting to get
remainder results for the case where the claim size distribution F belongs
to the extremal class Cγ(a), γ ∈ R, with remainder as treated in Beirlant
et al. [2].

(ii) We point out that most of our results can be extended to the case where

the counting process {N(t); t ≥ 0} satisfies the condition N(t)
t

D→ Λ as
t → ∞. For example, this condition is fulfilled with Λ degenerate at a
positive value if {N(t); t ≥ 0} is a renewal process. The same is true when
the process is infinitely divisible. See for example in Bingham et al. [3].

(iii)As indicated by Beirlant [1], it is worth noting that the condition t→∞
can be replaced by a condition of the form EN(t)→∞.
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Summary. We present an accurate numerical solution for the discrete Black-
Scholes equation with only a few grid points. European and American option prob-
lems with deterministic discrete dividend modelled by a jump condition at the ex-
dividend date are solved. Fourth order finite differences are employed, as well as a
grid stretching in space and a Lagrange interpolation at the ex-dividend date.
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grid, discrete dividend.

1 Black-Scholes Equation, Discretization

Research in option pricing theory concerns, among other issues, the compu-
tation of the fair price of an option. We aim for accurate American option
values by 4th order finite differences and grid stretching in space. The Black-
Scholes equation represents a simple model for pricing a put or a call option.
Option value u depends on asset price s and is influenced by exercise price K,
expiration time T (0 ≤ t ≤ T ), interest rate r, and volatility σ. The equation
reads

∂u

∂t
+

1

2
σ2s2 ∂

2u

∂s2
+ rs

∂u

∂s
− ru = 0, 0 ≤ s <∞, 0 ≤ t < T . (1)

It is valid under the assumption of a geometric Brownian motion for the asset
price process {St} and comes with boundary and final conditions distinguish-
ing a put from a call and a European from an American option. We adopt
the technique of modelling discrete dividends D by a jump condition at the
ex-dividend date td [9]:

u(s, t−d ) = u(s−D, t+d ), (2)

where t−d , t
+
d represent the times just before and after the ex-dividend date.
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Boundary conditions arise naturally from financial arguments [9].

For a call: u(0, t) = 0, and u(smax, t) = smax −Ke−r(T−t).

It is shown in [5] that the boundary condition at s = smax for a call after
dividend payment changes into u(smax, t) = smax −Ke−r(T−t) −De−r(td−t).
The final condition at t = T for the European call reads u(s, T ) = max(s −
K, 0).

The exercise of American-style options is permitted at any time during
the lifetime of an option, 0 < t ≤ T . When early exercise is permitted, a
constraint “u(s, t) ≥payoff” plus a smooth pasting condition at the payoff
must be imposed to the solution of (1), giving rise to a free boundary problem.
A special s-value exists, the optimal exercise price sf (t), which is not known in
advance and needs to be computed. For the American call, early exercise may
be optimal just before the dividend payment only if the dividend payment is
large enough, i.e., D > K

(
1− e−r(T−td)

)
. The boundary condition at s =

smax for the American call before the dividend payment, t < td reads

u(smax, t) = max{smax −Ke−r(T−t) −De−r(td−t), smax −Ke−r(td−t)}, (3)

and the final condition before the dividend payment reads:

u(s, td) = max{s−Ke−r(T−td) −D, s−K}, (4)

which is also the condition whether the option should be exercised at t−d .
For the American put option the boundary condition at s = 0 changes

after the dividend payment from u(0, t) = Ke−r(T−t) into

u(0, t) = max{Ke−r(T−t) +De−r(td−t), K},

and we have u(smax, t) = 0. The payoff for a put after a dividend has been
paid remains u(s, T ) = max (K − s, 0). Early exercise of a put option may
be optimal at any time within the option’s lifetime.

1.1 Grid Transformation and Discretization

The implicit 4th order accurate backward differentiation formula, BDF4 [2],
with time discretization is employed on an equidistant grid with time step k.
It is preceded by two Crank-Nicholson and one BDF3 step. Crank-Nicholson
is unconditionally stable, whereas BDF3 and BDF4 have a stability region.
For our applications these stability constraints are not problematic.

In space, we use an analytic coordinate transformation, which results in an
a-priori stretching of the grid around s = K, i.e., at the non-differentiability
in the final condition. An equidistant grid discretization can be used after
the analytic transformation, as only the coefficients in front of the derivatives
in (1) change. The spatial transformation used for Black-Scholes originates
from [1, 8]:
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y = ψ(s) = sinh−1 (µ (s−K)) + sinh−1 (µK) . (5)

The parameter µ determines the rate of stretching; µK = 15 is satisfactory
in many cases.

A fourth order “long stencil” finite difference discretization in space on
the equidistant y-grid based on Taylor’s expansion is employed. First-order
derivatives are discretized by central differences. For the fourth order approx-
imation, near-boundary points y1, yN−1 need special treatment by means
of one-sided differences. Important for our future applications is a small dis-
cretization error with only a few grid points. This has been achieved in [7]
with the techniques proposed: for some reference Black-Scholes option pricing
problems with known exact solutions only 20 – 40 space- and time-steps were
necessary to get an accuracy of less than one cent (e 0.01).

The strategy to solve the Black-Scholes equation with discrete determin-
istic dividends numerically is as follows (see also [8]):

� Start solving from t = T to t = td with the usual pay-off.
� Apply an interpolation to calculate the new asset and option price on the

s-grid discounted with D.
� Restart the numerical process with the PDE from the interpolated price

as final condition from td tot t = 0.

In our computations we place td exactly on a time line, t−d and t+d are assumed
to lie on the same line.

2 Numerical Results with Discrete Dividend

2.1 European Call

We present European call results for multiple discrete dividends, as in [3], with
problem parameters s0 = K = 100, r = 0.06, σ = 0.25 and multiple dividends
of 4 (ex-dividend date is each half year). Table 1 presents numerical results
for T = 1, T = 2 and T = 3, with one, two and three dividend payments,
respectively. It compares the numerical approximation to the exact solution
from [3] (HHL in the table). The value smax = 3K is chosen according to a
well-known formula [4] and the stretching parameter is set to µ = 0.15. For
larger values of T the number of points in time increases proportionally. The
numerical results obtained with only a few grid points agree very well with
the reference.

Other discrete dividend results from [3] can also be confirmed with our
discretization techniques, whereas binomial tree approaches may need special
techniques based on financial arguments to get the correct price.

2.2 American Put

Next, we consider an American put with parameters from [6]: K = 100, σ =
0.4, r = 0.08, D = 2, td = 0.3, T = 0.5 and µ = 0.15, smax = 3K. Results
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Table 1. Multiple discrete dividends payments, K = 100, d = 4, µ = 0.15.

T = 1 T = 2 T = 3

Grid u (s0, t = 0) Grid u (s0, t = 0) Grid u (s0, t = 0)

10× 10 10.612 10× 20 15.177 10× 30 18.698
20× 20 10.660 20× 40 15.202 20× 60 16.607
40× 40 10.661 40× 80 15.201 40× 120 18.600

HHL 10.661 15.199 18.598

for s = 80, 100, 120 at t = 0 on a 202 – and 402– grid are compared to those
in [6] in Table 2. With only 20 points in space and time the results from [6]
are obtained.

Table 2. American put reference problem from [6], K = 100, D = 2, µ = 0.15.

Grid uh (80, t = 0) uh (100, t = 0) uh (120, t = 0)

20× 20 0.223 0.105 0.043
40× 40 0.223 0.105 0.043

Meyer (J. C. Fin. 2001) [6]: 0.223 0.105 0.043

Finally, we consider an American put with two ex-dividend dates, td1
=

0.3, td2
= 0.8 (T = 1) and visualize the free boundary as a function of time

for different dividend payment strategies (as in [6]). Figure 1 shows the free
boundary for an American put with problem parameters: K = 100, σ =
0.4, r = 0.08, T = 1. In the figure the free boundary functions presented are:
one without any dividend payment (D = 0, solid line), with a fixed dividend
payment D = 2 at td1

, td2
(dashed line) and with a payment proportional to

the asset price D = 0.98s (dotted line) at the ex-dividend dates. It can be seen
that after the discrete dividend payment the free boundary may disappear,
and reappear, indicating that early exercise is not always favorable after an
ex-dividend date.

3 Conclusion

In this paper we have solved the Black-Scholes equation for a European and
American option with discrete dividend with only a few grid points. Fourth
order accurate space and time discretizations have been employed, using spa-
tial grid stretching by means of an analytical coordinate transformation. The
discrete dividend payment is handled very satisfactorily by the stretched grid
discretization and a 4th order Lagrange interpolation at the ex-dividend date.
Reference results for a European call with multiple dividends and American
puts from the literature are retained with only 20 – 40 grid points in space
and time.
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Fig. 1. Free boundary as function of time with two ex-dividend dates and different
forms of dividend payment: D = 0 (solid), D = 2 (dashed) vs. D = 0.98s (dotted).
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Summary. Semi-Lagrange time integration is used with the finite difference method
to provide accurate stable prices for Asian options, with or without early exercise.
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and compared with published results.

Key words: Semi-Lagrange time integration, Asian American Options, finite
difference, coordinate transformation

1 Asian Options

Conventional Call and Put options have payoffs that depend on the instanta-
neous price of the underlying security, either at maturity (European case) or
throughout the contract (American case); this creates an incentive for traders
to attempt price manipulation on the underlying security. Asian options avoid
this by using payoffs that depend on the average price of the underlying se-
curity, rather than the instantaneous price. The PDE for the price V (A,S, t)
of an Asian option is an “ultra-parabolic equation” given by

−∂V
∂t

=
1

2
σ2S2 ∂

2V

∂S2
+rS

∂V

∂S
+

1

t
(S−A)

∂V

∂A
−rV ; S ≥ 0, A ≥ 0, t ∈ (0, T ]

with final condition (payoff) V (S,A, T ) = g(S,A, T ), assuming a geometric
Brownian motion model for the asset price, St:

dSt = µStdt+ σStdWt (1)

where Wt is a Brownian motion. At, the continuously sampled arithmetic
average of St over [0, t], is defined by

At =
1

t

∫ t

0

Sτ dτ, whereA0 = S0, and dAt =
1

t

(
St −At

)
dt (2)
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1.1 Semi-Lagrangian Time Integration

The Semi-Lagrangian scheme [6] uses a different set of trajectories at each
time-step, choosing them such that they arrive at the points of the regular
grid at the end of the time-step. It was first applied to option pricing problems
in [4] and has been recently applied to jump process models in [3].
The Lagrangian derivative along a path in the A− t plane is given by

dV

dt
=
∂V

∂t
+
∂V

∂A

dA

dt

It follows that the Asian pricing equation simplifies to an A-parameterised
pricing PDE with identical spatial derivatives to Black-Scholes, namely

−dV
dt

=
1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = LSV (3)

for paths P(A, t;S) such that

dA

dt
=

1

t
(S −A) (4)

In the case of early exercise

−dV
dt
≥ LSV, and V (S,A, t) ≥ g(S,A, t) (5)

leading to the linear complementarity problem

(V − g)(−dV
dt
− LSV ) = 0

1.2 Discretisation

Take the integral of (3) along the path Pmk (A, t;Sj) ≡ (Ãk, t
m) y (Ak, t

m−1),

V (Sj , Ak, t
m−1)− V (Sj , Ãk, t

m) =

∫

Pmk (A,t;Sj)

LSV (S,A, t) dt

If LhS is an O(h2) approximation to LS , where h = min(∆S), and {V mj,k} are
finite difference mesh prices on Ω = {S0, . . . , SN} ⊗ {A0, . . . , AN} such that

V m−1
j,k = Ṽ mj,k +∆t

(
θLhS(V m−1

j,k ) + (1− θ)L̃hS(V mj,k)
)

then V mj,k ≈ V (Sj , Ak, t
m) to O(∆t2)+O(h2) for θ = 0.5 and is unconditionally

stable for θ ≥ 0.5. Ṽ mj,k is the mesh price interpolated to Ãk.
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Determining Ãk

Integrating (4) with respect to time along the path Pmk (A, t;S) gives

∫ Ãk

Ak

1

Sj −A
dA =

∫ tm

tm−1

1

t
dt

thus

Ãk = Sj −
(
tm−1

tm

)
(Sj −Ak) = αAk + (1− α)Sj , where α = tm−1/tm.

1.3 Boundary Conditions for the Fixed-Strike Call

An average-rate fixed-strike call has payoff g(S,A, T ) = max (A−K, 0). If the
asset price reaches zero at some time t?, then it stays at zero for all t ∈ [t?, T ].
The final average price is then

AT =
1

T

∫ T

0

Stdt =
1

T

∫ t?

0

Stdt =
t?

T
At?

and hence the payoff, ∀A ≥ 0 is also known. For an average rate call, the
boundary condition at S = 0, ∀A ≥ 0, is

V (0, A, t) = e−r(T−t)max (
t

T
A−K, 0) (6)

Alternatively one could use the exact solution of the PDE for S = 0 (it
becomes linear hyperbolic). The original domain is the infinite quarter plain
and must be truncated before it can be meshed: eg. at S = Smax and A =
Amax. A second derivative truncation condition is applied at some S = Smax,
i.e.

∂2V (Smax, A, t)

∂S2
= 0 ∀ A ∈ [0, Amax]; t ∈ (0, T ] (7)

1.4 Co-ordinate Stretching

A stretched coordinate x is used (see [2]), defined by

S =
K

λ
sinh(x− L) +K ; x = sinh−1

(
λ

K
(S −K)

)
+ L

where K is the strike and λ = sinhL is a parameter controlling the degree of
stretch. Substituting these expressions into the pricing equation gives:

−dV
dt

=
1

2
σ2

(
Tλ(x)

)2
∂2V

∂x2
V − 1

2
σ2 tanh(x+L)Tλ(x)

∂V

∂x
+ rTλ(x)

∂V

∂x
− rV
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2 Results

Table 1 displays convergence results corresponding to the fixed strike Euro-
pean call Asian when r = 0.1, and prices are quoted at S0 = 100. σ, K and
expiry, T vary as shown in the table. Richardson extrapolations are also shown
and give basis point accuracy using meshes of 40 and 80 points with a stretch-
ing parameter of ten, in 10 time steps. Table 2 shows a comparison with [5],
[7] and also [1], where available. Table 3 displays convergence results corre-
sponding to the fixed strike Asian put with early exercise. The comparison
results are from [1].

Table 1. Calculated Semi-Lagrangian (S-L) prices at S = 100 showing convergence
and Richardson extrapolation for Fixed Strike Call Asians where r = 0.1, σ = 0.2.
nt = 10 for all maturities and λ = 10.

T K N = 20 N = 40 N = 80 N = 160 (20,40) (40,80) (80,160)

0.25 95 6.462 6.474 6.477 6.478 6.478 6.478 6.478
0.25 100 2.884 2.922 2.931 2.933 2.935 2.934 2.934
0.25 105 0.920 0.942 0.948 0.950 0.949 0.951 0.951

0.50 95 7.898 7.894 7.893 7.893 7.893 7.893 7.893
0.50 100 4.502 4.505 4.506 4.506 4.506 4.506 4.506
0.50 105 2.197 2.206 2.208 2.209 2.209 2.209 2.209

1.00 95 10.338 10.305 10.297 10.295 10.295 10.294 10.294
1.00 100 7.086 7.054 7.046 7.044 7.043 7.043 7.043
1.00 105 4.534 4.518 4.513 4.512 4.512 4.512 4.512

Table 2. Calculated Semi-Lagrangian (S-L) results (Richardson extrapolation
(40,80)) for Fixed Strike Call Asians where r = 0.1, at a spot price of S0 = 100.
nt = 10 for all maturities and λ = 10.

σ T K S-L (RS, 1995) (ZFV, 1997) (BP, 1996)

95 6.478 6.476 6.501 6.5
0.25 100 2.934 2.932 2.928 2.96

105 0.951 0.947 0.971 0.966
95 7.893 7.891 7.921 7.793

0.20 0.50 100 4.506 4.505 4.511 4.548
105 2.209 2.211 2.229 2.241
95 10.294 10.295 10.309 10.336

1.00 100 7.043 7.042 7.042 7.079
105 4.512 4.509 4.519 4.539
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Table 3. Semi-Lagrangian (S-L) convergence for Fixed Strike Put Asians with early
exercise, where r = 0.1, quoted at strike K = 100. nt = 40, for all maturities. λ = 5.

σ T Calculated by S-L (BP, 1996)
20x20 40x40 80x80 160x160

0.25 1.721 1.959 2.084 2.090 2.066
0.20 0.50 2.286 2.621 2.667 2.667 2.629

1.00 2.981 3.243 3.256 3.255 3.181

0.25 4.360 4.619 4.614 4.614 4.581
0.40 0.50 6.084 6.128 6.124 6.122 6.078

1.00 7.850 7.862 7.856 7.855 7.761

3 Conclusions

Semi-Lagrange time integration simplifies the Asian pricing PDE into a A-
parameterised set of one-factor problems. The asset price process can be eas-
ily extended e.g. for volatility surfaces. The method is unconditionally stable
when combined with implicit finite differences. The resulting algebraic prob-
lems are linear and block tri-diagonal and stretched meshes are easily incorpo-
rated and give very accurate prices. Early exercise leads to A-parameterised
one-factor LCP’s that can be solved by PSOR.
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Summary. The derivation of the risk neutral probabilities in a binary tree, in the
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1 Introduction

In option pricing theory, the Cox-Ross-Rubinstein [2] formula is a fundamen-
tal result for option pricing in a binomial model. The formula is derived under
the assumption that the stock price follows a binomial process characterised
by the two jump factors: “up”, u, and “down”, d. In the literature, vari-
ous generalisation of the Cox-Ross-Rubinstein formula characterised by more
rough assumptions on the stock price moves have been proposed. Kolokoltsov
[3] examines the case in which only minimal information on the future evo-
lution of the stock is available, namely the case in which only the bounds
of the possible stock moves are known. He supposes that the possible stock
moves belong to the closed interval [d, u] and derives, by resorting to the non-
expansive maps theory, an interval of possible prices for the option contract.
Muzzioli and Torricelli [5] analyse the case in which more information is avail-
able on the two jump factors. They suppose that u and d are represented by
two triangular fuzzy numbers (u1, u2, u3) and (d1, d2, d3), i.e., that u and d
can take values on the closed intervals [u1, u3] and [d1, d3] and have a most
possible value u2, and d2, respectively. In this paper we follow the approach
by Muzzioli and Torricelli [5] and analyse the problem of the derivation of
the risk neutral probabilities in a binomial tree. The problem boils down to
the solution of a fuzzy linear system. The issue has previously been addressed
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and different solutions for the same system have been found. The aim of this
paper is twofold. First we highlight that the different solutions proposed arise
from different versions of the original system. Second we apply a methodology
which leads to a unique solution for all the different versions of the fuzzy lin-
ear system. The plan of the paper is the following. In section 2 we recall the
financial problem. In section 3 we highlight that the system has no solution if
one applies standard fuzzy arithmetic and we derive the vector solution. The
last section concludes.

2 European-style Plain Vanilla Options in the Presence
of Uncertainty

A call option is a financial security that provides its holder, in exchange for
the payment of a premium, the right but not the obligation to buy a cer-
tain underlying asset at a certain date in the future for a specified price K.
In the binary tree model of Cox-Ross-Rubinstein [2] the following assump-
tions are made: (A1) the markets have no transaction costs, no taxes, no
restrictions on short sales, and assets are infinitely divisible; (A2) the life-
time T of the option is divided into N time steps of length T/N ; (A3) the
market is complete; (A4) no arbitrage opportunities are allowed, which im-
plies for the risk-free interest factor, 1 + r, over one step of length T/N ,
that d < 1 + r < u, where u is the up and d the down factor. The Euro-
pean call option price at time zero, has a well-known formula in this model,
EC(K,T ) = 1

(1+r)N

∑N
j=0

(
N
j

)
pjup

N−j
d

(
S(0)ujdN−j −K

)
+
, where K is the

exercise price, S(0) is the price of the underlying asset at time the contract
begins. pu and pd are the resp. up and down risk-neutral transition probabil-
ities which are solutions to the system:

pu + pd = 1 upu + dpd = 1 + r. (1)

The solution is given by

pu = ((1 + r)− d)(u− d)−1, pd = (u− (1 + r))(u− d)−1 (2)

The standard methodology (see Cox et al. [2]) leads to set u = d−1 = eσ
√
T/N ,

where σ is the volatility of the underlying asset. If there is some uncertainty
about the value of the volatility, then it is also impossible to precisely estimate
the up and down factors. Muzzioli et al. [5] analyse the case in which u and
d are represented by triangular fuzzy numbers. A triangular fuzzy number is
uniquely defined by three numbers (f1, f2, f3) or can be written in terms of its
α-cuts, f(α) = [f(α), f(α)] = [f, f ] = [f1 + α(f2 − f1), f3 − α(f3 − f2)], α in
[0, 1]. Since the α-cuts of a triangular fuzzy number are compact intervals of
the set of real numbers, interval calculus can be applied on them. In this setting
the up (resp. down) factor is represented by the triangular fuzzy numbers
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u = (u1, u2, u3) (resp. d = (d1, d2, d3)). Assumptions (A1), (A2), (A3) still
hold, while assumption (A4) becomes: d1 ≤ d2 ≤ d3 < 1 + r < u1 ≤ u2 ≤ u3.
Note that this condition guarantees that the fuzzy matrix F has full rank
∀d ∈ [d1, d3] and ∀u ∈ [u1, u3] :

F =

[
1 1
d u

]
.

3 Solving Fuzzy Linear Systems

A fuzzy version of the two equations of the system (1) should now be intro-
duced. This can be done (for each equation) in two different ways, since for an
arbitrary fuzzy number f there exists no fuzzy number g such that f + g = 0
and for all non-crisp fuzzy numbers f+(−f) 6= 0. Therefore the linear system
(1) can be rewritten in four different ways.

{
pu + pd = 1

upu + dpd = 1 + r

{
pu = 1− pd
upu + dpd = 1 + r

(3)

{
pu = 1− pd
dpd = (1 + r)− upu

{
pu + pd = 1

dpd = (1 + r)− upu
(4)

Buckley et al. [1] propose the following procedure to solve the fuzzy matrix
equation Ax = b, where the elements, aij , of the n × n-matrix A and the
elements, bi, of the n × 1-vector b are triangular fuzzy numbers: (1) solve
the linear system by using fuzzy number arithmetic; (2) if no such solution
exists use the vector solution XJ , with XJ(α) = {x | Aαx = bα, (Aα)ij ∈
aij(α), (bα)i ∈ bi(α)}. Moreover, Muzzioli and Reynaerts [4] generalize the
vector solution of Buckley et al. [1] to the fuzzy linear systems A1x + b1 =
A2x+b2, where the elements of the n×n-matrices A1 and A2 and the elements
of the n× 1-matrices b1 and b2 are fuzzy numbers. They prove that the fuzzy
system A1x+ b1 = A2x+ b2 has a vector solution X∗J , with

X∗J (α) = {x | A1αx+ b1α = A2αx+ b2α, (A1α)ij ∈ a1,ij(α),

(A2α)ij ∈ a2,ij(α), (b1α)i ∈ b1,i(α), (b2α)i ∈ b2,i(α)},

if all matrices A1,0 − A2,0 = [a0
1,ij − a0

2,ij ], with a1,ij ∈ a1,ij(0) and a2,ij ∈
a2,ij(0), are nonsingular. They also prove that the linear systems Ax = b and
A1x + b1 = A2x + b2, with A = A1 − A2 and b = b2 − b1 have the same
vector solution. Let us apply the above mentioned procedure in order to find
the solution to the fuzzy linear system. We have first to solve the systems
by using fuzzy number arithmetic. One can easily prove that the four fuzzy
linear systems have no solution if one applies fuzzy arithmetic. Moreover, by
solving system (3) and system (4) respectively, Muzzioli and Torricelli [5] and
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Reynaerts and Vanmaele [6], found different solutions for the original fuzzy
linear system. We now investigate the vector solution. This solution leads to
one and the same result for all four linear systems. It is obtained by solving
the first system in (3):

(Aα)1,1 = (Aα)1,2 = (bα)1 = 1 (bα)2 = 1 + r

(Aα)2,1 = u1 + α(u2 − u1) + λ1(u3 − u1 − α(u3 − u1)), λ1 ∈ [0, 1]

(Aα)2,2 = d1 + α(d2 − d1) + λ2(d3 − d1 − α(d3 − d1)), λ2 ∈ [0, 1].

The vector solution is:

pu(α) =
(1 + r)− (d1 + α(d2 − d1) + λ2(d3 − d1)(1− α))

f

pd(α) =
u1 + α(u2 − u1) + λ1(u3 − u1)(1− α)− (1 + r))

f
, λ1, λ2 ∈ [0, 1],

f = u1 − d1 + α((u2 − u1)− (d2 − d1)) + (1− α)(λ1(u3 − u1)− λ2(d3 − d1)).

By minimising and maximising those functions over λ1, λ2 we get the marginals:

pu(α) = [
1 + r − d3 + α(d3 − d2)

u3 − α(u3 − u2)− d3 + α(d3 − d2)
,

1 + r − d1 − α(d2 − d1)

u1 + α(u2 − u1)− d1 − α(d2 − d1)
]

pd(α) = [
u1 + α(u2 − u1)− (1 + r)

u1 + α(u2 − u1)− d1 − α(d2 − d1)
,

u3 − α(u3 − u2)− (1 + r)

u3 − α(u3 − u2)− d3 + α(d3 − d2)
]

Thus for α = 1 one gets:

pu(1) = ((1 + r)− d2)(u2 − d2)−1 pd(1) = (u2 − (1 + r))(u2 − d2)−1

which means that the most possible value for the fuzzy transition probabilities
is equal to the transition probabilities (2) in the crisp case. For α = 0 one
gets:

pu(0) =
(1 + r)− d1 − λ2(d3 − d1)

u1 − d1 + λ1(u3 − u1)− λ2(d3 − d1)
, λ1, λ2 ∈ [0, 1]}

= [
(1 + r)− d3

u3 − d3
,

(1 + r)− d1

u1 − d1
]

pd(0) =
u1 + λ1(u3 − u1)− (1 + r)

u1 − d1 + λ1(u3 − u1)− λ2(d3 − d1)
, λ1, λ2 ∈ [0, 1]}

= [
u1 − (1 + r)

u1 − d1
,
u3 − (1 + r)

u3 − d3
]
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Note that this is the solution found in Muzzioli and Torricelli [5].
Muzzioli and Reynaerts [4] propose a practical algorithm to find directly the
marginals for each unknown that involves the solution of 2k systems, where k is
the number of fuzzy parameters in the original fuzzy system. Each element of
the extended coefficient matrix of those systems is either the lower or the upper
bound of the α-cut of the corresponding element of the original fuzzy extended
coefficient matrix. If one applies this algorithm to the financial example, one
should solve four linear systems, with respective solutions:

{
pu = (1+r)−d

u−d
pd = u−(1+r)

u−d

{
pu = (1+r)−d

u−d
pd = u−(1+r)

u−d




pu = (1+r)−d

u−d
pd = u−(1+r)

u−d

{
pu = (1+r)−d

u−d
pd = u−(1+r)

u−d .

The final solution is obtained by taking the minimum and maximum for each

unknown:
(

[ (1+r)−d
u−d , (1+r)−d

u−d ] [u−(1+r)
u−d , u−(1+r)

u−d ]
)
.

4 Conclusions

The derivation of the risk neutral probabilities in a lattice framework, in
the presence of uncertainty on the underlying asset moves, boils down to
the solution of a fuzzy linear system. In this paper we have investigated the
solution of such a system by using the methodology proposed by Muzzioli and
Reynaerts [4]. The solution, that is the same solution as found in Muzzioli and
Torricelli [5], is here given in terms of vector solution.
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Effective Estimation of Banking Liquidity Risk
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Summary. We present an effective way to estimate liquidity risk.

Key words: liquidity risk, estimation, extreme value theory.

1 Introduction

Banks commonly identify four specific forms of financial risk—credit risk, op-
erational risk, market risk and liquidity risk [1]. The first three of these are
often incorporated into existing capital allocation frameworks (see e.g., [5]).
Liquidity risk is risk that much of depositors’ funds may be withdrawn in a
short period of time. This is partly confounded with market risk. Sometimes
(e.g., [5]), liquidity risk is treated as a part of market risk associated with the
Financial Market line of business. Others (e.g., [4]) treat liquidity risk sepa-
rately. Allen ([2]) divided liquidity risk into Funding and Asset components
identifying the latter with market risk. No technique for modelling liquidity
risk currently has wide acceptance, but use of modified Value at Risk models
(popular in modelling market risk (see e.g., [5]) has been suggested ([6],[3]).
Liquidity problems can occur in normal times as no market is perfectly liquid
or in crisis times where the most severe outcomes can be expected. Manage-
ment of liquidity in normal times can include use of derivative instruments [3]
as well as sensible control on cash flows. The cost of holding reserve funds must
be built into banking product prices. Liquidity risk is assessed independently
for each product to avoid unintended subsidy across products.

Here we examine a specific banking case and review performance on four
products on offer - personal transactions, savings accounts, term deposits both
carded (those with standard interest rates offered on fixed periods) and non-
carded (where the deposit is negotiated on an ad hoc basis). The specific task
was to assess the level at which the reserves would suffice, with a probability
of 99.97%, to cover the withdrawals in a week for these four retail banking
products.
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2 Data Handling

Transaction data by amount and numbers for product and type were supplied
for the period October 29, 2000 to June 30, 2001, a total of 245 days (35
weeks). Working on weekly data smoothed out some of irregularities associated
with holidays. Data were rescaled using average values taken over the 35 week
period to ensure confidentiality. These average values are named the mob, Mt,
the clip Ct and the bag Bt . The mob measures numbers of withdrawals and
the clip the size of those withdrawals. The bag is a total from these. Weekly
mean values were calculated giving rise to weekly factors with a mean of 1,
despite the incidence of public holidays. Dispersion of these weekly factors
was the subject of further analysis.

From extreme value theory we realise that the worst case outcome can
be far worse than anything “normal” distributions of data may predict. For
Liquidity risk this has two implications. In extreme circumstances like the Wall
street crash of 1929 market forces cause massive liquidity problems. Then a
run on all products in a bank will coincide and usually the outcome will be
handled politically. Such a liquidity crisis will affect all banks at once. There is
literally no way to trade in normal times if we must be able to guard against
such a crisis. Some banks have faced their own major crises alone however
through mismanagement or very bad luck. Usually liquidity shortages arise
in more normal times and these can be handled by conventional means. For
this reason we will not be concerned about the problems in using univariate
extreme value theory.

The sample moments of each distribution can be readily calculated from
the data. The standard deviation is the same as the coefficient of variation
when the mean is 1. The skewness and kurtosis are based on the third and
fourth moments. The Normal Power approximation can be used to estimate
the 99.97% point of the amount distribution. This approximation to the nor-
mal distribution, y, for the number of bags required, x is given by

x− µ
σ

= y +
γ

6
(y2 − 1) +

κ

24
(y3 − 3y) +

γ

6

(
2y3 − 5y

)
+O(n−1.5),

where Φ(y) = 1 − ε gives the normal variate in terms of its tail, ε. Here
Φ(y) = 99.97%. The inverse normal distribution then gives y = 3.432. The
values of the mean µ, standard deviation σ, skewness γ and kurtosis κ from
the distribution of amount data are then used to find x. The number of reserve
bags is given by x− 1.

We see that any error can be made smaller by increasing the size of the
sample data, n. The use of just 35 weeks of data to estimate probabilities
at the 3 in 10, 000 level involves a high degree of extrapolation as we are
attempting to estimate the reserves required for the worst week in 64 years!

The following table gives the reserves at 99.97% confidence level for the
four products as well as data on the distribution moments.
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Product P Trans. Sav A/C’s Carded Noncarded All
Mean bag,µ 1.000 1.000 1.000 1.000 1.000
Std dev’n,σ 0.096 0.146 0.259 0.355 0.150
Skewness,γ 0.333 -0.488 1.161 1.468 0.689
Kurtosis,κ 6.372 2.086 1.454 3.573 1.976
Reserve Bags 1.138 0.692 1.284 2.397 0.945
The high kurtosis in the amount of personal transactional withdrawal is

due to an Easter effect. The term deposit withdrawals have strong positive
skewness in amount due to positive skewness in their size. The overall reserve
indicated for all products is less than the sum of the reserves for each indi-
vidual product. This is due to less than perfect correlation for movements by
all the products in the data.

3 Correlations

In extreme circumstances we cannot assume products all move similarly. We
can examine the correlation effect in detail. The correlation of the withdrawal
amounts (in the same week) between products is shown. This is fairly high
within a week, but falls away rapidly at weekly lags 1 and 2. This indicates a
tendency for high withdrawals to occur for all products at the same time.

Product P Trans Sav A/C’s Carded Noncarded All
Pers Trans 1.00 0.85 0.38 0.63 0.81

Savings A/C’s 0.85 1.00 0.28 0.49 0.69
Carded T.D. 0.38 0.28 1.00 0.51 0.79

Noncarded T.D. 0.63 0.49 0.51 1.00 0.85
All Retail 0.81 0.69 0.79 0.85 1.00

The correlation of the number of withdrawals and their size between prod-
ucts is shown following. The personal transactional and non-carded term de-
posit products show strong positive correlations between the number and size
of the withdrawal. The other products do not conform to this pattern and
the overall result for all products is a modest 32% but correlations of this
magnitude cannot be ignored. Assuming independence between number and
size of withdrawal is clearly not tenable. A real difficulty is determining the
strength of this dependence in a crisis, although it may be expected to follow
the worst case scenario.

Product P Trans Sav A/C’s Carded Noncarded All
Pers Trans 0.65 0.50 -0.21 0.41 0.34

Savings A/C’s 0.58 0.13 -0.20 0.14 0.21
Carded T.D. 0.46 0.68 -0.37 0.31 0.51

Noncarded T.D. 0.78 0.60 0.10 0.51 0.83
All Retail 0.66 0.44 -0.22 0.37 0.32

The expected values of the mob, clip and bag are fixed at 1 by definition.
It follows immediately that E[Bt] = E[Mt] × E[Ct]. We cannot assume that
E[Bt] = E[Mt × Ct] unless we can show that mob and clip are independent.
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We have good reason to suspect the contrary case. In fact we may assume
that some association exists. Using logarithms we obtain the new equation

lnBt = lnMt + lnCt − k
The value of k can be positive, zero or negative. This measure is related to
the coefficient of correlation between number and size of withdrawals incor-
porating any skewness effect existing in either variable. This linear structural
equation for the data gives equal weight to variations in number and size.
The parameter k provides a measure of how much association between size
and number influences the total amount. Using our expected values we have
k ≈ lnE[Nt × Yt]− ln(E[Nt]× E[Yt]).

If size and number are independent variables, then k would be close to zero.
The sample weekly data retail products provides us with a range of examples.
No association: Savings accounts (k = 0) (This may be spurious as there is
distinct evidence of a fortnightly cycle.) Negative association: Carded term
deposits (k = −.019). Positive association: Personal transactional (k = .002)
and non carded term deposits (k = .019).

Does variation in size or number of withdrawals provide the bigger risk?
Recall that the log clip and log mob are simple measures of size and number
of withdrawals, and a scatterplot of these gives a sense of their relationship.
A wider scatter in data points in either axis direction implies a greater degree
of risk associated with the measure along that axis. For the personal transac-
tional product both number and size are influential. The data for the Savings
account product has strong fortnightly cycle. For this product the number of
transactions is more variable than the size. There is a distinct lack of values
close to the average which can be readily explained by the fortnightly cycle.

The time series for the carded term deposit data exhibits an intertwined
pattern due to the negative association between number and size. The non-
carded term deposits exhibit features that increase liquidity risk. The size
and number of withdrawals have positive association. Surprisingly, for this
product, it seems the number of withdrawals is more influential on the liquidity
risk than their size.

4 Conclusion

The bank management should be pleased with the results for carded term
deposits. The carded rates seem to smooth fluctuations in the withdrawal
amounts. However the result for non-carded term deposits, often larger de-
posits, is disappointing. The investors who operate in this market may be
increasing the liquidity risk of the bank.

The structural equation developed provides a simple inexpensive tool for
supervisory control of the on-going liquidity risk of the bank. Liquidity risk can
be reduced by controlling the manner in which the book is built. It is desirable
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that number and size of withdrawals have a negative association at each future
date. A methodology to calculate reserves to cover the liquidity risk has been
demonstrated. More data is required before we rely on the calculated values
as parameter estimates obtained from small samples can contain significant
biases.
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Summary. We focus on the inter-related roles of scale and heterogeneity of porous
medium properties for fluid flow and contaminant transport in isothermal and non-
isothermal multiphase systems across a range of scales. Multiscale network and
macro-scale continuum models, and detailed laboratory experiments are used to sup-
port the investigation. We demonstrate the critical role of scale in determining the
dominant forces in a porous medium system, the importance of heterogeneity across
a range of scales, and the dominant role of block heterogeneities on macro-scale fluid
flow and non-isothermal contaminant remediation. We give special attention to the
numerical approximations of pressure-saturation-conductivity relations in heteroge-
neous systems, and we show the effects of interface approximation schemes on both
the ability to resolve phenomena of concern and on the efficiency of the numerical
simulator.

Key words: multiphase flow, heterogeneous systems, multi–scale problems, numer-
ical solution

1 Motivation

Environmental remediation and protection has provided an especially impor-
tant motivation for multiphase research in the course of the last 15 years
[23, 45]. The release of non-aqueous phase liquids, both lighter and denser
than water (LNAPLs and DNAPLs), into the environment is a problem of
particular importance to researchers and practitioners alike [44]. Of late, such
work has focused on the construction of mathematical models which can be
used to test and advance our understanding of complex multiphase systems,
evaluate risks to human and ecological health, and aid in the design of control
and remediation methods.
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One of the foremost problems facing the reliable modeling of multiphase
porous medium systems is the problem of scale. Roughly speaking, a model
is assembled from a set of conservation equations and constitutive, or closure,
relations. One must identify constitutive relations and system-specific parame-
ters that are appropriate for the spatial and temporal scales of interest. Often,
however, a disparity exists between the measurement scale in the field or labo-
ratory and the scale of the model application in the field. Furthermore, neither
the measurement nor the field application scales are commensurate with the
scale of theoretical or empirical process descriptions. Both closure relation
forms and parameters are subject to change when the system of concern is
heterogeneous in some relevant respect.

Figure 1 graphically depicts the range of spatial scales of concern in a
typical porous medium system. It illustrates two important aspects of these
natural systems: several orders of magnitude in potentially relevant length
scales exist, and heterogeneity occurs across the entire range of relevant scales.
A similar range of temporal scales exists as well, from the pico-seconds over
which a chemical reaction can occur on a molecular length scale to the decades
of concern in restoring sites contaminated with DNAPLs.

A careful definition of relevant length scales can clarify any investigation
of scale considerations, although such definitions are a matter of choice and
modeling approach [26]. We define the following length scales of concern:
the molecular length scale, which is of the order of the size of a molecule;
the microscale, or the minimum continuum length scale on which individual
molecular interactions can be neglected in favor of an ensemble average of
molecular collisions; the local scale, which is the minimum continuum length
scale at which the microscale description of fluid movement through individ-
ual pores can be neglected in favor of averaging the fluid movement over a
representative elementary volume (REV) – therefore this scale is also called
the REV-scale; the mesoscale, which is a scale on which local scale properties
vary distinctly and markedly; and the megascale or field-scale. Measurements
or observations can yield representative information across this entire range
of scales, depending on the aspect of the system observed and the nature
of the instrument used to make the observation. For this reason, we do not
specifically define a measurement scale.

For the minimum continuum length scale, we take the boundaries of the
different grains directly into account. For the microscale, we look at a variety
of pore throats and pore volumes. Note that, for both scales, we average over
the properties of the fluids only (achieving for example density, viscosity).

When looking at the REV-scale, we average over both fluid–phase proper-
ties and solid–phase properties. In Fig. 2, we show schematically the averaged
properties (e.g. the porosity). While averaging over a representative elemen-
tary volume (REV), we assume that the averaged property P does not oscillate
significantly. In Fig. 2 this is the case in the range of V0 to V1 with V0 < V1,
so any volume V with V0 ≤ V ≤ V1 can be chosen as REV. Accordingly,
we do not assume any heterogeneities on the REV-scale. For our model, we
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Fig. 1. Different scales for flow in porous media.

assume that the effects of the sub–REV–scale heterogeneities are taken into
account by effective parameters. The super–REV–scale heterogeneities have
to be taken into account by applying different parameters to the domain of
interest. Both steady transitions as well as jumps have to be considered for
the parameters. We denominate those heterogeneities with jumps within the
spatial parameters as block heterogeneities. Within the context of this work,
we assume that block heterogeneities can be described by subdomains with
well–defined interfaces. In this paper, we do not consider heterogeneities on
the field scale.

Because the scale of interest in this paper is ultimately the meso–scale,
one can usually ignore molecular-scale phenomena, although these effects are
embodied in continuum–conservation equations and associated closure rela-
tions. However, we must consider all other important and relevant scales in
the current study of multiphase porous–medium systems.
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Conceptually, one wishes to describe phenomena at a given scale using
the minimum amount of information from smaller scales. This process gives
rise to quantities at each scale that may not be meaningful at smaller scales.
For example, fluid pressures are not relevant to individual collisions at the
molecular scale, and point-wise fluid saturations or volume fractions do not
necessarily reflect the microscale fluid composition at that point. A conceptu-
ally satisfying theoretical approach – one that could fundamentally increase
the field’s maturity – must provide a method for incorporating models on
a given scale sparingly into models on the next larger scale using rigorous
mathematics and sound physical reasoning.

For example, microscale models can be developed to describe fluid flow
in individual pores by solving the Navier-Stokes equations [1] or Boltzmann
equation [13] over an appropriate domain. These methods can in turn be used
to model systems consisting of many pores, even of a size equivalent to an
REV for a REV-scale porous–medium system. Such approaches have been
used to develop REV-scale closure relations based upon microscale processes
[25].

As yet, this kind of connection does not exist across relevant length scales
for all the phenomena considered in multiphase porous–medium systems.
Valid questions remain about the importance of heterogeneities for specific
processes, the appropriate form and parameterization of closure relations for
heterogeneous multiphase porous–medium systems, and effective ways of sim-
ulatint such systems economically.
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In spite of the problems of scale, we need reliable efficient multiphase
flow and transport simulators that represent the dominant flow and trans-
port mechanisms in heterogeneous multiphase porous–medium systems. The
REV-scale modeling problem has been operationally separated from the more
general problem of cascading scales, although the two problems are formally
entwined. The two have been split apart because of the urgent need to re-
spond practically to such problems, even before we understand them fully.
The operational separation of local scale modeling from a more comprehensive
theoretical modeling methodology has resulted in many practical models and
experimental studies of complex multiphase phenomena [48, 34, 30, 35, 31, 32].
Engineering has played an important role in implementing this practical re-
sponse.

From the mesoscopic perspective, two basic classes of multiphase applica-
tions have received attention in the literature and deserve further considera-
tion: the imbibition of DNAPL into a heterogeneous porous–medium system
[31, 32, 22] and the removal of a DNAPL originally in a state of residual sat-
uration [39, 40]. The former class determines the morphology of the DNAPL
distribution at residual saturation, which, therefore, determines the initial
condition of the latter problem. While the public is greatly concerned with
remediating DNAPL–contaminated soils, many questions concerning DNAPL
imbibition and removal still hinder our remediation efforts.

The overall goal of this work is to advance our understanding of mod-
els for heterogeneous multiphase porous–medium systems across a range of
scales. Our specific objectives are (1) to evaluate the role of the spatial scale
in determining the dominant process for multiphase flow; (2) to investigate the
influence of pore-scale heterogeneity on microscale and REV-scale flow pro-
cesses; (3) to summarize conventional continuum-scale mathematical models;
(4) to evaluate the accuracy and efficiency of a set of spatial and temporal
discretization approaches for solving multiphase flow and transport; (5) to
compare numerical simulations with experimental observations for heteroge-
neous mesoscopic systems; and (6) to point the way toward important future
areas of research in the field. The following sections address these goals by
combining modeling at the pore and porous-medium continuum scales with
observations of heterogeneous systems.

2 Scales and forces

Porous medium properties are commonly heterogeneous across a wide range
of scales in subsurface systems, and such systems consequently exhibit com-
plex fluid flow and species transport behavior. Porous medium heterogeneity
can induce various physical phenomena: stable immiscible displacement; fluid
entrapment; capillary-induced by-passing and pooling; and viscous, gravity,
and dissolution fingering [41]. Moreover, multiple physical phenomena may
be exhibited at a single spatial scale. In this section, we present experimen-
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tal evidence that shows the importance of heterogeneity on fluid flow and
demonstrates the operative phenomena. We then interpret the results in a
larger context to demonstrate the scale-dependent nature of dominant forces.

We present results from a heterogeneous mesoscale experiment conducted
at the VEGAS research facility in Stuttgart, Germany, described in more
detail by [9]. Fig. 3 shows the experimental apparatus, which is a 7-m (long)
× 3-m (high) × 1-m (deep) steel cell equipped with a glass front panel to
facilitate visualization. On both the inflow and the outflow side, the flume
was equipped with wells that extended over the whole width of the flume,
leaving 6.35 [m] between the screens for the actual aquifer. Water reservoirs
were maintained at a constant level on each end of the cell, resulting in a
1% gradient in the water potential, which decreased from left to right. The
dimensions of the heterogeneous system within the container are 6.35-m (long)
× 2.4-m (high) × 0.4-m. The cell was packed with coarse, medium, and fine
sands arranged in the precise pattern shown in Fig. 3. The sands were installed
in layer thicknesses of approximately 0.05[m], moisturized and compressed.
The chief features of this heterogeneous packing included four fine sand lenses,
three of which rose at gradients of 1%, 5%, and 10%, respectively, from left
to right; and a horizontal medium sand layer bounded by vertical fine sand
blocks. After the saturation of the aquifer, a base flow with partially deaired
water was established for some time before the infiltration of TCE to dissolve
the entrapped air.

According to our definitions of scale, this is a mesoscale experiment: the
experimental system is large enough relative to microscale phenomena to be
treated as a porous medium continuum, yet not large enough with respect
to the physical dimensions of the fine sand lenses to be represented as a
homogeneous porous medium continuum while still adequately resolving sys-
tem processes. The physical properties of the sands used for the experiment
are given in Table 1. The coarse sand’s multiphase properties were measured
for a water-trichloroethylene (TCE) system, and the medium and fine sand’s
parameters for the constitutive relationships were measured for a water-air
system. The BC parameters pd for the medium and the fine sand were scaled
according to [49]. The BC parameter λ was obtained by a hand fit from mea-
surements for one probe using the controlled outflow cell technique described
in [38]. Recent comparisons between measurements taken by the controlled
outflow cell technique and measurements for the same sand taken by gamma
radiation system technique [18] suggest that there is a systematic error for
the measurements taken by controlled outflow cell technique. Further research
work on this topic is carried out within the VEGAS facility. The confidence
intervals for one measurement for one probe, respectively, are given in Table 2.
The results for the hydraulic conductivities measurements and consequently
the values for intrinsic permeabilities vary from −50% to +100% of the mean
values for different probes of the respective sands. No confidence intervals
can be given for the residual saturation of water. The residual saturation for
the non wetting phase measured for drainage only was zero, for imbibition
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Fig. 3. Experimental setup for mesoscale VEGAS experiment.

hysteretic effects must be taken into account ([49, 36, 37]). Table 3 shows the
fluid properties. The fluid parameters were taken from literature for water [27]
and provided by the manufacturer for the TCE [21] for 20 oC. The confidence
intervals for these measurements are quite small (< 1%) and the temperature
of the system was well controlled (20 oC). TCE was dyed with a hydrophobic
and fluorescent compound to allow for visualization of flow patterns and of
the residual saturation of TCE. The definition of all variables is summarized
in the notation section.

We investigated the distribution of TCE resulting from a release of TCE
into a water-saturated system under steady flow. TCE was released at a rate of
approximately 175[kg/h]±15% from the top of the cell over an approximately
0.3[m] long region centered in the domain as seen in Fig. 3 for a period of 1
hour 30 minutes and allowed to redistribute for a further period of two hours

Table 1. Physical Properties of the Sands.

pd [Pa] λ [-] Swr [-] K[m2] ϕ [-]

coarse sand (1) 200.0 2.0 0.05 4.6 E-10 0.39
medium sand (2) 700.0 2.3 0.15 3.1 E-11 0.35
fine sand (3) 1800.0 3.5 0.18 9.0E-12 0.43

Table 2. Confidence Intervals for one probe respectively.

pd [Pa] ϕ [-]

coarse sand (1) ±10% ±7%
medium sand (2) ±10% ±10%
fine sand (3) ±10% ±2%
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Table 3. Physical Properties of the Fluids.

water TCE

density, ρ [kg/m3] 1000.0 1460.0
dynamic viscosity, µ [Pa s] 1E-3 5.8E-4

and 45 minutes. The water flow from the left to the right decreased linearly
during the infiltration from 210 [l/h] to 160 [l/h]. After the infiltration was
ended the water flow increased with one half hour to 180 [l/h] and remained
constant. Results for saturation from the experiment were observed visually
and recorded using the time domain reflectometry technique based on the
techniques described in [14] and [28].

The final TCE distribution is depicted for Subset A of the cell in Fig. 4
and for Subset B of the cell in Fig. 5. The fractions of the cell represented
by domain Subsets A and B are shown in Fig. 3. Several phenomena can be
clearly observed: (1) gravity-motivated flow, shown by the pronounced vertical
distribution of TCE (Fig. 4 overall); (2) capillary residual trapping, shown by
regions of relatively evenly distributed TCE entrapped at small saturations
(Fig. 4(A)); (3) capillary by-passing, shown by horizontal transport around
the fine sand layers, with relatively high TCE saturations pooled on top of
the fine layers (Fig. 5); and (4) entering of TCE into the fine sand lenses
after the threshold saturation has been reached (Fig. 4(B)). These features
result from the following physicochemical factors: (1) the balance of capillary,
gravity, and viscous forces; (2) the variability in capillary properties accord-
ing to porous medium type; (3) pore morphology variability that exists even
within homogeneous layers; and (4) the unstable nature of vertical DNAPL
migration into a water-saturated medium. The net result of these factors is a
morphologically complex distribution of entrapped TCE.

These experimental results show that DNAPL migration is not only gov-
erned by the block heterogeneities but also by the variability of media proper-
ties within the presumed homogeneous regions. This indicates the important
effect of heterogeneity at several scales on DNAPL movement and residual
establishment. Another important feature is the formation of DNAPL pools,
which are morphologically stable regions with locally large DNAPL satura-
tions that can be extremely difficult to remediate because of mass transfer
limitations.

One can evaluate multiphase systems using the principles of scaling,
whereby the operative forces in a system are considered in a nondimensional
form using dimensional analysis. While dimensional analysis does not pro-
vide the same level of information as solving a sound mathematical model of
the system, it can provide significant insights regarding the dominant forces
as functions of system scale. We use dimensional analysis to this end. The
relevant forces in a multiphase system are capillary, gravitational, and vis-
cous forces. We follow the analysis in [24] consistently. The relevant non-
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Fig. 4. TCE distribution for Subset A (TCE regions highlighted by red spots).

dimensional variables can be summarized as:

capillary number Ca :=
viscous forces

capillary forces
=
µ · v · L
K · p∗c

(1)

gravitational number Gr :=
viscous forces

gravity forces
=

µ · v
∆% · g ·K (2)

bond number Bo :=
buoyancy forces

capillary forces
=
∆% · g · L

p∗c
. (3)

These numbers show that the predominance of a force depends on three
kinds of variables:

1. parameters describing fluid properties, such as the density ρ and the dy-
namic viscosity µ;

2. solid phase parameters, such as the intrinsic permeability K;
3. parameters describing the fluid matrix interaction, as the characteristic

capillary pressures p∗c , here we choose the entry pressure, and a typical
flow velocity v, which is correlated to the permeability; and

4. the characteristic length L.

For the viscosity and density difference, we consider a water-TCE sys-
tem, i.e. we use µ = 0.001[Pas] and ∆ρ = 460 [kg / m3]. We use the mea-
sured material properties for the coarse sand reported in Table 1 for the
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block heterogeneity

intrinsic heterogeneities

Fig. 5. TCE distribution for Subset B (TCE regions highlighted by red spots, and
the fine sand lenses by yellow spots).

entry pressure and the intrinsic permeability. We approximate the water ve-
locity using the inflow qbegin = 210[l/h], qmin = 160[l/h] and qend = 180[l/h]
as vbegin = 6.1E − 5[m/s], vmin = 4.6E − 5[m/s] and vend = 5.2E − 5[m/s]
(subscripts begin, min and end indicating the begin of the infiltration, the
end of the infiltration – at which time the water flow is minimal – and the end
of the experiment). When using the hydraulic gradient from the left to the
right and the intrinsic permeability of the coarse sand, we can approximate
the water flow velocity as vw = 4.6E−5[m/s] (−50%,+100%, considering the
confidence interval for the permeability, indeed the good agreement between
the velocity derived from the inflow rate and the velocity derived from the
the hydraulic gradient and the intrinsic permeability shows us that the con-
fidence interval is much smaller than that derived by the Darcy experiments
for several probes). As a rough approximation of the fluid velocity we take
v = 5E − 5[m/s] for the horizontal direction. For the dimensional analysis, we
assume the vertical component of the water velocity to be zero, neglecting the
influence of the heterogeneities. At the time the pictures shown in Fig. 4 und
5 were taken – i.e. two hours and 45 minutes after the infiltration of DNAPL
into the system was ended – the velocity of the DNAPL was essentially zero
vn = 0. As the capillary forces are in equilibrium with the gravitational forces
the bond number must be equal one. From this results a characteristic length
for the coarse sand of Lvertical = 0.044[m] (−10%,+12%, considering the con-
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fidence interval for pd and assuming a confidence interval of 1% for the density
difference). For this characteristic length we get a value for the capillary num-
ber of Ca ≈ 0.024, i.e. the capillary forces dominate the viscous forces by
factor of 42. Indeed we see in Fig. 4 that the migration of TCE is hardly
influenced by the water flow from the left to the right. We don’t consider the
gravitational number Gr for the analysis of the experiment since the viscous
forces take effect in horizontal direction while the gravitational forces take
effect in vertical direction.
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Fig. 6. Dimensionless numbers as a function of the characteristic length for the
coarse sand according to Table 1, logarithmic scales for both axes.

Figure 6 is a plot of Ca,Gr,Bo for the coarse sand used in the VEGAS
experiment as a function of the characteristic length used to define these quan-
tities in equation (2). An equilibrium between the forces is attained when the
numbers equal one. For Ca < 1, capillary dominate viscous forces, while for
Ca > 1, viscous dominate capillary forces. Similar reasoning can be applied to
the Gr and Bo. At small length scales, capillary forces will dominate, whereas
at large length scales gravity forces will dominate, for velocities and media of
the type considered here. The importance of both gravity and capillary forces
can clearly be observed in the experimental results. However, the dimension
analysis as used in this context does not cover the effects of heterogeneities.
An extension to this end would be desirable.

Figure 4 shows NAPL flowing mainly downward due to gravity. At this
scale, however, we also observe a distinct lateral spreading of the NAPL. Fig-
ure 5 shows that after reducing the scale of observation only a few decimeters,
the lateral spreading of the NAPL due to capillary pressure differences is lo-
cally stronger than the density-driven downward migration of the NAPL. We
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attribute the lateral spreading of DNAPL in the coarse sand to anisotropic
entry pressures at the pore scale.

A continuum-scale model used to describe multiphase flow and transport,
for example the one presented in Sec. 4, should account for all types of het-
erogeneity at the various scales. While such models readily account for het-
erogeneous and anisotropic phase permeabilities, it is not clear whether they
account appropriately for anisotropic entry pressures at the pore scale.

3 Anisotropy at the pore scale

As discussed in the previous section, a variety of physical phenomena are im-
portant in heterogeneous multiphase systems across a range of scales. While
the VEGAS experiment showed several of these phenomena, alternative ap-
proaches can be used to investigate certain phenomena of importance. In this
section, we use quasi-static pore-scale modeling to show the importance of
pore-scale heterogeneities on macroscale properties of concern, namely rela-
tions among capillary fluid pressure, fluid saturations, and relative permeabil-
ity. Such heterogeneities are always present in nature and can lead to macro-
scale behavior that the closure relations described in Sec. 4 do not describe
well.

Very few studies investigate how anisotropy of a pore space’s geometry and
topology at the pore scale affects macro-scale closure relations [50]. [7] showed
that an anisotropic network of capillary tubes implies an anisotropic effective
permeability tensor. [19] showed that both an anisotropic coordination number
and pore-size distribution in a pore network lead to anisotropic permeability
and diffusivities. [52] showed that size-, connectivity-, and spatial correlation-
induced anisotropy at the pore scale demands a tensorial form of the Forch-
heimer equation. [50] derived anisotropic relative permeabilities by upscaling
Miller-similar [42] porous media. The impact of pore-scale anisotropy on other
closure relations for two-phase flow, such as the capillary pressure-saturation
relation, has not yet received sufficient attention.

To investigate the impact of a pore space’s pore-scale anisotropy on macro-
scale closure relations, we performed pore-network model simulations. We used
a network model with cubic pore bodies and square pore throats as described
in [47] except for one extension: we introduced spatial correlations among the
pore bodies. We restricted ourselves to geometric anisotropy, i.e. the semivar-
iogram has the functional form

γ(h) = γ0(hTQh), (4)

where γ0 is an isotropic semivariogram model, Q̂ a positive definite matrix, and
h the distance vector. We assumed that the principal directions of anisotropy
are aligned with the coordinate axis and that there is only one horizontal
range. Further, we assumed an exponential model. Thus,
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γ(h) = c


1− exp


− 3

ah

√
h2
x + h2

y +

(
ahhz
av

)2



 (5)

where ah is the effective horizontal and av the effective vertical range. Such
a model resembles, for example, a pore space obtained by sedimentation as
typical for fluvial aquifers. For ah/av → ∞, one obtains zonal or stratified
anisotropy. The pore-body and -throat sizes were normally distributed. The
pore-body radii were rb = (0.3±0.04)λ, and the throat radii were rt = (0.15±
0.02)λ, where λ is the lattice constant of the network. We prescribed pore-
body correlations according to Eqn. (5). We used the GSLIB software package
[17] to generate the pore-body radius field given the mean and variance of the
pore-body radius as well as ah and av. Unlike prior investigations, we did
not use periodic boundary conditions in the horizontal directions, because
GSLIB does not support them; instead we removed the pore throats at the
vertical boundaries of the network. We simulated two-phase flow in both the
horizontal and vertical direction by attaching pressure reservoirs on opposite
sides of the network.

We performed simulations in small networks with 103 nodes, where ah
exceeded the domain size, to understand the impact of anisotropy. Figure 7
shows that vertical flow in a horizontally stratified network is a piston-type
displacement: one horizontal layer is invaded after another. More residual
nonwetting phase is left behind for vertical than for horizontal flow for the
following reason: suppose wetting phase is stuck in front of a layer with large
mean pore-body size that is followed by a layer with smaller pore-body size. As
we gradually decrease the external capillary pressure, wetting phase invades
exactly one pore body. Then, the wetting phase invades the pore throat lead-
ing to the next layer and almost the entire next layer, because its pore-body
sizes are, on average, smaller than the pore body originally invaded. Thus,
nearly the entire nonwetting phase in the layer with large pore-body size be-
comes residual. Figure 8 shows that horizontal flow in a horizontally stratified
network is finger type (the fingers are planes in a three-dimensional network).
Less entrapment occurs for horizontal than vertical flow, because the wet-
ting phase invades one layer after another without significant vertical flow,
which could disconnect the nonwetting phase. Anisotropy at the pore scale
obviously encourages layers of residual NAPL, i.e. large trapped NAPL blobs,
which have been observed experimentally [39, 41]. Thus, we expect pore-scale
anisotropy to lengthen the time required for NAPL dissolution compared to
more evenly distributed NAPL residual in isotropic media that have a greater
specific interfacial area.

To investigate the impact of anisotropy on hysteretic capillary pressure-
saturation relations and wetting phase permeability krw, we generated pore
networks with 503 nodes, where av = 2λ and ah = 2λ, 5λ and 50λ. Assuming
that the principal axis of permeability are aligned with the lattice generating
vectors, we may compute a relative permeability for horizontal and verti-
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a) b)

Fig. 7. Vertical flow through stratified pore network. The nonwetting and wetting
phase reservoirs are on top and bottom, respectively. Medium and dark gray in-
dicate connected and residual nonwetting phase, respectively; light gray indicates
wetting phase. The displacement is piston type. a) During drainage. b) After main
imbibition.

a) b)

Fig. 8. Horizontal flow through stratified pore network. The nonwetting and wetting
phase reservoirs are on the left and right, respectively. Colors as in Fig. 7. The
displacement is finger type. a) During drainage. b) After main imbibition.

cal flow, krwh and krwv [7]. Likewise, we may compute the capillary pressure-
saturation relation for horizontal and vertical flow, pch and pcv. Figure 9 shows
that the amount of residual nonwetting phase obtained by main imbibition
is larger for vertical than horizontal flow, consistent with the observations
presented in Figs. 7 and 8 for the smaller networks. The residual increases as
the effective horizontal range increases (for constant network size). Because
entire horizontal layers tend to be left behind during vertical flow, krwv < krwh .
The primary drainage curve for vertical flow tends to be more discontinuous
than for both horizontal flow and the isotropic case, because nonwetting phase
remains trapped in front of the layers with small pore-throat size until the cap-
illary pressure exceeds a certain threshold value. We present simulation results
for only one random realization of a pore network specified by its statistical
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parameters. With more simulations, the results usually scatter, particularly
in networks with a range close to or larger than the system size. The exact
shape of the primary drainage curve for vertical flow, for example, depends
on how the horizontal layers of different pore-body sizes are arranged. Our
comments on residual entrapment and wetting phase permeability, however,
would not differ for other random realizations.
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Fig. 9. Simulation of primary drainage and main imbibition in pore networks with
503 pore bodies. a) ah = 2λ. b) ah = 5λ. c) ah = 50λ. av = 2λ for all cases.
Both the capillary pressure pc and the wetting phase permeability krw become more
directionally dependent as ah/av deviates from 1.

The directional dependence of the capillary pressure-saturation relation
pc(Sw) suggests that it is in fact a second rank tensor Πc(Sw) as is true for
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the phase permeabilities [52, 50]. The tensor Πc(Sw) depends on the wetting
properties and morphology of the pore space. For our stratified pore-network
model, with the z axis in the vertical direction, this tensor is diagonal,

Πc =



pch 0 0
0 pch 0
0 0 pcv


 (6)

and the degree of anisotropy is determined by the anisotropic spatial correla-
tions of the pore space, i.e. by the difference between ah and av. The question
is whether the continuum modeling approach of Sec. 4 can be modified to
account for this generalization. If we want to keep a scalar capillary pressure-
saturation relation, the following form will do:

pn − pw = nTΠc(Sw)n (7)

In our pore-network model, which resembles a retention cell, the unit vector n
specifies the direction pointing from the nonwetting to the wetting phase reser-
voir. In a real porous medium, however, we do not have reservoirs. Instead, we
must express n in terms of the continuum modeling approach’s independent
variables. We can use vector variables to form n. The only vector variable,
the velocity v, however, is not appropriate, because one cannot distinguish
the anisotropic cases for the static case v = 0. But we can form gradients of
scalar variables. A suitable choice is

n =
∇Sw
|∇Sw| (8)

Equation (7) is of course purely hypothetical, although supported by numer-
ical simulations. To validate our hypothesis, media with anisotropic capillary
pressure-saturation relations would need to be created and specified by a non-
standard retention cell experiment. Then, a two-phase flow experiment would
need to be performed in this anisotropic porous medium, and the macroscale
equations could be used to model two-phase flow. Better agreement between
experiment and simulation by using the modified Equation (7) would then
support our hypothesis.
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4 Dynamic Macroscale Model Formulation

We have examined multiphase flow in heterogeneous porous media from the
perspective of a dimensional analysis of forces at a mesoscopic scale, and
we have also considered certain aspects of macroscale capillary pressure-
saturation-relative permeability relations for multiphase flow in heterogeneous
systems by considering microscale models. Both of these approaches demon-
strated the importance of heterogeneity for fundamental multiphase fluid flow
processes, but both approaches were limited to quasi-static systems. Further-
more our microscale modeling approach only yielded information about the
effect of microscale variability on closure relations and did not address macro-
scale variability in macroscale quantities such as permeability and closure re-
lations. In this section, we consider dynamical model formulation approaches
valid for the macroscale, or porous-medium-continuum scale, and larger scales.
These approaches are based partly on conservation principles. Conservation
principles alone, however, yield a set of fundamental balance equations with
more unknowns than equations. Constitutive relations, which should model
average or integrated microscale behavior, are used to formally close the sys-
tem of balance equations. To apply the model equations to laboratory or
field simulations we then specify appropriate auxiliary conditions and mate-
rial properties.

Since the focus of this work is on heterogeneous systems, we are concerned
with REV-scale to mesoscale systems for which closure relation parameters
are distributed in space and must be resolved and accurately accounted for
in the formulated model. We do not consider multiple–length scales of het-
erogeneity in this section, although such systems are certainly important and
may comprise the majority of natural systems. We also do not consider closure
relations, such as those postulated in the previous section, which incorporate
some effects of microscale heterogeneity such as hysteresis and anisotropic
relative permeability. Instead we focus on the complexities of representing
mesoscale heterogeneity using widely studied approaches to REV-scale bal-
ance formulations and closure relations.

We will consider a standard isothermal two-phase flow model coupled with
two widely used sets of closure relations, and include a detailed discussion of
the role of heterogeneity in two-phase flow.

4.1 Multiphase Mass Balance Equations

Several quantities are conserved in nature, including mass, momentum, and
energy. Conservation of these quantities forms the basis for modeling transport
phenomena in multiphase systems. While elegant formulations based upon a
comprehensive set of conservation equations for volumes, interfaces, curves,
and points are evolving, we consider the traditional approach of volume–based
conservation equations.
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∂(ϕα%α)

∂t
= −∇ · (ϕα%αvα) + Iα + Sα (9)

where ϕα = ϕSα is a volume fraction of the α phase, %α is a density, t
is time, vα is the mean macroscopic pore velocity vector, Iα represents all
interphase mass transfer that can occur between the α phase and all other β
phases for β 6= α, and Sα represents a source of mass. Mass balance, geometric
considerations, and our definition of sources and mass transfer also imply the
following constraints:

∑

α

ϕα = 1,
∑

α

Iα = 0 (10)

4.2 Multiphase Momentum Balance Equations

While it is straightforward to derive a conservation of momentum equation
based on a control volume for a macroscopic porous medium system, it is
common practice to use an approximate momentum equation based upon a
posited extension to Darcy’s law for multiphase systems of the form

vα = − krα
ϕαµα

Ki · (∇pα − %αg) (11)

where krα is the relative permeability tensor, µα is the dynamic viscosity, pα
is the fluid pressure (each for phase α), Ki is the intrinsic permeability tensor,
and g is the gravity vector, which is assumed to be oriented in the opposite
direction to the vertical coordinate direction, z. While Darcy’s law is consid-
ered a momentum balance, it is, in fact, a closure relation that we assume
represents the microscale dynamics averaged over the REV under a variety
of assumptions about microscale dynamics. Microscale heterogeneities must,
therefore, be captured through the functional relations in Darcy’s law. Macro-
scale heterogeneity is captured by the spatial variability of the parameters.
We will return to the issue of heterogeneity shortly.

4.3 Multiphase Flow Equations

Substitution of Eq. (11) into Eq. (9) yields the standard multiphase flow
equations

∂(ϕα%α)

∂t
= ∇ ·

(
%α

krα
µα

Ki (∇pα − %αg)

)
+ Iα + Sα (12)

For two-phase flow this formulation yields two equations so that α = n,w.
The set of dependent variables in the equation is {ϕα, %α, krα, µα, pα}, hence
further assumptions and relations are necessary to achieve formal closure of
the system of equations. We next consider our choice of primary dependent
variables.
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First, we define saturation as

Sα = ϕα/ϕ (13)

where ϕ is the porosity of the medium and ϕα the part of the volume occupied
by phase α. For this work, we assume ϕ is a fixed spatially variable property
of the soil matrix. Furthermore we define the capillary pressure as

pc = pn − pw (14)

While alternative sets of primary variables are valid, we choose the wetting
phase pressure, pw, and the nonwetting–phase saturation, Sn, as primary vari-
ables. Combining our definitions of saturation and capillary pressure with
Eqns. (10) and (12) yields:

−ϕ%w
∂Sn
∂t
−∇ ·

(
%wkrw
µw

Ki(∇pw − %wg)

)
− qw = 0 (15)

ϕ
∂(%nSn)

∂t
−∇ ·

(
%nkrn
µn

Ki(∇pw +∇pc − %ng)

)
− qn = 0 . (16)

Note that we take ϕ out of the time derivative term since it is constant. We
do the same with %w assuming incompressibility of water. We did not assume
incompressibility of the nonwetting phase, which allows this formulation to be
applied with the nonwetting phase being a compressible gas or liquid. Some
alternatives to this pressure–saturation formulation exist; for an overview see,
e.g., [23].

4.4 Constitutive Relationships

To complete the multiphase flow equations, a set of constitutive relationships
is needed to describe how the secondary variables depend on the primary
variables {Sn, pw}. We distinguish between constitutive relations that describe
the fluid properties and those that quantify the interaction between the phases
and the porous medium. First, we consider relations of the former type.

Viscosity is a property of the fluids that can be treated as a constant for
isothermal conditions. For the phase densities, we assume that water (w) and
NAPL (n) are incompressible.

We now move to the task of describing closure relations that capture fluid–
porous medium interactions, namely relations among capillary pressure, satu-
ration, and relative permeability. The development of closure relations of this
type is an open area of research. Hence, a growing variety of functional forms
and corresponding parameterizations is found in the literature. While these
relationships are interdependent, we first focus on the relationship between
capillary pressure and saturation that will be used in our two-phase model.

Among the most well-known approaches for describing capillary pressure-
saturation are those of [11] and [51]. The Brooks–Corey (BC) approach is
formulated as
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pc = pd S
−1/λ
e (17)

and the van Genuchten (VG) approach as

pc =
1

α

(
S−1/m
e − 1

)1/n

(18)

with

Se =
Sw − Sw,r
1− Sw,r

(19)

and

m = 1− 1

n
. (20)

Sw,r is the residual wetting phase saturation and Se the effective saturation
of the wetting phase, which are local macroscale constants for the porous
medium/fluid system determined from equilibrium experimental data. The
parameters pd, λ, α, and n are determined by fitting the functionals to exper-
imental data.

The parameterized functionals above differ most significantly as Se ap-
proaches 1, that is as the medium becomes water saturated. We see from
Equation. (17) that the BC model yields a non–zero capillary pressure, pd,
in this case. The parameter, pd, called the displacement or entry pressure,
describes fluid/porous media systems that exhibit a non–zero pressure that
the nonwetting phase must exceed before it can penetrate a water-saturated
porous medium. In contrast, the VG-curve for Se → 1 approaches the value
pc = 0. When both functionals are fitted to experimental systems, it can be
seen that the BC functional models the rapidly changing relationship between
saturation and capillary pressure near water saturation with a discontinuity,
whereas the VG-curve approximates this relationship with a continuous curve
in such a way that 1/α ≈ pd. The parameters λ and m are used to account
for the geometric variability of the microscale pore morphology.

Permeability-saturation behavior can be described by coupling the BC
relations with the approach of [12] or the van Genuchten relations with the
approach of [43]. The BC functions for the wetting and the nonwetting phases
yield

krw = S
2+3λ
λ

e (21)

krn = (1− Se)2
(

1− S
2+λ
λ

e

)
(22)

and the VG functions

krw =
√
Se

[
1−

(
1− S1/m

e

)m]2
(23)

krn = (1− Se)
1
3

[
1− S1/m

e

]2m
. (24)
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To summarize, we have closed the system of mass balance equations for
two fluid phases by employing a form of Darcy’s law for the description of
fluid velocities, standard physico-chemical models of microscale fluid density,
constant values of fluid viscosity and media porosity, and empirically derived
relationships between macroscale pressure–saturation–permeability. The ef-
fects of microscale heterogeneity must then be captured solely by the intrinsic
permeability tensor and the form of the pressure–saturation–permeability. As
the results in Section 3 suggest, the above commonly used models may in fact
be incapable of representing well-known effects of microscale heterogeneity
such as tensorial and hysteretic relationships. It is partly for this reason that
recent research in pressure-saturation-permeability relationships has yielded
a large variety of alternative functional forms; however, we ignore this signif-
icant open issue in what follows in order to investigate the complex problem
of incorporating macroscale heterogeneity, that is spatial variability in the
standard parameterizations over mesoscale and field scale simulations.

4.5 Inclusion of Microscale Heterogeneity

The constitutive relationships shown in this section so far assume that the
parameters obtained by averaging over a REV are homogeneous and isotropic
and therefore are best described by scalars rather than tensors. However, the
experiment shown in Section 2 and the constitutive relationships derived in
Section 3 make it clear that those assumptions are not acceptable for natural
systems in most cases. The relationships upscaled from the microscale for krw
and pn−pw = nT (Sw)Πc(Sw)n are more adequate, as they take into account
the anisotropy of the medium. For anistropic relative permeability function,
see for example [2, 8].

In both papers, the anisotropic relative permeabilities have been upscaled
from a smaller scale where an REV has already been applied. However,
anisotropic capillary–pressure relationships are the result of an upscaling pro-
cess from the pore size scale, where we may assume an anisotropic distribution
of pore throats. For a steady change of the upscaled parameters, which may
be the result of non–stationary distributions for pore bodies and pore throats
rather than stationary distributions like those in Section 3, it makes sense to
use the effective permeability kα = krα ·Ki and to weight it harmonically in
the numerical model. Therefore, we reformulate the Equations (15) and (16)
to

−ϕ%w
∂Sn
∂t
−∇ ·

(
%wkw
µw

(∇pw − %wg)

)
− qw = 0 (25)

ϕ
∂(%nSn)

∂t
−∇ ·

(
%nkn
µn

(∇pw +∇pc − %ng)

)
− qn = 0 . (26)
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4.6 Inclusion of Macroscale Heterogeneity

Smoothly varying material properties naturally preserve continuity in both
saturation and pressure; however, in realistic situations, such as the DNAPL
experiment presented in Section 2, discontinuous materials are a good approx-
imation of the variation in material properties for macroscale models.

As shown in [22], it is advantegeous to upwind the mobility λα = krα/µα.
Therefore, to deal with flow across the interfaces of block heterogeneities, we
reformulate Equations (15) and (16):

−ϕ%w
∂Sn
∂t
−∇ · (%wλwKi(∇pw − %wg))− qw = 0 (27)

ϕ
∂(%nSn)

∂t
−∇ · (%nλnKi(∇pw +∇pc − %ng))− qn = 0 . (28)

Since λα is a scalar, we have to take into account the anisotropy of the
relative permeability. With n as the normal vector of the interface of the block

heterogeneity we use λα = nTkrαn
µα

. If we use capillary pressure relationships
as introduced in Equation 7, we also take the normal vector of the interface
rather than the saturation gradient.

Let us now abstract Subset C shown in Fig. 3 as an example of variabil-
ity for the mesoscale in soil properties: Figure 10 shows DNAPL entering a
water-saturated column containing a fine–sand lens embedded into ambient
coarse sand. We divide the domain into three subdomains G1 = [y0, y1], G2 =
(y1, y2), G3 = [y2, y3] with interfaces at y1 and y2. G1 and G3 are coarse sand,
G2 is fine sand, that is there is a discontinuity in material properties at y1

and y2 such that pd|G2 > pd|G1 and pd|G1 = pd|G2. We first define several
limits at the interface:

Sw|Gy1

1 := lim
y→y+

1

Sw, Sw|Gy1

2 := lim
y→y−1

Sw, (29)

pc|Gy1

1 := lim
y→y−1

pc, pc|Gy1

2 := lim
y→y+

1

pc (30)

For valpha defined as in Equation (11) to remain finite given our definition
of capillary pressure, we must require that pc be continuous at discontinuities
in material properties, and we adopt the term capillary equilibrium condition
for this continuity requirement. Hence, pc|Gy1

1 = pc|Gy1

2 . This requirement,
however, implies that spatially variable BC and VG functions, and therefore
Sw, can be discontinuous at media discontinuities. For the system in Fig. 10,
we have Sw|Gy1

1 = p−1
c |G1(py1

c ) 6= p−1
c |G2(py1

c ) = Sw|Gy1

2 . For VG functionals,
the saturation is continuous for pc = 0, regardless of the material properties
and hence a fully water-saturated domain obeys the capillary equilibrium con-
dition. On the other hand, the BC functional, because of its explicit inclusion
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Fig. 10. DNAPL spreading at the interface of two domains: setup of the experiment

of finite entry pressure, cannot permit a fully saturated system while preserv-
ing the capillary equilibrium condition. As a result, in our example domain,
we then have pc|G1(1) = pd|G1 < pd|G2 = pc|G2(1) at full water saturation.

In such cases, we can develop numerical techniques that yield discrete
solutions that both preserve the discontinuity in saturation and maintain a
discrete capillary equilibrium condition. We will, therefore, revisit this issue
when we present numerical methods for solving the flow equations.

5 Numerical Model

The mathematical description of the physical processes yields a system of cou-
pled partial differential equations with a hyperbolic/parabolic character. They
exhibit a high degree of nonlinearity. We handle this with a Newton–Raphson
method. We can write the system of two equations given by Equations (15)
and 16 in the following simplified functional form:

F(x) = 0 , (31)

where the vector x holds the primary variables.
The damped inexact Newton–Raphson algorithm for solving the resulting

nonlinear system of equations is given by:
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Choose xk+1,0; set m = 0;

while (||F(xk+1,m)||2 / ||F(xk+1,0||2 > εnl))

{
Solve K(xk+1,m)u = −F(xk+1,m)

with accuracy εlin;

xk+1,m+1 = xk+1,m + ηu;

m = m+ 1;

}

F(xk+1,m) represents the defect term obtained at time level k+1 and iteration
m depending on the nonlinear functions F and the vector of primary variables
x. εnl and εlin are the accuracy criteria of the nonlinear and the linear solution
respectively. ||·|| is the Euclidean vector norm. The damping factor η = (1/2)q

is chosen such that

||F(xk+1,m+1)||2 ≤
[
1− 1

4

(
1

2

)q]
||F(xk+1,m)||2 (32)

is valid for the smallest possible q ∈ {0, 1, ..., nls} with the maximum number
of line search steps nls being between 4 and 6.

For time discretization, we use a fully implicit Eulerian approach. The
time discretization is applied to the storage term, e.g.

∂S

∂t
≈ Sk+1 − Sk

∆tk+1
. (33)

A time-step reduction with a given factor dtscale is applied if no q as described
in (32) can be found within 6 line searches. A time-step extension with factor
dtscale is applied if such a q can be found within the first line search. For
the algorithm, we set a starting value ∆start, a minimum value ∆min which
acts as a stopping criterium if it is undershot, and a maximum value ∆max

which restricts time steps from getting too large. Within these bounds the
size of the actual time step ∆tk+1 can be interpreted as a rough measure of
the convergence behavior of the nonlinear algorithm.

As seen in the inexact Newton–Raphson algorithm,

Ku = f (34)

is the Jacobian system to be solved by a linear solver. As the linear solver
we use the Bi-Conjugate Gradient Stabilized solver (Bi–CGSTAB) (e.g. [3])
with a preconditioner based on a multigrid technique [4]. The multigrid mesh
hierarchy yields a Jacobian system on each grid level l. We need linear map-
pings, restriction Rl and prolongation Pl, for interpolation between the grid
levels. A multigrid algorithm (V-cycle) for an iterative improvement of a given
vector ul can be written as follows:
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mgc (l,ul, fl)

{
if (l == 0) u0 = K−1

0 f0;

else {
Apply ν1 smoothing iterations to Klul = fl;

dl−1 = Rl(fl −Klul);

el−1 = 0;

mgc (l − 1, el−1,dl−1);

ul = ul + Plel−1;

Apply ν2 smoothing iterations to Klul = fl;

}
}

For smoothing iterations, for example, ν1 = ν2 = 2 ILU steps (incomplete
decomposition, e.g. [20]) can be chosen.

For a more detailed explanation of the discretization and solution methods
implemented in MUFTE UG, we recommend, for example, [5] or [6].

5.1 Adaptive Time Discretization

In addition to the backward Euler time discretization in Equation (33), we
examine the behavior of numerical models based on higher order backward
difference (BDF) discretization formulas, which are a generalization of Equa-
tion (33) given by

∂S

∂t
≈

k+1∑

i=k+1−b
βiSi (35)

where b is the order of the BDF discretization and the β i are coefficients of
the BDF method. Just as with backward Euler, higher order BDF discretiza-
tions lead to a nonlinear system which is solved iteratively with an inexact
Newton-Raphson algorithm [10]. However, the time step is selected according
to heuristics that use an estimate of the local truncation error of the semi-
discrete system, which has the form

εk+1 ≈ κb‖xk+1 − xk+1
p ‖ (36)

where κ is an error coefficient for the BDF method and xk+1
p is the initial guess

of the Newton algorithm, the so-called predictor. The predictor is obtained
by extrapolating to level k + 1 with a b-th order Lagrange polynomial; thus,
εk+1 is essentially an error estimate based on comparing two methods of order
b, a common approach to error estimation for automatic time step control.
With this approach, the user–specified truncation error, τ , is maintained by
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requiring εk+1 < τ . Furthermore, as the error also has the form Cbhb+1, we
can further exploit the truncation error estimate to choose the order and
maximize the stepsize chosen for the next step. Further details on multistep
time discretizations can be found in [10] and for the code in particular see
[29].

5.2 Subdomain collocation finite volume method (box method)

We derive a finite volume formulation (box method) based on equations (15)
and (16). We assume the model domain G to be discretized by a set of vertices
V = {v1, . . . , vn} with n the number of vertices and a set of adjoined elements
E = {e1, . . . , em} with m the number of elements. For the sake of simplicity
we do not distinguish here between the vertices and their indices or elements
and their indices.

The boundary of the model domain is divided into parts holding a Dirichlet
boundary condition Γα,D and parts holding a Neumann boundary condition
Γα,N , so that ∂B = Γα,D ∪ Γα,N with α ∈ {w, n}.

The finite volume method requires the construction of a secondary mesh.
In the present case of vertex centered finite volumes, the finite volume mesh is
constructed by connecting element barycenters with edge midpoints as shown
in Fig. 11 in two dimensions. In three dimensions, first the element barycen-
ters are connected to element face barycenters and then these are connected
with edge midpoints. Each control volume Bi belongs to a grid vertex vi,
the intersection of a control volume Bi with element k is denoted by bki (sub
control volume).

In Fig. 11 (a) we see the solid line representing the finite elements and
the dashed lines representing the control volumes. Note, that the boundary Γ
between two subdomains of G with different properties runs along the control
volume, i.e. each control volume may have its own property and there may be
different properties within each element.

We define weighting functions as

Wi(x) =

{
1 if x ∈ Bi
0 if x /∈ Bi (37)

and the shape functions Ni as linear interpolation of δij with i, j ∈ V . This
can be seen in Fig. 12 for one dimension. With this definitions we approximate
equations (15) and (16) using the Euler scheme described above for the new
time step k + 1 and according to the subdomain collocation finite volume
method (box method) with |Bi| area of Bi in 2D or volume of Bi in 3D as
follows:
Wetting phase:

((Sn%w)k+1
i − (Sn%w)ki ) ϕ

∆t |Bi| =
−
∮
∂Bi

%k+1
wij λ

k+1
wij K(∇pk+1

w − %k+1
w g)

i
n dΓBi − (qw)k+1

i |Bi| (38)
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Non–wetting phase:

− ((Sn%n)k+1
i − (Sn%n)ki )

ϕ

∆t
|Bi| =

−
∮

∂Bi

%k+1
nij λ

k+1
nij K(∇pk+1

w +∇pk+1
c − %k+1

n g)indΓBi

− (qn)k+1
i |Bi| . (39)

Here |Bi| denotes the area (2D) or the volume (3D) of Bi, n denotes the
outer normal vector of ∂Bi and ΓBi the integration path around Bi.

In practice, the global stiffness matrix is constructed according to the finite
element formulation, i.e. all line integrals within an element are computed by
a loop over all elements. The integral over the segment of a straight line
is approximated by the midpoint rule, i.e. the value at the midpoint of the
subcontrol volume face between the vertices vi and vj – the integration point

xFUelij – is multiplied by the length of the corresponding subcontrol volume
face. In Fig. 11 (b) we see the local element of arbitrarily chosen element e3

from Fig. 11 (a) with the integration point between vertix v2 and vertix v3

according to the midpoint rule (number according to the local numbering of
the vertices; v3 in local notation is vi in global notation). We approximate
the flux from sub control volume b3

2 to sub control volume b33 along the sub
control volume face indicated by the bracket.

2G
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Fig. 11. (a) Overlap of FE- and FV-mesh; (b) one FE with corresponding sub
control volumes
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With

pw ≈
∑

i∈V
pwiNi

pc ≈
∑

i∈V
pciNi

Sn ≈
∑

i∈V
SniNi (40)

the integration of equations (38) and (39) over a box Bi yields:

gαi(S
k+1
ni ;Skn,i; p

k+1
wi ; pk+1

wj ) :=

− (−1)δαw{(Sn %α)k+1
i − (Sn %α)ki }

ϕ

∆t
|Bi|

︸ ︷︷ ︸
term 1

−
∑

l∈Ei

∑

j∈ηi
λFUelαij %k+1

αij γ
FUel
ij (ψk+1

αj − ψk+1
αi )

︸ ︷︷ ︸
term 2

− qk+1
αi |Bi|︸ ︷︷ ︸
term 3

− mαi︸︷︷︸
term 4

= 0 ,

α ∈ {w, n} (41)

with term 1 as accumulation term, term 2 as internal flux term, term 3 as
sink and source term, and term 4 describing the boundary flux.

We set

γFUelαij :=

∮

∂Bi\Γα,F

K∇Nj n dΓBi (42)

ψk+1
α i := pk+1

wi + δαnp
k+1
ci − %k+1

αi g zi . (43)

Ei is the set of elements which are adjoined to vertex vi, e.g. {e1, e2, e3, e4, e5}
for vi in Fig. 11. ηi is the set of neighbor nodes of vi whose boxes share
subcontrol volume faces with Bi, i.e. whose respective integral γFUelαij is non–
zero. (ψαj − ψαi) is the direction of the discrete flow of phase α. zi is the
geodetic hight of vertix vi.

mαi is the flow over ∂Bi∩Γα,N . The product must be considered in analogy
to the finite element formulation.

The Fully Upwind finite volume method (FU–box) is given by:

λFUeαij =

{
λαj if (ψαj − ψαi) ≥ 0
λαi if (ψαj − ψαi) ≤ 0

(44)

Note that the integral over the interface ∂Bi ∩ ∂Bj of box Bi is of the same
magnitude as the respective boundary integral for boxBj , but has the opposite
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sign. Hence, the method is locally mass conservative at each control volume
(box).

For a more detailed description of the box method we refer to [5] or [6].
As we see in Fig. 12 we have a fully upwinding of the mobility term.

However, as we will show in Section 6.1, even the Fully Upwind box method
makes an error depending on the grid width.

nλ i−2

nλ i−2

nλ i−1

e 

i

nλ

i−2 i−1 i+1 i+2
x

i−2 i+1 i+2
x

ii−1

K I , K II , IIΦ Φ

inλ nλ

i−2 i−1 i+1 i+2
x

= 

nλ (i−1,i) = 0

= +p pn wψ − ρn

= + pn w cψ − ρn

domain  I
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e l e r

vevel

nλ
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n ψn
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p g z
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FUe
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c

Fig. 12. Fully Upwind Box discretization for the non–wetting phase at the interface
between two different geological structures.

Numerical Implementation of the Interface Conditions

By using the upwinding of mobility it is possible to establish a correct re-
production of the entering of the non-wetting phase into the low permeable
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area. However, by using this method the convergence behaviour of the nu-
merical solver worsens significantly, when the non-wetting phase reaches the
low permeable area. The reason is that with the entering of the non–wetting
phase into the low permeable domain the upwind vertex oscillates between
the vertexs i − 1 and i. For the state, we see in Fig. 12 the upwind vertex is
still set to vertex i.

Furthermore, even when using the upwinding scheme it is not possible to
reproduce the discontinuity of saturation as described in subsection 4.6 at
the interface while using a pw − Sn–formulation. It is possible if we use a
pw − pn–formulation or a pw − pc– formulation, but these formulations have
the disadvantages mentioned in section 4.

A further possibility to reproduce the discontinuity of saturation at the
interface is to use the capillary pressure pc as kind of quasi primary variable
at the interface between the two subdomains.

We use the definitions of subsection 4.6, i.e. G1 being the subdomain with
the higher permeability and the lower entry pressure in comparisonto the
subdomain G2. The threshold saturation S∗w is defined via pG1

c (S∗w) = pG2
e ,

with Sw|GΓ1 = 1−Sn|GΓ1 and Sw|GΓ2 = 1−Sn|GΓ2 and we recalculate Sw|GΓ2
at the interface using the extended capillary pressure condition:

Sw|GΓ2 =

{
1 if Sw|GΓ1 ≥ S∗w
InvG2

pc if Sw|GΓ1 < S∗w
(45)

with InvG2
pc as the inverse of the capillary pressure saturation function of

subdomain G2.
Thus, it is made sure that the non wetting phase does not enter into

subdomain G2 until the threshold saturation has been reached. After the
threshold saturation has been reached the continuity of capillary pressure at
the interface is guaranteed.

We refer to [16] und [15] for a detailed discussion of this method and for
validating this method on the basis of a theoretical solution for a self similar
problem with a discontinuity.

We use the subdomain collocation finite volume method described above,
but establish the interface condition. For the incorporation of the interface
condition into the discretization the parameters have to be evaluated ele-
mentwise. The difference between a patch oriented approach and an element
oriented approach in the evaluation of parameters can be seen when compar-
ing the boundary Γ in Fig. 11 and Fig. 13. Assuming that capillary pressure
is higher in domain G2, the elements in domain G2 are evaluated with a re-
calculated saturation for the vertices located on the interface Γ as seen in
Fig. 13. This saturation can (but need not) be different from the saturation
for the same vertices when evaluating the elements located in subdomain G1.

In Fig. 13 we see the two subdomains G1 and G2 detached at the interface
Γ . The vertex vi still exists only once, but the associated saturation values
Sn|vG1

i and Sn|vG2
i can vary between vG1

i and vG2
i , as Sn|vG2

i is computed by
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the inverse capillary pressure saturation function of G2 using 1−Sn|vG1 . Since

Γ
e e

e e

eB

G

1
5

4

32

G

1

2

B i

i

vi

Fig. 13. For the PPSIC method we evaluate the capillary pressure over the adjoined
elements (here e1...e5) of vertex vi with the saturation at vi.

the pressure pw is continuous—we assume a mobile wetting phase here—this
value is identical for both virtual vertices, i.e. we have

pw|vG1
i = pw|vG2

i . (46)

For the actual computation of Sn|vG1
i from Sn|vG2

i we first define the minimal
capillary pressure pic,min for vertex vi with regard to all elements which have
vi as a corner. Therefore, we denote E(i) as the set of indices of those elements
which have vi as a corner (e.g. E(i) = {1, ..5} in Fig. 13).

pic,min = min
k∈E(i)

pc(x
k, 1− Sn,i). (47)

xk is the barycenter of element ek. For the determination of pic,min at vertex
vi, we evaluate the capillary pressure function in all elements that vertex vi is
part of for the saturation that is associated with vi in element ek and compute
the minimum value.

pic,min is used to compute the saturation Sn at vertex vi with respect to
element ek. The extended capillary pressure condition interface condition can
be used as follows:

Sn,i,k =





Sn,i if pc(x
k, 1− Sn,i) = pic,min

0 pic,min < pc(x
k, 1)

1− Sw where Sw solves pc(x
k, Sw) = pic,min

(48)

With this definition it is possible for more than two subdomains to meet at
vertex vi.

We now evaluate the secondary variables (besides the capillary pressure)
as shown in section 4. However, for the evaluation of the domain dependent
parameters we use the barycenter of the element, not the position of the nodes.

For a more detailed description of the implementation of the PPSIC
method we refer to [5].
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6 Examples

6.1 Examination of Numerical Results for 1D

In this section we investigate the numerical schemes described in Section 4.6
applied to a simple system. We have three different domains in a column with
a length of 2.5[m] and a width of 0.5[m]. The domain is averaged over 1[m]
depth. The upper and the lower domains consist of coarse sand, the middle
of fine sand (see Fig. 14). We choose the parameters for the sands according

g

p  = 20000 [Pa]

n

w

n

y  = 1.5 [m]

y  = 1.0 [m]

X [m]
0 [m] 0.5 [m]

S  = 0.0 [−]

y  = 0.0 [m]

y  = 0.0 [m]

q  = 0.05 [kg / m s]2

G

G

G

1

2

3

Fig. 14. Setup of 1D example

to those of the coarse and the medium sand described in [33]. DNAPL spills
from the top into the fully water saturated system with qn = 0.05 [kg/(m2s)].
The correspondent parameters for the fluids and the porous media, initial
conditions and boundary conditions can be seen in Tables 4 to 7. In Fig. 15
on the left hand side, we see the capillary pressure saturation relationships
after Brooks and Corey according to the parameters given in Table 5. The
threshold saturation as defined in Section 4.6 is S∗w ≈ 0.085. In Fig. 15 on the
right hand side, we see the relative permeability saturation functions for the
two different sands according to Brooks and Corey. As spatial discretization
methods we use the subdomain collocation finite volume method described
in Section 5.2 with and without interface condition described in Section 5.2.
The discretization scheme without interface condition will be referred to as
Phase Pressure Saturation formulation (PPS), the discretization scheme with
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Table 4. Fluid Parameters

Density Viscosity

Water ρw = 998 [kg/m3] µw = 1.0E − 03 [kg/(ms)]
DNPL ρn = 1621 [kg/m3] µn = 0.9E − 03 [kg/(ms)]

Table 5. Parameters of sands

Sand pd[Pa] λ Swr K[m2] Porosity

G1, G3 coarse sand 370 3.86 0.078 5.04*10−10 0.40
G2 fine sand 1324 2.49 0.098 5.26*10−11 0.39

SS  = 0.085
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Fig. 15. Left hand side: Capillary pressure of 1D example; right hand side: Relative
permeability function after Brooks and Corey for G1 and G2

interface condition will be referred to as Phase Pressure Saturation formula-
tion with Interface Condition (PPSIC). We use two different sets of element
lengths, one set with ∆h = 0.25/23[m] and one set with ∆h = 0.25/26[m].

For time discretization we use the implicit Euler scheme given in Equa-
tion (33) with a start (and maximum) value of ∆tstart = 80.0 [s] for
∆h = 0.25/23[m] and ∆tstart = 10.0 [s] for ∆h = 0.25/26[m]. The minimum
value is chosen small enough so it is never reached ∆tstart = 10.0E − 8 [s].
The computation was carried until 6800[s] of simulated time were exceeded.
After 6800[s] the DNAPL has almost reached the bottom of the column.

We show the DNAPL front Sn(y) at five time steps in the Figs. 16 and
17. These have been chosen according to location of the DNAPL front:

1. The front is in G1, arbitrarily chosen at simulated time t ≈ 1500[s].
2. The front reaches G2 and would enter it, if G2 had the same parameters

as G1. This happens at the simulated time of t ≈ 2200[s].
3. The front actually enters G2. This happens at t ≈ 2750[s].
4. The front leaves G2. This happens at t ≈ 4600[s].
5. The front is in G3, arbitrarily chosen at simulated time t ≈ 6350[s].

We can see that the DNAPL saturation at y = 1.5[m] according to the PPS
formulation (Figs. 16 and 17 on the left) is lower than according to the PP-
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Table 6. Initial Conditions

Water pw = 20000 [Pa]
DNPL Sn = 0.0 [−]

Table 7. Boundary Conditions

Water DNAPL

left, right qw = 0.0[kg/m2s] qn = 0.0[kg/m2s]
top qw = 0.0[kg/m2s] qn = 0.05[kg/m2s]
bottom pw = 20.000[Pa] Sn = 0.0[−]

SIC formulation (Figs. 16 and 17 on the right). The threshold saturation
S∗w ≈ 0.085 is equivalent to a DNAPL saturation of Sn = 0.915. This DNAPL
saturationis not reproduced if we use the PPS formulation, but it is reproduced
if we use the PPSIC formulation both for the coarse and the fine grid. The PPS
method approximates the threshold saturation somewhat better for the finer
discretization (comparing Fig. 16 PPS with Fig. 17 PPS). This corresponds
with the theory as explained in Section 4.6 and Section 5.2. According to
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Fig. 16. DNAPL saturation for different time steps; ∆h = 0.25[m]/23; left: without
Interface Condition (PPS); right: with Interface Condition (PPSIC).

the results, we can conclude that the PPSIC method is able to reproduce the
threshold saturation at interfaces correctly even for coarse spatial discretiza-
tions, while for the PPS method the reproduction of the threshold saturation
at interfaces is dependent on ∆h.

For comparisons of the PPS and the PPSIC scheme regarding the time step
as a rough measure of convergence as well as investigations on the number of
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Fig. 17. DNAPL saturation for different time steps; ∆h = 0.25[m]/26; left: without
Interface Condition (PPS); right: with Interface Condition (PPSIC).

nonlinear and linear iterations within the inexact Newton-Raphson algorithm
and a two-dimensional example, we refer to [46].

7 Conclusions

In this paper we investigated the influence of heterogeneities on multiphase
flow in porous media at the macro scale with emphasis on subsurface DNAPL
contamination. To motivate the work we began by considering a mesoscale lab-
oratory experiment that exhibited complex DNAPL flow processes. The labo-
ratory experiment was engineered to contain both macroscale and microscale
heterogeneities such as those found in natural and engineered mesoscale sys-
tems. We then characterized heterogeneous multiphase porous media systems
using dimensional analysis, porescale modeling, and a macroscale continuum
approach. The goal of our characterization was to develop models appropriate
at the meso- and field-scales that can answer questions such as
� How far does the DNAPL contamination spread?
� Does it enter into lower permeability zones?
� If so, what kinds of remediation techniques can we apply to remove it from

the lower permeable zones?

Our characterization demonstrates many of the challenges involved in address-
ing such questions through modeling.

The laboratory experiment with which we began our investigation con-
tained a regular packing of four widely differing porous media types. Hence,
in addition to the variation of the microscale pore geometry within each porous
medium (microscale or intrinsic heterogeneity), our experimental system con-
tained strong variations at the macroscale, which influenced flow and trans-
port behavior. The dominant DNAPL flow phenomena observed during the
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experiment included 1) residual entrapment 2) lateral spreading 3) vertical
fingering and 4) ponding at low permeability layers.

A dimensional analysis of the relevant forces in multiphase porous media
yielded a characterization of these systems in terms of non-dimensional capil-
lary, gravity, and gravillary numbers. For length scales from the microscale to
the mesoscale our dimensional analysis showed that capillary forces and grav-
ity are active in determining behavior. Hence, gravity and capillary forces must
be accounted for in the model representation of fluid momentum if modeling is
to be used to faithfully reproduce flow processes. While gravity is straightfor-
ward to incorporate into macroscale models, capillary forces in particular are
generally included via empirical closure relations relating capillary pressure
and saturation.

Instead of obtaining capillary pressure-saturation relations from macro-
scale observations of multiphase systems, we can also study such relation-
ships using models of the porous media at the microscale. To this end a
pore scale model of multiphase flow was used to investigate the form of cap-
illary pressure–saturation relations in porous media with heterogeneity and
anisotropy in the microscale pore morphology. We represented the pore scale
geometry as a network of cubic pore bodies and square pore throats. The pore
bodies and throats were normally distributed with an exponential semivari-
ogram. Even given this fairly simple geometric representation the microscale
pore morphology we found that corresponding macroscale soil characteristics
would need to account for 1) anisotropic permeability tensor 2) pressure-
saturation hysteresis and 3) non-wetting phase residual entrapment.

While standard macroscale continuum models rarely include all of the
effects above via the constitutive equations, heterogeneous macroscale per-
meability and pressure-saturation relationships should at least be capable of
reproducing some flow phenomena produced by macroscale heterogeneities.
We formulated macroscale continuum models of multiphase, multicomponent
transport and investigated numerical methods for incorporating macroscale
heterogeneity. In particular we showed that the correct reproduction of capil-
lary equilibrium conditions is crucial for reproducing flow processes, such as
lateral spreading and ponding, which occur at macroscale heterogeneities. The
capillary equilibrium condition can be reproduced using either an upwinding
scheme or by directly implementing the condition. Details for implementing
both methods as well as numerical experiments validating their effectiveness
were included.

We concluded with numerical simulations and laboratory examples of ther-
mally enhanced soil vapor extraction for remediating DNAPL-contaminated,
heterogeneous soils. Both our previous laboratory experiments and our macro-
scale continuum models suggested that if the DNAPL has indeed entered into
low permeability zones with high entry pressures, then extracting entrapped
DNAPL from these zones may be difficult using fluid flow alone. In this case,
a more sophisticated remediation technique making use of component trans-
port and interphase mass transfer may be the only effective means of removing
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DNAPL contamination. Specifically, while DNAPL flow may be difficult to in-
duce in low permeability/high entry pressure zones, air flow and mass transfer
from DNAPL to air may be effective at reducing trapped DNAPL saturations
in low permeability zones. We showed that in both laboratory and theoretical
models the remediation technique was effective.
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The Unsteady Expansion and Contraction of a
Two-Dimensional Vapour Bubble Confined
Between Superheated or Subcooled Plates
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Summary. In this paper we analyse the unsteady expansion and contraction of a
long, two-dimensional bubble confined between superheated or subcooled parallel
plates, whose motion is driven by mass transfer between the liquid and the vapour.

Key words: Unsteady Expansion and Contraction, Vapour Bubble, Boiling

1 Introduction

Microscale boiling occurs in a number of industrial situations, including
aerospace science, micro-electro-mechanical systems (MEMS), compact heat
exchangers and chemical microreactors, and as a result there is considerable in-
terest in the dynamics of confined vapour bubbles. Wilson, Davis and Bankoff
[5] studied the dynamics of a long, two-dimensional vapour bubble confined
between two parallel plates held at, in general, different temperatures. Un-
like Bretherton’s [4] classical model, in which the steady translation of the
bubble is driven by an externally imposed pressure gradient, they studied
the unsteady expansion and contraction of a vapour bubble whose motion is
driven by mass transfer between the liquid and the vapour. As in Bretherton’s
isothermal model, the velocity of the bubble determines the initial thickness
of the thin films of liquid laid down on both plates as the bubble expands,
but unlike in Bretherton’s model the evaporation from and/or condensation
onto those films (which may break up into disconnected patches of liquid as
they evaporate) determine the velocity of expansion and/or contraction of the
bubble, and so there is a nonlinear coupling with a delay character between
the profiles of the thin films and the overall dynamics of the bubble. Ajaev and
Homsy [1, 2] studied a steady vapour bubble in a rectangular channel with
a prescribed temperature distribution on its walls in which there is a bal-
ance between evaporation from the hotter parts of the bubble interface and
condensation onto the colder parts. Subsequently Ajaev, Homsy and Morris
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[3] considered a steady two-dimensional vapour bubble between two paral-
lel plates held at different temperatures, and then investigated its dynamic
response to temporally varying plate temperatures.

2 Problem Formulation

Following the approach of Wilson et al. [5], we consider a long, two-dimensional
vapour bubble of inviscid and incompressible vapour of density ρ(V ) sur-
rounded by its condensate and confined between two parallel plates a distance
2d apart. The condensate is assumed to be a Newtonian liquid with constant
viscosity µ, kinematic viscosity ν, density ρ, surface tension σ, thermal dif-
fusivity κ and thermal conductivity k, and the latent heat of vaporization
is denoted by L. The two plates are held at (in general different) uniform
temperatures Tu = Ts +∆Tu and Tl = Ts +∆Tl, respectively, which may be
either above or below the saturation temperature Ts.

Global conservation of mass of liquid and vapour means that the rate of
change of the mass of the bubble is equal to the total mass flux into the bubble
and so

2U = DE

∫
J ds, (1)

where U = U(t) is the velocity of the bubble, D = ρ/ρ(V ) is the ratio of the
liquid density to the vapour density, E = k|∆Tl|/ρνL is the non-dimensional
evaporation number, and the integral is over the entire liquid-vapour interface
in x > 0, parameterized by its arclength s.

We consider the limit of strong surface tension (i.e., the limit of small
capillary number C = µν/σd → 0) in which the solution in x > 0 and
y > 0 is composed of three different regions, namely a “capillary-statics”
region in R(t) < x < R(t) + 1, a “transition” region near x = R(t) and a
“thin-film” region in 0 < x < R(t). In the capillary-statics region the liquid-
vapour interface is a semi-circular cap of radius unity that fits between the
two plates. If P = ν/κ = o(1) then the contribution to the integral in (1)
from the capillary-statics region is given by (∆Tu +∆Tl)S, where S = S(K)
is a numerically determined monotonically decreasing function of K, a non-
dimensional kinetic parameter which measures the degree of nonequilibrium
at the interface. Viscous effects become significant in the narrow transition
region, and a straightforward extension of Bretherton’s [4] isothermal analysis
shows that the initial thickness of the film as it is laid down on the plate as the
bubble expands is proportional to U 2/3. For a retreating bubble (i.e., when
U < 0) the liquid on the plate is swept up by the transition region and so the
details of the solution in this region are unimportant. Once a thin liquid film
has been laid down on the plate by an expanding bubble it begins either to
evaporate (if the plate is superheated) or to be condensed onto (if the plate
is subcooled), and the thickness of the film is given by
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h(x, t) = h0(x)− Ê∆Tl
K

(t− t0(x)), (2)

in which Ê = C−2/3E is assumed to be O(1) in the limit C → 0, and where if
x < R(0) then h0 = h0(x) denotes the initial profile of the thin film at t = t0 =
0, while if x > R(0) then h0 = h0(x) = U2/3 denotes the thickness of the film
laid down at position x at time t = t0(x) = R−1(x). Equation (2) shows that
if the plate is superheated (i.e., if ∆Tl > 0) then liquid evaporates from the

thin film which dries out locally at position x at time t = t0 +Kh0(x)/Ê∆Tl,
while if the plate is subcooled (i.e., if ∆Tl < 0) then vapour condenses onto
the thin film and local dry-out never occurs. The dominant contributions to
the integral in (1) are those from the capillary-statics and thin-film regions.
Note that this situation is different from that studied by Wilson et al. [5] for
whom the contributions from the thin-film regions dominated those from the
other two regions.

3 Both Plates Superheated

If both plates are superheated (i.e., if ∆Tu > 0 and ∆Tl > 0) then the bubble
always expands and the dynamics of the expansion are governed by (1) which
takes the form

U =
dR

dt
=
DE

2K

[
(∆Tu +∆Tl)KS +∆TuLu +∆TlLl

]
> 0, (3)

where Lu = Lu(t) and Ll = Ll(t) (0 ≤ Lu, Ll ≤ R) denote the total lengths
of film on the upper and lower plates in x > 0, respectively.

3.1 Delay-Equation Formulation for Continuous Films

The liquid films laid down on the plates as the bubble expands will not,
in general, remain as continuous films as they dry. However, it is still very
informative to investigate the solution in this special case analytically before
analysing the more general situation numerically. For continuous films we
denote the position of the front of the film (where h = h0 = U2/3) by x =
R(τu + Tu(τu)) = R(τl + Tl(τl)), the position of the back of the film on the
upper plate (where h = 0) by x = R(τu), and the position of the back of the
film on the lower plate (where again h = 0) by x = R(τl), where Tu = Tu(τu)
and Tl = Tl(τl), given by

Tu(τu) =
Kh0

E∆Tu
=
KU(τu)2/3

E∆Tu
and Tl(τl) =

Kh0

E∆Tl
=
KU(τl)

2/3

E∆Tl
, (4)

are the lengths of time it takes for the liquid deposited on the upper and lower
plates at times t = τu and t = τl, respectively, to dry out. Adopting this new
notation (3) can be written as
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U(τu + Tu(τu)) =
DE

2K

[
(∆Tu +∆Tl)KS +∆Tu

∫ τu+Tu(τu)

τu
U(τ̂) dτ̂

+∆Tl

∫ τl+Tl(τl)

τl

U(τ̂) dτ̂

]
.

(5)

Equation (5) is an integro-delay equation for U with non-constant delays Tu
and Tl which depend on the solution for U at times t = τu and t = τl,
respectively, according to (4).

3.2 Constant-Velocity Solutions and their Stability

Equation (5) permits an exact travelling-wave solution with constant delays
and constant velocity U0(> 0), where U0 satisfies

U0 =
DE

2
(∆Tu +∆Tl)S +DU

5/3
0 . (6)

Figure 1 shows U0 plotted as a function of D for a range of values of ∆Tu
when ∆Tl = 1, and shows that for 0 < D < Dc there are two branches of
positive solutions, namely a “fast” mode satisfying U0 > U0c and a “slow”
mode satisfying 0 < U0 < U0c, but that there are no positive solutions for
D > Dc, where

Dc =

(
3

5

)3/5 [
4

5E(∆Tu +∆Tl)S

]2/5

and U0c =

(
3

5Dc

)3/2

. (7)

In particular, the slow mode satisfies U0 = O(D) → 0+ and the fast mode
satisfies U0 ∼ D−3/2 → ∞ in the limit D → 0+, while both modes satisfy
U0−U0c = O(Dc−D)1/2 in the limit D → D−c . For both modes the profiles of
the films on both plates are linear in x. On the lower plate the profile increases

from the value h = 0 at the back x = R(t−Tl0) = U0t−KU5/3
0 /E∆Tl to the

value h = U
2/3
0 at the front x = R(t) = U0t according to

h = U
2/3
0 +

E∆Tl
KU0

(x− U0t). (8)

The corresponding results for the profile of the film on the upper plate can be
readily deduced. A linear stability analysis shows that the fast mode is always
unstable while the slow mode is always stable. These results are qualitatively
different from those obtained by Wilson et al. [5] who found a single unstable
mode with velocity U0 = D−3/2 for all values of D.

4 Summary

In this paper we analysed the unsteady expansion and contraction of a long,
two-dimensional bubble confined between superheated or subcooled parallel
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Fig. 1. The velocity of the constant-velocity solutions U0 plotted as a function of
D for ∆Tu = 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4 and 5 when ∆Tl = 1.

plates, whose motion is driven by mass transfer between the liquid and the
vapour. Specifically, we extended the analysis of Wilson et al. [5] to include
significant mass transfer from and/or to the semi-circular cap regions at the
nose of the bubble as well as from and/or to the thin liquid films attached to
the plates. When both plates are superheated the bubble always expands. In
this case there are two possible constant-velocity travelling-wave solutions for
the expansion of the bubble when 0 < D < Dc, namely an unstable fast mode
with velocity U0 satisfying U0 > U0c and a stable slow mode with velocity U0

satisfying 0 < U0 < U0c, but none for D > Dc.
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Summary. Semi-Lagrangian techniques are proposed for animating water waves
in realistic events. The two-dimensional shallow water equations are considered to
model the motion of water flow and a second order time marching procedure which
combines the characteristic method with a finite differencing discretization is used
to integrate the model. Numerical results are carried out on a squared pool without
and with obstacles. The obtained results show that our algorithm is robust, stable
and highly accurate.

1 Introduction

We present a comprehensive methodology for realistically animating water
waves. Our approach is based on the shallow water equations which result
from the depth averaged incompressible Navier-Stokes equations and conse-
quently describe water motion. The method we propose in this paper consists
of an Eulerian-Lagrangian splitting of the equations along the characteris-
tic curves. The Lagrangian stage of the splitting is treated by the modified
method of characteristics, while the Eulerian stage is approximated by an im-
plicit time integration scheme using finite differencing for spatial discretiza-
tion. The combined two stages lead to a semi-Lagrangian method which is
robust, second order accurate, and simple to implement for water flows over
fixed solid obstacles. Computational results are shown for two test problems
on animating water waves in squared pools without and with obstacles.

The model we consider in this paper for animating waves is the two-
dimensional shallow water equations with no Coriolis effect and zero viscosity,
compare [1] for details. In Lagrangian form these equations are given by

DU

Dt
+ g∇h = 0,

(1)
Dh

Dt
− U · ∇b+ d∇ · U = 0,
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where h = h(t, x, y) is the water height, U = (u, v)T is the velocity field
with u = u(t, x, y) and v = v(t, x, y) are the velocities in x– and y–direction,
respectively. b = b(x, y) is height of the bottom ground assumed to be time
independent, d(t, x, y) = h(t, x, y) − b(x, y) is the depth of the water above
the bottom, and g is the gravitational acceleration.

In (1), ∇ = ( ∂
∂x ,

∂
∂y )T is the gradient operator, and D

Dt = ∂
∂t +U · ∇ is the

material derivative. In addition, the equations (1) have to be solved subject
to appropriate boundary and initial conditions for both h and U .

2 Semi-Lagrangian Techniques

To construct our semi-Lagrangian algorithm we cover the spatial domain with
gridpoints (xi, yj) using uniform space sizes ∆x and ∆y, and divide the time
interval into subintervals [tn, tn+1] of equal length ∆t. We use the notation
wnij = w(tn, xi, yj). Following [2], the characteristics curves associated to equa-
tions (1) are the solution of initial-value problem

dXij

dτ
= U (τ,Xij(τ ; tn+1,xij)) , τ ∈ [tn, tn+1],

(2)
Xij(tn+1; tn+1,xij) = xij .

Note that Xij(τ ; tn+1,xij) = (Xi(τ ; tn+1,xij), Yj(τ ; tn+1,xij))
T

is the de-
parture point at time τ of a water particle that will reach the gridpoint
xij = (xi, yj)

T at time τ = tn+1. To approximate solutions to (2) we used a
method first proposed in the context of semi-Lagrangian schemes to integrate
the weather prediction equations [4]. Details on the implementation of this
step in viscous incompressible flows can be found in [3].

Once the characteristic curves are computed, the value of a solution func-
tion w at the characteristic feet, w̃nij = w(tn,Xij(tn; tn+1,xij)), is approxi-
mated by interpolation from known values at gridpoints of the host element
where the feet are localized. To perform this step in our algorithm we used
the bicubic spline interpolation. The complete discretization we propose in
the present work for equations (1) reads

un+1
ij − ũnij
∆t

+
1

2
gDxh̃nij +

1

2
gDxhn+1

ij = 0, (3)

vn+1
ij − ṽnij
∆t

+
1

2
gDyh̃nij +

1

2
gDyhn+1

ij = 0, (4)

hn+1
ij − h̃nij
∆t

− 1

2
ũnijDxbij −

1

2
ṽnijDybij −

1

2
un+1
ij Dxbij −

1

2
vn+1
ij Dybij +

d∗ij

(
1

2
Dxũnij +

1

2
Dy ṽnij +

1

2
Dxun+1

ij +
1

2
Dyvn+1

ij

)
= 0, (5)

where d∗ij = 3
2 d̃
n
ij− 1

2 d̃
n−1
ij , Dx and Dy denote the centered difference operators
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Dxwij =
wi+1j − wi−1j

2∆x
, Dywij =

wij+1 − wij−1

2∆y
. (6)

Note that the fully disctization (3) – (5) is second order accurate in both space
and time. A simple way to solve the equations (3) – (5) is to use the first and
second equations to eliminate the flow velocity and its divergence from the
third equation. Hence, (3) and (4) give

un+1
ij = ũnij −

∆t

2
gDxh̃nij −

∆t

2
gDxhn+1

ij , (7)

vn+1
ij = ṽnij −

∆t

2
gDyh̃nij −

∆t

2
gDyhn+1

ij . (8)

Inserting (7) and (8) in (5) leads to the following Helmholtz equation for hn+1

hn+1
ij +

(∆t)2

4
gDbij · Dhn+1

ij − (∆t)2

4
gd∗ijD2hn+1

ij = h̃nij +∆tŨnij · Dbij−

∆td∗ijD · Ũnij −
(∆t)2

2
gDbij · Dh̃nij +

(∆t)2

2
gd∗ijD2h̃nij , (9)

where D = (Dx,Dy)T with Dx and Dy are given in (6), and D2 is the central
discretization of the Laplace operator

D2wij =
wi+1j − 2wij + wi−1j

(∆x)2
+
wij+1 − 2wij − wij−1

(∆y)2
.

The implementation of semi-Lagrangian algorithm to solve the shallow water
equations (1) is carried out in the following steps:

(a) For all gridpoints xij compute the departure points Xij(tn; tn+1,xij) in (2)
and identify the grid elements where such points are located.

(b) Compute the approximation h̃nij , ũ
n
ij and ṽnij employing the bicubic spline in-

terpolation and formulate the right-hand side term in (9).
(c) Solve for h̃n+1

ij the linear system (9) using for instance the Bicgstab method.

(d) Update the velocity field un+1
ij and vn+1

ij using (7) and (8), respectively.

Note that the steps (a)-(d) can straightforwardly be implemented in parallel.

3 Numerical Results

The semi-Lagrangian algorithm has been implemented to animate water waves
in a squared pool of 200 m length. The problem starts with a circular wave
created in the upper-left corner of the pool. Then, the wave is propagated
freely along the main diagonal according to the shallow water equations (1).
The wave is centered at (10 m, 190 m) and the bottom ground b is set to 5 m.
Initially the water is at rest and g = 9.8 m/s2. The computational domain
is discretized in 50× 50 grid points. On the boundaries we impose solid wall
boundary conditions and a time step of ∆t = 0.1 sec is used in computations.
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The numerical results are presented in Fig. 1 at times t = 25, 50 and 100 sec.
Next we introduce a Γ -shaped obstacle in the pool and numerical results are
shown in Fig. 2. In these figures the left and right columns represent the water
height and the velocity vectors, respectively.

t = 25 sec

t = 50 sec

t = 100 sec

Fig. 1. Animating water waves in a squared pool.

For both examples, the semi-Lagrangian method captures the correct
water-flow structures with no oscillations or extra numerical dissipation. Fur-
thermore, the water-flow symmetry in the first example and water-wave re-
flections from the solid walls in the second example are well resolved by the
algorithm using coarse mesh and large time step as those used in our compu-
tations. These facts make the semi-Lagrangian very attractive as numerical
tools for animating water waves in interactive computer simulations.
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t = 25 sec

t = 50 sec

t = 100 sec

Fig. 2. Animating water waves in a squared pool with fixed obstacles.
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Summary. Models based on a filtered Poisson process are used for the flow of a
river. The aim is to forecast the next peak value of the flow, given that another
peak was observed not too long ago. The most realistic model is the one when the
time between the successive peaks does not have an exponential distribution, as it
is often assumed. An application to the Delaware River, in the USA, is presented.

Key words: filtered Poisson process, Rayleigh distribution, forecast, peaks.

1 Introduction

In [1] (see also [4]), a filtered Poisson process was used to forecast the various
peaks of rivers. Let {N(t), t ≥ 0} be a homogeneous Poisson process and let
X(t) be the river flow at time t. It was assumed, in the previous references,
that

X(t) =

N(t)∑

n=1

Yne
−(t−τn)/c , (1)

where the random variables τn are the arrival times of the Poisson events,
Yn is the magnitude of the signal that occurred at time τn and c is a con-
stant which characterizes the river system. The authors also assumed that the
random variables Yn have an exponential distribution. The stochastic process
{X(t), t ≥ 0} defined by (1) is indeed a particular case of what is known as
filtered Poisson processes. This type of stochastic process has been used to
model various phenomena; see [2]. In civil engineering, filtered Poisson pro-
cesses have served as models for stochastic rainfall ([5]) and seismic hazard
([3]), in particular.

The model set up in [1] worked only relatively well, mainly because the
correlation coefficient between the successive peaks is rather weak, in general.
It is well known that trying to predict the next peak value of a river flow is
a very difficult task. However, we believe that we can at least improve the
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results obtained so far by rendering the model more realistic. Indeed, many
mathematical assumptions made in the formulation of the model are often
not realistic at all or are only used to make the model tractable, or for lack
of better alternatives.

There are two main criticisms that one can state with regard to the
{X(t), t ≥ 0} process above. First, it assumes that an event that occurs
at time τn has an immediate maximum effect and that this effect decreases
with time. In practice, a more or less steep increase of the river flow is almost
always observed before it begins to decrease. Therefore, the choice of an ex-
ponential function as a “response function” can surely be criticized. Next, the
main assumption in the model above is that the time between two consecu-
tive peaks has an exponential distribution, so that events occur according to a
Poisson process. Again, in practice this will almost surely be false. Remember
that the density function of an exponential random variable is strictly decreas-
ing from zero. In practice, the density function of the times between the flow
peaks increases toward a maximum value and then is strictly decreasing until
infinity. Therefore, a Poisson process is not appropriate.

In the next section, the notion of filtered renewal process will be intro-
duced. We will see how the next peak flow value could be forecasted, based on
the most recent peak observed. An application to the Delaware River will then
be presented in Section 3 and a few conclusions will be drawn in Section 4.

2 Filtered Renewal Process

A renewal process is such that the times T1, T2, . . . between the consecutive
events are independent and have the same distribution. We propose the model

X(t) =

N(t)∑

n=1

w(Yn, t− τn) ,

where w(·, ·) is the response function, {N(t), t ≥ 0} is a renewal process and
τn =

∑n
k=1 Tk. The random variables Tk (≥ 0) are general.

Next, because there is almost always a period during which the flow in-
creases before decreasing again, we consider the response function

w(Yn, t− τn) = Yn(t− τn)ke−(t−τn)/c .

To estimate the unknown parameters k and c, let g(t) = tke−t/c. This function
attains its maximum at tmax = kc. Hence, we can estimate kc by computing
the mean time taken by the flow to reach a peak from the preceding minimum.

If the time between the consecutive peaks is large enough, we can neglect
the effect of the signals Y1, . . . , YN(t)−1 and write that

X(t+ δ) ' YN(t)(t+ δ − τN(t))
ke−(t+δ−τN(t))/c .
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We then deduce that

X(t+ δ)

X(t)
' e−δ/c

{
1 +

δ

t− τN(t)

}k
,

which is valid for values of t and t+ δ between two consecutive peaks. If t is
the time at which the most recent peak was observed, we may write that

X(t+ δ)

X(t)
' e−δ/c

{
1 +

δ

kc

}k
. (2)

Since kc can be estimated, we solve for k in (2) and obtain that

k ' ln

(
X(t+ δ)

X(t)

)
/

{
ln

(
1 +

δ

kc

)
− δ

kc

}
.

To estimate k (and c), we will compute the mean value of k if t+ δ is the time
at which the minimum following the last recorded peak was observed.

Our aim will be to forecast the next peak flow value, based on the preceding
peak, once we observe that the river flow has started to increase again. As a
predictor we will use

P̂ eak1 = Max(N̄I +ND)k̂e−(N̄I+ND)/ĉ + Ī ,

where Max is the value of the most recent peak flow, N̄I is the average number
of days taken by the river to go from a minimum to a maximum flow, ND is
the number of days between Max and the following minimum flow, and Ī is
the average difference between the various peaks and the preceding minima.

We will compare the results obtained with P̂ eak1 to the ones when k = 0.
Based on this (original) model, a simple estimator of the next peak flow is

P̂ eak2 = Min+ Ī ,

where Min is the minimum flow that has just been observed. As a criterion
to assess the quality of the estimators considered in the paper, we will use the
correlation coefficient r, defined, for the pairs (x1, y1), . . . , (xn, yn), by

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

3 An Application

To test our model on real data, we have chosen the Delaware River. During
the years 1993-2002, there have been 91 peak flow values ≥ 10000 ft3/s at
the Montague, NJ, station, of which 61 were followed by another peak in a
short enough interval. Our objective will be to first find a model for the flow
of the Delaware River. Next, we will use the data from the years 1993-1997
to estimate the various parameters and quantities in the model, and then we
will forecast the 33 peak flows that were preceded by another peak a few days
beforehand during the 1998-2002 time period.
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3.1 Model fitting

The first step is to find a distribution for the T ′ns. If we denote by T the
random variable representing the time between two events, we find, using the
61 data points, that

t̄ ' 11.689 and sT ' 6.125 . (3)

We notice that an exponential distribution is not an appropriate model, since
we should have t̄ ' sT . Therefore, we should not consider a filtered Poisson
process as a model for the flow of the Delaware River. We fit a Rayleigh
distribution to the data. That is,

fT (t) = (t/α2)e−t
2/2α2

for t ≥ 0 .

We have: E[T ]
(∗)
= (π/2)1/2α and STD[T ]

(∗∗)
= [2 − (π/2)1/2]α. From (3), (*)

implies that α ' 9.3265, while (**) yields α ' 9.3492. Hence, the model seems
very good. A chi-square goodness-of-fit test was performed with α = 9.33. We
obtained a test statistic D2 = 1.026, which corresponds to a p-value of 0.60.

Because T 1/2 has an exponential distribution, we should take the square
root of all the time variables before estimating the parameters k and c in the
model. The transformed process is then a filtered Poisson process, for which
many exact and explicit results are known. We find that

X̂(t) =

N(t)∑

n=1

Yn(t− τn)1.983e−(t−τn)/0.973 , (4)

in which t is measured in square roots of days.

3.2 Forecasting

Based on the model fitted above, the value of the forecasted peak flow following
the current minimum flow is given by

P̂ eak1 = Max(1, 93 +ND)1.983e−(1.93+ND)/0.973 + 15468 ,

where 15468 is the mean difference between the peaks and the preceding
minima during the years 1993-2002. Using this predictor, we find that the
correlation coefficient between the observed and forecasted peaks is r = 0.489.
The value of r for the consecutive pairs of flows is actually 0.416. Therefore,
the model (4) enabled us to improve the forecasts of peak flow values. However,
the usefulness of the model is more apparent when we forecast the peak flows.
We first estimate the parameters k and c in the model by using the data from
the years 1993-1997, obtaining

X̂(t) =

N(t)∑

n=1

Yn(t− τn)2.178e−(t−τn)/0.926 ,
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from which we deduce that

P̂ eak1 = Max(2.02 +ND)2.178e−(2.178+ND)/0.926 + 18163 .

The value of r for the forecasted and observed peak flows obtained for the
years 1998-2002 is 0.347. This result is more impressive when we compute
r = −0.206 for the observed peak flows during this time period (whereas
r = 0.516 for the years 93-97). Thus, the filtered renewal process model has
been able to transform a negative r into a relatively high (and positive) r. We
obtain r = 0.084 when we use the estimator

P̂ eak2 = Min+ 18163 .

4 Conclusion

We developed a filtered renewal process for the flow of a river which is intended
to be used to forecast the oncoming peak flow when we notice that the flow
has begun to increase from a minimum value. The data set used to compare
the predictors is special: the correlation coefficient between the consecutive
peaks during the first five years is relatively high and positive (0.516), while it
is small and negative (−0.206) for the last five years. We feel that it is in such
a challenging situation that the quality of an estimator can be established.
One way of rendering the filtered renewal process even more realistic would
be to choose a response function that is not deterministic. Finally, another
subject on which more work is needed is a method to estimate the parameters
in the filtered renewal process when we cannot neglect all the signals that
occurred before the most recent one.
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Summary. The robust Parallel Finite Element Method examined in [5] and [4]. It
is an element-wise parallel iterative solution method based on a Red-Black domain
decomposition. Convection-diffusion problems are solved in an optimal order for a
method which makes use of not more than local communication. For the parallellism,
the recent paper [8] shows that a near perfect load-balance can be obtained for two-
dimensional problems. This paper proves that one of the conditions which is sufficient
in the two-dimensional case, unexpectedly is not so for the three-dimensional case.

Key words: Finite Elements, Parallel Iterative Method, constrained prob-
lems.

1 The computational mesh

Assume that the domain of interest can be covered with a coarse tensor prod-
uct mesh, each cell covered with n-simplices, and that it is refined with the use
of local bisection as introduced in [7] (or alternatively as in [2] or [10]). This
is the case for a multitude of challenging applications such as marker-optics
and on-chip-interconnects.

2 The parallel finite element method

Because the size of the discretized problem, it is desirable to solve difficult
problems, such as convection-diffusion problems, in parallel. The parallel fi-
nite element method applied to a convection-diffusion equation colours each
element either with Red or Black as in figure which shows a mesh and its 2-
coloured variant. Because integration over the domain is a sum of integration
over the Red and integration over the Black domain, the coefficient matrix A

??In part supported by NWO-RFBR Grant 047.016.008.
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splits: A = AR + AB. Assume that we use non-conforming piece-wise linear
(or higher order) finite element basis functions for the discretization ([5]).

The mesh. The 2-coloured mesh.
Then, a discrete solution can be computed with iterative method such as [6]
or [9] In all such cases, this leads to iterations of the form (ρ ∈ (0,∞)):

(ρIN +AR)v = (ρIN −AB)u(k) + b

(ρIN +AB)u(k+1) = (ρIN −AR)v + b,

where AR and AB are block diagonal (under a permutation). Each diagonal
block corresponds to a (Red respectively Black) cluster of elements, in the
best possible case each cluster contains just 1 element (see [3]).

3 Load balance

Because of the block-diagonal structure of AR and AB, it is possible to use
one processor per cluster in the iterative algorithm. However, in practice there
are fewer processors than clusters and a kind of load-balance is required.

With this in mind, we proved in [8] that for local refined meshes described
in [7] there exists a connected space-filling curve in two dimensions, (see the
figure with the space-filling curve and the partition over four processors).

The space-filling curve. Partition over 4 processors.
To this end, it is shown that it is sufficient if a curve which passes an element
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through 2 of its facets, also passes through the inside elements created with
bisection through the same facets.

In three dimensions, we now prove that this sufficient condition does not
hold. The proof does not require the concept of the level of a facet in [8].

1 1 2

The curve on mesh 1. The curve on mesh 2.
The first mesh on the unit-cube consists of the standard 6 tetrahedral el-

ements ([7]). These have one common axis (edge) (0,0,0)(1,1,1). In addition,
each element has precisely 2 neighbours inside the unit cube ([1]). Hence, the
sole possible curve through these 6 elements is a ’circle’ around the common
axis, which enters each elements through one of its neighbours, and leaves
through the unique other neighbour. Part of this curve – which would be in-
visible because it remains in the inside of the unit-cube – is shown in the first
figure. It shows how the curve enters and exists the element called 1.

1
2

43
7

8

4
3

2

1

6
5

The curve on mesh 3. Mesh 4.

Now, for the first bisection step in the next figure, the two-dimensional prop-
erty holds: All elements are bisected into two elements. The curve through
parent 1 of mesh 1 now passes its two descendants, called 1 and 2.

Also, after the next bisection step to obtain mesh 3, there is a unique
manner to let the curve pass the descendants 1 – 4 of 1 and 2. Still the two-
dimensional property holds. In the figure with mesh 3, the green and red lines
are the edges which will be created with the bisection step ([7]) for the creation
of mesh 4.
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Mesh 4 shows the result of the third bisection step. Here it turns out to be
impossible that the new children 1 – 8 are connected with one curve through
their facets. The curve which entered element 1 of mesh 1 would have to enter
element 1 or element 4 of mesh 4. If the curve would enter (element) 1 of
(mesh) 4, it would have to pass in order through facets between elements 1,
2, 3, 5, 6, . . . of mesh 4 or elements 1, 2, 3, 4, 6 . . . of mesh 4. In the first
case, it would then have to skip element 4, or terminate in element 4 (which
contradicts a space-filling/connected curve). The other case ends up similarly.
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Summary. A mathematical model for the flow and solidification of a thin liquid film
is briefly described. Typical results for ice accretion due to incoming rain droplets
on a flat surface and aerofoil are shown.

Key words: thin film, phase change, ice accretion, lubrication theory.

1 Introduction

The flow and solidification of a thin liquid film has important applications in
a number of physical processes, ranging from ice accretion to lava flow and
the industrial process of spray forming. In this paper a mathematical model
for this process is briefly described and sample results presented. This work
is a summary of the models developed in a series of papers by Myers et al.

2 Mathematical model

When supercooled fluid droplets impact on a substrate which is below the
solidification temperature, the droplets will initially solidify and, depending
on the energy in the system, may subsequently form a thin liquid layer on top
of the solid. In the following we denote the solid layer thickness by b(x, y, t)
and the fluid layer thickness by h(x, y, t). The fluid flow is driven by gravity,
surface shear, pressure gradient and surface tension.

In general free surface thin film flows subject to surface tension forces are
described by a fourth-order nonlinear degenerate partial differential equation.
These are notoriously difficult to solve. For this reason we focus first on the
flow problem. The solidification is then a relatively simple extension.
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2.1 Thin film flow

We first consider the problem of flow on a flat surface and subsequently modify
the solution to deal with arbitrary shapes. Employing the standard lubrication
approximation, the Navier-Stokes equations reduce to

µf
∂2u

∂z2
=
∂p

∂x
− ρfgĝ · x̂ , µf

∂2v

∂z2
=
∂p

∂y
− ρfgĝ · ŷ , 0 =

∂p

∂z
+ ρfgĝ · ẑ , (1)

where the fluid velocity in the (x, y, z) directions is u = (u, v, w) and p is the
fluid pressure. The fluid viscosity is denoted µf , the density ρf and ĝ is the
unit gravity vector.

This system of equations requires solving subject to the following boundary
conditions. At the solid-liquid interface, z = b, there is no slip, hence u = v =
0. A mass balance leads to

w|z=b =

(
1− ρs

ρf

)
∂b

∂t
, (2)

where ρs is the density of the solid phase (so a normal fluid velocity only
occurs at the interface if the solid and fluid densities are different).

At the liquid-air interface, z = b + h there is continuity of shear stress,
µfuz = A1, µfvz = A2. The pressure jump across the interface depends
on the surface tension, σ, and is proportional to the free surface curvature,
p = pa− σ∇2(b+ h). Note, the ambient pressure pa may vary with space and
time. Again a mass balance determines the velocity w:

w|z=b+h =

(
1− ρA

ρf

)(
∂b

∂t
+
∂h

∂t

)
+ u

(
∂b

∂x
+
∂h

∂x

)
+ v

(
∂b

∂y
+
∂h

∂y

)
− J, (3)

where the rate at which fluid enters the system is represented by J and ρA is
the density of the air-droplet mixture. In general ρA/ρf � 1.

Expressions for u, v, p are readily obtained by integrating (1) subject to the
boundary conditions. These may then be used when integrating the continuity
equation (for an incompressible fluid) across the film. Imposing the boundary
conditions on w leads to a mass balance for the film:

∂h

∂t
+∇ ·Q =

J

ρf
− ρs
ρf

∂b

∂t
, (4)

where the fluid flux, Q, is given by

Q =

(
− h3

3µf

(
∂p

∂x
+ ρfgĝ · x̂

)
+

h2

2µf
A1,−

h3

3µf

(
∂p

∂y
+ ρfgĝ · ŷ

)
+

h2

2µf
A2

)
.

Equation (4) shows that the film height h varies due to the fluid flow, the rate
at which fluid enters the system, and the rate at which it solidifies. The fluid
flow is driven surface tension (through the pressure gradient), gravity and
surface shear. The rate at which fluid enters the system is usually determined
by an outer flow routine, see the work described in [3, 2]. The solidification
rate comes from considering the thermal problem.
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2.2 Thermal problem

When an incoming supercooled fluid impacts on a surface which is below the
solidification temperature there will always be an initial period where all the
fluid solidifies (this may be very short, depending on the energy in the system).
For brevity we consider only the stage where both phases are present. The
single phase solution is then a special case of this.

We now assume the solidified region is also thin (for ice layers thin may
be of the order 2 cm, see [1]). In this case the leading order heat equations in
the ice and water layers are

∂2T

∂z2
= 0

∂2θ

∂z2
= 0 , (5)

where terms of order O(ε2, P e) (Pe is the Péclet number) have been neglected.
If the substrate temperature is fixed at Ts the temperature in the two phases
is

T = Ts + (Tf − Ts)
z

b
θ = Tf +

q0 + q1Tf
1− q1h

(z − b) , (6)

where Tf is the solidification temperature and qi are constants which incorpo-
rate the various energy terms, such as convective heat transfer, evaporation
and kinetic energy of the droplets, see [1]. To O(ε2) the solid thickness is
determined by a standard Stefan condition

ρsLf
∂b

∂t
= ks

Tf − Ts
b

− kf
q0 + q1Tf
1− q1h

. (7)

The problem therefore reduces to solving equations (4), (7) for the two un-
knowns b and h. Once these are known the temperatures follow via (6).

2.3 Extension to an arbitrary substrate

The extension of the flat surface model to an arbitrary substrate model is de-
scribed in [2]. In this case the Stefan condition (7) remains unchanged however
the flow model becomes:

∂h

∂t
+∇s ·Q =

J

ρf
− ρs
ρf

∂b

∂t
, (8)

where the surface operator is

∇s ·Q =
1

(EG)1/2

(
G1/2 ∂

∂s1
Q1 + E1/2 ∂

∂s2
Q2

)
, (9)

where Eds2
1 + Gds2

2 is the first fundamental form and si are the principal
directions on the surface. The flux is now given by

Q1 =

∫ b+h

b

u dη = −
(

1

E1/2

∂p

∂s1
− g · e1

)
h3

3µf
+A1

h2

2µf
(10)

with a similar expression for Q2. The fluid pressure by
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p = p0 − σ
(
κ1 + κ2 + ε(b+ h)(κ2

1 + κ2
2) (11)

+ ε

[
1

E

∂2

∂s1
2

(b+ h) +
1

G

∂2

∂s2
2

(b+ h)

])
,

where κi are the principal curvatures. This set of equations reduces to the
flat surface result by setting s1 = x, s2 = y, E = G = 1 and the curvatures
κi = 0. The main difference between this form and that on a flat surface is the
presence of the substrate curvature terms κi. In particular, if the curvature
is non-constant then it is the substrate curvature that dominates the surface
tension driven flow. A good example of this is when painting corners; paint
is pulled into internal corners, leaving a thicker layer, and pulled away from
external ones, leaving a thinner layer.
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Fig. 1. a) Ice and b) water layers on a flat surface: flow driven by gravity and
surface shear.

3 Results

The numerical solution of equations (7), (8) is described in [3, 2]. A typical
solution is shown on Fig. 1. This is for a case where the incoming fluid is
represented by a Gaussian profile. Since the incoming fluid initially freezes
an approximation to the Gaussian can be seen in the central part of the ice
accretion (Fig. 1a). The humps on either side are caused by the water flow
(shown on Fig. 1b) on top of the ice. The flow is driven by gravity and air
shear which act in opposite directions along the diagonal, gravity acts to the
left. The distinct ridge on the right hand side is a standard consequence of
surface tension, an interesting feature is the lack of a similar ridge on the right
hand side.

Figures 2 a–d show the results of a simulation on an aerofoil. In this case
the external air flow and droplet trajectories were calculated using FLUENT
V. The droplet impact region can be inferred from the early time solution,
Fig. 2 a) since there is no significant water flow at this time. As time progresses
the accretion builds up at the front but the water flow also allows it to extend
backwards. After 15 minutes it has reached beyond x = −0.11. The water flow
calculation is important since it shows that ice will build up past the impact
region and so aids engineers in determining how far back heating systems
must be installed.
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Fig. 2. Ice layers on a NACA0012 at (a) t = 3 (b) 6 (c) 9 (d) 15 minutes.

4 Conclusions

The series of papers by Myers et al build up to describing a novel model for
the flow and solidification of a thin liquid film. The model is valid within
the limits of lubrication theory and small Péclet number. It may be used to
describe solidification on an arbitrary 3D surface and hence is appropriate for
most practical configurations. A testimony to the model is that it is currently
employed in a commercial aircraft icing code, ICECREMO.

Future extensions include modelling flow over a rough surface and the
inclusion of heating from below the substrate which will permit modelling of
anti-icing systems.
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1 Introduction

Degenerate parabolic equations are encountered as mathematical models for
several phenomena in physics, chemistry, biology or economy (see, e.g., [2],
or [3]). In this sense, the simplest example is the porous medium equation,
describing the flow of an ideal gas in a homogeneous porous medium. More
complex situation are encountered in petroleum reservoir and groundwater
aquifer simulations, or in the design of industrial filters and battery manage-
ment. Phase change problems corresponding to processes of heat transfer in-
volving melting or solidification lead to equations of the same type.

Compared to regular parabolic problems – like the heat equation, in the
degenerate case the diffusive term may vanish or blow up, depending on the
solution. This leads to a possible change of the parabolic character of the
equation into an elliptic or even hyperbolic one. The interfaces separating
the domains of regularity – also called free boundaries – have finite speed
of propagation. Generally these are not known in advance and have to be
determined together with the solution.

Therefore the solutions of such problems are lacking regularity. The singu-
larities do not smooth out as time evolves and, in fact, they may even develop,
giving the problem a strongly nonlinear character. With respect to the nume-
rical approximation of such solutions, this fact requires adequate algorithms
being able to deal both with the free boundary and the singularities of the
solution.

In this paper we discuss two simple time discretization algorithms to solve
the following degenerate parabolic problem:
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Problem P:

∂tu−∇ · (∇β(u) + F (u)) = r(u), in QT ≡ (0, T )×Ω,
u(0, ·) = u0(·), in Ω,

u = 0, on ∂Ω.
(1)

Here 0 < T < ∞ is fixed, Ω is a bounded domain in Rd(d ≥ 1) with a Lips-
chitz continuous boundary and QT ≡ (0, T )×Ω. The function β : R→ R is
non-decreasing and differentiable. By degeneracy we mean a vanishing diffu-
sion, namely β′(u) = 0 for some u. Growth conditions are also imposed on F
and r. Specifically, we work under the following assumptions:

(A1) β is Lipschitz and differentiable, β(0) = 0, 0 ≤ β ′(u) ≤ Lβ .

(A2) u0 ∈ L2(Ω).

(A3) r : R→ R and F : R→ Rd are continuous in u and it holds

|r(u)− r(v)|2 + |F (u)− F (v)|2 ≤ CF (u− v)(β(u)− β(v))

for any u, v ∈ R, where CF > 0 does not depend on x, t, u and v. Moreover,
r(0) = 0 and F (0) = 0̄ = (0, . . . , 0).

Remark 1. Non-homogeneous Dirichlet or natural boundary conditions may
be considered without any problem here. The assumption (A3) is slightly less
restrictive than the commonly used Lipschitz continuity w.r.t. β(u). In this
setting, existence and uniqueness of a weak solution is proved in [1] and [6].

We use standard notations for the spaces of functions, norms and scalar prod-
ucts: L2(Ω), H1

0 (Ω), or its dual H−1(Ω), or L2(0, T ; X) with X being one
of the spaces before. We let (·, ·) stand for the inner product on L2(Ω), or the
duality pairing between H1

0 (Ω) and H−1(Ω). ‖ · ‖ denotes the norm in L2(Ω),
while by ‖ · ‖X we mean the norm in X. We often write u or u(t) instead of
u(t, x) and use C to denote a generic positive constant.

2 The Numerical Approaches

Both schemes discussed here build on regularization, which means that the
originally degenerate problem is perturbed to a regular parabolic one. Specifi-
cally, the nonlinearity β is approximated by a function βε satisfying β′ε ≥ ε > 0
for all u. For example, taking

β′ε(u) ≡ max{β′(u), ε} and βε(u) =

∫ u

0

β′ε(v)dv (2)

we end up with a perturbation satisfying
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ε ≤ β′ε(u) ≤ Lβ and 0 ≤ β′ε(u)− β′(u) ≤ ε (3)

for any real u. Clearly, βε is a strictly increasing approximation of β and
admits an inverse that is differentiable.

Remark 2. Generally an explicit formula for βε or its inverse may not be avai-
lable, or it can be extremely complicated. Moreover, function calls are in-
creasing the computing time significantly. Therefore when implementing the
numerical schemes proposed below we first construct a look-up table of values
of βε for a range of points, at the expense of an additional computer memory
requirement. Together with a simple (linear) interpolation step for values not
present in the table, this reduces significantly the time of computation, while
the errors are controlled by an appropriate choice of the interpolation knots.
Because of the monotonicity of βε, searching in this table is fast.

The next step is to consider the problem P in terms of the more regular
unknown, β(u). Since β′ is not bounded away from 0, the numerical schemes
are constructed in terms of βε. Due to the lack in regularity of solutions we
restrict ourselves to first order time discretization methods. Given a natural
number n, in what follows τ = T/n will denote the time step, which is assumed
fixed for the ease of presentation. Variable or adaptive time stepping can also
be considered.

We acknowledge here the works [5] and [8], where regularization based
algorithms are discussed for the fully implicit discretization approach. A re-
laxation scheme is proposed in [4]. A linear approach is discussed e.g., in
[10]. Here we work in a more general framework, and also present improved
convergence estimates.

With tk = kτ (k = 1, . . . , n), by θk we denote the approximation of the

average 1
tk−tk−1

∫ tk
tk−1

β(u(t))dt. Approximating first β(u) is motivated by its

better regularity when compared to the original unknown u, leading to better
convergence results than computing directly u. After determining θk, u is
approximated by β−1

ε (θk).
The first scheme discussed here is fully implicit. At each time step tk,

k = 1, n, one has to solve the following problem:
Problem PIk:

β−1
ε (θk)− β−1

ε (θk−1) = τ∇ · (∇θk + F (β−1
ε (θk))) + τr(β−1

ε (θk)),
θk|∂Ω = 0.

(4)

Here θ0 = βε(u
0).

The above approach is nonlinear. A simpler approach is to solve
Problem PLk:

σk−1(θk − θk−1) = τ∆θk + τ(β−1
ε )′(θk−1)F ′(β−1

ε (θk−1)) · ∇θk
+τr(β−1

ε (θk−1)),
θk|∂Ω = 0,

σk = (β−1
ε )′(θk),

(5)
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for k = 1, n, where σ0 = (β−1
ε )′(θ0).

We should mention that in the second scheme the initial data θ0 must be
chosen more carefully. Specifically, the analysis requires θ0 ∈ H1. If this regu-
larity does not hold for u0, then this can be replaced by a H1 approximation.
A practical choice is given by the solution of the heat equation after a (small)
time step, with initial data u0.

Remark 3. In the linearized scheme we approximate the convection as

∇ · F (β−1
ε (θk)) ≈ (β−1

ε )′(θk−1)F ′(β−1
ε (θk−1))∇θk.

The assumption (A3) together with (2) prevents the ’speed’ on the right hand
side above from becoming unbounded:

|(β−1
ε )′(θ)F ′(β−1

ε (θ))| ≤
√
CF /ε.

At each time step, both schemes imply solving an elliptic problem. By
the (nonlinear) Lax-Milgram Lemma, these problems have a unique solution.
Moreover, the following estimates can be given:

Theorem 1. Assume (A1), (A2) and (A3). If θk is the weak solution of Pro-
blem PIk we have

n∑

k=1

{
(β−1(θk)− β−1(θk−1), θk − θk−1) + ‖θk − θk−1‖2

}
+ τ

n∑

k=1

‖∇θk‖2 ≤ C.

Further, if u is the weak solution of Problem P, then

∫ T

0

(βε(u(t))− θ∆(t), u(t)− β−1
ε (θ∆(t)))dt+ ‖β(u)− θ∆‖2L2(QT ) ≤ C {τ + ε} ,

where θ∆(t) = θk for t ∈ (tk−1, tk] and k = 1, n.

The proof makes use of the ideas in [5] and is given in [7].

Remark 4. The above theorem shows that the implicit approach is convergent.
The error estimates are of order τ 1/2, at least as good as those for the algo-
rithms in [5] or [4]. Based on the results in [9], in some certain cases better
estimates can be obtained. For example, if Problem P is considered without
convection or reaction, and if β is a maximal monotone graph having R as its
range, then the estimates become optimal:

‖β(u)− θ∆‖2L2(QT ) + τ‖β(u)− θ∆‖2L2(0,T ;H1
0 (Ω))

≤ C
{
τ2 + ε2

}
.

For the linear scheme we assume additionally that both β ′ and F are Lips-
chitz continuous. If positive solutions are sought, the last assumption can be
removed if β is convex (see for details [7, Chapter 3]). This gives:
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Theorem 2. Assume (A1), (A2), (A3) and one of the alternatives mentioned
above. If θk is the weak solution of Problem PLk, for any 0 ≤ p ≤ n we have

n∑

k=1

‖√σk−1(θk − θk−1)‖2 + τ‖∇θp‖2 + τ
n∑

k=1

‖∇(θk − θk−1)‖2 ≤ Cτ.

Moreover, if u is the weak solution of Problem P, then

∫ T
0

(βε(u(t))− θ∆(t), u(t)− β−1
ε (θ∆(t)))dt+ ‖β(u)− θ∆‖2L2(QT )

≤ C
(
τ/ε2 + ε

)
,

with θ∆ being defined above.

The proof can be found again in [7].

Remark 5. The linear scheme is similar to the one considered for example in
[10], where no convection or reaction terms are included. In the simplified
setting there, using again Rulla’s result [9], the estimates can be improved to
the order O(τ 2/ε2 + ε).

Remark 6. The results discussed here can be extended straightforwardly to
fully discrete scheme by assuming, for example, a finite element discretization
in space (see [7]).
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Summary. A Finite Element Modified Method of Characteristics (FEMMOC) is
proposed for numerical solution of the two-dimensional shallow water equations. The
method is formulated and implemented for mean flow and hydraulics in the strait
of Gibraltar. Preliminary results presented in this work show that the FEMMOC is
able to provide stable, accurate and efficient solutions.

Key words: FEMMOC, shallow water equations, strait of Gibraltar.

1 Introduction

The strait of Gibraltar connects the Atlantic ocean with the Mediterranean
sea. The differences on density, salinity and temperature of the two water
bodies lead to a flow exchange through the strait. This flow exchange consists
of two counter-flowing layers: an upper layer of Atlantic water flowing into
the Mediterranean sea and a lower layer of Mediterranean water flowing into
Atlantic ocean. For comprehensive contributions on oceanography of the strait
of Gibraltar we refer the reader to the proceedings [1]. Here, we are concerned
with numerical study of inflow contributed by the Atlantic ocean into the
Mediterranean sea which takes place on the free water surface.

Our goal in the present work is to develop a robust numerical method to
approximate solutions to the equations governing mean flow in the strait of
Gibraltar. The key idea is to combine the modified method of characteristics
and finite element discretization. This technique make use of the transport
nature of the governing equations and greatly reduces the time truncation
errors in the Eulerian methods. In addition, the method can be implemented
in complex geometry and alleviates the restrictions on the Courant number,
thus allowing for large time steps in the simulations and reduces artificial
numerical dispersion, see [5, 4] and further references are cited therein.
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The mathematical equations, widely used in literature to model mean flow
in the strait of Gibraltar, are given by [1]: continuity equation

∂tη + ∂x
(
(η + h)U

)
+ ∂y

(
(η + h)V

)
= 0, (1)

and momentum equations

∂tU + U∂xU + V ∂yU − fV = −g∂xη −
r

η + h
U
√
U2 + V 2 +KH∇2U, (2)

∂tV + U∂xV + V ∂yV + fU = −g∂yη −
r

η + h
V
√
U2 + V 2 +KH∇2U, (3)

where η is the free surface height, U = (U, V )T is the vertically integrated
velocity, h is the water depth measured from the mean sea level, g is the
gravity acceleration, KH is the horizontal eddy viscosity, r denotes the drag
coefficient on the bottom, f is the Coriolis parameter defined by f = 2ω sinϕ,
with ω is the angular velocity of the earth and ϕ is the geographic latitude,
and ∇2 denotes the two-dimensional Laplace operator.

Equations (1)-(3) are defined in a spatial domain Ω bounded by the
Tangier-Barbate line at the west and Ceuta-Gibraltar at the east as shown in
Fig. 1. This domain contains the Camarinal Sill (the interface that separates
the Mediterranean sea and Atlantic ocean) where exchange of the water body
takes place.

Morocco•
Tangier

•
Ceuta

Spain

•Tarifa

•Barbate

•Gibraltar

6ο05‘ 5ο55‘ 5ο45‘ 5ο35‘ 5ο25‘ 5ο15‘
35ο45‘

35ο55‘

36ο05‘

36ο15‘

Fig. 1. Definition of the strait of Gibraltar.

Initially, the water flow is at rest and boundary conditions are given by

η = ηD, x ∈ ΓD, U · n = 0, x ∈ ΓN , (4)

where ΓD and ΓN are boundaries of Ω as shown in Fig. 2. In (4), n is the
outward normal on the boundary and ηD are prescribed data obtained by
interpolation from measurements on the strait, see [2].

2 Formulation of FEMMOC

In order to formulate the FEMMOC we rewrite the equations (1)-(3) in vector-
valued form, as
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Tangier

Ceuta

Tarifa

Sidi Kankouch

Barbate

Gibraltar

ΓN

ΓN

ΓD

ΓD

Fig. 2. Computational mesh and bathymetry of the strait.

Dtη + U · ∇h+ d∇ ·U = 0,
(5)

DtU + g∇ · η −KH∇2U = S(η,U),

where d = η + h, the source term is defined as

S(η,U) =

(
fV − r

η + h
U
√
U2 + V 2,−fU − r

η + h
V
√
U2 + V 2

)T
, (6)

∇ = (∂x, ∂y)
T , and Dtw = ∂tw + U · ∇w is the material derivative of the

function w in the direction of the flow U.
Let the time interval be divided into subintervals [tn, tn+1] of length ∆t

such that tn = n∆t. Following [3], the characteristics curves of the equations
(5) are the solution of initial-value problem

∂X(τ ; tn+1,x)

∂τ
= U (τ,X(τ ; tn+1,x)) , τ ∈ [tn, tn+1],

(7)
X(tn+1; tn+1,x) = x.

Note that X(τ ; tn+1,x) is the departure point at time τ of a fluid particle that
will arrive at x at time tn+1. Once the characteristics feet X(tn; tn+1,x) are
known, the semi-discretization of (5), we consider in the present work, reads

ηn+1 − η̂n
∆t

+ Un+1 · ∇h+ dn∇ ·Un+1 = 0, (8)

Un+1 − Ûn

∆t
+ g∇ · ηn+1 −KH∇2Un+1 = S(ηn+1,Un+1), (9)

A simple way to solve the equations (8)-(9), is to use the first equation (8) to
eliminate the ηn+1 and ∇ · ηn+1 terms from the second equation (9). These
procedure yields to a fixed point problem for U only

U = H(U), (10)



FEMMOC for Shallow Water Equations 521

We have dropped the n+ 1 superscript for ease of notation. Newton’s method
applied to (10) results in the following iteration

U(k+1) = U(k) −R′
(
U(k)

)−1R
(
U(k)

)
, (11)

where R(U) = U − H(U) is the nonlinear residual and R′ is the system
Jacobian approximated by a forward difference quotient. We used the GMRES
method to compute the Newton’s direction. The free surface height ηn+1 can
be updated by backsubstituting Un+1 in the first equation from (5).

The variational formulation for solution of (8)-(9) is based on the spaces

H1
ΓD (Ω) = {ξ ∈ H1(Ω) : ξ = 0 on ΓD},

HΓN (div, Ω) = {V ∈ H(div, Ω) : V · n = 0 on ΓN}.

Thus, finite element subspaces Qh ⊂ H1
ΓD

(Ω) and Vh ⊂ HΓN (div, Ω) are
selected such as standard H1-conforming piecewise polynomial functions for
Qh and the H(div)-conforming Raviart-Thomas elements for Vh.

3 Preliminary Results

The FEMMOC has been implemented for a test case kindly provided by
the University of Malaga (Spain). Further results and comparisons will be
considered in a future work. As part of an ongoing project, this method will
be implemented for the full model and obtained results will be compared to
measurements done in the strait of Gibraltar. In Fig. 3, we show the flow
field for the main diurnal and semidiurnal K2, M2, N2 and S2, compare [2]
for details. The computational mesh and the bathymetry are shown in Fig. 2.
The gravity acceleration g = 9.81 m/s2, the drag coefficient on the bottom
r = 10−3, the Coriolis parameter f = 8.55 × 10−5 s−1, and the horizontal
eddy viscosity coefficient KH = 102 m2/s. The model is integrated for a time
period of three months using a time step size ∆t = 0.5 hour.

The FEMMOC resolves the water flow accurately without introducing
extra numerical dissipation. We can see that the small complex structures of
the water flow being captured by the FEMMOC.

References

1. J.I. Almazán, H. Bryden, T. Kinder, and G. Parrilla, editors. Seminario Sobre
la Oceanograf́ıa F́ısica del Estrecho de Gibraltar, Madrid, 1988. SECEG.
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Summary. We discuss an algorithm for convection-diffusion equations with high
activity areas which combines the Local Defect Correction technique with high order
compact finite difference schemes.

Key words: Local defect correction, compact finite difference schemes

1 Introduction

Many boundary value problems produce solutions that have highly localized
properties. In this paper we consider boundary value problems with solutions
that have one or a few small regions with high activity.

We study a method based on a combination of high order compact finite
difference discretizations on several uniform grids with different grid sizes
that cover different parts of the domain. At least one grid should cover the
entire domain; the mesh size of this global coarse grid is chosen in agreement
with the relatively smooth behaviour of the solution outside the high activity
regions. Apart from this global coarse grid, one or several local grids are used
which are also uniform. Each of these local grids covers only a (small) part
of the domain and contains a high activity region. This refinement strategy
is known as local uniform grid refinement. The solution is approximated on
the composite grid, which consists of the uniform coarse grid and subgrid(s).
Note that such composite grids are highly structured and hence very simple
data structures can be used.

The boundary value problem is solved on the composite grid by the local
defect correction method (LDC) (see [2]). In this method, which is an itera-
tive process, a basic global discretization is improved by local discretizations
defined in the subdomains. This update of the coarse grid solution is achieved
by performing a defect correction on the right hand side of the coarse grid pro-
blem. The discrete problem that is actually being solved is an implicit result
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of the iterative process. Therefore the LDC method is both a discretization
and a solution method.

It should be noted, however, that LDC was previously used with standard
finite difference schemes like second order central differences. Nowadays, es-
pecially for Direct Numerical Simulation (DNS) of turbulent flows, high order
compact finite difference (HOCFD) schemes are becoming more and more
popular. We would like to apply LDC technique to these schemes.

The paper is built up as follows. In Section 2, we formulate a stationary
convection diffusion problem and describe the LDC algorithm. In Section 3 we
briefly introduce HOCFD schemes. In Section 4 we present an algorithm which
combines LDC with HOCFD schemes. We conclude with some examples, in
which we compare theoretical results from Section 3 with those obtained from
numerical simulations and we also discuss the efficiency and accuracy of the
LDC in combination with HOCFD schemes.

2 Problem description and formulation of the LDC
algorithm

The problem we study in this paper is given by

{
Lu = −ε∇2u(x) + c · ∇u(x) = f(x) in Ω, c, ε > 0,

u = g on Γ.
(1)

In (1), L is a linear elliptic differential operator, and f and g are the
source term and Dirichlet boundary condition, respectively, ε is the diffusion
coefficient, c - convection coefficient, u is the unknown function of x, Ω is
the domain of interest and Γ is the boundary of this domain. Most of details
on the Local Defect Correction technique one can find in [1], below we just
outline main features.

In order to discretize (1), we first choose a global coarse grid with grid size
H, which we denote by ΩH . The next step is to find an initial approximation
uH0 on ΩH by solving the system

LHuH0 = fH , (2)

which is a discretization of boundary value problem (1). In (2), the right hand
side fH incorporates the source term f as well as the Dirichlet boundary
condition g.

Now assume that the continuous solution u of (1) has a high activity region
in some (small) part of the domain. This high activity can either be caused
by the boundary conditions or by the source term. We would like to capture
this high activity of u by discretizing (1) on a composite grid. So we choose
Ωl ⊂ Ω such that the high activity region of u is contained in Ωl. If we have
more than one high activity region, one may take more regions of refinement.
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In Ωl, we choose a local fine grid with grid size h, denoted by Ωh
l . The fine

grid is chosen such that ΩH ∩ Ωl ⊂ Ωhl , i.e., grid points of the global coarse
grid that lie in the area of refinement belong to the local fine grid too.

Now we have to define a local discrete problem on Ωl. So we define artificial
boundary conditions on Γ , the interface between Ωl and Ω \ Ωl. On Γ we
have more fine grid points than coarse grid ones, so we prescribe artificial
Dirichlet boundary conditions by applying an interpolation operator P h,H . In
practice we take P h,H to be the linear interpolation operator on the interface
for simplicity. In this way we find the following approximation uhl,i , i = 0,

on Ωhl . After boundary value problem (1) has been discretized and solved
on a coarse grid and an area of the coarse grid has been refined and a local
solution has been calculated on the finer grid, we can define a composite grid
approximation wH,h

0 as

wH,h
0 :=

{
uhl,0(x, y), (x, y) ∈ Ωh

l ,

uH0 (x, y), (x, y) ∈ ΩH \Ωhl .
(3)

So for the coarse grid points within the region of the refinement we have
two solutions, one coming from the coarse grid and another from the fine
grid. We will now use the local fine grid solution to update the coarse grid
approximation. In order to do so we introduce an discrete approximation of
the local defect dH := LH(u|ΩH )− fH ≈ LHwH

0 − fH =: dH0 . We can update
the coarse grid approximation by placing the estimate at the right hand side
of the coarse grid equation (1). This leads to the coarse grid correction step
to find uHi , i = 1, on the coarse grid

LHuHi = fHi−1, (4)

where

fHi (x, y) :=

{
fH(x, y) + dHi (x, y), (x, y) ∈ ΩH

l := ΩH ∩Ωl,
fH(x, y), (x, y) ∈ ΩH{}ΩHl .

The correction step (4) produces a new solution uH1 on the coarse grid.

3 High order compact schemes

The basic idea of high order compact finite difference schemes is to employ
not only the function values but also the values of the derivatives as un-
knowns. This gives a possibility to obtain higher accuracy or better spectral
resolution while keeping the stencil relatively small [3]. Restricting ourselves
to three-point expressions and one dimensional approximations, the general
form of an implicit finite difference relation between a function and its first
two derivatives would read
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a+ui+1 + a0ui + a−ui−1 + b+(ux)i+1 + b0(ux)i + b−(ux)i−1

+c+(uxx)i+1 + c0(uxx)i + c−(uxx)i−1 = 0.
(5)

By imposing different constraints on the coefficients a, b and c, we can
tune the numerical scheme.

4 Combination of LDC with HOCFD

We would like to discretize our two dimensional variant of the equation
(1) using HOCFD schemes. We introduce the vector of unknowns xT =
(uTxx,u

T
yy,u

T
x ,u

T
y ,u

T ), with the size 5N where N is the number of grid points.
As a result we get an algebraic system of the form

Aijx = f (6)

The matrix A is a 5×5 block matrix. Entries A1,i represent the discretization
of uxx by one of the possible discretization schemes, entries A2,i for uyy, entries
A3,i for ux, entries A4,i for uy, entries A5,i for u. The entries A5,i represent
the equation (1) as well as the boundary conditions. Depending on the type
of discretization used, some of the off-diagonal submatrices Ai,j could be zero
or singular blocks. The matrix A has quite a large condition number, so we
use equilibration of rows in order to reduce it. The basic idea is to multiply
rows of the matrix such that we get O(1) values on the main diagonal.

In its original form (see Section 2) the LDC technique is not directly
applicable to the system (6). So we need a reformulation, like the following
algorithm

1. Solve the coarse grid problem
a) Construct a matrix AH and a right hand side fH .
b) Perform block LU-decomposition of the matrix AH . As a result we

have AH = LHUH and we get LH and UH . Define the vector yH :=
UHx. Solve LHyH = fH . Get yH5 . SolveU55u

H = yH5 and get uH ,
the coarse grid solution.

2. Solve the fine grid problem
a) Get the boundary conditions for the fine grid boundary value problem

(from the coarse grid solution) and construct Ah
l and fhl .

b) Solve the local grid problem Ah
l x

h
l = fhl and get xhl .Extract uhl .

3. Calculate the defect
a) Construct the vector wH

b) Construct the defect dH0 = U55w
H−yH5 . Restrict thr defect by setting

it to zero outside the area of refinement.
4. Solve the updated coarse grid problem U55u

H
1 = yH5 + dH0 and get the

new coarse grid solution uH1 .
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5 Numerical results

We apply the LDC algorithm to the boundary value problem
{
−ε1

∂2u
∂x2 − ε2

∂2u
∂y2 + a1

∂u
∂x + a2

∂u
∂y + cu = f (x, y) ∈ Ω = (0, 1)× (0, 1),

u(x, 0) = g1(x), u(x, 1) = g2(x), u(0, y) = g3(y), u(1, y) = g4(y)

(7)
In (7) boundary conditions and the source term have been chosen such that
u(x, y) = tanh [25(x+ y − 1/3)] + 1. We choose a uniform coarse grid ΩH in
Ω with grid sizes ∆x = ∆y = 1/(N − 1), with N = 11, 16, 21. We choose a
uniform fine grid Ωh

l with grid sizes ∆x = ∆y = h with h = H/2, H/4. For
the coarse grid discretization we tested different combinations of convective
and diffusive terms discretizations. For the fine grid we used the same schemes
as for the coarse grid, although it is not required. The results of computations
can be summarized in Table 1 (accuracy of the algorithm compared to uniform
fine grid) and Table 2 (efficiency in comparison with uniform fine grid). First
we should mention that the accuracy of LDC is of the same order as for the
uniform fine grid. As for the performance of the LDC technique compared to
uniform fine grid method, LDC is much faster, and the difference in speed
increases with the size of the problem.

Table 1. ‖uexact − uH‖∞ for LDC algorithm and equivalent uniform grid

Grid size init 1 iteration uniform grid

Coarse: 11× 11, fine: 11× 11, uniform: 21× 21 2.56 ∗ 10−2 1.30 ∗ 10−3 1.26 ∗ 10−3

Coarse: 11× 11, fine: 21× 21, uniform: - 2.56 ∗ 10−2 1.28 ∗ 10−3

Coarse: 21× 21, fine: 21× 21, uniform: 41× 41 1.26 ∗ 10−3 3.30 ∗ 10−5 3.46 ∗ 10−5

Table 2. Calculation time for LDC algorithm and equivalent uniform grid

Grid size 1 iteration uniform grid

Coarse: 11× 11, fine: 11× 11, uniform: 21× 21 2.60 7.71
Coarse: 11× 11, fine: 21× 21, uniform: - 1.84 -
Coarse: 21× 21, fine: 21× 21, uniform: 41× 41 9.988 530
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Summary. Since steady-state nonlinear fluid sloshing in moving tanks is caused
by a finite set of natural modes, approximate solutions of the original free boundary
value problem can be found from a system of nonlinear ordinary differential equa-
tions (modal system) coupling time dependent amplitudes of these leading modes.
We focus on two-dimensional flows in a rectangular tank. We present an extensive
literature survey and examine bifurcations of periodic (steady-state) solutions of a
single-dominant modal system derived by [1].

Key words: fluid sloshing, modal systems, bifurcations.

1 Single-dominant Modal System

As shown in [1], solutions of the nonlinear sloshing problem in a rectangular
basin with two-dimensional flows can be presented as the Fourier expansion

z =
∞∑

i=1

βi(t) cos(πi(x+ 0.5)), (1)

which governs the surface wave motions, i.e., the free boundary Σ(t), in
the Oxz-system, such that the Ox-axis is rigidly fixed with the horizontal
equilibrium plane of the fluid. Each generalised coordinate βi(t) determines
an amplitude-evolution of the ith natural standing mode and, following to
asymptotic schemes, which are widely accepted in the surface wave theory, it
should be ruled out by an inter-ordering in scale of the highest asymptotic
order τ . The dominating character of the lowest natural mode β1(t) to re-
alistic free-standing and resonant waves has been used by many researchers
for postulating β1(t) to have the lowest asymptotic order and deriving various
asymptotic periodic solutions of the original free boundary problem. Adopting
the asymptotic analysis by [1], one can show that both Stokes’ and Moiseyev’s
third-order asymptotic solutions require the relationships
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β1 = O(τ1/3); β2 = O(τ2/3); βi ≤ O(τ), i ≥ 3 (2)

and, as a consequence, the nonlinear free-standing Stokes’ waves are up to
O(τ) described by the modal system

β̈1 +Dβ̇1 + (1− δ1(λ))β1 + d1(β̈1β2 + β̇1β̇2) +

+d2(β̈1β
2
1 + β̇2

1β1) + d3β̈2β1 = 0; (3)

β̈2 + (4− δ2(λ))β2 + d4β̈1β1 + d5β̇
2
1 = 0; (4)

β̈3 + (9− δ3(λ))β3 + q1β̈1β2 + q2β̈1β
2
1 + q3β̈2β1 +

+q4β̇
2
1β1 + q5β̇1β̇2 = 0 (5)

(higher-order equations for βi(t), i ≥ 4, are linear). In this system, the coef-
ficients di, qi, i ≥ 1, are known functions of the mean fluid depth h,

δi = δi(λ) = i2 − µ2
i (1− λ), i ≥ 1; (δ1 ≡ λ), (6)

where

µi =
σ̄i
σ̄1

; σ2
i = gπi tanh(πih) (7)

is the dispersion and the constant D = represents the damping. Furthermore,
we study periodic solutions of (5) which satisfy the condition

βi(0) = βi(2π); β̇i(0) = β̇i(2π), i ≥ 1. (8)

Since the modal system is linear in terms of the modal function β3 as well
as (3)-(4) do not contain β3, the nonlinear bifurcation analysis of periodic
(steady-state) solutions will be focused on (3)-(4), (8). The key difficulty
in handling the two-point boundary problem consists of either the non-
uniqueness of its periodic solutions occurring due to the phase shift invariance
as D = 0 or the absence of non-trivial solutions for D 6= 0. This is a typical
situation in modelling conservative (D = 0) or dissipative (D 6= 0) mechan-
ical models. Pursuing non-trivial solutions, to avoid the non-uniqueness, we
introduce the Poincaré boundary condition, which reads

β̇1(0) = 0, (9)

and adequately enlarge the dimension of the modal system (3), (4) by adding
the formal, artificial equation

Ḋ = 0. (10)

Setting B = (β1, β2, β̇1, β̇2, D)T makes it possible to transform (3), (4), (8),
(9) and (10) to a parametrised nonlinear two-point boundary value problem
that permits the following operator formulation

T (B, λ) = 0, B ∈ X, −∞ < λ < 1, (11)

in suitable Banach spaces X and Y (see [3]). Apparently, the operator pro-
blem (11) has a trivial solution which does not depend on the parameter
λ. Bifurcating points of the trivial solution were found by [3] at λ0(k, i) =
1− k2/µ2

i , k = 1, 2; i = 1, 2, . . ..
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2 Local and Non-Local Bifurcation Analysis

Since µ2
1 = 1 and 2 < µ2

2 < 4, there do not exist two integers k1 and k2

such that λ0(1, k1) = λ0(2, k2). By using the Lyapunov-Schmidt reduction, [3]
obtained two independent families of the bifurcating points, for i = 1 and 2,
respectively. These are easily interpreted in terms of the “asymptotic” norm
||B|| = O(s). The locally bifurcating branches in the (λ, s)-plane (two types
of backbones, solid and dashed lines) are shown in Fig. 1 (a). The type of
branching depends on h so that a passage of the curves from “hard-spring”
(solid lines) to “soft-spring” (dashed lines) occurs at hR = 0.3368 . . .. The
relationship between the two families at λ0(1, k) and λ0(2, k) also changes with
h and, therefore, their inter-ordering along the λ-axis is hardly predictable, in
general. However, it can be shown, the three lowest values from the resulting
set {|λ0(i, k)|, i = 1, 2; k ∈ N} are λ(1, 1) = 0, λ(2, 2) ∈ (−1, 0) and λ(2, 1) ∈
(1/2, 3/4) and they are linked as λ0(2, 2) < λ < λ0(2, 1). Moreover, λ(2, 2)→
0 as h → 0, but it is bounded away from zero for finite depths h. The local
branching related to these three bifurcation points is shown in Fig. 1 (b).

We found it useful to give a three-dimensional presentation of the lo-
cal bifurcating curves by operating independently with norms of ||β1|| and
||β2||. Corresponding local branching in the (λ, ||β1||, ||β2||)-space is shown in
Figs. 1 (c,d), where (c) implies h > hR and (d) corresponds to h < hR, respec-
tively. One important conclusion, based on this three-dimensional bifurcating
diagram, is that equivalence of λ to λ0(1, k) or λ0(2, k) leads to “orthogonal”
bifurcations in appropriate spaces.

Another important point is that, while the branches at λ0(2, k) are of “lin-
ear nature” with vertical strain lines in the (λ, ||β1||, ||β2||)-space, the curves
bifurcating at λ0(1, k) become of three-dimensional nature with increasing s.
This constitutes a very interesting mathematical problem on description of
the strictly three-dimensional curves, which has not been considered by [3],
for the neighbourhood of the primary bifurcating point λ0(1, 1) = 0. The nu-
merical analysis of these non-local curves utilises a path-following procedure
using the RWPM-package developed by [4]. This package can be used to study
parametrised two-point boundary value problems. It is based on two numeri-
cal shooting techniques (multiple shooting and stabilised march, see e.g., [2])
and enables the computation of isolated solutions of two-point boundary value
problems as well as path-following and detection and determination of turning
and bifurcation points. The calculations used the asymptotic solutions by [3]
as an approximation of a non-trivial periodic solution on the approximating
branch.

Four typical results for different h are presented in Figs. 2 (a-d). The
numerical analysis establishes that the periodic third-order Stokes’ waves ob-
tained from the single-dominant modal system may be qualitatively different
from the asymptotic prediction, even if the wave amplitude (norm of the pe-
riodic solutions) is relatively small. If h > hR = 0.3368 . . ., the numerically
determined periodic solutions characterise not only the primary bifurcation
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Fig. 1. (a) represents the local branches at λ0(1, k) = 1 − k2, k ∈ N in the (λ, s)-
plane. Solid lines correspond to h > hR, dashed lines represent the case h < hR,
where hR = 0.3368 . . .. (b) sketches the local branches in the neighbourhood of the
origin (0, 0), imposed always by three bifurcation points λ0(1, 1) = 0 (nonlinear
standing waves dominated by the mode f1(x) with the frequency close to the lowest
natural tone) and λ0(2, 1), λ0(2, 2) (standing waves associated with the second mode
f2(x)); (c) and (d) give 3D treatment of the local branches in the (λ, ||β1||, ||β2||)-
space for h > hR and h < hR, respectively.

of the trivial solution, but also the secondary bifurcations arising as a sec-
ondary turning point S. It appears when ||β2|| ∼ ||β1||. The presence of S
makes our numerical results similar to the fifth-order theory by [5] capturing
the case of the critical depth h ≈ hR. However, the secondary bifurcation
point S does not disappear for large h. The numerical failure of the Stokes
third-order ordering (2) at the second bifurcation point S makes it possible
to quantify mathematically the applicability of the single-dominant model.
The forthcoming studies should expand this numerical analysis to alternative,
multi-dominant modal theories in which some higher modes can be of the
same order as the primary β1.
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Fig. 2. Typical branching of the free-standing periodic waves at λ0(1, 1) = 0 for
some typical h. (a) – h = 1.0, (b) – h = 0.5, (c) – h = hR, (d) – h = 0.3.
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On the Reliability of Repairable Systems:
Methods and Applications
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Summary. Failures in repairable systems are often described by means of renewal
or non-homogeneous Poisson processes, depending upon the repair policy. In the
former case repairs bring the system reliability back to its initial value, whereas in
the latter they restore the same reliability the system had just before the failure. We
focus on the latter process, illustrating some properties and applications, mainly in
a Bayesian framework.

Key words: Bayesian analysis, non-homogeneous Poisson processes, model
selection, sensitivity analysis.

1 Introduction

Repairable systems are those systems (machines, industrial plants, software,
etc.) which, in the event of a failure, can be repaired, e.g., by replacing a
component, and be returned to regular operation. In some cases, the reliability
of a system, after a repair, returns to the same state as before the failure.
Conversely, “perfect” repairs bring the reliability back to the state the system
had at the start of the operation. Failures of the former repairable systems
are often described by means of non-homogeneous Poisson processes (NHPP),
whereas renewal processes usually describe the latter systems. In this paper
we will focus on NHPP’s and we will illustrate some of their properties and
applications. Here we provide an overview of problems and ideas related to
the use of NHPP’s in reliability, with a quick illustration of the mathematical
techniques involved. A thorough presentation of the mathematical methods
and the statistical analyses is not possible within the limited space of a review
paper; we refer the interested reader to the works mentioned in the paper. A
general review of NHPP’s and their applications to the reliability of repairable
systems can be found in [28].

In Section 2 we present some examples of repairable systems, whereas prop-
erties of NHPP’s are described in Section 3 along with some issues related to
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their applications in reliability. In particular, estimation of parameters and
reliability measures will be discussed, along with classes of NHPP’s and more
sophisticated models based on the introduction of change points, on superpo-
sition of NHPP’s and Bayesian nonparametric methods. In Section 4 NHPP’s
will be used to analyse data about gas escapes in a city network of steel
pipelines, applying some models described in Section 3. We will mainly focus
on comparisons between parametric and nonparametric models, on model se-
lection and sensitivity analysis. The paper ends with some remarks in Section
5.

2 Repairable systems

Systems subject to failures can be divided into two main groups: the non-
repairable and the repairable ones. When a hydraulic pump in a power plant
fails, it is replaced; the hydraulic pump is a non-repairable system, whereas
the power plant is a repairable one.

Once a system experiences a failure, different repair strategies have differ-
ent influences on the system reliability, usually defined as the probability of no
failures in time intervals. Under “perfect” repair, the system is brought back
to its initial reliability, whereas an instantaneous, minimal repair of a small
component restores the same reliability the system had just before the failure.
The former strategy corresponds to a condition commonly called “good-as-
new” or “same-as-new”, whereas the latter corresponds to the “bad-as-old” or
“same-as-old” condition. System failures under the two strategies are usually
modelled with renewal processes and NHPP’s, respectively (see, e.g., [28]).

The reliability could be constant over time, as it happens in the homoge-
neous Poisson process (HPP), the only NHPP which is a renewal process as
well. Systems are subject to reliability decay or growth (with steadiness as a
special case of both); in their lifetime they can either experience only one of
them or alternate them at some change points. Sequential detection of bugs
in software, without introduction of new ones, implies reliability growth all
over the testing phase. Conversely, there are systems subject to many early
failures, then a decrease in them is followed by a long period of rare failures
and by a final period with an increasing number of failures. After the initial
phase of “burn in” followed by reliability growth, those systems experience a
constant reliability (“useful life”) followed by a final phase of reliability decay;
the term “bath-tub” is used to describe this behaviour because of the shape
of the intensity function (described later) of the corresponding NHPP’s.

The two repair strategies illustrated before are two extreme, opposite ones.
In practice, repairs usually increase the reliability of the system with respect
to (w.r.t.) the one it had just before the failure but they do not bring it back
to its initial value. Furthermore, repairs are not, in general, instantaneous and
unavailability needs being modelled as well.
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Finally, it is worth mentioning that complex systems could be split into
components and their reliability could be the result of the superposition of
the reliability of their components.

We illustrate these notions with examples considered in past works; some
of them will be used in the next sections.

Example 1. (Non-repairable system) [24] considered failure times of hydraulic
pumps, replaced after each failure, in different power plants.

Example 2. (HPP) [4], [5] and [6] considered escapes (“failures”) in a city
network of old cast gas pipes. 150 escapes were observed in 6 years in a
320 Km long network. Since repairs involved a very small component of the
network and they were performed in a very short period w.r.t. the lifetime of
the network (some pipes were more than 100 years old), the assumption of
instantaneous, minimal repair was made and an NHPP was deemed suitable
for modelling the escapes. Since old cast pipes were not subject to ageing
(corrosion), the reliability of the system was considered constant over time,
so that the HPP was the natural choice in this case.

Example 3. (NHPP) [26] considered failures in underground trains. 40 trains
were observed over a 8-years period and failures of doors were recorded. Since
repairs were almost instantaneous and minimal, then an NHPP was chosen
to model the failures.

Example 4. (NHPP with change points) [32] considered a well known dataset
about the dates of serious coal-mining disasters (“failures”), between 1851 and
1962. Conditions to model “failures” with an NHPP applied, but there were
strong feelings about the change in the reliability of the “system” at some
points. A NHPP allowing for change points was the chosen model in this case.

Example 5. (Superposition of NHPP’s) [25] considered escapes in a city net-
work of steel gas pipes. 53 escapes were observed in 30 years in an expanding
network, currently 380 Km long. As in Example 2, an NHPP was considered
a suitable model for describing escapes but, in this case, reliability was not
constant since steel pipes were subject to corrosion and ageing. Furthermore,
the expansion of the network over time, combined with the ageing property of
the pipes, compelled to distinguish among pipes with different ages. Therefore,
the complex system was split into subsystems (determined by installation year
of the pipes) and its reliability followed from the reliability of its components.
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3 Non-homogeneous Poisson processes

In this section, we illustrate properties of NHPP’s and models based on them.

3.1 Main properties

We recall the well known definition of NHPP, along with few properties. More
detailed illustration of NHPP’s applied to reliability can be found in [28],
whereas general Poisson processes are described in, e.g., [18].

Let N(s, t) denote the number of failures in the interval (s, t], whereas the
notation N(t) is used instead of N(0, t).

Definition 1. A counting process N(t) is said to be an NHPP with intensity
λ(t) if

1. N(0) = 0;
2. it has independent increments;
3. P{N(t, t+ h) ≥ 2} = o(h);
4. P{N(t, t+ h) = 1} = λ(t)h+ o(h).

When the intensity λ(t) is constant over time, then a HPP is obtained.
The mean value function (m.v.f.) of the NHPP is defined as the nonde-

creasing, nonnegative, function M(s, t) = E{N(s, t)}, 0 ≤ s < t, with M(t) =

E{N(t)}, t ≥ 0. Assuming that M(t) is differentiable, then µ(t) =
dM(t)

dt
is

the rate of occurrence of failures (ROCOF) for the NHPP. The property 3)

in Definition 1 implies that µ(t) = λ(t) a.e. so that M(y, s) =

∫ s

y

λ(t)dt.

The NHPP owes its name to the fact that

P{N(y, s) = k} =
M(y, s)k

k!
e−M(y,s)

for any integer k.
We illustrate two examples of NHPP’s. The first NHPP, widely used in

reliability, is the Power Law process (PLP), sometimes called Weibull process
and described in, e.g., [13]. Its intensity is given by λ(t) = Mβtβ−1, M,β > 0,
with M(t) = Mtβ . As shown in Fig. 1, the intensity function is decreasing for
β < 1, constant for β = 1 and increasing for β > 1. The three behaviours cor-
respond, respectively, to growth, steadiness and decay in reliability. Inference
on β is crucial to understand the nature of the data at hand. Such richness of
behaviours, the simple mathematical form and the Weibull distribution of the
first failure time are, probably, the main reasons for the relevant role played
by the PLP in reliability.

The second example of NHPP is due to [26]. They considered the NHPP
with intensity

λ(t) = β0
log(1 + β1t)

(1 + β1t)
, β0 > 0, β1 > 0,
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Fig. 1. Intensity function of the Power Law process.

i.e. a function which is increasing up to its maximum point at (e− 1)/β1 and
then goes to zero as t goes to infinity. This behaviour represents the case of
reliability decay followed by reliability growth, and this NHPP could be used
to model the system lifetime when excluding its final portion.

3.2 Statistical analysis of simple NHPP’s

Consider an NHPP with intensity function λ(t; θ). Suppose we observe the
system up to time y and let n be the number of failures, occurred at times
t1 < t2 . . . < tn; then the likelihood function is given by

L(θ; t) =
n∏

i=1

λ(ti) exp{−
∫ y

0

λ(t)dt},

where t = (t1, . . . , tn).
At least two experiments are possible: observation of the system up to

a given time or until the n-th failure occurs. The former case is called time
truncation, whereas the latter is called failure truncation, with y = tn. Concep-
tually different, the two experiments lead to the same estimates in a Bayesian
framework, whereas some differences are possible following a frequentist ap-
proach as in the maximum likelihood estimation of the parameters of the
PLP.



540 F. Ruggeri

Illustration of frequentist and Bayesian results about parameter estima-
tion, (Bayesian) confidence intervals, hypothesis testing, etc. are well beyond
the scope of the current paper. We refer the interested reader to [28]. The PLP
has been considered, among the others, by [1, 12, 13, 14, 27] in a frequentist
framework, and by [2, 7, 17] and [19] in a Bayesian framework.

Another experiment was considered in [8] and [22], in a frequentist and a
Bayesian framework, respectively. Only count data were available from k iden-
tical systems, i.e. the number of failures but not the failure times. The systems
were modelled with PLP’s with equal parameters and their parameters were
estimated.

3.3 Reliability measures

Parameter estimation is not, probably, the most important goal of a statistical
analysis in reliability. The major interest in a statistical reliability study relies
on the possibility of forecasting future failures, either on the system under
observation or a new, similar one. An example of quantity of interest is the
system reliability, which is defined as R(y, s) = P{N(y, s) = 0} for the system
observed up to time y or R(s) = P{N(s) = 0} for a new one. For a PLP,
the system reliability becomes R(y, s) = exp{−Msβ + Myβ} and R(s) =
exp{−Msβ}, respectively. A related quantity is the prediction of the number
of failures in some time interval.

Another quantity of interest is the expected number of failures in fu-
ture intervals, i.e. E [N(y, s)] for the same system or E [N(s)] for a new one.
For a PLP, the expected number of failures in future intervals is given by
E [N(y, s)] = M [sβ − yβ ] and E [N(s)] = Msβ , respectively.

Finally, estimation of the intensity function at y is important. NHPP’s are
sometimes used for describing failures in prototype testing. A new product is
tested before being marketed. Achievement of satisfactory reliability, excessive
cost of further testing, risk of obsolescence of the product are some of the
causes which imply interruption of testing at time y. Once the product is
marketed, no further testing is allowed to improve it and its future reliability
is the same it had at time y.

3.4 Covariates in NHPP’s

The NHPP’s described earlier refer to a unique system with homogeneous
characteristics. Sometimes systems can differ for some features, like the loca-
tion of the power plants and the operating conditions of the hydraulic pumps
analysed in Example 1. In [24] failure times were described by an exponen-
tial density f(t;λ) whose parameter λ, following the Bayesian paradigm, was
given a prior distribution π(λ), namely a Gamma one. Failures were recorded
for each set of homogeneous pumps (i.e. with same location and operating
conditions) and for each of them the posterior distribution of λ was com-
puted. Posterior distributions for parameters of different sets of pumps were
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compared using the Kullback–Leibler (K–L) divergence w.r.t. a baseline dis-
tribution and pumps were clustered according to their K–L values.

A different approach was taken in Example 2. As discussed in [4, 5] and [6],
the network of old cast gas pipes could be divided according to some features
identified by a preliminary exploratory analysis. In particular, diameter, laying
depth and laying location were identified as the three most influential factors
(covariates) on the gas escapes. Two levels were assigned to each covariate and
their combination led to 8 classes. The behaviour of the pipes in each class was
considered as not influent on the other pipes, so that 8 independent HPP’s
were considered to describe failures in the classes. Each HPP was identified by
its constant intensity λ and Gamma (or Lognormal) priors were considered for
the 8 λ’s, with their own hyperparameters determined through interviews with
26 company experts and combination of their opinions via Analytic Hierarchy
Process (AHP), described in [33]. The posterior mean of the parameter λ
was computed for each class and their values were compared and ranked,
determining the class with the lowest reliability (or highest posterior mean)
and, therefore, the first to be replaced.

Independence among classes could be an unrealistic assumption. A more
complex structure was proposed in [21] where a Cox model - type approach
was taken. The distribution of the parameter λ depended upon the covariates
X = (X1, . . . , Xn), Xi = 0, 1, for all i, i.e. it was a Gamma distribution with
parameters α exp{XT

i β} and α, so that their prior mean was exp{XT
i β}. The

link among the classes was therefore via the hyperparameters α and β, and
their joint prior distribution. An alternative, presented in [21], considered α
fixed and estimated β via an empirical Bayes approach.

Finally, [34] considered NHPP’s whose parameters were functions of the
covariates X. As an example, the parameter M in the PLP, with intensity
λ(t) = Mβtβ−1, was considered as M = M(X) = M0

∏n
i=1 δ

Xi
i , δi > 0, for

all i.

3.5 Classes of NHPP’s

As shown in Fig. 1, the same NHPP, a PLP namely, describes completely
different behaviours (from reliability decay to reliability growth) for different
values of its parameters. A plethora of NHPP’s, differing in their intensities,
has been defined in literature (as listed by Chris McCollin, private communi-
cation) and then applied to different problems. Unifying properties could be
sought and classes of NHPP’s have been actually identified and their common
properties have been investigated; two examples of such classes are illustrated
below.

A general class

A general class of NHPP’s can be described (see [32]) by the intensity
function λ(t;α, β) = αg(t, β), with α, β > 0, such that their m.v.f. is
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M(t;α, β) = αG(t, β), with G(t, β) =
∫ t

0
g(u, β)du. This class contains well-

known processes, such as the Musa-Okumoto, the Cox-Lewis and the Power
Law processes.

The first process, described in [23], has been widely used in modelling
software reliability; it has intensity function λ(t;α, β) = α/(t+ β) and m.v.f.
M(t;α, β) = α log(t + β). The second process, described in [11], is such that
λ(t;α, β) = α exp{βt} and M(t;α, β) = (α/β) [exp{βt} − 1]. As shown before,
the intensity and mean value functions of the PLP are given, respectively, by
λ(t;α, β) = αβtβ−1 and M(t;α, β) = αtβ , α, β > 0.

A unified treatment of this class from a Bayesian viewpoint is possi-
ble. Consider the failures t = (t1, . . . , tn) in (0, y], then the likelihood be-

comes Mn
n∏

i=1

g(ti, β)e−MG(y,β). Consider any prior distribution π(β) for β

and a Gamma prior G(µ, ρ) for M or a Gamma distribution G(µ, ρβ) for
M | β. Under these assumptions, we obtain a conditional Gamma posterior
G(n+ µ,G(y, β) + ρ[β]) for M | β, t, whereas the posterior density of β | t is

proportional to

n∏

i=1

g(ti, β)π(β)

(G(y, β) + ρ[β])n+µ . Note that the term [β] is included when

the conditional prior of M | β is chosen.
General results for this class were found in [32] when considering change

points in NHPP’s.

A class based on differential equations

Another class has been proposed in [31], stemming from the consideration
that [23] found the process named after them by postulating the following
relation between λ(t) and M(t):

λ(t) = λe−θM(t).

The relation can be expressed as the first order differential equation [M(t)]
′

=
λe−θM(t), whose solution is M(t) = log(λθt+ 1)/θ when M(0) = 0.

Similar relations can be found for other NHPP’s. The PLP has intensity
function λ(t) = Mβtβ−1 withM(t) = Mtβ ; their relation is given by [M(t)]

′
=

βM(t)/t, with M(0) = 0. Similarly, the relation [M(t)]
′

= b[M(t) + at] holds
for the process with λ(t) = a(ebt − 1) and M(t) = a

b (ebt − bt − 1), whereas

[M(t)]
′

= b (M(t) + at) / (1 + bt) holds for the NHPP with λ(t) = a log(1+bt)
and M(t) = (a/b) (1 + bt) log(1 + bt)− at.

All the above relations belong to the class of first order differential equa-
tions:

y′ =
αy + ε+ βx

ρy + γ + δx
.

(Note that we express the differential equations using x and y(x).)
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[31] focussed on all the NHPP’s whose mean value functions were solutions
of the differential equation

y′ =
αy + βx

γ + δx
, (1)

where all the parameters were nonnegative, and both parameters, either at
the numerator or the denominator, could not be zero at the same time.

The solution of (1) is

y = e
R
α/(γ+δx)dx

{∫
βx

γ + δx
e−
R
α/(γ+δx)dxdx+ c

}
.

Among all possible combinations of parameters, we present only those
leading to actual mean value functions. We present the corresponding mean
value functions and intensities in Table 1.

Table 1. NHPP solution of the differential equation (1).
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3.6 Change points in NHPP’s

Example 4 describes a system whose behaviour changes at some time point.
[32] considered two different types of change point models. In the first, they
considered models allowing changes in reliability level after each failure, as
the system is repaired and put to operation, e.g., in software reliability. In the
second, they considered a model allowing changes at random points in time,
due to break down of a component without causing the failure of system or
due to interventions by maintenance squad at unknown (for the statistician)
time points.
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[32] considered change points in PLP’s right after each failure (at times
t+i ’s), modifying the value of β. Changes in M could be considered in a similar,
but cumbersome, manner. We denote the parameter value at time t+i , i =
1, . . . , n, right after a failure, by βi, identifying the process over (ti, ti+1].
We denote by β0 the parameter value over (t0, t1]. Here we take t0 = 0 and
tn+1 = y, i.e. the endpoints of the observation interval.

[32] considered both a hierarchical model and a dynamic one. In the first
model it was assumed that, given (ϕ, σ2), the βi’s were i.i.d. with a lognormal
distribution LN (ϕ, σ2), i = 0, . . . , n. At the second stage of the hierarchical
model ϕ and σ2 had, respectively, a normal prior N (µ, τ 2) and an inverse
Gamma prior IG(ρ, γ).

The likelihood became

Mn
n∏

i=1

βi−1t
βi−1−1
i exp{−M

n+1∑

i=1

(t
βi−1

i − tβi−1

i−1 )}.

Assuming a gamma prior for M , then the posterior conditionals of M ,
σ2 and ϕ were, respectively, a Gamma, an inverse Gamma and a normal
distribution. The conditional distributions of the βi’s were known apart from
a normalising constant. This is a typical situation in which the full conditionals
can be used to simulate from the joint posterior via Metropolis-Hastings and
Gibbs sampling.

In the second model considered by [32], i.e. the dynamic model, the pa-
rameter βi−1 was modified at time t+i , i = 1, . . . , n, according to

log βi = log a+ log βi−1 + εi,

where a was a positive constant and εi was a normally distributed random
variable with mean 0 and variance σ2. Suitable choices of priors lead to sim-
ulation from the joint posterior via Gibbs sampling with Metropolis steps
within.

The proposed method to describe failures at random points relied on the
Reversible Jump MCMC technique developed in [16]. We refer to [32] for
more details on the algorithm developed for changes in the parameters of the
general class described in Section 3.5.

3.7 Superposition of NHPP’s

Example 5 is about a complex system with identifiable components which
function independently and are repairable systems themselves. Components
are modelled by independent NHPP’s with intensity λs(t; θs), s ∈ S (in ex-
ample 5, S coincides with the set of all the years in which portions of the gas
network were installed). The superposition of these independent NHPP’s is
again an NHPP with intensity λ(t; θ) =

∑
s∈S λs(t; θs), as a consequence of

the Superposition Theorem (see, e.g. [18]).
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Many situations are possible depending on the characteristics of the system
under examination: the components can perform different operations, and thus
be subject to different types of failures, or they can be identical units with
minor differences only. In the first case it is appropriate to have different
intensity functions with different parameters, whereas in the second one the
intensity functions would have the same functional form and would differ only
for a subset of the θs’s or for some known constant (for example, one that
is related to the size of the component). [25] considered both cases assuming
PLP’s with intensity

λs(t; θs) = lsMsβs(t− s)βs−1I[s,+∞)(t),

with Ms, βs, ls > 0, where s is the installation date (year) and ls is the known
length of the pipes installed at s. In the first case each PLP had its own
parameters Ms and βs, whereas two situations were considered in the second
one: the parameters were the same for all PLP’s or they were drawn from the
same distribution (exchangeability).

In this case, we observe the system up to time y and data are given by
both n failure times tk and installation dates δk of failed parts, with r being
the number of different installation dates si. Considering PLP’s with same
parameters M and β, the likelihood is given by L(M,β; t, δ):

Mnβn
n∏

k=1

lδk(tk − δk)β−1e−M
Pr
i=1 lsi (y−si)

β

.

In a Bayesian framework Gamma priors can be chosen for both parameters
M and β, but MCMC methods are needed to compute their posterior distri-
butions and estimate the reliability measures illustrated in Section 3.3.

When each PLP has its own parameters, then the likelihood L(M,β; t, δ)
becomes, for M = (M1, . . . ,Mr) and β = (β1, . . . , βr),

n∏

k=1

βδk lδkMδk(tk − δk)βδk−1e−
Pr
i=1 lsiMsi

(y−si)βsi .

When exchangeability of parameters is assumed, then each Ms (and βs) is
drawn from the same prior distribution π(M ; θM ) (π(β; θβ). Prior distribu-
tions on θM and θβ are chosen as well. In [25], exponential distributions were
chosen for Ms and βs and the hyperparameters θM and θβ .

3.8 Nonparametric models

Sometimes a parametric assumption, like the intensity function λ(t; θ) in an
NHPP, is a burden since the parametric model could be unable to describe
data at hand very well. Failure data from Example 5 were considered all
together in [9], where an NHPP with logarithmic intensity was considered
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and the estimated model gave a very poor fit to the data. The nonparametric
approach based on weighted Gamma processes, and proposed in [9], gave a
very good fit to the data.

To understand the nonparametric approach, consider the distribution of
the number of events in a given interval (s, t] under an NHPP with m.v.f.
M(s, t): it is a Poisson distribution with parameter M(s, t). In a parametric
model, i.e. an NHPP with intensity λ(t; θ), we saw in Section 3 that M(s, t) =∫ t
s
λ(u; θ)du. In a nonparametric approach we consider M(s, t) as a Gamma

distributed random variable for each choice of 0 ≤ s < t.
Stemming from results in [20], then [9] and [10] considered the m.v.f. M

as the distribution function of a random measure Λ, the intensity measure of
the process.

Given a measure µ and a measurable subset B, we define µB := µ(B).

Definition 2. Let α be a finite, σ-additive measure on (S,S). The random
measure µ follows a Standard Gamma distribution with shape α (denoted
by µ ∼ GG(α, 1)) if, for any family {Sj , j = 1, . . . , k} of disjoint, measurable
subsets of S, the random variables µSj are independent and such that µSj ∼
G(αSj , 1), for j = 1, . . . , k.

Definition 3. Let β be an α-integrable function and µ ∼ GG(α, 1). The ran-
dom measure ν = βµ follows a Generalised Gamma distribution, with
shape α and scale β (denoted by ν ∼ GG(α, β)).

The Generalised Gamma distributions are conjugate for the Poisson pro-
cesses.

Theorem 1 ([20]). Let ξ = (ξ1, . . . , ξn) be n Poisson processes with intensity
measure Λ. If Λ ∼ GG(α, β) a priori, then Λ ∼ GG(α +

∑n
i=1 ξi, β/(1 + nβ))

a posteriori.

In the next we consider the observations {yij , i = 1 . . . kj}nj=1 from n Pois-
son processes ξ = (ξ1, . . . , ξn) on S. Note that yij denotes the failure time
when kj failures are recorded in the j-th system, j = 1, . . . , n, observed over
S = [0, T ].

Theorem 2 ([20]). Under the above assumptions and squared loss function,

the Bayesian estimator of Λ ∼ GG(α, β) is given by the measure Λ̃ such that

Λ̃S =

∫

S

β(x)

1 + nβ(x)
α(dx ) +

n∑

j=1

kj∑

i=1

β(yij)

1 + nβ(yij)
IS(yij), ∀S ∈ S.

Theorem 3 ([10]). Given n Poisson processes ξ with common intensity func-
tion Λ ∼ GG(α, β), the Bayesian estimator of R, under squared loss function,

is given by R̃ such that, ∀S ∈ S,

R̃S = exp



−

∫

S

ln(1 +
β(x)

1 + nβ(x)
)α(dx)−

n∑

j=1

kj∑

i=1

ln(1 +
β(yij)IS(yij)

1 + nβ(yij)
)



 .
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4 Examples

In this section we illustrate the models presented earlier with two examples.
Other examples are thoroughly discussed in [25, 26, 4, 5] and [6]. The first
example compares a parametric model with a nonparametric one, whereas
the latter considers model selection and sensitivity analysis. Both examples
consider subsets of the data presented in Example 5, i.e. gas escapes in a city
network of steel pipes. More details on the data can be found in [15].

It is worth noticing that steel pipelines have very strong mechanical prop-
erties (failures are very rare), but they are easy prey for corrosive agents
unless they are correctly protected. Available data and experts’ opinions led
to identify three principal elements that may be related to the failures: the
age of the pipe, the type of corrosion that leads to the rupture of pipe, and
the lay location of the pipe. In the first example only the first element is con-
sidered, whereas the second element is considered in the second example. As
mentioned before, the choice of an NHPP is justified since corrosion develops
progressively, reducing the thickness of the pipe walls until the pipe breaks
and the gas escapes.

4.1 Parametric vs. nonparametric models

We consider 33 failures, due to corrosion, in the period 1978–1997 over a
network of 275 kilometres.

Parametric model

[9] and [10] compared three parametric NHPP’s to model all the failures: the
HPP, the PLP and, mainly, the logarithmic NHPP with λ(t) = a ln(1+bt)+c.

The m.v.f. of the logarithmic NHPP is given by

M(t) =

∫ t

0

λ(s)ds =
a

b
(1 + bt) ln(1 + bt) + (c− a)t.

MLE and Bayesian (under independent Gamma priors) estimates are pre-
sented in Table 2.

Table 2. MLE and Bayesian estimates.

Parameter MLE Mean Median Mode Variance

a 0.000 1.243 1.141 0.962 0.493
b 0.724 1.662 1.374 0.799 1.454
c 4.755 2.797 2.780 2.862 1.021

The MLE lead actually to a HPP, whereas the Bayesian approach favoured
the nonhomogeneous component. In this case MLE performed better than the
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posterior mean and median, i.e. the Bayesian estimators under two different
loss functions. In fact, [10] showed that the estimated m.v.f. of the HPP was
closer to the sample m.v.f. than the one from the NHPP and the Bayes factor
favoured the HPP w.r.t. the NHPP’s, specially the PLP. This is an example
of model selection: when different models are entertained, tools are used to
choose among them, like the posterior probability of each model or the Bayes
factor, defined as the ratio between the marginal distributions of the data
under two models (see, e.g., [3] for more details).

Nonparametric model

The findings of Section 4.1 lead to relax the parametric assumption, consid-
ering the nonparametric model described in 3.8 and choosing its parameters
so that it was “centred” at the best estimate of the logarithmic NHPP, whose
m.v.f. was the Bayesian estimator M̂θ, with intensity λ̂θ(s). Therefore, [10]
considered a weighted Gamma process GG(M̂θ/σ, σ), with σ = 0.509. The
choice of the parameters lead to M̂θ as the expected value of the process (this
explains the notion of “centering” we have been using). Furthermore σ deter-
mines how much the process is spread around its expected value. More details
are available in [10], including the expressions for the Bayesian estimators of
the m.v.f. and the reliability, depicted in Figs. 2 and 3.
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Fig. 2. Nonparametric (solid) and parametric (dashed) estimators of N [0, t] and
cumulative N [0, t] (dotted).

It should be observed that the estimation of the m.v.f. improves signifi-
cantly upon the parametric case. The finding is confirmed when computing
the Bayes factor between the parametric and the nonparametric models, as
shown in [10].
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Fig. 3. Nonparametric (solid) and parametric (dashed) estimators of the reliability
(dotted).

4.2 Model selection and sensitivity analysis

We now combine the notion of model selection introduced in Section 4.1 with
the issue of sensitivity w.r.t. the choice of the prior distribution. The choice of
prior distributions is a crucial (and, somehow, controversial) issue in Bayesian
analysis. Usually, it is impossible to specify a distribution which represents
exactly the prior beliefs over all the parameter space. Approximations are
therefore necessary: the prior is often chosen in a tractable class (e.g. normal
distributions) to match some known features (e.g. some quantiles). Bayesian
robustness stems from this practical impossibility of specifying the “true”
prior. Classes of distributions, compatible with the prior knowledge, are con-
sidered and some measure of robustness (e.g. range of quantities of interest,
like the posterior mean) are computed to assess the influence of the choice of
the prior in the class. More details are well beyond the scope of this paper;
we refer to [29] for a thorough illustration of the robust Bayesian approach.

Failure data from 1978 to 1998 in steel pipelines are now split into three
sets according to the different types of corrosion which caused them: natural,
galvanic and by stray currents. See [15] for more details on the problem. In
Table 3, we present the data; times are computed as elapsed time since the
first failure (for each type) in the interval.

We consider the models corresponding to the following choice of parame-
ters in the class of NHPP’s defined in Section 3.5: α = 0, β > 0, γ ≥ 0 and
(for identifiability) δ = 1. For γ = 0, we get the HHPP with rate β, whereas
γ > 0 implies the NHPP with λ(t) = βt/(γ + t). We consider a gamma
distribution G(a, b) on β and a prior measure Π on γ in the quantile class
Γ = {Π : Π has median θM = 1} (see [30]). We compare the two models,
using the Bayes factor.
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Table 3. Failures (1978 - 1998)

Corrosion

Galvanic 2.1233 3.5205 4.3945 8.9041
Natural 2.8438 4.1534 7.2383 9.5232 9.8082 9.8191 9.8219

12.4931 13.8904 14.4136 15.7890 16.1013
Stray Currents 0.0027 0.1041 0.3507 1.1753 3.9726 5.0329 5.2932

5.7616 7.0219 11.7425 11.7616 15.3918 16.1644

Given n failures at time ti, i = 1, . . . , n observed in an interval [0, y], the
likelihood functions are

L(β, 0) = βne−βy

and

L(β, γ) = βn
n∏

i=1

ti
γ + ti

(
1 +

y

γ

)βγ
e−βy,

for the HPP and the NHPP, respectively.
The Bayes factor of the HPP vs the NHPP is given by

BF =

∫
L(β, 0)Π(dβ)∫

L(β, γ)Π(dβ)Π(dγ)

=

{∫ n∏

i=1

1

1 + γ/ti

1

[1− γ log (1 + y/γ) /(b+ y)]
a+nΠ(dγ)

}−1 (2)

after integrating with respect to the distribution on β.
We now compute upper and lower bounds on the Bayes factor (2); they

are achieved (see [30]) when considering two-point distributions (1/2)δθ1 +
(1/2)δθ2 , with θ1 ≤ θm ≤ θ2. Bounds are considered in a sensitivity analysis
to check if the preference for a model, as measured by the Bayes factor, is not
affected by the choice of the prior in Γ .

As a further illustration of sensitivity analysis, consider the estimation of
the parameters in the NHPP. Under a squared loss function, the (optimal)
Bayesian estimators are given by the posterior means, which, in our case,
correspond to

Eβ|d =
(a+ n)

∫ ∏n
i=1 {1 + γ/ti}−1 {b+ y − γ log (1 + y/γ)}−a−n−1

Π(dγ)∫ ∏n
i=1 {1 + γ/ti}−1 {b+ y − γ log (1 + y/γ)}−a−nΠ(dγ)

and

Eγ|d =

∫
γ
∏n
i=1 {1 + γ/ti}−1 {b+ y − γ log (1 + y/γ)}−a−nΠ(dγ)∫ ∏n
i=1 {1 + γ/ti}−1 {b+ y − γ log (1 + y/γ)}−a−nΠ(dγ)

.

Upper and lower bounds for the three sets are given in Table 4.
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Table 4. Lower and Upper Bounds; a = 1, b = 1

Corrosion Bayes Factor Eβ|d Eγ|d
Galvanic (0.6788, 0.8174) (0.5948, 1.0958) (0.5913, 8.0836)
Natural (0.2495, 0.5428) (0.8704, 2.4025) (0.7096, 22.6397)
Stray Currents (1.9997, 13968.0225) (0.8156, 0.9970) (0.000003, 0.1612)

Observe that there is a slight preference for the NHPP for galvanic and
natural corrosion data, whereas the preference for the HPP in the third case
goes from slight to very convincing. In estimating posterior means, we observe
that the ranges for the first two types of corrosion are larger than in the third
case, the less sensitive to prior changes.

Upper and lower bounds could be computed for the measure of reliability
illustrated in 3.3, as well.

5 Discussion

We have motivated and illustrated various uses of NHPP’s in the analysis of
the reliability of repairable systems. Others are available, like the exploratory
data analysis and the intensity depending on a double scale (time and kilome-
ters) used for failures in doors of underground trains, discussed in [26]. Further
work is needed to explore properties of the various NHPP’s proposed in liter-
ature and listed by Chris McCollin (personal communication). An important
field, but still quite unexplored, is represented by the use of nonparametric
models. There is a need for tools allowing practitioners to choose among these
models, express their beliefs on parameters of interest and perform sensitivity
analysis. That is actually one of the major challenges for the future.
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interrate di acciaio di una rete per la distribuzione di gas in ambito metropoli-
tano. B.Sc. Thesis, Politecnico di Milano, Milano, 1999.

16. P. Green. Reversible jump Markov Chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82:711–732, 1995.

17. M. Guida, R. Calabria, and G. Pulcini. Bayes inference for a nonhomogeneous
Poisson process with power intensity law. IEEE Transactions on Reliability,
38:603–609, 1989.

18. J.F.C. Kingman. Poisson Processes. Oxford University Press, Oxford, 1993.
19. J. Kyparisis and N. Singpurwalla. Bayesian inference for the Weibull process

with applications to assessing software reliability growth and predicting software
failures. In L. Billard, editor, Proceedings of the 16th Computer Science and
Statistics Symposium on the Interface, pages 57–64. North-Holland, Amsterdam,
1985.

20. A.Y. Lo. Bayesian nonparametric statistical inference for Poisson point pro-
cesses. Z. Wahrsch. Verw. Gebiete, 59:55–66, 1982.

21. L. Masini. Un approccio bayesiano gerarchico nell’analisi dell’affidabilità dei
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dell’affidabilità di sistemi riparabili. B.Sc. Thesis, University of Milano, Mi-
lano, 1998.



New Schemes for Differential-Algebraic Stiff
Systems.

E. Alshina1, N. Kalitkin1, and A. Koryagina2

1 Institute for Mathematical Modelling, Russian Academy of Science, Miusskay pl.
4A, Moscow, Russia, 125047 alshina@gmx.co.uk

2 Moscow Institute of Electronic Technique koralina@mail.ru

Summary. We present new efficient schemes of Rosenbrock’s type for numerical
solution of differential-algebraic stiff systems. For these schemes, we develop an
algorithm for accuracy control.

Key words: Stiff systems, numerical methods, difference schemes, accuracy
control.

1 Introduction

In practice it is often necessary to solve differential algebraic systems or singu-
lar differential problems with a small parameter ε, which become differential-
algebraic when ε tends to zero:

� electric current in circuits is governed by differential equations together
with an algebraic Kirchhoff law

� hydrodynamic flows are described by Euler’s equation supplemented by
algebraic equations of state

� Van der Pol’s equation for non-linear oscillations in a limit case becomes
a differential algebraic system;

� the Navier-Stokes equations lose their higher derivative, when viscosity
tends to 0 and so become differential algebraic system.

In practice differential algebraic systems often are formulated in an implicit
form so that the algebraic equations cannot be explicitly separated from differ-
ential. In the most general case, such problems can be written in the following
form:

M
du

dt
= f (u, t) , (1)

where the vector-function u = {uj} , 1 ≤ j ≤ J is unknown, M is an unknown
singular matrix is unknown . If the function f in the right-hand side of this
system does not depend on the time t, then the system is called autonomic.
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All problems mentioned above are stiff, which leads to additional difficul-
ties for numerical solution. Explicit schemes are unsuitable for stiff systems.
The presence of fast varying and slowly damping components of a solution is
typical for stiff systems. The time characteristics of different physical processes
in a stiff system are varying in a wide range.

2 Accuracy control

For testing numerical methods and for practical application of numerical re-
sults, it is necessary to control accuracy. The unique known method of ac-
curacy control is the Richardson’s method from 1927. The detail review of
practical aspects of applying the Richardson’s method can be found in the
monograph [4]. In practice, this method is applied not so often and researchers
tend not to appreciate its potential possibilities. The reason is that Richard-
son offered his method only for equidistant grids. During the last 4 years our
research group [2] offered so-called quasi-equidistant grids for calculation of
initial-boundary value problems.

Use of quasi-equidistant grids in calculations allows estimation of the ac-
curacy by Richardson method. Let us carry out two calculations on neighbour
grids with number of nodes N and 2N , respectively . All nodes of the sparse
quasi-equidistant grid are identical to the even nodes of the dense grid. One
can compare two solutions in those points and estimate the accuracy by ap-
plying the following formula:

∆
(2N)
2n ≈ u

(2N)
2n − u(N)

n

2p − 1
, (2)

where u
(2N)
2n and u

(N)
n denote numerical solutions in conterminous knots of

neighbour grids, p is the effective accuracy order of the numerical method,

and ∆
(2N)
2n its numerical solution error.

The formula (2) is asymptotically exact when N → ∞. We interpret it
as a single-error correction and increase the efficient order of accuracy. The
error of the corrected numerical solution is already O (N−p−σ), where σ = 1
for non-symmetrical difference schemes and σ = 1 - for symmetrical difference
schemes. This increase of accuracy requires only few arithmetical operations
and so it is very cheap. The corrected numerical solution can be interpreted
as a calculation with scheme of accuracy order p + σ. For smooth enough
solutions, the accuracy can be increased one more time. The main idea of our
algorithms is to sequentially double the number of grid points until we reach
of an acceptable error level.
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3 Rosenbrock Schemes

According to our experience for numerical solution of pure differential stiff
systems the family of Rosenbrock schemes is very effective. Transformation to
new temporal level in Rosenbrock’s schemes requires the solution of a linear
algebraic system. Formally those schemes are implicit. However, the matrix
of this linear system is very well conditioned and can be inverted by a direct
method. So the solution of this linear system requires a finite number of before-
hand known operations. The so-called method of ε-enclosure [1] allows us to
modify those schemes for numerical solution of differential-algebraic stiff sys-
tems. The method of ε -enclosure is correct for autonomous systems only. Any
non-autonomous system can be easily transformed to the autonomous form by
introducing additional unknown function uJ+1 ≡ t. Differential equations for
this new function are easy to obtain: duJ+1/dt = 1. The dimension increase of
the system (1) leads to non-crucial increase of calculation volumes. However,
the effective accuracy order of our method is higher for systems written in
autonomic form.

The best results for differential-algebraic stiff systems in tests following
schemes are shown below.

CROS: 1-stage L2-stable scheme: this complex parameter has accuracy
O
(
N−2

)
:

û = u+ τRek; (M − ατfu) k = f (u) .

Here fu ≡ ∂f/∂u is the Jacobi matrix.
ROS2.3: 2-stage A-stable scheme with accuracy O

(
N−3

)
:

[
M − τallfu

(
u+ τ

l−1∑

m=1

clmkm

)]
kl = f

(
u+ τ

l−1∑

m=1

almkm

)
, l = 1, 2.

a11 = a22 =
(

3 +
√

3
)/

6, b1 = b2 = 1/2,c21 =
(

3−
√

3
)/

6, a21 = −1
/√

3.

CROS was constructed for first time by Rosenbrock [5]. Optimal parame-
ters for ROS2.3 for pure differential systems were obtained by Kalitkin and
Panchenko [3].

For testing our new schemes we applied them to simulations of a transistor
amplifier. The differential-algebraic system in this case in the autonomous
form is as follows:

Ue(u6)
R0

− u1

R0
+ C1 (u′2 − u′1) = 0,

Ub
R2
− u2

(
1
R1

+ 1
R2

)
+ C1 (u′1 − u′2)− 0.01f (u2 − u3) = 0,

f (u2 − u3)− u3

R3
− C2u

′
3 = 0,

Ub
R4
− u4

R4
+ C3 (u′5 − u′4)− 0.99f (u2 − u3) = 0,

− u5

R5
+ C3 (u′4 − u′5) = 0, u′6 = 1.

The dimension of the singular matrix M is 6 and the rank of M equals 4.
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Such simulation were carried out in the classical monograph [1] using the
program RADAU5. To find out the effective accuracy order of our Rosenbrock
schemes we carried out tests on embedded grids. The decrease of errors when
doubling the number of grid nodes is shown in Fig. 1 in double logarithmic
scale. Only for differential-algebraic system transformed to autonomous form
all methods realize their theoretical order of accuracy.

Fig. 1. Test on embedded grids confirm that only for differential-algebraic sys-
tems written in autonomous form Rosenbrock’s schemes realize theoretical order of
accuracy.
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Summary. It is well known that discontinuities in pipe networks give reflections
to pressure waves that can be analysed to find the time delay between the original
signal and the reflected one. A leak in a pipe will also give a reflection point, though
possibly a more diffuse one. It is a reasonably straightforward task (using, say, a cross
correlation) to measure the time delay of the first reflection, but more complicated
methods are required to extract data about further reflections from, for example,
the end of the pipe which has a leak in it.

Cepstrum techniques were used to find the common pipe lengths in the network.
Latterly, this has been used in conjunction with wavelet analysis to filter the data.
Finally, continuous wavelets are being used. These help to explain many of the
results that have previously been produced. These were conducted on both real
(experimental) and modelled networks.

Key words: Leak detection, water hammer, wavelets, cepstrum, waves in
pipes, signal analysis.

1 Introduction

The aim of this work is to use to two modern forms of signal analysis (cep-
strum and wavelet analysis) to find the position of reflection points in fluid
pipeline networks. This is of great interest to the chemical, gas and water
distribution industries to work out the state of the system and also for mon-
itoring for leaks and blockages. The basic premise is to use water hammer
to create waves, which propagate round the system. It is possible to capture
the wave, and reflections of the wave, using a single sampling point. By us-
ing a cepstrum analysis, the characteristic lengths between junctions can be
extracted. Comparing these lengths with those found in the original system
will show the position of the new reflection point, and hence allow corrective
action to be initiated.

As waves bounce around a pipe network system, they encounter features
such as local changes in section, resistances, and junctions where three or more
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pipes join. At each of these features, three effects occur to the incident wave.
These are: reflection where some of the wave is reflected back down the pipe,
absorption where the amplitude of the transmitted wave is decreased due to
the feature, and transmission, where the wave continues down the other pipes
in the junction.

A fuller description of waves in pipes and the modelling techniques em-
ployed by the authors can be found in [1].

The work described in the present paper represents a continuation of the
investigations and modelling due to Beck and various colleagues [3] and [2] who
described a technique whereby the features of a pipe network were detected by
use of an artificially generated pressure wave and a single pressure transducer.
Two other recent pieces of work on the same general subject can be found in
[4] and [5]

2 Theory

A wavelet transform decomposes a signal into a variety of different waves,
centred around different frequencies. A full description of these can be found
in [6]. The continuous wavelet transform form is described as:

WΨ [x (t)] = WΨ (a, b) =
1√
a

∫ +∞

−∞
xm (t)Ψ?

(
t− b
a

)
, (1)

where b is the translation indicating locality, a is the dilation or scale param-
eter and WΨ is the analyzing or mother wavelet, with Ψ ? being its complex
conjugate.

The sum of all the wavelet levels is equal to the original signal, so:

x (t) =
∑

m

xm (t) . (2)

Cepstrum analysis is the name given to a range of techniques all involving
functions which can be considered as a s“”spectrum of a logarithmic spec-
trum”. It was proposed as a better alternative to the autocorrelation function
for the detection of echoes in seismic signals. The definition of the complex
cepstrum is [7]:

CA = F−1 (logA{f}) , (3)

where A(f) is the complex spectrum of a(t) and can be represented by

A{f} = F{a(t)} = AR + JAI{f}. (4)

The cepstrum analysis has the ability to detect periodic structures in the
logarithmic spectrum, for example families of harmonics and/or sidebands
with uniform spacing. Another of the cepstrum effects is that it is capable of
identifying the presence of echoes. The power of this technique even extends
to reflections that are not perfect copies of the original signal. It is thus ideal
for extracting information on the time delay between the creation of a wave
and the receiving of an echo in pipe network systems.
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3 Experiment

A simple T-shaped network was set out in the laboratory as shown in Fig. 1.
The solenoid valve was opened and shut with a signal generator, and the

Fig. 1. Diagram of network

signals were acquired using a pressure transducer attached to a signal analyser.

4 Comparison between theory and experiment

First we shall look at the continuous wavelet transform of the theoretical
(ideal) pressure history shown in Fig. 2.

Fig. 2. Continuous wavelet of modelled network.

The light vertical lines on this show the discontinuities in the original
signal. The expected time delays are identified with triangles. It will be seen
that the discontinuities and the time delays tie up very well.

However, when the same analysis is applied to the experimental signal
(Fig. 3), it will be seen that the expected results do not agree with the lengths
in the network. This is due to the the wave spreading out due to dispersion.
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Fig. 3. Continuous wavelet of experimental network.

The reflected wave is different to the created one which means that the char-
acteristic frequency of the wavelet is constantly decreasing, making it difficult
to track.

When the cepstrum analysis was applied to the experimental signal, the
reflection points were extracted as shown in Fig. 4. When the main reflection

Fig. 4. Cepstrum of experimental network.

points are identified and compared with the measured lengths (table 1), it will
be seen that the predicted and analysed lengths agree very well.

Table 1. Experimental and predicted pipe lengths from cepstrum analysis.

Analysed time (s) Analysed length (m) Twice measured distance (m) Accuracy %

0.04995 16.996 17.00 99.98
0.05595 19.023 19.24 98.87
0.09275 31.535 31.40 99.57
0.11515 39.151 39.00 99.61
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5 Conclusions

The results from the show that wavelet analysis, without extensive modifica-
tion, is unsuitable for finding features in pipeline networks.

It will be seen that the cepstrum analysis method is capable of extracting
useful information from real experimental networks with an extremely high
degree of accuracy.

Further work is ongoing to improve the method and test it on more com-
plicated and longer circuits using a variety of fluids.

Acknowledgement. The Authors would like to thank Mr Simon Wiles for his help
with the experimental work and Dr A Tijsseling for his encouragement.
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Summary. In this paper we compare several different strategies for robust design
when the experiment is carried out via a computer simulator.

Key words: robust design, computer experiments.

1 Introduction

Competitive products must meet strict standards for quality and reliability.
Robust design experiments are an important quality engineering tool for de-
veloping low-cost, yet high quality products and processes. The name “robust
design” derives from the idea of making products insensitive, or “robust”, to
the effects of natural variations, thereby reducing variation. Robust design was
pioneered by [11] in Japan and has been embraced by many engineers around
the world in the last 20 years. See [9] for detail on robust design and relevant
chapters in [5] for background on design of experiments, robust design and
reliability analysis. In this paper we compare several different strategies for
robust design when the experiment is carried out via a computer simulator.
In these experiments, many different levels can be assigned to each factor and
(ignoring numerical issues) running the simulator at the same set of inputs
gives the same output. See [1, 6, 7] for background and insight on the sta-
tistical aspects of computer experiments. The next section provides details
of the simulation model that will be used throughout the paper. The follow-
ing sections include a description of the methods and details of the results
achieved with each method. We then compare the methods for a particular
robust design task.
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2 The Piston Simulator

We analyze a simulator of a piston developed by [5]. The response variable is
cycle time of a complete revolution of the piston’s shaft. The piston’s perfor-
mance can be regulated by changing seven control factors: A) Piston weight,
B) Piston surface area, C) Initial gas volume, D) Spring coefficient, E) At-
mospheric pressure, F) Ambient temperature and G) Filling gas temperature.
Each factor is constrained to lie within a stated range. For given factor set-
tings, the cycle time is computed deterministically. However, the ability to
set each factor to a nominal level is limited and normally distributed vari-
ations of the seven control factors about their nominal values are used to
induce randomness in cycle times (see [5]). This mechanism for randomness
is quite different from that used in simulations of stochastic phenomena such
as queueing networks.

3 Robustness Strategies

In this section we briefly describe several alternative methods that have been
proposed for achieving robust design. We will denote the k inputs to the sim-
ulator by X1, . . . , Xk and will focus on a single output Y . Some of the inputs
will be controllable factors (e.g., the thickness of an auto bumper or the mate-
rial from which it is made) whereas other factors may be uncontrollable (e.g.,
the angle of impact with a crash barrier). The goal of the robustness strate-
gies is to find nominal settings of the controllable input factors for which a
desired output distribution is obtained. The output goal is often to achieve a
given mean value with minimal variance. Taguchi’s strategy for robust design
experimentation is to include both design (controllable) factors and noise fac-
tors, which represent either uncontrollable factors or tolerances of controllable
factors about their nominal levels. Separate orthogonal arrays for the design
factors and noise factors are combined to form a crossed-array design. The
data are analyzed by computing signal-to-noise (SN) ratios that summarize
the results at each control factor setting. Data from a crossed-array experi-
ment can also be analyzed by the response model approach, which uses main
effects for the noise factors and interactions between design factors and noise
factors to study variation ([8, 10]). The dual response surface approach [12]
provides a direct way to assess jointly how the mean value and dispersion
of Y depend on the design factors. An experimental plan is prepared for the
design factors only. Replicate measurements are generated from the simulator
at each design point and are summarized by their average and a measure of
spread. [12] recommended a crossed-array design to obtain the replicates, but
noted that they could also be sampled at random from distributions that are
specified for the noise factors. Finally statistical models are built to relate
the average and the measure of spread to the design factors. The stochastic
emulator approach is based on the idea of replacing the original simulator,
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which may be expensive to evaluate, by a fast empirical surrogate, known as
an emulator. The first step in this approach is to model the dependence of the
output Y on the full set of input values, whether or not they are controllable,
to produce an emulator Ŷ (X1, . . . , Xk). Subsequent investigation uses the em-
ulator to generate output rather than the simulator. The output distribution
for any set of factor values can be approximated by sampling values for the
noise factors and evaluating the emulator rather than the actual simulator.
The final step involves choosing a feature of the output distribution, called
the stochastic response, that represents the required robustness criteria. The
rationale for the stochastic emulator approach is that complex simulators may
take considerable time and computing resources to generate even a single out-
put value. Thus the project sample size is determined by computing resources.
The Stochastic Emulator approach has the potential advantage of devoting
all of the computing resources to studying how the simulator output depends
on the input factors. The first step is to run an experiment using all the input
factors. Research to date has recommended “space filling” designs like Latin
Hypercube Sampling (LHS) designs or lattice designs. See [7, 1, 4] for more
detail on designs. The emulator can be of any model type such as kriging
estimators [7], radial basis functions [3] or polynomial functions [2].

4 Comparison Of Robustness Strategies on the Piston

We applied the various robust design methods outlined above to the piston
simulator. We purposely used designs with the same number of function calls
for each method, in line with our comment that computing resources should
dictate experiment size. The objective in all cases was to achieve a mean cycle
time of 0.20 seconds while minimizing SD. Table 1 presents recommended fac-
tor settings derived from each of the analysis methods along with the results
of 1000 actual simulator runs at those conditions. We begin with a brief expla-
nation of how the recommended settings were obtained. The Taguchi analysis
indicated that setting the surface area (B) to a high value is beneficial for
both the SD and mean responses and setting the ambient temperature (F)
to its highest value reduces variation and has almost no effect on the mean.
Increasing the initial gas volume (C) to its highest value also reduces variation
but moves the mean well above 0.2. A small amount of trial and error shows
that setting C to 0.0044 achieves an estimated mean of about 0.2. The rec-
ommendations from the response model analysis for reducing variation were
to set factors B, C and D, which have the strongest effects on cycle time, to
high values. However, to achieve the desired average cycle time of 0.2 sec-
onds, it was necessary to adopt a lower nominal value for C. The response
model analysis did not find any important effect for F, which was set arbi-
trarily to its mid-range. The dual response surface designs, with replicates
sampled at random from the noise distributions, were less successful than the
cross-product design of the first two analyses in identifying factor settings
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that provide a mean value of 0.20 with a small SD. The analysis of the 27−3

design favoured high settings for B, which reduce both the mean value and
the SD. As no other effects were found on the SD, the remaining factors could
be set to adjust the mean to the target value. Table 1 shows three possible
solutions, each based on using factors C and D, to adjust the mean. All of the
proposed solutions have means that are more than one SD above the target
value. In addition, the SD’s are about 25% larger than those achieved in the
other analyses. For the 32-run LHS design, we used kriging models for the
mean and SD as inputs to an optimizer, with the goal of minimizing the SD
subject to maintaining the mean at 0.20. The resulting solution is shown in
Table 1. Although these factor settings had excellent predicted performance
(based on the kriging models), their actual performance is not good, with the
mean more than 2.5 SDs off target. The stochastic emulator used a 64-point
LHS design to build the emulator from simulator results. Monte Carlo analysis
of the emulator was then used to estimate the response distribution at input
factor values, using a 128-point LHS design to cover the factor space with 200
point samples from the noise distributions at each LHS point. New stochastic
emulators were then built to predict the mean and SD. A constrained opti-
mization was then performed, minimizing the stochastic emulator of the SD,
while requiring that the emulator of the mean satisfy the constraint of equality
to 0.2. The recommended factor settings and the results from actually running
the simulator are shown in Table 1.

Table 1. Results for all methods for the problem of minimizing cycle time standard
deviation about a target mean value of 0.2 seconds.

A B C D E F G Mean
Std.
Dev.

Taguchi 30.3 0.017 0.00440 4850 100,000 295.6 350.0 0.204 0.0106

Response 30.3 0.017 0.00440 4850 100,000 293.0 350.0 0.204 0.0110
Model

Dual 45.0 0.017 0.00275 3426 100,000 293.0 350.0 0.218 0.0137

Response 45.0 0.017 0.00488 4850 100,000 293.0 350.0 0.263 0.0137

27−3 45.0 0.017 0.00382 4138 100,000 293.0 350.0 0.242 0.0132

Dual
Response 34.5 0.014 0.00346 4245 109,700 294.6 355.9 0.230 0.0154

LHS

Stochastic 30.3 0.017 0.00359 3924 101,610 294.5 340.4 0.199 0.0107
Emulator I

For the piston example, the Taguchi method, the response model analy-
sis and the stochastic emulator all provided better solutions than the dual
response method. In particular, they did a much better job of keeping the
mean cycle time on target. The dual response surface methods estimate the
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mean value at a given design point by taking a small sample of results from
the noise distributions for the input factors. Our analysis suggests that small
random samples do not provide sufficiently precise estimates of the mean cycle
time. The stochastic emulator has the advantage of modelling the simulator
directly from function evaluations and produced an excellent robust design
solution for our trial problem. The results highlight the need to consider how
best to allocate resources when conducting computer experiments. Our results
with the stochastic emulator approach indicate that this may be an efficient
method for reducing the number of simulations in a robust design study.
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Summary. We consider oil-water flow in porous media, with a dynamic capillary
pressure relation. This leads to a pseudo-parabolic degenerate regularisation of the
Buckley-Leverett (BL) equation. It is known that linear pseudo-parabolic regularisa-
tions of BL lead to shock solutions that do not satisfy the Oleinik condition. In this
note we analyse the existence of travelling wave solutions that violate the Oleinik
condition, taking special care of the degeneracy of the problem.

Key words: Buckley-Leverett equation, dynamic capillary pressure, non-
classical shocks, degenerate diffusion

1 Introduction

In this paper we study travelling wave solutions of equation

0 =
∂u

∂t
+

∂

∂x

{
f(u) +NcH(u)

∂

∂x

(
pc(u)− Lc

Nc

∂u

∂t

)}
. (1)

Equation (1) is written in dimensionless form, and arises in two-phase flow in
porous media as a model of oil recovery by water-drive in a one-dimensional
horizontal flow, with a dynamic capillary pressure relation. In this context,
the unknown u stands for water saturation, and is expected to take values in
[0, 1]. f is the water fractional flow, and H is the capillary induced diffusion,
they are given by

f(u) =
λw(u)

λw(u) +Mλo(u)
, and H(u) = λo(u)f(u). (2)

M is the viscosity ratio, and λo and λw are the dimensionless relative perme-
abilities, which we take

λw(u) = up+1, λo(u) = (1− u)q+1, with p, q > 0. (3)
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Fig. 1. The non-linear functions f and H

Nc is the capillary number and accounts for capillary forces.
Equation (1) results from coupling conservation mass equations, and gen-

eralised Darcy’s laws for the water and the oil phases, and the pressure relation

Pc = Po − Pw, (4)

where Pw and Po are the water pressure and the oil pressure, respectively,
and Pc is the capillary pressure function. Pc is typically determined experi-
mentally as a function of the water saturation u. In equation (1), however, we
have considered the dynamical capillary pressure approach suggested by Has-
sanizadeh and Gray in [2], where the empirical capillary pressure is extended
by a relaxation term, this reads

Pc = pc(u)− Lc
∂u

∂t
. (5)

We observe that the damping term (Lc > 0) gives the mixed derivatives term
in equation (1). pc denotes the static capillary pressure, this is a positive
function that vanishes at u = 1 and that becomes unbounded at u = 0. In
this note, however we take, in dimensionless form, pc(u) = 1− u.

Equation (1) for Nc = 0 is often considered as the limit of vanishing
capillary forces. It is called Buckley-Leverett equation (BL), and is an example
of a scalar conservation law with a convex-concave flux, see Fig. 1(a). Equation
(1) for Lc = 0, is a non-linear degenerate diffusion equation, with double
degeneracy; the diffusivity H vanishes at u = 0 and at u = 1, see Fig. 1(b).
This property implies the existence of fronts, i.e. lines on the (x, t)-plane
separating the regions where u = 0 (oil region), where 1 < u < 0 (both fluid
present) and where u = 1 (water region).

Coming back to BL, it is well-known that solutions to the Riemann pro-
blem are constructed according to the Oleinik condition (cf. [5]); for admissible
shock solutions this reads
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f(u)− f(ul)

u− ul
≥ s (6)

where s is the shock speed, given by the Rankine-Hugoniot condition

s =
f(ur)− f(ul)

ur − ul
, (7)

and ul and ur denote the left and right values aside the shock. When a con-
servation law with a non convex flux, such as the BL equation, is regularised
by a diffusion term, with diffusion coefficient ε, say, the condition (7) en-
sures the existence of travelling wave solutions connecting the level ul as
η := (x − st)/ε → −∞ to the level ur as η → ∞. Other regularisations,
however, are possible. For instance, diffusive-dispersive regularisations, where
the dispersive term consists of a third-order in space term. These give rise to
shock solutions violating the condition (6), see for instance [3]. Also for the
following linear pseudo-parabolic regularisation of BL

∂u

∂t
+
∂f(u)

∂x
= ε

∂2u

∂x2
+ δ

∂3u

∂x2∂t
, (8)

travelling wave solutions giving rise to non-classical shocks exist in the regime
δ = O(ε2), see van Duijn et al. [6].

In this work we analyse existence of travelling wave solutions of (1) violat-
ing (6), in the regime Lc = O(N2

c ), where now the regularisation is non-linear
and degenerate; special care of fronts is therefore taken.

2 Travelling waves

We introduce the travelling coordinate η = (x − st)/Nc, and the parameter
τ = Lc/N

2
c . The travelling wave equation reads

−su′ +
{
f(u) +H(u) ((1− u) + sτu′)

′
}′

= 0, (9)

we look for solutions such that

u(+∞) = ur = 0, u(−∞) = ul, with 0 < ul ≤ 1. (10)

We are interested in the cases where ul > α, with α such that f ′(α) = f(α)/α,
see Fig. 1(a), i.e. a travelling wave connecting 0 to such ul’s violates condition
(6).

We integrate (9), use the boundary conditions (10), divide by H(u), and
introduce the new unknown w(u) = −u′(η(u)). After these manipulations
equation (9) becomes

sτw
dw

du
+ w = g(u) in (0, ul). (11)
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where s is given by (7), and g(u) := F (u)
H(u) with F (u) := su− f(u).

In terms of w, we seek solutions of (11) such that

w(u) > 0 for u ∈ (0, ul), (12)

w → 0 as u→ 0+ and u→ u−l . (13)

We can see equation (11) as a dynamical system in the (u,w)-plane. The zeros
of g give the critical points in the (u,w)-plane. For ul > α, F has three zeros,
u = 0, u = um and u = ul, with 0 < um < ul. ul is a zero of g only if ul < 1,
in this case the corresponding critical point (0, ul) is a saddle point whenever
ul 6= α. um is always a zero of g, and (0, um) is a sink, except if ul = um = α,
in that case it is a saddle-node. Due to the degeneracy of the equation, the
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(b) g(u) for ul = 1.

Fig. 2. The isocline g in the (u,w)-plane.

points (0, 0) and (0, 1) (when ul = 1) are not critical points of (11) (g blows
up at u = 0 and u = ul = 1, see Fig. 2). Thefore the condition (10) will be
fulfilled at finite values of η, i.e. solutions have fronts.

The power laws (3) play a crucial role in the construction of travelling
waves; we namely have the following non-existence result.

Theorem 1 (non-existence). If p ≥ 1 or q ≥ 1 solutions of (11) satisfying
(12) and (13) cannot be constructed. Moreover, if p, q < 1,

0 <

∫ ul

0

g(y)dy <∞ (14)

is a necessary condition for existence.

The proof of the first statement is based on the integrability of the function g,
by noticing that g(u) ∼ up as u→ 0+, and g(u) ∼ −(1− u)q as u→ 1− (for
ul = 1). The second statement holds by integration of equation (11) using the
conditions (12) and (13), since this implies

∫ ul
0
g(y)dy =

∫ ul
0
w(y)dy. Finally,

condition (12) implies the statement.
We are ready to state our existence result
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Theorem 2 (existence). If p, q < 1 and (14) holds, then

(i) For ul = α there exists a τ∗ such that for all τ ≤ τ∗ there exists a solution
wτ of (11) satisfying (12) and (13).

(ii) For ul = 1 there exists a τ ∗ for which (11) has a solution satisfying (12)
and (13).

(iii) For each ul ∈ (α, 1) there exist a unique τ ∈ (τ∗, τ∗) such that (11) has a
solution satisfying (12) and (13).

To prove this theorem, it is first necessary to prove local existence of solutions
of (11) that satisfy w → 0 as u→ 0. This is achieved by a local transformation
of equation (11) that brings the point (0, 0) of the (u,w)-plane to a saddle-
point in the transformed equation; its unstable manifold corresponds to the
desired orbit w. The rest of the proof uses continuity on the parameter τ ,
and the fact that orbits are ordered with respect to τ in different regions
of the phase-plane. The nature of the point (0, ul) determines whether the
connection is possible for a unique value of τ (ul 6= α) or not (ul = um = α,
saddle-node case).

Remark 1. The conditions (13) are restrictive. In terms of u, these give front
solutions with u′ = 0 at the front. However, front solutions with u′ 6= 0 are
also possible. These generic fronts were encountered by Hulshof and King in
[4], and by Cuesta et al. in [1], in the unsaturated flow case. In the latter a
rigorous lifting regularisation argument serves to select the smoothest fronts
(u′ = 0) as the relevant ones. Based on these results, we have restricted our
attention to the smoothest fronts only.
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Summary. Electronic products tend to be economically outdated before their tech-
nical end-of-life has been reached. The ability to analyze and predict the (remaining)
technical life of a product would make it possible either to re-use sub-assemblies
in the manufacture process of new products, or to design products for which the
technical and economical life match. This requires models to predict and monitor
performance degradation profiles. In this paper we report on designed experiments
to obtain such models. We show how wavelet analysis can be used to extract features
from electrical signals. These features are analyzed using the Analysis of Variance
in order to establish relations between these features and performance degradation.

Key words: Signature analysis, wavelet analysis, Analysis of Variance.

1 Introduction

Nowadays, the economical life of electronic products tends to be shorter than
their technical end-of-life as a result of the fast evolution of electronics and
related software. As a consequence a high amount of waste ends up in land-
fill sites. New EU legislation addresses the implication of producers for the
recycling and disposal of their products. A reliable monitoring system would
allow prediction of components performance and re-use. Therefore, Flextron-
ics Netherlands, EURANDOM and the Eindhoven University of Technology
decided to joint a project to develop methods to predict performance rather
than failures of electrical appliances. These methods should be used to mon-
itor products and assess the re-use of components. Signature analysis is the
general name for condition monitoring using electrical signals (cf. [1]).

In this paper we describe an experiments performed on the submodule
Main Tray to obtain degradation profiles. We cannot directly use Analysis
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of Variance (ANOVA) to analyse the experiments, because the response vari-
able is a time series of approximately one million observations. We show how
wavelet analysis can be used to extract features from these signals. ANOVA
is then applied to suitable maxima of wavelet coefficients over different scales,
in order to determine which factors influence dominant features of the signal.

This paper is organized as follows. In Section 2 we describe the experi-
mental setup. Section 3 contains the details of our multiscale approaches. We
finish the report in Section 4 with some conclusions and recommendations for
future work.

2 Experimental Setup

In this paper we perform an analysis of one of the parts of the finisher module:
the stapler motor. The stapler motor stitches three staples in each piece of
paper (for full details we refer to [3]).

2.1 Main Tray Experiment

The experiment on the main tray is a replicated 27−3 fractional screening
experiment with “centre points” (Table 1 contains the settings of the factors
and the choice we made for the middle settings of the qualitative factors).
The factors are based on an Failure Modes and Effects Analysis (FMEA).
The goal of the experiment is to identify the influence of these factors on the
features extracted from the current signals. The results of this experiment will
be input for further tests to obtain precise functional relationships. The final
result is a monitoring scheme for the dominant parameters.

Table 1. Factors and their settings in fractional factorial screening experiment.

Factor −1 Level 0 Level 1 Level

Supply voltage 24 Vdc 22 24 26
Stapler set size 5 27 50
Feed rolls load low low high
PWBA modification mod I mod I mod II
PWBA temperature (oC) 20 40 60
Supply voltage 5 Vdc 4.5 5.0 5.5
Belt tension low low high

2.2 Measurements and Feature Extraction

During the experiment the current consumption of the stapler motor was
measured per run in the experiment. Classical multivariate analysis cannot
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be performed with signals as a response variables because the signal consists
of approximately one million observations. Instead we are looking for features
in the signals. The first peak of the current signal corresponds to the action
spring load, at this point the stapler anvil goes down against the paper before
stitching itself. A high current consumption indicates a deterioration of the
sub-module. Therefore, we used the maximum amplitude of the first peak of
the current signal as a feature. Direct manual extraction of the features is time
consuming and inaccurate. Since the nature of the information contained in
the signals is local (e.g., a peak) we prefer wavelet analysis over time series to
get reliable features. Figure 1 shows the current signal of the stapler motor.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1000

−800

−600

−400

−200

0

200

400

600

800

Time (seconds)

Cu
rre

nt
 (m

A)

Spring load 

Fig. 1. Current signal of the stapler motor and spring load peak

3 Wavelet Approach for Analysis of Stapler Motor Data

We have chosen wavelet analysis because it enables the analysis of localized
areas of a larger signal [2]. By means of wavelet analysis we first simplify the
description of a signal in terms of a small number of wavelet coefficients, and
afterwards use them as features to perform the Analysis of Variance. Since
we get too many significant coefficients, we extract the maximum amplitude
of the first peak current with a more accurate methodology than the manual
extraction in order to improve the results. In the following we present the
results of two wavelet approaches.

3.1 Approach 1: Rough Denoising - Extracting the Features
Using A6

Rough denoising consists of decomposing the signal at several levels, removing
all high-frequency components at each level, and then reconstruct the signal.
Afterwards, we obtain a smooth signal and we extract the maximum of the
first peak. At the 6th approximation level, A6, almost no noise is present
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and it still keeps the main features of the signal visualizing the strength of
the wavelet analysis, see Fig. 2. Therefore, the maxima are extracted from
approximation level A6.
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Fig. 2. Reconstructed approximation at level 6

3.2 Approach 2: Extracting the Features Using the Average of
Approximation Coefficients

In this approach we calculate the wavelet coefficients in each level and we
calculate the maximum of the first peak of the coefficients at levels 4 up to 8.
Then the weighted average of the maximum of the wavelet coefficients of each
level is computed. The weights are given by 2−j/2 for levels j = 4, . . . , 8, so
the maximum of the different levels are at the same scale. Table 2 shows the
results of the ANOVA for the first peak using the features extracted manually,
the first and the second wavelet approach. We see that few factors affect
the maximum amplitude of the first peak. This is favourable for translating
this peak back to internal degradation parameters of the machine, which is
the subject of future research. Taking the average of the maximum of the
wavelet coefficients of the 5 levels we obtain the same significant factors and
interactions as with the first approach.

4 Conclusions

The experiment on the main tray was a screening experiment in which seven
factors vary systematically. Since classical multivariate analysis cannot be
performed with signals as a response variables, it was decided to extract the
maximum amplitude of of the first peak of the current signal as a feature to
perform ANOVA. We presented two wavelet-based approaches to analyse the
experiment. The first approach is based on the reconstructed approximation
at level 6 because it contains much less noise than the original signal, and
it still keeps the main characteristics of the signal. In the second approach
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Table 2. Summary of the ANOVA results for the spring load peak

Factors and interactions Manual extraction Approach 1 Approach 2

Supply voltage 24 Vdc 0.00 0.00 0.00
Number of sheets 0.28 0.00 0.00
Feed roll load 0.40 0.82 0.79
PWBA modification 0.00 0.00 0.00
PWBA temperature 0.08 0.69 0.76
Belt tension 0.01 0.65 0.60
Supply voltage 5 Vdc 0.85 0.26 0.20
Supply 24 Vdc:number of sheets 0.08 0.02 0.00
Supply 24 Vdc:feed roll load 0.47 0.73 0.41
Supply 24 Vdc:PWBA modification 0.19 0.31 0.43
Supply 24 Vdc:PWBA temperature 0.41 0.38 0.38
Number of sheets:feed roll load 0.15 0.07 0.08
Number of sheets:PWBA modification 0.79 0.10 0.96
Feed roll load:PWBA modification 0.02 0.32 0.32

Residual standard error 9.86 6.10 5.69

we use directly the wavelet coefficients at 5 levels and we average them. For
the first peak of the stapler motor, averaging the maxima of the wavelet
coefficients appears to be the best approach since the residual standard error
is the smallest, and because it considers the information from several levels of
decomposition assuring stability of the feature. Besides the reduction of the
residual standard deviation and the number of outliers, the computation time
during the wavelet analysis is negligible. Therefore, our method can be used
for on-line extraction of signal features.
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1 Introduction

We present a new robust compound step strategy for multirate time integra-
tion methods. The strategy applies to DAEs and to time-dependent PDEs as
well. We will compare this to other known strategies like Slowest First and
Fastest First and modern ones that involve some form of a compound step
integration during the process.

The circuit equations can be written as a DAE system of equations

d

dt
[q(t,x)] + j(t,x) = 0. (1)

We assume that some partition is given that distinguishes between “slow” and
“fast” varying components xS and xF . In this case (1) can be written as

d

dt
[qF (t,xF ,xS)] + jF (t,xF ,xS) = 0 (2)

d

dt
[qS(t,xF ,xS)] + jS(t,xF ,xS) = 0 (3)

Ordinary multirate time integration aims to integrate (2)–(3) to a same accu-
racy using different time-steps H and h, in which H � h. We intend to apply
the approach to mixed signal simulation in which digital and analog circuitry
are combined. The digital part often shows latent time behaviour, while the
analog part often shows time varying activity. In addition, on the digital part
less accuracy is needed than on the analog part. This gives way to combine
multirate time integration with distributed tolerances.

Because circuit simulators usually apply Backward Differentiation Formula
(BDF) methods as time integrator we will consider multirate time integration
for the most simple one, the Euler Backward method.

The Slowest First strategy integrates first (2) for xS using extrapolated
values for xF and step-size H. Next (3) is integrated repeatedly for xF using
interpolated values of xS and step-size h.
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The Fastest First strategy simply starts with (3). The first approach ben-
efits from being better suited when dealing with automatic step-size control
mechanism. However both methods have weak stability properties, due to
the extrapolation involved [2]. For this reason we were led to study implicit
methods. Interesting ones can be cast in the following General Compound
Strategy, in which q = H

h and 0 < α ≤ 1 is just a parameter: Here (4)-(7)

ALGORITHM 1 A General Compound (G.C.) Strategy

Compound phase: Solve for xn+q
S and xn+αq

F :

qF (xn+αq
F , x̂αS)− qF (xnF ,x

n
S) + αHjF (xn+αq

F , x̂αS) = 0 (4)

x̂αS − xnS − α(xn+q
S − xnS) = 0 (5)

qS(x̂αF ,x
n+q
S )− qS(xnF ,x

n
S) +HjS(x̂αF ,x

n+q
S ) = 0 (6)

x̂αF − xnF −
1

α
(xn+αq
F − xnF ) = 0 (7)

Refinement phase: Solve for xn+j+1
F (j = 0, . . . , q − 1):

qF (xn+j+1
F , x̂n+j+1

S )− qF (xn+j
F , x̂n+j

S ) + hjF (xn+j+1
S , x̂n+j+1

S ) = 0 (8)

x̂n+j+1
S − xnS +

j + 1

q
(xn+q
S − xnS) = 0 (9)

form a “Compound Step” in which xS is determined at t = tn + qh = tn +H,
together with implicitly determined xF . If α = 1, this “Compound Step” is
just the result of Euler Backward with a large step H, which is easy to imple-
ment. If α = 1

q , the solutions xn+q
S and xn+1

F are simultaneously calculated.

This option corresponds to the multirate method described in [1, 3] (but for
Runge-Kutta and Rosenbrock-Wanner methods).
Integration of (8) is the“Refinement Step” for the fast part. It uses interpo-
lated values x̂n+j+1

S as expressed in (9).
Clearly the GC step methods solve a larger system during the Compound

Step phase than in the Slowest First or the Fastest First strategies. However,
in most mixed signal applications the size of the digital parts exceeds that
of the analog part several times. The GC step methods have much better
stability properties than the Slowest First or the Fastest First strategies as
conjectured by [4] and which is proved in [5]. For instance, considering the
next two-dimensional test equation

(
ẋF
ẋS

)
=

(
a11 a12

a21 a22

)

︸ ︷︷ ︸
A

(
xF
xS

)
(10)

the following stability conditions for A are derived in [5]:
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SF GC GC (α = 1)

a11 < 0 a11 < 0 a11 < 0
a22 < 0 αa11 + a22 < 0 a11 + a22 < 0

|a12a21| < |a11a22| −a11a22 − 2αa2
11 < a12a21 −a11a22 − 2a2

11 < a12a21

a12a21 < a11a22 a12a21 < a11a22

In the sequel we assume α = 1, which is the most robust choice. We will
demonstrate that this strategy elegantly fits hierarchical circuit definition.
Furthermore, the impact of the partiton will be considered.

2 Model Problem

Using Modified Nodal Analysis, in circuit simulation applications q(t,x) =∑
e Beqe(t,B

T
e x), in which qe is a local branch function. For instance, for a

(linear) capacitor C(a, b) between nodes a and b, qe = C and Be = ea − eb,
in which ea (resp eb) is a canonical unit vector with a 1 at place a (resp.
b), and zeros elsewhere. The operators Be are defined by the topology of the
network. They do not depend on t or x. Similar results hold for the function j.
Assembly can be grouped to sub-circuits to fit hierarchical circuit definitions.
In this way

q(t,x) =
∑

s

Bsqs(t,B
T
s x)

where BT
s x selects the unknowns at the sub-circuit level and

qs(t,y) =
∑

e

Beqe(t,B
T
e y)

defines the assembly of qs inside the sub-circuit.
A simple model problem is shown in Fig. 1. With x = (V1, V2, iE , V3, V4)T ,

the functions q and j are given by

V1 V2 V3 V4R1 R2

J1 J2

R

C

Fig. 1. Simple model circuit; Fast at the left, Slow at the right
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q(t, x) =

2
66664

Cx1

0
0
0
Cx5

3
77775
, J(t, x) =

2
666664

J1(t,x1)− (x1−x2)
R1

(x1−x2)
R1

− x3

x2 − x4
(x4−x5)
R2

− x3

J2(t,x5)− (x5−x4)
R2

3
777775

(11)

The source functions Jk(t, x) may be defined by Jk(t, x) = sin(ωkt) with
ω1 � ω2. The role of iE of the short E serves to explicitly obtain the terminal
current between the fast and the slow part (the short E can be included
automatically as a “virtual” glue-elements by the simulator, see also section
3). In the refinement phase a current source can be used to define the outgoing
current of the slow part.
Several partitions Pk may be considered. Here the following are considered:

� P1: xf = [V1, V2, iE , V3] and xs = [V4].
� P2: xf = [V1, V2, iE ] and xs = [V3, V4].

If a partition P is chosen, topological matrices Bf and Bs can be defined
in the same style as before to define for instance q(t,Bsx).
The Euler Backward Compound method (α = 1) proved to be very stable
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Fig. 2. Results with Partition P1 (at the top) and Partition P2 (at the bottom).
Ri = 105, R = 10, C = 2.10−10, H = 0.16 and h = 0.032. Error(P1(V1)) ≈
Error(P2)(V1) ≈ 10−10. Error(P1(V2)) = 9.63 10−7 < Error(P2(V 4)) = 8.92 10−5
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due to the implicit extrapolation. Considering the last method more closely
for different partitions, we observe that P1 performs best. Results are shown
in Fig. 2. However, despite the less accurate results, due to the interpolation
error, partition P2 is very attractive, because it elegantly fits an existing
hierarchical evaluator: the main part of the partition is along the boundary of
the known sub-circuits S1 and S2 and thus this partition may even be given
by the user. In the algorithm S1 and S2 are treated as in ordinary transient
simulation (with their own step-size).

3 Interface treatment fitting hierarchical sub-circuits

At the interface, the partition concentrates in the “glue elements” . A more
general glue-elements is shown in Fig. 3, from which it is clear how it can be
generated. For instance, it applies to sub-circuits of which two terminals of one
are connected to the same terminal of another. Note also that the connections
between the sub-circuits are treated more symmetrically. Now each short can
measure a particular terminal current. In the glue-elements this facilitates
particular implementations for multirate integration, also when dealing with
partitions with more different multirate behaviour.

E1

E2

E3

E4

E5

Fast Slow

E1

E2

E3

J1

J2

Fast

Fig. 3. Generation and different role of glue-elements. In the compound phase (at
the left) shorts E4 and E5 allow to measure currents at the slow boundary. In the
refinement phase (at the right) these current values are used to define the current
sources J1 and J2. The boxes “fast” and “slow” can be treated as black boxes.
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Summary. The preparation of simulation models from CAD models is still a dif-
ficult task since shape changes are often required to adapt a component or a me-
chanical system to the hypotheses and specifications of the simulation task. Detail
removal or idealization operations are among the current treatments performed dur-
ing the preparation of simulation models. In this paper we introduce the concept
of simplification features, which allows a user to improve the efficiency of the anal-
ysis model generation process. As a result, form feature semantics and simulation
data are attached to a polyhedral model during the preparation phase to ease the
Finite Element(FE) details identification and removal as well as to maintain the
consistency between a CAD model and its associated F.E models.

Key words: Simplification features, details feature, CAD/FEA link, consis-
tency, F.E. model preparation.

1 Introduction

Currently, a CAD system contains only a part of the information required
for structural analysis, namely, geometricl data. To generate a FE model, the
CAD geometry needs to be adapted to fit the hypotheses of the mechani-
cal models needed. Additional information about boundary conditions is also
required. This task cannot be performed on the basis of a geometric model
only [1, 2] but thus require also engineering knowledge [3]. Therefore, a di-
rect automatic transition from a CAD model to a finite element model is not
feasible[6]. To increase the efficiency of the preparation phase of analysis mod-
els, it is desirable to create robust links among the various models generated
for a given simulation. This paper proposes a model preparation process for
structural analysis using feature information. This process is the basis of our
proposal and directly contributes to improve the details’ identification and re-
moval steps on a polyhedral model. The paper is organized as follows. Section
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2 addresses the process of simulation model generation without form feature
information. Sections 3 introduces the advantages gained by using feature in-
formation for the FE model generation and consistency preservation between
CAD and FE models.

2 Analysis model preparation

CAD and Finite Element Analysis (FEA) are two significantly different dis-
ciplines, therefore they require considerably different object model represen-
tations, that is to say a series of models (Fig. 1). The first model of the
chain is the case of study, which depicts the design results available at a time
(see Fig. 1a). At this point, mechanical hypotheses, simulation objectives,
are inserted to generate the domain of study compatible with the simulation
requirements [3, 5]. The second model of the chain is the polyhedral model

Fig. 1. The workflow of the analysis model generation: (a) case of study, (b) tessel-
lated model, (c) envelope around the polyhedron, i.e. FE map of sizes, (d) adapted
model (simulation model), (e) polyhedral model with boundary conditions, (f) trans-
fert of boundary conditions on the adapted model, (g) mesh of the adapted model,
(h) analysis result.

generated by the tessellation process [6], this model represents the first step
towards CAD/FEM integration (Fig. 1b). The third model of the preparation
chain is the adapted model (Fig. 1d) generated by the simplification process
according to the simulation objectives. The mechanical concept used to iden-
tify the shape details is the map of FE sizes specified by the user for the
planned FE mesh since FE size states the distribution of strain energy (for
example) in the structure for a given load configuration (Fig. 1c). Accord-
ing to the type of modifications that must be carried out on the polyhedral
model to remove details, three classes categorised the details and their asso-
ciated operators [3]: skin details, topological details, and abstraction details.
Skin details designate those details that can be removed by performing only
continuous transformations like deforming a clay model. Topological details
designate those ones affecting the genus of the object, like holes, that cannot
be removed by continuously deforming the object surface. Abstraction details
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refer to those areas of the object that can be idealized by using 2D or 1D
geometry through a reduction of the manifold dimension.

3 Exploiting feature attributes for FE model preparation

Having the objective of ensuring a robust link between CAD and simulation
models, our approach intends to exploit all the information available in the
CAD environment. Considering the fact that design by features is now largely
adopted in the modeling phase, such information includes not only the sur-
face topological description but also form feature data (blind holes, through
holes,...). This has the advantage of:

� Reducing the complexity of the detail identification by allowing a reasoning
directly on a set of geometric elements belonging to a specific feature
instead of the low level elements only, i.e. vertices of a polyhedral model [3].
A feature brings high level information either to complement or supersede
polyhedral model data structures,

� Tracking shape topology changes during the simplification process, using
the concept of HLT (High Level Topology) [4], which makes it possible to
take into account physical attributes attached to the case of study (BC’s,
materials,...) as well as form features or B-Rep CAD topology parameters
to describe how the component is initially modelled. All the attributes
attached to the CAD model are propagated to the polyhedral model. This
allows a better monitoring of the model preparation and also the identifi-
cation and characterization of the shape changes during the simplification
process.

3.1 Simplification features

In our context, we define a simplification feature as a form feature whose re-
moval does not affect the analysis results. The criteria specifying which form
features are also simplification features are based on the FE map of sizes
expressed a priori by the user. Therefore, being a simplification feature is
governed by the mechanical configuration under evaluation, represented by
this map of sizes. Then, a feature defined on the polyhedron model represents
a simplification feature if it can be considered a detail if and only if the map
of sizes associated to the feature fully contains it (Fig. 2d). As such, a simpli-
fication feature aggregates geometric as well as mechanical data through:

� at least, a connected set F of geometric elements forming one or more form
features, and possibly parts of features which are adjacent to them in the
feature graph,

� a set of mechanical data characterised at least by a map of FE sizes to
reflect, a priori, the user’s view of the discretization of the structure in
accordance to the objectives of the simulation.
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Fig. 2. The concept of simplification features: (a) initial CAD model(B-Rep), (b)
polyhedral model, (c) small map of FE sizes attached to (b), (d) simplification result
of (c), (e) large map of FE sizes attached to (b), (f) simplification result of (e)

3.2 Detail feature categories

The categories of details listed at the end of Section 2 are based mainly on the
effects that their elimination has on the object topology. Their corresponding
removal operators are only exploiting the geometry of the polyhedral model
thus requiring several simplification loops for the removal of entities corre-
sponding to a single simplification feature. Taking advantage of the CAD
model information, such operations could be done in a single step. The same
categorization adopted for details can be used for the simplification features.
In our current development, two main categories can be considered: skin,
topological simplification features. The first category includes features such
as fillets, blends and chamfers that can be compared to skin details. For such
kind of features, the high level information concerning the primitive surfaces
of the adjacent B-Rep faces is clearly the critical information to characterize
the removal operation. For example in Fig. 2, two possible removal operations
associated to the surface simplification feature corresponding to a fillet are
shown. The first is obtained by the extension of the adjacent faces forming a
90◦ angle (Fig. 2f), the other by the substitution of the fillet with one planar
face (Fig. 2d). In both cases the new configuration to be applicable must be
inside the given map of FE sizes. These two configurations are useful comple-
ments to the skin detail operator since they can provide a means to better
guide the shape adaptation process according to the user preferences. The
second category includes those features changing the topology of the object
or of the face to which they are applied (e.g. blind and through holes). In
this case a form feature is considered a detail feature if and only if its virtual
volume is fully contained in the map of sizes, this guarantees that there is no
difference with the analysis in considering the corresponding region as con-
taining material. Knowing that, its removal can occur in a single operation by
removing the set of polyhedral faces belonging the form features and filling
the opening on the remaining polyhedron.

4 Conclusion

In this paper an FE model preparation process has been described that ex-
ploits the various information accessible in the CAD object description. It
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represents a first step towards semantic driven integrated product develop-
ment systems. The concept of simplification feature has been proposed as
semantic entities guiding the simplification process. They allow taking advan-
tage of the form feature information, which are commonly available in most
advanced CAD systems or obtainable through recognition processes. A clas-
sification of the simplification features has been provided to form the basis
for the development of the related simplification operators. To ensure a ro-
bust link between CAD and simulation models in our approach we combine
mechanical and CAD data in an attributed representation for improving the
efficiency of FE model preparation. Our future work will focus on the re-
alization of the mechanism on the attribute structure for tracing the CAD
and mechanical semantics through all the simplification process. It will also
include the specification and development of the removal operators for the
identified simplification features.
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Summary. The effects of discretisation parameters on the performance of a space-
time VMS FEM are investigated. A moving-wave solution of the one-dimensional
viscous Burgers equation is used to limit the influence of SGS modelling errors.
Factors influencing the magnitude of the implicit SGS model are discussed.

Key words: Variational multiscale, space-time finite elements, large-eddy
simulation.

1 Introduction

Variational-multiscale (VMS) discretisations [4], show promise for applica-
tion to large-eddy simulations (LES) due to their consistency with the gov-
erning equations at large scales, and their consistent treatment of scale
separation near boundaries. When combined with a finite-element method
(FEM) [1], VMS discretisations can also be applied to complex domains. Time-
discontinuous space-time FEM are particularly advantageous in this regard,
as they naturally incorporate mesh movement, and allow arbitrary re-meshing
from one time step to the next [3].

To account for the effects of unresolved scales, VMS methods normally em-
ploy a physical subgrid-scale (SGS) model. Like all discretisation techniques,
however, VMS discretisations introduce errors which are greatest in magni-
tude for the smallest resolved scales. These result in an implicit SGS model,
which competes with the physical SGS model in the description of the effects
of the unresolved scales.

This paper examines the performance of a space-time VMS FEM dis-
cretisation using a test case for the Burgers equation with minimal model
calibration errors. The effects of discretisation parameters on the behaviour
of the implicit SGS model is investigated.
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2 Discretisation

For a space-continuous, time-discontinuous Galerkin discretisation on a space-
periodic domain, the viscous Burgers equation may be represented as:

B(w, u) = (w, ut + uux − νuxx − f)Q = 0 (1)

= −(wt, u)Q − (wx,
u2

2
− νux)Q − (w, f)Q

+(w, u−)Ωn+1 − (w, u+)Ωn + (w, (u+ − u−))Ωn (2)

Here ( , )Q represents the L2 inner product on the space-time domain, while
( , )Ωn and ( , )Ωn+1 are the L2 inner products on the boundary of the domain
at times t = tn and t = tn+1. The solution is advanced in time by solving
a sequence of space-time domains with thickness ∆t = tn+1 − tn (slabs),
with the Ωn+1 boundary of each slab providing the initial condition for the
following slabs. The initial condition is imposed weakly, using the last term
in (2), with u+ − u− being the jump in solution across the Ωn boundary (see
[3] for details).

The discretisation is implemented as a VMS method by employing a hi-
erarchical basis, and interpreting its components in terms of large and small
scales [4, 1]. Here the hierarchical basis consists of the standard bilinear func-
tions supplemented with r Legendre polynomials in space. From the argument
of scale separation, it is assumed that the unresolved scales have negligible
influence on the large resolved scales. In contrast, the effects of the unresolved
scales on the small resolved scales are represented by an additional physical
SGS model, M . The large- and small-scale equations are then:

B(w̄, ū) = −B(w̄, u′) + (w̄x, (ūu
′))Q (3)

B(w′, u′) = −B(w′, ū) + (w′x, (ūu
′))Q +M (4)

where w̄, ū are associated with the linear and low-order Legendre components
of the interpolation and w′, u′ are associated with the high-order Legendre
components. For the current study a Smagorinsky-like physical SGS model
is employed, M = −(w′x, νTu

′
x)Q, with the turbulent viscosity coefficient νT

defined to reproduce the dissipation of the unresolved scales.

3 Burgers Test Case

The test case is defined by (1) with ν = 2π
1000 and f(x, t) = A sin(x − Ut),

where U = 1, A = 0.1. This produces a moving wave with a fixed profile.
DNS computations were performed on a sequence of meshes to ensure grid
independence. The finest of these used 8192 bilinear space-continuous ele-
ments on a domain of length L = 2π, with a constant time step of π

8192 . The
computations were started with a uniform flow of U = 1, and advanced to
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t = 8π. The constant profile of the final solution allows the parameters of the
physical SGS model model to be accurately estimated. In particular, given
the wave-number range to which the physical SGS model will be applied, the
finest DNS solution is used to estimate νT with

νT = ν

∫∞
kc
k2 E(k) dk

∫ kc
km

k2 E(k) dk
, (5)

where E = u2

2 is the kinetic energy, km is the starting wavenumber of the phys-
ical SGS model range, kc is the cutoff wavenumber, and the spectral definition
of the energy dissipation rate has been used [2]. For VMS-FEM, the cut-off
wave number is defined by kc = qN

2 , where N is the number of elements,
and q is the number of unique unknowns per element along a constant-time
boundary. Here, the first spatial interpolation function to which the physi-
cal SGS model is applied is denoted by m. The gradients for the model are
computed using all scales above and including m, and the model is applied to
all scales above and including m. km is estimated by multiplying the ratio of
scales without modelling to the total number of scales by kc. The procedure
described above minimises the calibration error of the physical SGS model,
so that differences in results can be related to the choice of discretisation
parameters.

4 Computed Results

4.1 Spatial discretisation effects at small time steps

The behaviour of the discretisation at a time step equal to that of the finest
DNS is considered first. Figure 1 shows the error in the time average of the
total kinetic energy relative to the DNS between t = 6π and t = 8π. This
interval is equal to the period necessary for the wave to completely traverse
the mesh. The errors are plotted versus the inverse of the number of degrees
of freedom used to represent the solution in space, which varies from 16 to
128. The solid line labelled “Basic LES” indicates the results obtained for
q = 1, m = 1.

The errors of the q = 2 and q = 3 solutions were found to be almost
identical to those for q = 1, m = 1 when M is applied to all scales. Releasing
the first scale from the physical SGS model (q = 2, m = 2), however, results in
a large increase in accuracy. The latter implies that the errors of the Basic LES
cases are dominated by the application of the model to the largest resolved
scales, rather than by specifics of the discretisation. The advantage of the
VMS approach is that it can limit the distortion of the large resolved scales by
shifting the application of the model to the smaller resolved scales. Increasing
the order of the method while keeping km

kc
constant (q = 4, m = 3 and

q = 8, m = 5) results ultimately in a faster convergence rate, but larger
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Fig. 1. Average energy error for different numbers of scales

errors at low numbers of degrees of freedom. The corresponding errors in the
solution profile have high spatial frequencies, and arise from the non-smooth
solution of the LES problem.

4.2 Implicit SGS model

One method for estimating the implicit SGS dissipation is to subtract the
resolved change in energy due to viscosity per time step from the work done
by the body force per time step, ∆Ef :

∆EISGS = ∆Ef −
N∑

e

∫

Qe

(ν(ux)2 + νT (u′x)2) dQe (6)

where Qe is the space-time domain of element e. An alternative approach is to
estimate the change in the energy of the linearised system with ν = νT = 0.
In Fig. 2(a) the normalised implicit dissipation, ∆EISGS

∆Ef
computed with (6)

for q = 2, m = 2 is compared with the estimate from the ν = νT = 0
linearised system for varying values of the Courant number, U∆t

∆x . In spite of
the relatively large perturbation to the mean convection speed, the estimates
agree reasonably well.

The influence of spatial discretisation parameters on the implicit SGS
model is shown in Fig. 2(b). Here the normalised implicit dissipation based
on (6) is plotted for different values of q and m for qN = 32 and a Courant
number of 1. Independent of q, there is an initial drop in the implicit dissi-
pation as m is increased from 1. When larger numbers of scales are released
from the model, however, the implicit dissipation begins to increase. In gen-
eral, the primary action of the implicit SGS model is to damp high-frequency
components of the solution [3]. As m is increased, M is applied to a higher
range of frequencies with larger values of νT . This biases the energy towards
low frequencies, where the implicit model is less active. For the largest values
of m, however, the increase in spatial order results in strong high-frequency
errors, and correspondingly increased implicit dissipation. The action of the
implicit SGS model is thus minimised at intermediate values of m.



594 S. J. Hulshoff

0.001

0.01

0.1

1

0.1 1 10

N
or

m
al

ise
d 

Im
pl

ic
it 

D
iss

ip
at

io
n

Courant Number

q=2, m=2, 32 DOF
Linearized prediction

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

N
or

m
al

ise
d 

Im
pl

ic
it 

D
iss

ip
at

io
n

m

q=2
q=4
q=8

(a) (b)

Fig. 2. Normalised implicit SGS energy dissipation

5 Conclusions

Using a one-dimensional test case, this paper has demonstrated effects of
discretisation parameters on the performance of a space-time VMS FEM,
and on its associated implicit SGS model. The VMS method was shown to
be advantageous in that it can improve the accuracy of large-scale data by
limiting the application of the physical SGS model to the smaller resolved
scales. There is a limit to the number of scales which can be released from
the model, however, due to the lack of smoothness of the underlying solution.
The magnitude of the implicit SGS dissipation was primarily influenced by
the timestep, but was also shown to be influenced by the number of model-
free scales. Again low numbers of free scales per element proved best, as larger
numbers resulted in increased implicit dissipation associated with the high-
frequency errors of higher-order discretisations.
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Summary. We present a continuous wavelet analysis of count data with time-
varying intensities. The objective is to extract intervals with significant intensities
from background intervals. This includes the precise starting point of the significant
interval, its exact duration and the (average) level of intensity. We allow multiple
change points in the intensity curve, without specifying the number of change points
in advance. We extend the classical (discretised) continuous Haar wavelet analysis
towards an unbalanced (i.e., asymmetric) version. This additional degree of freedom
allows more powerful detection. Locations of intensity change points are identified
as persistent local maxima in the wavelet analysis at the successive scales. We illus-
trate the approach with simulations on low intensity data. Although the method is
presented here in the context of Poisson (count) data, most ideas (apart from the
specific Poisson normalization) apply for the detection of multiple change points in
other circumstances (such as additive Gaussian noise) as well.

Key words: Change point, wavelet, Poisson process, unbalanced, maxima.

1 Introduction
In many applications [3, 6], data are counts with time (or space) varying in-
tensities. Typical examples are photons emitted by a device or by a natural
source and captured by scanners, or microscopes. The goal is to detect the
presence of a significant signal against background noise and to character-
ize the signal by its intensity, location and duration. Figure 1 shows a test
example.

A statistical description of this problem is known as change point detec-
tion. Change point analysis using wavelets has been investigated in several
papers including [5]. The work summarized in this paper concentrates on
finding change points in Poisson data. Similar problem descriptions appear in
earlier papers such as [7] but none of these applied a multiscale analysis to
the problem.
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Fig. 1. A simulated example of Poisson data with time varying intensities. On the
left the plot of the intensity curve. This is a scaled and vertically translated version
of the well-known “Blocks” test example [1]. In the middle a random realization.
On the right the estimation from that realization, using the procedure proposed in
this paper.

The contribution of this paper consists of the combination of broad as-
sumptions and an original approach applying new techniques in wavelet anal-
ysis. More specifically, on the assumption side, we allow more than one change
point and we do not specify how many of them are present in the data. The
background noise level is assumed unknown. The method is not restricted to
high intensity signals. On the other hand, we scan the local maxima in the (dis-
cretised) continuous wavelet analysis of the data, and we extend the analysis
to unbalanced transforms. As explained later, this increases the (statistical)
power of the detection procedure.

Although the techniques are presented in the framework of Poisson count
data, the method can easily be extended towards other types of random data.

Due to space limitations, this text can only summarize the ideas of this
new approach. For a full description, we refer to a paper still to be written
about this subject.

2 Multiscale binning
Suppose we are given observations xi, i = 0, . . . , n− 1 of random variables Xi

that are Poisson distributed, i.e.,

P (Xi = k) =
e−µiµki
k!

,

where µi = EXi is the expected value of the ith observation, also called the
intensity of the counting process at location i.

The intensity µi is not constant, but depends on the location (or time
point) i. More specifically, we assume that the intensity is a piecewise con-
stant, i.e., consecutive observations have the same intensity, except at some
transition points. Obviously, the exact values of µi are unknown. We want
to estimate those values from the observations. A central question in this es-
timation is to find good estimates for the locations of jumps. Not only are
these locations crucial as such for several applications, they also allow good
estimates of the intermediate intensities.

In the first instance, we apply a recursive binning of these observations,
i.e., we consider the following decomposition:
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1. Call SJ,k = Xk the finest level scaling coefficients. We let J denote the
finest scale. Subsequent scales (or levels) get a lower number.

2. Let Sj,k = Sj+1,2k+1 + Sj+1,2k be the summed values at level j of binned
pairs at finer level j + 1.

3. Let Wj,k = Sj+1,2k+1 − Sj+1,2k be the differences between scaling coeffi-
cients at level j.

If such a difference is significantly different from zero, we know that somewhere
in the interval covered by the associated two bins, a change point must have
occurred. Given the information that there must be a change point somewhere,
it is easier to locate it at finer scales than without this additional information,
even if the differences at those finer scales are no longer significant.

The decomposition is the Haar wavelet transform. To check whether a
wavelet coefficient Wj,k is significant, it is interesting to normalize it:

Zj,k = Wj,k/
√
Sj,k.

The values Zj,k have an asymptotically normal distribution [2] and their vari-
ance is constant if one leaves out the cases where Sj,k = 0:

V (Zj,k|Sj,k 6= 0) = 1.

3 Wavelet maxima
The Haar decomposition presented in the previous section is a dyadic trans-
form. This means that the computation of Wj,k involves a dyadic number of
observations, i.e., the number of observations involved is an integer power of
two. Also, the subsequent coefficients at a given level are based on mutually
disjoint sets of observations:

Wj,k =
2j
∗−1∑

i=0

Xk2j∗+1+2j∗+i −
2j
∗−1∑

i=0

Xk2j∗+1+i,

where j∗ = J − j − 1. These two properties obviously limit the power of the
statistical test: if the coefficients would not be limited to dyadic locations and
dyadic bins, we would certainly find a coefficient where at least one of the
adjacent bins would perfectly coincide with a complete interval of constant
intensity. Such a full analysis is known as a maximal discretization of the con-
tinuous Haar wavelet transform. It leads to the following wavelet coefficients:

Wj,k =

j∗−1∑

i=0

Xk+j∗+i −
j∗−1∑

i=0

Xk+i,

where j∗ = N − j and j = N − 1, . . . , 1.
Such a complete analysis allows to find at each scale j the locations k

where the normalized wavelet coefficient Zj,k reaches a local maximum. If
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this maximum is sufficiently large (say, if its absolute value is larger than 3),
the corresponding location is considered as a candidate change point. Before
the final selection of significant change points takes place, we first want to
select the optimal scale for each candidate. To this end, the locations of local
maxima are linked into lines of local maxima across scales [4], as in Figure 2.
On all maxima lines, we select the scale and location with the highest absolute
normalized coefficient value.
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Fig. 2. Line of local maxima across scales. The horizontal axis contains the locations,
the vertical axis depicts the successive scales.

4 Unbalanced wavelet analysis

Even the continuous wavelet transform may not be able to detect all change
points. Figure 3(a) shows an example of a wavelet analysis where one inter-
val of constant intensity is fully covered but the other (left) interval is not
completely observed by this wavelet coefficient. If the difference between the
intensities in the two intervals is small, it may be crucial to estimate both in-
tensities with the highest possible accuracy, i.e., the lowest possible variance.
Searching for significant values through all possible unbalanced coefficients

(b)(a)

Fig. 3. A symmetric wavelet analysis (bold line) is not optimal in detecting change
points. If one allows unbalanced analyzes, the resulting wavelet coefficients may be
more significant if the analysis covers two complete, adjacent intervals of constant
intensity. This may be crucial in change points with small jumps.

would be computationally impossible. However, if we start our search from
the previously selected wavelet maxima, this becomes an easy optimization.
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5 Elimination of false maxima and results

The last phase of the algorithm is the selection of change points. Candidate
change points are given by locations of local wavelet maxima and the unbal-
anced extension indicates the range of a change point. As Figure 4 indicates,
two successive change points may reinforce each other’s significance, by shar-
ing observations. This occurs if two successive change points are both jumps
up or both jumps down, thereby forming a staircase. In that case, the most
significant one is selected as primary covariate, and its location is now con-
sidered as an inpenetrable boundary: the significance of the adjacent change
point is recomputed within this new situation. As soon as the ranges of the
selected change points cover all observations, we stop the selection of change
points. As illustrated in Figure 1, the procedure finds good estimates of all
change points. Moreover, it removes all spurious points.
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Fig. 4. Selection of most significant change point and update of the range and
significance of the remaining candidates.

References

1. D.L. Donho and I. M. Johnstone. Ideal spatial adaptation via wavelet shrinkage.
Biometrika, 81:425–455, 1994.
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Summary. One way to increase the robustness of soft sensors is to use ensembles
of symbolic regression-based predictors. Ensembles can increase the robustness be-
cause it gives a more consistent estimate of the output, it allows the derivation a
measure of confidence and it can be used for problem detection. In this paper we will
demonstrate the robust soft sensor by using ensembles of symbolic regression-based
predictors in an industrial application.

Key words: Soft sensor, ensembles, symbolic regression, Pareto front.

1 Introduction

Inferential or soft sensors are mathematical models that are used to predict
the outcome of processes. These sensors are often needed because online mea-
surements of the outcome of the processes can not be made with a low cost
or ease. One factor limiting the widespread use of soft sensors in the process
industry is their inability to cope with noisy data and process variability.

There are a number of steps that can be taken to improve the robustness
of soft sensors. One way is to use explicit nonlinear functions that are derived
by Genetic Programming (GP) [4]. A major advantage of this approach is that
there is a potential physical interpretation of the model. Other advantages are
the ability to examine the extrapolation behavior of the model and to impose
external constraints on the modeling process. Furthermore, process engineers
are more open to take the risk of implementing such type of models. In a sec-
ond approach the idea of balancing the modeling performance and complexity
is used to increase the robustness. This approach uses the Pareto front to find
the best trade-off between the model’s performance and its complexity [7].
The third approach that could improve robustness is the use of an ensemble
of predictors. The key idea is to use combined predictors and their statistics
as a confidence indicator of the performance.
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In this the paper we will demonstrate how to design ensembles of GP-
based predictors in order to improve the robustness of the soft sensors. An
successful industrial application of the proposed approach is also given.

2 Ensemble of GP-generated Predictors in Soft Sensors

The section describes the nature of GP-based models and focuses on the
novel model procedure for selecting the models on the Pareto-front of the
performance-complexity plane. Thus, the ensemble is based on predictors with
the best generalization capabilities and potential for robust performance in
industrial conditions.

2.1 Genetic Programming

One modeling approach that is increasingly being used in the industry is
Genetic Programming (GP). GP is of special interest to soft sensor develop-
ment due to its capability for symbolic regression [4]. GP-generated symbolic
regression is a result of simulation of the natural evolution of numerous po-
tential mathematical expressions. The final results is a list of “the best and
the brightest” analytical forms according to the selected objective function.
Of special importance to industry are the following of unique features of GP
[3]: no a priori modeling assumptions derivative-free optimization; few de-
sign parameters; natural selection of the most important process inputs; and
parsimonious analytical functions as a final result.

2.2 Ensembles of GP Generated Predictors

Ensembles consist of several models that are used to predict future measure-
ments. For a given input the final prediction is the average of the predictions
of all the models in the ensemble. The advantages for using ensembles of pre-
dictors instead of a single model are all related to the robustness requirements.

Firstly, since the prediction is a combination of a number of predictions,
one obtains an estimate of the output that is reduced in variance. The soft sen-
sor is more robust as the predicted outcome does not depend on the accuracy
of one single model anymore.

Secondly, the spread or variance of the different predictions can be used to
derive a measure of confidence, called the model disagreement indicator. The
idea is that in areas of high data density (information rich) the models in the
ensemble will have the same behavior. However, in areas of low data density
the various models will have more freedom and exhibit different behavior.

A third advantage is that the model disagreement indicator can be used
for problem detection. Here the idea is that whenever something has changed
in the process the models in the ensemble will show a high variance in their
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predictions whereas under normal circumstances the variance was much lower.
This way drifting processes, faulty equipment or novelty can be detected easily.

Finally, ensembles enable redundancy by using models that depend on
different input variables. In processing conditions it often occurs that one or
more of the instruments measuring the input variables fail. The soft sensor
can be made robust toward equipment failure since there will be at least one
model available to predict in the absence of a certain input variable.

There are several methods to design ensembles [5, 6]. The key issue is to
select models that are diverse enough to capture uncertainties, but similar
enough to predict well. Designing such a robust ensemble can be very diffi-
cult, even for an experienced soft sensor developer. Utilizing the Pareto front,
robust ensembles can be constructed with much more ease and objectivity.

2.3 Pareto front Method for Ensemble Model Selection

Since model selection is in principle a multi-objective problem (i.e. accuracy
vs. complexity), the fundamentals of the Pareto-front can be applied. The
Pareto front is defined by the dominant solutions satisfying both conflicting
objectives. Using the Pareto front for GP-generated models has many advan-
tages [1]. Firstly, the structural risk minimization principle [8], which finds
the optimal balance between complexity and accuracy, can be easily applied
to GP-generated models, see Fig. 1. Currently in GP the measure that is used
for the complexity is the number of nodes needed to define the model.
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Fig. 1. Pareto front based on the performance of the training data

A second advantage is that the Pareto front effectively displays the trade-off
between the measures, which enables the analyst to make an correct decision.
The Pareto front models are models for which no improvement on one ob-
jective can be obtained without deteriorating the other. The best model as a
result of multi-objective approach will therefore lie somewhere on the Pareto
front. Typically, the most interesting models lie in the lower left corner.
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The third advantage is that the number of models that needs to be in-
spected individually is decreased tremendously as only a small fraction of the
generated models in GP will end up on the Pareto front. This is clearly seen
in Fig. 1. Only 18 of the total of 88 models depicted in the figure lie on the
Pareto front. Furthermore, as none of the models with a ratio of nodes higher
than 0.3 significantly improve on the R2, these may by omitted too.

3 Application

The described methodology for designing robust soft sensors based on an en-
semble of GP-type predictors will be illustrated with an industrial application
in a continuous chemical process. For a successful application of the approach
to batch processes, see [2]. The symbolic regression-type models used in this
application have been derived on an Dow-internally developed GP software.

The application is related to distillation column control. For better control
of a distillation column, it is desirable to obtain an accurate and fast prediction
of a process quality variable (in this case - propylene concentration). Current
analytical technique allows measurement of propylene every 10 minutes, which
is not sufficient for control purposes. The problem has been resolved by an
ensemble-based soft sensor, developed by the described approach that can
provide every minute a prediction of propylene.

As illustrated in the top graph of Fig. 2, the ensemble model performs well
for the testing data (R2 = 0.985; Root Mean Square Error Prediction (RM-
SEP) = 0.0791). The model disagreement indicator is the standard deviation
of the three models and a critical limit was defined to quantify the effect. For
this testing data, model disagreement indicators are below the critical limit
for most of the data points. This suggests that the testing data and training
data are similar and that the prediction is reliable.

The self-assessment capability of the ensemble is illustrated in the lower
plot in Fig. 2, where the key inputs are increased by 15% in the testing
data. The model disagreement indicator is now above the critical limit, which
means that the simulated testing data are now outside the training range.
The simulated abnormal process condition has been captured reliably by the
model disagreement indicator.

4 Conclusions

In this paper we have shown a novel approach to improve the robustness of
soft sensors. This approach involves the use of GP-generated models in an
ensemble of predictors. We have described a mechanism which is based on the
Pareto front to effectively construct ensemble. This mechanism enables us to
compare the models produced by the various GP runs qualitatively through
a performance-complexity trade-off. Furthermore, the number of interesting
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Fig. 2. Performance on the test data with normal and disturbed process conditions

models to inspect manually is decreased to a manageable number. The ap-
proach was successfully implemented in a chemical process.
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Summary. Large area uniform plasmas are essential in microelectronics processing.
Motivated by this application, a macroscopic model is proposed as a framework for
investigating the occurrence of instabilities in high frequency plasma discharges for
parallel plate geometries. This paper will concentrate on the formation of stationary,
spatially inhomogeneous patterns.

Key words: plasma discharges, pattern formation.

1 Introduction

A key criterion for the utilisation of electrically driven discharges in semicon-
ductor manufacturing or material surface modification is that the plasma be
free of instabilities that produce stationary or slowly varying spatial structures
since these may disastrously affect the quality of the process. Instabilities re-
lated to the balance of charged particle production and loss (which are usually
observed experimentally as periodic spatial modulations of the plasma den-
sity and temperature) are a common occurrence in weakly ionized plasmas
and have been most often studied in cylindrical geometries. In this context,
a model was proposed in [3], consisting of two nonlinear partial differential
equations (electron mass and energy balance) for which the existence of sta-
tionary, spatially periodic solutions was investigated using dynamical systems
techniques.

In this paper, the model is generalised to parallel plate geometries, which
are more relevant to plasma processing applications. The analytical study is
quite different from that presented in [3] and consists of asymptotically reduc-
ing the model to a system of amplitude equations of Landau type and using a
phase plane analysis for showing the existence of periodic attractors. Nume-
rical simulations are also presented which illustrate the emergence of stable
patterns from random electron temperature and density initial conditions .
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2 Proposed Model

We consider a weakly ionized plasma which is sustained by a high-frequency
current driven through a low pressure gas between two parallel electrodes. In
industrial applications the electrode separation is usually small compared to
the other two dimensions. In order to investigate the formation of instabili-
ties in such discharges, we use the model proposed in [3] for a simpler one-
dimensional geometry; the generalization to two spatial variables is straight-
forward. We give below the non-dimensional form of the model.

∂n

∂t
= ∆n+ αn

[
eE (1−1/T ) − 1

]
(1)

∂

∂t
(nT ) +∇ · (χ(T )∇n− κn∇T ) = P (n)− 2

3
EαeE(1−1/T ) n, (2)

where n(x, y; t) is the electron density (equal to the ion density, by the quasi-
neutrality assumption), T (x, y; t) is the electron temperature, x, y ∈ [0, 2π]
and t ≥ 0. The first equation describes ambipolar diffusion of electrons, where
particles are being created by ionization of neutrals and lost by transverse drift
and recombination. The second equation describes electron energy transport,
where the two terms on the right hand side represent power absorbed by
the plasma (ohmic heating) and power dissipated by the electrons (electron-
neutral collisions). Both equations have been averaged over the z variable
(measuring plate separation) and over the period of the driving current (which
is small compared to the time scale over which instabilities develop). If we
assume a simple z dependence of the density n (consistent with modelling
the sheaths as capacitors), then an explicit formula can be found for the
absorbed power, P (n). The details of this calculation are not important for
the subsequent analysis and will be omitted here. Equations (1) and (2) have
a unique equilibrium point, which has been fixed to n = 1, T = 1 by the
choice of non-dimensionalization (see [3]).

A similar expression for the energy flux in equation (2) was derived in [2].
It was argued there that the thermoelectric transport coefficient χ(T ) should
not be neglected in situations where the electron distribution function is non-
Maxwellian. It is also one of the aims of our work to show that the inclusion
of this transport coefficient in the model is essential for describing the onset
of the plasma instabilities. From experimental data and kinetic simulations
we find that χ (which is otherwise evaluated from velocity moments of the
distribution function) can be approximated as χ(T ) = χ̃ − Λ (T − 1)2. We
choose χ̃ and Λ as control parameters for the subsequent analysis.

3 Derivation and Analysis of Amplitude Equations

The linearization of (1) and (2) about the uniform steady state n = 1, T = 1
gives
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Fig. 1. Linear stability boundary

∂U

∂t
=
(
A∇2 + B

)
U,

where

U =

(
n− 1
T − 1

)
, A =

(
1 0

−(1 + χ̃) κ

)
, B =

(
0 p1

−q1 −(1 + γ)p1

)
,

and p1 = αE > 0, q1 = P (1)−P ′(1) > 0. Imposing zero-flux boundary condi-
tions (for mathematical convenience) leads to the following general solution

U(x, y, t) =
∞∑

k=1

eλ(k) t Û cos(lx) cos(my),

where k2 = l2 + m2 (l, m ∈ Z) and det
(
k2A−B + λI

)
= 0. Solutions grow

or decay exponentially depending on whether λ > 0 or λ < 0 and the neutral
stability boundary can be calculated as

χ̃ = F(k2) ≡ κ

p1
k2 +

p1q1

k2
+ γ

which is (qualitatively) plotted in Figure 1. The linearly most unstable mode
corresponds to the minimum of this curve, which is given by k2

∗ =
√
p1q1/κ.

A weakly nonlinear analysis is carried out in order to determine the stabil-
ity of a small periodic disturbance with fixed wave number k = k∗. For more
details about this procedure see, for example, [1]. We assume we are close to
the bifurcation point and let χ̃ = χ̃∗ + ε2, where χ̃∗ = F(k2

∗) and 0 < ε� 1.
We also introduce the slow time scale τ = ε2t and expand the density and
temperature functions around the steady state as follows

n(x, y, t; ε) = 1 + εn1(x, y, t, τ) + ε2n2(x, y, t, τ) + · · · , (3)

T (x, y, y; ε) = 1 + εT1(x, y, t, τ) + ε2T2(x, y, t, τ) + · · · . (4)

Substitution of these expansions into the system (1)–(2) yields, at first order
[

∆ p1

χ∗∆− q1 −κ∆+ γp1

] [
n1

T1

]
=

[
0
0

]
. (5)
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Without loss of generality we can assume the O(ε) solution to be of the form
(
n1

T1

)
=

1√
k4∗ + p2

1

(
p1

k2
∗

)
[A1(τ) cos(k∗x) +A2(τ) cos(k∗y)] . (6)

At order O(ε2) we obtain the equations
[

∆ p1

χ∗∆− q1 −κ∆+ γp1

] [
n2

T2

]
=

[
F2

G2

]
(7)

where

F2 = −p1n1T1−p2 T
2
1 , G2 = κn1∆T1 +κ∇n1∇T1 +q2n

2
1−γ (p2T1−p1 n1)T1

and p2 = αE
(E

2 − 1
)
, q2 = 1

2 P
′′(1). The solvability condition dictates that

the inhomogeneous term of the linear equation (7) must be orthogonal to any
solution (ϕ, ψ) of the adjoint homogeneous problem, that is,

∫ 2π

0

∫ 2π

0

[F2ϕ+G2ψ] dxdy = 0. (8)

It is easy to check that condition (8) is trivially satisfied. Finally, a similar
solvability condition for the O(ε3) problem yields evolution equations for the
slowly-varying amplitudes,

∂A1

∂τ
= m1A1 +m2A3

1 +m3A1A2
2,

∂A2

∂τ
= m1A2 +m2A3

2 +m3A2A2
1,

(9)

where m1, m2, m3 are lengthy expressions of the physical parameters.
For the order 1 solution, (6), to converge to a stationary, spatially periodic

pattern we need to show the existence, in the amplitude system (9), of at least
one stable equilibrium point. A phase plane analysis reveals the following.

� The trivial equilibrium point (0, 0) is always unstable.
� The equilibrium points

(
±
√
− m1

m2+m3
,±
√
− m1

m2+m3

)
exist form2+m3 < 0

and are stable for m2 < m3. (This condition is equivalent to Λmin < Λ <
Λmax, where Λmin and Λmax can be determined as functions of the system
parameters.) This case corresponds to the formation of two-dimensional
bounded patterns (“spots”) in the original model.

� The equilibrium points
(

0,±
√
−m1

m2

)
and

(
±
√
−m1

m2
, 0
)

exist for m2 <

0 and are stable for m2 > m3 (Λ > Λmax). These correspond to one-
dimensional bounded patterns (“stripes”).

Note that no patterns are possible when χ̃ < χ̃∗ since the equilibrium state n =
1, T = 1 is stable for these parameter values. Hence, as argued in Section 2, if
we had neglected the thermoelectric transport coefficient χ, the model would
have failed to capture the formation of instabilities.
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4 Numerical Results and Conclusions

The nonlinear system (1) – (2) with zero-flux boundary conditions was inte-
grated using a finite difference ADI (Alternating Direction Implicit) scheme.
All constants in the model were calculated from realistic physical parameters.
The results shown in Figure 2 were obtained by choosing the control param-
eters so that k∗ = 1 and Λ corresponds to a 2-dimensional (spotted) pattern.
After some transient behaviour, the temperature and density functions con-
verged to steady-state spatially inhomogeneous solutions. In conclusion, the

Fig. 2. Time evolution of the temperature function (bright colours denote maximum
values). The spatial domain is [0, 2π] × [0, 2π] and the initial condition is a small
random perturbation of the equilibrium state. Convergence to the final pattern is
observed around t ≈ 100µs.

proposed model predicts that stationary, spatially inhomogeneous patterns in
parallel plate geometry discharges can occur as the equilibrium state loses
stability. The type and stability of the resulting patterns can be determined
by parameters relating to a certain thermoelectric transport coefficient. For
more practical applicability, a similar analysis could be carried out in terms
of physical control parameters such as the applied current density, gas pres-
sure, etc. and this could also explain other interesting dynamical phenomena
observed experimentally.
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Summary. A simple mathematical model for the motion of a pipeline bundle being
towed using the Controlled Depth Tow Method (CDTM) is constructed and anal-
ysed. When the forces exerted by the sea on the bundle are neglected the model
predicts that the bundle is neutrally stable and that its motion involves two dif-
ferent timescales. When these forces are not neglected the model predicts that the
bundle will always be stable if the tension in the bundle at its downstream end is
sufficiently large.

Key words: Controlled Depth Tow Method, pipeline bundle

1 The Controlled Depth Tow Method (CDTM)

Pipeline bundles, consisting of a number of petroleum pipelines, control lines
and umbilicals housed within a larger carrier pipe, are widely used in the
North Sea offshore oil industry to carry oil between various underwater struc-
tures. In the North Sea, pipeline bundles are typically of around 1 metre in
diameter but can be of up to 8 kilometres in length. Pipeline bundles are pre-
fabricated on shore and towed into position using the Controlled Depth Tow
Method (CDTM), which involves attaching a heavy towhead to each end of
the bundle and suspending the whole system between two powerful tug boats.
The front tug tows the bundle while the back tug maintains the tension in
the bundle and assists with steering. A typical tow lasts two or three days,
and during the tow the motion of the bundle is continuously monitored using
an acoustic telemetry system. A variety of modes of oscillation are observed
during the towing, and the tugs’ velocities are continuously adjusted so as to
control the motion of the pipeline bundle and, in particular, to keep it clear of
the seabed and the free-surface waves, and to avoid excessive tension and dis-
tortion. As the final location is approached the tow speed is reduced and the
bundle is lowered to within a few metres of the seabed before being carefully
manoeuvred into its final position.
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2 A Mathematical Model

In this simple first model for the motion of a pipeline bundle being towed
using the CDTM, we assume that the bundle is neutrally buoyant, that all
motion occurs in a vertical plane only, and that the displacement of the bundle
is small.

Following Dowling [1] and Päıdoussis [2, 3, 4, 5] the normal force balance
equation for a bundle of length l and radius a is

m
∂2y

∂t2
=

∂

∂x

(
T (x)

∂y

∂x

)
+ ρπa2

(
∂

∂t
− U ∂

∂x

)2

y

− ρπaUcN
(
∂y

∂t
+ U

∂y

∂x

)
+ ρπaU2cT

∂y

∂x
− EI ∂

4y

∂x4
,

(1)

where x denotes position along the bundle from the front towhead, t denotes
time, y(x, t) is the deflection of the centreline of the bundle, U is the tow speed,
m is the mass per unit length of the bundle, EI is the bending stiffness, ρ is
the density of sea water, and cN and cT are the skin friction coefficients in the
normal and tangential directions, respectively. The tangential force balance
equation determines the spatially varying tension in the bundle, T (x), to be

T (x) = T (l) + ρπaU2cT (l − x), (2)

where T (l) is the tension at the downstream end.
We seek a Fourier-mode solution to (1) in the form

y(x, t) = Re[exp(iωt)Ŷ (x)], (3)

where ω is the complex frequency. Re(ω) determines the frequency of oscilla-
tion, while Im(ω) determines the rate of temporal growth or decay. Specifically,
if Im(ω) > 0 the bundle is stable, whereas if Im(ω) < 0 it is unstable; in the
special case Im(ω) = 0 the bundle is neutrally stable.

Non-dimensionalising (1) in the obvious way leads to the fourth order
ordinary differential equation

ε
d4Ŷ

dX4
− (Xc −X)

d2Ŷ

dX2
+ b

dŶ

dX
+ iΩbŶ = 0, (4)

where we have written

ε =
EI

ρπaU2cT l3
, Ω =

ωl

U
, L =

l

a
, b =

2iΩ + cNL

cTL
, (5)

T =
T (l)

ρπa2U2
, Xc =

T − 1

cTL
+ 1. (6)

Here X = Xc is the location of the so-called “critical point” at which the
coefficient of the second derivative in (4) is zero. For a typical bundle being
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towed at a typical tow speed of 1.81 ms−1 typical values of ε, L, T and Xc

are
ε ' 3.1× 10−5, L ' 18300, T ' 112, Xc ' 1.6. (7)

In particular, typically T is large and so we shall henceforth restrict our atten-
tion to the case T > 1 in which Xc > 1 and so the critical point does not lie on
the bundle. (The case of a free downstream end, T = 0, in which the critical
point can lie on the bundle, is treated by Dowling [1].) Moreover, typically ε
is small and so the fourth derivative term in (4) can be neglected everywhere.
Thus we need to solve the second order ordinary differential equation

(Xc −X)
d2Ŷ

dX2
− b dŶ

dX
− iΩbŶ = 0 (8)

on 0 ≤ X ≤ 1. Assuming that the towheads are fixed relative to the tugs the
appropriate boundary conditions at the ends of the bundle are simply

Ŷ (0) = Ŷ (1) = 0. (9)

The exact solution to the simplified equation (8) is

Ŷ (X) = c1(X −Xc)
1
2 (1−b)Ib−1(2

√
iΩb

√
Xc −X)

+ c2(X −Xc)
1
2 (1−b)Kb−1(2

√
iΩb

√
Xc −X),

(10)

where Ib−1 and Kb−1 are modified Bessel functions of the first and second kind
respectively of order b−1, and c1 and c2 are complex constants. Imposing the
boundary conditions (9) leads to the determinantal equation

Kb−1(−2i
√
iΩb

√
1−Xc)Ib−1(−2i

√
iΩb

√
−Xc)

= Ib−1(−2i
√
iΩb

√
1−Xc)Kb−1(−2i

√
iΩb

√
−Xc).

(11)

Equation (11) determines the complex frequency Ω and must, in general, be
solved numerically. However, analytical solutions can be obtained in a number
of special cases and asymptotic limits.

3 Analytical Solutions

3.1 Exact Solution in the Special Case cN = cT = 0

In the special case cN = cT = 0, in which the forces exerted by the sea on the
bundle are neglected, the solutions for Ω and Ŷ are simply

Ω =
π(T − 1)√

2T − 1
, (12)
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Ŷ (X) = sin(πX) exp

(
iπX√
2T − 1

)
, (13)

which means that the solution for the deflection of the bundle, Y , is

Y (X, t) = sin(πX) cos

[
π√

2T − 1
(X + (T − 1)t)

]
. (14)

This solution shows that in this case the bundle is neutrally stable and
that its motion involves two different timescales, namely a short timescale
of (T − 1)−1 ≈ 0.009 (corresponding to approximately 30 seconds) on which
individual disturbances travel from the front to the back of the bundle, and
a long timescale of 2π/Ω = 2

√
2T − 1/(T − 1) ≈ 0.269 (corresponding to

approximately 16 minutes) on which the entire bundle deforms significantly.
The long timescale is consistent with the typical timescales observed during
towing. While the short timescale is too short to be observed directly by
the acoustic telemetry system, it is consistent with the observation that the
bundle reacts rapidly if the tow is brought to a sudden halt.

3.2 Asymptotic Solution in the Limit T →∞

Typically T is large, and so the behaviour of the solution in the limit of large
tension, T →∞, is of particular interest. In this limit the solution for Ω is

Ω =
π√
2
T

1
2 +

cNL

4
i+

4π2(LcT − 3)− (cNL)2

16
√

2π
T−

1
2 +O(T−1), (15)

and hence the pipeline bundle is neutrally stable and oscillates on a timescale
of 2
√

2T−1/2.

3.3 General Stability Results

Triantafyllou and Chryssostomidis [6] derived stability results in the special
case cN = cT . By extending some of their arguments to the general case
cN 6= cT we have been able to show that the bundle is always stable when
T > cT /cN and always unstable when T < cT /cN − cTL. These analytical
results are confirmed by Fig. 1, which shows that in the case cN = 0.0001 and
cT = 0.0439 the numerically calculated neutral stability curve (i.e. the curve
on which Im(Ω) = 0), which separates the unstable region of parameter space
from the stable region, lies in the interval cT /cN − cTL < T < cT /cN .

4 Summary

In this short paper we constructed and analysed a simple mathematical model
for the motion of a pipeline bundle being towed using the CDTM. In the sim-
plest case cN = cT = 0 the model predicts that the bundle is neutrally stable
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Fig. 1. Stability diagram in the case cN = 0.0001 and cT = 0.0439.

and that its motion involves two different timescales. In the more general case
cN 6= 0 and cT 6= 0 the model predicts that the bundle will always be sta-
ble if T > cT /cN , i.e. if the tension in the bundle at its downstream end is
sufficiently large.
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Summary. In the design workflow, CAD models of complex components include
more and more details. A transformation of such models into Finite Element (F.E.)
models often generates a much too large number of elements to be used directly.
Generally, the removal of shape details or idealization operations are required to
prepare F.E. models. These modifications must preserve the analysis result and the
user must control the process in order to ensure sufficient accuracy of the F.E.
results. In accordance to the analysis problems, the simplification process generates
different appropriate F.E. models. In this paper, we present different operators and
criteria to prepare analysis models from CAD models.

Key words: shape simplification, mesh, polyhedral model, mechanical crite-
rion, finite element accuracy

1 Introduction

Design models are used by all the actors of the design process and therefore
contain numerous details. These models are often too refined for mechanical
analyses and their direct use would generate too many finite elements. The
adaptation of the model shape needs the removal of its details when their
presence has either no or limited effects on its mechanical behavior while
requiring an important local mesh density. Examples of these details include
fillets, but also detailed entities such as holes, small blocks, etc.

Various software make it possible to automate this step partially. Several
categories of approaches have been proposed to solve the problems involved
by the preparation of F.E. models from CAD data. A first one addresses con-
figurations were small features must be removed to get the geometric model
more compatible with the size of the F.E. required [7, 2, 5]. These approaches
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are strongly dependent on the modelling history of the part and work on the
construction tree of the object and the removal of user-selected features. A
second one starts with a polyhedral model of the part [8, 1, 3]. In order to sim-
plify the model, different adaptation functions work on the initial polyhedral
model. They combine decimation process and removal of topological details.
Another category of approaches is characterized by idealization treatments.
Such operations are often required to transform a volume into an open surface
to model a plate behaviour. Similar operations hold for transforming a volume
feature into a line to model a beam behaviour of the structure.

The accuracy of F.E. computations is one of the main concerns of the users.
The sources of the errors are multiple, errors of discretization, uncertainty
about the boundary conditions and the behaviour law of the constitutive ma-
terial, simplification of the shape, ... The quality of F.E. computation can be
strongly influenced by the simplifications carried out on the shape. Appro-
priately choosing and monitoring these simplifications is therefore of primary
importance. When the preparation of the model is manual, its quality de-
pends on the engineer’s know-how. For an automatic simplification process,
the monitoring process uses geometrical criteria, curve, size [9]... In a priori
step, geometrical criteria related to the mechanical properties of the problem
can be added, variation of mass, volume, sections, centre of inertia [4]... A
posteriori indicators can be used also and adaptive simplification process can
be performed to define the most suited simplified model for each analysis case.

Section 2 presents the existing polyhedral model simplification algorithms
we use to automatically prepare F.E. models. In section 3, different imple-
mented criteria are listed and some examples illustrate their efficiency.

2 Simplification operators

Our approach uses an intermediate polyhedral model of the object. Using such
a representation, we can integrate data from CAD models, pre-existing F.E.
meshes or 3D scans. algorithm.

Fig. 1. Scan of a crankcase (courtesy Tomoadour-TurboMéca), generation of a F.E.
mesh (total time ˜2h), 427132 faces in the initial model and 11924 in the F.E. mesh.
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The simplification process is based on an iterative vertex removal. Figure 1
shows the result of a simplification process.

3 Mechanical criteria

During a simplification process, a priori criteria are geometric ones but they
can be related to mechanical property variations of mass, volume, section,
centre of inertia. These indicators have been developed with our decimation
process. We could provide the user either macro-scale information over the
whole object or micro-scale information on the smallest possible entity of the
geometrical model. Figure 2 shows two examples of such an indicator.

Fig. 2. Two examples of a priori criteria, variation of volume on the left part and
variation of sections on the right part.

A priori criteria are an interesting information for the users but they can-
not quantify directly the real influence of geometric simplifications on a F.E.
simulation. For example, the errors generated by a hole removal will depend
on the dimension of the hole but also of its location over the component. This
form feature can be in an area involving either low or high stresses. To take
into account its position, a mechanical criterion needs information about the
highly stressed areas and hence a sketch of the F.E.A. results. To gain an idea
of these results requires to set up an a posteriori process. After a simulation
on the simplified part, mechanical criteria are computed for evaluate the in-
fluence of each suppressed feature. Based on criteria, the engineer can validate
the quality of his (resp. her) F.E. results. These criteria can also used in an
adaptive process of simplification to refine the simplified part by adding some
of the suppressed features according to their mechanical influence.

Such a process of simplification was used in [10]. The criterion used was
the error of discretization on the simplified problem and the map of sizes
of an optimal mesh for this problem. The program removes details if the
size of the detail is lower than that given in this area by the map of sizes.
Another criterion can be estimation of the influence of each simplification on



Operators and Criteria for Integrating FEA in the Design Workflow 619

the strain energy variation [6]. In the framework of stationary linear problems,
this variation is given by eq. (1) where σ2 are the stresses of the simplified
model, U1 the displacements of the initial model and n the outward unit
normal. Obviously, these displacements are unknown and can be estimated
by local computations around the removed feature.

∫

feature boundary

σ2.U1.n.ds = ∆ strain energy variation (1)

Fig. 3. Initial CAD model on the left and associated simplified model for analysis

On Fig. 3, we show an example of static problem that illustrates the effi-
ciency of our criterion. The simplified model has been obtained by suppressing
four features. In order to evaluate the efficiency of the criterion, we compute
the solution and the strain energy on the initial part but also on the simpli-
fied one. We can see on table 1 that this criterion produces a good estimation
of the influence of each simplification. During an adaptive process, the user
computes the solution and the influence indicator on the simplified model. In
this example, if the user wants to bound the accuracy to 1%, the simplified
model must be refined by adding features 3 and 4.

Table 1. For each feature simplification, comparison between the real strain energy
variation and our estimation of this variation.

A = real variation B = Influence indicator efficiency A/B

feature 1 -0.014 % -0.009 % 1.56 %
feature 2 0.27 % 0.26 % 0.96 %
feature 3 -8.4 % -8.3 % 1.01 %
feature 4 16 % 18 % 0.89 %
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4 Conclusion

The design process of complex structures needs the resolution of multiple
mechanical analyses. Each analysis requires the generation of an adequate
simulation model. To define easily such models and integrate F.E.A. in the
design workflow, it is necessary to set up efficient simplification operators and
criteria for evaluating and validating the simplification process. In this paper,
we have presented a set of treatments contributing to this integration.

Developments are in progress to add other mechanical criteria, like a priori
stiffness variation, a posteriori indicator for modal analysis, ... Work is also
needed to automate the adaptive process using our a posteriori indicator.

All these treatments help transform CAD models from pure into multi-
resolution mechanical models efficient for mechanical simulation preparation.

Acknowledgement. Future developments will be conducted in the AIM@SHAPE
NoE framework. This Network of Excellence involves fourteen research teams about
Shapes and associated semantic and it is supported by the European Community.
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Summary. In viscoelastic pipes, where the material properties depends on a com-
plex bulk modulus as well as on a complex shear modulus, the sound field within
the fluid is affected. Therefore, the dispersion of flexural waves occurs in the pipe,
while the speed of flexural waves decreases due to the coupled fluid mass. Coupling
between the pipe wall and the fluid also decreases the sound speed in the fluid. Like-
wise, the speed of sound in fluid is frequency-dependent, just as the group velocity of
bending waves depends on the frequency. Wavelet transform of non-stationary sound
signals was used to identify the frequency-dependent fluid sound speed. Measure-
ment and analysis of non-stationary signals with the use of time-frequency method
provides a view to frequency dependent transfer characteristics of fluid-pipe coupled
system. The results also showed that, in the case of propagating small disturbances
(such as acoustic waves), the pipe wall inertia has a minor influence on the wave
propagation characteristics. The elastic reaction of the wall to expansion of the cross
section greatly exceeds the inertial reactions.

Key words: wavelet transform, sound signal, viscoelastic pipe.

1 Introduction

In methods based on frequency response, the effect of viscoelastic proper-
ties is modelled through a frequency-dependent wave speed and a separate
frequency-dependent damping factor. The impulse-response method has been
utilized to calculate the water hammer [1]. Similarly, an impulse-response
method applied to compute nonperiodic transients has been proposed [7].
The complex wave speed (complex-valued and frequency-dependent) is used
in the standard impedance or transfer matrix method to analyse the oscilla-
tory flow. A similar method has been proposed, which applied the concept of
transmission loss instead of the concept of wall impedance [5]. An extended
method uses the static mechanical properties and frequency-dependent me-
chanical properties of the pipe wall [8].
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In this work the pulse method was used to measure propagation charac-
teristics. An experimental study of axisymmetric propagation modes in fluid-
filled viscoelastic pipes with emphasis on the two modes that exist down to the
zero frequency limit is described. In our case the wavelet analysis was applied
to the acoustic signal in order to analyse the structural features of the fluid-
filled viscoelastic pipes, since the wavelet transform permits the characteriza-
tion of a one-dimensional acoustic signal as a two-dimensional representation,
evolving with time and period (frequency).

2 Experiment

For comparison, two different pipe materials with different properties were
examined (steel, polypropylene (PP), and polybutylene (PB)). A 2.1 m long
pipe of circular cross-section was filled with water and suspended vertically
on a foam pad. One end of the pipe was tapped lightly with a hammer (Brüel-
Kjær type 8202) and the output from the hammer was used for triggering.
Measurement configuration consisted of a hydrophone (B-K type 8103) in
conjunction with the charge amplifier (B-K type 2626), the FFT analyser
(B-K type 2032) and a PC for additional computations. For the B-K type
2032 FFT analyser the sampling frequency was 65 kHz, while the chosen
frequency span 12.8 kHz included all relevant frequency information. The
sampling interval was 30.5µs and record length 62.5 ms. Transient analysis of
measurement data was done with a rectangular window as it provides equal
weighting across the measurement period. The excited acoustic waves were
registered and the input signal of 2048 samples has been processed.

3 Analysis and Results

In the investigation, the wavelet transforms were performed on the exponen-
tially time-decaying frequency-dependent signals. The analysis was performed
by using the Morlet wavelet function ψ(τ), which depends on a nondimensional
‘time’ parameter τ [2, 4, 3]. The Morlet wavelet ψ(τ) consists of a plane wave
modulated by a Gaussian, such that:

ψ (τ) = π−
1
4 · ei·ω0·τ · e− τ

2

2 (1)

where ω0 is the nondimensional frequency—in our case ω0 = 6 to satisfy
the admissibility condition. The wavelet transform Wn(xn, s) of a discrete
sequence xn (where xn = f(n · δt)) is defined as the convolution of xn by a
scaled and translated version of wavelet function ψ(τ) as:

Wn (xn, s) =
N−1∑

n=0

xn · ψ∗
[

(n′ − n) · δt
s

]
A (2)
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The set of scales s for use in the nonorthogonal wavelet analysis were defined
as fractional powers of two:

sj = s0 · 2j·δjj = 0, 1, 2, . . . , J =
1

δj
· log2

(
N · δt
s0

)
(3)

where s0 is the smallest resolvable scale and J determines the largest scale.
The s0 was chosen such that the equivalent Fourier period is approximately
2 · δt. Adequate sampling within the scale is provided by a δj of about 0.5
for the Morlet wavelet. Smaller values of δj give finer resolution; to provide
a smooth picture of wavelet power, δj = 0.25 was used in the analysis. The
time-frequency (or scale) representation of the energy concentration of the
wavelet transform (WT) is called the ridge. The dominant features of each
map are extracted by identifying correlation peaks [6]. Each peak in WT map
represents the arrival time of a wave travelling with the group velocity. For
a harmonic waves propagating in L direction with small angular frequency
difference ∆ω, the group velocity cg at the mean angular frequency ωg can
be defined as cg = ∆ω/∆k, where k is the wave number. The magnitude of
WT takes its minimum value at s = ω0/ωg and x = (∆k/∆ω) · L = L/cg.
Therefore, for a fixed distance L, a three-dimensional plot of |Wn(xn, s)| on
the (x, s) plane has a peak at (x, s) = (L/cg, ω0/ωg). In other words, the
location of the peak on the WT map indicates the arrival time x = L · cg of
the wave having angular frequency ωg = ω0/s.
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Fig. 1. Wavelet transform of sound signal in polybutilene pipe

In Fig. 1 is shown the wavelet transform of acoustic signal in polybutilene
(PB) pipe. The influence of wall elasticity significantly alters the speed of
sound (which is at zero frequency limit 470 ( + 34/ − 25)m/s (at 95% con-
fidence interval), as obtained from the map), while the structural damping
causes wave attenuation. The confidence interval is defined as the probability
that the true wavelet power at a certain time and scale lies within a certain
interval about the estimated wavelet power. The confidence interval, defined
as Wt2n (xn, s), is then
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2

χ2
2

(
p
2

) · |Wn (xn, s)|2 6Wt2n (xn, s) 6
2

χ2
2

(
1− p

2

) · |Wn (xn, s)|2 (4)

where p is the desired significance (p = 0.05 for the 95% confidence interval)
and χ2

2

(
p
2

)
represents the value of χ2 at p/2.

There are two significant phenomena that appear when the pipe wall
yields. With rigid walls, the lowest order mode is truly a plane wave mode, but
with elastic walls, the lowest order mode exhibits a dispersive sound speed,
which is at all frequencies slower than the free field value. With rigid walls,
the higher order modes exhibit a cut-off frequency, that is, there is a fre-
quency below which each higher order mode will not propagate, hence at low
frequency, the plane wave mode exists alone. With elastic walls, this is no
longer true. At least one higher order mode can exist down to zero frequency.
The time-frequency distribution of the magnitude of the WT peaks depends
on frequency of group velocity. Thus the changes in wavelets that correlate
highly with the signal at different times indicate the changes in features of
the signal at time progresses.
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Fig. 2. Wavelet transform of sound signal in polypropylene pipe

Similar values were obtained for another viscoelastic pipe material (PP
- Fig. 2), where the influence of wall elasticity also significantly alters the
speed of sound (which is at zero frequency limit 380 ( + 32/− 28)m/s at 95%
confidence interval). Since the speed of sound in fluid-filled pipes depends on
the pipe wall material, this changes the effective bulk modulus.

4 Conclusions

The wavelet analysis was applied to the acoustic signal in order to analyse the
structural features of the fluid-filled viscoelastic pipes. The main object was
to reveal the influence of physical properties of pipe wall material on acoustic
wave propagation. Wavelet transform of non-stationary acoustic signals was
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used to identify the frequency-dependent fluid sound speed. The dominant
features of each map are extracted by identifying correlation peaks. Each peak
in WT map represents the arrival time of a wave travelling with the group
velocity. Using the time-frequency distribution of the WT, the dependency on
frequency of group velocity and attenuation is evaluated. The influence of wall
elasticity significantly alters the speed of sound, while the structural damping
causes wave attenuation. The dispersive waves appear in he map as curved
ridges that are asymptotic to the resonant frequency. Successive reflections
appear in the map as families of high wavelet coefficients at constant period
(or frequency). By measuring the time separation between ridges at a given
frequency, the wave velocity at that frequency can be calculated. In the pipe
with semi-rigid wall, the lowest order mode is truly a plane wave mode, but in
the pipes with elastic walls, the lowest order mode exhibits a dispersive sound
speed, which is at all frequencies significantly slower than the free field value.
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Summary. In many science and engineering problems, one observes smooth be-
haviour on macroscopic space and time scales. However, sometimes only a micro-
scopic evolution law is known. In such cases, one can approximate the macroscopic
time evolution by performing appropriately initialized simulations of the available
microscopic model in small portions of the space-time domain. This coarse-grained
time-stepper can be used to perform time-stepper based numerical bifurcation anal-
ysis. We discuss our recent results concerning the accuracy of the proposed methods.

Key words: coarse-graining, multiscale simulation, bifurcation analysis.

1 Introduction

Many systems for which only a microscopic evolution law is known, exhibit
smooth behaviour on macroscopic space and time scales. In such systems, the
evolution in the microscopic space takes place on a lower-dimensional mani-
fold (sometimes called the slow manifold). For such time-dependent multiscale
problems, a “coarse-graining” approach which exploits this property has been
proposed [3]. It is assumed that one knows which variables determine evolu-
tion on macroscopic time and length scales, but one is unable to obtain an
explicit closed macroscopic model. The key idea is to extract information on
the evolution of these macroscopic variables through appropriately initialized
simulations using the (given) microscopic evolution law. This information is
then used to construct a “coarse-grained” time-stepper for the macroscopic
variables, which consists of (1) construction of one or more microscopic initial
states corresponding to the macroscopic initial condition (lifting); (2) sim-
ulation using the microscopic evolution law and (3) computation of a new
macroscopic state (restriction). To reduce the computational cost, the patch
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dynamics scheme was proposed, which performs the simulations only in small
portions of the space-time domain [3].

Once an accurate coarse-grained time-stepper is constructed, one can per-
form more general tasks, such as the computation and stability analysis of
steady states and periodic solutions using existing time-stepper based nume-
rical bifurcation analysis techniques, e.g., [4].

Here we focus on two aspects of this coarse-graining approach, patch dy-
namics for diffusion problems and coarse-grained numerical bifurcation analy-
sis of lattice Boltzmann models. In both cases the macroscopic model is known
explicitly, which allows for a detailed study of the numerical accuracy.

2 Patch Dynamics

We consider the following homogenization problem for diffusion

∂tu = ∂x (a (x/ε) ∂xu) , a(y) periodic in y, ε << 1. (1)

The solution of this partial differential equation (PDE) is highly oscillatory in
space, but it is known from theory [1] that the macroscopic, averaged solution
U(x, t) satisfies a diffusion equation with constant diffusion coefficient a∗,
which we assume to be unknown. The goal of patch dynamics is to perform
simulations of this averaged equation, making only use of (1) in small portions
of the space-time domain.

To obtain the averaged solution using an equidistant, macroscopic mesh
of width ∆x, we consider a small interval (box) of length h around each mesh
point, as well as a larger buffer box of size H > h (Fig. 1, left). The coarse-
grained time-stepper, called gap-tooth scheme [3, 7], is constructed as follows:

1. Lifting. Define the initial condition of (1) in each box as a Taylor expan-
sion, based on the (given) box averages Uni , i = 0, . . . , N , at (xi,tn),

ũi(x, tn) = D0
i +D1

i (x−xi)+D2
i (x−xi)2/2, x ∈ [xi−H/2, xi+H/2], (2)

with Dk
i , k > 0 a finite difference approximation for the k-th spatial

derivative at xi, and D0
i chosen to ensure (1/h)

∫ xi+h/2
xi−h/2 ũi(ξ, tn)dξ = Uni .

2. Simulation. We compute the box solution ũi(x, t), tn < t < tn +∆t, by
solving equation (1) in the interval [xi −H/2, xi +H/2] with the built-in
boundary conditions of the microscopic code.

3. Restriction. We average ũi over the inner box of size h only

Un+∆
i = (1/h)

∫ xi+h/2

xi−h/2
ũi(ξ, tn+∆)dξ.

We use the larger box of size H to “shield” the effects of the artificial bound-
aries from the domain of interest (the box of size h). This works if the simula-
tion is performed over short enough time intervals ∆t, and H is large enough.
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Fig. 1. Left: Schematic representation of the gap-tooth scheme with buffers. Right:
‖F̃ − F‖ as a function of H for ∆t = 1 · 10−7, 1.7 · 10−6, 3.3 · 10−6 and 4.9 · 10−6.

To reduce the computational effort in time, we use the gap-tooth scheme
as a time derivative estimator F̃ for the unavailable equation, which we then
combine with a macroscopic forward Euler scheme. The resulting scheme is

Un+1 = Un +M∆tF̃ (Un;H,h,∆t) = Un +M(Un+∆ − Un),M � 1. (3)

We showed [6] that the error of F̃ is bounded by

‖F̃ − F‖ ≤ C‖h2 + ε/∆t+∆t2 + E(∆t,H)‖, (4)

where F is the time derivative of the finite difference approximation of the
macroscopic equation on the same mesh, and E(∆t,H) is the error due to the
boundary artefacts in each box. Figure 1 (right) shows the error for a(y) =
1.1+sin(2πy), ε = 1 ·10−5, h = 2 ·10−3 and ∆x = 0.1. Then a∗ ≈ 0.45825686.
We see that E(∆t,H) decreases faster than exponentially with H. The rate
of decrease is higher for smaller ∆t, but the optimal accuracy is lower, see (4).

3 Coarse-grained Numerical Bifurcation Analysis

As the macroscopic system, we consider the FitzHugh-Nagumo PDE [8]
{
∂tρ

ac = ∂xxρ
ac + ρac − (ρac)3 − ρin,

∂tρ
in = din ∂xxρ

in + λ(ρac − a1ρ
in − a0),

(5)

with homogeneous Neumann boundary conditions on the one-dimensional do-
main [0, 20]. The variables ρac(x, t) and ρin(x, t) are the activator and inhibitor
concentration. We set din = 4, a0 = −0.03, a1 = 2 and vary λ ∈ [0, 1]. As the
microscopic model, we used an equivalent lattice Boltzmann (LB) BGK model
[5]. The LB variables are the distribution functions f sj (x, t) (with s ∈ {ac, in}),
defined on a space-time lattice with spacing δx and δt respectively, for “par-
ticle” velocities vj = j δx/δt with j ∈ {−1, 0, 1}. The concentration, our
macroscopic variable, is then defined as

ρs(x, t) =
1∑

j=−1

fsj (x, t). (6)
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The coarse-grained time-stepper for this LB model is constructed as fol-
lows. Given the initial density ρs(x, t), the lifting can be done in a number of
ways. Good results were obtained with f sj (x, t) = (1/3) ρs(x, t). This scheme
initializes the LB model close to the correct point on the “slow manifold” [10].
Next, we run the LB model over a time interval ∆t, after which we compute
ρs(x, t + ∆t) from (6). This procedure is repeated within the time interval
[0, T ]. Due to errors in the lifting step, ∆t has to be large enough [10], but
nonetheless small phase shifts remain. In [10] we showed that large errors
can occur if the lifting is not performed properly. More sophisticated lifting
schemes (as in [2]) are currently under investigation.

We performed a numerical bifurcation analysis of both the steady and
periodic solutions using the Newton-Picard method [4, 9]. The solutions and
their stability-determining (dominant) eigenvalues are computed through calls
to the time-stepper only. In our case, the time-stepper is either (a) a Crank-
Nicolson discretization of the PDE (5), (b) the coarse-grained LB time-stepper
and (c) the full LB model [9].

Figure 2 shows the bifurcation diagram for periodic solutions. We use
δx = 0.1, δt = 0.001 and ∆t ≈ 5. The periodic solution branch has a fold
point at λ ≈ 0.00087 and meets at λ ≈ 0.0183 with a branch of steady states
in a Hopf point. Although the unstable part of the branch after the fold has al-
most the same (λ, T )-projection as the stable one, the corresponding solutions
are different. The solution curves for the coarse-grained LB with appropriate
lifting, the full LB and the PDE model as wel as the position of the bifurcation
points (determined by monitoring the dominant eigenvalues) correspond very
well; their differences are of the order of the PDE discretization error.

4 Conclusions

We constructed different coarse-grained time-steppers to simulate the smooth
macroscopic evolution of (reaction-)diffusion problems. First, we focused on
increasing space-time efficiency using the patch dynamics scheme, where we
introduced buffers to cope with artifical boundary effects. Secondly, we per-
formed time-stepper based numerical bifurcation analysis of a coarse-grained
lattice Boltzmann model and showed that the results correspond with those of
the full lattice Boltzmann model and of the equivalent PDE. Further details
can be found in [6, 7, 9, 10].
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ing through project G.0130.03. This paper presents research results of the Belgian
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an NSF/ITR grant.
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Summary. Molecular dynamics simulations are typically very costly. We investi-
gate whether optimal prediction, a method to approximate the mean solution of a
large system of ordinary differential equations by a smaller system, can in princi-
ple be applied to speed up computations. A one-dimensional, solely classical model
problem, describing some aspects of coating a copper layer onto a silicon crystal, is
considered. Asymptotic methods are employed to approximate the high-dimensional
conditional expectations, which arise in optimal prediction. Results of a comparison
of the thus derived smaller system with the original system are shown.

Key words: optimal prediction, molecular dynamics, surface coating, hop-
ping, Laplace’s method, low temperature asymptotics.

1 Problem Description

Computations in molecular dynamics are typically costly due to a large num-
ber of atoms having to be computed over a large number of time steps. We in-
troduce a one-dimensional model problem and investigate whether the method
of optimal prediction can be applied to reduce the number of atoms being
computed.

1.1 Industrial Problem

In the production of semiconductors a thin layer of copper has to be coated
onto a silicon crystal. The crystal is bombarded by copper atoms, such that
a copper layer forms on top. The time between two copper atoms hitting the
crystal surface is about 10−4 seconds, while the system is out of its ther-
modynamical equilibrium for only 10−11 seconds after one copper atom has
impacted. Hence, the system is in equilibrium nearly all the time.

However, even in equilibrium, single copper atoms can penetrate deep into
the crystal due to atomic hopping: A copper atom gains by accident enough
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energy to overcome the potential barrier between two layers in the silicon
crystal and hops to a neighboring cell. In practice, a clear separation between
the copper layer and the silicon crystal is desired.

1.2 ITWM Project

The above described process is investigated in the Institute for Industrial
Mathematics (ITWM), using molecular dynamics simulations [3]. The ITWM
simulations include quantum mechanical effects. In order to speed up compu-
tations, it is desired to compute the 50 top layers of the crystal exactly, while
the lower layers’ dynamics should be replaced by something cheaper to com-
pute, such as choosing fewer atoms (coupling of length scales) or introducing
a continuum (partial differential equations). In the following, we show that
optimal prediction can hold as another possibility to reduce the number of
unknowns.

1.3 One Dimensional Model Problem

We introduce a one-dimensional model problem which preserves the properties
of interest from three dimensions and also allows atomic hopping. We consider
purely classical aspects of the dynamics. The pair potential between two silicon
atoms is taken from the three-dimensional case (Lennard-Jones potential).
The pair potential between silicon and copper, however, is changed to be finite
at zero distance, i.e., silicon and copper can interchange places (hopping),
provided their energy is high enough.

2 Optimal Prediction

Optimal Prediction was introduced by Chorin, Kast, Kupferman [2], as a
method for underresolved computation, i.e., reducing computational effort by
using prior statistical information. Sought is the mean solution of a system,
where part of initial data is known and the rest is sampled from an underly-
ing measure. Optimal prediction approximates the mean solution by a system
smaller than the original system. Consider a 2n-dimensional Hamiltonian sys-
tem

q̇ = ∂H
∂p , ṗ = −∂H∂q (1)

with Hamiltonian function

H(q,p) = 1
2

n∑

i=1

p2
i

mi
+ V (q). (2)

The system may be distributed according to the canonical ensemble

f(q,p) = Z−1e−βH(q,p), β = (kBT )−1. (3)
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Assume that only m of the n atoms are of interest, i.e., q̂ = (q1, . . . , qm) and
p̂ = (p1, . . . , pm) are sought, while q̃ = (qm+1, . . . , qn) and p̃ = (pm+1, . . . , pn)
should be averaged out. Of the initial conditions only q̂(0) and p̂(0) are known,
while q̃(0) and p̃(0) are sampled from the corresponding conditioned measure.
Introducing the conditional expectation projection

Pu = E[u|q̂, p̂] =

∫ ∫
u(q̂, q̃, p̂, p̃)e−βH(q̂,q̃,p̂,p̃)dq̃dp̃∫ ∫

e−βH(q̂,q̃,p̂,p̃)dq̃dp̃
. (4)

One can show that the mean solution is the projection P applied to the
solution. Optimal prediction sets up a 2m-dimensional system which arises
when applying P to the right-hand side of the original system:

q̇op = E
[
∂H
∂p |q̂, p̂

]
, ṗop = −E

[
∂H
∂q |q̂, p̂

]
. (5)

Hald showed in [1] that if a system is Hamiltonian, then its optimal prediction
system is also Hamiltonian with Hamiltonian function

H(q̂, p̂) = − 1
β log

(∫ ∫
e−βH(q̂,q̃,p̂,p̃)dq̃dp̃

)
(6)

= 1
2

m∑

i=1

p2
i

mi
− 1
β log

(∫
e−βV (q̂,q̃)dq̃

)

︸ ︷︷ ︸
=V(q̂)

. (7)

2.1 Low Temperature Asymptotics

Note that (7) involves an (n−m)-dimensional integral, which for a general po-
tential V cannot be evaluated explicitly. We approximate expression (7) using
Laplace’s method [4]. Assuming that for any fixed q̂, the potential V (q̂, r) has

a unique minimizer r(q̂) and that the Hessian Hq̃V = ∂2V
∂q̃2 (q̂, r(q̂)) is regular

(see [5] on these assumptions), we can perform an asymptotic expansion for
low temperature, i.e., β →∞

∫
e−βV (q̂,q̃)dq̃ =

∫
e−β(V (q̂,r)+ 1

2 (q̃−r)THq̃V (q̃−r))dq̃

= e−βV (q̂,r)

∫
e−

β
2 (q̃−r)THq̃V (q̃−r)dq̃

= e−βV (q̂,r) (2π/β)
n−m

2 |detHq̃V |−
1
2 .

(8)

The last expression is obtained using the transformation rule. Resubstitution
yields the final result

V(q̂) = V (q̂, r) + 1
2β log |detHq̃V |+O( 1

β2 ). (9)

In the sequel we will use the zero temperature limit only
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V0(q̂) = V (q̂, r(q̂)). (10)

Note that the high-dimensional integration has been replaced by high-dimen-
sional minimization in finding r(q̂). This can be interpreted as: Given m real
atoms, place n−m virtual atoms, such that the potential energy V (q̂, r(q̂)) is
minimized. Using the fact that ∂V0

∂q̂ (q̂) = ∂V
∂q̂ (q̂, r(q̂)), one can derive a new,

and merely (n+m)-dimensional, system of equations of motions

˙̂q = M−1 · p̂
˙̂p = ∂V

∂q̂ (q̂, r)

ṙ =
(
∂2V
∂q̃2 (q̂, r)

)−1

· ∂2V
∂q̂∂q̃ (q̂, r) ·M−1 · p̂.

(11)

Here M is a diagonal matrix containing the atoms’ masses.

2.2 Boundary Layer Condition

In a crystal, atomic potentials typically reach only over k ≈ 10 atomic dis-
tances. Consequently, in system (11) only the first k virtual atoms have to be
computed, the others align equidistantly while following the potential mini-
mum. This allows to reduce (11) to a (2m+k)-dimensional system. The new
system can be interpreted as a system of m atoms with a boundary layer
condition given by k virtual atoms.

2.3 Computational Speed Up

In the model problem the optimal prediction system (11) with n−m virtual
atoms did not yield any speed up, but the system with only k virtual atoms
did. The choice m = n

2 resulted in a speed up factor of 2 for n = 50 and a
speed up factor of 6 for n = 100.

3 Comparing Optimal Prediction to the Original System

The optimal prediction system described in Subsection 2.2 is compared to the
original system in terms of statistical quantities, which are obtained by Monte
Carlo sampling. Note that error bounds in phase space can be derived from
equation (9), however, these are irrelevantly large. Two systems may signifi-
cantly deviate in phase space, while exhibiting identical statistical mechanics.
We investigate how well copper diffusion coefficients and energy fluctuations
are preserved. In Fig. 1 one can observe that the diffusion behaviour of a
copper atom in the silicon crystal is nonlinear, and this behaviour is reflected
well by the optimal prediction system. In Fig. 2 the variance of the energy of
the m real atoms
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∫ t

0

|Eleft(t)− Eleft(0)|2dt (12)

is plotted in a histogram plot. Both systems yield the same average energy
fluctuation. However, optimal prediction yields fewer small and fewer high
fluctuations. A possible reason for this effect could be the fact that the virtual
atoms have no momentum and hence no free energy exchange is possible as
it is with the full system.

Another important discrepancy is that the new system does not reproduce
the correct behaviour in the presence of non-equilibrium effects. A sonic wave
which normally travels through the crystal is instead reflected at the wall
between real and virtual atoms.

4 Conclusions and Outlook

Optimal prediction, in combination with asymptotic methods, can in princi-
ple be applied in low temperature molecular dynamics to reduce the number
of unknowns. In our one-dimensional model problem, the new system yields
the correct diffusion behaviour, while it produces a discrepancy in the energy
fluctuations. Also, non-equilibrium effects, such as sonic waves, are not repro-
duced correctly. Further research may on the one hand consider more complex
three dimensional problems, on the other hand try to remedy the discrepan-
cies, in particular consider non-equilibrium effects. A deeper discussion can
be found in [5].
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Summary. The chart surface approach, a variational grid generation method for
surface grids, is applied to CAD models describing ship hulls and propellers.

Key words: CAD, CFD, surface grid, variational design

1 Introduction

A CAD model and a CFD mesh both provide a geometric representation of
some object, but these representations are very different in nature. In CAD
the main objective is to describe with high accuracy the shape of the object
to be produced. Central concepts are B-spline surfaces and boundary struc-
tures. A corresponding CFD mesh is often much rougher. The high level of
detail represented in the CAD model is in general not required, and the pro-
cessing time of the analysis will depend on the size of the geometry model.
CFD requires an exact match between the various elements in the geometry
model, while in CAD they normally match only within a tolerance. The main
objective of this article is to look at how a surface grid for use in CFD can be
obtained from a CAD model in the context of ship design.

The work presented here has been performed in the two EU projects Fan-
tastic and Leading Edge. Fantastic was concerned with shape optimization of
ship hull forms, see [7]. In Leading Edge an investigation of tip vortex cav-
itation on propellers is carried out. Both projects perform CFD calculations
and the transition from a CAD model to a geometry model suitable for CFD
computations is an important issue. This article focuses on the generation of
surface grids from CAD models, and in particular on chart surfaces, which
are a tool to assist in this process.

Grid generation is a significant part of a CFD application, and much of the
time spent on grid generation is used for making a surface grid. [5] discusses
this topic. Surface grids will then often be used to generate volume grids,
where the quality and the density of the surface grid are important parameters
regarding the reliability of the final CFD results.
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Block structured grids are often found appropriate for CFD solvers, and are
the type of grid to be addressed in this context. Adjacent blocks are required
to have identical grid nodes at the common boundary, and the grid spacing
should vary gradually over a block boundary. The chart surface method uses
an approach based on variational design to make boundary fitted grids in one
block. See also [1] for use of geometrical model tools in grid generation.

In general, high density of the grid points gives more accuracy, but the
computations using this grid will take longer. Not all features in a CFD com-
putation can be foreseen a priori. An initial grid may need to be modified for
instance by refining the grid in critical areas. The outcome of the CFD com-
putation may be a need to modify the initial geometry model. In this context
a tight coupling between the CAD model and the CFD mesh is recommended.

2 Chart surfaces

One chart surface corresponds to one computational block, and a collection
of chart surfaces provides a link between the CAD model and the CFD mesh.
Each chart surface corresponds to a number of surfaces in the CAD model,
which may be trimmed or not. The actual way of dividing the model into
surfaces is normally of no interest for the meshing application. The aim is to
replace the original parameter domains corresponding to a surface set with one
domain that can serve as the computational block, where a mapping between
the new and the original parameter domains is provided.

The following procedure defines a chart surface or computational block:

� The topology of the surface set is computed and a relation between surface
boundaries and the parameter domain of the chart surface is defined.

� Sample points are fetched from the surfaces and parameterised.
� The parameterisations of the points from the individual patches are

mapped to the composite parameter domain. The parameter domain of
one surface maps to a closed polygon in the parameter domain of the
chart surface. Keeping the relation between corner points of the original
surface and the composed parameter domain provides a back-mapping.

� A tensor-product B-spline surface is defined on the new domain. This
surface will approximate the sample points, but the surface also minimizes
a smoothness functional, see expression( 1).

A chart surface is smooth, and has smooth iso-parametric curves. Evalu-
ation in a uniform net gives a very regular grid which is not necessarily what
we want. Along the leading edge of a propeller, for instance, there is a need
for a tighter grid than in other areas. To allows a grid stretching independent
from the parameterization of the chart surface, grid distribution functions are
introduced to reparameterise the chart surface. This facilitates a tighter grid
in some parts of the model. A chart surface has knowledge about its adjacent
chart surfaces and in combination with the grid distribution functions this
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provides the means to get a smooth size distribution of grid elements across
block boundaries.

A mesh over the entire surface set is generated by evaluating the set in a
grid of points applying the following procedure:

� Apply the grid distribution function to compute the parameter value of
the current grid point.

� Evaluate the approximating surface in this parameter value.
� Find the original surface corresponding to the parameter value. There is a

mapping from the original surfaces to the parameter domain of the approx-
imating surface defining a planar subdivision of this domain. Identifying
the original surface corresponding to the current point is equivalent to
locating a point in a planar graph.

� Compute the closest point in the original surface set to the current point in
the approximating surface. A good starting point for this step is computed
from the back-mapping information of the chart surface.

The approximating surface belonging to the chart surface is represented
as a tensor product polynomial B-spline surface F with surface coefficients−→c . See [4] for background information on splines.

An initial surface is updated by approximating a set of points, {a}Rr=1,
evaluated from the original surface set. Simultaniously to the point approxi-
mation, smoothing is performed by applying the following functional:

min−→c
J(F ) =

= min−→c

[ ∫ ∫

Ω

∫ π

0

3∑

l=1

ωl

(∂lF (u+ r cosϕ, v + r sinϕ)

∂rl

∣∣∣
r=0

)2

dϕ du dv

+ ω4

R∑

r=1

(
F (ur, vr)− ar

)2]
(1)

Some coefficients of F situated at the surface boundary are defined due to
the need of maintaining exact continuity between adjacent chart surfaces.
The remaining coefficients are found by differentiating the functional J with
respect to the free coefficients and solving the resulting linear equation system.

The first three terms in the functional perform smoothing and are included
to improve the quality of the surface and to make sure that a solvable linear
equation system is created. Directional derivatives of the surface of varying
orders are at all points in the parameter domain, Ω, integrated around a circle.
This expression is again integrated over Ω. Minimizing 1st derivatives is an
approximation to minimizing the area of the surface, 2nd order derivatives
approximate minimization of curvature and 3rd order variation in curvature.
For these approximations to be good, it is important for the points {a} to
have a close to iso-metric parameterisation. Some details are elaborated in
[6]. More smoothing functionals can be found in [3].
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3 Examples and Future Work

Often the CAD model of a ship hull will consist of a high number of sur-
face patches. Each patch has a simple shape, but their number implies some
complexity. Chart surfaces can be used to structure the patches into suitable
computational blocks reducing the significance of the division of the CAD
model into a lot surfaces.

Fig. 1. Patch structure of a ship hull and a detail of the surface grid

Fig. 2. Surface grid corresponding to the chart surfaces

Figure 1 shows the patch structure of a CAD model of a hull to the left and
a detail of the corresponding surface grid to the right. The division into blocks
is shown by different shades of colours. The nearly complete surface grid is
shown in figure 2. The distribution of the grid cell sizes could be improved
along the long blocks in the aft part of the ship, otherwise the distribution is
good.

On the other hand, propellers have a complex geometrical shape, such as
the conventional propeller of figure 3. It is rounded along the leading edge
while the trailing edge is sharp. The tip is represented as a singular point in
the surface model. The blade is trimmed towards the hub. The middle picture
illustrates the parametrisation of the blade. The constant parameter curves
join in one point at the tip. To the right is the surface grid. Each side is divided
into 4 blocks: in the tip area, along the leading edge, along the trailing edge
and in the inner of the blade side, see also [2].

One motivation for introducing the chart surface is to create a tight link
between the CAD model and the CFD mesh. Such a tight connection will
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Fig. 3. Blade of conventional propeller

simplify mesh updates and refinement and also geometry updates of the CAD
model based on simulation results. Currently, the path from the CAD model
to a surface grid using the concept of chart surfaces is developed. The road
back to perform geometry updates remains as future work.

Acknowledgement. Supperted in part by the EU projects Fantastic,GRD1-1999-
10666, Leading Edge, G3RD-CT-2002-00818, and AIM@SHAPE, IST-NoE 506766.
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Summary. Strongly damped mechanical systems arise, for example, in vehicle dy-
namics and in modelling joints in biomechanics. Standard explicit integrators be-
come unstable unless very small time steps are chosen. We are interested in the nu-
merical solution of such systems with step sizes that are independent of the damping
parameter. The smooth motion of the mechanical system is expanded in terms of
solutions of differential-algebraic systems of index 2. These results hold for analyt-
ical solutions as well as for numerical solutions of suitable methods such as Radau
collocation. In the border case of big damping constants it turns out that the error
of numerical solutions of the strongly damped mechanical system is bounded by
errors for the differential algebraic systems.

Key words: numerical integration, Runge-Kutta methods, strongly damped
mechanical systems, error analysis.

1 Motivation

When strong damping forces arise in mechanical systems, special regard has
to be paid on numerical simulations. An illustrative example for such a situa-
tion is a pendulum where a mass point is coupled to a spring-damper element
via a massless interconnection (see Fig. 1). Simulating this test example with
two different Runge-Kutta methods yields a result that highlights some basic
difficulties. For the time integration, we used a MATLAB implementation [2]
of the code RADAU5 [5], which is a RadauIIA method of order 5. The code
ODE45 is an explicit Runge-Kutta method of order 4 [1]. Both implementa-
tions use an adaptive step size control. The numerical results are shown in
Table 1. In the experiment, we varied the size of the damping constant and
noted the needed numbers of steps and floating point operations (flops). Since
RADAU5 is an implicit method, it is able to handle the different examples
without choosing smaller steps, whereas the step size of ODE45 decreases pro-
portionally to the size of the damping constants. The dashes in the column
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Fig. 1. Pendulum with spring-damper element.

of ODE45 mean that the numerical test was stopped since the iteration took
already to long. (The iteration for the damping constant 102 lasted 4 days
on a workstation with an Athlon XP 1600+ and 1 GB memory). Of course,
the explanation for this behaviour is to be found in the theory of stiff differ-
ential equations. With a growing damping constant, the equations of motion
of the mechanical system get more and more stiff. But also among implicit
Runge-Kutta methods, thereare differences in experiments. In [6] joints of hu-
man models are modelled by the same spring damper elements as in Fig. 1.
In these more complicated biomechanical models it turns out that RadauIIA
methods work significantly better than other implicit methods. We give an
explanation for this numerical behaviour in the following sections.

Table 1. Simulation of the pendulum: numerical results

RADAU5 ODE45
damping constant

in Ns/m2

flops steps flops steps

101 6.51 · 106 209 3.39 · 108 75027

102 1.68 · 106 46 3.4 · 109 753265

103 1.67 · 106 37 - -

105 8.91 · 106 128 - -

107 2.18 · 107 291 - -

A strongly damped mechanical system is represented by the second order
differential equation

M(y)ÿ = f(y, ẏ)− 1

ε
D(y)ẏ (1)
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with a small, positive parameter ε. We assume that, for all y ∈ Rd, the mass
matrix M(y) is symmetric and positive definite and that the damping matrix
D(y) is symmetric, positive semidefinite and of constant rank m. Additionally,
let M , D and f be bounded and sufficiently smooth. The matrix D has a
nontrivial kernel. We denote the dimension of this kernel by l = d−m. Since
D is symmetric and positive semidefinite, the term D(y)ẏ vanishes on the
(d+l)-dimensional submanifold

M0 = {(y, v) ∈ R2d : D(y)v = 0} ⊆ R2d.

2 Expansion of the Analytical Solution

Considering previous works to the related topics of singular perturbation prob-
lems [3] and stiff oscillatory mechanical systems [7] the first task is to show
the existence of an ε-expansion for smooth solutions.

Theorem 1. For N ≥ 1 and 0 < ε ≤ ε0 there is a (d+l)-dimensional mani-
fold Mε, constructed by the bijection

Ψε :M0 →Mε : (y0, ẏ0) 7→ (yε, ẏε)

with Ψ ε = id + O(ε), and an ε-independent interval [0, T ], such that the fol-
lowing holds: if (y(0), ẏ(0)) ∈Mε, then the solution (y(t), ẏ(t)) of (1) for this
starting value fulfills

(y(t), ẏ(t)) ∈Mε +O(εN ) for 0 ≤ t ≤ T,

and there exist asymptotic ε-expansions

y(t) = y0(t) + εy1(t) + · · ·+ εNyN (t) +O(εN+1),

ẏ(t) = ẏ0(t) + εẏ1(t) + · · ·+ εN ẏN (t) +O(εN+1).

Here (y0(t), ẏ0(t)) ∈ M0 and (yk(t), ẏk(t)) are solutions of differential-
algebraic equations for 0 ≤ k ≤ N that are stated below. The first N deriva-
tives of y are bounded independently of ε.

For k = 0, . . . , l, the coefficients (yk(t), ẏk(t)) are obtained from a differential-
algebraic equation of index 2 + l ([8]).

3 RadauIIA Methods

Proving stability results yields further conditions which restrict the Runge-
Kutta methods to a certain class of methods (see [8]), e.g., RadauIIA methods.
The main properties of these methods are that they are A-stable and stiffly
accurate. Their classical order is p = 2s − 1 and the stage order equals the
number of stages s. One first important result is that also the numerical
solution (yn, ẏn) has an asymptotic ε-expansion.
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Theorem 2. Consider a RadauIIA method with stage order q. Assume that
the starting value (yε0, ẏ

ε
0) is on Mε, i.e., that the solution of (1) with starting

values (yε0, ẏ
ε
0) is smooth. For 0 < ε < h < h0, a unique solution (yεn, ẏ

ε
n) of the

strongly damped mechanical system (1) exists. For nh ∈ [0, T ], approximations
(yεn, ẏ

ε
n) can be represented as ε-expansions

yεn = y0
n + εy1

n + · · ·+ εqyqn +O(εq+1),

ẏεn = ẏ0
n + εẏ1

n + · · ·+ εq ẏqn +O(εq+1),

where ykn, ẏkn are Runge-Kutta solutions of the differential-algebraic systems.
Their initial values (yk0 , ẏ

k
0 ) are chosen as the coefficients of εk in the ε-

expansion of (yε0, ẏ
ε
0).

For the final error result it will be a deciding property that the numerical
methods are suitable methods for the differential-algebraic systems. By using
techniques from [4] we obtain that the error of the RadauIIA method for the
DAE of index 2 is given by

y0
n − y0(tn) = O(hp), ẏ0

n − ẏ0(tn) = O(hp), λ0
n − λ0(tn) = O(hp−1)

uniformly for 0 ≤ tn ≤ T . Here, p is the order of the method and consistent
initial values y0

0 , ẏ0
0 , λ0

0 are used.

A similar result can be derived for the error of the specified class of Runge-
Kutta methods for the DAE of index 2+k. For consistent initial values y0

0 , ẏ0
0 ,

λ0
0 we have

ykn − yk(tn) = O(hq+1−k), ẏkn − ẏk(tn) = O(hq+1−k),

λkn − λk(tn) = O(hq−k)

uniformly for 0 ≤ tn ≤ T , where q is again the stage order of the method.

4 Error Results

With the results of the Sections 2 and 3 we are now able to give an estimate
of the global error.

Theorem 3. Let a Runge-Kutta method according to Sect. 3 with stage order
q be given. Assume that the initial value (yε0, ẏ

ε
0) is on the manifold Mε, i.e.,

the exact solution of (1) with starting values (yε0, ẏ
ε
0) is smooth. For 0 < ε <

h < h0, a unique Runge-Kutta solution of the strongly damped mechanical
system (1) exists. The global error of this solution satisfies

yεn − yε(tn) = y0
n − y0(tn) +O(εhq),

ẏεn − ẏε(tn) = ẏ0
n − ẏ0(tn) +O(εhq)
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uniformly for ε ≤ h ≤ h0 and 0 ≤ tn ≤ T . Here, y0
n, ẏ0

n and y0(t), ẏ0(t) are
Runge-Kutta solutions and exact solutions of the differential-algebraic equa-
tion of index 2, respectively. Their initial values (y0

0 , ẏ
0
0) are the coefficients

of ε0 in the ε-expansion of (yε0, ẏ
ε
0).

From this theorem we obtain the following final result for RadauIIA methods.

Theorem 4. Assume that the initial value (yε0, ẏ
ε
0) is on the manifold Mε,

i.e., the exact solution of (1) with starting values (yε0, ẏ
ε
0) is smooth. For 0 <

ε < h < h0 there exists a unique solution according to the s-stage RadauIIA
method of the strongly damped mechanical system (1) and the global error
satisfies

(yεn, ẏ
ε
n)− (yε(tn), ẏε(tn)) = O(h2s−1) +O(εhs).

Since it is more exceptional that initial values with small perturbations are
given, assuming (yε0, ẏ

ε
0) ∈ Mε is quite restrictive. But with the same tech-

niques as in [7], we are able to derive the estimate

(yn, ẏn)− (yεn, ẏ
ε
n) = O(hρn + εq+1)

for starting values (y0, ẏ0) that satisfy D(y0)ẏ0 = O(h). The positive param-
eter ρ is strictly smaller than one and does not depend on h, ε and n.

These results show that RadauIIA methods are an excellent choice for the
numerical time integration of strongly damped mechanical systems.
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Numerical Simulation of SMA Actuators

G. Teichelmann and B. Simeon

TU München, Zentrum Mathematik M2, Boltzmannstraße 3, 85748 Garching
email: teichelmann@ma.tum.de, simeon@ma.tum.de

Summary. This paper deals with Shape Memory Alloy (SMA) actuators for mecha-
tronic applications. A mathematical model on the macroscopic level is discussed and
a computational framework is introduced. The latter makes use of the method of
lines and results in a system of differential-algebraic equations in time. Some first
simulation results for a 1D wire in the isothermal case illustrate the approach.

Key words: Shape Memory Alloy (SMA), numerical simulation, Partial
Differential-Algebraic Equation (PDAE).

1 Introduction

Shape Memory Alloy (SMA) materials have an enormous potential in techno-
logical applications. By focusing on the particular example of SMA actuators
in mechatronics, we aim here at the development of computational methods
to achieve improved understanding of how such materials perform their func-
tions. SMA applications of industrial interest present major challenges since
numerical methods need to be developed for heterogeneous coupled systems
of partial differential and differential-algebraic equations (PDAEs).

austenite martensite

heating

cooling

Fig. 1. SMA actuated robot finger (left); temperature action on SMA shape (right).
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An example of an SMA actuator in mechatronics is given by the artificial
finger shown in Fig. 1 on the left. It has been developed at the Institute of
Applied Mechanics at the TU München and is driven by NiTi wires that are
heated by electric current and act as flexor and extensor, similar to biological
muscles. Along with theory and experiment, simulation represents an indis-
pensable partner in the advance of such mechatronic applications. In case of
the finger example, one of the key goals is to maximize the speed of the finger
motion while minimizing the risk of failure and heat damage.

The paper is organized as follows. In Section 2, we discuss a mathematical
model that is based on a macroscopic approach and that can be viewed as
generalized viscoplastic constitutive law. Section 3 presents the computational
treatment by the method of lines. A particularly challenging difficulty of the
resulting differential-algebraic system are the discontinuities that mark the
phase changes of the SMA material. Some first simulation results for a 1D
wire in the isothermal case close the paper.

2 Mathematical Model

We discuss a model recently proposed by Helm [2]. Though not resolving the
crystal grid, this model keeps track of the phase changes between austenite
and martensite (Fig. 1 on the right) and is able to reproduce, depending on
the temperature, the main effects of SMA structures.

Let Ω denote the domain in d-dimensional space that is occupied by the
SMA material. As starting point, we formulate the momentum balance law

ρü(t, x) = div σ(u(t, x), εp(t, x), θ(t, x)) + β(t, x)

for the displacement field u : [0, T ] × Ω → IRd and the stress tensor
σ : IRd × IRd×d × IR→ IRd×d, with β standing for the density of body forces
and ρ for the mass density. The stress σ depends on the displacement u,
the so-called plastic strain εp : [0, T ] × Ω → IRd×d and the temperature
θ : [0, T ] × Ω → IR. Furthermore, we have mixed boundary conditions
u(t, x) = uD(t, x) on ∂ΩD and σ(t, x) · ν(x) = τ(t, x) on ∂ΩN with normal
vector ν. Proceeding like in viscoplasticity, we assume for the total strain

ε(t, x) =
1

2

(
∇u(t, x) +∇u(t, x)T

)
, ε(t, x) = εp(t, x) + εe(t, x),

where the first equation expresses the kinematics and the second an additive
split into plastic and elastic strain. The relation between stress σ and elastic
strain εe = ε− εp is then given by the generalized Hooke’s law

σ = 2µ(θ)εe + κ(θ) trεeI − 3α(θ)κ(θ)(θ − θ0)I (1)

with temperature-depending material parameters µ, α, κ, reference tempera-
ture θ0, and identity tensor I.
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Next, we go into the details of the material’s evolution in a point x. There
is a total of 6 possible phase changes between temperature induced martensite
(TIM), stress induced martensite (SIM) and austenite (A). For example, the
transition A→ SIM takes place if the inequalities

∆ψ > 0, f > 0, zSIM < 1, τeff > ‖Xθ‖, εpN ≥ 0 (2)

are satisfied. Herein, N = (σ − X − Xθ)/||σ − X − Xθ|| is the normal to
the yield surface (see below) with the internal stress X and the temperature
dependent stress Xθ, the quantity τeff = ||σ−X|| denotes the effective stress
state, zSIM is the fraction of stress induced martensite, and ∆ψ is the free
energy difference at temperature θ, see [6] for more details.

The evolution equation for the plastic strain εp reads

ε̇p = λ
∂f(σ, θ,X)

∂σ
= λN with yield function f(σ, θ,X) = ||σ−X||−

√
2

3
k(θ)

and the inelastic multiplier λ =

{
f3/ν if A↔ SIM, TIM↔ SIM

0 otherwise.

The fraction of temperature induced martensite behaves according to

żTIM =





− |θ̇|
Ms−Mf

(∆ψ)
|(∆ψ)| A→ TIM

− |θ̇|
Af−As

(∆ψ)
|(∆ψ)| if TIM→ A

−żSIM TIM↔ SIM

0 otherwise

with żSIM =

√
2

3

εp · ε̇p
γd||εp||

The last two cases denote purely martensitic phase changes, where the sum
zTIM + zSIM of temperature induced and stress induced martensite is con-
stant, while in the first two cases a phase transformation between martensite
and austenite occurs. The internal stress X finally satisfies the equation

Ẋ = c1ε̇p − c2|ε̇p|X.
As some parameters depend on temperature, additionally the heat equation

c0θ̇ +
1

ρ
divQ− r = −3ακ

ρ
θ tr(ε̇− ε̇p)−∆e0żTIM

is needed with heat flux Q, energy gap ∆e0, and reference heat capacity c0.
In case of isothermal conditions, however, the heat equation can be omitted

and, moreover, the above evolution equations simplify considerably. Assuming
quasi-stationary deformation, we can write the model then as

0 = div σ(u, εp) + β, ε̇p = γ1(u, εp, ξ), ξ̇ = γ2(u, εp, ξ) (3)

where the internal variables ξ comprise both zTIM and X. The coupled sys-
tem (3) possesses the typical structure of viscoplastic materials [3], and ac-
cordingly, the theory of Alber [1] can be applied to analyse the existence of
solutions. However, the phase changes introduce discontinuities into the right
hand sides γ1 and γ2, which leads to both theoretical and numerical problems.
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3 Numerical Treatment

We concentrate now on a computational framework to solve the model equa-
tions (3) in the isothermal case. Analogously to the discretization of viscoplas-
tic materials, the weak form of the balance equation is formulated in the
function space V = {v ∈ H1(Ω)d : v|∂ΩD = 0} and makes use of the relation
σ = C(ε(u)− εp) derived from (1). Assuming zero Dirichlet boundary condi-
tions for brevity, the projection of the displacement field u to its Galerkin ap-
proximation uS in some subspace S of V can be written as uS(t, x) = Φ(x)q(t)
with Ansatz functions Φ and unknown coefficients q. Correspondingly, the
kinematic equation results in ε(uS) = B(x)q(t), and the discretized momen-
tum balance law reads, cf. [4],

0 = K · q + b(t)−
∫

Ω

BTCεp dΩ (4)

with stiffness matrix K and force vector b.
Applying a quadrature rule to discretize the remaining integral in (4) by

∫

Ω

BTCεp dΩ =̇G · (εp(ζ1), . . . , εp(ζk))
T

= Gεp

requires the knowledge of εp in specific quadrature nodes ζi. Correspondingly,
all variables εp and ξ need to be evaluated in these nodes. In each node ζi it
holds

ε̇p = γ1(u, εp, ξ), ξ̇ = γ2(u, εp, ξ). (5)

Summing up, the differential equations (5) over all quadrature nodes and the
discretized balance law (4) form the DAE

ẏ = γ(y, q), 0 = g(y, q, t) (6)

with y representing plastic strain and internal variables and q the displace-
ments. The function g(y, q, t) is linear in q with the invertible Jacobian
∂g/∂q = K. Thus, the system (6) is of index 1, and a unique solution
q = q(y, t) of the algebraic part g(y, q, t) = 0 can be computed. Even more, an
indirect approach ẏ = γ(y, q(y, t)) can be employed for the time integration
in combination with standard ode solvers and step size control.

However, the discontinuities that arise from the multiple case distinctions
for the phase changes still need special attention. The standard switching point
technique is much too expensive here. A better choice is a regularization

m(x, x0) =

{
0 x < x0

1 x > x0

; mS(x, x0, cS) =
1

1 + exp(−(x− x0)/cS)
,

where the jump at x0 is approximated by a sigmoid function. The constant
cS defines the transition slope and should be chosen carefully.
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Fig. 2. Material behaviour at a) 240◦K, b) 330◦K.

Simulation Example. As final example, a one-dimensional wire [5] is dis-
cretized by linear finite elements under isothermal and quasistationary con-
ditions. Using the smoothed phase transitions from above, we observe an
increased stiffness whenever a transition takes place. So implicit integration
schemes seem to be adequate for this problem, in contrast to the case where the
discontinuities are not regularized. Our test runs with the implicit MATLAB
codes ode23tb/ode15s gave good results, as can be seen in Fig. 2 showing
the plastic strain εp, the stress-strain-diagram and the fractions zSIM (solid
line) and zTIM (dashed line) for temperatures of 240◦K and 330◦K. The wire
was discretized by 10 equidistant finite element nodes and the results of Fig. 2
hold each for all quadrature nodes. A grid refinement in space does not show
any perceptible change of the solution.

One of the next steps ahead is the coupling with heat conduction, which
would allow to reproduce also phase changes from austenite to temperature
induced martensite and vice versa.
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thesis, Technische Universität München, 2003.
6. G. Teichelmann and B. Simeon. Numerical simulation of SMA actuators. Tech-

nical report, 2004.





Color Plates





Color Plates 655

(a) Viscous calculation for Dauphin heli-
copter fuselage at M∞ = 0.044, conver-
gence behavior of mass and k-ω turbu-
lence equations.

(b) Effect of Reynolds num-
ber on convergence for the
RAE 2822 airfoil at M∞ =
0.73, α = 2.8◦.

(Rossow et al., p. 7) Fig. 2.

(Rossow et al., p. 11) Fig. 6. Convergence behaviour of the hybrid TAU-Code
for calculations of viscous flow around a delta wing at M = 0.5, α = 9◦. Comparison
of the baseline Runge-Kutta scheme (RK) and the implicit LU-SGS scheme.
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(Rossow et al., p. 12) Fig. 7. Hybrid Chimera grid for delta wing with a movable
flap.

(a) TFN (b) SOC (c)

(Rossow et al., p. 18) Fig. 15. Viscous calculation of DLR ALVAST configuration
with FLOWer at M∞ = 0.75, CL = 0.5, influence of thrust condition of turbofan
engine, (a) and (b) constant Mach number distribution for TFN and SOC, (c) surface
pressure distribution at cross section η = 33%.

(Rossow et al., p. 19) Fig. 16. Viscous simulation of the ALVAST high-lift
configuration with VHBR (left) and UHBR (right) engine using the TAU-Code,
surface pressure distribution, M∞ = 0.22, α = 12◦, Re = 2× 106.
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(a) Engine interference for ALVAST high-lift configura-
tion with VHBR and UHBR engine M∞ = 0.22, α =
12◦, Re = 2 × 106 , left: nacelle vortex, right: lift distri-
bution of wing and nacelle.

(b) Civil transport high-lift configuration with nacelle
strakes, filled strake grid.

(c) Civil transport high-lift configuration with nacelle strakes,
calculated streamlines and iso-vorticity cut planes.

(Rossow et al., p. 20) Fig. 17.
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(a) 3D flow field of the X-31
configuration at 18◦ angle of
attack, TAU-Code.

(b) X-31 clean wing, left: oil
flow visualization, right: surface
streamlines obtained with TAU-
Code.

(c) Chimera grid sys-
tem around 4-bladed
7A-rotor.

(d) Comparison of pre-
dicted and measured nor-
mal force and pitching mo-
ment coefficients versus az-
imuth for a high-speed for-
ward flight test case of the
7A rotor.

(Rossow et al., p. 22) Fig. 18.
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(a) (b)

(Rossow et al., p. 23) Fig. 19. (a) CP -distribution and friction lines on the EC145
fuselage, visualisation of separation areas on the boot and vertical stabilisers. (b)
Temperature surface distribution and 3D-contour (T=60◦C), visualisation of the
impact of engine plumes on horizontal stabilisers.

(Rossow et al., p. 25) Fig. 21. Coupled aerodynamics and flight mechanics
simulation for a rolling delta wing with trailing edge flaps using the TAU-Code.
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(a) Inverse wing de-
sign using FLOWer,
drag rise lift as
function of Mach
number for base-
line configuration
and optimized
configuration.

(b) Redesign of an installed nacelle using the
TAU- Code, surface pressure distribution and
nacelle profiles in three circumferential sec-
tions.

(Rossow et al., p. 26) Fig. 22.

(Schoenmaker et al., p. 66) Fig. 3. 3D view of a U-turn structure above a
conductive substrate (left). The induced substrate current is shown (right).
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(Schoenmaker et al., p. 67) Fig. 4. 3D view of the Metal-Insulator-Metal (MIM)
capacitor.

(Schoenmaker et al., p. 69) Fig. 6. The layout of the coplanar line under study.
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(Schoenmaker et al., p. 69) Fig. 7. The current distribution at 30GHz in the
coplanar line under study.

(Schoenmaker et al., p. 71) Fig. 12. The geometry of the spiral inductor under
study.
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mesh temperature vr vz

(Kagan & Mattheij, p. 157) Fig. 1. Mesh and velocity components at t = 0,
temperature at t = 0.03 s

(Kagan & Mattheij, p. 158) Fig. 2. Mesh and temperature: left t = 0.6s, right
t = 1.2s
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(Van Kraaij & Maubach, p. 165) Fig. 1. One-dimensional periodic grating in
R3

(Mohr, p. 172) Fig. 1. Electric po-
tential distribution in the unit cube for
boundary conditions (4).

(Mohr, p. 172) Fig. 2. Logarithmic
plot of magnitude of eigenvalues of the
system matrix from (2) for test problem
with 8 elements.
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(Bermúdez et al., p. 236) Fig. 2. Modulus of current density (left) and temper-
ature (right) in the workpiece.
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(Graziadei & Ten Thije Boonkkamp, p. 246) Fig. 3. Dimensionless temper-
ature.
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(Seäıd & Klar, p. 286) Fig. 2. Temperature distribution on the cube (left) and a
section at y = z = 0.5 m for the computed solution by RHT equations and Rosseland
approach (right).
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(Yiotis et al., p. 295) Fig. 2. Profiles of the rescaled film radii for CaF = 10−4

(left) and CaF = 1 (rigth) at two different stages of the process. Liquid clusters are
in black, the fully dry region is in blue.
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(Nassehi et al., p. 301) Fig. 1.

Schematic Representation of an Idealised
Pleat of a Pleated Cartridge

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

(Nassehi et al., p. 301) Fig. 2.

Predicted Pressure Distribution
(Pa) in a Single Pleat Domain

(Nassehi et al., p. 302) Fig. 5. Predicted Pressure Field Distribution (Pa) in the
Quarter Cartridge Domain of Pleated Cartridge Assembly
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laser

workpiece

(Anthonissen et al., p. 357) Fig. 1. Laser surface remelting

Temperature Melt pool Layer

(Anthonissen et al., p. 359) Fig. 2. Numerical results for the first simulation

0 2 4 6 8 101400

1500

1600

1700

1800

1900

2000

t

T

Surface temperature

0 2 4 6 8 10400

600

800

1000

1200

1400

1600

t

P

No control PID control Laser power

(Anthonissen et al., p. 360) Fig. 3. Numerical results for the second simulation:
temperature (top), hardening layer (bottom), surface temperature and laser power
during PID control
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(Morozov, p. 374) Fig. 3.

Buckling mode under the wind
action.

(Morozov, p. 374) Fig. 4. Critical
thicknesses h90 and hφ.
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(Sellier, p. 382) Fig. 1. Initial glass piece geometry with corresponding Finite
Element mesh and boundary conditions. The deformed glass geometry (after cooling)
with the associated map of the residual Von Mises stresses is also shown.
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(Helmig et al., p. 451) Fig. 1. Different scales for flow in porous media.
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(B)

(A) (A)

(A)

(Helmig et al., p. 457) Fig. 4. TCE distribution for Subset A (TCE regions
highlighted by red spots).

block heterogeneity

intrinsic heterogeneities

(Helmig et al., p. 458) Fig. 5. TCE distribution for Subset B (TCE regions
highlighted by red spots, and the fine sand lenses by yellow spots).
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t = 25 sec

t = 50 sec

t = 100 sec

(El Amrani & Seäıd, p. 497) Fig. 1. Animating water waves in a squared pool.
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t = 25 sec

t = 50 sec

t = 100 sec

(El Amrani & Seäıd, p. 498) Fig. 2. Animating water waves in a squared pool
with fixed obstacles.
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(González & Seäıd, p. 520) Fig. 2. Computational mesh and bathymetry of the
strait.
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(González & Seäıd, p. 522) Fig. 3. Flow field for the main diurnal and semidi-
urnals K2, M2, N2 and S2.
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(Hamri et al., p. 586) Fig. 1. The workflow of the analysis model generation:
(a) case of study, (b) tessellated model, (c) envelope around the polyhedron, i.e.
FE map of sizes, (d) adapted model (simulation model), (e) polyhedral model with
boundary conditions, (f) transfert of boundary conditions on the adapted model,
(g) mesh of the adapted model, (h) analysis result.

(Hamri et al., p. 588) Fig. 2. The concept of simplification features: (a) initial
CAD model(B-Rep), (b) polyhedral model, (c) small map of FE sizes attached to
(b), (d) simplification result of (c), (e) large map of FE sizes attached to (b), (f)
simplification result of (e)

(Léon et al., p. 618) Fig. 2. Two examples of a priori criteria, variation of volume
on the left part and variation of sections on the right part.

(Skytt, p. 640) Fig. 1. Patch structure of a ship hull and a detail of the surface
grid
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