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Abstract
In this paper we consider a system of equations that describes a class of
mass-conserving aggregation phenomena, including gravitational collapse and
bacterial chemotaxis. In spatial dimensions strictly larger than two, and under
the assumptions of radial symmetry, it is known that this system has at least
two stable mechanisms of singularity formation (see, e.g., Brenner M P et al
1999 Nonlinearity 12 1071–98); one type is self-similar, and may be viewed as
a trade-off between diffusion and attraction, while in the other type attraction
prevails over diffusion and a non-self-similar shock wave results. Our main
result identifies a class of initial data for which the blow-up behaviour is of the
former, self-similar type. The blow-up profile is characterized as belonging to
a subset of stationary solutions of the associated ordinary differential equation.

Mathematics Subject Classification: 35Q, 35K60, 35B40, 82C21

1. Introduction

We consider the parabolic–elliptic system

nt = div{�∇n + n∇φ} in � × R
+, (1)

�φ = n in � × R
+, (2)

0 = (�∇n + n∇φ) · �ν on ∂� × R
+, (3)

φ = 0 on ∂� × R
+, (4)

n(x, 0) = n0(x) in �, (5)
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where � = B1(0) = {x ∈ R
d : |x| � 1}, d > 2, and �ν is the outer normal vector from the

boundary ∂�. Here, � > 0 is a constant parameter. The initial condition n0 is chosen in
L2(�), radially symmetric, and such that∫

�

n0 dx = 1 and n0(x) � 0 in �. (6)

Equations (1)–(6) define a problem for the unknown mass density n and potential φ. Mass is
conserved by the no-flux condition (3), and therefore (6) implies∫

�

n(x, t) dx =
∫

�

n0(x) dx = 1. (7)

Problem (1)–(6) is a model for the evolution of a cluster of particles under gravitational
interaction and Brownian motion (see [5] and references therein). Here, n represents the mass
density, φ the gravitational potential and � a rescaled temperature characterizing the Brownian
motion. This model also appears in the study of the evolution of polytropic stars, by considering
the evolution of self-interacting clusters of particles under frictional and fluctuating forces [29].
Finally, problem (1)–(6) also arises in the study of the motion of bacteria by chemotaxis as a
simplification (see [21]) of the Keller–Segel model [2, 8, 22, 28]. Here, the variables n and φ

represent the density of bacteria and the concentration of the chemo-attractant.
We view the problem (1)–(6) as an evolution equation in n, since by equations (2)–(3) the

function φ is readily recovered from the solution n. It is known [6] that problem (1)–(6) has
a unique local solution if n0 ∈ L2(�), which satisfies n ∈ L∞(� × (ε, T̃ )) for some T̃ > 0
and for every ε > 0. We restrict ourselves to the analysis of radially symmetric solutions and
write n(r, t) := n(x, t) with r = |x| ∈ [0, 1].

Since we are interested in the question of when and how the system (1)–(6) generates
singularities, we define:

T ∗ = sup{τ > 0 | problem (1)–(6) has a solution n ∈ L∞(� × (ε, τ ])}.
If T ∗ < ∞, then we say that blow-up occurs for (1)–(6), in which case

lim
t→T ∗

sup
[0,1]

n(r, t) = ∞. (8)

Various sufficient conditions for blow-up are known [3, 4, 6, 7].
For d = 3, Herrero et al [19, 20] were the first to study the behaviour of the solution

close to blow-up, using matched asymptotic expansions. Later Brenner et al [10] studied
the problem for 2 < d < 10. They used a numerical approach to describe solutions and
proved the existence and linear stability of similarity profiles. Note, however, that no proof
of convergence or characterization of blow-up in terms of initial data were given in these
references. The principal types of blow-up described in [10, 19, 20] are as follows:

(a) A solution n(r, t) consists of an imploding smoothed shock wave that moves towards the
origin. As t → T ∗, the bulk of such a wave is concentrated at distances O((T ∗ − t)1/d)

from the origin, has a width O((T ∗ − t)(d−1)/d), and at its peak it reaches a height of order
O((T ∗ − t)−2(d−1)/d). This type of blow-up has the property of concentration of mass at
the origin at the blow-up time, i.e.

lim
r→0

[
lim

t→T ∗

∫ r

0
n(y, t)yd−1 dy

]
= C > 0. (9)

This situation is depicted in figure 1 (left).
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Figure 1. The profile n(r, t) for blow-up with (left) and without (right) concentration of mass,
with T = T ∗.

(b) A solution n(r, t) has a self-similar blow-up of the form

(T ∗ − t)n(η
√

(T ∗ − t)�, t) ∼ 
(η) as t → T ∗. (10)

Note that this implies that n satisfies (9) with C = 0. Therefore, no concentration of mass
at the origin occurs at the blow-up time. This blow-up behaviour is depicted in figure 1
(right).

The results of this paper are two-fold. First, we demonstrate rigorously that the self-similar
blow-up structure (10) is an attractor for the system (1)–(6); secondly, we identify an explicit
class of initial data that converges to a self-similar solution of this type. Let us elaborate on this.

Let n0 = n0(r) be such that

χdr
dn0(r) � ‖n0‖L1(Br (0)) for r ∈ (0, 1), (11)

�(n0)r + n0(φ0)r � 0, (rd(φ0)r )r = rdn0 in (0, 1) and φ0(1) = 0, (12)

where χd is the measure of the unit ball in R
d . Suppose also that � � 1/(4dχd), implying that

the solution n = n(r, t) of (1)–(6) blows up at finite time T ∗ > 0 and at the point r = 0 [4].
Finally, assume that the two functions

‖n0‖L1(Br (0)) and
4�rd

2(d − 2)�T ∗ + r2
intersect exactly once in [0, 1]. (13)

Our main result (theorem 2.1) shows that if (11), (12) and (13) hold, then n satisfies

n(0, t) � 2d

(d − 2)
(T ∗ − t)−1 for t ∈ (0, T ∗)

and moreover has a structure near blow-up given by

n∗(r, t) = (T ∗ − t)−1


(
r√

�(T ∗ − t)

)
,

where the function 
 is one of a class of solutions of a steady-state problem; a class that
includes the functions


1(η) := (d − 2)
(2d + η2)

(d − 2 + 1
2η2)2

and 
∗(η) := 1 for η > 0.
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In particular, the initial state n0 ≡ 1/χd and � � 1/(4dχd) satisfy the conditions above
(corollary 2.2). If we relax assumption (13) but assume instead that n satisfies the growth
condition

n(0, t) � M(T ∗ − t)−1 for t ∈ (0, T ∗),

for some constant M > 0, then n has the same structure of blow-up given above (theorem 2.3).
The hypotheses on the initial data (11), (12) and (13) are more natural in the context of a
transformed problem we introduce in the next section. Note, however, that (n0)r � 0 in [0, 1]
implies assumption (11).

This paper is organized as follows. In section 2, we write the problem in terms of a new
variable, thus transforming the system (1)–(6) into a single PDE, and then state our results in
terms of this new formulation. In section 3, we discuss some non-self-similar blow-up patterns
related to case (a). Sections 4, 5 and 6 provide the tools for the proofs of theorems 2.1 and 2.3,
and the arguments are wrapped up in section 7. A rather technical derivation of a Lyapunov
function is given in appendix A, and in appendix B we derive some linear stability results.

2. Precise statements of main results

For radial solutions, the average density function b(r, t) [10] is defined by

b(r, t) := dχd

rd

∫ r

0
n(y, t)yd−1 dy, (14)

This variable turns out to be convenient in the analysis of this system. Note that it has the
same scale invariance as n(r, t), but that solutions are smoother when expressed in terms of b.
For example, if for some fixed t > 0 the density n(r, t) is a delta function at the origin with
unit mass, then b(r, t) = r−d . Let D = (0, 1) and set DT = D × (0, T ) for some T > 0.

Equation (14) transforms system (1)–(6) to the form

bt = χd�

(
brr +

d + 1

r
br

)
+

1

d
rbbr + b2 in DT , (15)

br(0, t) = 0, b(1, t) = 1 for t ∈ [0, T ), (16)

b(0, r) = b0(r) for r ∈ D. (17)

Here, we have redefined t := (1/χd)t. Regarding the initial condition, we assume

b0 ∈ C2(D) and
r

d
(b0)r + b0 � 0 for r ∈ D, (18)

where the second condition is equivalent to n0 � 0 in D. Note that the conservation of the
mass (7) is represented by b(1, t) = 1 for t ∈ [0, T ). As was done for problem (1)–(6) we
define T > 0 to be the maximal time of existence for the average density b(r, t). If T ∗ < ∞
in (8), then,

lim
t→T

sup
[0,1]

b(r, t) = ∞,

where T = T ∗/χd. Using (14), we deduce b(r, t) � 1/rd for r ∈ D, t > 0; this implies single
point blow-up for b(r, t) at the point r = 0. To characterize the asymptotic behaviour near
blow-up of the solution b(r, t) of problem (15)–(18), we study the solutions of the associated
boundary-value problem

ϕηη +
d + 1

η
ϕη +

1

d
ηϕϕη − 1

2
ηϕη + ϕ2 − ϕ = 0 for η > 0,

ϕ(0) � 1 ϕη(0) = 0.

(19)
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If b is a solution of (15)–(18) which blows up at time T > 0 and at the point r = 0, then we
will show that it has the asymptotic form given by

b∗(r, t) = (T − t)−1ϕ

(
r√

χd�(T − t)

)
.

Equation (19) has multiple solutions for 2 < d < 10 [10, 20]. We classify them by counting
the number of times they cross the singular solution ϕS(η) := 2d/η2. For that purpose, we
introduce the set

Sk = {ϕ: ϕ is a solution of (19) that has k intersections with ϕS}.
We shall see that S1 is the relevant subset of solutions of (19) for the characterization of the
type of blow-up considered in this paper. Numerical evidence [10] suggests that S1 contains
only two elements:

ϕ∗(η) = 1 and ϕ1(η) := 2d

(d − 2 + (η2/2))
for η � 0. (20)

For the initial condition, we assume

(b0)r � 0 for r ∈ D (21)

and

χd�

(
(b0)rr +

d + 1

r
(b0)r

)
+

1

d
rb0 (b0)r + b2

0 � 0 for r ∈ D. (22)

We will show that this implies br � 0 in DT and bt � 0 in DT . In terms of n0, assumption (21)
becomes (11) and assumption (22) becomes (12).

Theorem 2.1. Let d > 2 and b0 satisfy (21) and (22). Let b(r, t) be the corresponding solution
of problem (15)–(18) that blows up at r = 0 and at t = T . If

� � �1 := 1

4dχd

and b0(r) intersects T −1ϕ1

(
r√

χd�T

)
once (23)

then

b(0, t) � M1(T − t)−1 for t ∈ (0, T ) (24)

with M1 := 2d/(d − 2). Moreover, T < M1/b0(0), and there exists ϕ ∈ S1 such that

lim
t→T

(T − t)b(η
√

χd�(T − t)) = ϕ(η) (25)

uniformly on compact sets |η| � C for every C > 0.

We remark that there exists a family of b0 satisfying the conditions (18), (21) and (22),
given by b0(r) = K1+K2/(r

d +K3) with positive constants Ki that satisfy K1+K2/(1+K3) = 1
and � < K2/2d2χd. Conditions (18), (21) and (22) are also satisfied for b0 ≡ 1. Note that
condition (23) of theorem 2.1 can be generalized by changing ϕ1 for another solution ϕ of (19).
Since these solutions are only known numerically, the counterparts of M1 and �1 cannot be
given explicitly. The next corollary applies this result to b0 ≡ 1.

Corollary 2.2. Let d > 2, b0 ≡ 1 and � < �1. Then, b(r, t), the corresponding solution of
problem (15)–(17), blows up at r = 0 and at some time t = T < M1; moreover (24) holds
and there exists ϕ ∈ S1 satisfying (25).

Numerical simulations [10] suggest that for an open set of initial data the convergence in
(25) holds for ϕ = ϕ1. This self-similar behaviour may be seen roughly in figure 1 (right), by
imagining n(r, t) replaced by b(r, t) (since n and b scale similarly). In appendix B we show
that ϕ1 is linearly stable (using the result in [10]) and also that ϕ∗ is linearly unstable.
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For more general initial data we have the following result.

Theorem 2.3. Let d > 2 and let b0 satisfy (21) and (22). Assume that b(r, t), the
corresponding solution of problem (15)–(18), blows up at r = 0 and at t = T . If b satisfies
the growth condition

b(0, t) � M(T − t)−1 for t ∈ (0, T ) (26)

with M > 0, then there exists ϕ ∈ S1 such that the convergence (25) holds.

We now briefly discuss the structure of the proofs of these theorems. Following the scale
invariance, we set

τ = log

(
T

T − t

)
, η = r

(χd�(T − t))1/2
, and B(η, τ) = (T − t)b(r, t).

The rectangle DT transforms into


 = {(η, τ ) | τ > 0, 0 < η < �(τ) } where �(τ ) := (χd�T )−1/2eτ/2.

The initial-boundary problem (15)–(18) now becomes

Bτ + B +
1

2
ηBη = Bηη +

d + 1

η
Bη +

1

d
ηBBη + B2 in 
, (27)

Bη(0, τ ) = 0, B (�(τ ), τ ) = e−τ T for τ ∈ R
+, (28)

B(η, 0) = B0(η) := T b0(η(χd�T )1/2) for η ∈ 
(0), (29)

where 
(0) = (0, �(0)). Note that a solution of (19) is a time-independent solution
of (27)–(29). Therefore, the study of the blow-up behaviour of b(r, t) is reduced to the analysis
of the large time behaviour of solutions B(η, τ) of (27)–(29), and in particular stabilization
towards solutions ϕ of (19). The proof of theorem 2.3 consists of two parts. In section 5, we
first prove that ω ⊂ S1, where

ω = {φ ∈ L∞(R+) : ∃τj → ∞ such that B(·, τj ) → φ(·) as τj → ∞
uniformly on compact subsets of R

+} (30)

is the ω-limit set we introduce for (27)–(29). The proof uses the observation that equation
(27), without the convection term (1/d)ηBBη, is the backward self-similar equation for the
parabolic semilinear equation

b̄t = �Nb̄ + b̄2, (31)

where �N denotes the Laplacian in R
N and N = d + 2 [15, 16]. We use the methods for the

analysis of this self-similar equation to prove theorem 2.3. However, due to the presence of the
convection term, a different Lyapunov functional is necessary. This functional is constructed
using the method of Zelenyak [30], which yields a Lyapunov functional in implicit form. In
section 6, we use intersection comparison arguments based on the ideas of Matano [23] to prove
that the ω-limit set (30) is a singleton. With a result on intersection with ϕS , this completes
the proof of theorem 2.3.

Note that theorem 2.3 is similar to a result for the supercritical case (N > 6) for
equation (31), where two different kinds of self-similar blow-up behaviour may coexist [24].

Finally, to obtain theorem 2.1 and corollary 2.2, we use theorem 2.3 and comparison ideas
from Samarskii et al [26, chapter IV].
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3. Discussion on non-self-similar blow-up patterns

In this section, we discuss a family of blow-up patterns, which appears when we refine the
asymptotic expansion for the profile ϕ = ϕ∗ ≡ 1. This situation is closely related to the
blow-up behaviour of (31) with N < 6. If a solution b̄ of (31) with N < 6 blows up at x = 0
and t = T , then,

lim
t→T

(T − t)b̄(η
√

T − t, t) = 1

uniformly on compact sets |η| < C for arbitrary C > 0 [15,16]. Moreover, it has been shown
(see for instance [25, 27]) that a refined description of blow-up gives the existence of two
possible types of behaviour: either

lim
t→T

(T − t)b̄(η
√

(T − t)| log(T − t)|, t) = ϕ̄1(η) (32)

uniformly on compact sets |η| < C, with C > 0 arbitrary; or

lim
t→T

(T − t)b̄(η(T − t)1/2m, t) = ϕ̄m(η) for some m � 2, (33)

uniformly on compact sets |η| < C, with C > 0 arbitrary. Here, the family {ϕ̄i}i�1 is known
explicitly. For problem (15)–(18), it was shown [20] for d = 3 that there exists a refined
asymptotics for ϕ∗ ≡ 1. Extending the argument to all d > 2, these asymptotics suggest a
convergence given by either

lim
t→T

(T − t)b(η
√

(T − t)| log(T − t)|(d−2)/d , t) = ϕ̃1(η) (34)

in the case of d = 3, 4 only, or

lim
t→T

(T − t)b(η(T − t)1/d+1/(2(m+[d/(d−2)]−1)), t) = ϕ̃m(η) (35)

for some m � 2, where [x] denotes the greatest integer � x. An implicit formula for the family
{ϕ̃m}m�1 is given in [10, equation (43)]. The type of convergence in η towards these profiles
is an open problem. In (35), we can formally take the limit m → ∞ and find a non-trivial
scaling,

lim
t→T

(T − t)b(η(T − t)1/d , t) = ϕ̃∞(η). (36)

Note that this limit cannot be taken for the semilinear equation where (33) holds. The
convergence (36) represents the convection-dominant behaviour of (15)–(18), which in terms
of the density n = n(r, t) describes an imploding wave moving towards the origin, as shown
in figure 1 (left). The function ϕ̃∞ is discontinuous (cf [19, (3.16)]),

ϕ̃∞(η) =




2Cd

ηd
for η > C,

0 for η < C,

where 2Cd is the mass accumulated at the origin, which can be chosen arbitrarily. In [19] this
type of blow-up was studied using matched asymptotic expansions. There, it was suggested
that this behaviour is stable and, moreover, it was expected that there exist initial data such
that (36) holds uniformly in η on compact subsets away from the shock. A result of this type
was proved in [12, theorem 3] for a related equation.
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4. Preliminaries

4.1. Estimates

In this section, we develop some estimates for problem (15)–(17), which in turn will imply
bounds for the self-similar problem (27)–(29).

Lemma 4.1. If b0 satisfies (18) then
r

d
br + b � 0 in DT . (37)

Proof. The solution n of problem (1)–(6) satisfies the relation

n = 1

χd

[ r

d
br + b

]
in DT ∗ . (38)

Since n0 � 0 in D, an application of the maximum principle to problem (1)–(6) shows that
n � 0 in DT ∗ . Using this and (38) the result follows. �

To prove the following results, we proceed as in [13] where similar estimates were found
for the semilinear parabolic equation (31).

Lemma 4.2. If b0 satisfies (21) then

br(r, t) < 0 in DT . (39)

Proof. Set w(r, t) := rd+1br(r, t). Differentiating (15), we find

wt − χd�

(
wrr − d + 1

r
wr

)
− 1

d
rbwr =

(
b +

1

d
rbr

)
w. (40)

Assume, for the moment, a stronger assumption on the initial data

(b0)r (r) < 0 for r ∈ (0, 1) and (b0)rr (0) < 0. (41)

This gives w(0, r) = rd+1br(0, r) < 0. Under (41) the function b ≡ 1 is a sub-solution
for (15)–(18), but not a solution; by Hopf’s lemma, w(1, t) = br(t, 1) < 0 for all t > 0, so
that w < 0 on DT , hence br < 0 on DT . To complete the proof, we note that by the strong
maximum principle, if b0 satisfies (21), then, for each t1 ∈ (0, T ) condition (41) holds for the
function b(r, t1). This proves the result. �

Lemma 4.3. If b0 satisfies (21) and assuming that blow-up occurs at time T > 0, then

b(0, t) � (T − t)−1 for t ∈ [0, T ). (42)

Proof. Since the maximum of b in D is attained at r = 0 (by lemma 4.2), we have brr (0, t) � 0.

It follows from (15) that bt (0, t) � b2(0, t). Integrating this inequality on (t, T ) gives the
result. �

Lemma 4.4. If b0 satisfies (22) then bt � 0 for all t ∈ (0, T ).

Proof. Condition (22) implies that b0 is a subsolution for (15)–(17); therefore, b(r, ε) � b(r, 0)

for small ε � 0. By the comparison principle we find b(r, t + ε) � b(r, t) for t ∈ (0, T − ε).
It follows that bt � 0 on DT . �

The next lemma gives a bound on |br | in DT .
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Lemma 4.5. Let b0 satisfy (21) and (22). Then,

χd�b2
r (r, t) � 2

3b(0, t)3 for (r, t) ∈ DT . (43)

Proof. Since bt � 0 and br � 0 in DT , we multiply equation (15) by br and obtain

0 � χd�

∫ r

0
brbrr ds +

1

3
b3(r, t) − 1

3
b3(0, t)

= 1
2χd�[b2

r (r, t) − b2
r (0, t)] + 1

3b3(r, t) − 1
3b3(0, t).

Since b2
r (0, t) = 0 we obtain the desired inequality. �

To conclude this section, we translate the properties of solutions derived above into
estimates for problem (27)–(29). From hypothesis (26) and noting that b � 1 and br � 0 in
DT , we have the a priori bound

0 � B(η, τ) � M for (η, τ ) ∈ 
. (44)

Combining this with (43) and (39), we obtain

0 � −Bη(η, τ ) � M̄ for (η, τ ) ∈ 
, (45)

where M̄ depends on M . Finally, from (42), we get

1 � B(0, τ ) for τ ∈ (0, �(τ )). (46)

4.2. The steady-state equation (19)

We begin by recalling problem (19):

ϕηη +
d + 1

η
ϕη +

1

d
ηϕϕη − 1

2
ηϕη + ϕ2 − ϕ = 0 for η > 0, (47)

ϕ(0) � 1, ϕη(0) = 0. (48)

Condition (48) is required, since B(0, τ ) � 1 for all τ � 0. Equation (47) has three special
solutions:

ϕS(η) = 2d

η2
, ϕ∗(η) = 1, and ϕ∗(η) = 0 for η > 0.

Note that ϕS satisfies

ϕS +
1

2
η(ϕS)η = 0 and 0 = (ϕS)ηη +

d + 1

η
(ϕS)η +

1

d
ηϕS(ϕS)η + (ϕS)

2. (49)

For bounded non-constant solutions we have the following theorem [10, 20].

Theorem 4.6. Let 2 < d < 10. There exists a countable set of solutions {ϕk}k∈N of (47)–(48)
such that ϕk(0) > 1 and ϕk(0) → ∞ as k → ∞, Moreover, ϕk intersects the singular solution
ϕS k times and has the asymptotic behaviour ϕk(η)η2 = Const(k) > 0.

The proof is based on the equation for G(η) := η2ϕ(η),

Gηη +

(
(d − 3)

η
+

1

d

G

η
− 1

2
η

)
Gη +

2(d − 2)G

η2

(
G

2d
− 1

)
= 0, (50)

lim
η↓0

G(η)

η2
< ∞, lim

η→∞ ηGη(η) = 0. (51)

Note that ϕS corresponds to G(η) ≡ 2d.
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It was formally argued in [10] that for each integer k � 2 and 2 < d < 10 the set

Sk = {ϕ: ϕ solution of (47)–(48) with k intersections with ϕS}
is a singleton and that for d > 2 the set S1 contains only two elements. More precisely, S1

consists of the functions ϕ∗ and ϕ1 given in (20). If we relax condition (48) to ϕ(0) > 0, we
conjecture that there is at least one other solution in S1. For d = 3, this was shown numerically
by Brenner et al, who found a solution ϕ∗

1 of (47) such that ϕ∗
1 (0) < 1 and (ϕ∗

1 )η(0) = 0,

which intersects ϕS once [10, figure 14].

5. Convergence

In this section, we prove the following convergence theorem.

Theorem 5.1. Let conditions (21) and (22) hold. Let B(η, τ) be a uniformly bounded global
solution of (27)–(29). Then, for every sequence τn → ∞ there exists a subsequence τ ′

n such
that B(η, τ ′

n) converges to a solution ϕ of (47)–(48). The convergence is uniform on every
compact subset of [0, ∞).

Proof. Define Bσ (η, τ ) := B(η, σ + τ). We will first show that for any unbounded sequence
{nj } there exists a subsequence (renamed {nj }) such that Bnj converges to a solution ϕ

of (47)–(48) uniformly in compact subsets of R
+ × R. Without loss of generality we assume

that the sequence {nj } is increasing.
Let N ∈ N. We take i large enough such that the rectangle Q2N = {(η, τ ) ∈ R

2: 0 � η �
2N, |τ | � 2N} lies in the domain of Bni . The function B̃(ξ, τ ) = Bni (|ξ |, τ ) is a solution of

B̃τ = �d+2B̃ − 1

2
ξ · ∇B̃ +

1

d
(ξ · ∇B̃)B̃ + B̃2 − B̃

on the cylinder given by

�2N = {(ξ, τ ): R
d+2 × R: |ξ | � 2N, |τ | � 2N}

and |B̃(ξ, τ )| is uniformly bounded in �2N by (44).
By Schauder’s interior estimates all partial derivatives of B̃ can be uniformly bounded on

the subcylinder �N ⊂ �2N. Consequently, Bni , Bni
τ , Bni

η and Bni
ηη are uniformly Lipschitz on

QN ⊂ Q2N. By Arzela–Ascoli, there is a subsequence {nj }∞1 and a function B̄ such that Bni ,

Bni
τ , Bni

η , and Bni
ηη converge to B̄, B̄τ , B̄η and B̄ηη, uniformly on QN.

Repeating the construction for all N and taking a diagonal subsequence, we can
conclude that

Bnj → B̄, B
nj

τ → B̄τ , B
nj

η → B̄η, and B
nj

ηη → B̄ηη, (52)

uniformly in every compact subset in R
+ × R. Clearly B̄ satisfies (27) and estimates (44) and

(45). Finally, it remains to prove that B̄ is independent of τ. This implies that B̄ is a solution
of (19), since B(0, τ ) � 1 for all τ > 0, and the result follows.

Claim. The function B̄ is independent of τ.

To prove this, we construct a non-explicit Lyapunov functional in the spirit of Galaktionov
[14] and Zelenyak [30].

1. Non-explicit Lyapunov functional. We seek a Lyapunov function of the form

E(τ) =
∫ �(τ )

0
�(η, B(η, τ ), Bη(η, τ )) dη,
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where �(τ ) = (χd�T )−1/2eτ/2 and � = �(η, v, w) is a function to be determined. In
appendix A we show that such a Lyapunov function exists; more precisely, we show that a
function ρ = ρ(η, v, w) exists such that

d

dτ
E(τ) = −

∫ �(τ )

0
ρ(η, B(η, τ ), Bη(η, τ ))(Bτ )

2(η, τ ) dη

+ �wBτ |�(τ )
0 +

1

2
�(τ )�(�(τ), B(�(τ ), τ ), Bη(�(τ ), τ )). (53)

To identify the relevant domain of the functions � and ρ, we note that by estimates (44) and
(45) the solution B satisfies (η, B(η, τ ), Bη(η, τ )) ∈ R̃, with

R̃ = R ∩ {0 � v � M, 0 � −w � M̄}, (54)

where R = {η > 0, v � 0, w � 0} ∪ {η = 0, v � 0, w = 0}.
The functions ρ and � are continuous in R \ {η = η̄, v > 1} with η̄ > 0 defined later

and they satisfy
1

C0
ηd+1e−C0η

2 � ρ(η, v, w) � ηd+1e−(d−2)η2/4d for (η, v, w) ∈ R̃, (55)

with C0 = C0(M) > 0 (lemma A.5), and

|�(η, v, w)| � C1η
d+1e−(d−2)η2/4d for (η, v, w) ∈ R̃ (56)

for some positive constants C1(M) > 0 (lemma A.6).
2. Proof of the claim. An integration over the interval (a, b) of (53) gives∫ b

a

∫ �(τ )

0
ρ(η, B(η, τ ), Bη(η, τ ))B2

τ (η, τ ) dη dτ = E(a) − E(b) + ψ(a, b), (57)

where

ψ(a, b) :=
∫ b

a

1

2
�(τ )�(�(τ), B(�(τ ), τ ), Bη(�(τ ), τ )) dτ

+
∫ b

a

Bτ (�(τ ), τ )

[∫ Bη(�(τ ),τ )

0
ρ(�(τ ), B(�(τ ), τ ), s) ds

]
dτ. (58)

Since Bτ (�(τ ), τ ) = −B(�(τ), τ ) − 1
2�(τ )Bη(�(τ ), τ ),

Bτ (�(τ ), τ ) = −T e−τ − 1
2br(1, T (1 − eτ )).

Applying (37) at r = 1 gives |br(1, T (1 − eτ ))| � d and, consequently, Bτ is uniformly
bounded as τ → ∞. Employing this bound on Bτ and the estimates (55) and (56) we find

lim
a→∞{sup

b>a

ψ(a, b)} = 0. (59)

By (52), we have that there exists a sequence nj → ∞ such that Bnj (η, τ ) converges to B̄

uniformly in compact subsets of (R+)2. For any fixed N we will prove for a subsequence
satisfying lim

j→∞
(nj+1 − nj ) = ∞ that

lim
nj →∞

∫
QN

ρ(η, Bnj (η, τ ), B
nj

η (η, τ ))(B
nj

τ )2(η, τ ) dη dτ = 0, (60)

where we recall that QN = {(η, τ ): R
2: 0 � η � N, |τ | � N}. Since ρ is bounded from below

on bounded subsets of R̃, it then follows that∫
QN

B̄2
τ dη dτ = lim

nj →∞

∫
QN

(B
nj

τ )2(η, τ ) dη dτ = 0,

proving the claim. For all j sufficiently large,

N � (χd�T )−1/2e1/2(nj −N) and nj+1 − nj � 2N.
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Consequently, using (57), we find∫ N

−N

∫ N

0
ρ(η, Bnj (η, τ ), B

nj

η (η, τ ))(B
nj

τ )2(η, τ ) dη dτ

�
∫ −N+nj+1−nj

−N

∫ (χ�∗T )−1/2e(nj −N)/2

0
ρ(η, Bnj (η, τ ), B

nj

η (η, τ ))(B
nj

τ )2(η, τ ) dη dτ

�
∫ nj+1−N

nj −N

∫ (χ�∗T )−1/2e(nj −N)/2

0
ρ(η, B(η, τ ), Bη(η, τ ))(Bτ )

2(η, τ ) dη dτ

� E(nj − N) − E(nj+1 − N) + ψ(nj − N, nj+1 − N).

Hence, applying (59), we find∫
QN

ρ(η, Bnj (η, τ ), B
nj

η (η, τ ))(B
nj

τ )2(η, τ ) dη dτ � lim sup
j→∞

[E(nj − N) − E(nj+1 − N)].

Next, we divide the expression E(nj − N) − E(nj+1 − N) into three integrals, choosing K

arbitrarily large:

E(nj − N) − E(nj+1 − N)

=
∫ K

0
[�(η, Bnj (η, −N), B

nj

η (η, −N)) − �(η, Bnj (η, −N), B
nj

η (η, −N)] dη

(61)

+
∫ T −1/2e(nj −N)/2

K

�(η, Bnj+1(η, −N), B
nj+1
η (η, −N)) dη (62)

+
∫ T −1/2e(nj+1−N)/2

K

�(η, Bnj (η, −N), B
nj

η (η, −N)) dη. (63)

Integral (61) tends to zero as j → ∞. In fact, by the continuity of � in the second and
third arguments we obtain pointwise convergence and by the bounds (56) on �, we apply
the dominated convergence theorem to conclude. Expressions (62) and (63) can be made
arbitrarily small since they can be bounded by

C

∫ ∞

K

ηd+1e−(d−2)η2/4ddη,

where C is a positive constant, and K can be chosen arbitrarily large. Thus, we have
proved (60), concluding the proof of the theorem. �

6. Comparison results

6.1. Comparison with the singular solution ϕS

This section closely follows [1]. From section 4.2, we recall that solutions ϕ of (47)–(48)
are classified by their intersections with ϕS. In this section, we study the intersections of
solutions B of (27)–(29) with ϕS. Our results are closely related to the ones found in [1], where
equation (31) was studied.

We first see that for � < 1/(2dχd) a solution B of (27)–(29) intersects the singular
solution ϕS at least once in 
(0) since

ϕS(0) = ∞ > B(0, 0) and ϕS((χd�T )−1/2) < B((χd�T )−1/2, 0) = T .
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On the other hand, for � � 1/(2dχd) it can also be shown that B intersects ϕS at least once
in 
(0). Assuming the contrary, suppose that B(·, 0) < ϕS(·) in 
(0). By the maximum
principle, we obtain B < ϕS in 
. Therefore, in the limit τ → ∞, thanks to theorem 5.1 and
since B(0, τ ) � 1 for all τ > 0, we find a solution ϕ of (19) such that ϕ < ϕS. However, we
can show that every bounded non-zero solution ϕ of (19) has to cross ϕS. This is equivalent
to proving that there exists no solution G of (50)–(51) such that G(η) < 2d for η � 0. To
check this, we assume that such a solution exists; we examine two cases. Suppose that for
some η∗, we have Gη(η

∗) = 0 and G(η∗) < 2d. By (50), G has a strict minimum at η∗, which
contradicts the boundary condition (51). On the other hand, if G(η) is increasing for all η > 0,
then, for large η, equation (50) implies that Gηη > 0, which also contradicts (51).

We conclude that there exists η1 ∈ 
(0) such that B(η1, 0) = ϕS(η1) and B(η, 0) < ϕS(η)

for η < η1.

Lemma 6.1. Under the assumptions (21) and (22), there exists a continuously differentiable
function η1(τ ) with domain [0, ∞) such that η1(0) = η1 and B(η1(τ ), τ ) = ϕS(η1(τ )) for
all τ � 0.

Proof. Define H(η, τ) := B(η, τ) − ϕS(η). We first claim that H, Hη, and Hτ do not vanish
simultaneously. Using lemma 4.4 and the strong maximum principle we find

bt = (T − t)−2
(
Bτ + B + 1

2ηBη

)
> 0 in DT . (64)

Suppose there exists a point in 
 where Hη = Hτ = H = 0. Then, Hτ = 0 implies Bτ = 0,

and condition Hη = 0 combined with H = 0 gives

B + 1
2ηBη = 0 in 
,

using (49). This implies that bt = 0 at some point of DT , which contradicts (64). Secondly,
we claim that Hη �= 0 at any point (η̄, τ̄ ) ∈ 
 where H(η̄, τ̄ ) = 0 and, moreover, H(η, τ̄ ) < 0
in a left neighbourhood of η̄. A proof of this can be given as in [1]. Moreover, from the proof,
we find that Hη(η̄, τ̄ ) > 0.

Now, we prove that Hη(η1, 0) > 0. This follows from the equation satisfied by H(η, 0).

To the left of η1, we find

Hηη(η, 0) +
d + 1

η
Hη(η, 0) +

1

2d
ηHη(η, 0)(B(η, 0) + ϕS) +

1

2d
ηH(η, 0)(B(η, 0) + ϕS)η � 0.

(65)

Since (B(η, 0) + ϕS)η � 0 and H(η1, 0) = 0, we can apply Hopf’s lemma to obtain that
Hη(η1, 0) > 0. Finally, to conclude the proof of the lemma, we use the implicit function
theorem as in [1]. �

Define the set 
1 = {(η, τ ) | 0 < η < η1(τ ) } and the function

η2(τ ) = eτ/2 · sup{η ∈ η1, (χd�T )−1/2]: H(s, 0) � 0 for s ∈ [η1, η]}.
Since H(η1, 0) = 0 and Hη(η1, 0) > 0, the above supremum is finite. Define the set


2 = {(η, τ ) | η1(τ ) < η < η2(τ )}.
Let F(τ) = H(η2(τ ), τ ). By definition of η2, F (0) � 0. Also,

d

dτ
F (τ) = Hτ(η2(τ ), τ ) +

1

2
η2(τ )Hη(η2(τ ), τ ).

Using (64), we have d[eτF (τ )]/dτ � 0. An integration yields F(τ) � 0 for τ � 0.

As was done in [1], applying the maximum principle, using lemma 6.1, and noting that
H(η2(τ ), τ ) � 0 for τ � 0, we can prove the following lemma and its corollary.
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Lemma 6.2. The function H(η, τ) = B(η, τ) − ϕS(η) satisfies H < 0 in 
1 and H > 0
in 
2.

Corollary 6.3. Assume the conditions in lemma 6.1. For each N > 0 there is τN > 0 such
that for τ > τN, B(η, τ ) intersect ϕS(η) at most once in η ∈ (0, N).

6.2. Intersection comparison

In this section, we derive comparison results, which will be used to prove that ω, the limit set
(30), is a singleton.

We start by considering the following linear equation with inhomogeneous boundary
conditions:

vt = vrr +
d + 1

r
vr + a(r, t)v for 0 < r < 1, T1 < t < T2,

vr(0, t) = 0 for T1 < t < T2,

v(1, t) = h(t) for T1 < t < T2,

(66)

where T1, T2 are positive constants and

a ∈ L∞([0, 1] × (T1, T2)), h ∈ C1((T1, T2)), (67)

are given functions. Moreover we assume

h(t) > 0 for T1 < t < T2. (68)

The zero number functional of (66) is defined by

z[v(·, t)] = #{r ∈ [0, 1]: v(r, t) = 0} (69)

and the following lemma provides some properties of this zero number functional.

Lemma 6.4 ([24]). Let v = v(r, t) be a nontrivial classical solution of (66) and assume that
(67) and (68) hold. Then, the following properties hold true:

(i) z[v(·, t)] < ∞ for any T1 < t < T2;
(ii) z[v(·, t)] is nonincreasing in time;

(iii) if v(r0, t0) = vr(r0, t0) = 0 for some r0 ∈ [0, 1] and t0 > T1, then z[v(·, t)] drops strictly
at t = t0, that is, z[v(·, t1)] > z[v(·, t2)] for any T1 < t1 < t0 < t2 < T2.

From this lemma we deduce a property of intersection between a solution ϕ of (19) and a
solution B of (27)–(29).

Lemma 6.5. Let B be a bounded solution of (27)–(29) and let ϕ be a solution of (47). Denote
Z(τ) = #{r ∈ [0, �(τ )]: B(η, τ) = ϕ(η)}. Then, the following properties hold true:

(i) Z(τ) < ∞ for any τ > τ ∗;
(ii) Z(τ) is nonincreasing in time;

(iii) if B(η0, τ0) = ϕ(η0) and Bη(η0, τ0) = ϕη(η0) for τ0 > τ1, and η0 � �[τ ] then
Z(τ1) > Z(τ2) for any τ1 < τ0 < τ2.

Proof. Writing V̄ = U − b, where U(r, t) = (T − t)−1ϕ(r/(χd�(T − t))1/2), we have

V̄t = V̄rr +

(
d + 1

r
+

r

d
U

)
V̄r +

( r

d
br + b + U

)
V̄ for 0 < r < 1, 0 < t < T,

V̄r (0, t) = 0, V̄ (1, t) = U(1, t) − b(1, t) for 0 < t < T .

(70)
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Let T1 < T2 < T. For the variable V (r, t) = exp((1/2d)
∫ r

0 yU(y, t) dy)V̄ (r, t), we find

Vt = Vrr +
d + 1

r
Vr + A(r, t)V for 0 < r < 1, T1 < t < T2,

Vr(0, t) = 0 for T1 < t < T2,

V (1, t) = (U(1, t) − 1) exp

(
1

2d

∫ 1

0
yU(y, t) dy

)
for T1 < t < T2,

where

A(r, t) = r

d
br + b + U +

1

2d

∫ r

0
yUt(y, t) dy − 1

4d2
r2U 2 − 1

2d
(U + rUr) − d + 1

2d
U.

Note that A ∈ L∞([0, 1] × (T1, T2)) since b, br , U, Ut , Ur ∈ L∞([0, 1] × (T1, T2)). If we
show that V (1, t) does not change sign for t > t0, then, setting T1 = t0 and using lemma 6.4,
we have proved the lemma.

We claim that there exists t̄0 such that Ut(1, t) does not change sign for t > t̄0. By definition
of V, this implies that there exists t0 � t̄0 such that V (1, t) does not change sign for t > t0.

Since Ut(r, t) = (T − t)−2(η2ϕ)η/(2η), if r = 1 and t > t∗, then,

Ut(1, t) = (T − t)−2 1

2η
(η2ϕ)η for t > t∗ and η > η∗(t∗), (71)

where η∗(t∗) := (χd�(T − t∗))−1/2. From [9, lemma A.1], we know that for a given
a ∈ (0, 4d), any solution ϕ of (47) satisfying

η2ϕ(η) → a as η → ∞ (72)

is such that there exists η̄0 = η̄0(a) so that the sign of (η2ϕ)η does not change on [η̄0, ∞).

Using (71), this implies that there exists t̄0 = t̄0(η̄0) such that the claim holds. �

7. Proofs of main results

We start by proving that the ω-limit set of problem (27)–(29) is a singleton.

Theorem 7.1. Assume the hypotheses of theorem 2.3. Then, the set ω defined in (30) is a
singleton.

Proof. For this proof we extend a solution B of (27)–(29) to all (R+)2 by setting B(η, τ) =
e−τ T for (η, τ ) ∈ (R+)2\
. We also define the weight function ρ∗(η) = e−η2/4 for η > 0.

The hypothesis (26) implies that B is uniformly bounded; theorem 5.1, therefore, states
that ω is non-empty, and that each ϕ ∈ ω is a solution of (47)–(48).

We claim that for each ϕ ∈ ω there exists τ ∗ > 0 such that B(0, τ ) − ϕ(0) never changes
sign in [τ ∗, ∞). By contradiction, we assume that there exists a sequence τk, such that τk → ∞,

and B(0, τk) = ϕ(0). Since Bη(0, τk) = ϕη(0) = 0, by lemma 6.5 the function Z(τ) has to
decrease at least by one. However, this cannot happen an infinite number of times. This proves
the claim.

Suppose, now, that ω is not a singleton. Since the ω-limit set is connected, closed, and
non-empty, it contains an infinite number of elements. We select three different elements
ϕ1, ϕ2, ϕ3 in the ω-limit set. Since these functions are different and each solves (19), we may
assume that ϕ1(0) < ϕ2(0) < ϕ3(0). By the claim above, B(0, τ ) − ϕ2(0) never changes sign
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in [τ ∗, ∞). This contradicts the fact that ϕ1 and ϕ3 are elements of ω; it follows that ω is a
singleton. �

We now conclude the proof of theorems 2.3 and 2.1, and corollary 2.2.

Proof of theorem 2.3. By the previous theorem, ω is a singleton, say {B̄}. From corollary 6.3,
we find that for every N > 0 there exists a τN > 0 such that the solution B(η, τ) intersects
ϕS(η) at most once in η ∈ [0, N ] for each τ > τN . This implies that in the limit τ → ∞, B̄

intersects ϕS at most once, concluding the proof. �

Proof of theorem 2.1. Since b and U1(r, t) = (T − t)−1ϕ1(r/(χd�(T − t))1/2) are solutions
of (15) with the same blow-up time, V̄ = b − U1 satisfies equation (70). Using the fact that
U1(r, t) = 2d/((d − 2)(T − t) + r2/(2χd�)), we find

V̄ (1, t) = (1 − U1(1, t)) > 0 if � � 1

4dχd

, for any t < T .

The functions U1 with b necessarily intersect exactly once for all t , since non-intersection
implies that the solutions must have different times of blow-up [26, p 271]. It follows that
b(0, 0) < U1(0), and one finds (T − t)b(0, t) � 2d/(d − 2). An application of theorem 2.3
proves the theorem. �

Proof of corollary 2.2. If b0 ≡ 1 and � < 1/(2(d + 2)χd), we know from [7, theorem 2] that
the corresponding solution b blows up. Now, assuming � � 1/(4dχd) < 1/(2(d + 2)χd), we
can apply theorem 2.1 to conclude. �
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Appendix A. The Lyapunov functional

In this appendix, we construct the Lyapunov functional E satisfying (53), with suitable
properties of ρ and �, to prove theorem 5.1. We start with a formal construction of the
functional. This requires solving a first-order equation for ρ after which � can be expressed
in terms of ρ. Finally, we explain how to use smooth approximations of � to obtain a rigorous
derivation of (53).

Appendix A.1. Formal derivation of a Lyapunov functional

Assume that � and ρ are regular. To find such functions satisfying (53), we compute

d

dτ
E(τ) =

∫ �(τ )

0
�vBτ dη +

∫ �(τ )

0
�wBτη dη +

�(τ )

2
�(�(τ), B(�(τ ), τ ), Bη(�(τ ), τ )).

(A.1)

Wherever possible we omit the arguments of � and ρ, for clarity. Integrating by parts the
second integral in (A.1) becomes∫ �(τ )

0
�wBτη dη = −

∫ �(τ )

0
[�ηw + �vwBη + �wwBηη]Bτ dη + �wBτ |�(τ )

0 .
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Defining

f (η, v, w) = d + 1

η
w − η

2
w +

1

d
ηvw + v2 − v,

equation (27) takes the form Bτ = Bηη + f (η, B, Bη), by which equation (A.1) becomes

d

dτ
E(τ) =

∫ �(τ )

0
{[�v − �ηw − �vwBη + �wwf ]Bτ − �ww(Bτ )

2} dη

+�wBτ |�(τ )
0 +

�(τ )

2
�(�(τ), B(�(τ ), τ ), Bη(�(τ ), τ )).

Now, if functions ρ = ρ(η, v, w) > 0 and � = �(η, v, w) exist, which satisfy the system of
equations

−�v + �ηw + w�vw = ρf and �ww = ρ, (A.2)

then E has the form of a Lyapunov functional with a contribution on the boundary, i.e.

d

dτ
E(τ) = −

∫ �(τ )

0
ρ(η, B, Bη)(Bτ )

2 dη + �wBτ |�(τ )
0

+
�(τ )

2
�(�(τ), B(�(τ ), τ ), Bη(�(τ ), τ )). (A.3)

Therefore, we may obtain this formula by solving system (A.2), which we do by transforming
it to a first-order equation for ρ,

wρv + ρη − fρw = fwρ. (A.4)

If we supplement a given solution ρ of this equation with the function � given by

�(η, v, w) =
∫ w

0
(w − s)ρ(η, v, s) ds −

∫ v

0
ρ(η, µ, 0)f (η, µ, 0) dµ, (A.5)

then the pair (ρ, �) solves (A.2). In order to find the pair (ρ, �) we therefore only need to
solve equation (A.4).

Appendix A.2. The first-order equation for ρ

We solve equation (A.4) by the method of characteristics. Characteristic curves of
equation (A.4) are curves x = (η, v, w) in R

3, which we consider parametrized by η, along
which

d

dη
v = w and

d

dη
w = −f. (A.6)

If a curve x(η) = (η, v1(η), w1(η)) satisfies these equations, then equation (A.4) reduces to

d

dη
ρ(x(η)) = fw(x(η))ρ(x(η)). (A.7)

In order to solve the system of ODEs (A.6) and (A.7), we select a vector (η0, v0, w0) ∈ R
+×R

2

and define φ(ξ) = φ(ξ ; η0, v0, w0) to be the solution of the initial value problem

φ′′ + f (ξ, φ, φ′) = 0 with φ|ξ=η0 = v0 and φ′|ξ=η0 = w0, (A.8)

where ′ = ∂/∂ξ . If the curve x passes through (η0, v0, w0), i.e. if x(η0) = (η0, v0, w0), then,
this curve can be identified with φ(·; η0, v0, w0), since x(η) = (η, v1(η), w1(η)) where

v1(η) = φ(η; η0, v0, w0) and w1(η) = φ′(η; η0, v0, w0). (A.9)
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Since fw = (d + 1)/η − (η/2) + (1/d)ηv, we may integrate (A.7) to find

ρ(η, v, w) = ρ(η0, v0, w0) exp

{∫ η

η0

[
d + 1

ξ
− ξ

2
+

1

d
ξv1(ξ)

]
dξ

}

= ρ(η0, v0, w0)
ηd+1

ηd+1
0

e−η2/4+η2
0/4 exp

{
1

d

∫ η

η0

ξv1(ξ) dξ

}
. (A.10)

To prove theorem 5.1, we need to define ρ in the set R̃ ⊂ R given by (54),

R = {η > 0, v � 0, w � 0} ∪ {η = 0, v � 0, w = 0}

R̃ = R ∩ {0 � v � M, 0 � −w � M̄}.
We do so in the following way: for each (η, v, w) ∈ R, we define ρ(η, v, w) by following the
characteristic curve through (η, v, w) to a reference point (η0, v0, w0) for which ρ(η0, v0, w0)

is fixed by choice; the value of ρ(η, v, w) is then given by (A.10). To select an appropriate
set of reference points, we study some of the properties of the solutions φ of (A.8), since they
define the characteristic curves.

It follows from standard ODE theory that solutions of (A.8) are locally smooth and
continuous under changes of (η0, v0, w0). In general, however, we cannot extend these
solutions to the whole of R

+; in fact, for each (η, v, w) ∈ R, there may exist 0 � ξ1 < η

and/or ξ2 > η such that

φ(ξ1; η, v, w) = ∞ and/or φ(ξ2; η, v, w) = −∞.

Partly because of this difficulty, we choose to only use forward solutions of (A.8) to define the
characteristic curves. The next result details the behaviour of a forward solution φ of (A.8).

Lemma A.1. Let (η, v, w) ∈ R, and let φ(ξ) = φ(ξ ; η, v, w) be the solution of (A.8). For
ξ � η, exactly one of the following three alternatives holds:

(i) φ ≡ 1 or φ ≡ 0;
(ii) there exists η∗ > η such that φ(η∗) = 0 and φ(ξ) < 0 for ξ > η∗;

(iii) φ(ξ) → 0 as ξ → ∞ and there exists a constant C > 0 such that φ(ξ)ξ 2 → C as
ξ → ∞.

Proof. See [17, p 95]. The proof is based on results from [20]. �

Since we need to define ρ with the appropriate estimates, we introduce a parameter η̄ in
the following lemma.

Lemma A.2. There exists η̄ > 0 such that for every η1 � η̄ any solution φ of (A.8) with
φ(η1) = 1 and φ′(η1) � 0 satisfies

φ′(η2) < −1 for all η2 > η1 with φ(η2) ∈ [0, 1/2]. (A.11)

Corollary A.3. For every η2 � η̄, we have

φ(ξ ; η2, ε, −ε̄) < 1 for ξ ∈ [η̄, η2] (A.12)

for all 0 � ε � 1/2 and 0 < ε̄ � 1.
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Proof of corollary A.3. A violation of (A.12) implies the existence of η1 ∈ [η̄, η2) with
φ(η1) = 1 and φ′(η1) � 0; then (A.11) contradicts the condition φ′(η2; η2, ε, −ε̄) =
−ε̄ � −1. �

Proof of lemma A.2. We fix η1 � 1 and define the variable y = ξ/η1. Changing variables,
equation (A.8) transforms into

0 = 1

η2
1

(
φ̈ +

d + 1

y
φ̇

)
− y

2
φ̇ +

1

d
yφφ̇ + φ2 − φ for y > 1, (A.13)

φ̇(1) = −Dη1, φ(1) = 1, (A.14)

where˙= d/dy. Define

y0 = sup{y > 1 : φ̈(y) < 0 and φ(y) > 0}
and note that y0 > 1 if η1 is large. On [1, y0], φ̇ � −Dη1; therefore, y0 � 1 + 1/(Dη1), and
consequently, on [1, y0],

− 1

d
(y − 1)φφ̇ � 1

dDη1
|φ̇| � 1

4

(
1

2
− 1

d

)
|φ̇| if η1 � 8d

d − 2

1

dD
.

Similarly,

−d + 1

yη2
1

φ̇ � 1

4

(
1

2
− 1

d

)
|φ̇| if η2

1 � 8d

d − 2
(d + 1).

Therefore,

1

η2
1

φ̈ � 1

2

(
1

2
− 1

d
φ

)
φ̇ − φ2 + φ on [1, y0],

for large η1. Estimating |φ̇| by Dη1, we find

1

η2
1

φ̈ � −1

2

(
1

2
− 1

d

)
Dη1 +

1

4
on [1, y0]

and since the right-hand side of this expression is negative for large η1 it follows that φ̈ < 0
on [1, y0]; therefore, y0 may be redefined as

y0 = sup{y > 1 : φ(y) > 0}.
It follows that on [1, y0],

φ̇(y) � − Dη1 − η2
1
d

4

[(
1

2
− 1

d
φ

)2

−
(

d − 2

2d

)2
]

+
∫ y

1
(φ − φ2)

� − Dη1 − η2
1
d

4

[(
1

2
− 1

d
φ

)2

−
(

d − 2

2d

)2
]

+
1

4Dη1
.

When 0 � φ(y) � 1/2, this expression is bounded from above by −η2
1/64 for large η1. In

terms of the original variable ξ we obtain φ′(ξ) � −η1/64, thus proving the lemma. �

Appendix A.3. Definition of ρ in R

The general idea is to use η0 = η̄ as a reference point. In this way, owing to corollary A.3, we
can obtain the required estimates for ρ. It can happen, however, that the function φ(ξ, ; η, v, w)
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is not defined at ξ = η̄. In such a situation, to define ρ, we introduce functions representing
the intersection of φ(·; η, v, w) with the lines φ = 0 for η < η̄ and φ = 1 for η > η̄. Thus, it
is useful to define the following subsets of R :

R1 = {(η, v, w) ∈ R: φ(ξ ; η, v, w) satisfies (i) in lemma A.1};
R2 = {(η, v, w) ∈ R: φ(ξ ; η, v, w) satisfies (ii) in lemma A.1}, with

R2a = R2 ∩ {η � η̄} and R2b = R2 ∩ {η > η̄};
R3 = {(η, v, w) ∈ R: φ(ξ ; η, v, w) satisfies (iii) in lemma A.1}.

We treat the cases in turn.

Case R3. Fix a point (η, v, w) ∈ R3. We choose η0 = η̄, v0 = φ(η̄; η, v, w) and
w0 = φ′(η̄; η, v, w). Note that this choice is well defined: since φ(ξ)ξ 2 → C > 0 as ξ → ∞,

there exists ηε > η̄ such that φ(ηε; η, v, w) = ε < 1/2, and −φ′(ηε; η, v, w) = ε̄ < 1, with
ε̄ ∼ 2ε/ηε. Then, corollary A.3 implies that the solution φ(·; η, v, w) can be continued to η̄,
even if η̄ < η. Setting ρ(η0, v0, w0) = ηd+1

0 e−η2
0/4, we find (cf (A.10))

ρ(η, v, w) = ηd+1e−η2/4 exp

{
1

d

∫ η

η̄

ξφ(ξ ; η̄, φ(η̄; η, v, w), φ′(η̄; η, v, w)) dξ

}
. (A.15)

The choice of η0 = η̄ also allows us to estimate the value of φ for ξ > η̄, which in turn permits
us to control ρ for large η, since the bound φ(ξ) � 1 for ξ > η̄ implies an exponential decay
for ρ as η → ∞.

Case R1. Points in R1 are of the form (η, 1, 0) and (η, 0, 0). We again choose η0 = η̄;
substituting φ ≡ 1 and φ ≡ 0 into formula (A.15) gives

ρ(η, 1, 0) = ηd+1e−((d−2)η2)/4de−η̄2/2d and ρ(η, 0, 0) = ηd+1e−η2/4. (A.16)

Case R2a. Fix a point (η, v, w) ∈ R2a. Let η∗ be given by lemma A.1 and define the function
L0: R2a → R

+ such that L0(η, v, w) = min{η∗, η̄}. Note that the function L0 is continuous
and equals either the point η∗ where φ(η∗; η, v, w) vanishes or η̄ if φ(η̄; η, v, w) � 0. To find
ρ, we choose (η0, v0, w0) = (η∗, 0, φ′(η∗, η, v, w)), and set ρ(η0, v0, w0) = ηd+1

0 e−η2
0/4. This

gives

ρ(η, v, w) = ηd+1 exp

{
−η2

4
+ I0

}
, (A.17)

where

I0 =
∫ η

L0(η,v,w)

1

d
ξφ

(
ξ ; L0(η, v, w), φ(L0(η, v, w); η, v, w), φ′(L0(η, v, w); η, v, w)

)
dξ.

Case R2b. Here, it is convenient to define for any (η, v, w) ∈ R2b the function
L1: R2b → R

+, by

L1(η, v, w) =
{

max{η̄, max{ξ ∈ (0, η) | φ(ξ ; η, v, w) � 1}} if v < 1,

min{ξ ∈ (η, ∞) | φ(ξ ; η, v, w) � 1} if v � 1.
(A.18)

The function L1 is well defined for v < 1 since if φ(ξ̃ ; η, v, w) = 0 for some ξ̃ ∈ (η̄, η), then,
φ < 1 in (η̄, η) by corollary A.3 and φ has to attain a local maximum in (η̄, η), which is a
contradiction with equation (A.8). For v � 1, L1 is well-defined by lemma A.1.

Note that φ(L1(η, v, w); η, v, w) � 1. The function L1 is continuous and equals either
η∗ where φ(η∗; η, v, w) = 1 or η̄ if φ(η̄; η, v, w) ∈ (0, 1).
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Now, fix a point (η, v, w) ∈ R2b, choose η0 = L1(η, v, w) and set ρ(η0, v0, w0) =
ηd+1

0 e−(d−2)η2
0/4de−η̄2/2d . Using (A.10), we find that

ρ(η, v, w) = ηd+1 exp

{
−η2

4
+

η2
0

2d
− η̄2

2d
+ I1

}
, (A.19)

where

I1 =
∫ η

L1(η,v,w)

1

d
ξφ(ξ, L1(η, v, w), φ(L1(η, v, w); η, v, w), φ′(L1(η, v, w), η, v, w)) dξ

and

ρ(η, v, w) = ηd+1 exp{−(d − 2)η2/4d − η̄2/2d + I ′
1}, (A.20)

where

I ′
1 =

∫ η

L1(η,v,w)

1

d
ξ [φ(ξ, L1(η, v, w), φ(L1(η, v, w); η, v, w), φ′(L1(η, v, w), η, v, w))−1] dξ.

Appendix A.4. Properties of ρ and �

In the previous section, we have found a solution ρ of (A.4). Here, we show that this solution,
together with the function � given by (A.5), satisfies the properties required for the proof of
theorem 5.1. We start by stating a result which provides a lower bound for ρ in R2b.

Lemma A.4. Let M and M̄ be the constants in estimates (44) and (45), and let L1 be defined
as in (A.18). Then, there exists a large constant η̄0 such that the function G: [η̄0, ∞) → R

+

given by

G(η) = max{L1(η, a, −b) | 1 � a � M and 0 � b � M̄ } for η � η̄0,

satisfies G(η) � Cη for some constant C = C(M) > 0.

Proof. We take η̄0 large and we fix η � η̄0. Using the continuity of L1, we have that
G(η) = L1(η, ā, −b̄) for some ā ∈ [1, M], and b̄ ∈ [0, M̄]. Now, we define the variable
y = ξ/η � 1; the result is proved if we show that sup{y � 1 : φ(y) > 1} � C(M).

As in the proof of lemma A.2, equation (A.8) transforms into

0 = 1

η2

(
φ̈ +

d + 1

y
φ̇

)
− y

2
φ̇ +

1

d
yφφ̇ + φ2 − φ for y > 1, (A.21)

φ̇(1) = −b̄η and φ(1) = ā. (A.22)

Note that for φ > 1 we have φ̇(y) < 0 for all y > 1, since φ̇(ȳ) = 0 implies that ȳ can only
be a maximum, which contradicts equation (A.8).

We prove the claim in two steps. In the first step, we consider the case ā > d/2 − δ > 1,
where δ = (d + 1)d/η2. Define y1 = sup{y > 1 : φ(y) > d/2 − δ}. We write (A.21) as

1

η2
φ̈ = −yA2(y)φ̇ − A1(y) for y > 1, (A.23)

where

A1(y) = φ2 − φ and A2(y) =
(

1

d
φ − 1

2
+

d + 1

y2η2

)
.

Since φ(·) ∈ [d/2 − δ, ā] on [1, y1], A2 is non-negative and bounded by Ā2 := ā/d. The
function A1 is positive and bounded from below:

A1(y) � A1 :=
(

d

2
− δ

)2

−
(

d

2
− δ

)
> 0.
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Integrating equation (A.23), we have

φ̇(y) = −b̄η e−η2
∫ y

1 tA2(t) dt − η2
∫ y

1
A1(s)e

−η2
∫ y

s
tA2(t) dt ds for y > 1. (A.24)

We observe that

η2
∫ y

1
A1(s)e

−η2
∫ y

s
tA2(t) dt ds � A1f (y; η) for 1 � y � y1, (A.25)

where f (y; η) = η2
∫ y

1 e−η2Ā2(y
2−s2)/2 ds is a positive bounded function satisfying yf (y; η) →

1/Ā2 as y → ∞ (the latter claim follows from considering the integrand close to s = y), and
more precisely,

yf (y; η) � 1

2Ā2
for y � 2 and for sufficiently large η.

Therefore, the primitive function

F(y; η) =
∫ y

1
f (s; η) ds

satisfies

F(y; η) � 1

2Ā2
(log y − log 2). (A.26)

Integrating (A.24) on [1, y1] and using (A.25), we obtain

φ(y1) � ā − b̄η(y1 − 1) − A1F(y1; η).

To obtain a bound on y1, we use φ(y1) = d/2 − δ and conclude that

A1F(y1; η) � ā � M,

from which it follows that y1 � C(M) by (A.26).
For the second step, we replace η by y1η in the rescaling above, by which we can assume

that we are in the same situation: φ(1) = ā, φ̇(1) = b̄η, but this time 1 � ā � d/2 − δ.
Similarly, define y2 = sup{y � 1 : φ(y) > 1}. Since 1 � φ(·) � d/2 − δ on [1, y2], the

function A2(·) in (A.23) is negative, so that φ satisfies the differential inequality

1

η2
φ̈ � −φ2 + φ < −2(φ − 1). (A.27)

Let the function ψ solve

1

η2
ψ̈ = −2(ψ − 1) with ψ(1) = ā and ψ̇(1) = 0.

The solution of this equation is ψ(y) = 1 + (ā − 1) cos(η
√

2(y − 1)), and note that ψ(ỹ2) = 1
for ỹ2 := π/(2η

√
2). From (A.27), φ(1+) < ψ(1+); if φ(y) = ψ(y) for some y ∈ (1, ỹ2),

then, by the comparison principle (which the operator u �→ ü/η2+2(u−1) satisfies on intervals
of length less than ỹ2), we find φ � ψ on the interval [1, y], which contradicts the previous
remark.

In conclusion, we find that y2 � ỹ2, thus proving the lemma. �

We now derive estimates for ρ and � in R̃ and R.

Lemma A.5. The function ρ is continuous in R\{η = η̄, v > 1}; for (η, v, w) ∈ R, one finds

ρ(η, v, w) � ηd+1e−(d−2)η2/4d . (A.28)
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In addition, if (η, v, w) ∈ R̃, then,

ρ(η, v, w) � 1

C0
ηd+1e−C0η

2
(A.29)

for some constant C0 = C0(M) > 0.

Proof. We start by proving (A.28)–(A.29). Let R̃i = R̃∩Ri for i = 1, 2, 3. If (η, v, w) ∈ R1,
then the estimates (A.28)–(A.29) follow by definition. If (η, v, w) ∈ R2a, then as φ > 0 on
(η, L0(η, v, w)) the integral in (A.17) is negative. This gives

ρ(η, v, w) � ηd+1e−η2/4 for (η, v, w) ∈ R2a.

Now, for (η, v, w) ∈ R̃2a, we have that [η, L0(η, v, w)] ⊂ [0, η̄], v ∈ [0, M] and
w ∈ [−M̄, 0]. Then, the continuity of φ on [η, L0(η, v, w)] implies that

|φ(·; L0(η, v, w), φ(L0(η, v, w); η, v, w), φ′(L0(η, v, w); η, v, w))|C0([η,L0(η,v,w)]) � C̄0,

where C̄0 = C̄0(M, M̄, η̄). Using this bound to estimate I0 in (A.17), we find that

C(M)ηd+1e−η2/4 � ρ(η, v, w) for (η, v, w) ∈ R̃2a

with C(M) < 1, since we have integrated backwards.
For any (η, v, w) ∈ R2b, we use (A.20) and find the upper bound

ρ(η, v, w) � ηd+1e−(d−2)η2/4de−η̄2/2d .

This estimate follows from the negative sign of the integral I ′
1 in (A.20). In fact, for

ξ ∈ (η, L1(η, v, w)), we have

φ
(
ξ ; L1(η, v, w), φ(L1(η, v, w); η, v, w), φ′(L1(η, v, w); η, v, w)

) − 1 > 0 if v � 1,

φ
(
ξ ; L1(η, v, w), φ(L1(η, v, w); η, v, w), φ′(L1(η, v, w); η, v, w)

) − 1 < 0 if v < 1.

Next, for (η, v, w) ∈ R̃2b, we find

ρ(η, v, w) � ηd+1e−η2/4 for v � 1,

ρ(η, v, w) � ηd+1e−(d−2)η2/4de−η̄2/2de−C̄(M)η2
for v > 1,

where C̄(M) > 0. The estimate for the case when v � 1 follows directly from (A.19). To
obtain the estimate for ρ when v > 1, we use (A.20). In fact, noting that φ is nonincreasing
in [η, L1(η, v, w)], we have that

|φ(·; L1(η, v, w), φ(L1(η, v, w); η, v, w), φ′(L1(η, v, w); η, v, w))|C0([η,L1(η,v,w)]) � M.

Using this bound together with the estimate L1(η, v, w) � C(M)η (see lemma A.4), we find
that I ′

1 in (A.20) satisfies −I ′
1 � C̄(M)η2, which gives the desired estimate.

To prove (A.28) for (η, v, w) ∈ R3, we examine two cases: if η � η̄ then the estimate
for R2a holds and for η > η̄ the estimate for R2b holds. Finally, to obtain (A.29) for
(η, v, w) ∈ R̃3, we also check two cases: if η � η̄ then the estimate for R̃2a holds and
for η > η̄ the estimate for R̃2b with v � 1 holds.

Claim. ρ is continuous in R\{η = η̄, v > 1}.
Before we prove this, note that R2 is an open set and R1 and R3 are closed.
We first see that ρ is continuous within R2a and R2b, by continuity of L0 and L1. For the

elements in R1, the definition of ρ is as for R2; therefore, there is continuity of ρ between R2

and R1.

The delicate part is to prove the continuity between R3 and R2. Taking a
sequence (ηn, vn, wn) ∈ R2, we associate a solution φn(·, ηn, vn, wn). Suppose that
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(ηn, vn, wn) → (η, v, w) ∈ R3. Now, if φ(·, η, v, w) is the solution of (A.8), then φn → φ in
compact subsets of R

+. Therefore, by corollary A.3, for n � n0 ∈ N, we find φn(η̄) ∈ (0, 1).

Then (ηn, vn, wn) ∈ R2, for n � n0, have the same definition of ρ as for (η, v, w) ∈ R3.

Finally, if v � 1 and η = η̄, then ρ is continuous. If η is close enough to η̄, then we have that
η0 = η̄. So, the computation of ρ uses the same formula, independent of the subset of R to
which (η, v, w) belongs. �

For � we deduce the following lemma, which implies (56).

Lemma A.6. The function � is continuous in R\{η = η̄, v > 1} and if (η, v, w) ∈ R, then,

�(η, v, w) �
{
w2 +

v2

2

}
ηd+1e−(d−2)η2/4d

and

�(η, v, w) � −
{

v3

3
− v2

2

}
ηd+1e−(d−2)η2/4d .

Proof. Follows directly from the definition (A.5) of � and uses the upper bound (A.28)
of ρ. �

Appendix A.5. Regularizing argument

At the beginning of this appendix, we formally constructed a Lyapunov functional E(τ) with
� and ρ satisfying (A.3). In the previous section, we obtained a solution ρ of (A.4) and �

given by (A.2). Moreover, these functions satisfy the properties found in lemmas A.5 and
A.6. From these results we do not obtain enough regularity to derive (A.3). To do this, we
introduce a regularization of � using standard mollifiers and a translation function to avoid
the singularity of f at η = 0. See the details of the proof in [17, p 102].

Appendix B. Linear stability of blow-up profiles

In this appendix, we study the linear stability of the blow-up profiles ϕ1 and ϕ∗; see (20).
Let B be a solution of (27)–(29) and let ϕ be a solution of (19). The idea is to study the

linearized equation for the difference �(η, τ) := B(η, τ) − ϕ(η), i.e.

�τ = �ηη +
d + 1

η
�η +

(
1

d
ϕ − 1

2

)
η�η +

(
1

d
ηϕη + 2ϕ − 1

)
�. (B.1)

Here, we have implicitly assumed that sufficiently close to blow-up only the linear terms play
a role in describing the singularity formation.

For the stability analysis, let λ > 0 and consider a solution of (B.1) of the form ψλ(η)eλτ .

By (B.1), 〈ψλ(η), λ〉 satisfies

(ψλ)ηη +
d + 1

η
(ψλ)η +

(
1

d
ϕ − 1

2

)
η(ψλ)η +

(
1

d
ηϕη + 2ϕ − 1 − λ

)
ψλ. (B.2)

For the analysis of boundary conditions we first consider ϕ = ϕ1. We note that at η = 0 we
have either ψλ ∼ 1 or ψλ ∼ 1/ηd . To have ψλ bounded near 0, we impose

(ψλ)η(η) → 0 as η → 0. (B.3)
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For large η, we can either have ψλ ∼ η−(2λ+3)eη2/4 or ψλ ∼ η2λ−2. We see that both types of
behaviour diverge with η; however, the second asymptotic is bounded in terms of r and t as
t → T . Therefore, to have polynomial behaviour at infinity, we prescibe

ψλ(η)e−η → 0 as η → ∞. (B.4)

Now solving equation (B.2) together with (B.3) and (B.4), we find a sequence of solutions
of (B.1) given by {eλnτψn(η)}n∈N∪{0}, with λ0 > λ1 > · · · , where ψn := ψλn

. If the blow-up
time T > 0 is chosen correctly in the definition of η and τ, we can eliminate, see [10], the first
mode (n = 0) corresponding to change of blow-up and write

B(η, τ) = ϕ(η) + ψ1(η)eλ1τ + O(eλ2τ ).

Therefore, from the sign of λ1 we obtain the linear stability of ϕ.
In [10], Brenner et al proved, using (B.1), the following stability result for various blow-up

profiles.

Theorem A.7. Every solution ϕ of (47) satisfying ηϕη/ϕ → 2 as η → ∞ has an unstable
mode corresponding to changing the blow-up time. Also, a blow-up profile with k intersections
with the singular solution ϕS has at least k − 1 additional unstable modes.

In addition, the authors in [10] found numerically that λ1 < 0 when ϕ = ϕ1 and d > 2. In
particular, they computed λ1 = −0.272 . . . for d = 3. This implies that ϕ1 is linearly stable
for d > 2.

For ϕ = ϕ∗, we can proceed as above and solve the eigenvalue problem for (B.1).
Considering (B.2) with ϕ = ϕ∗, we find that 〈ψλ, λ〉 satisfies

(ψλ)ηη +

(
d + 1

η
− d − 2

2d
η

)
(ψλ)η + (1 − λ)ψλ = 0 (B.5)

with (B.3) and (B.4). These boundary conditions are chosen by the same arguments for
ϕ = ϕ1; however, in the current case we have either ψλ ∼ η(2d/(d−2))(λ−1)−d−2e((d−2)/4d)η2

or
ψλ ∼ η2d/(d−2)(1−λ) as η → ∞. Note that on changing η to (−η) the equation remains invariant,
so only solutions consisting of even powers are allowed. Then, we construct a sequence of
solutions of the form

ψn(η) =
n∑

i=0

Aiη
2i for any n = 0, 1, 2, 3, . . . ,

where the coefficients are given by Ai(2i(2i − 1) + (d + 1)2i) = Ai−1(1 − λ − 2i(d − 2)/2d)

for i = 1, 2, . . . and A0 is an arbitrary constant. This means that when (1 − λ−
2(n + 1)(d − 2)/2d) = 0, we find an explicit polynomial solution of degree 2n, where λ

is given by

λn = d − n(d − 2)

d
. (B.6)

Consequently, we have obtained an explicit sequence of solutions {〈ψn, λn〉}n∈N∪{0} for the
eigenvalue problem (B.5). The eigenvalue λ0 = 1 corresponds to the unstable mode of change
of blow-up time and since λ1 > 0 for all d > 2, by (B.6), this means that ϕ∗ is linearly
unstable.
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[21] Jäger W and Luckhaus S 1992 On explosions of solutions to a system of partial differential equations modelling

chemotaxis Trans. Am. Math. Soc. 329 819–24
[22] Keller E F and Segel L A 1970 J. Theor. Biol. 26 399–415
[23] Matano H 1978 Convergence of solutions of one-dimensional parabolic equations J. Math. Kyoto Univ. 18 221–7
[24] Matos J 1999 Convergence of blow-up solutions of nonlinear heat equations in the supercritical case Proc. R.

Soc. Edinb. Sect. A 129 1197–227
[25] Matos J 2001 Self-similar blow up patterns in supercritical semilinear heat equations Commun. Appl. Anal. 5

455–83
[26] Samarskii A A, Galaktionov V A, Kurdyumov S P and Mikhailov A P 1995 Blow-up in Problems for Quasilinear

Parabolic Equations (Berlin: de Gruyter)
[27] Velázquez J J L 1993 Classification of singularities for blowing up solutions in higher dimensions Trans. Am.

Math. Soc. 338 441–64.
[28] Velázquez J J L 2002 Stability of some mechanisms of chemotactic aggregation SIAM J. Appl. Math. 62 1581–633
[29] Wolansky G 1992 On steady distributions of self-attracting clusters under friction and fluctuations Arch. Ration.

Mech. Anal. 119 355–91
[30] Zelenyak T I 1968 Stabilization of solutions of boundary value problems for a second order parabolic equation

with one space variable Diff. Eqns 4 17–22


