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The stationary flow of a jet of a Newtonian fluid that is drawn by gravity onto a moving

surface is analyzed. It is assumed that the jet has a convex shape and hits the moving surface

tangentially. The flow is modelled by a third-order ODE on a domain of unknown length

and with an additional integral condition. By solving part of the equation explicitly, the

problem is reformulated as a first-order ODE with an integral constraint. The corresponding

existence region in the three-dimensional parameter space is characterized in terms of an

easily calculable quantity. In a qualitative sense, the results from the model are found to

correspond with experimental observations.

1 Introduction

In the flow of a viscous fluid jet falling onto a moving surface, different flow regimes

can be distinguished, as is easily observed if one pours syrup onto a pancake (see Figs 1

and 2). If the syrup is poured from a large height and the bottle is moved slowly, the

main part of the syrup thread between the bottleneck and the pancake remains steady

and purely vertical, apart from boundary layers at the two ends (Fig. 1). We call straight

for this flow type of the syrup. Another situation is possible if the bottle is held closer to

the pancake and moved relatively faster. Then the syrup thread between the bottleneck

and the pancake has a convex shape, apart from a possible bending boundary layer near

the bottle, and touches the pancake tangentially (Fig. 2). We call curved for this type of

syrup flow. Although the ‘straight’ case may seem just a special case of the ‘curved’ flow,

simple experiments (and the analysis of our forthcoming paper [6]) show that both types

of flow occur in open sets in parameter space.

There is a large body of literature on viscous jets or sheets that impinge upon fixed

surfaces, where one can observe unstable behaviour [14]; i.e. folding of viscous sheets

[13, 9, 17], coiling of viscous jets [10], and viscous fluid buckling [4, 15]. The first

published study of a viscous jet falling onto a moving surface was done by Chiu-Webster

and Lister [2]. They performed an extensive set of experiments studying steady and

unsteady viscous jet behaviour. The case of steady flow was modelled both in [2] and in

the later publication [11].

The analysis of the previous publications, however, makes no distinction between the

two types of steady flow mentioned above, curved and straight. In this paper, we study
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Figure 1. Straight flow of syrup for low surface velocity and large bottle height.

Figure 2. Curved flow of syrup for high surface velocity and small bottle height.

the curved case in full detail, as described by the model of [2], but we neglect surface

tension and focus on the mathematical analysis. The main issue that we address here is

the existence or non-existence of a steady, curved solution. This determines the parameter

region in terms of falling height, surface velocity, flow velocity at the nozzle, fluid density,

and viscosity, for which the jet is curved. By reformulating the problem as an algebraic



Falling jet onto moving surface 661

Syrup
nozzle

belt

L
vnozzle

vbelt

Figure 3. Jet falling from the nozzle onto the moving belt.

equation, we derive a particularly simple criterion (see Theorem 7) that characterizes the

curved jet existence, or lack thereof, in terms of a single function of two variables. In

addition, the formulation identifies a monotonic dependence on the model parameters.

We show that the results obtained from our model qualitatively agree with the results

of [2, 11].

In Section 2, we describe the model of the flow, where we first concentrate on the

curved jet of Fig. 2. In Section 3, the original system of equations is transformed to

a first-order differential equation for the flow velocity and two additional relations for

two unknown parameters. In Section 4, we show that in a certain parameter regime the

original system admits a unique solution, and we give a convenient characterization of

the relevant part of parameter space. In Section 5, we present the solution algorithms for

the model equations. Results for various model parameters are shown in Section 6. In

Section 7, we present what happens with the jet if the curved jet does not exist, and how

our model should be adjusted to describe the actual flow, and also provide a comparison

with the existing results. In Section 8, we discuss our results and give some conclusions.

2 Mathematical model

A thin stream of Newtonian fluid with viscosity η and density ρ is falling from the nozzle

of a bottle onto a moving belt (Fig. 3). We use the theory of thin jets (see e.g. [16]) and

thus describe the jet as a curve. The magnitude of the flow velocity at the nozzle is vnozzle,

the belt velocity is vbelt, and the vertical distance between the nozzle and the belt is L.

The flow of the fluid is stationary and the jet has a curved shape. We restrict ourselves to

curves under tension and therefore require that

vbelt > vnozzle. (2.1)

In Lemma 1, we show that for a curved jet the flow velocity increases from the nozzle to

the belt, which justifies (2.1).
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Figure 4. The geometry of the jet falling from the nozzle onto the moving belt.

The part of the jet between the nozzle and the belt is represented by its centre line, the

curve CD in Fig. 4. Point C indicates that the nozzle and point D indicates the contact

with the belt. The acceleration of gravity is g and the belt surface is perpendicular to g.

We parameterize the centre line by arclength s (s = 0 at C , and s = send at D). For each

point on the curve, we define a local orthonormal coordinate system es(s), en(s) consisting

of the tangent and normal unit vectors at the point s. The angle between es(s) and the

belt surface is Θ(s). The cross-sectional area at s is A(s), and the average velocity of the

fluid at this point is v(s) = v(s)es(s).

The equations describing steady-state flow of fluid are obtained from [16, (4.18), p. 48]

by neglecting the dynamic terms, the shearing force and the balance of momentum of

momentum equation. The resulting system consist of the equations of conservation of

mass and balance of momentum,

(A(s)v(s))′ = 0, (2.2)

(A(s)v(s)v(s))′ =
1

ρ
(P (s)es(s))

′ + gA(s), (2.3)

where by prime denotes differentiation with respect to s. The longitudinal force P (s) is

obtained from the constitutive law for a Newtonian viscous fluid,

P (s) = ηTA(s)v′(s). (2.4)

Here ηT is the Trouton elongational viscosity, which for a Newtonian fluid equals 3η [16].

Using (2.2) and (2.4), we write the balance of momentum (2.3) in components in the

coordinate system es(s), en(s), as

v′(s) =
g sin Θ(s)

v(s)
+ 3ν

(
v′(s)

v(s)

)′
, (2.5)

v(s)Θ′(s) =
g cos Θ(s)

v(s)
+ 3ν

(
v′(s)

v(s)

)
Θ′(s), (2.6)

where ν is the kinematic viscosity, i.e. ν = η/ρ.

Since system (2.5)–(2.6) is of second order with respect to the velocity v(s) and of first

order with respect to the angle Θ(s), we need two boundary conditions for v(s) and one
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for Θ(s). For v(s), we know the velocity of the jet at the nozzle (point C) and the velocity

at the contact with the belt (point D)

v(0) = vnozzle, (2.7)

v(send) = vbelt. (2.8)

Note that the length send of the jet CD is unknown. The angle Θ(s) at the contact with

the belt is zero, so

Θ(send) = 0. (2.9)

Because the length of the belt send is unknown in advance, we need an additional condition

relating send to the distance L between the nozzle and the belt,

L =

∫ send

0
sin Θ(s) ds. (2.10)

Equations (2.5) and (2.6) together with the three boundary conditions (2.7–2.9), and the

additional condition (2.10) form the complete system for the unknowns v(s), Θ(s), and

send.

Next, we make the equations dimensionless. We scale the length send with respect

to 3ν/vbelt, reverse the direction of s, and move the origin of s to point D, i.e. s̃ :=

vbelt(send − s)/(3ν). The velocity v(s) is scaled with respect to the velocity of the belt vbelt,

i.e., vbeltṽ(̃s) := v(s). Also we introduce a new angle Θ̃ (̃s) := Θ(s). The scaled version of

(2.5)–(2.10) reads

(
ṽ(̃s) +

ṽ′(̃s)

ṽ(̃s)

)′
= −A

sin Θ̃ (̃s)

ṽ(̃s)
, (2.11)

Θ̃′ (̃s) = −A
cos Θ̃ (̃s)

ṽ(̃s)
(
ṽ(̃s) + ṽ(̃s)′

ṽ(̃s)

) , (2.12)

ṽ(0) = 1, (2.13)

ṽ(̃send) = ṽnozzle, (2.14)

Θ̃(0) = 0, (2.15)
∫ s̃end

0
sin Θ̃ (̃s) ds̃ = Re. (2.16)

Here

A =
3gν

v3
belt

, Re =
vbeltL

3ν
, ṽnozzle =

vnozzle

vbelt
, and s̃end =

sendvbelt

3ν
.

All these parameters are positive and Re is the Reynolds number. The parameter A can

be written in terms of the Reynolds number and Froude number Fr as

A =
1

Fr2Re
, where Fr =

vbelt√
Lg

.

The prime now denotes differentiation with respect to s̃, and in the sequel we omit the

tildes.
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3 A first-order differential equation for the velocity

By introducing a new variable ξ(s)

ξ(s) = v(s) +
v′(s)

v(s)
, (3.1)

we can rewrite the equations (2.11–2.12) as

v(s)ξ′(s) = −A sin Θ(s), (3.2)

v(s)Θ′(s) = −A
cos Θ(s)

ξ(s)
, (3.3)

v′(s) = ξ(s)v(s) − v2(s). (3.4)

Note that (3.2)–(3.4) is a third-order ordinary differential equation and we shall therefore

consider it as a dynamical system in its own right with s as the time-like variable.

For the variable ξ(s), it is necessary to provide an initial value. To compute it, we need

to know values of v(s) and v′(s) at the same point. Because we do not know a value of

v′(s) at any point we prescribe a value of ξ(s) at s = 0,

ξ(0) = −
√
w, w ! 0. (3.5)

Here we restrict ourselves to a negative initial value for ξ. Further in this section, see

(3.17) and (3.18), we explain our choice of the form for the initial value for ξ(s). The

value w is unknown in advance and is determined by the requirement that a solution of

(3.2)–(3.4) has to satisfy the conditions (2.16) and (2.14).

Next, we replace the material coordinate s by the time t, according to

ds = v(t)dt,

in the system of equations (3.2)–(3.4) together with the conditions (2.13)–(2.16) and (3.5),

and we obtain

ξ′(t) = −A sin Θ(t), (3.6)

Θ′(t) = −A
cos Θ(t)

ξ(t)
, (3.7)

v′(t) = ξ(t)v2(t) − v3(t), (3.8)

ξ(0) = −
√
w, (3.9)

Θ(0) = 0, (3.10)

v(0) = 1, (3.11)

v(tend) = vnozzle, (3.12)
∫ tend

0
v(t) sin Θ(t) dt = Re. (3.13)

Here

tend =

∫ send

0

ds

v(s)

represents the dimensionless time necessary to flow from the nozzle to the belt, which is

unknown in advance.
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To solve equations (3.6) and (3.7), we multiply (3.6) by sin Θ(t) and (3.7) by ξ(t) cos Θ(t)

and add them, to obtain,

(ξ(t) sin Θ(t))′ = −A. (3.14)

We integrate (3.14) with respect to t and use the initial condition (3.10) to obtain

ξ(t) sin Θ(t) = −At. (3.15)

By eliminating sin Θ(t) from (3.15) and substituting it into (3.6), we derive the differential

equation for ξ(t)

ξ′(t) =
A2t

ξ(t)
, (3.16)

which has the solution

ξ(t) = ±
√

A2t2 + ξ(0)2. (3.17)

Here we have to choose a correct branch of the square root (3.17). The branch with

the positive sign gives negative sin Θ(t), see (3.15), which implies an upward-sloping jet;

the physically reasonable choice is, therefore, the branch with the negative sign. With the

initial condition (3.5) we get

ξ(t) = −
√
A2t2 + w, (3.18)

and from (3.15) and (3.18) we find

Θ(t) = arcsin
At√

A2t2 + w
. (3.19)

Summarizing, the problem (3.6)–(3.13) simplifies to

v′(t) = −v2(t)(
√
A2t2 + w + v(t)), (3.20)

v(0) = 1, (3.21)

v(tend) = vnozzle, (3.22)
∫ tend

0

Atv(t)√
A2t2 + w

dt = Re. (3.23)

The unknowns of the problem (3.20)–(3.23) are the velocity v(t) and the two positive

parameters w and tend.

4 Existence and uniqueness

We reformulate the problem (3.20)–(3.23) as an algebraic equation for the parameter w.

First, we formulate properties of a solution v(·, w) of (3.20)–(3.21) for given w ! 0 .

Lemma 1 For any w ! 0, equation (3.20) has a unique solution v(·, w) : [0,∞) → (0, 1]

satisfying (3.21) with v(·, w) ∈ C1([0,∞)).

In addition,

(1) v(t;w) is a strictly decreasing function of t for fixed w and a strictly decreasing function

of w for fixed t.
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(2)

v(t;w) <
2

2 + t
√
A2t2 + w

. (4.1)

(3) The operator w (→ v(·, w) is continuous from [0,∞) to L∞(0,∞).

Proof The right-hand side of (3.20) is C(Ω) and Lipshitz continuous in v uniformly on Ω,

where Ω = ({t, v, w} : t ∈ [0,∞), v ∈ (0, 1], w ! 0). Therefore, locally there exists a unique

solution of (3.20) satisfying (3.21), which continuously depends on w [3, Theorem 7.4].

From (3.20) it follows that v′(t;w) < 0 whenever v(t;w) > 0 and that v ≡ 0 is a solution

of this equation. Thus, because of (3.21), v′(t;w) is always negative and v(·;w) is strictly

decreasing. Since v ≡ 0 is a solution of (3.20), v(t;w) remains positive for t ! 0. Therefore,

v(t;w) ∈ (0, 1] ∀t ! 0; this proves the existence and uniqueness of v and the monotonicity

in t.

For the monotonicity in w, fix w1 > w2 ! 0. Then v′(0;w1) = −(
√
w1 + 1) < v′(0, w2) =

−(
√
w2 + 1), and v(t;w1) < v(t;w2) for small t > 0. Suppose that there exists a t∗ > 0 such

that v(t∗;w1) = v(t∗;w2); then v′(t∗;w1) ! v′(t∗;w2), which leads to a contradiction with

w1 " w2. This completes the proof of part 1 of the Lemma.

Because v(t;w) > 0 we have

v′(t;w) < −v(t;w)2
√

A2t2 + w,

or
(

1

v(t;w)

)′
>

√
A2t2 + w. (4.2)

We integrate (4.2) from 0 to t and apply the initial condition v(0;w) = 1 to find the

following estimate of v(t;w):

v(t;w) <
2A

2A + At
√
A2t2 + w + w log

(
At+

√
A2t2+w√
w

) <
2

2 + t
√
A2t2 + w

.

This estimate proves part 2 and shows that v(t;w) → 0 as t → ∞.

The right-hand side of (3.20) depends continuously on w. This together with the estimate

(4.1) of v(t;w) at t = ∞ proves part 3. !

In order to solve (3.20)–(3.23), we need to find w for which (3.22)–(3.23) are satisfied.

Knowing a correct value of w, we can obtain a solution v(t) which leads to a solution of

the original problem (2.11)–(2.16). Therefore, next we concentrate on finding a correct w.

Definition 2 We define a function I : [0,∞) → [0,∞) in the following way. For given

w ∈ [0,∞) let v(·, w) be the solution of (3.20)–(3.21) given by Lemma 1. By items 1 and 2

of Lemma 1 there exists a unique tend(w) ! 0 satisfying

v(tend(w);w) = vnozzle. (4.3)
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Define I(w) as

I(w) =

∫ tend(w)

0

Atv(t;w)√
A2t2 + w

dt. (4.4)

By Lemma 1, part 2 the integrable function is bounded from above and the integral

converges.

Corollary 3 Solving (3.20)–(3.23) is equivalent to finding a w ! 0 that satisfies

I(w) = Re. (4.5)

In the next three lemmas we will show some properties of I(w), which lead to a charac-

terization of existence and uniqueness of a solution to (4.5).

Lemma 4 I(w) is a strictly decreasing function of w.

Proof Choose w1 and w2 with

w1 > w2 ! 0. (4.6)

From part 1 of Lemma 1, it follows that

tend(w1) < tend(w2). (4.7)

Combining (4.7) with the statement 1 of Lemma 1 and (4.6) with the definition of I(w),

we have

I(w1) =

∫ tend(w1)

0

Atv(t;w1)√
A2t2 + w1

dt <

∫ tend(w2)

0

Atv(t;w1)√
A2t2 + w1

dt

<

∫ tend(w2)

0

Atv(t;w2)√
A2t2 + w2

dt = I(w2),

which proves the lemma. !

Lemma 5 I(w) is continuous.

Proof Fix w ! 0 and let

wn → w as n → ∞. (4.8)

Then

I(w) − I(wn) =

∫ tend(w)

0

Atv(t;w)√
A2t2 + w

dt −
∫ tend(wn)

0

Atv(t;wn)√
C2t2 + wn

dt

=

∫ tend(wn)

0

[
Atv(t;w)√
A2t2 + w

− Atv(t;wn)√
A2t2 + wn

]
dt +

∫ tend(w)

tend(wn)

Atv(t;w)√
A2t2 + w

dt.

= J1 + J2.
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Both J1 and J2 converge to zero as n → ∞; for J1 this follows from the continuity of

v(t;w) in w (Lemma 1) and for J2 from the continuity of tend(w) in w, which we prove next.

From Lemma 1 we have that v(·;w) ∈ C1([0,∞)) and −∞ < vt(t;w) < 0. Therefore,

by the Inverse Function Theorem (e.g. [12, Theorem 9.24]) there exists a function t =

t(·;w) ∈ C1((0, 1]) such that t
(
v(̃t;w);w

)
= t̃ for all t̃ ! 0.

Next note that

vn := v(tend(wn);w) −→ vnozzle as n → ∞, (4.9)

since

|v(tend(wn);w) − vnozzle| = |v(tend(wn);w) − v(tend(wn);wn)|
" ‖v(·;w) − v(·;wn)‖∞ −→ 0

by part 3 of Lemma 1. Therefore, by continuity of t(·;w) we have

tend(wn) = t
(
v(tend(wn);w);w

)
= t(vn;w) −→ t(vnozzle;w) = tend(w),

which completes the proof. !

Lemma 6 limw→∞ I(w) = 0.

Proof From the definition of I(w) and v(t;w) ∈ (0, 1] (Lemma 1) we have

I(w) =

∫ tend(w)

0

Atv(t;w)√
A2t2 + w

dt <

∫ tend(w)

0

At√
A2t2 + w

dt

=

√
w + A2tend(w)2 −

√
w

A
=

Atend(w)2√
w + A2tend(w)2 +

√
w
.

Because tend(w) decreases in w, by letting w → ∞ we find

lim
w→∞

I(w) = 0.
!

Summarizing the results of previous lemmas, we formulate a theorem of existence and

uniqueness of a solution to the original problem (2.11)–(2.16).

Theorem 7 There exists a solution to the problem (2.11)–(2.16) if and only if

I(0;A, vnozzle) > Re. (4.10)

If it exists, the solution is unique.

The theorem follows simply from Lemmas 4, 5, and 6.

In Section 5, we describe two algorithms for computing I(0;A, vnozzle) as a function of A

and vnozzle, resulting in the graph of Fig. 5. As a consequence of Theorem 7, a solution

to the original problem (2.11)–(2.16) exists only if the point (A, vnozzle,Re) is below the

surface I(0;A, vnozzle).
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Figure 5. Surface I(0;A, vnozzle).

5 Numerical aspects

The problem of this paper gives rise to two slightly different numerical questions. The

first question arises in making a phase diagrams (see Fig. 9); in order to distinguish

between existence and non-existence of a curved jet we need to calculate I(0;A, vnozzle)

and check the existence condition I(0;A, vnozzle) > Re (see (4.10)). The second question

arises when this condition is fulfilled: by Corollary 3 we then need to find w > 0 such that

I(w;A, vnozzle) = Re, from which v and Θ can then be determined by solving (3.20)–(3.21)

and using (3.19).

The main differential equation (3.20) can be solved either analytically or numerically,

giving rise to two different methods.

Method 1. When w = 0, it is possible to solve the problem (3.20)–(3.21) analytically

(Appendix A). The rescaled domain size z∗ is then to be determined implicitly from

vnozzle =
(2A)1/3

(3z∗)2/3



1 +

(
J 2

3
(z∗)c1 − J− 2

3
(z∗)

J 1
3
(z∗) + J− 1

3
(z∗)c1

)2



−1

, c1 =
J− 2

3
(
√

2A/3)

J 2
3
(
√

2A/3)
, (5.1)

where the Jα are the Bessel functions of the first kind. We then calculate tend(0) and

I(0;A, vnozzle) as

tend(0) =
(6z∗)1/3

A2/3

J 2
3
(z∗)c1 − J− 2

3
(z∗)

J 1
3
(z∗) + J− 1

3
(z∗)c1

, (5.2)

I(0;A, vnozzle) =
1 − vnozzle

vnozzle
− A

tend(0)2

2
. (5.3)

This method only is available for the special case w = 0 and can only be used for making

phase diagrams and checking the existence condition (4.10).
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Method 2. Alternatively, one may integrate (3.20) numerically until the condition

v(t; 0) = vnozzle is reached. The integral I(w;A, vnozzle) can be computed numerically as

well. This method is available for all w ! 0.

We solve (4.5) by the bisection method, supplemented with an upper bound on w that

follows from the estimate (4.1): since for all w,

v(t;w) <
2

At2
,

we have

vnozzle = v(tend(w);w) <
2

Atend(w)2
,

and therefore Atend(w)2 < 2/vnozzle. We thus estimate

I(w;A, vnozzle) =

∫ tend(w)

0

Atv(t;w)√
A2t2 + w

dt <
Atend(w)2

2
√
w

<
1

vnozzle
√
w
. (5.4)

Therefore, the solution w of (4.5) satisfies the a priori estimate

w "
1

v2
nozzleRe2

,

which together with the existence condition (4.10) gives the initial interval for the bisection

method

w ∈
[
0, 1/(vnozzleRe)2

]
.

6 Results

From Theorem 7, it follows that if the parameters A, Re, and vnozzle satisfy (4.10), then there

exists a solution to the stationary curved jet equations (2.5)–(2.10) (or equivalently (3.20)–

(3.23)). For a numerical experiment, we take parameter values such that (4.10) is satisfied.

By changing one of the model parameters such that the point (A, Re, vnozzle) approaches

the boundary of the existing region, we investigate the change in the shape of the jet.

As a reference configuration for the numerical experiments shown below we consider

syrup with viscosity η = 3.2 Pa s and density ρ = 1000 kg/m3 (typical of pancake syrup)

pouring from the height L = 2 × 10−2 m. The velocities of the belt and the flow at the

nozzle are vbelt = 0.5m/s and vnozzle = 0.05m/s, respectively. Figure 6 shows curves in

non-dimensional parameter space (A, vnozzle,Re) corresponding to variation of a single

(dimensional) physical parameter L, ν, vbelt, or vnozzle. In the figure, we see that upon

decreasing ν or vbelt, or increasing L or vnozzle, the point (A, vnozzle,Re) eventually leaves the

region {(A, vnozzle,Re) : I(0;A, vnozzle) > Re}. The numerically calculated shapes become

vertical as the parameters approach the boundary. In Fig. 7, we present the shapes of the

jet for specific values of the parameters along each of these curves.

For a point (A, vnozzle,Re) at the boundary of the existence region, the solution w of

(4.5) equals 0. Then a jet solution exists provided we drop the tangency condition (2.9);

the jet is then exactly vertical (Θ = π/2) (see (3.19)). Note that both the curved and the

purely vertical (w = 0) jets are under tension (part 1 of Lemma 1).
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Figure 6. Curves in non-dimensional parameter space (A, vnozzle,Re) as we change one of the
process parameters (L, ν, vbelt, vnozzle). The grey parts of the curves below the surface I(0;A, vnozzle)
correspond to the curved jet; we conjecture that the black parts of the traces correspond to a
vertical jet. Line a: increasing L; line b: decreasing ν; line c: decreasing vbelt; and line d: increasing
vnozzle.

0.1 0.3 0.5 0.7 0.9 1.1 1.3

0.5

1

1.5

2

2.5

1

4
3

1 2.00
2 2.46
3 2.74
4 2.84

2

L (cm)Line

x (cm)

y (cm)

(a)  Varying L.

1 0.0032
2 0.0022
3 0.0020
4 0.0018

0.1 0.3 0.5 0.7 0.9 1.1 1.3

0.5

1

1.5

2
1
2

3
4

ν (m2/s)Line

x (cm)

y (cm)

(b)  Varying ν.

0.1 0.3 0.5 0.7 0.9 1.1 1.3

0.5

1

1.5

2
1
2

3
4

1 0.50
2 0.28
3 0.25
4 0.23

vbelt

vbe lt (m/s)Line

x (cm)

y (cm)

(c)  Varying vbelt.
0.1 0.3 0.5 0.7 0.9 1.1 1.3

0.5

1

1.5

2
1
2

3
4

1 0.05
2 0.10
3 0.12
4 0.14

vnozzle

vno zzl e (m/s)Line

x (cm)

y (cm)

(d) Varying vnozzle.

Figure 7. The shapes of a jet for different values of the process parameters (L, ν, vbelt, vnozzle). The
reference values for the parameters are η = 3.2 Pa s, ρ = 1000 kg/m3, L = 2 × 10−2 m, vbelt = 0.5 m/s,
and vnozzle = 0.05 m/s.
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Figure 8. The experimental results of [2], experiment 7 (dots) for the steady–unsteady boundary,
and a linear fit (line 1); the border of the curved-jet existence region predicted by our model (line 2);
and the steady–unsteady boundary predicted by the model of [2] (line 3). The jet is stable under
line 1, and predicted to be curved under line 2 and stable under line 3.

Summarizing the numerical experiments, we observe that by increasing the flow velocity

at the nozzle or the distance between the belt and the nozzle the jet shape becomes more

vertical; the same is true if we decrease the velocity of the belt or the kinematic viscosity.

The jet becomes more vertical when the parameter point (A, vnozzle,Re) approaches the

critical surface {I(0;A, vnozzle) = Re} and purely vertical if I(0;A, vnozzle) = Re.

7 Modelling issues

In this section we compare our results with [2, 11] and discuss what happens beyond the

curved-jet region.

The general solution behaviour described in the previous section is visible in both the

experimental and the theoretical results of [2, 11] (see e.g. [2, Fig. 10] or [11, Fig. 3]).

However, the experimental results of [2] (for instance experiments 5 and 7, shown in [2],

Fig. 12) do not distinguish between curved and straight flow, but between steady and

unsteady flow. When decreasing the belt velocity, the curved flow first becomes straight,

and only later becomes unsteady; therefore the curved–straight transition, as determined

by our results, is necessarily a one-sided bound for the steady-unsteady transition. This

is illustrated in Fig 8, where the prediction of this paper (line 2) indeed lies below the

experimental results of [2, Fig. 12].

Figure 8 also shows a theoretical prediction of the experimental results, derived in [2]

by asymptotic means (line 3). Examination of the method, however, shows that this
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Figure 9. The left-hand side figure presents the existence region for the curved-jet solution for
different L and vbelt, predicted by our model (line 1). Line 2 shows the steady–unsteady jet boundary
predicted by the model of [2]. The figure on the right-hand side shows a zoom of the existence
boundary for the curved-jet solution.

prediction, like the one in this paper, concerns the existence–nonexistence transition of

the curved flow solution, and is a priori unrelated to the steady–unsteady transition. (In

our forthcoming paper [6], we show that the two transitions are necessarily separated

from each other in parameter space). Although both line 2 and line 3 are estimates of

the same existence–nonexistence transition, they differ because surface tension has been

neglected in the present paper.

The asymptotic result of [2] mentioned above also predicts a linear relation between√
vbelt and L for the existence–nonexistence transition. Figure 9 shows the region of the

curved jet obtained for the parameters ν and vnozzle as used in [2], experiment 7 but for a

larger range of vbelt and L. The linear relation between
√
vbelt and L is reasonable for the

values considered in [2], but fails for larger vbelt (the curve flattens off), and for vbelt close

to vnozzle (the curve becomes vertical at vbelt = vnozzle).

When the model parameters are changed in such a way that the solution w of (4.5)

goes to zero then the calculated jet shape becomes close to vertical everywhere, except a

small neighbourhood at the contact with the belt. There the jet rapidly bends from almost

vertical to horizontal. To capture the jet shape in this bending region the shearing forces

and the moment of momentum equation should be included in the model, as shear and

bending are significant near the boundary [11]. However, including these effects in the

model will increase the complexity and abandons the possibility of an analytical analysis.

It is an interesting question what happens beyond the existence region for the curved-

jet solution in the current model. In the forthcoming paper [6], we investigate the

characteristics of the associated dynamic equation, and relate these to the balance between

the convective momentum transfer and the momentum transfer due to the longitudinal

force in a jet. We show that the vanishing of ξ at the boundary is consistent with the loss

of the tangency condition at the belt, implying that the transition to purely vertical flow
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is in fact a natural one. However, when the flow from the nozzle increases, the nozzle

orientation becomes important, and the jet shape becomes similar to a ballistic trajectory.

The equations for the viscous jet described in this paper are analogous to the equa-

tions describing a viscous sheet. Therefore, all the analysis of this paper is true for

the fall of viscous sheets onto a moving surface occurring in the modelling of curtain

coating [5].

8 Conclusions

In this paper we study a mathematical model of the fall of a viscous jet onto a moving

surface. We assume that the jet is falling under gravity and has a curved shape. The model

consists of two differential equations, one for the flow velocity and the other for the angle

describing the jet’s shape. An additional relation fixes the unknown length of the jet.

The initial system of equations is partially solved and then transformed to a first-order

differential equation for the velocity. By introducing an additional scalar parameter w

the problem is reformulated as an algebraic equation for w (4.5). For this equation, we

formulate an existence condition (4.10) and prove uniqueness, thus giving a complete

characterization of existence and uniqueness for the original equations. Finally, we solve

the equation for w numerically and recover the solution of the original problem.

We have shown that if the existence condition (4.10) is satisfied, then the shape of the

jet is convex. Furthermore, the model shows that the curved jet becomes more vertical

when: (i) the distance between the nozzle and the surface increases, (ii) the flow velocity at

the nozzle increases, (iii) the surface velocity decreases, or (iv) the kinematic viscosity of

the fluid decreases. These results correspond with those observed in the basic experiment

described in the introduction and in [2].

Appendix A: Calculation of I(0;A, vnozzle)

First we calculate v(t; 0) analytically. The differential equation for v(t; 0) follows from

(3.20) and (3.21),

v′(t; 0) = −v2(t; 0)(At + v(t; 0)), v(0; 0) = 1. (A 1)

By replacing v(t; 0) by Z(t) = 1/v(t; 0), we find

Z ′(t)Z(t) = AZ(t)t + 1, Z(0) = 1. (A 2)

We seek for a solution of (A 2) in parametric form. With the substitution

Z(z) = z + A/2t2(z), (A 3)

where z is a parameter, (A 2) becomes

t′(z) = At2(z) + z, t(1) = 0. (A 4)

Here the initial condition is deduced from (A 3) by setting t(z) = 0 and Z(z) = 1. This

differential equation is known as the special Riccati equation [7, p. 4], type 4 and has the
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solution

t(z) =

√
2z

(
J 2

3

(√
2Az3/2

3

)
c1 − J− 2

3

(√
2Az3/2

3

))

√
A

(
J 1

3

(√
2Az3/2

3

)
+ J− 1

3

(√
2Az3/2

3

)
c1

) , (A 5)

with

c1 =
J− 2

3
(α)

J 2
3
(α)

, α =
√

2A/3. (A 6)

Here the functions Jα are the Bessel functions of the first kind. The velocity v is given by

v(z) =
1

z



1 +




J 2

3

(√
2Az3/2

3

)
c1 − J− 2

3

(√
2Az3/2

3

)

J 1
3

(√
2Az3/2

3

)
+ J− 1

3

(√
2Az3/2

3

)
c1




2




−1

. (A 7)

To write the result in a more elegant form we replace the parameter z by z̃ =
√

2Az3/2/3

(we then omit tildes)

t(z) =
(6z)1/3

A2/3

J 2
3
(z)c1 − J− 2

3
(z)

J 1
3
(z) + J− 1

3
(z)c1

, (A 8)

v(z) =
(2A)1/3

(3z)2/3



1 +

(
J 2

3
(z)c1 − J− 2

3
(z)

J 1
3
(z) + J− 1

3
(z)c1

)2



−1

. (A 9)

To calculate tend(0) from the solution (A 8) and (A 9) it is necessary to find z∗ satisfying

vnozzle =
(2A)1/3

(3z∗)2/3



1 +

(
J 2

3
(z∗)c1 − J− 2

3
(z∗)

J 1
3
(z∗) + J− 1

3
(z∗)c1

)2



−1

, (A 10)

and then substitute z = z∗ into (A 8).

Equation (A 10) has many solutions. A correct solution z∗ is the first solution of (A 10)

after the point α. It is convenient to search for z∗ in the interval (α, z0) using the bisection

method [8]. Here, z0 is the first zero of v(z) according to (A 9) after the point α.

Next, we have to find a correct z0. Because zeros of v(z) coincide with zeros of

J 1
3
(z) + J− 1

3
(z)c1, (A 11)

we can look for the first zero of (A 11) after α. Using (A 6), we can rewrite the latter as

J 1
3
(z0)J 2

3
(α) + J− 1

3
(z0)J− 2

3
(α) = 0. (A 12)

This equation can be rewritten in terms of Airy functions 1, 10.4.22 and 10.4.27 as

Bi(−ẑ0)Ai
′(−α̂) − Ai(−ẑ0)Bi

′(−α̂) = 0, ẑ0 =

(
3z0

2

) 2
3

, α̂ =

(
3α

2

) 2
3

. (A 13)
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Using the representation of Airy functions via modulus and phase [1, 10.4.69 and 10.4.70]

Ai(−ẑ0) = M(ẑ0) cos θ(ẑ0), Bi(−ẑ0) = M(ẑ0) sin θ(ẑ0),

Ai′(−α̂) = N(α̂) cos φ(α̂), Bi′(−α̂) = N(α̂) sin φ(α̂),

we see that (A 13) becomes

sin(θ(ẑ0) − φ(α̂)) = 0. (A 14)

For large ẑ0 . 1 and α̂ . 1, the asymptotic expressions for θ(ẑ0) and φ(α̂) [1, 10.4.79 and

10.4.81] are given by

θ(ẑ0) =
π

4
− 3

2
ẑ

2/3
0

(
1 − 5

32ẑ3
0

+
1105

6144ẑ6
0

+ · · ·
)
,

and

φ(α̂) =
3π

4
− 3

2
α̂2/3

(
1 +

7

32α̂3
− 1463

6144α̂6
+ · · ·

)
,

or in terms of z0 and α (A 13)

θ(z0) =
π

4
− z0

(
1 − 5

72z2
0

+
1105

31104z4
0

+ · · ·
)
, (A 15)

and

φ(α) =
3π

4
− α

(
1 +

7

72α2
− 1463

31104α4

)
. (A 16)

After substituting (A 15) and (A 15) into (A 14) for α . 1 we find

z0 ≈ α + π/2. (A 17)

When α is not large we can find z0 numerically by looking for a solution of (A 12) in the

interval (α, α + π).

Once z0 is found we find z∗ and consequently compute tend(0). Knowing tend(0), we can

compute I(0). To avoid computation of the integral

I(0) =

∫ tend(0)

0
v(t; 0) dt,

we can calculate this integral using the differential equation (A 1), when written as

(
1

v(t; 0)

)′
= At + v(t; 0). (A 18)

By integrating this equation from 0 to tend(0), we get

(
1

v(tend(0); 0)
− 1

v(0; 0)

)
= A

tend(0)2

2
+

∫ tend(0)

0
v(t; 0) dt. (A 19)

We use the definitions of I(0) and tend(0), together with the initial condition v(0; 0) = 1 to
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obtain

I(0) =
1 − vnozzle

vnozzle
− A

tend(0)2

2
. (A 20)
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