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The mountain pass theorem is an important tool in the calculus of variations and in finding solutions to nonlinear PDEs in
general. The mountain pass structure can be exploited numerically, as well. We explain the main ideas on an example of
buckling of a cylindrical shell. First, we prove existence of an MP-solution for almost all values of a given load parameter.
Then, we find a numerical approximation of such a solution. Finally, we compare the results of a numerical continuation in
the load parameter with results of physical experiments and make a few comments about further numerical investigations of
the problem.

1 Introduction to buckling of a cylindrical shell

A classical problem in structural engineering is the prediction of the load-carrying capacity of an axially-loaded cylinder. As
well as being a commonly used structural element, the axially-loaded cylinder is also the archetype of unstable, imperfection-
sensitive buckling, and this has led to a large body of theoretical and experimental research.

Viewed as a bifurcation problem, the buckling of the cylinder is a subcritical symmetry-breaking pitchfork bifurcation
(Figure 1 left). Generically, imperfections in the structure eliminate the bifurcation and round off the branch of solutions,
resulting in a turning-point at a load Pimp strictly below the critical (bifurcation) load Pcr of the perfect structure. In an
experiment in which the load is slowly increased, the system will fail (i.e. make a large jump in state space) at load Pimp.
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Fig. 1 Left: Illustration of perfect and imperfect bifurcation curves. Right: Experimental data from various research groups,
all representing failure loads of axially-loaded cylinders. The horizontal axis is the ratio of cylinder length and wall thickness;
the vertical axis is the ratio of the failure load and the theoretical critical load as predicted for perfect cylinders. Note that
all tested cylinders fail at loads significantly lower than that predicted by theory; in some cases failure occurred at less than
one-fifth of the theoretical load-carrying capacity. Power-law fitting lines are added to emphasize the dependence of failure
load on geometry. The data are from [5, 3, 2].

Instead of studying actual behavior of imperfect cylinders, we deduce an estimate of the sensitivity to imperfections from
the energy landscape of the perfect cylinder. The final result is a lower bound on the failure load, and the approach gives
additional insight into the problem. The key result is the existence of a mountain-pass point, an equilibrium state that sits
astraddle in the energy landscape between two valleys; one valley surrounds the unbuckled state, and the other contains many
buckled, large-deformation states.
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A cylindrical shell is modeled by the Von Kármán-Donnell equations which can be rescaled [7] to the form

∆2w + λwxx − φxx − 2 [w, φ] = 0, (1)

∆2φ + wxx + [w, w] = 0, (2)

where the bracket is defined as

[u, v] =
1
2
uxxvyy +

1
2
uyyvxx − uxyvxy. (3)

The function w is a scaled inward radial displacement measured from the unbuckled (fundamental) state, φ is the Airy stress
function, and λ ∈ (0, 2) is a load parameter. The unknowns w and φ are defined on a two-dimensional spatial domain
Ω = (−a, a) × (−b, b), where x ∈ (−a, a) is the axial and y ∈ (−b, b) is the tangential coordinate. Since the y-domain
(−b, b) represents the circumference of the cylinder, the following boundary conditions are prescribed:

w is periodic in y, and wx = (∆w)x = 0 at x = ±a, (4a)

φ is periodic in y, and φx = (∆φ)x = 0 at x = ±a. (4b)

1.1 Functional setting

We search for weak solutions w, φ of (1–4) in the space

X =
{

ψ ∈ H2(Ω) : ψx(±a, ·) = 0, ψ is periodic in y, and
∫

Ω

ψ = 0
}

with norm

‖w‖X,λ =
[∫

Ω

(
∆w2 + ∆φ2

1 − λw2
x

)]1/2

where the load parameter λ ∈ (0, 2) is fixed and φ1 ∈ H2(Ω) is the unique solution of

∆2φ1 = −wxx, φ1 satisfies (4b), and
∫

Ω

φ1 = 0. (5)

This norm is equivalent to the H2-norm on the set X , and with the appropriate inner product 〈·, ·〉X,λ the space X is a Hilbert
space.

Equations (1–2) are related to the stored energy E, the average axial shortening S, and the total potential given by

E(w) :=
1
2

∫
Ω

(
∆w2 + ∆φ2

)
, S(w) :=

1
2

∫
Ω

w2
x, Fλ = E − λS. (6)

Note that the function φ in (6) is determined from w by solving (2) with boundary conditions (4b). All E, S, and Fλ belong
to C1(X), i.e., are continuously Fréchet differentiable.

2 The mountain pass

We briefly recall the general context of the Mountain-Pass Theorem of Ambrosetti and Rabinowitz [1]. Let I be a functional
defined on a Banach space X , and let w1, w2 be two distinct points in X . Consider the family Γ of all paths in X connecting
w1 and w2 and define

c = inf
γ∈Γ

max
w∈γ

I(w) , (7)

that is the infimum of the maxima of the functional I along paths in Γ. If c > max{I(w1), I(w2)}, then the paths have to
cross a “mountain range” and one may conjecture that there exists a critical point wMP of I at the level c, called a mountain
pass point.

This idea is applied to the Von Kármán-Donnell-equations in the following way. We take for I the total potential Fλ at
some fixed value of λ, and for the end point w1 the origin. We will obtain a mountain-pass solution by the following steps:

• It can be shown that w1 = 0 is a local minimizer; in particular there are �, α > 0 such that Fλ(w) ≥ α for all w with
‖w‖X = �.

• If the domain Ω is large enough, it can be shown that there exists w2 with Fλ(w2) ≤ 0.

• Given a sequence of paths γn that approximates the infimum in (7), we extract a (Palais-Smale) sequence of points
wn ∈ γn, each one close to the maximum along γn, and show that this sequence converges in an appropriate manner.

In this way it follows that there exists a mountain-pass critical point w with Fλ(w) = c, provided that the domain is sufficiently
large. For technical reasons (lack of coerciveness of the functional Fλ) this procedure can be performed only for almost all
0 < λ < 2 (cf. [7] for details).
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3 Mountain-pass algorithm

We now describe one of the variational methods used to find numerical approximations of critical points of the total potential
Fλ. In our numerical experiments these methods are accompanied by the Newton method and continuation. The advantage
of this approach is that it combines the knowledge of a part of the energy landscape with that of a small neighborhood of a
solution.

The mountain-pass algorithm was first proposed in [4] for a second order elliptic problem in 1D. It was later used in [9] for
a fourth-order problem in 2D.

Let the load parameter λ ∈ (0, 2) be fixed, we work in a discretized version of (X, 〈·, ·〉X,λ). We denote w1 = 0 the local
minimum of Fλ and take a point w2 such that Fλ(w2) < 0. We find such a point by a steepest descent method—by numerical
solution of the initial value problem

d

dt
w(t) = −∇λFλ(w(t)) , w(0) = w0

on a sufficiently large interval (0, T ] for a suitable starting point w0 (∇λFλ(w) denotes the gradient of Fλ at w).
We take a discretized path {zm}p

m=0 connecting z0 = w1 with zp = w2. After finding the point zm at which Fλ is maximal
along the path, this point is moved a small distance in the direction −∇λFλ(zm). Thus the path has been deformed and the
maximum of Fλ lowered. This deforming of the path is repeated until the maximum along the path cannot be lowered any
more: a critical point wMP has been reached. Figure 2 shows the main idea of the method.

w1

w2

zm

znew
m −∇λFλ(zm)

wMP

X

Fig. 2 Deforming the path in the main loop of the mountain pass algorithm: point zm is moved a small distance in the
direction −∇λFλ(zm) and becomes znew

m . This step is repeated until the mountain pass point wMP is reached.

The mountain pass algorithm is local in its nature. The numerical solution wMP it finds has the mountain-pass property in a
certain neighborhood only. The choice of the path endpoint w2 may influence to which critical point the algorithm converges.
Different choices of w2 are in turn achieved by choosing different initial points w0.

4 Numerical experiments

A numerical mountain-pass solution (with the smallest energy) for λ = 1.4 and Ω = (−100, 100)2 is shown in Fig. 3. In our
numerical computations we have observed that for large domains the size of the domain has a small influence on the energy
Fλ(wMP) at a fixed value of load λ [8]. Hence we can define numerically a function V (λ) := Fλ(wMP), the mountain-pass
energy level at a given load λ (independent of the computational domain size).

By definition, V (λ) is the lowest energy level at which it is possible to move between the basins of attraction of w1 and
w2 (path end points). If the loading imperfection is interpreted as a mechanism capable of maintaining the system at a higher
energy level than that of the neighboring fundamental minimizer, then the number V (λ) is critical: as long as the imperfection
is so small that the energy is never raised by more than V (λ), the new stationary point will be part of the same basin of
attraction as w1. For larger imperfections, however, it becomes possible to leave the fundamental basin of attraction, resulting
in a large jump in state space.

Comparing cylinders of varying geometry requires a common measure of imperfection sensitivity. Here we choose to
rescale the mountain-pass energy level by the other energy level present in the loaded cylinder: the energy that is stored
in homogeneous compression of the unbuckled shell. The most straightforward calculation is to rescale the dimensional
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Fig. 3 MP-solution for λ = 1.4 found using the MP-algorithm. Left: graph of wMP(x, y), right: rendering on a cylinder.

mountain-pass energy by the elastic strain energy stored in the full length of the compressed cylinder of length L to give an
energy ratio α (or a rescaled mountain-pass energy level),

α =
1

2π
√

3(1 − ν2)
t

L

V (λ)
λ2

, (8)

where t denotes the thickness of the shell and ν is the Poisson’s ratio. From this expression and the numerically obtained
function V (λ) curves may be drawn in a plot of load versus the ratio L/t (Figure 1 right). Note that to obtain this figure the
curve V (λ) was fitted to extend the range of λ. This figure shows two remarkable features:

1. The general trend of the constant-α curves is very similar to the trend of the experimental data;

2. The α = 1 curve, which indicates the load at which the mountain-pass energy equals the stored energy in the prebuckled
cylinder, appears to be a lower bound to the data.

It is possible to see the problem of finding critical points of Fλ from another perspective—find critical points of the stored
energy E under a fixed shortening S. The load λ is a Lagrange multiplier in this case. Numerically, these points are searched
for as local constrained minimizers or constrained mountain-pass points. A large number of solutions can be found under a
fixed value of S [8], three of them are shown in Fig. 4.

Fig. 4 Some numerical solutions for fixed shortening S = 40 found using the constrained descent method and the con-
strained mountain pass algorithm.

References

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14
(1973), pp. 349–381.

[2] W. Ballerstedt and H. Wagner, Versuche über die Festigkeit dünner unversteifter Zylinderunter Schub- und Längskräften, Luftfahrt-
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