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Abstract. We review and compare different computational variational methods applied to a
system of fourth order equations that arises as a model of cylinder buckling. We describe both the
discretization and implementation, in particular how to deal with a one-dimensional null space. We
show that we can construct many different solutions from a complex energy surface. We examine
numerically convergence in the spatial discretization and in the domain size. Finally we give a
physical interpretation of some of the solutions found.
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1. Introduction. We describe complementary approaches to finding solutions
of systems of fourth order elliptic PDEs. The techniques are applied to a problem
that arises in the classic treatment of an isotropic cylindrical shell under axial com-
pression, but they are also applicable to a wide range of problems such as waves on a
suspension bridge [4, 5], the Fuč́ık spectrum of the Laplacian [6], and the formation
of microstructure [12, 3].

The cylindrical shell offers a computationally challenging and physically relevant
problem with a complex energy surface. We take as our model for the shell the Von
Kármán–Donnell equations, which can be rescaled (see the appendix and [7]) to the
form

Δ2w + λwxx − φxx − 2 [w, φ] = 0,(1.1)

Δ2φ + wxx + [w,w] = 0,(1.2)

where the bracket is defined as

(1.3) [u, v] =
1

2
uxxvyy +

1

2
uyyvxx − uxyvxy.

The function w is a scaled inward radial displacement measured from the unbuckled
(fundamental) state, φ is the Airy stress function, and λ ∈ (0, 2) is a load parameter.
The unknowns w and φ are defined on a two-dimensional spatial domain Ω = (−a, a)×
(−b, b), where x ∈ (−a, a) is the axial and y ∈ (−b, b) is the tangential coordinate.
Since the y-domain (−b, b) represents the circumference of the cylinder, the following
boundary conditions are prescribed:

w is periodic in y and wx = (Δw)x = 0 at x = ±a,(1.4a)

φ is periodic in y and φx = (Δφ)x = 0 at x = ±a,(1.4b)

as shown in Figure 1 (i), (ii).
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de).

‡Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4A5, UK (g.j.lord@ma.
hw.ac.uk).

§Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, Eind-
hoven S60 OMB, The Netherlands (m.a.peletier@tue.nl).

1362



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL VARIATIONAL METHODS, CYLINDER BUCKLING 1363

periodic boundary condition for w, φ

wν = (Δw)ν = φν = (Δφ)ν = 0

(i)
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Fig. 1. (i) The geometry of the cylinder; (ii) the computational domain and the boundary
conditions; (iii) one quarter of the domain and the corresponding boundary conditions.

1.1. Functional setting. We search for weak solutions w, φ of (1.1)–(1.4) in
the space

X =

{
ψ ∈ H2(Ω) : ψx(±a, ·) = 0, ψ is periodic in y, and

∫
Ω

ψ = 0

}

with the norm

‖w‖2
X =

∫
Ω

(
Δw2 + Δφ2

1

)
,

where φ1 ∈ H2(Ω) is the unique solution of

(1.5) Δ2φ1 = −wxx, φ1 satisfies (1.4b), and

∫
Ω

φ1 = 0.

This norm is equivalent to the H2-norm on X, and with the appropriate inner product
〈·, ·〉X the space X is a Hilbert space. Alternatively, if the load parameter λ ∈ (0, 2)
is fixed, another norm,

‖w‖2
X,λ =

∫
Ω

(
Δw2 + Δφ2

1 − λw2
x

)
,

can be used. Because of the estimate∫
Ω

w2
x = −

∫
Ω

wwxx =

∫
Ω

wΔ2φ1 =

∫
Ω

ΔwΔφ1 ≤ 1

2

∫
Ω

Δw2 +
1

2

∫
Ω

Δφ2
1 =

1

2
‖w‖2

X ,

it is equivalent to ‖·‖X and hence also to the H2-norm on X. The corresponding
inner product will be denoted 〈·, ·〉X,λ.
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Equations (1.1)–(1.2) are related to the stored energy E, the average axial short-
ening S, and the total potential given by

(1.6) E(w) :=
1

2

∫
Ω

(
Δw2 + Δφ2

)
, S(w) :=

1

2

∫
Ω

w2
x, Fλ = E − λS.

Note that the function φ in (1.6) is determined from w by solving (1.2) with bound-
ary conditions (1.4b). All the functionals E, S, and Fλ belong to C1(X), i.e., are
continuously Fréchet differentiable.

The fact that (1.1) is a reformulation of the stationarity condition F ′
λ = E′−λS′ =

0 will be important in section 2, and we therefore briefly sketch the argument. It is
easy to see that

S′(w) · h = −
∫

Ω

wxxh.

For E′(w)·h, let w, φ ∈ X solve (1.2) and h, ψ ∈ X solve Δ2ψ = −hxx−[h, h]−2[w, h].
Then, assuming sufficient regularity on w,

E(w + h) − E(w) =

∫
Ω

ΔwΔh +
1

2

∫
Ω

(Δh)2 +

∫
Ω

ΔφΔψ +
1

2

∫
Ω

(Δψ)2

=

∫
Ω

(
hΔ2w − hφxx − 2[w, h]φ

)
+

1

2

∫
Ω

(Δh)2+
1

2

∫
Ω

(Δψ)2−
∫

Ω

[h, h]φ,

where we used integration by parts several times. The last three integrals are O(‖h‖2
X)

for ‖h‖X → 0, and it can be shown by integration by parts that

(1.7)

∫
Ω

[w, h]φ =

∫
Ω

h [w, φ].

Therefore

F ′
λ(w) · h = E′(w) · h− λS′(w) · h =

∫
Ω

h
(
Δ2w + λwxx − φxx − 2 [w, φ]

)
.

1.2. Review of some variational numerical methods. We now describe the
variational methods used to find numerical approximations of critical points of the
total potential Fλ. In our numerical experiments these methods are accompanied
by Newton’s method and continuation. The advantage of this approach is that it
combines the knowledge of global features of the energy landscape with local ones of
a neighborhood of a critical point. The details related to spatial discretization will be
discussed in section 2, the Newton-based methods in section 3.

1.2.1. Steepest descent method (SDM). Let the load parameter λ ∈ (0, 2)
be fixed; we work in a discretized version of (X, 〈·, ·〉X,λ). We try to minimize the
total potential Fλ by following its gradient flow. We solve the initial value problem

d

dt
w(t) = −∇λFλ(w(t)) , w(0) = w0 ,

with a suitable starting point w0 on some interval (0, T ]. This problem is then dis-
cretized in t.

In [7] it was shown that w = 0 is a local minimizer of Fλ. Indeed, if ‖w0‖X,λ

is small, the numerical solution w(t) converges to zero as t tends to infinity. If, on
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w1

w2

zm

znew
m −∇λFλ(zm)

wMP

X

Fig. 2. Deforming the path in the main loop of the MPA: point zm is moved a small distance
in the direction −∇λFλ(zm) and becomes znew

m . This step is repeated until the mountain-pass point
wMP is reached.

the other hand, ‖w0‖X,λ is large, the numerical solution w(t) stays bounded away
from zero. In most of our experiments, the numerical algorithm did not converge for
t → ∞ in the large norm case. The only exception for a relatively small value of λ will
be mentioned later in section 5.3. Nevertheless, for a sufficiently large computational
domain Ω and a sufficiently large t > 0 we obtain Fλ(w(t)) < 0. Such a state w(t) is
needed for the mountain-pass algorithm as explained below. Existence of this state
was also proved in [7].

1.2.2. Mountain-pass algorithm (MPA). The algorithm was first proposed
in [2] for a second order elliptic problem in one dimension and extended in [5] to a
fourth order problem in two dimensions. We give a brief description of the algorithm
here.

Let the load parameter λ ∈ (0, 2) be fixed; we work again in a discretized version
of (X, 〈·, ·〉X,λ). We denote w1 = 0 the local minimum of Fλ and take a point w2

such that Fλ(w2) < 0 (in practice this point is found using the SDM). We take a
discretized path {zm}pm=0 connecting z0 = w1 with zp = w2. After finding the point
zm at which Fλ is maximal along the path, this point is moved a small distance in
the direction of the steepest descent −∇λFλ(zm). Thus the path has been deformed
and the maximum of Fλ lowered. This deforming of the path is repeated until the
maximum along the path cannot be lowered anymore: a critical point wMP has been
reached. Figure 2 illustrates the main idea of the method.

The MPA is local in its nature. The numerical solution wMP it finds has the
mountain-pass property in a certain neighborhood only. The choice of the path end-
point w2 may influence to which critical point the algorithm converges. Different
choices of w2 are in turn achieved by choosing different initial points w0 in the SDM.

1.2.3. Constrained steepest descent method (CSDM). We fix the amount
of shortening S of the cylinder. This is often considered as what actually occurs in
experiments. We work now in a discretized version of (X, 〈·, ·〉X). Let C > 0 be a
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fixed number and define a set of w with constant shortening:

(1.8) M = {w ∈ X : S(w) = C} .

Critical points of E under this constraint are critical points of Fλ, where λ is a
Lagrange multiplier. The simplest such points are local minima of the stored energy
E on M . We need to follow the gradient flow of E on M ; hence we solve the initial
value problem

d

dt
w(t) = −Pw(t)∇E(w(t)) , w(0) = w0 ∈ M

for t > 0. Pw denotes the orthogonal projection in X on the tangent space of M at
w ∈ M :

Pwu = u− 〈∇S(w), u〉X
‖∇S(w)‖2

X

∇S(w) .

The details of the algorithm can be found in [4]. The initial value problem is solved by
repeating the following two steps: given a point w ∈ M find w̄ = w − ΔtPw∇E(w),
where Δt > 0 is small, and define wnew = cw̄, where the scaling coefficient c is chosen
so that wnew ∈ M . The algorithm is stopped when ‖Pw∇E(w)‖X is smaller than a
prescribed tolerance. The corresponding load is given by

λ =
〈∇S(w),∇E(w)〉X

‖∇S(w)‖2
X

.

1.2.4. Constrained mountain-pass algorithm (CMPA). Let C > 0 and let
M be the set of w with constant shortening given in (1.8). We would like to find
mountain-pass points of E on M . The method has been described in [4] in detail.
We need two local minima w1, w2 of E on M , which can be found using the CSDM.
The algorithm is then similar to the MPA. We take a discretized path {zm}pm=0 ⊂ M
connecting z0 = w1 with zp = w2. After finding the point zm at which E is maximal
along the path, this point is moved a small distance in the tangent space to M at zm in
the direction of the steepest descent −Pzm∇E(zm) and then scaled (as in the CSDM)
to come back to M . Thus the path has been deformed on M and the maximum of E
lowered. This deforming of the path is repeated until the maximum along the path
cannot be lowered anymore: a mountain-pass point of E on M has been reached.
The load λ is computed as in the CSDM.

The choice of the endpoints w1 and w2 will in general influence to which critical
point the algorithm converges.

1.3. Computational domains. We consider the problem on the domain Ω
(Figure 1 (ii)) both without further restraints and under a symmetry assumption,
which reduces the computational complexity. In the latter case we assume

(1.9)
w(x, y) = w(−x, y) = w(x,−y)
φ(x, y) = φ(−x, y) = φ(x,−y)

for (x, y) ∈ Ω.

By looking for solutions w, φ ∈ X that satisfy (1.9) we effectively reduce the domain
to one quarter: Ω 1

4
= (−a, 0) × (−b, 0) as shown in Figure 1 (iii). One needs to solve

(1.1)–(1.2) only on Ω 1
4

with the boundary conditions

(1.10) wν = (Δw)ν = φν = (Δφ)ν = 0 on ∂Ω 1
4
,
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where ν denotes the outward normal direction to the boundary. Hence we search for
weak solutions of (1.1)–(1.2), (1.10) in the space

X 1
4

=

⎧⎨
⎩ψ ∈ H2(Ω 1

4
) : ψν = 0 on ∂Ω 1

4
, and

∫
Ω 1

4

ψ = 0

⎫⎬
⎭ .

We can then use (1.9) to extend these functions to the whole Ω.
We have performed numerical experiments both with and without the symmetry

assumption. For the sake of simplicity we will give a detailed description of the
numerical methods for the second case only where the boundary conditions are the
same on all sides of Ω 1

4
. The first case with periodic conditions on two sides of Ω is

very similar and will be briefly mentioned in Remark 2.1.

1.4. Solving the biharmonic equation. In order to obtain φ for a given w,
one has to solve (1.2); to compute the norm of w, one has to solve (1.5). Both problems
are of the form

(1.11) Δ2ψ = f in Ω 1
4
, ψν = (Δψ)ν = 0 on ∂Ω 1

4
,

∫
Ω 1

4

ψ = 0,

where f ∈ L1(Ω 1
4
) is given. If

∫
Ω 1

4

f = 0, then (1.11) has a unique weak solution ψ in

X 1
4
. It is a straightforward calculation to verify that the right-hand sides of equations

in (1.2) and (1.5) have zero average.
In the discretization described below, problem (1.11) is treated as a system:

(1.12)
−Δu = f
−Δv = u

in Ω 1
4
, uν = vν = 0 on ∂Ω 1

4
,

∫
Ω 1

4

u =

∫
Ω 1

4

v = 0.

The system has a unique weak solution (u, v) ∈ (H1(Ω 1
4
))2. Since the domain Ω 1

4
has

no reentrant corners, Theorem 1.4.5 of [9] guarantees that v ∈ H2(Ω 1
4
) and therefore

that the two formulations are equivalent.

2. Finite difference discretization. We discretize the domain Ω 1
4

by a uni-

form mesh (xm, yn) ∈ Ω 1
4

with M points in the x-direction and N points in the
y-direction:

xm = −a + (m− 1
2 )Δx, m ∈ {1 . . . ,M},

yn = −b + (n− 1
2 )Δy, n ∈ {1 . . . , N},

where Δx = a/M , Δy = b/N . We represent the values of some function w on Ω 1
4

at

these points by a vector w = (wi)
MN
i=1 , where wi = w(xm, yn) and i = (n − 1)M +

m. In our notation we will not distinguish between w as a function and w as a
corresponding vector. The vector w can also be interpreted as a block vector with
N blocks, each containing M values of a single row of the mesh. We introduce the
following conventions for notation:

• For two matrices AM = (aij)
M
i,j=1 and BN = (bk�)

N
k,�=1 we define AM⊗BN :=

(bk�A
M )Nk,�=1, which is an N ×N block matrix, and each block is an M ×M

matrix.
• For two vectors u = (ui)

MN
i=1 , v = (vi)

MN
i=1 we define u� v = (uivi)

MN
i=1 , i.e., a

product of the components.
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To discretize second derivatives we use the standard central finite differences (with
Neumann boundary conditions [10]). Let IdM denote the M ×M identity matrix and
define another M ×M matrix:

AM
2 =

⎡
⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

⎤
⎥⎥⎥⎥⎥⎦ .

The second derivatives −∂xx, −∂yy and the biharmonic operator Δ2 with the appro-
priate boundary conditions are approximated by

Axx =
1

Δx2
AM

2 ⊗ IdN , Ayy =
1

Δy2
IdM ⊗AN

2 , AΔ2 = (Axx + Ayy)
2,

respectively.

2.1. Discretization of E, S, and the bracket [·, ·]. Supposing that we can
solve the discretized version of (1.2),

(2.1) AΔ2φ−Axxw + [w,w]2 = 0 ,

we can also evaluate the energy E and the shortening S:

(2.2) E(w) = 2
(
wTAΔ2 w + φTAΔ2 φ

)
ΔxΔy, S(w) = 2

(
wTAxxw

)
ΔxΔy.

In order to solve (2.1) we need to be able to solve the biharmonic equation and
choose a discretization of the bracket [·, ·]. This bracket appears in the equations in
two different roles: in (1.2) the bracket is part of the mapping w 
→ φ, and therefore
of the definition of the energy E; in (1.1), which represents the stationarity condition
E′ − λS′ = 0, the bracket appears as a result of differentiating E with respect to w
and applying partial integration. As a result, we need to use two different forms of
discretization for the two cases.

In both cases the bracket requires a discretization of the mixed derivative ∂xy.
One choice is to use one-sided finite differences. Define M ×M matrices

(2.3) AM
1L =

⎡
⎢⎢⎢⎣

0
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦ , AM

1R =

⎡
⎢⎢⎢⎣

−1 1
. . .

. . .

−1 1
0

⎤
⎥⎥⎥⎦ .

We choose either left or right-sided differences represented by these matrices, respec-
tively, and we let AM

1 denote our choice (cf. section 5.1). The derivatives ∂x, ∂y, and
−∂xy are approximated by

(2.4) Ax = 1
Δx AM

1 ⊗ IdN , Ay = 1
Δy IdM ⊗AN

1 , Axy = −AxAy .

For the definition of φ in terms of w (see (1.2)) we choose

(2.5) [w,w]2 = (Axxw) � (Ayyw) − (Axyw) � (Axyw) ,
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and the corresponding choice for (1.1) is

(2.6) [w, φ]1 = 1
2Ayy {(Axxw) � φ} + 1

2Axx

{
(Ayyw) � φ

}
−AT

xy

{
(Axyw) � φ

}
.

These two definitions are related in the sense given in (1.7): [w, h]T2 φ = hT [w, φ]1 for
all h.

With these definitions the partial derivatives of discretized E and S with respect
to the components of w are given by

(2.7) E′(w) = AΔ2w + Axxφ− 2[w, φ]1 , S′(w) = Axxw .

2.2. Solving the discretized biharmonic equation. Matrix AΔ2 is symmet-
ric and has a one-dimensional null space: AΔ21 = 0, where 1 and 0 are vectors with
MN -components which are all one and all zero, respectively. The same is true for
Axx and Ayy. For a given vector f we would like to solve

(2.8) AΔ2ψ = f , 1Tψ = 0 .

A unique solution exists if and only if f has zero average, i.e., 1T f = 0. So we must
verify that the discretized versions of the right-hand sides in (1.2), (1.5) satisfy this
condition. Let w ∈ R

MN ; then

1TAxxw = 0 ,

1T [w,w]2 = (Axxw)T (Ayyw) − (Axyw)T (Axyw)(2.9)

= wTAxxAyyw − wTAT
xyAxyw = 0 ,(2.10)

where the last equality holds because AT
xAx = Axx and AT

y Ay = Ayy, and because
the x- and y-matrices commute. We have, in fact, shown that the integration-by-parts
formula from the continuous case holds for our choice of spatial discretization. This
is not true for an arbitrary discretization but is key for a successful scheme.

The inverse of matrix AΔ2 on the subspace of vectors with zero average, denoted
with a slight abuse of notation by A−1

Δ2 , can be found, for example, using the fast
cosine transform described below in section 2.4.

2.3. Computing the gradient. The variational methods of this paper are
based on a steepest descent flow and modifications of this algorithm. The direc-
tion of the steepest descent of E at a point w ∈ X is opposite to the gradient of E at
w. The gradient is the Riesz representative of the Fréchet derivative, and hence we
need to find a vector u ∈ X, such that E′(w) · v = 〈u, v〉 for all v ∈ X. The inner
product is either 〈·, ·〉X or 〈·, ·〉X,λ, and hence the gradient depends on the choice of
the inner product. We use the notation u = ∇E(w) for the gradient in (X, 〈·, ·〉X)
and u = ∇λE(w) for the gradient in (X, 〈·, ·〉X,λ). To find the discretized version of
the gradient, we first need to discretize the inner product.

Let u, v ∈ R
MN , 1Tu = 1T v = 0. The inner product is evaluated in the following

way:

〈u, v〉X,λ = 4
(
uTAΔ2v + φu

1
TAΔ2φv

1 − λuTAxxv
)

ΔxΔy

= 4
(
uT

(
AΔ2 + AxxA

−1
Δ2Axx − λAxx

)
v
)
ΔxΔy ,
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where φu
1 , φ

v
1 are solutions of the discretized version of (1.5) with w replaced by u and

v, respectively, and we assume that we work on Ω 1
4
. For w ∈ R

MN , 1Tw = 0 the

Riesz representative of E′(w) given in (2.7) is computed as

(2.11) ∇λE(w) =
(
AΔ2 + AxxA

−1
Δ2Axx − λAxx

)−1
E′(w) .

As in the case of A−1
Δ2 we have abused notation here since the inverse makes sense only

on a subspace of vectors with zero average. It can be easily verified that 1TE′(w) = 0.
The numerical evaluation of ∇λS and of the 〈·, ·〉X -gradients is similar.

2.4. Fourier coordinates. In Fourier coordinates most of the finite difference
operators become diagonal matrices. This increases the efficiency of the numerical
algorithm and makes it possible to easily find the inverse of matrices like AΔ2 . See,
for example, [1].

On a uniform grid, it is standard procedure to apply some form of the fast Fourier
transform to diagonalize finite difference matrices like AM

2 (see, e.g., [11]). Due to the
Neumann boundary conditions (1.10) we need to employ the fast cosine transform.
We define the M ×M matrices

CM
f = 1√

2M

(
2 cos (i−1)(2j−1)π

2M

)M

i,j=1
, CM

b = 1√
2M

⎡
⎢⎣

1
...
1

∣∣∣∣∣∣∣
(
2 cos (2i−1)(j−1)π

2M

)M,M

i=1,j=2

⎤
⎥⎦ ,

which have the following properties:

CM
f CM

b = IdM , CM
f AM

2 CM
b = ΛM ,

where ΛM = diag(2 − 2 cos (m−1)π
M )Mm=1. Hence they are inverses of each other and

diagonalize AM
2 .

We further define the matrices

Cf = CM
f ⊗ CN

f , Cb = CM
b ⊗ CN

b ,

which diagonalize Axx, Ayy, and AΔ2 :

(2.12) CfAxxCb = Λxx, CfAyyCb = Λyy, CfAΔ2Cb = ΛΔ2 ,

where the diagonal matrices are given by

(2.13) Λxx = 1
Δx2 ΛM ⊗ IdN , Λyy = 1

Δy2 IdM ⊗ ΛN , ΛΔ2 = (Λxx + Λyy)
2.

For a vector w ∈ R
MN we introduce its Fourier coordinates ŵ by

ŵ = Cfw w = Cbŵ.

We note that 1Tw = 0 if and only if the first component of ŵ is zero.
Most of the computations involved in the variational methods described in section

1.2 can be done in the Fourier coordinates. One needs to go back to the original coor-
dinates only when evaluating the brackets (2.5) and (2.6), because they are nonlinear
and involve the discretized mixed derivative operator Axy.
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2.5. Alternative discretization of −∂xy. The fast Fourier transform provides
us with another discretization of the mixed derivative which is not biased to the left
or right. In an analogy to (2.13) and (2.12) we define

Λxy = 1
ΔxΔy

√
ΛM ⊗

√
ΛN , Ãxy = SΛxyCf ,

where S is the fast sine transform matrix

S = SM ⊗ SN , SM = 1√
2M

⎡
⎢⎣

0
...
0

∣∣∣∣∣∣∣
(
2 sin (2i−1)(j−1)π

2M

)M,M

i=1,j=2

⎤
⎥⎦ .

Property (2.10) also holds with Axy replaced by Ãxy.
Remark 2.1. When discretizing the problem on the full domain Ω with boundary

conditions (1.4), we need to use different matrices in the x and y-directions. In the
x-direction we use the matrices described above; in the y-direction to discretize the
second derivatives, for example, we use

A2 =

⎡
⎢⎢⎢⎢⎢⎣

2 −1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 −1 2

⎤
⎥⎥⎥⎥⎥⎦ .

In this direction the fast Fourier transform is used instead of the fast cosine/sine
transform.

3. Newton’s method. We use Newton’s method in two different ways. The
first is to improve the numerical approximations obtained by the variational numerical
methods. Since these are sometimes slow to converge, it is often faster to stop such
an algorithm early and use its result as an initial guess for Newton’s method. The
second use for Newton’s method is as part of a numerical continuation algorithm (see
section 3.3).

3.1. Newton’s method for given load parameter λ. This method can be
used to improve solutions obtained by the MPA. Let λ ∈ (0, 2) be given. We are
solving

(3.1) G (w, φ) =

[
G1

G2

]
=

[
AΔ2w − λAxxw + Axxφ− 2[w, φ]1

−AΔ2φ + Axxw − [w,w]2

]
=

[
0

0

]

for w and φ with zero average using Newton’s method. The matrix we need to invert
is

(3.2) G ′(w, φ) =

[
∂G1

∂w
∂G1

∂φ

∂G2

∂w
∂G2

∂φ

]
=

[
AΔ2 − λAxx − 2B1 Axx − 2B2

Axx − 2BT
2 −AΔ2

]
,

where

B1 =
∂

∂w
[w, φ]1 =

1

2
Axx(diag φ)Ayy +

1

2
Ayy(diag φ)Axx −AT

xy(diag φ)Axy ,

B2 =
∂

∂φ
[w, φ]1 =

1

2

(
∂

∂w
[w,w]2

)T

=
1

2
Axx(diagAyyw) +

1

2
Ayy(diagAxxw) −AT

xy(diagAxyw) .
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From the properties of Axx,Ayy,Axy,AΔ2 it follows that matrix G ′(w, φ) is symmet-

ric and singular, and its null space is spanned by
[
1
0

]
,
[
0
1

]
.

To describe how to find the inverse of G ′(w, φ) on a subspace orthogonal to its
null space, we introduce a new notation for the four blocks of G ′(w, φ) from (3.2):

G ′(w, φ) =

[
G11 G12

GT
12 G22

]
.

For given vectors u, η with zero average we need to find vectors v, ζ with zero average
such that

(3.3)

[
G11 G12

GT
12 G22

] [
v
ζ

]
=

[
u
η

]
.

Let the tilde denote the block of the first MN − 1 rows and columns of a matrix and

MN −1 components of a vector. The matrix
h G̃11 G̃12

G̃
T
12 G̃22

i
is symmetric, nonsingular,

and sparse. It can be inverted by a linear sparse solver. System (3.3) is then solved
in the following steps:

[
r
ρ

]
:=

[
G̃11 G̃12

G̃
T

12 G̃22

]−1 [
ũ
η̃

]
,

s := − 1
MN 1̃

T
r , v =

[
r + s1̃

s

]
,

σ := − 1
MN 1̃

T
ρ , η =

[
ρ + σ1̃

σ

]
.

3.2. Newton’s method for given S. This method can be used to improve
solutions obtained by the CSDM and the CMPA. Let C > 0 be given. We are looking
for numerical solutions of (1.1)–(1.2) in the set M defined by (1.8). Hence we are
solving

(3.4)

⎡
⎢⎣

AΔ2w − λAxxw + Axxφ− 2[w, φ]1

−AΔ2φ + Axxw − [w,w]2

− 1
2w

TAxxw + C/(4ΔxΔy)

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦

for w and φ with zero average and λ using Newton’s method. The approach is very
similar to that described in the previous section; the resulting matrix is symmetric
and has just one more row and column than the matrix in (3.2).

3.3. Continuation. To follow branches of solutions (λ,w) of (3.1) we adopt a
continuation method described in [8]. We introduce a parameter s ∈ R by adding
a constraint—pseudoarclength normalization (in the (λ, ‖w‖X)-plane). For a given
value of s we are solving

(3.5)

Ḡ (w, φ, λ) =

⎡
⎢⎣

G1

G2

G3

⎤
⎥⎦ =

⎡
⎢⎣

AΔ2w − λAxxw + Axxφ− 2[w, φ]1

−AΔ2φ + Axxw − [w,w]2

θ〈ẇ0, w − w0〉X + (1 − θ)λ̇0(λ− λ0) − (s− s0)

⎤
⎥⎦ =

⎡
⎢⎣

0

0

0

⎤
⎥⎦

for w, φ with zero average and the load λ, where the value of θ ∈ (0, 1) is fixed
(e.g., θ = 1

2 ). We assume that we are given a value s0, an initial point (λ0, w0) on
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the branch, and an approximate direction (λ̇0, ẇ0) of the branch at this point (an
approximation of the derivative d

ds (λ(s), w(s))|s=s0).
System (3.5) is solved for a discrete set of values of s in some interval (s0, s1)

by Newton’s method. Then a new initial point on the branch is defined by setting
w0 = w(s1), λ0 = λ(s1), s0 = s1, a new direction (λ̇0, ẇ0) at this point is computed,
and the process is repeated. The matrix we need to invert in Newton’s method is

Ḡ ′(w, φ, λ) =

[
G ′(w, φ, λ) g

hT d

]
,(3.6)

g =

[
−Axxw

0

]
, h =

[
4θA〈,〉ẇ0 ΔxΔy

0

]
, d = (1 − θ)λ̇0,

where A〈,〉 = AΔ2 + AxxA
−1
Δ2Axx.

Solving a linear system with this matrix amounts to solving system (3.3) for two
right-hand sides. For a given u ∈ R

2MN with [1T 1T ]u = 0 and a given η ∈ R we
want to solve

(3.7)

[
G ′(w, φ, λ) g

hT d

][
v

ζ

]
=

[
u

η

]

for v with [1T 1T ]v = 0 and ζ. System (3.7) is solved in the following steps:

solve : G ′(w, φ, λ)v1 = g ,

G ′(w, φ, λ)v2 = u ,
ζ =

η − hT v2

d− hT v1
, v = v2 − ζv1 .

Remark 3.1. Note that in this implementation we simply follow a solution of the
equation; there is no guarantee that this remains a local minimum, a mountain-pass
solution or constrained mountain-pass solution (cf. Figure 12).

Remark 3.2. Newton’s method and continuation have been implemented using
only a one-sided discretization of the mixed derivative ∂xy and only on the domain Ω 1

4

assuming symmetry (1.9). The alternative discretization of ∂xy described in section

2.5 uses the fast cosine/sine transform. The resulting matrix Ãxy is not sparse, and
therefore we would obtain a dense block G12 in system (3.3) which would prevent us
from using a sparse solver.

On the full domain Ω we assume periodicity of w and φ in the y-direction. Hence
for a discretization with a small step Δy the matrix we invert when solving (3.3)
would become close to singular. The shift in the y-direction is prevented by assuming
the symmetry w(x, y) = w(x,−y), φ(x, y) = φ(x,−y).

4. Numerical solutions. We fix the size of the domain and the size of the space
step for the following numerical computations: a = b = 100, Δx = Δy = 0.5. We
obtain solutions using the variational techniques SDM, MPA, CSDM, and CMPA.
Table 1 provides a summary of which discretization was used in which algorithm.

4.1. A mountain-pass solution on the full domain Ω. The first numerical
experiments were done on the full domain Ω, without symmetry restrictions, and with
the unbiased (Fourier) discretization of ∂xy (section 2.5). For a fixed load λ = 1.4 we
computed a mountain-pass solution using the MPA (section 1.2.2). For endpoints we
used w1 = 0 and a second point w2 obtained by the SDM (here the initial point for
the SDM was chosen to have a single peak centered at x = y = 0). The graph of the
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Table 1

Summary of which spatial discretization was used in the different numerical methods.

Mixed derivative ∂xy Computational domain

One-sided Fourier Full 1/4

Variational methods
√ √ √ √

Newton/continuation
√ √

Fig. 3. Mountain-pass solution for λ = 1.4 found using the MPA on the full domain Ω with
∂xy discretized using the fast Fourier transform.

solution wMP is shown in Figure 3 (left). The figure on the right shows wMP rendered
on a cylinder (see the appendix for details on the scaling of the geometry), and we
see it has the form of a single dimple. The value of shortening for this solution is
S(wMP) = 14.93529.

Alternatively, if we apply the CSDM with S = 14.93529 and use a function with
a single peak in the center of the domain as the initial condition w0, we also obtain
the same solution wMP, this time as a local minimizer of E under constrained S.

We remark that although the MPA and the CSDM have a local character, we have
not found any numerical mountain-pass solution with the total potential Fλ smaller
than Fλ(wMP) for λ = 1.4. Similarly, using the CSDM we have not found any solution
with energy E smaller than E(wMP) under the constraint S = 14.93529. We briefly
discuss the physical relevance of this solution in section 6.

4.2. Solutions under symmetry restrictions. The solution wMP of Figure
3 satisfies the symmetry property (1.9). In the computations described below we
enforced this symmetry and worked on the quarter domain Ω 1

4
, thus reducing the

complexity of the problem. In order to improve the variational methods by combining
them with Newton’s method, we also discretized the mixed derivative ∂xy using left-
sided finite differences. The influence of this choice on the numerical solution is
described in section 5.1.

4.2.1. CSDM. We first fixed S = 40 and used the CSDM to obtain constrained
local minimizers of E as shown in Table 2. They are ordered according to the increas-
ing value of stored energy E. Their graphs and renderings on a cylinder are shown in
Figure 4. Solution 1.1 is similar to the single dimple solution wMP described above
and according to Table 2 it has, indeed, the smallest value of E.

4.2.2. MPA. We then used the MPA for fixed λ = 1.4 and various choices of
w2 to obtain the local mountain-pass points of Fλ as shown in Table 3. They are
ordered according to the increasing value of the total potential Fλ. The shape of their
graph is very similar to that of the CSDM solutions discussed above and depicted in
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Table 2

Numerical solutions obtained by the CSDM on Ω 1
4

with ∂xy discretized using left-sided finite
differences. Graphs are shown in Figure 4.

CSDM λ S E Fλ Same shape as MPA
1.1 1.108121 40 56.85636 12.53151 2.1
1.2 1.299143 40 62.76150 10.79577 2.2
1.3 1.316146 40 63.21646 10.57063 2.3
1.4 1.311687 40 63.64083 11.17334 2.4
1.5 1.309586 40 63.70623 11.32278 2.5
1.6 1.328997 40 64.00875 10.84889 2.6
1.7 1.344898 40 64.52244 10.72651 2.7

Table 3

Numerical solutions obtained by the MPA on Ω 1
4

with ∂xy discretized using left-sided finite
differences.

MPA λ S E Fλ Same Shape as CSDM
2.1 1.4 17.73822 29.42997 4.596460 1.1
2.2 1.4 29.85121 49.08882 7.297132 1.2
2.3 1.4 31.28849 51.39952 7.595635 1.3
2.4 1.4 31.41723 52.01893 8.034809 1.4
2.5 1.4 31.22992 51.84074 8.118852 1.5
2.6 1.4 32.77491 54.15818 8.273314 1.6
2.7 1.4 34.19888 56.56472 8.686284 1.7

Table 4

Numerical solutions obtained by the CMPA/Newton on Ω 1
4

with ∂xy discretized using left-sided
finite differences. Graphs are shown in Figures 5 and 6.

CMPA λ S E Fλ Endpoints
3.1 1.310815 40 63.98996 11.55737 1.2, 1.4
3.2 1.332112 40 64.38609 11.10161 1.3, 1.6
3.3 1.447626 40 66.49032 8.585294 1.2, 1.3 or 1.3, 1.4
3.4 1.440841 40 66.72079 9.087129 1.1, 1.4
3.5 1.447594 40 66.97057 9.066810 1.1, 1.6
3.6 1.484790 40 68.20637 8.814758 1.3, 1.5
3.7 1.477769 40 68.23274 9.121955 1.1, 1.5∗

3.8 1.482261 40 68.41086 9.120428 1.1, 1.7
3.9 1.413917 40 68.56697 12.01028 1.1, 1.2
3.10 1.520975 40 68.83818 7.999162 1.2, 1.5
3.11 1.475705 40 69.00087 9.972652 1.1, 1.5∗

3.12 1.532000 40 69.27379 7.993781 1.4, 1.5†

3.13 1.527108 40 69.35834 8.274019 1.2, 1.6

3.14 1.551762 40 69.47838 7.407904 1.4, 1.5†

3.15 1.547955 40 69.68292 7.764712 1.6, 1.7
3.16 1.539785 40 69.78487 8.193480 1.5, 1.7
3.17 1.546480 40 69.85900 7.999795 1.3, 1.7
3.18 1.549780 40 70.16253 8.171339 1.2, 1.7
3.19 1.561117 40 70.74117 8.296474 1.4, 1.7

Figure 4, so we do not show their graphs here. Solution 2.1 is again the single dimple
solution, and the table shows that it has the smallest value of Fλ.

4.2.3. CMPA. We then fixed S = 40 and applied the CMPA to obtain con-
strained local mountain passes of E as shown in Table 4. They are again ordered
according to the increasing value of stored energy E. Their graphs and renderings
on a cylinder are shown in Figures 5 and 6. For endpoints w1, w2 of the path in the
CMPA we used the constrained local minimizers 1.1–1.7.
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There are 21 possible pairs (w1, w2) to be used but only 19 solutions in Table 4.
The algorithm did not converge for the following three pairs: (1.1, 1.3), (1.5, 1.6), and
(1.4, 1.6). This is most likely due to the complicated nature of the energy landscape
between these endpoints. On the other hand, two choices of pairs, denoted by ∗ and
† in the table, yielded two solutions each. When the path is deformed it sometimes
comes close to another critical point of E which is not a constrained mountain pass.
In that case the algorithm slows down and one can apply Newton’s method to such a
point. It is a matter of luck whether Newton’s method converges. The CMPA then
runs further and might converge to another point, this time a constrained mountain-
pass point. And finally, two choices of (w1, w2) yielded the same solution 3.3.

5. Remarks on the numerics.

5.1. Bias in the discretization of ∂xy. In this section we examine the influ-
ence of the discretization of the mixed derivative ∂xy on the numerical solution. We
recall that the mixed derivative ∂xy can be discretized using left-/right-sided finite
differences (2.3), (2.4) or using the fast Fourier transform (section 2.5). For compar-
ison we use the single-dimple solution on Ω = (−100, 100)2 at load λ = 1.4 obtained
by the MPA.

Let Δx = Δy = 0.5. Table 5 gives a list of numerical experiments together with
the values of shortening and energy. Figure 7 shows a profile of the numerical solutions
in the circumferential direction at x = 0.

Table 5

Single-dimple numerical solution obtained by the MPA with and without the symmetry assump-
tion (1.9) and with various kinds of discretization of ∂xy.

Domain Discretization of ∂xy λ S E Fλ Figure 7
Ω or Ω 1

4
Fourier 1.4 14.93529 24.71825 3.808850

Ω left-/right-sided 1.4 14.93617 24.70828 3.797636
Ω 1

4
left-sided 1.4 17.73822 29.42997 4.596460

Ω 1
4

right-sided 1.4 12.81205 21.16342 3.226549

Fourier ∂xy

Ω, left-sided ∂xy

Ω 1
4
, left-sided ∂xy

Ω 1
4
, right-sided ∂xy

Fig. 7. Profile of the single-dimple numerical solution wMP at x = 0 obtained by the MPA with
and without the symmetry assumption (1.9) and with various kinds of discretization of ∂xy.
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‖wL − wCS‖∞

‖wR − wCS‖∞

S(wL)

S(wR)

S(wCS)

Fig. 8. Influence of the size of the space step Δx, Δy on the numerical solution wMP obtained
by the MPA for three different kinds of discretization of ∂xy. Let wL, wR denote the numerical
solutions obtained using the left- and right-sided discretization of ∂xy, respectively, with wCS using
the fast cosine/sine transform. Left: comparison of the solutions in the maximum norm; right: the
value of shortening S.

On the full domain Ω with no assumption on symmetry of solutions, the dis-
cretization of ∂xy using the left-/right-sided finite differences (2.3) provides a nu-
merical solution that is slightly asymmetric (Figure 7, thin solid line). The Fourier
transform provides a symmetric solution (Figure 7, thick solid line). The same nu-
merical solution can be obtained on Ω 1

4
under the symmetry assumption (1.9) with

∂xy discretized using the fast cosine/sine transform.
On Ω 1

4
the symmetry of numerical solutions is guaranteed by assumption (1.9).

The use of left-/right-sided discretization of ∂xy does, however, have an influence on
the shape of the numerical solution, as Figure 7 shows (the dotted and the dashed
line).

5.2. Convergence. We now turn to the influence of the size of the space step
Δx, Δy on the numerical solution. We run the MPA on Ω 1

4
under the symmetry

assumption (1.9) with ∂xy discretized using (a) the fast cosine/sine transform, (b)
left-sided finite differences, (c) right-sided finite differences. We consider Δx = Δy =
0.5, 0.4, 0.3, 0.2, 0.1, i.e., we take 200, 250, 333, 500, and 1000 points in both axis direc-
tions, respectively. Figure 8 illustrates convergence as Δx,Δy → 0 of the numerical
solutions obtained by various types of discretization of ∂xy.

5.3. Dependence on the size of the domain. As observed in [7], the localized
nature of the solutions suggests that they should be independent of domain size, in
the sense that for a sequence of domains of increasing size the solutions converge
(for instance, uniformly on compact subsets). Such a convergence would also imply
convergence of the associated energy levels. Similarly, we would expect that the aspect
ratio of the domain is of little importance in the limit of large domains.

We tested these hypotheses by computing the single-dimple solution on domains
of different sizes and aspect ratios. In all the computations the space step Δx = Δy =
0.5 is fixed. In order to use the continuation method of section 3.3, we discretized
∂xy using the left-sided finite differences. We also assumed symmetry of solutions
given by (1.9) and worked on Ω 1

4
. We recall the notation of computational domains,

Ω = (−a, a) × (−b, b), Ω 1
4

= (−a, 0) × (−b, 0).
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(a, b) = (50, 50) (a, b) = (50, 100) (a, b) = (50, 200)

(a, b) = (100, 50) (a, b) = (100, 100) (a, b) = (100, 200)

(a, b) = (200, 50) (a, b) = (200, 100) (a, b) = (200, 200)

Fig. 9. The single-dimple mountain-pass solution with λ = 1.4 computed under the assumption
of symmetry (1.9) with left-sided discretization of ∂xy for various domain sizes.

Figure 9 shows the results for load λ = 1.4. First we notice that the central
dimple has almost the same shape in all the cases shown. But there seems to be a
difference in the slope of the “flat” part leading to this dimple. On domains with
small a (short cylinder) the derivative in the circumferential y-direction in this part is
larger than on domains with larger a (longer cylinder). The circumferential length b
seems to be less important for the shape of the solution: for example, the cases (200,
50) and (200, 100) look like restrictions of the case (200, 200) to smaller domains.

We take a closer look at domains of sizes (a, b) = (100, 100), (100, 200), (200, 100),
and (200, 200) and the corresponding solutions w100,100, w100,200, w200,100, and w200,200

shown in the figure. We compare the first three with the last one, respectively. It
does not make sense to compare the values of w itself since the energy functional
Fλ depends on derivatives of w only. We choose to compare wxx and wyy. Table 6
gives the infinity norm of the relative differences. Figure 10 shows graphs of the
difference w100,100 − w200,200 and of the second derivatives (w200,200 − w100,100)xx,
(w200,200 − w100,100)yy on the subdomain (−100, 0)2.

We conclude that solutions on different domains compare well; the maximal dif-
ference in the second derivatives of w is three orders of magnitude smaller than the
supremum norm of the same derivative. We also observe that varying the length
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Table 6

Comparison of the second derivatives of solutions from Figure 9 computed on domains with
(a, b) = (100, 100), (100, 200), (200, 100), and (200, 200).

‖(w−w200,200)xx‖∞
‖(w200,200)xx‖∞

‖(w−w200,200)yy‖∞
‖(w200,200)yy‖∞

w = w100,100 2.835 · 10−3 5.313 · 10−3

w = w100,200 1.943 · 10−3 4.917 · 10−3

w = w200,100 1.827 · 10−4 9.638 · 10−4

w100,100 − w200,200 (w200,200 − w100,100)xx (w200,200 − w100,100)yy

Fig. 10. Comparison of solutions w100,100, w200,200 from Figure 9 obtained on square domains
with a = b = 100 and a = b = 200, respectively, and their second derivatives. For a reference, we
note that ‖(w200,200)xx‖∞ = 1.064522 and ‖(w200,200)yy‖∞ = 0.8242491.

‖w
‖2 X

λ

a = 200

b = 50

b = 100

b = 200

a = 100
b = 50
b = 100

b = 200
a = 50

b = 50, 100, 200

F
λ
(w

)

λ

a = 200

b = 50

b = 100
b = 200

a = 100
b = 50
b = 100
b = 200

b = 50, 100, 200, a = 50

Fig. 11. Continuation of the single-dimple solution found as a numerical mountain pass for
λ = 1.4 on domains of various sizes for a range of values λ. Left: Fλ(w) as a function of λ; right:
‖w‖X as a function of λ.

parameter a while keeping the circumference parameter b fixed causes larger changes
in the numerical solution than varying the cylinder circumference while keeping the
length fixed.

Another way of studying the influence of the domain size on the numerical solution
is comparing solution branches obtained by continuation as described in section 3.3.
We start with the mountain-pass solution for λ = 1.4 shown in Figure 9 and continue
it for both λ > 1.4 and λ < 1.4. The results are presented in Figure 11. We observe
that the branches corresponding to the considered domains do not differ much for the
range of λ between approximately 0.71 and 2. Below λ ≈ 0.71 the size of the domain,
particularly the length of the cylinder described by a, has a strong influence. The
graph on the right shows that the larger (longer) the domain Ω, the smaller the value
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(a) λ ≈ 0.593 (b) λ = 0.61 (mountain pass) (c) λ = 1.4 (mountain pass)

(d) λ = 1.95 (mountain pass)

λ

‖w
‖2 X

a = b = 100

mountain pass
local minimizer
(of Fλ)

(a)

(b) (c) (d)

Fig. 12. A detailed look at the continuation of the single-dimple solution on the domain with
a = b = 100.

of λ at which the norm ‖w‖X starts to rapidly increase for decreasing λ. The graph
on the left shows the energy Fλ(w) along a solution branch. The data shown here
correspond to the ones in the graph on the right marked by a solid line. The dashed
line in the right graph shows also some data after the first limit point is passed.

Figure 12 shows how the graph of w(x, y) changes as a solution branch is followed.
Here we chose a square domain with a = b = 100 and plotted the solution for four
values of λ (note that Figures 12 (c), 9 (100,100), and 7 (dotted line) show the same
numerical solution). We observe that with decreasing λ the height of the central
dimple increases, the dimple becomes wider, and the ripples (present at λ close to 2)
disappear. In Figure 12 (a) we observe that new dimples are being formed next to
the central dimple.

It should be noted that although we started the continuation at λ = 1.4 at a
mountain-pass point, not all the points along a continuation branch are mountain
passes. Since it is not feasible to use the MPA to verify this for each point, we chose
just a few. Still on the example of the domain with a = b = 100 in Figure 12, the
circles on the continuation branch mark those points that have also been found by the
MPA (for λ = 0.61, 0.65, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 1.95). As described in section 1.2.2,
in order to start the MPA a point w2 is needed such that Fλ(w2) < 0. The analysis
in [7] shows that for a given λ such a point exists provided the domain Ω is large
enough, and in practice it is found by the SDM of section 1.2.1. This was indeed the
case for all the chosen values of λ except for λ = 0.61. In this case, starting from some
w0 with a large norm, the SDM provides a trajectory w(t) such that Fλ(w(t)) > 0 for
all t > 0. In fact, the steepest descent method converges to a local minimizer wM with
Fλ(wM) ≈ 76.1. This is hence no mountain pass but, nevertheless, lies on the same
continuation branch and is marked by a triangle in the figure. Despite Fλ(wM) > 0
we can still try to run the MPA with w2 = wM. It converges and yields wMP with
Fλ(wMP) ≈ 94.8 (marked by a circle at λ = 0.61 and shown in graph (b)).

The comparison of solutions computed on different domains and their respective
energies suggests that for each λ we are indeed dealing with a single, localized function
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defined on R
2, of which our computed solutions are finite-domain adaptations. Based

on this suggestion and the above discussion of the mountain-pass solutions we could,
for example, conclude that the mountain-pass energy

V (λ,Ω) := inf
w2

{
Fλ

(
wMP(λ,Ω, w2)

)
: Fλ(w2) < 0

}
is a finite-domain approximation of a function V (λ), whose graph almost coincides
with that of V (λ,Ω) for λ not too small (cf. Figure 11 (left)).

6. Discussion.

6.1. Variational numerical methods. We have seen that given a complex
energy surface many solutions may be found using these variational techniques. For
example, for a fixed end shortening of S = 40, Figures 4, 5, and 6 are all solutions.
Which of these solutions is of greatest relevance depends on the question that is being
asked.

In the context of the cylinder (and similar structural applications) the mountain-
pass solution from the unbuckled state (w1 = 0) with minimal energy is of physical
interest. Often the experimental buckling load may be at 20–30% of the linear pre-
diction from a bifurcation analysis (in our scaling this corresponds to λ = 2). This
uncertainty in the buckling load is a drawback for design and so “knockdown” fac-
tors have been introduced, based on experimental data. It was argued in [7] that
the energy of the mountain-pass solution wMP in fact provides a lower bound on the
energy required to buckle the cylinder, and so these solutions provide bounds on the
(observed) buckling load of the cylinder.

This example illustrates an important aspect of the (constrained) mountain-pass
algorithm: its explicit nonlocality. The algorithm produces a saddle point which has
an additional property: it is the separating point (and level) between the basins of
attraction of the endpoints w1 and w2.

Another technique to investigate a complex energy surface is to perform a simu-
lated annealing computation, essentially to solve the SDM (or the CSDM) problem
with additive stochastic forcing. The aim in these techniques is often to find a global
minimizer (if it exists) where there are a large number of local minimizers. Here by
either the MPA or the CMPA we find the solution between two such minima and so
get an estimate on the surplus energy needed to change between local minima.

6.2. Numerical issues. The numerical issues that we encountered are of two
types. First there are the requirements that are related to the specific problem of the
Von Kármán–Donnell equations, such as the discretization of the mixed derivative
and the bracket, and the fact that the solutions are symmetric and highly localized.

For other difficulties it is less clear. For smaller values of λ each of the variational
methods converged remarkably slowly. Newton’s method provides a way of improving
the convergence, but the question of whether this slow convergence is typical for a
whole class of variational problems is relevant. It would be interesting to connect the
rate of convergence of, for instance, the SDM to certain easily measurable features of
the energy landscape.

Appendix. This appendix shows the transformation between the Von Kármán–
Donnell equations in the physical coordinates and their scaled form (1.1)–(1.2). For
the full derivation of the Von Kármán–Donnell equations we refer to [7].
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In the physical coordinates the Von Kármán–Donnell equations, the stored energy,
and the shortening assume the following form:

t2

12(1 − ν2)
Δ̃2w̃ +

P

2πREt
w̃x̃x̃ − 1

R
φ̃x̃x̃ − 2 [w̃, φ̃ ]̃ = 0,(A.1)

Δ̃2φ̃ +
1

R
w̃x̃x̃ + [w̃, w̃ ]̃ = 0,(A.2)

Ẽ(w̃) =
t3E

24(1 − ν2)

∫
Ω̃

(Δ̃w̃)2 +
tE

2

∫
Ω̃

(Δ̃φ̃)2, S̃(w̃) =
1

4πR

∫
Ω̃

(w̃x̃)2,(A.3)

where (x̃, ỹ) ∈ Ω̃ := (0, L) × (0, 2πR), x̃ is the axial coordinate, ỹ the circumferential
coordinate, L the length of the cylinder, R its radius, t the thickness of the shell,
E Young’s modulus, and ν Poisson’s ratio. The cylinder is subject to a compressive
axial force P . The function w̃ is an inward radial displacement measured from the
unbuckled state, and φ̃ is the Airy stress function. The bracket [·, ·̃] is defined as in
(1.3), only the derivatives are taken with respect to the physical coordinates x̃, ỹ. We
note that Ẽ does not include the energy of the prebuckling deformation.

In order to eliminate most of the physical parameters, we rescale the equations
using the following transformation:

x̃ = (2πR
√
k) (x + a) , a = L/(4πR

√
k) , x ∈ (−a, a) ,

ỹ = (2πR
√
k) (y + b) , b = 1/(2

√
k) , y ∈ (−b, b) ,

where k = t/(8π2R
√

3(1 − ν2)). We introduce new unknown functions,

w̃(x̃, ỹ) = (4π2Rk)w(x, y) , φ̃(x̃, ỹ) = (4π2Rk)2 φ(x, y),

and a load parameter λ = P
√

3(1 − ν2)/(πEt2). We then obtain (1.1)–(1.2), which
depend on three parameters only: λ, a, and b. The functionals in physical coordinates
defined in (A.3) and their scaled counterparts defined in (1.6) are related through

Ẽ(w̃) = tER2(4π2k)3E(w) , S̃(w̃) = 8π3Rk2S(w) .

Although the scaled energy and Young’s modulus in the above equations are both
denoted by E, Young’s modulus does not appear in the scaled version of the problem.
This avoids possible confusion.

The numerical results in this paper are presented mostly as graphs of function
w(x, y) over the domain Ω = (−a, a)× (−b, b), and as a rendering of w̃ on a cylinder.
For this rendering we used a sample cylinder of thickness t = 0.247 mm and Pois-
son’s ratio ν = 0.3. Hence, for example, a computational domain Ω = (−100, 100)2

corresponds to a physical cylinder of length 47.58 cm and radius 7.57 cm.
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