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Abstract. We investigate the minimization of Newton’s functional for the problem of the body

of minimal resistance with maximal height M > 0 [4] in the class of convex developable functions

defined in a disc. This class is a natural candidate to find a (non– radial) minimizer in accordance

with the results of [9].

We prove that the minimizer in this class has a minimal set in the form of a regular polygon

with n sides centered in the disc, and numerical experiments indicate that the natural number n ≥ 2
is a non–decreasing function of M . The corresponding functions all achieve a lower value of the

functional than the optimal radially symmetric function with the same height M .

1. Introduction

There has been a recent revival of interest in Newton’s problem of the body of min-
imal resistance. In modern terms this problem can be formulated as the minimization
problem

(1.1) inf
U∈C

F(U) , with F(U) =
∫

Ω

dx

1 + |∇U |2 .

Here Ω is a smooth subset of IR2; the graph of the function U represents the form of a
three –dimensional body, and the functional F models the resistance experienced by
this body as it moves through a cloud of gas particles. We refer to [4] for a detailed
discussion of the model and the history of this problem.
The form of F favours functions U with rapid oscillations. Because of this fact, the

choice of the class C of admissible functions is a delicate issue. A number of different
choices have been explored in the literature [4, 5, 6, 7, 2], but the most interesting
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one, from a mathematical viewpoint, seems to be

C = {U : Ω→ [0,M ] : U is convex} .

We shall adopt this definition of C throughout the further discussion. The scalar
constant M > 0 is a parameter whose role will become clear below.
When Ω is a ball in IR2 — which we shall assume from now on — the function F and

the set C are rotationally invariant. Newton exhibited a function U [8] that is radially
symmetric and minimizes the functional F among all radially symmetric members of C.
This function is smooth and strictly convex, except on a circular set where its derivative
jumps (see Figure 1, the rightmost shape). For a long time it was implicitly assumed
that the minimizer of F among the whole of C is necessarily radially symmetric, and
therefore coincides with the function found by Newton. However, the symmetry of
the general minimizer was never proved, and in 1996 the converse was demonstrated
by Brock, Ferone, and Kawohl [3]: when Ω is a ball, the minimizer of F over
C is necessarily non – radially symmetric. The proof consisted of remarking that the
second derivative of F , calculated at Newton’s function, had a negative direction that
was admissible. Therefore the functional was not minimal.
This result naturally opened the hunt on the true form of the minimizer. In [9] we

proved a first step in this direction:

Theorem 1.1. Let U achieve (1.1), and let ω ⊂ Ω be an open set. Then U is not
strictly convex on ω.

The class of non – strictly convex functions on Ω is still relatively large. In this paper
we jump the gun, and investigate the functional F on a much smaller set of functions
Cd. The set Cd is defined to contain all functions U ∈ C such that the graph of U is
the convex envelope in IR3 of the sets ∂Ω× {M} and N0 × {0}, where

N0 = {x ∈ Ω : U(x) = 0} .

Alternatively (and equivalently): U belongs to Cd whenever U is convex, takes values
between 0 andM , satisfies U(∂Ω) =M , and has no extremal points in Ω\N0. Figure 2
shows the contour lines of a typical function U . Note that for elements of Cd the convex
set N0 completely characterizes the function.
The reason for considering this set of admissible functions is the following conjecture:

Conjecture 1.2. Let U solve (1.1). Then U ∈ Cd.

As supporting evidence for this conjecture we mention of course Theorem 1.1. In-
deed, if we know that U is of class C2 in Ω \ N0, then the conjecture follows from
a well – known geometrical property: any regular convex surface with zero Gaussian
curvature is indeed a so – called developable surface, and can be extended up to a sin-
gular line called line of striction. Unfortunately, no similar result seems to be known
for convex surfaces without any a priori additional regularity; moreover, if ∇U has
discontinuities in Ω \N0, then U is only a piecewise developable function. This is why
the conjecture is still an open question.
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In this paper we thus investigate the problem

(1.2) inf
U∈Cd

F(U) .

We obtain the following result:

Theorem 1.3. Let M > 0 be given. If U solves (1.2), then the set N0 is a regular
polygon centered in Ω.

This theorem is proved in two steps. In Section 4 we show that N0 is necessarily
a polygon. In Section 5 we show in addition that this polygon must be regular and
centered.
We have computed the value of the functional F for the different regular polygons

(m = 2, 3, 4, etc.) with an explicit formula (see Appendix A). It turns out, from
numerical experiments, that there exists a decreasing sequence (Mn) ⊂ IN, n = 2, 3, . . .,
withM2 =∞, with the following property: IfMn+1 < M < Mn, and if U solves (1.2),
then the set N0 is a regular polygon with n sides.
This can be seen in Figure 1, where the analytic curves formed by the value of F for

n – sided regular polygons are plotted; the optimal curve is a piecewise combination
of these. We have also shown in this graph the value of the functional for the radial
minimizer given by Newton.
The critical values Mn are given in Table 1.

Table 1: Critical values of M for regular polygons.

M3 1.179535875
M4 0.754344515
M5 0.561232469
M6 0.447571675
M7 0.372163842
M8 0.318383452
M9 0.278081912

2. The problem in Cd
The members of Cd are completely characterized by their set N0, and using the

convexity of this set we introduce a more convenient representation. Consider the
function U of which the contour lines are drawn in Figure 2.
We assume that Ω is the unit ball, and we denote by s the arclength coordinate

along ∂Ω = S1, in the positive direction; x(s) is the point at s, and let �(s) be the
tangent of N0 parallel to x′(s), as shown in the figure. We define u(s) to be the signed
distance of �(s) to the origin, i. e. u(s) = d(�(s), 0) if � separates 0 from x(s), and
u(s) = −d(�(s), 0) otherwise. Then u( · ) completely characterizes N0, and to every
convex set N0 ⊂ Ω there corresponds a function u : S1 → [−1, 1].
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Figure 1: Value of the functional F for optimal regular functions; the thinner line up shows the value

for Newton’s radial minimizer. We plot the graph of U inverted, as a concave function, since the

human eye is accustomed to viewing objects from above.
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We now express the convexity condition and the functional F in terms of u. If �(s)
intersects N0 in one point, then we define y(s) to be this intersection point. If �(s)
has multiple intersections with N0, then y(s) is not well – defined, and the function y

is discontinuous at such a point. Denoting the radial and tangent unit vectors at x(s)
by er(s) and es(s), we have

u(s) = y(s) · er(s) .

Hence u′(s) = y(s) · es(s) since y′(s) · er(s) = 0; and

u′′(s) = y′(s) · es(s) − y(s) · er(s) = |y′(s)| − u(s)
implying

u+ u′′(s) = |y′(s)| ≥ 0 .

This is an important result: the condition u + u′′ ≥ 0
(
in the sense of distributions

on S1
)
is equivalent to the statement that the corresponding set N0 is convex. In the

following we shall always assume that u satisfies this condition.
While discussing this point, note that since u + u′′ = |y′(s)|, the distribution

u + u′′ is in fact a Radon measure. The support of the singular part of this mea-
sure coincides with the values of s at which y is not continuous, or equivalently, at
which �(s) intersects N0 in a line segment of non– zero length. The value of the sin-
gular part of u+u′′ at such a point is equal to the jump in y, which in turn equals the
length of the line segment. At all other points s the singular part of u + u′′ is zero,
and y is continuous.
On the straight line segment [x, y] the gradient of U is constant, and its length equals

M/((x − y) · er) =M/(1− u). Hence, using the notation f(t) = 1/
(
1 + |t|2), we find

F(U) =
∫

Ω

f(∇U) dx

=
1
2

∫
S1

f(0) y(s) ∧ y′(s) ds+
1
2

∫
S1

f

(
M

1− u(s)

)
(x− y) ∧ (x′ + y′)(s) ds

=
1
2
f(0)

∫
S1

u(u+ u′′) +
1
2

∫
S1

f

(
M

1− u

)
(1− u)(1 + u+ u′′) .

Hence since f(0) = 1, we have to minimize:

F (u) =
1
2

∫
S1

u(u+ u′′) +
M

2

∫
S1
Φ

(
1− u

M

)
(1 + u+ u′′)(2.1)

where

Φ(x) := xf(1/x) =
x3

1 + x2
(2.2)

in the set X(−1, 1), where we define
(2.3) X(a, b) :=

{
u ∈ W 1,∞(

S1
)
; a ≤ u ≤ b, u+ u′′ ≥ 0} .

Note that (2.1) is meaningful, as integrals of a product of a continuous function and
a Radon measure.
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Figure 2: Parametrization of N0.

It is sometimes convenient to write F in the form:

2F (u) =
∫
Ψ(u)(1 + u+ u′′)−

∫
u(2.4)

where

Ψ(t) = t+MΦ
(
1− t

M

)
=

tM2 + (1 − t)2

M2 + (1− t)2
.

Integrating by parts, this can also be written in the form:

F (u) =
1
2

∫
S1

η(u) − u′2Ψ′(u)(2.5)

where
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η(t) := −t + (1 + t)Ψ(t) =
M2t2 + (1− t)2

M2 + (1− t)2
,

Ψ′(t) = M2 M2 − (1− t)2

(M2 + (1− t)2)2
.

We shall also use
Ψ1(t) := Ψ(t)− 1 .

3. An estimate of ∇U

In [4] it was proved that if U achieves (1.1), then |∇U | /∈ (0, 1). This fact is related
to the concaveness of f(t) = 1/

(
1+ |t|2 )

near zero. The radially symmetric minimizer
UN presented by Newton satisfies this condition, and in fact achieves the limit case:
close to N0, |∇U | approaches the value 1.
The bound on u of Lemma 3.1 below is a reformulation of this result: since |∇U | =

M/(1 − u), the inequality |∇U | ≥ 1 is equivalent to
(3.1) u ≥ 1−M .

If Conjecture 1.2 were proved, then (3.1) would follow directly from [4]. Since we have
no proof for the conjecture, we state here an independent proof.

Lemma 3.1. Let u solve problem (4.1). Then u ≥ 1−M .

Proof . To force a contradiction we assume that u(s0) < 1−M , and without loss of
generality we also assume that s0 is a local minimum of u. There are two possibilities:
either u′ jumps at s = s0 , or u′ is continuous. We first consider the former case.
Note that u < 1−M is equivalent to Ψ′(u) < 0. For small η > 0, to be chosen later,

we define ũ to be continuous on S1, and to satisfy in addition

ũ ≡ u on S1 \ (s0 − η, s0 + η) and ũ+ ũ′′ = 0 on (s0 − η, s0 + η) .

The geometrical interpretation of ũ is that of a polygon similar to that of u, but where
the side corresponding to s0 is split into two sides, which are then slightly dented
outwards.
We set v = ũ− u, and require η to be small enough to ensure that Ψ′(u) < 0 on the

support of v. On the basis of (2.4) the derivative of ε �→ 2F (u+ εv) at ε = 0 is given
by

(3.2) 2F ′(u) · v =
∫
Ψ(u)v′′ +

∫
Ψ′(u)v(1 + u+ u′′) +

∫
(Ψ(u)− 1)v .

Note that since v ≥ 0 and Ψ( · ) − 1 ≤ 0, the last two terms are negative; in order to
obtain a contradiction we only need to show that the same is true for the first.
The function v′′ is a Radon measure with zero integral, i. e.

∫
v′′ = 0. The positive

part (v′′)+ is concentrated at s = s0 ± η. Noting the sign of Ψ′ we have Ψ(u(s)) ≥
Ψ(u(s0 + η)) for s0 − η ≤ s ≤ s0 + η. Therefore∫

Ψ(u)v′′ =
∫
[Ψ(u)−Ψ(u(s0 + η))]v′′ < 0 .
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This proves the Lemma for the first case.
We next turn to the second possibility, and assume that u′ is continuous at s = s0.

We choose η > 0 and define v(s) = [u(s0 + η) − u(s)]+. Repeating the argument,
we again have v ≥ 0, so that the last two terms in (3.2) are negative. By a similar
reasoning it follows that∫

Ψ(u)v′′ =
∫
[Ψ(u)−Ψ(u(s0 + η))]v′′ < 0 .

This concludes the proof. ✷

With this estimate we can derive a simple but useful convexity property. Remark
that translating the set N0 results in adding to u functions of the form v(s) := a cos s+
b sin s. Writing the functional in the form (see (2.1))

2F (u) =
∫

S1
u(u+ u′′) +M

∫
S1
Φ

(
1− u

M

)
(1 + u+ u′′) ,

and differentiating this twice in the direction v we find

2d2F (u) · v · v =
1
M

∫
S1
Φ′′

(
1− u

M

)
(1 + u+ u′′)v2 .

Since Φ′′((1−u)/M) ≥ 0 whenever 1−M ≤ u ≤ 1, with a strict inequality if u < 1, we
find that F is strictly convex with respect to translations of the set N0. This proves
the following corollary:

Corollary 3.2. If the set N0 has an axis of symmetry, then this set is centered in
Ω with respect to this symmetry.

4. N0 is a polygon

In order to prove thatN0 is a polygon we prove the following, more general, theorem.
Consider two numbers a < b, and the problem

(4.1) inf
u∈X(a,b)

F (u) , where F (u) :=
∫

S1

[
g(u(s)) − u′2(s)h(u(s))

]
ds

where X(a, b) is defined in (2.3). We assume that g, h ∈ C2(IR), and

(4.2) h(t) > 0 for all t ∈ (a, b] , h(a) = 0 , g′(a) > 0 .

Theorem 4.1. Let u be a minimizer of (4.1). Then the support of u+u′′ is a finite
subset of S1.

This theorem applies directly in our case by setting a = 1−M , b = 1, g = η, h = Ψ′.

Proof . We assume, to force a contradiction, that there exist sequences (αn) ⊂
(0,∞), (sn) ∈ S1 such that limαn = 0 and the intersection of the support of
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µ := u + u′′ and (sn, sn + αn) is non – empty. Since S1 is compact, the support
of µ has an accumulation point in S1; we choose this point to be the origin of S1.
Let us first assume that u(0) > a; hence {u > a} is a neighbourhood of 0, and there

exists a constant c > 0 such that h(u) > c in this neighbourhood.
For each ε > 0, there exists 0 < ε1 < ε2 < ε such that

(4.3) µ(Ji) > 0 , i = 1 , 2 , 3 ,

for each of the intervals J1 := (0, ε1), J2 := [ε1, ε2), J3 := [ε2, ε). For i = 1, . . . , 3 and
ε > 0 given, let wi be the unique solution of the problem

wi(s) +w′′
i (s) = µ(s)χJi for all s ∈ (0, ε) , and wi(0) = wi(ε) = 0 .

Then there exist (λi)i=1,...,3 such that vε :=
∑3

i=1 λiwi satisfies

(4.4) 0 = v′ε(0) =
3∑

i=1

λiw
′
i(0) and 0 = v′ε(ε) =

3∑
i=1

λiw
′
i(ε) .

We extend this function by zero outside (0, ε), such that v′ε is continuous at 0 and ε.
Hence there exists η0 > 0 such that u + ηvε ∈ X for all η ∈ [−η0, η0]. Since u solves
(4.1), it follows that F ′′(u)vε · vε ≥ 0, that is

0 ≤
∫

S1
g′′(u)v2

ε − 2h(u)v′ε2 − 4u′h′(u)v′εvε − u′2h′′(u)v2
ε

≤
∫

S1

[
g′′(u) + u′2h′′(u) + 2u′′h′(u)

]
v2

ε − 2h(u)v′ε2
.

Let us note

c1 :=
∥∥g′′(u) + u′2h′′(u) + 2u′′h′(u)

∥∥
RM(S1)

such that

2c
∫ ε

0

v′ε
2 ≤ c1 ‖vε‖2

L∞(S1) .(4.5)

Since by the Sobolev embedding

‖vε‖2
L∞(S1) ≤ c0ε

∫ ε

0

v′ε
2
,

where c0 does not depend on ε, this contradicts (4.5) for small enough ε.
Hence we have u(0) = a. Moreover, from the previous argument we know that the

support of u + u′′ is finite in any compact subset of {s ∈ S1 : u(s) > a}. Since 0 is
not an interior point of the set {u = a} we can assume for instance that u(s) > a in a
right neighbourhood of 0, say (0, s0). Then there exists an infinite decreasing sequence
(tn) with limit 0 and a summable sequence (αn) ⊂ (0,∞), such that the restriction of
u+ u′′ to (0, s0) equals

∑
n αnδtn .
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For any given n ∈ IN, n > 2, let us define the function vn as follows:

vn(s) =



sin(s− tn+1) sin(tn−1 − tn) if s ∈ (tn+1, tn) ,
sin(tn−1 − s) sin(tn − tn+1) if s ∈ (tn, tn−1) ,
0 otherwise .

One can easily check that vn is continuous and that the support of vn + v′′n is the
set {tn+1, tn, tn−1}. Therefore u ± εvn is admissible for ε small enough: this implies
F ′(u) · vn = 0:

0 = F ′(u) · vn

=
∫ [

g′(u) − (u′)2h′(u)
]
vn − 2u′h(u)v′n

=
∫ [

g′(u) + (u′)2h′(u) + 2u′′h(u)
]
vn

=
∫ [

g′(u) + (u′)2h′(u)− 2uh(u)] vn + 2
∫
(u+ u′′)h(u)vn .

Taking into account that u+ u′′ =
∑

n αnδtn , and vn(tp) = 0 if p �= n, we find

−g′(a) − (u′(0+))2h′(a) =
2αnh(u(tn))vn(tn)∫

vn
+

∫
χ vn∫
vn

where

χ(s) := g′(u) − g′(a) + (u′)2h′(u)− u′(0+)2h′(a) + 2uh(u) .

Note that χ has limit 0 in 0 since u′(t+) is right continuous everywhere; hence as n goes
to infinity,

∫
χvn/

∫
vn goes to zero. We also have

∫
vn/vn(tn) = 1

2 (tn+1−tn−1)+o(tn).
On the other hand, h(u(tn)) =

∫ tn

0
h′(u(t))u′(t) dt ∼ h′(a)u′(0+) tn for n large. Hence

if we assume that g′(a) + u′(0+)2h′(a) �= 0 we see that there exists c > 0 such that

αn > c
τn + τn−1

∞∑
j=n

τj

where τj := tj−1 − tj.
However it is known that if (τn) is a positive summable sequence, then τn

/ ∑
j≥n τj

is not summable.
(
This comes by considering the step function k such that

k([n, n+1)) = τn; then define K(x) :=
∫ ∞

x k. The sum
∑ (

τn

/ ∑
j≥n τj

)
is equivalent

to
∫ ∞

n k/K = [log(−K)]∞n =∞.)We deduce that αn is not summable, a contradiction.
So we must have

g′(a) + u′(0+)2h′(a) = 0 .

Since we assumed g′(a) < 0, we find that h′(a) > 0 and u′(0+) �= 0. Passing now to
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the second order derivative, we get, again writing τj := tj−1 − tj :

0 ≤ F ′′(u) · vn · vn

=
∫ [

g′′(u) + (u′)2h′′(u) − 2uh′(u)
]
v2

n

+ 2
∫
(u+ u′′)h′(u)v2

n − 2
∫

h(u)(v′n)
2

= O
(
(τn + τn+1)5

)
+ 2αnh

′(u(tn))vn(tn)2 − 2
∫

h(u)(v′n)
2

= o
(
(τn + τn+1)4

) − 2
∫

h(u)(v′n)
2

taking into account that vn(tn) = sin τn sin τn+1 and limαn = 0. We recall that
h(u(s)) ∼ h′(a)u′(0+)s as s goes to zero; hence

o
(
(τn + τn+1)4

) ≥
∫

h(u)(v′n)
2 ∼ h′(a)u′(0+) tn

∫ tn−1

tn+1

(v′n)
2

∼ h′(a)u′(0+) tnτnτn+1(τn + τn+1) .

Since h′(a) > 0, we conclude that u′(0+) < 0, and therefore u is not minimal at 0, a
contradiction. ✷

5. Polygonal functions and symmetry

We will now prove the following result:

Theorem 5.1. Among all functions whose minimal sets N0 are polygons, only the
regular ones centered in Ω (i. e. N0 is a regular polygon with center 0) are stable
critical points for the functional F .

We shall say that a function u : S1 → IR is polygonal of order m (m ≥ 1 integer) if
it satisfies:

(5.1) u+ u′′ =
m∑

k=1

αkδsk

in the distributional sense, for some numbers αk > 0, and different sk ∈ S1 (δsk is the
Dirac measure at sk). In the following, the numbers sk are assumed to be ordered in
S1 , for instance −π ≤ s1 < s2 < · · · < sm < π. It is convenient to uses indices modulo
m, so that for instance s0 := sm, and sm+1 := s1.
Equation (5.1) implies the compatibility condition

(5.2)
m∑

k=1

αk eisk = 0 .
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This can be proved by integrating u+ u′′ against cosine or sine functions. Note that,
since u is continuous and satisfies (5.1), we have

(5.3) uk(sk) = uk−1(sk) and u′
k(sk) = αk + uk−1(sk) .

We then have:

2F (u) =
m∑

k=1

αkΨ(u(sk)) +
m∑

k=1

∫ sk+1

sk

ΦM (uk(s)) ds ,

where ΦM (x) :=MΦ
(

1−x
M

)
= Ψ(x) − x.

The proof of Theorem 5.1 is given in the rest of the paper. Note that the case
m = 2 can be easily achieved right now. This corresponds to a line segment for N0;
by Corollary 3.2 it is centered in Ω as claimed. The corresponding function u has the
form u(s) = µ |cos(s− s1)| for some s1 ∈ S1.

5.1. Alternative parameters

We give some alternative sets of parameters that are useful for new expressions of
the functional. Each function uk satisfies uk + u′′

k = 0 in (sk, sk+1). Hence we can
express it in the form

uk(s) = µk cos(s− θk)

with µk ≥ 0 and θk ∈ (sk −π, sk+π]. Let us define ak := θk − sk and bk := sk+1 − θk.
We have by assumption

(5.4) 0 < αk = u′
k(sk)− u′

k−1(sk) = µk sin ak + µk−1 sin bk−1 .

For the value of the functional we get:

2F (u) =
m∑

k=1

(
µk sin ak + µk−1 sin bk−1

)
Ψ(u(sk)) +

m∑
k=1

∫ bk

−ak

ΦM (µk cos t) dt

=
m∑

k=1

µk sinakΨ(u(sk)) +
m∑

k=1

µk sin bkΨ(u(sk+1))

+
m∑

k=1

∫ bk

−ak

ΦM (µk cos t) dt .

From their definitions we have

uk(sk) = µk cos ak = uk−1(sk) = µk−1 cos bk−1(5.5)

hence

2F (u) = 2π +
m∑

k=1

K(µk, ak) +K(µk, bk)(5.6)
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Figure 3: Value of K(x,µ), for M = 1/2.

where (recall that ΦM (x) = Ψ(x) − x):

K(µ, x) := µ sinx (Ψ(µ cos x)− 1) +
∫ x

0

Ψ(µ cos t) dt− x

= µ sinx Ψ1(µ cos x) +
∫ x

0

Ψ1(µ cos t) dt
(5.7)

where we used the shortcut notation Ψ1 := Ψ−1. The additional term −x is permitted
since we add 2π in F and take into account that 2π =

∑
(sk+1 − sk), that is

(5.8) 2π =
m∑

k=1

bk + ak .

The previous expression can be used to compute the value of the functional, since
the integral can be expressed analytically with respect to M , µ, and x, through a
complicated expression given in the Appendix. Figure 3 pictures this function for
M = 1/2; for other values, the picture is similar.

5.2. Bounds on the sk

While the formulation of the function u above in terms of the functions uk allows a
relative freedom in choosing the values of sk, there are limits to this freedom. This is
the content of the next Lemma.

Lemma 5.2. Let u be an admissible polygonal function, described by (5.1). For
every k, sk − sk−1 ≤ π. If sk − sk−1 = π for some k, then m = 2, and N0 is a
segment.
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Proof . Suppose that m ≥ 2, and that s1 − s0 > π, so that (s0 + 2π)− s1 < π. The
operator Au = −u − u′′ satisfies the maximum principle on intervals of length less
than π. Considering the interval [s1, s0 + 2π], we note that u1 solves Au1 = 0, and
u satisfies Au ≤ 0, and the two are equal on the boundary. It follows that u1 ≥ u,
and therefore u′(s1−) = u′

1(s1) ≥ u′(s1+), with a strict inequality if u �≡ u1. This
contradicts the positivity of u+ u′′.

We might note that one could also use a geometrical argument: the section (sk−1, sk)
corresponds to a vertex of the polygon N0 (see Figure 2). The values of sk−1 and sk

correspond to the directions of the sides of the polygon on either side of the vertex,
and the corner formed by the two sides has an internal angle of π − (sk − sk−1). If
sk − sk−1 > π, then this angle is negative, and therefore u does not correspond to a
well – formed set N0.

If s1 − s0 = π, then u(s1) = u(s0) = 0. Applying a similar argument to the interval
[s0+2π, s1], we find that u = µ′ sin(s−s1) on [s0+2π, s1] for some µ′ ∈ IR. It follows
that m = 2 and that N0 is a segment. ✷

5.3. Derivative jumps are symmetric

From now on, we assume that u is a minimizer of F .

Lemma 5.3. Suppose that m ≥ 3. Then for each k we have

u′(sk+) = −u′(sk−) .

Proof . We prove the result for k = 1. In order to shorten notation, we write
zk := u(sk), and y+

1 := u′
1(s1) = u′(s1+), y−1 := u′

0(s1) = u′(s1−). Note that since
m ≥ 3, by the previous Lemma, s2 − s1 < π and s1 − s0 < π.

Let ε �= 0 be given. We define dε := (u1(s1+ε)−u0(s1+ε))/ε and d0 :=
(
y+
1 −y−1

)
;

one easily checks that dε = d0 + o(1) for small ε since u1(s1) = z1 = u0(s1).

Let us consider the function v0 such that v0 + v′′0 = 0, v0(s2) = 0 and v0(s1) = d0.
For ε �= 0 we also define vε by vε+v′′ε = 0, vε(s2) = 0 and vε(s1+ε) = dε. Here again,
we see that vε ≡ v0 + o(1) for ε small enough.

We consider the function uε defined as follows:

uε(s) =



u0(s) if s ∈ (s0, s1 + ε) ,
u1(s) − εvε(s) if s ∈ (s1 + ε, s2) ,
u(s) otherwise .

(Observe that uε is continuous by the definition of vε.) We note that uε is admissible
for any small enough ε. Hence F (uε) ≥ F (u) since u is a minimizer. We note that
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by (2.4)

2F (uε) =
∫ s1+ε

s0

(Ψ− id)(u0) +
∫ s2

s1+ε

(Ψ − id)(u1 − εvε)

+
∫ s0+2π

s2+0

[
Ψ(u)(1 + u+ u′′) − u

]

+ Ψ(uε(s1 + ε))
[
u′

1(s1 + ε) − εv′ε(s1 + ε) − u′
0(s1 + ε)

]

+ Ψ(u(s2))
[
u′

2(s2) − u′
1(s2) + εv′ε(s2)

]
.

We recall that u0(s1) = z1 = u1(s1); hence
∫ s1+ε

s1
Ψ(u0) − Ψ(u1) = o(ε). Moreover,

since ui + u′′
i = 0, we have u′

1(s1 + ε)− u′
0(s1 + ε) = y+

1 − y−1 +O
(
ε2

)
. We also have:

Ψ(uε(s1 + ε)) = Ψ(u0(s1 + ε)) = Ψ(z1) + εΨ′(z1)y−1 + o(ε) .

This yields

0 ≤ F (uε)− F (u)

≤ o(ε) − ε

∫ s2

s1

[Ψ′(u1)− 1]v0 + εΨ′(z1)y−1
(
y+
1 − y−1

)

− εΨ(z1)v′0(s1) + εΨ(z2)v′0(s2) .

Since this holds for any ε small enough (positive or negative), we get

(5.9) Ψ′(z1)y−1
(
y−1 − y+

1

)
=

∫ s2

s1

[Ψ′(u1) − 1]v0 −Ψ(z1)v′0(s1) + Ψ(z2)v′0(s2) .

We briefly consider the possibility that Ψ′(z1) = 0. The integral in (5.9) is negative,
so that we then find

−Ψ(z1)v′0(s1) + Ψ(z2)v′0(s2) ≥ 0 .

A simple argument using the concaveness of v0 and the monotonicity of Ψ shows that
this inequality is not satisfied. This proves the Lemma if Ψ′(z1) = 0.
We continue with the case Ψ′(z1) > 0, and consider the variation which is analogous

to the one above, but with s2 replaced by s0. Beginning with the function w0 such
that w0 + w′′

0 = 0, w0(s0) = 0, w0(s1) = d0, and operating exactly the same way in
the interval (s0, s1) we get similarly:

(5.10) Ψ′(z1)y+
1

(
y−1 − y+

1

)
=

∫ s0

s1

[
Ψ′(u0)− 1

]
w0 − Ψ(z1)w′

0(s1) + Ψ(z0)w′
0(s0) .

Finally let us consider the function

ũ(s) :=



u0 − εw0(s) if s ∈ (s0 , s1) ,
u1 − εv0(s) if s ∈ (s1 , s2) ,
u(s) otherwise .
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Here we also have an admissible function, since v0(z1) = w0(z1). Applying a first
order variation argument again, we find that the right – hand side of (5.9) and (5.10)
are just opposite. This yields

Ψ′(z1)
[(
y+
1

)2 − (
y−1

)2
]
= 0 .

Since y−1 �= y+
1 by assumption (u′ is not continuous at s1), and Ψ′(z1) > 0, the proof

is complete. ✷

5.4. Proof of Theorem 5.1

From Lemma 5.3 we have for each k, µk sin ak = µk−1 sin bk−1. Combining with
(5.5) we get

µk = µk−1 and ak = bk−1

in that case. Hence the functional can be expressed with respect to the unique pa-
rameter µ (the common value of all µk) and to the ak, subject to the condition

m∑
i=1

ak = π .

The derivative jump at sk is given by µk sin ak + µk−1 sin bk−1 = 2µ sin ak, and the
convexity condition u+ u′′ ≥ 0 therefore implies that ak ∈ [0, π]. The functional itself
is just

∑
K(µ, ak), hence for the minimizer there exists a Lagrange multiplier γ such

that

(5.11)
∂F

∂ak
= K′

x(µ, ak) = γ

for all k. On the other hand we have from (5.7):

K′
x(µ, x) = (1 + µ cos x)Ψ1(µ cos x)− µ2 sin2 xΨ′(µ cos x) .(5.12)

We now have to prove that all ak are equal. We first prove an intermediate result:

(5.13) K′
x(µ, ak) = γ ≤ K′

x(µ, 0) .

Indeed, consider a small number ε > 0, and a function uε characterized by (m + 1)
sides with parameters aε

k = bε
k−1 = ak + δak, for k = 1, . . . , m, and aε

m+1 = bε
m = ε;

µε
k = µ for k = 1, . . . , (m + 1). This function satisfies the constraints if we assume
that

∑
δak = −ε. We then have

F (uε)− F (u) =
m∑

k=1

[
K

(
µ, aε

k

) −K
(
µ, ak

)]
+K(µ, ε)

=
m∑

k=1

K′
x(µ, ak) δak + εK′(µ, 0) + o(ε) .

We already know from (5.11) thatK′
x(µ, ak) = γ for all k. Since we have F (uε) ≥ F (u)

for all ε > 0, we get (5.13).
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Figure 4: Value of (m − 1)K(µ,x) +K(µ, π − x(m− 1)) for M = 1/2, m = 4.

The function x �→ K′
x(µ, x) is explicitly given by (5.12). We can normalize the

function K by subtracting xK′
x(µ, 0): note that this adds a constant to F , so that this

does not change the nature of the problem; for this normalized function, still noted
K, we have K′

x(µ, 0) = 0. From (5.13), the only values of interest in the following are
those such that K′

x ≤ 0; this corresponds to an interval [0, x̄]. One can easily check
the following properties: if µ is small, then K′

x is an increasing function on (0, π]; if µ
is larger than a critical value (depending onM), then on (0, π] this function is strictly
decreasing, then increasing. (This last property is proved in Appendix B.)
From (5.13) we see that µ must be larger than the critical value indicated before. In

that case, the function K′
x(µ, · ) attains a strict minimum x0 ∈ (0, π) and the equation

K′
x(µ, x) = γ1 ≤ K′

x(µ, 0) has two solutions x1, x2 satisfying

(5.14) 0 ≤ x1 < x0 < x2 < π and K′′
xx(µ, x1) < 0 < K′′

xx(µ, x2)(
except in the special case K′

x(µ, x) = K′
x(µ, x0)

)
. That gives two potential values for

the ak.
It easy to check that at most one ak can be equal to x1. Indeed, we just have

to consider a small variation in the form ã1 = a1 + ε, ã2 = a2 − ε, and we find
K′′

xx(µ, a1) +K′′
xx(µ, a2) ≥ 0 for a minimizer.

Hence we have to choose between two possibilities: either all ak are equal to π/m

(regular polygon), or all of them except one are equal (say to a number x = x2),
and the other one (x1 = π − (m − 1)x) is different; x1 and x2 satisfy (5.14) and
K′

x(µ, x1) = K′
x(µ, x2). We can catch both possibilities by minimizing

G(µ,m, x) := (m− 1)K(µ, x) +K(µ, π − (m− 1)x)
with respect to µ ∈ (0, 1), m ∈ IN, and x ∈ Im given later. If the minimum satisfies
x = π/m, then all ak are equal; alternatively, if x �= π/m, then the ak are different.
The set Im of admissible values of x is given by Im = [π/m, π/(m−1)). This results

from the following argument. Clearly π/m ∈ Im; we do not need to take into account
values x < π/m, since by (5.14) x1 = π − (m − 1)x ≤ x2 = x; and x ≥ π/(m − 1)
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corresponds to x1 ≤ 0, which is also excluded, as mentioned above. Moreover we can
restrict, from (5.14), to those values of (µ,m, x) such that K′′

xx(µ, x) > 0. Since K′′
xx

vanishes at most once in (0, π) (cf. Appendix B), it is positive at least at one end of
Im. That is either

K′′
xx(µ, π/m) > 0

or K′′
xx(µ, π/m) ≤ 0 and K′′

xx(µ, π/(m− 1)) > 0 .
(5.15)

The function G is pictured forM = 1/2,m = 4, in Figure 4; there is a clear minimum
in this case with x = π/4, corresponding to a regular polygon for N0. Notice that G is
not convex with respect to x (though we already know that it is convex with respect
to µ).
If (µ,m, x) minimizesG, then x also minimizes the restricted function x �→ G(µ,m, x)

for these specific values of µ and m. With this remark in mind we fix µ and m for the
remainder of the proof, still assuming (5.15).
We will use the following lemma:

Lemma 5.4. Let m ≥ 2 be an integer. The equation G′
x(µ,m, x) = 0 has at most

two solutions for x in the interval Im =
[

π
m , π

m−1

)
. Moreover, if (5.15) holds with

K′′
xx(µ, π/m) ≤ 0, this equation has only one solution.

The proof of the lemma relies heavily on an analytic expression of G′
x; it is given in

Appendix B. We continue here with the proof of the theorem.
One of the solutions is x = π/m; if K′′

xx(µ, π/m) ≤ 0, then it is the only one from
the lemma, but it is not a minimizer: this is a contradiction since we assumed the
opposite about (m, µ).
Let us now assume that K′′

xx(µ, π/m) > 0. Then G attains a strict local minimum
at x = π/m. Therefore, if G′

x vanishes only once in Im, then G is increasing on Im,
and the Theorem is proved.
Alternatively, if G′

x vanishes at some other point x
′ ∈ Im (x′ �= π/m), we deduce that

G′′
xx(µ,m, x′) ≤ 0 since G is an analytic function of x. Hence x′ is a local maximum

of G
(
or possibly an inflexion point if G′′

xx = 0
)
. So in any case, G does not have any

other minimum in the interior of Im.
This ends the proof of Theorem 5.1.

Appendix A: Analytic expression of the functional

We give here some indication on the way to compute explicitly the integral in K,
or more precisely:

I(M,µ, x) := −M−2

∫ x

0

Ψ1(µ cos t) dt =
∫ x

0

(1− µ cos t)
M2 + (1− µ cos t)2

dt .

Even with Maple, this does not come straightforwardly since the integrand is quite
complicated. Anyway, one can see that it depends only on 2 cos t = eit + e−it. So we
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can look for a primitive function in the form J(eix). We then have

izJ ′(z) = 2z
2z − µ(1 + z2)

4z2M2 + (2z − µ(1 + z2))2
.

Since the roots of the denominator can be expressed easily, we can find J . The more
complicated part is to go back to a real function. At the end, we get

I = cl arctan
(

sinx cosα
cosx− sinα cos β

)
+ cr log

(
1− sinα cos(β − x)
1− sinα cos(β + x)

)

where

cl :=
cosα cos2 β

cos2 α+ sin2 α sin2 β
and cr :=

1
4

sin2β
cos2 α+ sin2 α sin2 β

and the parameters α, β are linked to M , µ by the relations

√
2 cosα =

√
1−M2 − µ2 + ν ,

√
2 sinα =

√
M2 + µ2 + 1− ν ,

√
2µ cosβ =

√
M2 + µ2 + 1− ν ,

√
2µ sinβ =

√
µ2 −M2 − 1 + ν

with
ν :=

√
(1 +M2)2 − 2µ2 + 2µ2M2 + µ4 .

Appendix B. Proof of Lemma 5.4

From formula (5.12), K′
x depends on x only by the value of cosx. More precisely,

we have K′
x(µ, x) = Q(cosx) + constant (the constant was introduced by the normal-

ization) where

Q(z) :=
2µ2z2M4 − µ2M4 +M2(1 − µz)2

(
1 + µ2

)
+ (1− µz)4

(M2 + (1− µz)2)2
.

With this notation, the derivative of G is

G′
x(m, x) = (m− 1)[Q(cosx)−Q(− cos(m− 1)x)] .

Let us first assume that m = 2. Then G′
x(2, x) = 0 for x �= π/2 implies Q(z) =

Q(−z) for some z ∈ (0, 1]. Let us prove that in fact Q(z) < Q(−z) for all z ∈ (0, 1].
From the previous expression ofQ, we get Q(z)−Q(−z) = −zµM2P

(
z2

)
/[D(z)D(−z)]

where D(z) is the (positive) denominator in the expression of Q, and

P (Z) :=
(
µ4 − 4µ4M2 − µ6

)
Z2

+
(− 2µ2 − 4µ2M4 + 2µ4M2 + 2µ4 − 2µ2M2

)
Z

+ 2M2 + 1 + 3µ2M4 + 2µ2M2 +M4 − µ2 .
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So we have to prove that P (Z) > 0 for all Z ∈ [0, 1]. Note that this inequality holds
at 0 and 1:

P (0) = 2M2 + 3µ2M4 + 2µ2M2 +M4 + 1− µ2 > 0 ,

P (1) =
(
1− µ2

)
M4 + 2M2

(
1− µ4

)
+

(
1− µ2

)3
> 0 .

The derivative of P vanishes at Zm = A/B where

A := 2M4 +
(
1− µ2

)(
1 +M2

)
> 0

(recall that µ ∈ (0, 1)) and

B := −µ2
( − 1 + 4M2 + µ2

)
.

We observe that

A− B = 2M4 + 3µ2M2 +M2 + 1− 2µ2 + µ4 > 0

hence either B < 0 and Zm < 0, or B > 0 and Zm > 1 since A > B; in either case,
P does not have a local extremum in [0, 1]. It follows that P > 0 in [0, 1], and this
proves the lemma for m = 2.
Let us now assume that m ≥ 3, hence cos(m − 1)x ≤ 0 in Im. Here G′

x(m, x) = 0
with x �= π/m, x ∈ Im, is equivalent to the existence of a solution of Q(z1) = Q(z2),
with z1 and z2 in [0, 1], z1 �= z2. We will prove here that in [0, 1], either Q is monotonic
or Q′ has only one root. In the first case, Q(z1) = Q(z2) implies z1 = z2. In the second
case, if a solution x �= π/m of G′

x = 0 exists, it is unique since the functions cos x and
cos(m− 1)x are monotonic in Im. This will prove the first assertion of the lemma.
So we have to count the number of zeroes of Q′ in [0, 1]. We have

Q′(z) =
2µM2N(z)

(M2 + (1− µz)2)3

with

N(z) :=
( − µ5 + µ3 − 2µ3M2

)
z3 +

(
3µ4 − 3µ2

)
z2

+
(
3µ3M2 − 3µ3 + 3µ+ 3µM2 + 2µM4

)
z + µ2 − 3µ2M2 − 1−M2 .

We only have to count the zeroes of N in [0, 1]. We will use the Theorem of Fourier
and Budan [1, page 173], an improved version of the Dirichlet criterion, which asserts
that the number of zeroes of the polynomial N in [0, 1] cannot exceed |ν(0)− ν(1)|,
where ν(z) is the number of changes of signs in the list

�(z) := [N(z), N ′(z), N ′′(z), N ′′′(z)] .

Now we have

�(0) =
[
µ2 − 1− 3µ2M2 −M2 , 3µ

(
µ2M2 + 1− µ2 +M2

)
+ 2µM4 ,

6µ2
(
µ2 − 1) , 6µ3

(
1− µ2 − 2M2

)]
.
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We recall that µ ∈ (0, 1), so the signs in this list are [−,+,−, σ0] where σ0 is the sign
of 1− µ2 − 2M2.
Next we have

N ′(1) = µ
[
3M2

(
1− µ2

)
+ 2M4 + 3(µ+ 1)(1− µ)3

]
> 0 ,

also

N ′′(1) = 6µ2
[−2µM2 − (µ+ 1)(µ− 1)2] < 0 ,

and obviously N ′′′(1) = N ′′′(0). The signs in the list �(1) are [σ1,+,−, σ0] where σ1

is the sign of N(1). We see that ν(0) = ν(1) if σ1 < 0, and ν(0) = 1 + ν(1) if σ1 > 0.
We get |ν(0)− ν(1)| ≤ 1; this ends the proof of the first assertion of the lemma.
We now turn to the second assertion, assuming that Q is not monotonic (otherwise

there is nothing to prove), and assuming (5.15) with K′′
xx(µ, π/m) ≤ 0, or equivalently

π/m ≤ x0 < π/(m − 1) (we recall that x0 is the root of K′′
xx; we have z0 = cos x0,

where z0 satisfies N(z0) = 0). Notice that, from our previous study, we must have
N(1) ≥ 0 in order to have a root for N in (0, 1], that is

(5.16) M2 ≥ M2
1 :=

(1− µ)2(1 + µ)
2µ

.

Moreover, Q is decreasing in [0, z0] and increasing in [z0, 1].
We will prove later on that

(5.17) for all h ∈ (0, z0] , Q(z0 + h) > Q(z0 − h) .

Let us explain first how we can deduce the second assertion of the lemma from this.
Let x ∈ (π/m, π/(m−1)) be given, and x′ := π−(m−1)x < π/m ≤ x0. If x ≤ x0, then
cos x′ > cos π

m > cos x ≥ z0 and therefore Q(cos x) < Q(cosx′) since Q is increasing
in [z0, 1]. This implies K′

x(µ, x) �= 0.
Let us now assume that x > x0. Since m ≥ 3 we have

(5.18) 1 + cos
π

m− 1 ≥ 2 cos
π

m
.

(
Indeed equality occurs for m = 3, and for m ≥ 4 we have

1 + cos
π

m− 1 − 2 cos π

m
> 1 +

(
1− π2

2(m− 1)2
)
− 2

(
1− π2

2m2
+

π4

24m4

)

=
π2

2m2

(
2− m2

(m− 1)2 − π2

6m2

)

≥ 0 .
)

Now (5.18) implies

cosx+ cosx′ = cosx− cos(m− 1)x > 2 cos
π

m
≥ 2z0 ;
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this follows from remarking that the map y �→ cos y− cos(m−1)y−2 cos π
m
is concave

in Im (the second – order derivative is negative), vanishes at y = π/m, and attains the
nonnegative value 1+cos π

m−1 −2 cos π
m at y = π/(m−1). Therefore, if we write cos x

in the form z0−h (h ∈ (0, z0]), we have cos x′ > z0+h, hence Q(cos x′) > Q(z0+h) >
Q(z0 − h) = Q(cos x) using (5.17). This proves that K′(µ, x) �= 0 as claimed in the
lemma.

We finally need to prove (5.17). A computation of δQ := Q(z0 + h) − Q(z0 − h)
gives a complicated formula for a general z0. But since z0 satifies Q′(z0) = 0, we have
δQ ∈ O

(
h3

)
for small h. An exact computation gives the formula

δQ := 4M2µ3h3 µ2Ah2 + 4M2B

D(z0 + h)D(z0 − h)
where

A := µz0 − µ3z0 − 2M2µz0 + 4M2 − 1 + µ2 ,

B := −2µ2z2
0 +M2µz0 + 2µ3z0 +M2 + 2µz0 − 2µ2 .

Hence it is sufficient to prove that A > 0, B > 0 for all (M,µ) such that µ ∈ (0, 1)
and M satisfies (5.16); here z0 is implicitly determined with respect to (µ,M) by the
equation N(z0) = 0, that is:

0 =
(
µ3 − 2M2µ3 − µ5

)
z3
0 +

( − 3µ2 + 3µ4
)
z2
0

+
(
3µ+ 3µM2 + 3M2µ3 − 3µ3 + 2µM4

)
z0 − 3M2µ2 − 1 + µ2 −M2 .

It is sufficient to prove that A · B �= 0 for all values of (µ,M), since one can easily
check that A > 0, B > 0 for some of these values: for instance, as µ → 1, we have
z0 → 1, and then A → 2M2 > 0, B → 2M2.
In order to take into account (5.16), we write M2 in the formM2

1 /t, hence t ∈ (0, 1].
Then we have A · B = (1− µ)

(
1− µ2

)
C with (we write z instead of z0 from now on):

C :=
( − µ5 − 5µ5t− 4µ5t2 + µ3 − 4µ4t2 − 11µ3t+ µ4 − µ2

)
z2

+
(
8µ3t2 + 18µ4t− 3µ2 + 3µ4 + 3µ+ 8µ4t2 − 3µ3 + 14µ2t

)
z

+ 2µ3 − 4µ3t2 − 4µ2t2 − 2µ− 2µ2 + 2− 13µ3t− 3µt .

Since z is a root of N , we also have

0 = 2µ(µz − 1)3t2 + (µ− 1)(µz − 1)(2µ2z2 + 2µz − 3µ2 − 1)t− (µ+ 1)(µ− 1)3z .

This is an equation of degree 2 in t. Substituting t = 0 gives the value (µ+1)(1−µ)3z ≥
0, and t = (1− µ)/(1− µz) gives the value (µ− 1)2(z − 1)(2µ2z + 1+ 2µ+ 3µ2

) ≤ 0,
hence there is always a root in

[
0, 1−µ

1−µz

]
, the other one being negative. This root can

be expressed as follows:

t1 := (1− µ)
2µ2z2 + 2µz − 3µ2 − 1 + r

4µ(µz − 1)2



Lachand – Robert and Peletier, Minimal Resistance for Developable Functions 175

where r :=
√
4µ4z4 + 8µ3z3 − 4µ4z2 − 20µ3z + 4µz + 9µ4 + 6µ2 + 1− 8µ2z2. Substi-

tuting t = t1 in C, we get 4C = (αr + β)(1 − µ)/(1− µz)2 with

α := 22µ3z − 9µ2 − 15µ2z2 − µ4z2 + 10µz− 6µ4 − 1 ,
β := 2µ6z4 − µ6z2 + 18µ6 + 22µ5z3 − 86µ5z + 76µ4z2 + 33µ4 − 34µ4z4

+ 10µ3z3 − 50µ3z + 4µ2 + 21µ2z2 − 24µz + 9 .

Hence C = 0 implies α2r2 − β2 = 0, which is a polynomial expression in (µ, z) of
the form 0 = 16

(
1− µ2

)
(1− µz)2p1p2 where

p1 := 4µ2z2 + 5− 11µz + 3µ2 − µ3z ,

p2 := 4µ4z4 − 3µ5z3 − µ3z3 + 3µ4z2 + µ2z2 − 2µ5z − 9µ3z − µz + 6µ4 + µ2 + 1 .

If we define y := µz, we have y ∈ [0, 1), and

p2 = (6− 2y)µ4 +
( − 3y3 + 1 + 3y2 − 9y)µ2 + 4y4 − y3 − y + y2 + 1 .

The discriminant of this polynomial with respect to µ2 is (9y+23)(y+1)2(y−1)3 < 0,
so p2 �= 0.
Similarly we have p1 = (3 − y)µ2 + 4y2 + 5 − 11y, hence p1 = 0 implies µ2 =(
4y2 + 5− 11y)/(y − 3). Then we get µ2 − y2 = (5− y)(y − 1)2/(y − 3) < 0 which is
a contradiction since y2 = µ2z2 ≤ µ2.

This ends the proof of the lemma.
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