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Abstract This is a former PhD student’s take on his
teacher’s scientific philosophy. I describe a set of “prin-
ciples” that I believe are conducive to good applied
mathematics and that I have learnt myself from observ-
ing Hans van Duijn in action.
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1 Introduction

Among scientists, there circulates an apocryphal list of
six “principles of good science”, supposedly formulated
by Clifford Truesdell, one of the founders of the “ratio-
nal” movement in modeling and thermodynamics. My
copy is a bad photocopy of a bad photocopy of this list
(see the Appendix). It is entitled “How the Bernoullis
worked,” and, despite its obscure provenance, gives
some very sound advice: “Always attack a specific
problem. Try to solve it in a way that leads to a general
method,” for instance, and “Let a key problem solved
be father to a key problem posed.”

This list appears inspired by the belief that there are
‘good’ and ‘bad’ ways of doing science. Over the years |
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have come to agree. I also claim that similarly there are
good and bad ways of doing applied mathematics, and
that the peculiarities of applied mathematics warrant a
special treatment.

The list below is strongly inspired by my experience
of working with Hans van Duijn, and, in this volume
dedicated to Hans’ work, I am perfectly confident giv-
ing it the title “How Hans works.” The list is wholly my
own doing, however, and Hans should not be blamed
for any (undoubtably many) faults. In fact, the occa-
sions on which he and I discussed such philosophical
issues were few and far between. This list is my analy-
sis of Hans’ actions, rather than his words—a written
version of “leading by example.”

How Hans works

Find a math-friendly applier

Get to understand the applied problem completely
In the applied mess, find a beautiful math problem
Solve it, preferably with the appliers

Interpret it, with the appliers

Repeat and enjoy!

S e

In Hans’ case, the applications came from fields such
as porous media flow and petroleum engineering; Hans
Bruining (petroleum engineering, TU Delft), Sjoerd
van der Zee (soil physics, Wageningen University), and
Pieter Raats (Mathematical and Statistical Methods
Group, Wageningen University) were among the many
appliers that Hans worked with.

My aim in this paper is to illustrate these “rules” by
examples. Much of Hans’ collaborations were outside
of my field of vision, however, and therefore 1 will
describe some scientific developments that I have been
part of myself.
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2 Mathematical geology

The topic is what one might call “mathematical geol-
ogy.” Central questions are, for instance,

e Forward problems: how do rocks deform? How is
this deformation influenced by material properties
and loading conditions?

e Inverse problems: from observations of current
rocks, what can we infer about the deformation
history?

The inverse problem has of course significant commer-
cial interest, although our mathematical work never
seemed to get close to those interests.

The geological structures that we study were mostly
created by sedimentation, which creates parallel layers
of rock whose thickness and composition vary from one
layer to the next but are remarkably constant along
each layer (see Figs. 1 and 2). By the time we see
these layers, they have gone through a long series of
deformations: submersion to large depth, conversion of
the sediment into rock, folding under various forces,
possibly in many stages, and possibly combined with
various chemical modification processes as well. The
whole deformation history can be very complex, and we
tend to focus on just one part: the folding of the layers.

Much of what I know about mechanics and rock fold-
ing I have learnt from other scientists, which brings me
to rule #1: find a math-friendly applier. The importance
of this rule cannot be overemphasized. There have been
many such applied collaborators over the years, but

Fig. 1 An outcrop at Millook Haven in Cornwall, UK. The
lighter layers are sandstone, the darker ones, shale (clay). At the
bottom of the picture, there is a young version of myself
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Fig. 2 Sandstone and shale, similar to that in Fig. 1. Here, the
sandstone has rusted and become brown. The scale from fop to
bottom is about 2 m. This photograph was taken to highlight
the unusual deviation from straight, parallel layers: exactly in the
middle of the picture, a sandstone layer has a thinner section,
formed by a small channel of moving water eroding a layer of
sand just after deposition

here I want to illustrate this principle with two of these:
Giles Hunt and John Cosgrove.

Giles Hunt

John Cosgrove

Giles Hunt is a (now retired) structural engineer at
the University of Bath, and I was fortunate enough
to spend a postdoc period in his department. John
Cosgrove is a geologist at Imperial College in London
whom I met at various occasions and who brought the
rocks to life for us on a field trip in the spring of
2011.

What makes both Giles and John such great collab-
orators for a mathematician is a combination of three
things: first, their untiring willingness to explain how
they think about “their” problems. Anyone who has
ever worked outside of their field of expertise will ap-
preciate the importance of this. Second, their ability to
think abstractly, to seek general principles that govern
the specific case at hand; and finally, their belief that
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Fig. 3 An impression of a
field trip to Cornwall. One
can see John Cosgrove
(pointing to the sand), Chris
Budd (with the hat), Leire
Gorrochategui Gregorio (in
the red jacket), Jill Hammond
(pink scarf), Giles Hunt
(pointing to the rock), and
Tim Dodwell (blue jacket)

mathematics, and more generally reductionism, might
help them understand their problems better. Oh, and
of course, enthusiasm always helps.

To give an example, I spent many hours with Giles
experimenting with toy models of mechanical systems,
which were contraptions of links, hinges, and springs—
meccano on paper. Giles is a master in using such highly
simplified mechanical models to zoom in on a very
specific feature while preserving mechanical feasibility.
All the models we built on paper could, in theory, be
built in a lab; some actually were.

This brings me to rule #2: get to understand the prob-
lem completely. In the case of mathematical geology,
there is no substitute to a field trip with a guide like
John Cosgrove. Over the course of a couple of days, we
saw many different types of rocks with highly varying
deformation histories, and it was John’s expert insight
that made them accessible to us. Figure 3 shows some
of the activities during the trip.

In a similar way, an earlier field trip, in 1998, had
pointed us towards the first of a number of mathemati-
cal questions:

Math question #1: Why straight limbs and sharp
hinges?

Why this is interesting requires a bit of background.
Rocks are fairly rigid at human time scales, but over
geological time scales, they can deform significantly, as
the deformed rocks around the world show. Whether
rock deforms elastically or viscously on geological time
scales is still unclear, to a large extent because of
the difficulty of performing experiments at those time
scales. However, both elastic and viscous behavior have
a preference for smooth deformation that is spread out,

Fig. 4 A pictorial answer to math question #1: high overburden
pressure implies that voids between the layers are penalized,
leading to straight limbs with sharp corners. Published in a paper
with Giles Hunt and Ahmer Wadee [9] (see rule #4: Solve it,
preferably with the appliers)
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Fig. 5 Horizontal compression of layers of paper, vertically
confined by two layers of foam. The fop four figures show the
compression increasing from left to right; the bottom picture is
the final structure. One layer in 25 has been colored black. These
experiments were done with Giles Hunt and Ahmer Wadee at
the University of Bath

not localized. The deformation in Fig. 1, however, is
highly localized: long stretches of undeformed rock are
bounded by very sharp corners. Why is this?

2.1 The first mathematical problem

Math question #1 is a very intriguing one, and one of
the first to come out of our interest in geology (see rule
#3: In the applied mess, find a beautiful math problem).
It is also a tough one and not yet completely resolved.

After that first field trip, we did give an answer of
sorts. Not so much a mathematical answer but more of
a pictorial one. By simply fitting together curved layers
of different geometry (Fig. 4), we “showed” that the
straight-limb, sharp-corner geometry fits together bet-
ter, leaving smaller voids between the layers. Since the
layers deform under high pressure, voids carry a high
energy penalty. This penalty pushes the material away
from its preference for smooth deformation towards
the sharp-hinged geometry.

We would come back to this question later. In the
meantime Bruce Hobbs, another geologist, had sug-
gested that we do some experiments in the lab, using
paper as a substitute for layered rocks. Figure 5 shows
an example of this.

The setup of the experiment was as follows. Together
with Ahmer Wadee, PhD student in Bath at that time,
we placed a stack of (relatively common, printer-type)
paper between two confining plates, lined with foam.
We then slowly compressed the layers in the direction
of the layering. As a result, the stack of paper buckled
into the foam; as the shortening increased, the foam be-
came stiffer since it was flanked by rigid plates, and the
smooth initial buckle converted into the final structure
in Fig. 5.

This experiment showed us a number of things. First,
there is indeed a tendency for the paper to be straight
with sharp corners, and this tendency increases with
increasing shortening. Since the horizontal shortening
also causes the foam to compress, the total pressure in
the paper increases, which explains why the sharpness
of the corners increases with shortening. It also showed
us a structure that appears often in geology, that of
“kink bands” (see Fig. 6).

2.2 Kink bands
This brought us to

Math question #2: How do kink bands form, and
why?

More specifically, what determines the geometry of
the kink bands, such as the width of the kink band and
its angle with respect to the layers? In the experiment
in Fig. 5, the kink bands appear to arise as a sharpening
of the global buckle that formed initially, and the size
of the kink bands therefore is set by the initial buckle.
That case is therefore not very interesting. In other
experiments, such as in Fig. 7, the kink band width and
angle seem to be independent of the size of the speci-
men. This is the case in which we want to understand
how this geometry is determined.

Fig. 6 The left-hand figure

shows John Cosgrove’s
schematic of “conjugate kink
bands,” and the right-hand

figure is an example of such
structures in Bude
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Fig. 7 An experiment similar to that in Fig. 5, in which the foam
is replaced by further sheets of paper, creating a much stiffer
confinement. As a result, the kink bands are shorter and more
orthogonal to the layering. Experiment performed by Ahmer
Wadee at Imperial College, London [10]

Together with Giles Hunt and Ahmer Wadee, we
created a very simple mathematical model for kink
bands (rule #4: Solve it, with the appliers). The layers of
paper in the kink band are abstracted into rigid blocks
(see Fig. 8), and the paper outside of the kink band is
reduced to a single inline spring. The overburden pres-
sure is represented by a simple lateral pressure g. The
angle g of the kink band is now coupled to the angle
a of the layers by an assumption of non-expansion: the
layers are assumed to preserve their thickness through-
out deformation, and no opening between the layers
is allowed, implying 28 = «. An important aspect of
the model is friction between the layers, characterized
by the friction coefficient p, the ratio of the maximal
friction force to the normal force.

Because of the friction, the system has an unusual
structure. Many buckling problems have a finite buck-
ling load, at which the system becomes unstable. In this
system, however, the friction causes the undeformed
state to remain locally stable to arbitrarily high loads.

Fig. 8 Left: Setup of the
simple kink band model.
Right: Plot load P versus
shortening A for stationary
points of the stack, for two
values of overburden
pressure g. The two vertical
lines correspond to Maxwell
displacements (see text).
Here, 1 = 0.57 [9]

As the load tends to infinity, the basin of stability
shrinks to a point, and therefore the undeformed state
becomes increasingly susceptible to small perturba-
tions. The question becomes how to characterize this
sensitivity to perturbations.

We found a useful characterization in the concept of
a Maxwell displacement [8], the smallest displacement
A at which the energy of the undeformed state can
be matched by the energy of a deformed state. The
properties of this Maxwell displacement turn out to
be favorable: the prediction of the kink band angle is
reasonably accurate, and the prediction is remarkbly
stable with respect to imperfections [7, 9]. However,
in this model the width of the kink band is completely
free. In order to fix that, the confinement, represented
here by ¢, has to become stiffer with increasing com-
pression [10].

2.3 Revisiting the sharp corners: voids

We now return to the question of straight limbs and
sharp corners. In such a sharp corner, sometimes voids
arise; both Figs. 5 and 7 show such voids between the
layers. The simple pictorial argument described above,
of course, does not allow any kind of prediction of
the size of these voids, and therefore Tim Dodwell,
a graduate student in Bath working with Giles Hunt
and mathematician Chris Budd, studied a simplified
problem aimed at characterizing the size of voids.

The setup is shown in Fig. 9: an elastic layer is forced
into a V-shaped obstacle by overburden pressure g and
possibly a lateral force P.

When P =0, this problem can be formulated as
a constrained minimization problem, minimizing the
functional

Ve[ o]

[e¢]

(w—f)dx, where w > f.

3.5
o
( q=0.5
q=0.25
I
0 A
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Fig.9 Overburden pressure forces a single layer into a V-shaped
obstacle [4]

Here, B is the bending stiffness of the rod, and w:
R — R the vertical displacement; the obstacle is rep-
resented by the requirement w > f. Using ideas from
convex function theory and constrained optimization,
Tim proved a number of results:

Theorem 1 [4] There exists a constrained global mini-
mizer w, which is unique and convex. The void set {x :
w(x) > f(x)} is an interval and its length scales as

(B/q)'>.

In addition, Tim derived the stationarity equation,
characterized the contact forces, and gave a mechanical
interpretation of the first integral of this equation.

This is a good start and a marked progress with
respect to Fig. 4. The comparison with the experiment
of Fig. 5, however, is not altogether favorable. Indeed,

that experiment shows an intriguing phenomenon: the
voids do not happen in every layer but seem to be
localized at black layers and even at one in three or one
in five black layers.

The black layers are part of the experimental setup.
In this experiment, we took a separate stack of paper
and colored the sides black with a felt pen. Then we
introduced one of these colored-side layers into the
remaining stack, one every 25 layers of paper.

So the position of the voids suggests that the process
of introducing the black layers somehow caused the
voids to happen there rather than somewhere else—
perhaps as a consequence of reduced friction. But this
does not explain why the voids happen not at every
black layer, but on one in every five black layers—one
in every 125 sheets of paper.

Recently, Tim has been extending this model to
cover multiple layers, again forced into a V-shaped ob-
stacle, that might choose to deform separately (Fig 10,
left) or collectively (right). While it is too early to make
strong predictions, there is a back-of-the-envelope cal-
culation that suggests that for certain parameters, layers
might indeed choose to deform collectively in a pack of
n layers, with voids between two such packs, with an
optimal n that is larger than 1 but smaller than +oo [3].
Although that may be the case, other experiments done
by Tim show preference for void formation between
each pair of adjacent layers (Fig. 11). Obviously our
understanding is still incomplete.

On a philosophical note, it is interesting to observe
that while the paper experiments were set up to give
us insight into rock folding, we are now trying to un-
derstand the behavior of the paper experiments them-
selves. Hopefully this will eventually bring us back to
the rocks again.

Fig. 10 In multilayer folding,
voids might form between
each two layers (left) or
between each two packets of
n layers (right)
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Fig. 11 In this experiment, there appears to be a preference
for void formation between each pair of layers. The photograph
is highly enlarged and shows individual layers of paper. The
experiment was performed by Tim Dodwell and Andrew Rhead
at the University of Bath

2.4 Future work

At this moment, there is at least one challenge that I
would much like to address:

Math question #3:  characterize the layers of paper or

rock as a material.

What I mean by this is the following. For homoge-
neous and isotropic elastic, viscous, and visco-elastic
materials, there is a well-defined constitutive theory,
which provides the essential relationships between de-
formation and loading of those materials. For materials
with some microstructure that remains within the same
class, the theory of homogenization provides rigorous
derivations of material properties in the limit of large
scale separation (see e.g., [1, 6]). The “material” that we
are considering here, however, is mixed in nature: the
layers are elastic, while the interlayer mechanics intro-
duces friction into the picture. Such a combination has
not been studied theoretically (although some related
problems have, such as the case of rigid “elasticity”
with friction [2]). Other related problems are those of
thin elastic bodies, for which rigorous derivations are
available for a number of different energy regimes [5].
The case of elastic layers with friction remains open,
however.

3 Conclusion

Looking back at the whole experience, we can formu-
late a number of conclusions:

1. Suitable applied collaborators are very special and
very rare. One should cherish them!

2. The interaction with a particular applied problem

does not necessarily result in an interesting math-
ematical problem right away. The first two results
described above were mathematically uninterest-
ing: the pictorial argument is not even mathemat-
ical, and the kink band model in the form of a stack
borders on the trivial, from a mathematical point of
view. However, as time progressed, we were able
to move to more interesting mathematical models,
such as the variational model in Section 2.3, as
answers to the applied questions.
This phenomenon is quite general and implies a
lesson learnt: finding good mathematical problems
takes time, energy, and perseverance—but the re-
sult is worth it.

3. This experience is an example of a collaboration in
which both the application side and the mathemat-
ical side took home good and interesting results. I
believe that this is often possible, and I also believe
that one should aim for such a collaboration. This
will take time and energy—see above—but it is
worth it.

In retrospect, I realize that during my PhD period
in Delft and Amsterdam, Hans had a very similar col-
laboration going with a group of petroleum engineers
in Delft, notably Hans Bruining, and a group of sub-
surface soil engineers, including Sjoerd van de Zee and
Pieter Raats. As I remarked in the beginning, we never
really explicitly discussed Zow one handles such a col-
laboration. But I have been very fortunate to have seen
this way of working in action, and my subsequent work
in applied mathematics—in mathematical geology and
other areas—have been strongly influenced by it. For
me, Hans has been a wonderful teacher.

Appendix: Truesdell’s “How the Bernouillis Worked”

1. Always attack a special problem. If possible, solve
the special problem in a way that leads to a general
method.

2. Read and digest every earlier attempt at a theory of
the phenomenon in question. Perpend the partial
successes and failed attempts of the great masters
of the past.

3. Let a key problem solved be father to a key prob-
lem posed.

4. If two special solved problems seem cognate, try to
unite them in a general scheme.

5. Never rest content with an imperfect or incomplete
argument. If you cannot complete and perfect it
yourself, lay bare its flaws for others to see.
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Never abandon a problem you have solved. There
are always better ways. Keep searching for them,
for they lead to fuller understanding. While broad-
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