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1. Introduction

1.1. On the origin of Wasserstein gradient flows

Since the introduction of the Wasserstein gradient flows in 1997–98 [27, 28, 41, 43]
it has become clear that a very large number of well-known parabolic partial
differential equations and other evolutionary systems can be written as gradi-
ent flows. Examples of these are nonlinear drift-diffusion equations [2], diffusion-
drift equations with non-local interactions [9], higher-order parabolic equations
[42, 23, 26, 33, 24], moving-boundary problems [42, 45], and chemical reactions
[36]. The parallel development of rate-independent systems introduced similar
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variational structures for friction [19], delamination [30], plasticity [34], phase trans-
formations [39], hysteresis [38], and various other phenomena. Further generaliza-
tions are suggested by taking limits of gradient flows, as in the case of Kramers’
equation for chemical reactions [5].

This multitude of gradient-flow structures does raise questions. Before 1997,
for instance, it was widely believed that convection–diffusion equations could
not be gradient flows. This belief was contradicted by [27, 28]; apparently the
question “which systems can be gradient flows” is a non-trivial one. As another
example, common building blocks of these gradient-flow structures, such as the
Wasserstein metric, appear to be mathematical, non-physical constructs — can
one give these an interpretation in terms of physics, chemistry, or other modeling
contexts?

In [1] the authors give a suggestion for an organizing principle behind the
observed variety in systems and gradient flows. For the example of the entropy-
Wasserstein gradient flow (see below) they show how the gradient-flow structure
itself is closely related to the probabilistic structure of a system of stochastic par-
ticles. This connection explains many aspects of the gradient flow, such as the
origin of both the entropy and the Wasserstein metric and the interpretation of the
discrete-time approximation.

The result of [1] also suggests that this connection between gradient-flow struc-
tures and stochastic particle systems may be much more general. In this paper
we explore this idea for the following diffusion equation with convection and
decay:

∂tu = ∆u+ div(u∇Ψ)− λu, in R
d × (0,∞), (1)

with Ψ ∈ C2
b (Rd) and λ ≥ 0. We contribute two main results to the theory of this

type of equations: first, we derive a new gradient-flow formulation for Eq. (1), and
secondly, since this formulation is constructed along the lines of [1], we automat-
ically connect this gradient flow to microscopic systems of diffusing particles, and
show that the gradient-flow structure arises from the probabilistic structure of these
particle systems.

The paper is organized as follows. In the remainder of this introductory section
we develop the required concepts and formulate the main aim of this paper in a
little more detail. Next, we recall the central notions of this paper in Sec. 2. We
proceed with our microscopic models and the corresponding results in Secs. 3 and
4, and we wrap up with a general discussion in Sec. 5. In the Appendix we give a
description and the proof of an existing large-deviation result in a language that is
more suited to this paper.

1.2. Variational formulations

In this paper we study iterative variational schemes on some space X of the form

Given ρk−1, choose ρk ∈ argmin
ρ∈X

Kh(ρ | ρk−1), (2)
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which will approximate the solution of an evolution equation as h→ 0. The follow-
ing examples illustrate the main ideas.

Example 1 (Hilbert-space gradient flows). If X is a Hilbert space and the
functional Kh is of the form

Kh(ρ | ρ) = F(ρ) +
1
2h
‖ρ− ρ‖2 (3)

for some smooth functional F , then the minimization problem (2) gives the sta-
tionarity condition

ρk − ρk−1

h
= −gradF(ρk).

In this one recognizes the backward Euler approximation of the continuous-time
gradient flow:

∂tρ = −gradF(ρ). (4)

The time-discrete variational form (3) illustrates how in gradient flows the evo-
lution is driven by a trade-off between two competing effects. An energy functional
F : X → R∪{∞} drives the system towards lower values of the energy; at the same
time a dissipation mechanism (here quantified by the norm ‖ · ‖) acts as a selection
principle among all directions that decrease F .

If one chooses X = L2(Rd) and F(ρ) = 1
2

∫ |∇ρ|2, then (4) simply becomes
the diffusion equation. However, it is not possible to describe convection in this
way. The next example shows that convection–diffusion equations are nevertheless
gradient flows, in a more general context.

Example 2 (Wasserstein gradient flows). Instead of a Hilbert space, we now
consider the metric space X = P2(Rd) of probability measures with finite second
moment, equipped with the Wasserstein metric d (see Sec. 2.1). Similarly to (3),
let (where the subscript FP stands for “Fokker–Planck”):

Kh
FP (ρ | ρ) :=

1
2
F(ρ)− 1

2
F(ρ) +

1
4h
d2(ρ, ρ), (5)

where F(ρ) = S(ρ) + E(ρ) is the Helmholtz free energy, and

S(ρ) :=



∫

log f(y)ρ(dy) if ρ(dy) = f(y)dy,

∞ otherwise,

E(ρ) :=
∫

Ψ(y)ρ(dy),

(6)

are the (negative) Gibbs–Boltzmann entropy and the energy arising from a potential
Ψ. Note that in comparison to (3) we have subtracted the free energy of the previous
state, and multiplied the expression by 1/2. Both are done in view of the connection
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to large-deviation rate functionals that we establish below; of course neither change
affects the minimization properties of Kh

FP (· | ρ).
It was first observed by Jordan, Kinderlehrer and Otto [27, 28] that the time-

discrete process defined by (2) and (5) converges to the solution of the Fokker–
Planck equation:

∂tu = ∆u+ div(u∇Ψ) in R
d × (0,∞). (7)

We see that, in the same sense as the previous example, the Fokker–Planck equation
is a gradient flow of free energy with respect to the Wasserstein metric. For future
reference, we duplicate their main theorem as follows (where the superscript a
denotes absolutely continuous).

Theorem 1 ([28]). Let ρ0 ∈ Pa
2 (Rd), and define the sequence {ρh,k}k≥0 by:

ρh,0 = ρ0,

ρh,k ∈ arg min
ρ∈P2(Rd)

Kh
FP (ρ | ρh,k−1), k ≥ 1.

These minimizers exist uniquely, and as h → 0, the function ρh,�t/h� converges
weakly in L1(Rd × (0, T )) to the solution of (7) with initial condition ρ0.

Actually, [28] provides an argument to extend this result to weak convergence in
L1(Rd) for almost every t ∈ (0, T ) and strong convergence in L1(Rd, (0, T )).

While various generalizations of Hilbert-space gradient flows were known for
some time [3, 12, 32], this result meant a breakthrough by extending the concept
to a large and important class of evolution equations. In addition to inspiring a
great amount of research into gradient flows in Wasserstein spaces and in general
metric spaces, in a variety of functional-analytic settings [43, 35, 4, 46], it also gave
rise to many fruitful connections between partial differential equations, optimal
transport theory, geometry, functional inequalities, and probability; see [48, 49] for
an overview.

Example 3 (Exponential decay). As in some other cases [3, 32], it will be useful
to consider more general time-discrete constructions, namely of the form

Kh(a | a) = F(a; a) + fh(a, a), (8)

for some function fh. In this example, fix some 0 < rh < 1 and let the state space
be X = R

+. Take for F a mixing entropy with parameter a,

F(a; a) := a log a+ (a− a) log(a− a), for 0 < a < a, (9)

and for fh the expressiona

fh(a, a) := −a log rh − (a− a) log(1− rh). (10)

aAs suggested by one of the referees, this particular form (8) + (9) arises as the quenched large-
deviation rate of a system of independent exponentially distributed decay processes, with a =
1
n

#{non-decayed Xi(h)} and ā = 1
n

#{non-decayed Xi(0)}.
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Then, the unique minimizer of (8) is a = rha. While this construction may appear
to be a convoluted way of arriving at this result, in fact it appears naturally in the
context of a specific stochastic system of particles, as we show below. In the limit
h → 0 it will describe the term −λu in (1) which is associated with decay, as is
illustrated by the following simple result.

Theorem 2. Let Kh be given as in (8)–(10) with rh := e−λh. Let a0 ∈ R
+ be fixed

and define the sequence {ah,k}k≥0 by

ah,0 = a0,

ah,k ∈ arg min
a∈R+

Kh(a | ah,k−1), k ≥ 1.

Then as h → 0 the function t �→ ah,�t/h� converges in time to the solution t �→
a0e−λt of ∂tu = −λu.
The proof follows from remarking that ah,k = a0e−λkh.

Below we will consider this construction in integrated form:

Kh
Dc(ρ | ρ) := −S(ρ) + S(ρ) + S(ρ− ρ)− |ρ| log rh − |ρ− ρ| log(1 − rh)

(the subscript Dc stands for “Decay equation”) on the space of non-negative Borel
measures M+(Rd) with the total variation norm |ρ| := ρ(Rd). Observe that com-
pared to (8)–(10), we have an additional term −S(ρ). This term does not influence
the minimizer, but we have added it here to ensure that the minimum is 0, which
will be needed below.

Synthesis of Examples 2 and 3. In the results that we prove in this paper, the
last two examples are merged in a single variational scheme. In the simplest case,
for instance, where Ψ ≡ 0, the discrete algorithm approximating (1) becomes

ρk ∈ argmin
ρ∈M+(Rd)

inf
ρND :|ρ+ρND |=|ρk−1|

−1
2
S(ρ+ ρND )− 1

2
S(ρk−1)

+
1
4h
d2(ρ+ ρND , ρ

k−1) + S(ρ) + S(ρND )− |ρ| log rh

− |ρND | log(1− rh). (11)

To interpret the formula above, one should realize that the infimum over the
measure ρND in the formula above represents a choice: in each time step, the system
designates a portion ρND ≥ 0 for decay (the index ND stands for “Normal to
Decayed”), while the other part ρ ≥ 0 remains “normal”.

The terms inside the infimum can be written as Kh
FP (ρ+ρND | ρk−1)+Kh

Dc(ρ | ρ+
ρND ), and one can understand the structure of (11) through this splitting. The
functional Kh

FP (ρ+ρND | ρk−1) characterizes a single time-step of diffusion of ρk−1,
according to Theorem 1. Decay is left out of this step, since the joint mass ρ+ ρND

is independent of the distribution over normal (ρ) and decayed matter (ρND ). In
a second step, given a choice for ρ + ρND , the second functional Kh

Dc(ρ | ρ + ρND )
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describes how the total mass ρ + ρND is divided over ρ and ρND , according to
Theorem 2. As such, we can interpret ρ + ρND as an intermediate state between
ρk−1 and ρ.

1.3. From microscopic model to large deviations

We claimed above that the approximation scheme arises naturally in the context of
stochastic particle systems. We now describe this context. It is well known (going
back at least to Einstein [20]) that the diffusion equation

∂tu = ∆u, in R
d × (0,∞), (12)

is the macroscopic (hydrodynamic, continuum) limit of a wide range of stochastic
particle systems [13]. Here we focus on one such system, composed of independent
Brownian particles.

More specifically, let all particles 1, . . . , n be initially distributed according to
some fixed ρ ∈ P(Rd), and, for a fixed time interval h > 0, let each particle
i = 1, . . . , n move to a new position Y h

i , where the probability of moving from x to
y is given by the density (which is identical for all particles)

θh(y − x) :=
1

(4πh)d/2
exp
(
− |x− y|

2

4h

)
. (13)

The empirical measure Lh
n := n−1

∑n
i=1 δY h

i
then is a random probability mea-

sure that describes the distribution of all n particles in space at time h. This
measure converges (as n→∞) to ρ ∗ θh, the solution of (12) at time h with initial
condition ρ.

The speed of this convergence is characterized by a large-deviation principle,
which we discuss in Sec. 2.2. It states that the probability of finding Lh

n close to
some ρ ∈ P(Rd) converges exponentially to zero with rate nJ h

Df (ρ | ρ) (the subscript
stands for “Diffusion equation”):

Prob(Lh
n ≈ ρ |L0

n ≈ ρ) ∼ exp(−nJ h
Df (ρ | ρ)) as n→∞.

The rate functional J h
Df (· | ρ) is non-negative and minimized by the solution of (12)

at time h.

1.4. From large deviations to Wasserstein gradient flow

When restricting ourselves to the diffusion equation (12), the gradient-flow func-
tional (5) reduces to

Kh
Df (ρ | ρ) :=

1
2
S(ρ)− 1

2
S(ρ) +

1
4h
d2(ρ, ρ).

Recent results [1, 18] have shown that, under suitable assumptions, not only the
minimizers of J h

Df and Kh
Df have the same limit, but the two are in fact strongly
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related. Since we expect this statement to be generally true, we pose it here as a
conjecture. It will be convenient to introduce the set:

PS
2 (Rd) :=

{
ρ ∈ P(Rd) :

∫
|x|2dρ <∞,S(ρ) <∞

}
.

Conjecture 3. For any fixed ρ ∈ PS
2 (Rd) there holds

J h
Df (· | ρ)−

1
4h
d2(ρ, ·) M−−−→

h→0

1
2
S(·)− 1

2
S(ρ) = Kh

Df (· | ρ)−
1
4h
d2(ρ, ·) (14)

in the sense of Mosco convergence, where the lower bound holds in P2(Rd) with
the narrow topology, and the recovery sequence holds in the topology defined
by convergence in Wasserstein distance plus convergence in entropy S (see
Sec. 2.3).

This conjecture was first proven in [1] under the restriction that both ρ and ρ in
J h

Df (ρ | ρ) are sufficiently close to uniform distributions on a bounded interval in R.
In [18], the result was generalized to R for any ρ with bounded Fisher information.

Note that the term −(4h)−1d2(ρ, · ) appears on both sides of (14). The role of
this term is to compensate the singular behavior of both J h

Df and Kh
Df in the limit

h→ 0. Morally, the conjecture states that

as h→ 0, J h
Df (· | ρ) ≈ Kh

Df (· | ρ).

This connection shows how the functional Kh
Df , which defines the time-discretized

gradient flow, can be interpreted physically: as the large-deviation rate functional
of the microscopic model.

1.5. Overview of this work

In this paper we extend the results of [1, 18] to Eq. (1). Although the results in the
latter already includes the Fokker–Planck equation (7), this paper uses very different
techniques and yields results under different assumptions on the potential Ψ. The
main results of this paper are of the same form as Theorem 1 and Conjecture 3.

We divide the arguments, and the paper, into two parts. In the first part we
discuss diffusion with drift but without decay (Ψ ≡ 0, λ = 0 in (1)). First we
construct a system of Brownian particles with drift that models the Fokker–Planck
equation (7), and then derive a corresponding large-deviation principle. In our first
main result, Theorem 9, we show that for small times the large-deviation rate
functional of the micro model relates to Kh

FP in the same sense as in Conjecture 3 for
the diffusion equation. Note that the expression for the gradient-flow functionalKh

FP

is already known from [28]; the novelty of the current result lies in the connection
to the microscopic particle system.
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The second part of the paper concerns the diffusion equation with decay (λ > 0,
and for ease of notation we first take Ψ ≡ 0):

∂tu = ∆u− λu, in R
d × (0,∞). (15)

Again, we devise a particle system that models this equation microscopically, and
derive a corresponding large-deviation principle. In the second main result of this
paper, Theorem 11, we show that the large-deviation rate functional relates to an
energy-dissipation functional (74) in the same way as in Conjecture 3. Finally, in
Theorem 12 we show that the minimizers of this new functional indeed approximate
the solution of (15) in the sense of Theorem 1. In this case, the novelty lies in both
the expression of the energy-dissipation functional, and in its connection to the
microscopic system.

2. Background

2.1. Wasserstein distance

In the Kantorovich formulation of the optimal transport problem, a transport plan
between two measures ρ, ρ ∈ P(Rd) is a measure in the set

Γ(ρ, ρ) := {q ∈ P(Rd × R
d) : π1q = ρ and π2q = ρ},

where we denote the marginals of q by

π1q(B) := q(B × R
d) and π2q(B) := q(Rd ×B) for all Borel sets B ⊂ R

d.

In the particular case of the 2-Wasserstein distance (henceforth simply called the
Wasserstein distance), the unit cost of transporting an infinitesimal mass from
position x to y is taken to be |x− y|2. One can then ask for the optimal transport
plan that transports all mass from a measure ρ to another measure ρ. The minimum
cost defines a metric on the space P2(Rd) := {ρ ∈ P(Rd) :

∫ |x|2dρ <∞}.
Definition 4 (Wasserstein distance).

d2(ρ, ρ) := inf
q∈Γ(ρ,ρ)

∫∫
|x− y|2q(dx dy).

An important property of the Wasserstein distance is that a sequence {ρh}h ∈
P2(Rd) converges to ρ in the Wasserstein distance as h → 0 if and only if [48,
Theorem 7.12]

(1) ρh ⇀ ρ (see Sec. 2.3),
(2)

∫
x2ρh(dx)→ ∫ x2ρ(dx).

Observe that the Wasserstein distance is still meaningful for measures ρ, ρ ∈
M+(Rd) that are not necessarily probability measures, as long as |ρ| = |ρ|. With
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this generalization we have that

d2(ρ1 + ρ2, ρ3 + ρ4)

≤ d2(ρ1, ρ3) + d2(ρ2, ρ4) for all ρ1,2,3,4 with |ρ1| = |ρ3| and |ρ2| = |ρ4|.
(16)

This property will be used later in the paper.

2.2. Large deviations

Recall from the law of large numbers that with probability 1, in the large-n limit
the expectation ELh

1 is the only event that occurs (see, for example, [16, Theo-
rem 11.4.1]). In this limit, any other event is considered a large deviation from
this expected behavior. A large-deviation principle characterizes the unlikeliness of
such event by the speed of convergence of its probability to 0. To illustrate this, we
briefly switch to a more abstract notation.

Definition 5. A sequence Xn of random variables with variables in a topological
space X satisfies the large-deviation principle with speed n and rate functional
J : X → [0,∞] whenever:

(1) J is not identically ∞, and J −1[0, c] is compact for all c <∞;
(2) lim infn→∞ 1

n log Prob(Xn ∈ U) ≥ − infx∈U J (x) for all open sets U ⊂ X ;
(3) lim supn→∞

1
n log Prob(Xn ∈ C) ≤ − infx∈C J (x) for all closed sets C ⊂ X .

The rate functional J is non-negative and achieves its minimum of zero at the
most probable behavior of Xn. The right-hand infimum reflects the general princi-
ple that “any large deviation is done in the least unlikely of all the unlikely ways”
[15, p. 10]. A related mathematical result is the contraction principle [14, The-
orem 4.2.1], which states the following. Let p : X → Y be a continuous map,
and Yn := p(Xn) the corresponding random variables. Then Yn satisfies a large-
deviation principle similar to the one above, with rate functional infx∈X :p(x)=y J (x).
This contraction principle will be used throughout this paper. For instance, it
explains the role of the minimization in (11).

2.3. Mosco convergence

A useful tool in the study of sequences of minimization problems is Γ-
convergence [10]. In particular, it is often used in the study of large deviations [1,
Lemma 2] and gradient flows (cf. [12, 47]). Moreover, in [31], Γ-convergence is used
to connect large deviations to optimal transport. In many cases, it is convenient to
require that the recovery sequence of the Γ-convergence exists in a stronger topology
(cf. [4, Remark 2.0.5] or [37]): the resulting notion of convergence is known as Mosco
convergence [40]. In results that are related to this paper, a further analysis reveals
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that Mosco convergence is indeed satisfied (cf. [1, Theorem 3; 18, Theorem 1.1]).
In this sense it provides a natural notion for the purpose of this study.

Definition 6. Let X be a space with two first-countable (e.g., metrizable) topolo-
gies τw ⊂ τs. A sequence of functionals {Fh}h on X Mosco-convergesb to F : X →
R ∪ {∞} as h→ 0, written as Fh M−→ F , whenever

(1) (Lower bound) for any sequence ρh τw−−−→
h→0

ρ in X there holds

lim inf
h→0

Fh(ρh) ≥ F(ρ);

(2) (Recovery sequence) for all ρ ∈ X there is a sequence ρh τs−−−→
h→0

ρ in X such that

lim sup
h→0

Fh(ρh) ≤ F(ρ).

In this paper we take X = PS
2 (Rd) (defined in Sec. 1.4), and for τw we take the

narrow topology, characterized by narrow convergence:

ρh ⇀ ρ if and only if
∫
φ(x)ρh(dx)→

∫
φ(x)ρ(dx) for all φ ∈ Cb(Rd).

For the strong topology τs, we take the weakest topology such that all functionals
ρ �→ ∫ x2ρ(dx), ρ �→ S(ρ) and ρ �→ ∫ φ(x)ρ(dx) for all φ ∈ Cb(Rd) are continuous.
Since this topology is first-countable, convergence in (PS

2 , τs) is characterized by
convergence in the Wasserstein topology plus convergence of the entropy functional
S. In fact, we prove below that convergence in this topology implies strong L1-
convergence of a subsequence and its entropies. These important facts will be used
to prove the Mosco convergence Theorems 9 and 11. Let Ld be the d-dimensional
Lebesgue measure.

Lemma 7. Let ρh → ρ in PS
2 (Rd) in the strong topology, i.e.:

d(ρh, ρ)→ 0, in the Wasserstein metric, (17)

S(ρh)→ S(ρ). (18)

Then ρh and ρ are Ld-absolutely continuous and can be identified with their
densities, i.e. ρh, ρ ∈ L1(Rd), and there is a subsequence such that

ρh → ρ, (19)

ρh log ρh → ρ log ρ, (20)

strongly in L1(Rd).

bWe slightly generalize the usual concept of Mosco convergence, where X should be a Banach
space where the weak topology is defined by duality with X ∗.
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Proof. Step I — Decomposition of the entropy. To deal with the fact that
S is not bounded from below, we rewrite S in the following way. Define, for any
α ∈ R with α > d

c−1 : =
∫

Rd

1
(1 + |x|)α

dx,

ν(dx) = ν(x)dx =
c

(1 + |x|)α
dx,

and let H be the relative entropy on two probability measures γ, ν ∈ P(Rd):

H(γ | ν) :=



∫
dγ

dν
(x) log

dγ

dν
(x)ν(dx) if γ � ν,

+∞ otherwise.
(21)

(Note that S(ρ) = H(ρ | Ld).) Then for any ρ ∈ PS
2 , we can write

S(ρ) =
∫

Rd

ρ log ρdx =
∫

Rd

ρ

ν
log
(ρ
ν

)
νdx +

∫
Rd

ρ log(ν)dx

= H(ρ | ν) + log c− α
∫

Rd

ρ log(1 + |x|)dx. (22)

By (17) and [4, Lemma 5.1.7]∫
Rd

ρh(x)φ(x)dx →
∫

Rd

ρ(x)φ(x)dx (23)

for all continuous functions φ : R
d → R such that |φ(x)| ≤ A+B|x|2 for all x ∈ R

d,
for some A,B ≥ 0. This implies that the last term on the right-hand side of (22)
converges:

α

∫
Rd

ρh(x) log(1 + |x|)dx→ α

∫
Rd

ρ(x) log(1 + |x|)dx, (24)

so that the study of S(ρh) can be reduced to the study of H(ρh | ν).
Step II — Convergence of the plans. Define the measures γh ∈ P(Rd ×R) by∫

Rd×R

ψ(x, y)γh(dx dy) =
∫

Rd

ψ

(
x,
ρh(x)
ν(x)

)
ν(x)dx for all ψ ∈ Cb(Rd × R).

The marginals π1γh and π2γh then satisfy∫
Rd

φ(x)π1γh(dx) =
∫

Rd

φ(x)ν(x)dx,

∫
R

ϕ(y)π2γh(dy) =
∫

Rd

ϕ

(
ρh(x)
ν(x)

)
ν(x)dx,

(25)
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for all φ ∈ Cb(Rd) and for all ϕ ∈ Cb(R). We claim that

• there exists a γ ∈ P(Rd ×R) such that, up to subsequences, γh ⇀ γ (narrowly);
• the barycentric projection (27) of the limit γ, with respect to ν, is ρ/ν.

In order to prove the first part of the claim, we note that by [4, Lemma 5.2.2], if
the marginals of γh are tight, then γh is also tight, and thus (by [4, Theorem 5.1.3])
relatively compact, with respect to the narrow topology of P(Rd ×R). By (25) the
first marginal does not depend on h. For the second marginal we use the following
integral condition for tightness (see [4, Remark 5.1.5]): “if there exists a function
G : R→ [0,+∞], whose sublevels are compact in R, such that

sup
h∈N

∫
R

G(y)π2γh(dy) < +∞,

then {π2γh} is tight”. We can choose, as in [4, Eq. (9.4.2)], the non-negative, lower
semicontinuous, strictly convex function

G(s) :=



s(log s− 1) + 1 if s > 0,

1 if s = 0,

+∞ if s < 0,

defined on R, and observe that∫
R

G(y)π2γh(dy) =
∫

Rd

G

(
ρh(x)
ν(x)

)
ν(x)dx = H(ρh | ν).

The last term is bounded, owing to (23), (22), and (24). We conclude that γh is
relatively compact and therefore, up to subsequences, γh converges to a measure
γ ∈ P(Rd × R).

In order to prove the second part of the claim, note that by disintegration of
measures [4, Theorem 5.3.1], there exists a family {µx}x∈Rd ⊂ P(R) such that∫

Rd×R

ψ(x, y)γ(dxdy) =
∫

Rd

(∫
R

ψ(x, y)µx(dy)
)
ν(dx) (26)

for every Borel map ψ : R
d × R → [0,+∞]. We want to identify the barycentric

projection of γ with respect to ν, that is, the function

x �→
∫

R

yµx(dy), (27)

with ρ/ν. This can be done if we can choose as test function ψ a function of the
form (x, y) → φ(x)y, with φ ∈ Cb(Rd). Since such a function is not bounded, we
first need to check that it is uniformly integrable. Since H(ρh | ν) is bounded, there
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is a constant C1 > 0 such that, for all R > 1,

C1 > sup
h

∫
Rd

G

(
ρh(x)
ν(x)

)
ν(x)dx

≥ sup
h

∫
{ρh>R}

G

(
ρh(x)
ν(x)

)
ν(x)dx

= sup
h

∫
{ρh>R}

ρh(x) log
(
ρh(x)

(1 + |x|)α

c

)
dx

≥ sup
h

∫
{ρh>R}

ρh(x) logR− ρh log c+ αρh(x) log(1 + |x|)dx

≥ log(R) sup
h

∫
{ρh>R}

ρh(x)dx − log c− sup
h
α

∫
Rd

ρh(x) log(1 + |x|)dx

(24)

≥ log(R) sup
h

∫
{ρh>R}

ρh(x)dx − C2.

Therefore,

lim
R→∞

sup
h

∫
{ρh>R}

ρhdx ≤ lim
R→∞

C1 + C2

log(R)
= 0, (28)

i.e. ρh is uniformly integrable. Since for every φ ∈ Cb(Rd)

lim
R→∞

sup
h

∫
{φ(x)y≥R}

φ(x)y γh(dxdy) ≤ lim
R→∞

sup
h
‖φ‖∞

∫
{|y|≥R/‖φ‖∞}

y γh(dxdy)

= lim
R→∞

sup
h
‖φ‖∞

∫
{ρh≥R/‖φ‖∞}

ρh(x)dx
(28)
= 0,

we conclude that the function R
d ×R � (x, y) �→ φ(x)y ∈ R is uniformly integrable

with respect to the measures {γh}. Uniform integrability, owing to [4, Lemma 5.1.7],
yields

lim
h→∞

∫
Rd×R

φ(x)y γh(dxdy) =
∫

Rd×R

φ(x)y γ(dxdy)

(26)
=
∫

Rd

φ(x)
(∫

R

yµx(dy)
)
ν(dx).

On the other hand, by (18) we know that

lim
h→∞

∫
Rd×R

φ(x)y γh(dxdy) = lim
h→∞

∫
Rd

φ(x)
ρh(x)
ν(x)

ν(dx) =
∫

Rd

φ(x)
ρ(x)
ν(x)

ν(dx).

We conclude that the weak limit of the densities is equal to the barycentric projec-
tion of the limit plans:

ρ(x)
ν(x)

=
∫

R

yµx(dy) for a.e. x ∈ R
d. (29)
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Step III — Pointwise convergence. We compute

lim inf
h→∞

H(ρh | ν) = lim inf
h→∞

∫
Rd

G

(
ρh(x)
ν(x)

)
ν(dx)

= lim inf
h→∞

∫
Rd×R

G(y)γh(dxdy)

≥
∫

Rd×R

G(y)γ(dxdy)

=
∫

Rd

(∫
R

G(y)µx(dy)
)
ν(dx)

≥
∫

Rd

G

(∫
R

yµx(dy)
)
ν(dx) (30)

=
∫

Rd

G

(
ρ(x)
ν(x)

)
ν(dx) = H(ρ | ν), (31)

where, in the last three steps, we used (26), Jensen’s inequality, and (29). Collecting
all the computations we have

H(ρ | ν) (22)
= S(ρ) − log c+ α

∫
Rd

ρ(x) log(1 + |x|)dx

(18),(24)
= lim

h→∞

{
S(ρh)− log c+ α

∫
Rd

ρh(x) log(1 + |x|)dx
}

(22)
= lim inf

h→∞
H(ρh | ν)

(31)

≥ H(ρ | ν).
Therefore, the inequality in (30) must be an equality, which, by strict convexity
of G, implies that µx is a Dirac delta concentrated in ρ(x)

ν(x) , for a.e. x ∈ R
d. As a

consequence

ρh(x)
ν(x)

→ ρ(x)
ν(x)

for a.e. x ∈ R
d,

and therefore

ρh(x)→ ρ(x) for a.e. x ∈ R
d. (32)

Step IV — Strong convergence. To prove the strong convergence results (19)
and (20), recall the following theorem from [8, Theorem 1] for any measure κ on
R

d and non-negative ρh, ρ ∈ L1(κ):

If
∫
ρhdκ→

∫
ρdκ and ρh(x)→ ρ(x) κ-a.e., then ρh → ρ strongly in L1(κ).

(33)

Clearly, (19) follows from (32) and (33) by taking κ = Ld.
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In order to prove (20), let Gh := G(ρh/ν), G0 := G(ρ/ν). Since G is continuous
and ρh → ρ almost everywhere,

Gh(x)→ G0(x) for a.e. x ∈ R
d. (34)

Moreover, from the proof of (19), we know that∫
Rd

Gh(x)ν(dx) = H(ρh | ν)→ H(ρ | ν) =
∫

Rd

G0(x)ν(dx). (35)

Again by (33), now with κ = ν, it follows from (34) and (35) that Gh → G0 strongly
in L1(ν). Therefore, because the density of ν is uniformly bounded

Gh → G0 strongly in L1(Rd). (36)

It now follows from (19) and (36) together with

ρh log ρh = Ghν + ρh log(ν) + ρh − ν
= Ghf + ρh(log(c) + 1)− αρh log(1 + | · |)− ν

that, in order to prove (20) we only need to check that

ρh log(1 + | · |)→ ρ log(1 + | · |) strongly in L1(Rd).

This follows from the uniform integrability of the first moments of ρh and from the
strong L1-convergence of ρh. Precisely, since d(ρh, ρ) → 0, then ρh has uniformly
integrable p-moments for all p ∈ (0, 2). In particular, for every ε > 0 there exists
Rε > 0 such that

sup
h

∫
|x|≥Rε

|x|ρh(x)dx ≤ ε.

For all ε > 0 we estimate∫
Rd

|ρh(x) log(1 + |x|)− ρ(x) log(1 + |x|)|dx

≤
∫
|x|<Rε

|ρh(x)− ρ(x)| log(1 + |x|)dx +
∫
|x|≥Rε

|x|ρh(x)dx +
∫
|x|≥Rε

|x|ρ(x)dx

≤ ‖ρh − ρ‖L1 log(1 +Rε) + 2ε

and therefore, for all ε > 0

lim
h→∞

∫
Rd

|ρh log(1 + |x|)dx − ρ log(1 + |x|)|dx ≤ 2ε.

By the arbitrariness of ε, we conclude strong L1-convergence.

3. Diffusion with Drift

In this section we discuss the case of diffusion with drift but without decay (Ψ ≡
0, λ = 0), i.e. Eq. (7). First we describe the particle system that we use as a
microscopic model for this equation, and derive the corresponding large-deviation
principle. Next, we show that the large-deviation rate functional relates to the
energy-dissipation functional (5) in a Mosco-convergence sense.
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3.1. Microscopic model

Consider a system of n independent (i.e. non-interacting) point particles in R
d. We

wish ρ ∈ P(Rd) to represent the distribution of initial positions, and implement
this as in [31]. For each n choose xi ∈ R

d, 1 ≤ i ≤ n such that

1
n

n∑
i=1

δxi ⇀ ρ as n→∞.

We then set the (deterministic) initial positionc of particle i ∈ {1, . . . , n} to be xi.
The dynamics of the system is determined by the probability for particle i to

move from xi to a (random) position Y h
i in some fixed time h > 0. We take this

transition probability to be the fundamental solution ηt(y;x) of the drift-diffusion
equation (7), in the following sense.

Definition 8. We say that a mapping η : R
d × [0,∞) → P(Rd) is a fundamental

solution of the Fokker–Planck equation (7) whenever

(1) ηx,t(B) is measurable in x ∈ R
d and t ∈ [0,∞) for all fixed Borel sets B ⊂ R

d,
(2) for all φ ∈ C2,1

b (Rd × [0,∞)) and (x, T ) ∈ R
d × [0,∞) there holds:∫ T

0

∫
(∂tφ+ ∆φ−∇Ψ · ∇φ) ηx,t(dy)dt =

∫
φ(y, T )ηx,T (dy)− φ(x, 0).

If we assume that Ψ ∈ C2
b (Rd), that is Ψ ∈ C2(Rd) and |Ψ|, |∇Ψ|, and |∆Ψ|

are all bounded, then there exists an absolutely continuous fundamental solution
with a density in C2,1(Rd × (0,∞)) [22, Theorem 1.10]. We can thus identify this
fundamental solution ηx,t with its density ηt(· ;x).

Using this fundamental solution as the transition probability, the empirical mea-
sure Lh

n = n−1
∑n

i=1 δY h
i

will converge almost surely to ρ∗ ηh, which is the solution
to (7) at time h with initial condition ρ [16, Theorem 11.4.1]. In this sense the
proposed system is indeed a microscopic precursor of this equation.

3.2. From large deviations to Wasserstein gradient flow

The sequence Lh
n satisfies a large-deviation principle with rate n and rate functional

(see Corollary A.2 in the Appendix):

J h
FP (ρ | ρ) := inf

q∈Γ(ρ,ρ)
H(q | ρηh

)
, (37)

where H is the relative entropy (21) on P(Rd × R
d), and, by abuse of notation we

write (ρηh)(dx dy) = ρ(x)ηh(y;x)dx dy.
We now prove the following relationship between this rate functional J h

FP and
the gradient-flow functional Kh

FP (given by (5)).

cThis way of enforcing the initial distribution ρ is different from the approach of [1]. It provides
a more direct result, and is easier to interpret; see Remark A.3 for a discussion.
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Theorem 9. Assume that Conjecture 3 holds, and that Ψ ∈ C2
b (Rd). Then for any

ρ ∈ PS
2 (Rd)

J h
FP (· | ρ)− 1

4h
d2(ρ, ·) M−−−→

h→0

1
2
S(·) − 1

2
S(ρ) +

1
2
E(·) − 1

2
E(ρ),

= Kh
FP (· | ρ)− 1

4h
d2(ρ, ·). (38)

The proof relies heavily on an estimate of the fundamental solution ηh. To
explain this estimate morally, observe that if Ψ is affine, i.e. Ψ(x) = c · x, then the
force field ∇Ψ is homogeneous, leading to constant drift c. In this simple case, the
fundamental solution can be written explicitly:

ηt(y;x) =
1

(4πt)d/2
e−|y−(x−ct)|2/4t = θt(y − x)e− 1

2 c·y+ 1
2 c·x− 1

4 |c|2t, (39)

where θt is again the diffusion kernel (13). Although for an arbitrary Ψ an analytic
expression for the fundamental solution is generally difficult to find, the expres-
sion (39) above suggests that it can be estimated by something similar for small
times. Below we see that this is indeed the case. We expect that this estimate is not
a new result, but since we have not been able to find it in the literature we include
the proof here for completeness.d

Lemma 10. Assume Ψ ∈ C2
b (Rd), and let η be the fundamental solution from

Definition 8. Then there are β0, β1 ∈ R such that for every t > 0:

θt(y − x)e− 1
2Ψ(y)+ 1

2Ψ(x)+β0t ≤ ηt(y;x) ≤ θt(y − x)e− 1
2 Ψ(y)+ 1

2Ψ(x)+β1t (40)

for almost every x, y ∈ R
d.

Proof. For brevity we assume that x = 0 and Ψ(0) ≡ 0, and we omit the depen-
dence on x. For β ∈ R define:

ζβ(y, t) := ηt(y)− θt(y)e−
1
2 Ψ(y)+βt.

By partial integration we obtain for all 0 < ε < T and φ ∈ C2,1
b (Rd × [ε, T ]):∫ T

ε

∫
(∂tφ(y, t) + ∆φ(y, t)−∇Ψ(y) · ∇φ(y, t)) ζβ(y, t)dydt

=
∫ T

ε

∫
φ(y, t)fβ(y, t)dydt+

∫
φ(y, T )ζβ(y, T )dy −

∫
φ(y, ε)ζβ(y, ε)dy (41)

with:

fβ(y, t) :=
(
−1

2
∆Ψ(y) +

1
4
|∇Ψ(y)|2 + β

)
θt(y)e−

1
2Ψ(y)+βt.

Because ∇Ψ and ∆Ψ are bounded, there are β0, β1 ∈ R such that:

fβ0(y, t) ≤ 0 ≤ fβ1(y, t). (42)

dSee, for example, [6] for a similar, but not strong enough result.
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First we exploit this inequality for β1. Let φ be the solution of the adjoint
problem:

−∂tφ = ∆φ−∇Ψ · ∇φ (43)

with end condition:

φT (y) := H(ζβ1(y, T )),

where H is the Heaviside function. Again by [22, Theorem 1.10] there exists
a positive fundamental solution η∗ and hence a positive bounded solution φ ∈
C2,1(Rd × [0, T )) to (43). However, (41) requires the test functions to be in
C2,1

b (Rd × (0, T ]). To this aim we approximate φ in the following way. First, let
φT

n be a sequence in C∞
0 (Rd) such that

φT
n → φT weakly-∗ in L∞(Rd).

Next, let φn ∈ C2,1
b (Rd × [0, T ]) be the solution of (43) with approximated end

condition φT
n . For this sequence (41) becomes:

0 =
∫ T

ε

∫
φn(y, t)fβ1(y, t)dydt+

∫
φT

n (y)ζβ1(y, T )dy −
∫
φn(y, ε)ζβ1(y, ε)dy

(i)−−−→
ε→0

∫ T

0

∫
φn(y, t)fβ1(y, t)dydt+

∫
φT

n (y)ζβ1(y, T )dy

(ii)−−−−→
n→∞

∫ T

0

∫
φ(y, t)fβ1(y, t)dydt+

∫
H(ζβ1(y, T ))ζβ1(y, T )dy, (44)

using properties (i) and (ii) that we will prove below. From this we infer for the
positive part of ζβ1 :

0 ≤
∫
ζ+
β1

(y, T )dy
(44)
= −

∫ T

0

∫
φ(y, t)︸ ︷︷ ︸

≥0

fβ1(y, t)︸ ︷︷ ︸
≥0

dydt ≤ 0.

Analogously we use the other inequality from (42) and conclude that for all
T > 0:

ζβ1(y, T ) ≤ 0 ≤ ζβ0(y, T ) for almost every y ∈ R
d,

which proves the statement.
Finally, we prove the two limits in (44).

(i) The argument follows from ζβ1(x, ε)→ 0 weakly in L1(Rd) as ε→ 0. Then for
any fixed n:∣∣∣∣

∫
(φn(y, ε)− φn(y, 0)) ζβ1(y, ε)dy

∣∣∣∣ =
∣∣∣∣
∫ ∫ ε

0

∂tφn(y, t)dtζβ1(y, ε)dy
∣∣∣∣

≤ ε︸︷︷︸
→0

‖∂tφn‖L∞(Rd×[0,T ])︸ ︷︷ ︸
bounded

∣∣∣∣
∫
ζβ1(y, ε)dy

∣∣∣∣︸ ︷︷ ︸
→0

−−−→
ε→0

0.
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Hence: ∫
φn(y, ε)ζβ1(y, ε)dy =

∫
(φn(y, ε)− φn(y, 0)) ζβ1(y, ε)dy

+
∫
φn(y, 0)ζβ1(y, ε) −−−→

ε→0
0.

(ii) For the second convergence in (44), we can assume that the approximation of
the end condition satisfies:

0 ≤ φT
n (y) ≤ φT (y) for all y ∈ R

d.

Therefore:

|φn(y, t)fβ1(y, t)| ≤ |φ(y, t)fβ1(y, t)| ≤ ‖φT ‖L∞(Rd)|fβ1(y, t)|︸ ︷︷ ︸
∈L1(Rd×(0,T ))

.

Since for the fundamental solution η∗ of the adjoint problem (43) there holds
z �→ η∗t(y, z) ∈ L1(Rd), we have:

φn(y, t) =
∫
η∗t(y, z)φT

n (z)dz −−−−→
n→∞

∫
η∗t(y, z)φT (z)dz = φ(y, t)

pointwise. The Dominated Convergence theorem then gives

φnfβ1

L1−−−−→
n→∞ φfβ1 .

Observe that the factors 1/2 in the exponent of (40) correspond to the fac-
tors 1/2 of the energy in expression (5). We are now ready to prove the Mosco-
convergence result.

Proof of Theorem 9. To prove the lower bound, take any sequence ρh ⇀ ρ in
PS

2 (Rd) and calculate

lim inf
h→0

J h
FP (ρh | ρ)− 1

4h
d2(ρ, ρh)

(37)
= lim inf

h→0
inf

q∈Γ(ρ,ρh)
H(q | ρηh)− 1

4h
d2(ρ, ρh)

(40)

≥ lim inf
h→0

inf
q∈Γ(ρ,ρh)

H(q | ρθh)

−
∫∫ (

−1
2
Ψ(y) +

1
2
Ψ(x) + β1h

)
q(dxdy) − 1

4h
d2(ρ, ρh)

= lim inf
h→0

inf
q∈Γ(ρ,ρh)

H(q | ρθh)− 1
4h
d2(ρ, ρh) +

1
2
E(ρh)− 1

2
E(ρ)− β1h

≥ 1
2
S(ρ)− 1

2
S(ρ) +

1
2
E(ρ) − 1

2
E(ρ),

where the last inequality follows from Conjecture 3 and the (narrow) continuity of
ρ �→ E(ρ).
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To construct a recovery sequence, fix a ρ ∈ PS
2 (Rd) and take a recovery sequence

ρh → ρ from Conjecture 3, in the strong topology of PS
2 (Rd). Then similarly:

lim sup
h→0

J h
FP (ρh | ρ)− 1

4h
d2(ρ, ρh)

(37)
= lim sup

h→0
inf

q∈Γ(ρ,ρh)
H(q | ρηh)− 1

4h
d2(ρ, ρh)

(40)

≤ lim sup
h→0

inf
q∈Γ(ρ,ρh)

H(q | ρθh)− 1
4h
d2(ρ, ρh) +

1
2
E(ρh)− 1

2
E(ρ)− β0h

≤ 1
2
S(ρ)− 1

2
S(ρ) +

1
2
E(ρ) − 1

2
E(ρ).

4. Diffusion with Drift and Decay

In this section we discuss the case of diffusion with decay. For brevity, we first
consider the case without drift (Ψ ≡ 0, λ > 0). First we describe the particle
system that we use as a microscopic model for this equation, and calculate the
corresponding large-deviation principle. We proceed with the main results for this
equation: Mosco convergence to an energy-dissipation functional, and convergence
of the approximation scheme to the solution of the diffusion-decay equation. Finally,
we discuss how the system can be generalized to include drift, and how the decay
can be generalized to diffusion–reaction equations.

4.1. Microscopic model

In contrast to the case without decay, the diffusion-decay equation (15) is not mass-
conserving, implying that the Wasserstein distance between two time instances of
a solution is not defined. To overcome this difficulty, we assume that all decayed
matter continues to exist after its decay, but in a different form. We thus distinguish
between normal, non-decayed matter, denoted by N , and decayed or dark matter,
denoted by D.

The microscopic model now consists of a finite number n of independent non-
interacting point particles moving in R

d × {N,D}. Similarly to the non-decaying
model, we fix an initial distribution ρ ∈ P(Rd×{N,D}) and initial positions xi ∈ R

d

and states µi ∈ {N,D} such that:

1
n

n∑
i=1

µi=N

δxi ⇀ ρN and
1
n

n∑
i=1

µi=D

δxi ⇀ ρD as n→∞.

For the dynamics of the system we assume that the motion of all particles in R
d is

independent of their motion in {N,D} (this construction will yield separate terms
in the rate functional for both processes). We take the motion in R

d during some
fixed time step h > 0 to be Brownian, i.e. governed by the transition probability
θh from (13). For the motion in {N,D}, we assume that the time after which a
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particle changes from N to D is exponentially distributed with rate λ. Since decay
is a one-way street, the probability for a particle to change back from D to N is
zero. This results in a probability for a particle to change from state µ to ν during
the time step h of

rh
µν :=




e−λh, µ = N, ν = N,

1− e−λh, µ = N, ν = D,

0, µ = D, ν = N,

1, µ = D, ν = D.

Denote Lh
n := n−1

∑n
i=1 δ(Y h

i ,νh
i ), where Y h

i ∈ R
d and νh

i ∈ {N,D} are the
random position and state of the ith particle at time h. Indeed, Lh

n converges
almost surely to the solution at time h of the system [16, Theorem 11.4.1]{

∂tuN = ∆uN − λuN , R
d × (0,∞),

∂tuD = ∆uD + λuN , R
d × (0,∞),

(45)

with initial condition (ρN , ρD). In this sense, the thus defined particle system is
a microscopic interpretation of the diffusion-decay equation (15) (if we ignore the
dark matter).

4.2. Large deviations to gradient flow to PDE

While the inspiration for this paper was Eq. (1), the construction above suggests to
consider not only (1) but also the augmented system of Eq. (45) (and its extensions
to non-zero Ψ). For this reason we derive a large-deviation principle and a corre-
sponding energy-dissipation functional for this system, and afterwards simplify by
contraction, leading to results for (1).

Let Mh
n := n−1

∑n
i=1 δ(xi,µi,Y h

i ,νh
i ) be the empirical measure of the initial and

final configurations corresponding to the particle system defined above. Then (see
Theorem A.1) the sequence Mh

n satisfies a large-deviation principle in P(Rd ×
{N,D} × R

d × {N,D}) with rate n and rate functional

∑

µ=N,D
ν=N,D

H(qµν | ρµr
h
µνθ

h) if q(· × {N} × R
d × {N,D}) = ρN (·)

and q(· × {D} × R
d × {N,D}) = ρD(·),

∞ otherwise,

writing qµν(dx dy) = q(dx×{µ}× dy×{ν}). We note that definitions (6) and (21)
indeed allow for non-negative Borel measures that are not necessarily probability
measures.

In contrast to the previous case without decay, the special structure of the decay
forces us to keep track of more information: not only of the total amount of dark
matter, but of both the pre-existing dark matter and the normal matter that is con-
verted to dark matter in the present time step, separately. We thus obtain a large-
deviation principle for the triple empirical measures 1

n

∑n
i=1 δ(µi,Y h

i ,νh
i ) with rate n
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and rate functional (the subscript stands for “Diffusion equation with Decay”)

J h
DfDc(ρNN , ρND , ρDD | ρN , ρD)

:= inf


 ∑

µν=NN,ND,DD

inf
qµν∈Γ(ρµν ,ρµν)

H(qµν | ρµr
h
µνθ

h) : ρNN , ρND ∈ M+(Rd)

such that ρNN + ρND = ρN


. (46)

Here ρµν is the final-time matter of type ν that was initially of type µ, and similarly
ρµν is that part of the initial distribution ρµ that will become of type ν at time h
(see Fig. 1). Observe that the term H(qDN | 0) is zero if and only if qDN ≡ 0 a.e.,
and∞ otherwise; indeed no mass is allowed to change from D to N . Hence we omit
the dependency on ρDN .

Theorem 11 below shows that for small h we have J h
DfDc ≈ Kh

DfDc, where

Kh
DfDc(ρNN , ρND , ρDD | ρN , ρD)

:= −1
2
S(ρNN + ρND)− 1

2
S(ρN ) +

1
4h
d2(ρN , ρNN + ρND ) +

1
2
S(ρDD )

− 1
2
S(ρD) +

1
4h
d2(ρD, ρDD ) + S(ρNN ) + S(ρND )

− |ρNN | log rh
NN − |ρND | log rh

ND . (47)

Let the admissible sets be:

B0 := {(ρN , ρD) ∈ M+(Rd)2 : ρN + ρD ∈ PS
2 (Rd)};

B(ρN , ρD) :=
{

(ρNN , ρND , ρDD) ∈M+(Rd)3 :
1
|ρN |

(ρNN + ρND ) ∈ PS
2 (Rd)

and
1
|ρD|

ρDD ∈ PS
2 (Rd)

}
,

Fig. 1. Notation for the various measures in the diffusion-decay equation. The measures qµν are
pair (coupled) measures, with first and second marginals indicated to the left and right of the
arrows. The various marginals ρµν and ρµν combine as indicated to form the observed normal
(ρN and ρN ) and dark matter (ρD and ρD) at the initial and final times.
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equipped with the product of the weak or strong topologies from Sec. 2.3. We remark
that (ρNN , ρND , ρDD ) ∈ B(ρN , ρD) implies that |ρN | = |ρNN + ρND | and |ρD| =
|ρDD |.
Theorem 11. Assume that Conjecture 3 holds. Then for all (ρN , ρD) ∈ B0

J h
DfDc(·NN , ·ND , ·DD | ρN , ρD)− 1

4h
d2(ρN , ·NN + ·ND )− 1

4h
d2(ρD , ·DD )

+ | ·ND | log rh
ND + | ·NN | log rh

NN

M−−−→
h→0

−1
2
S(·NN + ·ND )− 1

2
S(ρN ) +

1
2
S(·DD )− 1

2
S(ρD) + S(·NN ) + S(·ND ),

(48)

in B(ρN , ρD).

Note that we have not only subtracted three singular terms from J h
DfDc, anal-

ogously to Theorem 9, but also the h-order term −| ·NN | log rh
NN ; the latter is for

reasons of symmetry and to simplify calculations.
Finally, we show that the functional Kh

DfDc in (47) indeed defines a variational
formulation of the diffusion-decay equation (15). In view of completeness, and of
generalizations to diffusion–reaction equations that we will discuss in Sec. 4.5, we
prove convergence of the full scheme, including the dark matter, to the system of
Eqs. (45). We then derive the corresponding result for the single diffusion-decay
equation (15) by minimizing over the dark matter (see Remark 13 below), a proce-
dure essentially the same as the contraction principle (Sec. 2.2). Because we keep
track of the dark matter, the matter that decays in a time step should be added to
the dark matter already present from the previous iteration.

Theorem 12. Let ρ0 ∈ Pa
2 (Rd) and define the sequence {(ρh,k

N , ρh,k
D )}k≥0 by:

(ρh,0
N , ρh,0

D ) := (ρ0, 0),

and for k ≥ 1:

(ρh,k
NN , ρ

h,k
ND , ρ

h,k
DD ) ∈ argmin

ρNN +ρND+ρDD∈Pa
2 (Rd)

Kh
DfDc(ρNN , ρND , ρDD | ρh,k−1

N , ρh,k−1
D ),

(49a)

(ρh,k
N , ρh,k

D ) := (ρh,k
NN , ρ

h,k
ND + ρh,k

DD). (49b)

These minimizers exist uniquely, and as h→ 0 the pair (ρh,�t/h�
N , ρ

h,�t/h�
D ) converges

weakly in L1(Rd × (0, T )) × L1(Rd × (0, T )) to the solution of (45) with initial
condition (ρ0, 0).

The proof of this theorem is based on [28], and can easily be extended to an
additional drift term (see Sec. 4.5). Note that when we let λ→ 0 then |ρND | should
vanish in (47) to prevent blow-up; indeed, in that case

Kh
DfDc(ρNN , 0, ρDD | ρk−1

N , ρk−1
D ) = Kh

Df (ρNN | ρk−1
N ) +Kh

Df (ρDD | ρk−1
D ).
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Remark 13. A further contraction can be used to ignore the dark matter. We can
then ignore the initial dark matter as well, so that the sequence 1

n

∑n
i=1:νh

i =N δY h
i

satisfies a large-deviation principle with rate n and rate functional

ρN �→ inf
0≤ρNN≤ρN

|ρNN |=|ρN |
inf

q∈Γ(ρNN ,ρN )
H(qNN |ρNN r

h
NN θ

h).

The corresponding energy-dissipation functional is then:

K
h

DfDc(ρN | ρN ) := inf
ρND :|ρN +ρND |=|ρN |

−1
2
S(ρN + ρND )− 1

2
S(ρN )

+
1
4h
d2(ρN , ρN + ρND ) + S(ρN ) + S(ρND )

− |ρN | log rh
NN − |ρND | log rh

ND , (50)

which matches the minimization problem (11). The corresponding version of
Theorem 12 is the following.

Theorem 14. Let ρ0 ∈ Pa
2 (Rd) and define the sequence {ρh,k

N }k≥0 by ρh,0
N = ρ0

and for k ≥ 1

ρh,k
N ∈ argmin

ρ∈M+(Rd)

K
h

DfDc(ρ | ρh,k−1
N ).

These minimizers exist uniquely, and as h → 0 the function ρ
h,�t/h�
N converges

weakly in L1(Rd × (0, T )) to the solution of (15) with initial condition ρ0.

Remark 15. If we restrict ourselves to measures of mass |ρN | = rh
NN |ρN |, thereby

excluding the possible fluctuation in the decay process, then (50) further reduces to

ρN �→ 1
2
S
(

1
rh
NN

ρN

)
− 1

2
S(ρN ) +

1
4h
d2

(
ρN ,

1
rh
NN

ρN

)
.

A similar scheme to deal with decaying mass can be found in [29].

4.3. Proof of Theorem 11

To reduce clutter we abbreviate ρNT := ρNN + ρND and qNT := qNN + qND . The
sum over µν = NN,ND in J h

DfDc can be rewritten as:

inf
ρNN +ρND=ρN

∑
ν=N,D

inf
qNν∈Γ(ρNν ,ρNν)

H(qNν | ρNr
h
Nνθ

h)

= inf
ρNN +ρND=ρN

∑
ν

inf
qNν∈Γ(ρNν ,ρNν)

×
∫∫

log

(
dqNT

dρNθ
h
· dρNν

dρNT
· 1
rh
Nν

· dqNν

dρNν

dρNT
dqNT

)
qNν
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= inf
qNT∈Γ(ρN ,ρNT )

H(qNT | ρNθ
h) + S(ρNN ) + S(ρND )− S(ρNT )

− |ρNN | log rh
NN − |ρND | log rh

ND

+ inf
ρNN +ρND=ρN

inf
qNN +qND=qNT

qNN∈Γ(ρNN ,ρNN )

∑
ν

H
(
qNν

∣∣∣∣ dρNν

dρNT
qNT

)
. (51)

We now show that the last sum vanishes under the infima. Since |qNν | = |ρNν | =
|dρNν

dρNT
qNT |, we can apply Gibbs’ inequality for ν = N,D:

H
(
qNν

∣∣∣∣ dρNν

dρNT
qNT

)
≥ 0.

On the other hand, for any given qNT , the measures

q̃NN :=
dρNN

dρNT
qNT , q̃ND :=

dρND

dρNT
qNT

and their first marginals ρNN (·) = q̃NN (· × R
d) and ρND (·) = q̃ND (· × R

d) are
admissible in the infima. It follows that

inf
ρNN +ρND=ρN

inf
qNN +qND=qNT

qNN∈Γ(ρNN ,ρNN )

∑
ν

H
(
qNν

∣∣∣∣ dρNν

dρNT
qNT

)

≤
∑

ν

H
(
q̃Nν

∣∣∣∣ dρNν

dρNT
qNT

)
= 0. (52)

Hence we can write:

J h
DfDc(ρNN , ρND , ρDD | ρN , ρD) = inf

qNT∈Γ(ρN ,ρNT )
H(qNT | ρNθ

h) +H(qDD | ρDθ
h)

+S(ρNN ) + S(ρND )− S(ρNT )− |ρNN | log rh
NN

− |ρND | log rh
ND . (53)

Fix a (ρN , ρD) ∈ B0. We first prove the lower bound of the Mosco convergence,
and then the existence of a recovery sequence.

Lower Bound. Take any narrowly convergent sequence

(ρh
NN , ρ

h
ND , ρ

h
DD) ⇀ (ρNN , ρND , ρDD ) in B(ρN , ρD).

Again, we write ρh
NT = ρh

NN + ρh
ND . Combining (46), (48), and (53), we need to

prove that:

lim inf
h→0

inf
qNT∈Γ(ρN ,ρh

NT )
H(qNT | ρNθ

h)− 1
4h
d2(ρN , ρ

h
NT )

+ inf
qDD∈Γ(ρD,ρh

DD )
H(qDD | ρDθ

h)− 1
4h
d2(ρD, ρ

h
DD)

+S(ρh
NN ) + S(ρh

ND )− S(ρh
NT )

≥ −1
2
S(ρNT )− 1

2
S(ρN ) +

1
2
S(ρDD )− 1

2
S(ρD) + S(ρNN ) + S(ρND ). (54)
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We will prove the lower bound for a number of terms separately.

• By assumption, |ρN |−1ρNT lies in PS
2 (Rd). If Conjecture 3 is true for probability

measures, it also holds for measures of different mass, so that:

lim inf
h→0

inf
qNT∈Γ(ρN ,ρh

NT )
H(qNT | ρNθ

h)− 1
4h
d2(ρN , ρ

h
NT ) ≥ 1

2
S(ρNT )− 1

2
S(ρN ).

(55)

Similarly, |ρD|−1ρDD ∈ PS
2 (Rd) and so:

lim inf
h→0

inf
qDD∈Γ(ρD ,ρh

DD)
H(qDD | ρDθ

h)− 1
4h
d2(ρD, ρ

h
DD) ≥ 1

2
S(ρDD )− 1

2
S(ρD).

(56)

• Since the function (x, y) �→ x log x + y log y − (x + y) log(x + y) is convex, the
functional

F : (ρNN , ρND ) �→ S(ρNN ) + S(ρND )− S(ρNN + ρND )

is also convex, and lower semicontinuous in B(ρN , ρD) with the narrow topology
[25, Theorem 4.3]

lim inf
h→0

S(ρh
NN ) + S(ρh

ND )− S(ρh
NT ) ≥ S(ρNN ) + S(ρND )− S(ρNT ). (57)

The required lower bound (54) then follows from (55), (56) and (57).

Recovery Sequence. Fix (ρNN , ρND , ρDD ) ∈ B(ρN , ρD) and take two recovery
sequences ρh

DD → ρDD and ρh
NT → ρNN + ρND in the strong topology from Con-

jecture 3 such that

lim sup
h→0

inf
qDD∈Γ(ρD ,ρh

DD)
H(qDD | ρDθ

h)− 1
4h
d2(ρD, ρ

h
DD )

=
1
2
S(ρDD )− 1

2
S(ρD), (58)

lim sup
h→0

inf
qNT∈Γ(ρN ,ρh

NT )
H(qNT | ρNθ

h)− 1
4h
d2(ρN , ρ

h
NT )

=
1
2
S(ρNN + ρND )− 1

2
S(ρN ). (59)

In contrast to the case of the lower bound we define ρh
NN and ρh

ND in terms of ρh
NT :

ρh
NN :=

dρNN

d(ρNN + ρND )
ρh
NT , ρh

ND :=
dρND

d(ρNN + ρND )
ρh
NT .

Here we define the Radon–Nikodym derivatives to be 1 on null sets of ρNN + ρND .
Observe that by definition of the strong topology S(ρh

NT ) → S(ρNN + ρND ). By
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Lemma 7, this implies that

ρh
NT → ρNN + ρND and ρh

NT log ρh
NT → (ρNN + ρND ) log(ρNN + ρND)

strongly in L1(Rd), if we redefine the sequence by its convergent subsequence. There-
fore, with 0 ≤ α(x) := dρNN

d(ρNN +ρND )(x) ≤ 1

|S(ρh
NN )− S(ρNN )| =

∣∣∣∣
∫
αρh

NT logαρh
NT −

∫
α ·(ρNN + ρND ) logα · (ρNN + ρND )

∣∣∣∣
≤
∣∣∣∣
∫
αρh

NT log ρh
NT −

∫
α(ρNN + ρND ) log(ρNN + ρND )

∣∣∣∣
+
∣∣∣∣
∫
ρh
NTα logα−

∫
(ρNN + ρND )α logα

∣∣∣∣
≤
∫ ∣∣ρh

NT log ρh
NT − (ρNN + ρND ) log(ρNN + ρND)

∣∣
+

1
e

∫ ∣∣ρh
NT − (ρNN − ρND)

∣∣
→ 0,

and analogously for ρh
ND . Collecting the convergence results:

S(ρh
NN )→ S(ρNN ), S(ρh

ND )→ S(ρND ) and S(ρh
NT )→ S(ρNN + ρND ). (60)

Then it follows from (58), (59), and (60) that (ρh
NN , ρ

h
ND , ρ

h
DD) is a recovery

sequence, i.e.

lim sup
h→0

inf
qNT∈Γ(ρN ,ρh

NT )
H(qNT | ρNθ

h)− 1
4h
d2(ρN , ρ

h
NT )

+ inf
qDD∈Γ(ρD ,ρh

DD)
H(qDD | ρDθ

h)− 1
4h
d2(ρD, ρ

h
DD )

+S(ρh
NN ) + S(ρh

ND )− S(ρh
NT )

≤ −1
2
S(ρNN + ρND )− 1

2
S(ρN ) +

1
2
S(ρDD )− 1

2
S(ρD) + S(ρNN ) + S(ρND ).

This concludes the proof of Theorem 11.

4.4. Proof of Theorem 12

Theorem 12 contains two main results: existence and uniqueness of minimizers,
and the convergence of time-discrete solutions. We first discuss the existence and
uniqueness of minimizers. By slightly rewriting (49) we can minimize, for fixed
(ρh,k−1

N , ρh,k−1
D ) ∈ Pa

2 (Rd), the functional

(ρNN , ρNT , ρDD) �→ Kh
DfDc(ρNN , ρNT − ρNN , ρDD | ρh,k−1

N , ρh,k−1
D )

= −1
2
S(ρNT )− 1

2
S(ρh,k−1

N ) +
1
4h
d2(ρh,k−1

N , ρNT )

1350017-27



September 18, 2013 11:8 WSPC/S0219-1997 152-CCM 1350017

M. A. Peletier, D. R. M. Renger & M. Veneroni

+
1
2
S(ρDD )− 1

2
S(ρh,k−1

D ) +
1
4h
d2(ρh,k−1

D , ρDD )

+S(ρNN ) + S(ρNT − ρNN )− |ρNN | log rh
NN

− |ρNT − ρNN | log rh
ND .

(61)

The negative sign of the term − 1
2S(ρNT ) makes this minimization problem slightly

non-trivial. We therefore proceed in steps. For fixed ρNT , the functional

Fh(ρNN ) := S(ρNN ) + S(ρNT − ρNN )− |ρNN | log rh
NN − |ρNT − ρNN | log rh

ND

is convex and has a unique stationary point that satisfies

0 = log ρNN − log(ρNT − ρNN )− log rh
NN + log rh

ND ,

implying that ρNN := rh
NN ρNT is the unique global minimizer of F . Therefore, at

every step k, we have (see Fig. 1)

ρh,k
N = ρh,k

NN = rh
NN ρ

h,k
NT and ρh,k

ND = rh
NDρ

h,k
NT . (62)

The problem of minimizing (61) can now be reduced to the minimization of

(ρNT , ρDD) �→ Kh
DfDc(r

h
NN ρNT , r

h
NDρNT , ρDD | ρh,k−1

N , ρh,k−1
D )

=
1
2
S(ρNT )− 1

2
S(ρh,k−1

N ) +
1
4h
d2(ρh,k−1

N , ρNT )

+
1
2
S(ρDD )− 1

2
S(ρh,k−1

D ) +
1
4h
d2(ρh,k−1

D , ρDD ), (63)

which consists of two decoupled minimization problems, for which existence and
uniqueness of minimizers are proved in [28, Proposition 4.1].

The compactness of the sequence (ρh,�t/h�
N , ρ

h,�t/h�
D ) is based on the same princi-

ple as in [28], but with a twist. The central observation is again that (ρh,k−1
N , ρh,k−1

D )
is admissible in (63), leading to the estimate

1
2h
d2(ρh,k−1

N , ρh,k
NT ) +

1
2h
d2(ρh,k−1

D , ρh,k
DD)

≤ −S(ρh,k
NT ) + S(ρh,k−1

N )− S(ρh,k
DD ) + S(ρh,k−1

D ). (64)

However, the migration of mass from normal to dark matter means that upon
summing this estimate over k, terms in the right-hand side do not cancel. Below
we establish the a priori estimates

M2(ρ
h,k
N + ρh,k

D ) :=
∫
|x|2d(ρh,k

N + ρh,k
D ) ≤ C, (65)

�T/h�∑
k=1

d2(ρh,k−1
N , ρh,k

NT ) + d2(ρh,k−1
D , ρh,k

DD ) ≤ Ch, (66)

where the constant C only depends on the initial data and on the maximal time T .
As in [28] these estimates provide the appropriate tightness in space (by (65)) and
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continuity in time (by (66)) to conclude that there exists a subsequence such that
(ρh,�t/h�

N , ρ
h,�t/h�
D )→ (uN , uD), weakly in L1(Rd × (0, T ))× L1(Rd × (0, T )).

We now prove (65) and (66). Recall from [28] the estimates

−S(ρ) ≤ C(M2(ρ) + 1)α for some 0 < α < 1 and for all ρ ∈M+(Rd),

M2(ρ1) ≤ 2M2(ρ0) + 2d2(ρ0, ρ1) for all ρ0, ρ1 ∈M+(Rd) with |ρ0| = |ρ1|.
(67)

This allows us to estimate, for n ∈ N such that nh ≤ T ,

M2(ρ
h,n
N + ρh,n

D ) ≤ 2M2(ρ0
N + ρ0

D) + 2d2(ρh,n
N + ρh,n

D , ρ0
N + ρ0

D). (68)

The second term above we then estimate by

d2(ρh,n
N + ρh,n

D , ρ0
N + ρ0

D) ≤
[

n∑
k=1

d(ρh,k
N + ρh,k

D , ρh,k−1
N + ρh,k−1

D )

]2

≤ n

n∑
k=1

d2(ρh,k
N + ρh,k

D , ρh,k−1
N + ρh,k−1

D )

= n

n∑
k=1

d2(ρh,k
NT + ρh,k

DD , ρ
h,k−1
N + ρh,k−1

D )

(16)

≤ n
n∑

k=1

d2(ρh,k
NT , ρ

h,k−1
N ) + d2(ρh,k

DD , ρ
h,k−1
D ). (69)

We also observe some properties of S:

S(αρ+ βρ) = S(αρ) + S(βρ) − α|ρ| log
α

α+ β

− β|ρ| β

α+ β
, for all α, β > 0 and ρ ∈M+(Rd),

and in general

S(ρ1 + ρ2) ≤ S(ρ1) + S(ρ2)− |ρ1| log
|ρ1|

|ρ1 + ρ2|

− |ρ2| log
|ρ2|

|ρ1 + ρ2| for any ρ1, ρ2 ∈M+(Rd).

The first follows from a simple calculation, and the second can be proved by writing
ρ1 +ρ2 = λ(ρ1/λ)+(1−λ)(ρ2/(1−λ)), applying the convexity of S, and optimizing
with respect to λ. Combining these with (62) we then have

S(ρh,k
NT ) = S(ρh,k

NN ) + S(ρh,k
ND )− |ρh,k

NN | log rh
NN − |ρh,k

ND | log rh
ND , (70)

S(ρh,k
D ) ≤ S(ρh,k

ND ) + S(ρh,k
DD )− |ρh,k

ND | log
|ρh,k

ND |
|ρh,k

D |
− |ρh,k

DD | log
|ρh,k

DD |
|ρh,k

D |
. (71)
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Now, putting the ingredients together:

M2(ρ
h,n
N + ρh,n

D )
(68)

≤ 2M2(ρ0
N + ρ0

D) + 2d2(ρh,n
N + ρh,n

D , ρ0
N + ρ0

D)

(69)

≤ C + 2n
n∑

k=1

d2(ρh,k−1
N , ρh,k

NT ) + d2(ρh,k−1
D , ρh,k

DD )

(64)

≤ C + 4nh
n∑

k=1

S(ρh,k−1
N )− S(ρh,k

NT ) + S(ρh,k−1
D )− S(ρh,k

DD )

(70),(71)

≤ C + 4T
n∑

k=1

S(ρh,k−1
N )− S(ρh,k

N ) + S(ρh,k−1
D )− S(ρh,k

D )

+ 4T
n∑

k=1

|ρh,k
NN | log rh

NN + |ρh,k
ND | log rh

ND − |ρh,k
ND | log

|ρh,k
ND |
|ρh,k

D |
−|ρh,k

DD | log
|ρh,k

DD |
|ρh,k

D |︸ ︷︷ ︸
≤0 (see below)

(67)

≤ C + 4T [S(ρ0
N) + S(ρ0

D) + C(M2(ρ
h,n
N ) + 1)α

+C(M2(ρ
h,n
D ) + 1)α]

≤ C + 4T [S(ρ0
N) + S(ρ0

D) + 2αC(M2(ρ
h,n
N + ρh,n

D ) + 2)α].

Therefore M2(ρ
h,n
N + ρh,n

D ) is bounded on finite time intervals, which proves (65),
and the boundedness of the second line above implies (66).

The sign of the brace above can be shown as follows: setting r := rh
NN and

therefore by (62), we have

|ρh,k
N | = rk, |ρh,k

D | = 1− rk, |ρh,k
ND | = rk − rk−1, and |ρh,k

DD | = 1− rk−1.

Then
n∑

k=1

|ρh,k
NN | log rh

NN + |ρh,k
ND | log rh

ND − |ρh,k
ND | log

|ρh,k
ND |
|ρh,k

D |
− |ρh,k

DD | log
|ρh,k

DD |
|ρh,k

D |

=
n∑

k=1

rk log r + (rk−1 − rk) log(1− r) − (rk−1 − rk) log
rk−1 − rk

1− rk

− (1− rk−1) log
1− rk−1

1− rk

=
n∑

k=1

rk log rk − rk−1 log rk−1 + (1− rk) log(1− rk)

− (1− rk−1) log(1− rk−1)

= rn log rn + (1 − rn) log(1− rn) ≤ 0.
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This concludes the proof of the compactness and therefore the convergence of a
subsequence.

We now determine the equation satisfied by the time-discrete minimizers using
the method introduced in [28]. After perturbing the minimizers ρh,k

NT and ρh,k
DD by a

push-forward, we find that for all ξ ∈ C∞
0 (Rd; Rd),∫∫

(y − x) · ξ(y)qNT (dx dy)− h
∫

div ξ(y)ρh,k
NT (y)dy = 0,∫∫

(y − x) · ξ(y)qDD (dx dy) − h
∫

div ξ(y)ρh,k
DD (y)dy = 0,

(72)

where qNT and qDD are the optimal transport plans in d(ρh,k−1
N , ρh,k

NT ) and

d(ρh,k−1
D , ρh,k

DD ). Using ρh,k
N = ρh,k

NN = rh
NN ρ

h,k
NT and ρh,k

D = rh
NDρ

h,k
NT + ρh,k

DD as pre-
scribed by (49b) and (62), we add up the equations above to find for all ξ,∫∫

(y − x) · ξ(y)rh
NN qNT (dx dy)− h

∫
div ξ(y)ρh,k

N (y)dy = 0,∫∫
(y − x) · ξ(y)(rh

NDqNT + qDD )(dx dy) − h
∫

div ξ(y)ρh,k
D (y)dy = 0.

(73)

As rh
NN qNT ∈ Γ(rh

NN ρ
h,k−1
N , ρh,k

N ) and rh
NDqNT +qDD ∈ Γ(rh

NDρ
h,k−1
N +ρh,k−1

D , ρh,k
D )

(although the second may not be optimal), we have the following bounds for any
ζ ∈ C∞

0 (Rd):∣∣∣∣
∫

(ρh,k
N − rh

NN ρ
h,k−1
N )ζ −

∫∫
(y − x) · ∇ζ(y)rh

NN qNT (dx dy)
∣∣∣∣

=
∣∣∣∣
∫∫

(ζ(y)− ζ(x) + (x− y) · ∇ζ(y))rh
NN qNT (dx dy)

∣∣∣∣
≤ 1

2
sup |∆ζ|rh

NN

∫∫
|y − x|2qNT (dx dy)

=
1
2

sup |∆ζ|d2(ρh,k−1
N , ρh,k

NT ),

and similarly,∣∣∣∣
∫

(ρh,k
D − (rh

NDρ
h,k−1
N + ρh,k−1

D ))ζ −
∫∫

(y − x) · ∇ζ(y)(rh
ND qNT + qDD )(dx dy)

∣∣∣∣
≤ 1

2
sup |∆ζ|(d2(ρh,k−1

N , ρh,k
NT ) + d2(ρh,k−1

D , ρh,k
DD)).

After applying these bounds to (73), taking ξ = ∇ζ, we find for all ζ:∣∣∣∣
∫ (

1
h

(ρh,k
N − rh

NN ρ
h,k−1
N )ζ − ρh,k

N ∆ζ
)
dy

∣∣∣∣ ≤ 1
2h

sup |∆ζ|d2(ρh,k−1
N , ρh,k

NT ),
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and ∣∣∣∣
∫ (

1
h

(ρh,k
D − rh

NDρ
h,k−1
N − ρh,k−1

D )ζ − ρh,k
D ∆ζ

)
dy

∣∣∣∣
≤ 1

2h
sup |∆ζ|(d2(ρh,k−1

N , ρh,k
NT ) + d2(ρh,k−1

D , ρh,k
DD)).

Using the convergence of a subsequence (not relabeled) (ρh,�t/h�
N , ρ

h,�t/h�
D ) →

(uN , uD) weakly in L1(Rd × (0, T )) × L1(Rd × (0, T )), we find that for all ζ ∈
C∞

0 (Rd × [0, T ]),

∣∣∣∣∣
∫ T

0

∫
uN

(
−∂tζ +

(
lim
h→0

1− rh
NN

h

)
ζ −∆ζ

)
dy dt

∣∣∣∣∣
h→0←−−−

∣∣∣∣∣
∫ T

0

∫ (
1
h

(ρh,�t/h�
N − ρh,�t/h�−1

N )ζ +
1− rh

NN

h
ρ

h,�t/h�−1
N ζ

−ρh,�t/h�
N ∆ζ

)
dx dt

∣∣∣∣∣
≤

�T/h�∑
k=1

1
2

sup

∣∣∣∣∣∆
∫ T

0

ζ

∣∣∣∣∣ d2(ρh,k−1
N , ρh,k

NT )

(66)

≤ Ch
h→0−−−→ 0,

and for the dark matter:∣∣∣∣∣
∫ T

0

∫ (
−uD∂tζ −

(
lim
h→0

rh
ND

h

)
uNζ − uD∆ζ

)
dy dt

∣∣∣∣∣
h→0←−−−

∣∣∣∣∣
∫ T

0

∫ (
1
h

(ρh,�t/h�
D − ρh,�t/h�−1

D )ζ − rh
ND

h
ρ

h,�t/h�−1
N ζ

− ρ
h,�t/h�
D ∆ζ

)
dx dt

∣∣∣∣
≤

�T/h�∑
k=1

1
2

sup

∣∣∣∣∣∆
∫ T

0

ζ

∣∣∣∣∣ (d2(ρh,k−1
N , ρh,k

NT ) + d2(ρh,k−1
D , ρh,k

DD ))

(66)

≤ Ch
h→0−−−→ 0.

From this we see that the limit (uN , uD) indeed solves (45) (weakly in L1(Rd ×
(0, T ))). This concludes the proof of Theorem 12.

1350017-32



September 18, 2013 11:8 WSPC/S0219-1997 152-CCM 1350017

Variational Formulation of the Fokker–Planck Equation with Decay

4.5. Drift with decay and reactions

Diffusion with drift and decay. The results from Secs. 3 and 4 can be easily
combined in the following way. A microscopic model for the Fokker–Planck equation
with decay (1) is obtained by replacing the spatial transition probability θh in the
micro model from Sec. 4.1 by the fundamental solution ηh of the Fokker–Planck
equation from Definition 8. The corresponding large-deviation rate functional then
simply becomes (46) with that transition probability. By the same arguments of
Theorems 9 and 11, the large-deviation rate functional is related to the following
energy-dissipation functional in a Mosco-convergence sense:

Kh
FPDc(ρNN , ρND , ρDD | ρN , ρD)

:= −1
2
S(ρNN + ρND)− 1

2
S(ρN ) +

1
4h
d2(ρN , ρNN + ρND) +

1
2
S(ρDD )

− 1
2
S(ρD) +

1
4h
d2(ρD, ρDD) + S(ρNN ) + S(ρND )− |ρNN | log rh

NN

− |ρND | log rh
ND +

1
2
E(ρNN + ρND + ρDD )− 1

2
E(ρN + ρD). (74)

Indeed, as our main result this functional defines a variational formulation for
the Fokker–Planck equation with decay (1).

Theorem 16. Let ρ0 ∈ Pa
2 (Rd) and define the sequence {(ρh,k

N , ρh,k
D )}k≥0 by:

(ρh,0
N , ρh,0

D ) = (ρ0, 0),

and for k ≥ 1:

(ρh,k
NN , ρ

h,k
ND , ρ

h,k
DD ) ∈ arg min

ρNN +ρND+ρDD∈Pa
2 (Rd)

Kh
FPDc(ρNN , ρND , ρDD | ρh,k−1

N , ρh,k−1
D ),

(ρh,k
N , ρh,k

D ) = (ρh,k
NN , ρ

h,k
ND + ρh,k

DD ).

These minimizers exist uniquely, and as h→ 0 the pair (ρh,�t/h�
N , ρ

h,�t/h�
D ) converges

weakly in L1(Rd × (0, T )) to the solution of (45) with initial condition (ρ0, 0).

The proof is a slight adaptation of the proof of Theorem 12, with the observation
that after perturbing with a push-forward, the continuity equations (72) include the
additional terms h

∫
ξ(y) · ∇Ψ(y) ρh,k

NT (y) dy and h
∫
ξ(y) · ∇Ψ(y) ρh,k

DD(y) dy for the
potential energy. Following the proof of Theorem 12, these extra terms will result
in the convection term in Eq. (1).

Diffusion–reaction equations. Another useful generalization is a system of equa-
tions that describe the transition between a set of states ν in some index set I:

∂tuν = ∆uν −
∑
µ
=ν

sµνuν +
∑
µ
=ν

sνµuµ, ν ∈ I. (75)

We should then choose the transition probabilities rh
µν of the microscopic system

in such a way that limh→0
rh

µν

h = sµν and rh
µµ = 1−∑ν 
=µ r

h
µν . The large-deviation
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rate functional corresponding to this micro model is:

({ρµν}µ,ν∈I ; {ρµ}µ∈I) �→
∑
µ∈I

inf
ρµν :µ,ν∈I

P
ν∈I ρµν=ρµ

∑
ν∈I

inf
qµν∈Γ(ρµν ,ρµν)

H(qµν | ρµr
h
µνθ

h),

which Mosco-converges, after subtracting singular terms, to the functional:∑
µ∈I

[
−1

2
S

(∑
ν∈I

ρµν

)
− 1

2
S(ρµ) +

1
4h
d2

(
ρµ,
∑
ν∈I

ρµν

)

+
∑
ν∈I

(S(ρµν)− |ρµν | log rh
µν)

]
. (76)

In the same way as in Theorem 12, this functional defines a variational formulation
for the system of diffusion–reaction equations (75).

5. Discussion

The work of [1] uncovered an intriguing link between the diffusion equation,
the entropy-Wasserstein gradient-flow formulation of that equation, and a large-
deviation principle for a stochastic particle system. The work of the present paper
is motivated by the question whether this link can be generalized.

Equation (1) moves beyond [1] in two ways. The additional drift term repre-
sented by Ψ is compatible with the Wasserstein framework. The corresponding
equation (7) is a Wasserstein gradient flow of the free energy functional S + E .
In Sec. 3 we showed that also the large-deviation connection generalizes to this
case, with only minor modification. Corresponding continuous-time large-deviations
results for instance in [11] or [21, Theorem 13.37] mirror this.

The case of decay is different. The structure of the time-discretized gradient
flow in Theorem 12 has some non-standard features:

• The iteration defined in Theorem 12 is special in that the minimization is taken
over the pair (ρNN , ρND), and the result is added to the dark matter of the
previous time step. Of course, when ignoring the dark matter, as in Remark 13,
this is not visible, as is shown in the corresponding definition in Theorem 14.
• The functional Kh

DfDc in (47) is not that of a “standard” gradient flow. The
discussion in Sec. 1.2 and the proof of Theorem 12 suggest to split it into three
parts; two parts that represent the diffusion steps for normal and decayed matter,
and a third part for the decay step. The fact that the operator can be split into
terms for each driving force is related to the independence of the processes in the
micro model, so that the transition probability is a product of two probabilities,
which can then be split according to calculation (51). Pursuing the analogy with
the diffusion step, and with metric-space gradient flows, one might interpret
S(ρNN ) + S(ρNT − ρNN ) − S(ρNT ) as the driving energy behind the decay, by
which the dissipation would then become the (linear!) terms −|ρNN | log rh

NN −
|ρND | log rh

ND . In which sense this interpretation is meaningful is as yet unknown.
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The way we have set up the microscopic model in this paper restricts us to decay
processes. The reason that we cannot generalize to “birth” processes (i.e. λ < 0) is
that, in the microscopic model, linear birth rates depend on the amount of exist-
ing normal matter. Therefore, in contrast to exponential decay, exponential birth
requires a system of particles with interdependence, which prevents the techniques
in this paper to be extended to birth processes in a trivial way.

The exact choice of the microscopic transition probabilities may not influence
the continuum limit, as the limit only depends on asymptotic behavior of the prob-
abilities rh

µν as h→ 0. However, this choice will affect the discrete-time approxima-
tion (47). In general, different microscopic systems can lead to different variational
formulations for the same equation. For instance, the minimization functional (76)
that we derive for a system of diffusion–reaction equations differs from the L2-
gradient flow in [44] for that same equation, as the underlying microscopic model
of that paper models reaction as diffusion in a chemical landscape.

One of the interesting suggestions of the connection between large-deviation
principles and gradient flows is the possibility that every gradient-flow structure
might correspond to a large-deviation principle for some stochastic process. For
instance, there is of course a different gradient-flow formulation for the diffusion-
decay equation without drift (15), with driving energy

E(ρ) :=
∫ [

1
2
|∇ρ|2 +

λ

2
ρ2

]
dx,

and with the L2-metric as dissipation. This can be seen by using the fact that in
the Hilbert space L2 a gradient flow satisfies at each time t > 0

(∂tρ, s)L2 = −〈E ′(ρ), s〉 for all s ∈ L2,

which can be rewritten as a weak form of (15). Could this structure be related to a
large-deviation principle of some stochastic process? At this point we have no idea.

Appendix. The Quenched Large-Deviation Principle

In this Appendix we derive the large-deviation principles that are used in this
paper — in a slightly more general context. First we state the large-deviation prin-
ciple of the pair empirical measure. The proof is mainly due to Léonard, but we
include it here to provide the full details. In the following, Ω will denote a (separable
metric) Radon space.

Theorem A.1 ([31, Proposition 3.2]). Fix ρ0 ∈ P(Ω) and let {xi}i=1,...,n,n≥1 ⊂
Ω be so that

L0
n :=

1
n

n∑
i=1

δxi ⇀ ρ0 as n→∞. (A.1)

Let ζ : Ω→ P(Ω) be continuous with respect to the narrow topology of P(Ω), and let
each random variable Yi in Ω be distributed by ζxi . Define the pair empirical measure
Mn := n−1

∑n
i=1 δ(xi,Yi). Then the sequence {Mn}n satisfies the large-deviation
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principle in P(Ω2) with rate n and rate functional :

I(q) :=

{
H(q | p) if q(· ×Ω) = ρ0(·),
∞ otherwise,

(A.2)

with p(dx dy) := ζx(dy)ρ0(dx).

Proof. We write Cb(Ω2) for the space of continuous bounded functions on Ω2, and
Cb(Ω2)∗ and Cb(Ω2)′ for its topological and algebraic dual respectively, the latter
being the space of all linear functionals on Cb(Ω2) with the weakest topology that
makes all these linear functionals continuous. We equip both Cb(Ω2)∗ and Cb(Ω2)′

with the topology induced by the duality with Cb(Ω2), denoted by 〈 ·, · 〉. Recall
that the dual Cb(Ω)∗ can be identified with the space of finite, finitely additive,
and regular signed Borel measures [17, Theorem IV.6.2]. Moreover, since Ω2 is
Radon any probability measure is regular. Hence P(Ω2) ⊂ Cb(Ω2)∗ ⊂ Cb(Ω2)′,
and the topologies on P(Ω2) and Cb(Ω2)∗ coincide with the induced topology as a
subset of Cb(Ω2)′. Note, however, that Cb(Ω2)∗ is closed, while P(Ω2) is not.

We first consider Mn as random variables in Cb(Ω2)′. For an arbitrary d ∈ N

and φ1, . . . , φd in Cb(Ω2), define the new random variables:

Zφ1,...,φd;n := (〈φ1,Mn〉, . . . , 〈φd,Mn〉)

=

(
1
n

n∑
i=1

〈φ1, δ(xi,Yi)〉, . . . ,
1
n

n∑
i=1

〈φd, δ(xi,Yi)〉
)

=

(
1
n

n∑
i=1

φ1(xi, Yi), . . . ,
1
n

n∑
i=1

φd(xi, Yi)

)
.

First we prove the large-deviation principle of law(Zφ1,...,φd;n) in R
d, using the

Gärtner–Ellis theorem. For any λ ∈ R
d:

Λφ1,...,φd;n(λ) :=
1
n

log(E exp(nλ · Zφ1,...,φd;n))

=
1
n

log


E exp


 d∑

j=1

n∑
i=1

λjφj(xi, Yi)






(∗)
=

1
n

log


 n∏

i=1

E exp


 d∑

j=1

λjφj(xi, Yi)






=
1
n

n∑
i=1

log


∫ exp


 d∑

j=1

λjφj(xi, y)


 ζxi(dy)




=
∫

1
n

n∑
i=1

log


∫ exp


 d∑

j=1

λjφj(x, y)


 ζx(dy)


 δxi(dx)
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=
∫

log


∫ exp


 d∑

j=1

λjφj(x, y)


 ζx(dy)


L0

n(dx)

=
∫

log〈eλ·φx

, ζx〉L0
n(dx),

(A.3)

using the notation φx : y �→ (φ1(x, y), . . . , φd(x, y)). In (∗) we have used the inde-
pendence of (xi, Yi) to take the sum out of the expectation.

In order to use (A.1) to pass to the limit n → ∞ in (A.3), we need to show
that x �→ log〈eλ·φx

, ζx〉 is a bounded and continuous function. The boundedness
follows directly from the fact that all φj are bounded. To prove continuity, take
any convergent sequence xm → x. As ζx is continuous as a function from x ∈ Ω
to P(Ω), Prokhorov’s theorem gives tightness of the sequence ζxm . Hence for each
ε > 0 there exists a compact set Kε ⊆ Ω such that:

ζxm(Ω\Kε) < ε for all m ≥ 1.

Using that the sequence of functions y �→ eλ·φxm (y) converges uniformly on compact
sets as m→∞, we have

|〈eλ·φxm
, ζxm〉 − 〈eλ·φx

, ζx〉|
= |〈eλ·φxm − eλ·φx

, ζxm〉+ 〈eλ·φx

, ζx − ζxm〉|

≤
∫

Ω\Kε

|eλ·φxm (y) − eλ·φx(y)|ζxm(dy)

+
∫

Kε

|eλ·φxm(y) − eλ·φx(y)|ζxm(dy) + |〈eλ·φx

, ζx − ζxm〉|

≤ (‖eλ·φxm‖L∞(Ω) + ‖eλ·φx‖L∞(Ω)) ζxm(Ω\Kε)︸ ︷︷ ︸
<ε

+ ‖eλ·φxm − eλ·φx‖L∞(Kε)︸ ︷︷ ︸
→0

ζxm(Kε) + |〈eλ·φx

, ζx − ζxm〉|︸ ︷︷ ︸
→0

m→∞−−−−→ 2ε‖eλ·φx‖L∞(Ω)

for arbitrary small ε > 0. Hence indeed 〈eλ·φx

, ζx〉 is continuous in x, so we can
apply (A.1) to find the limit:

Λφ1,...,φd
(λ) := lim

n→∞Λφ1,...,φd;n(λ) =
∫

log〈eλ·φx

, ζx〉ρ0(dx).

Since this function is continuously differentiable and finite throughout its whole
domain (Rd), the conditions of the Gärtner–Ellis theorem [14, Theorem 2.3.6c] are
met, so that Zφ1,...,φd;n satisfies the large-deviation principle in R

d with rate n and
rate function Λ∗

φ1,...,φd
, the Fenchel–Legendre transform of Λφ1,...,φd

.
Next we apply the Dawson–Gärtner theorem [14, Theorem 4.6.9] to find that

the sequence {Mn}n satisfies the large-deviation principle in Cb(Ω2)′ with rate n
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and rate functional:

I(q) := sup
d≥1

sup
φ1,...,φd∈Cb(Ω2)

Λ∗
φ1,...,φd

((〈φ1, q〉, . . . , 〈φd, q〉))

= sup
d≥1

sup
φ1,...,φd∈Cb(Ω2)

sup
λ∈Rd

λ · (〈φ1, q〉, . . . , 〈φd, q〉)− Λφ1,...,φd
(λ)

= sup
φ∈Cb(Ω2)

〈φ, q〉 −
∫

log〈eφx

, ζx〉ρ0(dx),

where as before we write φx : y �→ φ(x, y).
We now show that this rate functional is indeed (A.2). Since Cb(Ω2)∗ is a closed

subset of Cb(Ω2)′ containing P(Ω2), we have I =∞ on Cb(Ω2)′\Cb(Ω2)∗ [14, The-
orem 4.1.5]. Therefore, we only need to consider q ∈ C∗

b (Ω2).

• First, we show that I(q) =∞ whenever q ∈ C∗
b (Ω2) with first marginal π1q = ρ0.

This can be seen by restricting the supremum to φ’s that depend on the first
variable only:

I(q) ≥ sup
φ∈Cb(Ω)

〈φ, q〉 −
∫

log〈eφx

, ζx〉ρ0(dx)

= sup
φ∈Cb(Ω)

〈φ, π1q〉 − 〈φ, ρ0〉

=

{
0 if π1q = ρ0,

+∞ otherwise.

• Next, we show that I(q) =∞ for any q ∈ Cb(Ω2)∗ that is finitely, but not count-
ably additive. By the argument above, we only need to consider non-negative
finitely additive measures with q(Ω2) = 1. For such q, there exists a sequence of
disjoint measurable sets Ai ⊂ Ω2 such that

δ := q

( ∞⋃
i=1

Ai

)
−

∞∑
i=1

q(Ai) > 0.

Without loss of generality, assume that
⋃∞

i=1 Ai = Ω2. Since q and p are regular,
one can find for any k ≥ 1, sequences of sets Ki ⊂ Ai ⊂ Oi with Ki compact and
Oi open, such that:

∞∑
i=1

q(Oi) ≤ 1− 1
2
δ and

∞∑
i=1

p(Ai\Ki) ≤ e−k. (A.4)

Then for each k, n ≥ 1 there exists a continuous function φkn : Ω2 → [−k, 0] such
that

φkn(x, y) =



−k on

n⋃
i=1

Ki,

0 on Ω2

∖ n⋃
i=1

Oi.
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For these functions we have, on the one hand (as Oi might not be disjoint)

〈φkn, q〉 ≥ −kq
(

n⋃
i=1

Oi

)
≥ −k

n∑
i=1

q(Oi), (A.5)

and on the other hand

〈eφx
kn , ζx〉 ≤

∫
(e−kχSn

i=1 Ki
(x, y) + χΩ2\ Sn

i=1 Ki
(x, y))ζx(dy),

so that ∫
log〈eφx

kn , ζx〉ρ0(dx)

≤
∫ (
−k + log

∫
(χS

n
i=1 Ki

+ ekχΩ2\ S
n
i=1 Ki

)ζx

)
ρ0(dx)

Jensen≤ −k + log

(
p

(
n⋃

i=1

Ki

)
+ ekp

(
Ω2

∖ n⋃
i=1

Ki

))
. (A.6)

Finally, we find for the rate functional:

I(q) ≥ lim sup
k→∞

lim sup
n→∞

〈φkn, q〉 −
∫

log〈eφx
kn , ζx〉ρ0(dx)

(A.5),(A.6)

≥ lim sup
k→∞

lim sup
n→∞

−k
n∑

i=1

q(Oi) + k

− log

(
p

(
n⋃

i=1

Ki

)
+ ekp

(
Ω2

∖ n⋃
i=1

Ki

))

= lim sup
k→∞

−k
∞∑

i=1

q(Oi) + k − log

(
p

( ∞⋃
i=1

Ki

)
+ ekp

(
Ω2

∖ ∞⋃
i=1

Ki

))

(A.4)

≥ lim sup
k→∞

−k
(

1− 1
2
δ

)
+ k − log 2

= lim sup
k→∞

1
2
δk − log 2 =∞.

• Now assume that q ∈ P(Ω2) such that π1q = ρ0. The Disintegration theorem
then allows us to write

q(dxdy) = ρ0(dx)qx(dy)

for some family of measures {qx : x ∈ Ω}. In this case:

I(q) = sup
φ∈Cb(Ω2)

∫
(〈φx, qx〉 − log〈eφx

, ζx〉)ρ0(dx)

≤
∫

sup
φx∈Cb(Ω)

{〈φx, qx〉 − log〈eφx

, ζx〉}ρ0(dx)
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=
∫
H(qx | ζx)ρ0(dx)

=



∫∫ (

log
d(ρ0qx)
d(ρ0ζx)

(x, y)
)
ρ0(dx)qx(dy) if ρ0qx � ρ0ζx,

∞ otherwise

= H(q | p).
• We conclude the proof with the inequality in the other direction. Observe that I

is the Fenchel–Legendre transform of

Λ : φ �→
∫

log〈eφx

, ζx〉ρ0(dx)

≤ log
∫
〈eφx

, ζx〉ρ0(dx) = log〈eφ, p〉,

where the bound follows from Jensen’s inequality. Hence

I(q) = Λ∗(q) ≥ sup
φ∈C(Ω2)

{〈φ, q〉 − log〈eφ, p〉} = H(q | p).

Since the large-deviation principle holds in Cb(Ω2)∗ with DI ⊂ P(Ω2), it also holds
in P(Ω2) with the same rate functional (i.e. restricted to P(Ω2)) [14, Theorem 4.1.5].

The following corollary follows immediately from the contraction principle.

Corollary A.2. The sequence {n−1
∑n

i=1 δYi}n satisfies the large-deviation prin-
ciple in P(Ω) with rate n and rate function:

J(ρ) :=

{
inf

q∈Γ(ρ0,ρ)
H(q | p) if q ∈ Γ(ρ0, ρ),

∞ otherwise.
(A.7)

Remark A.3. A straightforward approach would be to look for a large-deviation
principle in the set of probability measures:

A �→ P(Mn ∈ A |L0
n = ρ0). (A.8)

However, these conditional probabilities are not well-defined: the events {L0
n = ρ0}

typically have zero probability. One way to deal with this is to condition on small
neighborhoods of ρ0 of size δ instead, calculate the large-deviation rate functional
for these conditional probabilities, and then take the limit for δ → 0. This is the
approach taken in [1]. We note that because the limits n → ∞ and δ → 0 cannot
be interchanged, this approach does not a priori yield a large-deviation principle
in the rigorous sense.

In the approach that we adopt from [31], we consider fixed initial positions so
that there is no need to define the conditional probabilities above. This technique
is sometimes called a quenched large-deviation principle.
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