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Cell membranes, Lipid Bilayers, and the Elastica Functional
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We study an energy functional that arises in a simplified two-dimensional model for lipid bilayer membranes. We demonstrate
that this functional, defined on a class of spatial mass densities, favours concentrations on ‘thin structures’. Stretching, fracture
and bending of such structures all carry an energy penalty. In this sense we show that the models captures essential features
of lipid bilayers, namely partial localisation and a solid-like behaviour.

Our findings are made precise in a Gamma-convergence result. We prove that a rescaled version of the energy functional
converges in the ‘zero thickness limit’ to a functional that is defined on a class of planar curves. Finiteness of the limit value
enforces both optimal thickness and non-fracture; if these conditions are met, then the value of this functional is given by the
classical Elastica (bending) energy.
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1 Introduction

In this note we investigate a new model for cell membranes. For more detailed informations, a precise statement of the full
result and a complete proof we refer to [5].

1.1 Lipid Bilayers

Cell membranes shield the interior of the cell from the outside and are typically formed by lipid bilayers. Their main compo-
nent is a lipid molecule which consists of a head and two tails. The head is hydrophilic, while the tails are hydrophobic. This
difference in water affinity causes lipids to aggregate in structures as shown in Fig. 1, reducing energetically unfavourable
tail-water interactions. Despite the structured appearance of the bilayer, there is no covalent bonding between any two lipids;
the bilayer structure is entirely the result of the hydrophobic effect.

Fig.1 Lipid molecules aggregate into macroscopically surface-like structures

1.2 Partial localisation and solid-like behaviour

Lipid bilayers are thin structures, in the sense that there is a separation of length scales: the thickness of a lipid bilayer is fixed
to approximately two lipid lengths, while the in-plane spatial extent is only limited by the surroundings. Structures that are
thin in one or more directions and ‘large’ in others we call partially localised.

In a cell membrane, the lipid molecules behave fluid-like with respect to in-plane rearrangements. However, as planar
structures lipid bilayers show a remarkable solid-like behaviour: they resist various types of deformation, such as extension,
bending, and fracture, much in the way a sheet of rubber does.
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2 Descriptions on different scales

Various descriptions of lipid molecules can be found in the literature. Microscopic models describe positions of molecules or,
in ‘coarse grained’ versions, of groups of molecules (e.g. heads and tails). On the macroscale cell membranes are considered
as smooth closed hypersurfaces. We will investigate a mesoscale model that introduces an energy functional defined on a class
of density functions of head and tail particles.

2.1 Energy on the macroscale: The Helfrich Hamiltonian and the Elastica functional

Canham, Helfrich, and Evans pioneered the modelling of lipid bilayer vesicles by energy methods [2, 4, 3]. The name of
Helfrich is now associated with a surface energy for closed vesicles, represented by a smooth boundaryless surface .S, of the
form

Eyetpricn () = / [k(H — Ho)* 4+ kK] dH>. (1)
s

Here k > 0 and E, H, € R are constants, H and K are the (scalar) total and Gaussian curvature, and 7?2 is the two-dimensional
Hausdorff measure. This energy functional, and many generalisations in the same vein, have been remarkably successful in
describing the wide variety of vesicle shapes [6].

A natural two-dimensional reduction of the Helfrich curvature energy is given by the classical bending energy of the curve,
the Elastica functional

W(r) = i / W2 dHL. @)
Y

Here  is a smooth closed curve in R? and x equals the scalar curvature of . This functional has a long history going back at
least to Jakob Bernoulli; critical points of this energy are known as Euler Elastica.

2.2 Energy on a mesoscale: The functional F.

Whereas microscale descriptions often are too complex, the macroscale models are only phenomenological and sometimes
too simple. We consider here an energy functional on a scale in between. The derivation is inspired by well-known models
of block copolymers, and uses a number of sometimes radical simplifications. Nevertheless we demonstrate that the model
captures enough of the essence of lipid bilayers to address the issues of partial localisation and solid-like behaviour.

In a rescaled version the mesoscale energy is given by a class of admissible functions

K. = {(u,v) € BV(R*{0,e7"}) x L' (R*{0,e7'}) : /u = /v =M, uww=0 a.e.} 3)
and functionals F,,

1
5/ |Vu| + gdl(% v) if (u,v) € K¢,

00 otherwise.

Fe(u,v) := %)

Here d (-, -) is the Monge-Kantorovich distance as defined in Definition 4.1, € > 0 is a small parameter and M > 0 is fixed.
Despite of the simplifications in the derivation the physical origin of the various elements of F. remains identifiable:

e The functions w and v represent densities of tail and head particles;

e The term ¢ [ |Vu|, coupled with the restriction to functions u and v that take only two values, and have disjoint support,
represents an interfacial energy;

e The Monge-Kantorovich distance d; (u, v) between v and v is a weak remnant of the covalent bonding between head and
tail particles.

By (3) the small parameter € > 0 introduces a large density scaling. We prove that F favours partial localised structures
and that the parameter ¢ in fact corresponds to ‘the thickness’ of the support of u,v. We will also show that F. displays
solid-like behaviour in the sense of a penalisation of stretching, fracture, and bending.

3 Results

Here we motivate and informally describe our main results.
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3.1 Motivation: Special structures

To gain some insight into the properties of F. (u, v) one can study particular choices of u, v which allow to compute the value
of F-.

1. A disc: concentrate all the mass of u into a disc in R2, of radius R ~ ¢'/2M'/2 surrounded by the mass of v in an
annulus. Since d (u, v) is approximated by an ‘average transport distance’ multiplied by the total mass M this gives

Fe(u,v) ~ e V2M 4 V2012

2. A strip: take the support of u to be a rectangle of width te and length M /¢, flanked by two strips of half this width for
supp v. Then

t 2
Fe(u,v) = §M+ ¥M+ 2te.

Comparing the two one observes that the strip structure has lower energy, for small ¢, than a spherical one. For the strip
structure we find that there is a preferred thickness given by 2¢ and that the energy is at least 2M plus ‘higher order terms’.

This is a first indication that . may favour partial localisation.

Explicit calculations can also be done for ring structures. There one observes that the curvature of the structures create an
energy penalty on the order O(£?). This gives a hint how . is related to a bending energy.

3.2 Statement of the results
We study the behaviour of th mesoscale energy F. in the singular limit ¢ — 0 and consider the rescaled functionals
Fe —2M
e =" —.
€
Our result can be described as follows:

Theorem 3.1 Tuke any sequence (u.,v:)eso C K. with small energy in the sense that G (u.,v.) remains bounded. Then
the sequence (u.).~o converges as measures to a finite collection of closed curves of class W22, Moreover, each curve in this
collections appears an even number of times and the curves do not transversally intersect.

Theorem 3.2 The functionals G. Gamma-converge to the curve bending energy W, generalised to systems of curves: For
a system of curves T' = {1, ..., 7n }, N € N, which satisfies the conditions that 1, ..., YN are closed, of class W*?2, have no
self-intersections and that Zil length(y;) = M, the value of the limit functional is given by

N
W) = > W(v).
i=1

If any of the conditions above is not satisfied the value of the limit functional is infinity.

Our results in fact show that the essence of lipid bilayer behaviour is captured by the mesoscale model:

e Partial localisation: Boundedness of G. along a sequence u.,v. implies that the support of u. resembles a tubular
e-neighbourhood of a curve.

e No Stretching: All curves which belong to a system of curves with finite energy carry a constant density function (the
constant being one).

e No Fracture: A curve which belongs to a system of curves with finite energy is necessarily closed.

e Bending stiffness: The Gamma-limit of the functional G, equals the generalised Elastica functional.

4 Ingredients of the proofs

The Monge-Kantorovich distance d; (u, v), which is part of F. (u, v), is characterised by an optimal mass transport problem.

Definition 4.1 For (u,v) € K. the Monge-Kantorovich distance d; (u,v) is given by the minimal cost for transporting u
towv,

dy (u,v) = msin/Rz |S(z) — x|u(x) dz

where the minimum is taken over all maps S : supp(u) — supp(v) which push u forward to v in the sense that

/ n(S(m))u(x)dx:/ n(y)v(y)dy foralln € CO(R?).
RQ

R2
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An optimal transport map S as above exists [1] and satisfies that
e the transport is along transport rays, which are line-segments in R?,
e two different transport rays can only intersect in a common endpoint.

Let the boundary of supp(u) be given by a collection of smooth closed curves 7; with length L;, ¢ = 1,...,N. We use
these curves and the transport rays to parametrise the support of u, v and to compute d; (u, v). The key observation is that
the transport problem above splits into one-dimensional mass transport problems in suitably defined mass coordinates. This
coordinates depend on the local geometry, in particular on

o the angle between the ray directions and the tangential of a boundary curve,
e the rate of change of the ray directions.

The crucial estimate we prove is
MR 1 1 2
-(u,v) > —7—1)Mi 24+ = (M;(s) —1 d
) 2 Y. (G — 1)+ S 0n 17 as

N .L. (s .
+ ;/0 4Sin1ﬁi(8) (Sfﬂi(l))4ai(8) ds )

The quantities in this inequality are related to the geometry of u, v as follows:

e [3;(s) corresponds to the angle between +;(s) and the ray through ~;(s),
e «(s) corresponds to the derivative in y;(s) of the ray directions,
e M;(s) represents the ‘relative mass’ over 7;(s).

The inequality (5) shows that for small £ > 0 the ray directions become perpendicular to the boundary curves, and the relative
mass M, (s) is approximately one. The latter property is related to a constant thickness 2¢ of the support of w and by the first
property o (s)? is approximately the squared curvature of 7; in ~;(s). In this way the last term in (5) motivates the bending
energy in the limit.

Taking a sequence (., vc)e>0 With uniformly bounded values of G. we first derive that the boundary curves of supp(u.)
are compact. We prove that their limit coincides with the limit of the measures u.£2. Finally from (5) we deduce the lower
semicontinuity property belonging to the Gamma-convergence stated in Theorem 3.2.

5 Conclusions

The mesoscale model investigated in this presentation reproduces some key properties of bilayer membranes. The mathemat-
ical analysis of the corresponding energy functional gives an example of stable partially localised patterns and yields a new
approximation of the Elastica functional.

Our analysis is a starting point to investigate more realistic models. An extension to three-dimensions and the replacement
of the Monge-Kantorovich distance term in F. by the more realistic 2-Wasserstein distance term is desirable. A characterisa-
tion of local minima of the functionals F; and their convergence as ¢ — 0 are further interesting questions.

The energy F.(u,v) is a prototype of similar energies consisting of a nonlocal distance term and an interfacial energy, e.g.
arising in models for block copolymers. The detailed information we have obtained here supports also the understanding of
more general energies.
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