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FROM DIFFUSION TO REACTION VIA Γ-CONVERGENCE∗
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Abstract. We study the limit of high activation energy of a special Fokker–Planck equation
known as the Kramers–Smoluchowski equation (KS). This equation governs the time evolution of
the probability density of a particle performing a Brownian motion under the influence of a chemical
potential H/ε. We choose H having two wells corresponding to two chemical states A and B. We
prove that after a suitable rescaling the solution to KS converges, in the limit of high activation
energy (ε → 0), to the solution of a simple system modeling the diffusion of A and B, and the
reaction A ! B. The aim of this paper is to give a rigorous proof of Kramers’s formal derivation and
to embed chemical reactions and diffusion processes in a common variational framework which allows
one to derive the former as a singular limit of the latter, thus establishing a connection between two
worlds often regarded as separate. The singular limit is analyzed by means of Γ-convergence in the
space of finite Borel measures endowed with the weak-∗ topology.

Key words. unification, scale-bridging, upscaling, high-energy limit, activation energy, Dirichlet
forms, Mosco-convergence, variational evolution equations

AMS subject classifications. 35K57, 35Q84 (49J45, 49S05, 80A30)

DOI. 10.1137/090781474

1. Introduction.

1.1. Chemical reaction as a diffusion process. In a seminal paper in 1940,
Hendrik Anthony Kramers described a number of approaches to the problem of cal-
culating chemical reaction rates [12]. One of the limit cases in this paper is equivalent
to the motion of a Brownian particle in a (chemical) potential landscape. In this
description a reaction event is the escape of the particle from one energy well into
another.

This description is interesting for a number of reasons. It provides a connection
between two processes, diffusion and reaction, which are often—especially at the
macroscopic level—viewed as completely separate. It also provides a link between a
macroscopic effect—chemical reaction—and a more microscopic, underlying motion,
and in doing so, it highlights the fact that diffusion and reaction ultimately spring
from the same underlying motion. It finally also allows for explicit calculation of
reaction rates in terms of properties of the energy landscape.

In this paper we contribute to this discussion by studying the limit process of
high activation energy in the unimolecular reaction A ! B. As a first contribution,
this provides a rigorous proof of the result that Kramers had derived formally. At the
same time we extend his result to a Brownian motion in the product space spanned
by both the chemical variable of Kramers and the variables corresponding to position
in space, resulting in a limit system that models not only chemical reaction but also
spatial diffusion—a simple reaction-diffusion system.
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(giuseppe.savare@unipv.it).
§Fakultät für Mathematik, Technische Universität Dortmund, Dortmund, Germany (marco.

veneroni@math.uni-dortmund.de).

1805



1806 M. A. PELETIER, G. SAVARÉ, AND M. VENERONI

With this paper we have two aims. The first is to clarify the mathematical—
rigorous—aspects of the formal results of [12] and extend them to include spatial
diffusion, and in this way to contribute to the upscaling of microscopic systems. The
second is to make a first step in the construction of a variational framework that can
describe the combination of general diffusive and chemically reactive processes. From
this point of view it would be interesting, for example, to place the limit system in the
context of Wasserstein gradient flows (see also section 1.10). Initiated by the work
of Otto [11, 16] and extended into many directions since, this framework provides
an appealing variational structure for very general diffusion processes, but chemical
reactions have so far resisted representation in the Wasserstein framework.

In this paper we treat only the simple equation A ! B, but we plan to extend
the approach to other systems in the future (see also [14]).

1.2. The set-up: Enthalpy. We consider the unimolecular reaction A ! B.
In chemical terms the A and B particles are two forms of the same molecule, such
that the molecule can change from one form into the other. A typical example is
a molecule with spatial asymmetry, which might exist in two distinct, mirror-image
spatial configurations; another example is that of enzymes, for which the various
spatial configurations also have different biological functions.

Remark. Classical, continuum-level modeling of the system of A and B particles
that diffuse and react (see, e.g., [9, 3]) leads to the set of differential equations, where
we write A and B for the concentrations of A and B particles:

∂tA−D∆A = k(B −A),(1.1a)

∂tB −D∆B = k(A−B).(1.1b)

(See section 1.10 for the equal reaction rates.) This system will arise as the upscaling
limit (see Theorem 1.1) of the system that we now develop in detail.

We next assume that the observed forms A and B correspond to the wells of an
appropriate energy function. Since it is common in the chemical literature to denote
by “enthalpy difference” the release or uptake of heat as a particle A is converted into
a particle B, we shall adopt the same language and consider the A and B states to
correspond to the wells of an enthalpy function H .

While the domain of definition of H should be high-dimensional, corresponding
to the many degrees of freedom of the atoms of the molecule, we will here make the
standard reduction to a one-dimensional dependence. The variable ξ is assumed to
parametrize an imaginary “optimal path” connecting the states A and B, such that
ξ = −1 corresponds to A and ξ = 1 to B. Such a path should pass through the
“mountain pass,” the point which separates the basins of attraction of A and B, and
we arbitrarily choose that mountain pass to be at ξ = 0, with H(0) = 1. We also
restrict ξ to the interval [−1, 1], and we assume for simplicity that the wells are at
equal depth, which we choose to be zero. A typical example of the function H is
shown in Figure 1.

Specifically we make the following assumptions about H : H ∈ C∞([−1, 1]), and
H is even in ξ, maximal at ξ = 0 with value 1, and minimal at ξ = ±1 with value 0;
H(ξ) > 0 for any −1 < ξ < 1; H ′(±1∓) = 0. The assumption of equal depth for the
two wells corresponds to an assumption about the rate constants of the two reactions;
we comment on this in section 1.10.

1.3. Diffusion in the chemical landscape. This newly introduced “chemical
variable” ξ should be interpreted as an internal degree of freedom of the particle,
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Fig. 1. A typical function H.

associated with internal changes in configuration. In the case of two alternative states
of a molecule, ξ parametrizes all the intermediate states along a connecting path.

In this view the total state of a particle consists of this chemical state ξ together
with the spatial position of the particle, represented by a d-dimensional spatial variable
x in a Lipschitz, bounded, and open domain Ω ⊂ Rd, so that the full state space for
the particle is the closure D of

D := Ω× (−1, 1) with variables (x, ξ).

Taking a probabilistic point of view, and following Kramers, the motion of the particle
will be described in terms of its probability density ρ ∈ P(D) in the sense that for
Borel sets X ⊂ Ω and Ξ ⊂ [−1, 1] the number ρ(X × Ξ) is the probability of finding
the particle at a position x ∈ X and with a “chemical state” ξ ∈ Ξ.

The particle is assumed to perform a Brownian motion in D, under the influ-
ence of the potential landscape described by H . This assumption corresponds to the
“large-friction limit” discussed by Kramers. The time evolution of the probability
distribution ρ then is given by the Kramers–Smoluchowski equation (KS)

(1.2) ∂tρ−∆xρ− τ∂ξ
(
∂ξρ+ ρ ∂ξH

)
= 0 in D ′(D × (0,∞)),

with initial condition ρ0 and Neumann boundary conditions on the lateral boundary
∂D, which imply reflection of the Brownian particle at the boundaries. The coefficient
τ > 0 is introduced to parametrize the difference in scales for x and ξ: since x is a
rescaled physical distance, and ξ is a rescaled “chemical” distance, the units of length
in the two variables are different, and the parameter τ can be interpreted as the factor
that converts between the two scales. Below we shall make an explicit choice for τ .

1.4. The limit of high activation energy. In the set-up as described above,
there is a continuum of states (i.e., (−1, 1)) connecting the A state to the B state,
and a statement of the type “the particle is in the A state” is therefore not well
defined. In order to make a connection with the macroscopic description “A ! B,”
which presupposes a clear distinction between the two states, we take the limit of
high activation energy, as follows.

We rescale the enthalpy H with a small parameter ε to make it H(ξ)/ε. (This is
called “high activation energy” since maxξ H(ξ)/ε = 1/ε is the height of the mountain
that a particle has to climb in order to change states.)

This rescaling has various effects on the behavior of solutions ρ of (1.2). To
illustrate one effect, let us consider the invariant measure γε, the unique stationary
solution in P(D) of (1.2):

(1.3) γε = λΩ ⊗ γ̃ε, λΩ :=
1

Ld(Ω)
Ld

|Ω, γ̃ε = Z−1
ε e−H/εL1

|[−1,1]

(where L1,Ld are the one- and d-dimensional Lebesgue measures). The constant Zε

is fixed by the requirement that γε(D) = γ̃ε([−1, 1]) = 1.
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Fig. 2. The density γ̃ε.

Since H is strictly positive at any −1 < ξ < 1, the exponential exp(−H(ξ)/ε)
vanishes, as ε → 0, at all ξ except for ξ = ±1 (see Figure 2); therefore, the measure
γε concentrates on the lines ξ = −1 and ξ = 1 and converges weakly-∗ as ε → 0 to
the limit measure γ given by

(1.4) γ = λΩ ⊗ γ̃, γ̃ :=
1

2

(
δ−1 + δ1

)
.

Here weak-∗ convergence is to be interpreted in the duality with continuous functions
in D (thus considering P(D) as a weakly-∗ closed convex subset of the space M (D) =(
C0(D)

)′
of signed Borel measures with finite total variation), i.e.,

lim
ε→0

∫

D
φ(x, ξ) dγε =

∫

D
φ(x, ξ) dγ(x, ξ) =

1

2

∫

Ω

(
φ(x,−1) + φ(x, 1)

)
dλΩ(x)

for any φ ∈ C0(D).
We should interpret the behavior of γε as follows. In the limit ε → 0, the deep

wells at ξ = ±1 force particles to stay increasingly close to the bottom of the wells.
However, at any given ε > 0, there is a positive probability that a particle switches
from one well to the other in any given period of time. The rate at which this happens
is governed by the local structure of H near ξ = ±1 and near ξ = 0 and becomes very
small, of order ε−1 exp(−1/ε), as we shall see below.

In the limit ε = 0, the behavior of particles in the ξ-direction is no longer rec-
ognizable as diffusional in nature. In the ξ-direction a particle can be in only one of
two states ξ = ±1, which we therefore interpret as the A and B states. Of the diffu-
sional movement in the ξ-direction only a jump process remains, in which a particle
at ξ = −1 jumps with a certain rate to position ξ = 1, or vice versa.

To prevent formation of initial boundary layers, we will also assume that the
family of initial data ρ0ε has a similar asymptotic behavior; i.e., it weakly-∗ converges
to a limit measure ρ0 = 1

2u
0− λΩ⊗δ−1+

1
2u

0+ λΩ⊗δ+1 concentrated in the two states
ξ = ±1. We will discuss this aspect in section 1.7.

1.5. Spatiochemical rescaling. Since the jumping (chemical reaction) rate at
finite ε > 0 is of order ε−1 exp(−1/ε), the limiting reaction rate will be zero unless
we rescale the system appropriately. This requires us to speed up time by a factor of
ε exp(1/ε). At the same time, the diffusion rate in the x-direction remains of order 1
as ε → 0, and the rescaling should preserve this. In order to obtain a limit in which
both diffusion in x and chemical reaction in ξ enter at rates that are of order 1, we
use the freedom of choosing the parameter τ that we introduced above.

We therefore choose τ equal to

(1.5) τε := ε exp(1/ε),
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and we then find the differential equation

(1.6) ∂tρε −∆xρε − τε∂ξ(∂ξρε + 1
ερε ∂ξH) = 0 in D ′(D × (0,∞)),

which clearly highlights the different treatment of x and ξ: the diffusion in x is
independent of τε, while the diffusion and convection in the ξ-variable are accelerated
by a factor τε.

1.6. Switching to the density variable. As is already suggested by the be-
havior of the invariant measure γε, the solution ρε will become strongly concentrated
at the extremities {±1} of the ξ-domain (−1, 1). This is the reason why it is useful
to interpret ρε as a family ρε(t, ·) of time-dependent measures instead of functions. It
turns out that the densities uε(t, ·),

uε(t, ·) :=
dρε(t, ·)
dγε

,

of ρε(t, ·) with respect to γε also play a crucial role, and it is often convenient to have
both representations at our disposal, freely switching between them. In terms of the
variable uε, (1.6) becomes

(1.7) ∂tuε −∆xuε − τε(∂2ξξ uε − 1
ε∂ξH∂ξuε) = 0 in (0,+∞)×D,

supplemented with the boundary conditions
(1.8)
∂ξuε(t, x,±1) = 0 for all x ∈ Ω, ∇xuε(t, x, ξ)·n = 0 on ∂Ω× [−1, 1], t > 0.

We choose an initial condition

(1.9) uε(0, x, ξ) = u0
ε(x, ξ) for all (x, ξ) ∈ D, with ρ0ε = u0

εγε ∈ P(D).

Let us briefly say something about the functional-analytic setting. It is well known
(see, e.g., [7]) that the operator Aε := −∆x − τε∂2ξξ + (τε/ε)H ′ ∂ξ with Neumann
boundary conditions (1.8) has a self-adjoint realization in the space Hε := L2(D; γε).
Therefore, the weak form of (1.7) can be written as

(1.10) bε(∂tu(t), v) + aε(u(t), v) = 0 for all v ∈ Vε,

where the bilinear forms aε and bε are defined by

bε : Hε ×Hε → R, bε(u, v) :=

∫

D
u v dγε,

and

Vε := W 1,2(D; γε) :=
{
u ∈ L2(D; γε) ∩W 1,1

loc (D) :

∫

D
|∇x,ξu|2 dγε < +∞

}
,

aε : Vε × Vε → R, aε(u, v) :=

∫

D
Aεu v dγε =

∫

D

(
∇xu∇xv + τε∂ξuε∂ξ v

)
dγε.

Since Vε is densely and continuously imbedded in Hε, standard results on variational
evolution equations in a Hilbert triplet (see, e.g., [13, 6]) and their regularizing effects
show that a unique solution exists in C([0,∞);Hε) ∩C∞((0,∞);Vε) for every initial
datum u0

ε ∈ Hε.



1810 M. A. PELETIER, G. SAVARÉ, AND M. VENERONI

1.7. Main result I: Weak convergence of ρε and uε. The following theorem
is the first main result of this paper. It states that for every time t ≥ 0 the measures
ρε(t) that solve (1.6) weakly-∗ converge to a limiting measure ρ(t) in P(D), whose

density u(t) = dρ(t)
dγ is the solution of the limit system (1.1). Note that for a function

u ∈ L2(D, γ) the traces u± = u(·,±1) ∈ L2(Ω) are well defined (in fact, the map
u ,→ (u−, u+) is an isomorphism between L2(D, γ) and L2(Ω, 1

2λΩ;R
2)).

We state our result in a general form, which holds even for signed measures in
M (D).

Theorem 1.1. Let ρε = uε γε ∈ C0([0,+∞);M (D)) be the solution of (1.6)–(1.9)
with initial datum ρ0ε. If

(1.11) sup
ε>0

∫

D
|u0

ε|2 dγε < +∞

and
(1.12)

ρ0ε weakly-∗ converges to ρ0 = u0γ =
1

2
u0− λΩ ⊗ δ−1 +

1

2
u0+ λΩ ⊗ δ+1 as ε ↓ 0,

then u0 ∈ L2(D; γ), u0,± ∈ L2(Ω), and, for every t ≥ 0, the solution ρε(t) weakly-∗
converges to

(1.13) ρ(t) = u(t) γ =
1

2
u−(t)λΩ ⊗ δ−1 +

1

2
u+(t)λΩ ⊗ δ+1,

whose densities u± belong to C0([0,+∞);L2(Ω)) ∩ C1((0,+∞);W 1,2(Ω)) and solve
the system

∂tu
+ −∆xu

+ = k(u− − u+) in Ω× (0,+∞),(1.14a)

∂tu
− −∆xu

− = k(u+ − u−) in Ω× (0,+∞),(1.14b)

u±(0) = u0,± in Ω.(1.14c)

The positive constant k in (1.14a)–(1.14b) can be characterized as the asymptotic
minimal transition cost

k =
1

π

√
|H ′′(0)|H ′′(1)(1.15)

= lim
ε↓0

min

{
τε

∫ 1

−1

(
ϕ′(ξ)

)2
dγ̃ε : ϕ ∈ W 1,2(−1, 1), ϕ(±1) = ± 1

2

}
.

Remark (the variational structure of the limit problem). The “ε = 0” limit prob-
lem (1.14a)–(1.14c) admits the same variational formulation of the “ε > 0” problem
we introduced in section 1.6. Recall that γ is the measure defined in (1.4) as the
weak limit of γε; we set H := L2(D, γ), and for every ρ = uγ with u ∈ H we set
u±(x) := u(x,±1) ∈ L2(Ω,λΩ). We define

(1.16) b(u, v) :=

∫

D
u(x, ξ)v(x, ξ) dγ(x, ξ) =

1

2

∫

Ω

(
u+v+ + u−v−

)
dλΩ.

Similarly, we set V :=
{
u ∈ H : u± ∈ W 1,2(Ω)

}
, which is continuously and densely

imbedded in H , and

(1.17) a(u, v) :=
1

2

∫

Ω

(
∇xu

+∇xv
+ +∇xu

−∇xv
− + k

(
u+ − u−)(v+ − v−)

)
dλΩ.
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Then the system (1.14a)–(1.14c) can be formulated as

(1.18) b(∂tu(t), v) + a(u(t), v) = 0 for every t > 0 and v ∈ V ,

which has the same structure as (1.10).

1.8. Main result II: A stronger convergence of uε. Weak-∗ convergence
in the sense of measures is a natural choice in order to describe the limit of ρε, since
the densities uε and the limit density u = (u+, u−) are defined on different domains
with respect to different reference measures. Nonetheless it is possible to consider
a stronger convergence which better characterizes the limit, and to prove that it is
satisfied by the solutions of our problem.

This stronger notion is modeled on Hilbert spaces (or, more generally, on Banach
spaces with a locally uniformly convex norm), where strong convergence is equivalent
to weak convergence together with the convergence of the norms:

(1.19) xn → x ⇐⇒ xn ⇀ x and ‖xn‖ → ‖x‖.

In this spirit, the next result states that under the additional request of “strong”
convergence of the initial data u0

ε, we have “strong” convergence of the densities uε;
we refer the reader to [18, 10] (see also [2, section 5.4]) for further references in a
measure-theoretic setting.

Theorem 1.2. Let ρε, ρ0ε be as in Theorem 1.1. If, moreover,

(1.20) lim
ε↓0

bε(u
0
ε, u

0
ε) = b(u0, u0),

then for every t > 0 we have

(1.21) lim
ε↓0

bε(uε(t), uε(t)) = b(u(t), u(t))

and

(1.22) lim
ε↓0

aε(uε(t), uε(t)) = a(u(t), u(t)).

Applying, e.g., [2, Theorem 5.4.4] we can immediately deduce the following result,
which clarifies the strengthened form of convergence that we are considering here. This
convergence is strong enough to allow us to pass to the limit in nonlinear functions
of uε.

Corollary 1.3. Under the same assumptions as in Theorem 1.2 we have

lim
ε↓0

∫

D
f(x,ξ, uε(x, ξ, t)) dγε(x, ξ) =

∫

D
f(x, ξ, u(x, ξ, t)) dγ(x, ξ)

(1.23)

=
1

2

∫

Ω

(
f(x,−1, u−(x, t)) + f(x, 1, u+(x, t))

)
dλΩ(x) for every t > 0,

where f : D × R → R is an arbitrary continuous function satisfying the quadratic
growth condition

|f(x, ξ, r)| ≤ A+Br2 for every (x, ξ) ∈ D, r ∈ R,

for suitable nonnegative constants A,B ∈ R.
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1.9. Structure of the proof. Let us briefly explain the structure of the proof
of Theorems 1.1 and 1.2. This will also clarify the term Γ-convergence in the title and
highlight the potential of the method for wider application.

The analogy between (1.10) and (1.18) suggests passing to the limit in these weak
formulations, or even better, in their equivalent integrated forms
(1.24)

bε(uε(t), vε) +

∫ t

0
aε(uε(t), vε) dt = b(u0

ε, vε), b(u(t), v) +

∫ t

0
a(u(t), v) dt = b(u0, v).

Applying standard regularization estimates for the solutions to (1.10) and a weak
coercivity property of bε, it is not difficult to prove that uε(t) “weakly” converges to
u(t) for every t > 0, i.e.,

ρε(t) = uε(t)γε ⇀ ρ(t) = u(t)γ weakly-∗ in M (D).

The concept of weak convergence of densities that we are using here is thus the same
as in Theorem 1.1, i.e., weak-∗ convergence of the corresponding measures in M (D).

In order to pass to the limit in (1.24), the central property is the following weak-
strong convergence principle:

For every v ∈ V there exists vε ∈ Vε with vε ⇀ v as ε→ 0 such that
for every uε ⇀ u

bε(uε, vε) → b(u, v) and aε(uε, vε) → a(u, v).

Note that the previous property implies in particular that the recovery family vε
converges “strongly” to v, according to the notion considered by Theorem 1.2, i.e.,
vε → v iff vε ⇀ v with both bε(vε, vε) → b(v, v) and aε(vε, vε) → a(v, v). Corollary 3.3
shows that this weak-strong convergence property can be derived from Γ-convergence
in the “weak” topology of the family of quadratic forms

(1.25) qκε (u) := bε(u, u)+κ aε(u, u) to qκ(u) := b(u, u)+κ a(u, u) for κ > 0.

In order to formulate this property in the standard framework of Γ-convergence, we
will extend aε and bε to lower-semicontinuous quadratic functionals (possibly assum-
ing the value +∞) in the space M (D), following the approach of [8, Chap. 11–13].
While the Γ-convergence of bε is a direct consequence of the weak convergence of γε
to γ, the convergence of aε is more subtle. The convergence of aε and the structure
of the limit depend critically on the choice of τε (defined in (1.5)): as we show in
section 3.2, the scaling of τε in terms of ε is chosen exactly such that the strength of
the “connection” between ξ = −1 and ξ = 1 is of order O(1) as ε→ 0.

The link between Γ-convergence and stability of evolution problems of parabolic
type is well known when bε = b is a fixed and coercive bilinear form (see, e.g., [4,
Chap. 3.9.2]) and can therefore be considered as the scalar product of the Hilbert
space Hε ≡ H . In this case the embedding of the problems in a bigger topological
vector space (the role played by M (D) in our situation) is no more needed, and one
can deal with the weak and strong topology of H , obtaining the following equivalent
characterizations (see, e.g., [5, Th. 3.16] and [8, Th. 13.6]):

1. Pointwise (strong) convergence in H of the solutions of the evolution prob-
lems.

2. Pointwise convergence in H of the resolvents of the linear operators associated
to the bilinear forms aε.
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3. Mosco-convergence in H of the quadratic forms associated to aε (i.e., Γ-con-
vergence with respect to both the weak and the strong topology of H ; see
[15] and [4, sect. 3.3] for the precise definition).

4. Γ-convergence in the weak topology of H of the quadratic forms b + κ aε to
b+ κ a for every κ > 0.

In the present case, where bε does depend on ε, Γ-convergence of the extended
quadratic forms bε+κ aε with respect to the weak-∗ topology of M (D) is thus a natural
extension of the latter condition; Theorem 3.1 can be interpreted as essentially proving
a slightly stronger version of this property. Starting from this Γ-convergence result,
we will derive the convergence of the evolution problems by a simple and general
argument, which we will present in section 4.

1.10. Discussion. The result of Theorem 1.1 is among other things a rigorous
version of the result of Kramers [12] that was mentioned in the introduction. It shows
that the simple reaction-diffusion system (1.14) can indeed be viewed as an upscaled
version of a diffusion problem in an augmented phase space, or, equivalently, as an
upscaled version of the movement of a Brownian particle in the same augmented phase
space.

At the same time it generalizes the work of Kramers by adding the spatial di-
mension, resulting in a limit system which, for this choice of τε (see below for more
on this choice), captures both reaction and diffusion effects.

Measures versus densities. It is interesting to note the roles of the measures ρε, ρ
and their densities uε, u with respect to γε, γ. The variational formulations of the
equations are done in terms of the densities uε, u, but the limit procedure is better
understood in terms of the measures ρε, ρ, since a weak-∗ convergence is involved.
This also allows for a unification of two problems with a different structure (a Fokker–
Planck equation for uε and a reaction-diffusion system for the couple u−, u+).

Gradient flows. The weak formulation (1.10) shows also that a solution uε can
be interpreted as a gradient flow of the quadratic energy 1

2aε(u, u) with respect to
the L2(D; γε) distance. Another gradient flow structure for the solutions of the same
problem could be obtained by a different choice of energy functional and distance: for
example, as proved in [11], Fokker–Planck equations like (1.6) can be interpreted also
as the gradient flow of the relative entropy functional

H(ρ|γε) :=
∫

D

dρ

dγε
log

( dρ

dγε

)
dγε(1.26)

in the space P(D) of probability measures endowed with the so-called L2-Wasserstein
distance (see, e.g., [2]). Other recent work [1] suggests that the Wasserstein setting can
be the most natural for understanding diffusion as a limit of the motion of Brownian
particles, but in this case it is not obvious how to interpret the limit system in the
framework of gradient flows on probability measures, and how to obtain it in the limit
as ε→ 0.

In a forthcoming paper we investigate a new distance for the limit problem, mod-
eled on the reaction-diffusion term, and we study how the limit couple of energy and
dissipation can be obtained as a Γ-limit.

The choice of τε. In this paper the time scale τε is chosen to be equal to ε exp(1/ε),
and a natural question to ask is about the limit behavior for different choices of τε.
If the scaling is chosen differently, i.e., if τεε−1 exp(−1/ε) converges to 0 or ∞, then
completely different limit systems are obtained:
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• If τε 3 ε exp(1/ε), then the reaction is not accelerated sufficiently as ε→ 0,
and the limit system will contain only diffusion (i.e., k = 0 in (1.14)).

• If τε 4 ε exp(1/ε), on the other hand, then the reaction is made faster and
faster as ε → 0, resulting in a limit system in which the chemical reaction
A " B is in continuous equilibrium. Because of this, both A and B have the
same concentration u, and u solves the diffusion problem

∂tu = ∆u for x ∈ Ω, t > 0,

u(0, x) =
1

2

(
u0,+(x) + u0,−(x)

)
for x ∈ Ω.

Note the instantaneous equilibration of the initial data in this system.
While the scaling in terms of ε of τε cannot be chosen differently without obtaining

structurally different limit systems, there is still a choice in the prefactor. For τε :=
τ̃ εe1/ε with τ̃ > 0 fixed, the prefactor τ̃ will appear in the definition (1.15) of k.

There is also a modeling aspect to the choice of τ . In this paper we use no
knowledge about the value of τ in the diffusion system at finite ε; the choice τ = τε is
motivated by the wish to have a limit system that contains both diffusive and reactive
terms. If one has additional information about the mobility of the system in the x-
and ξ-directions, then the value of τ will follow from this.

Equal rate constants. The assumption of equal depth of the two minima of H
corresponds to the assumption (or, depending on one’s point of view, the result) that
the rate constant k in (1.14) is the same for the two reactions A → B and B → A.
The general case requires a slightly different choice for H , as follows.

Let the original macroscopic equations for the evolution of A and B (in terms of
densities that we also denote A and B) be

∂tA−∆A = k−B − k+A,(1.27a)

∂tB −∆B = k+A− k−B.(1.27b)

Choose a fixed function H0 ∈ C∞([−1, 1]) such that H ′
0(±1) = 0 and H0(1) −

H0(−1) = log k− − log k+. We then construct the enthalpy Hε by setting

Hε := H0 +
1

ε
H,

where H is the same enthalpy function as above. The same proof as for the equal-well
case then gives convergence of the finite-ε problems to (1.27).

Equal diffusion constants. It is possible to change the set-up such that the limiting
system has different diffusion rates in A and B. We first write (1.6) as

∂tρ− divDεFε = 0,

where the mobility matrix Dε ∈ R(d+1)×(d+1) and the flux Fε are given by

Dε =

(
I 0
0 τε

)
and Fε = Fε(ρ) =

(
∇u

∇ρ+ ρ∇H

)
.

By replacing the identity matrix block I in Dε by a block of the form a(ξ) I, the
x-directional diffusion can be modified as a function of ξ. This translates into two
different diffusion coefficients for A and B.

The function H. The limit result of Theorem 1.1 shows that only a small amount
of information about the function H propagates into the limit problem: specifically,
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the local second-order structure of H around the wells and around the mountain-pass
point.

One other aspect of the structure of H is hidden: the fact that we rescaled the
ξ variable by a factor of

√
τε can also be interpreted as a property of H , since the

effective distance between the two wells, as measured against the intrinsic distance
associated with the Brownian motion, is equal to 2

√
τε after rescaling.

We also assumed in this paper that H has only “half” wells, in the sense that H
is defined on [−1, 1] instead of R. This was for practical convenience, and one can do
essentially the same analysis for a function H that is defined on R. In this case one
will regain a slightly different value of k, namely, k =

√
|H ′′(0)|H ′′(1)/2π. (For this

reason this is also the value found by Kramers [12, equation (17)].)
Single particles versus multiple particles, and concentrations versus probabilities.

The description in this paper of the system in terms of a probability measure ρ on D
is the description of the probability of a single particle. This implies that the limit
object (u−, u+) should be interpreted as the density (with respect to γ) of a limiting
probability measure, again describing a single particle.

This is at odds with common continuum modeling philosophy, where the main
objects are concentrations (mass or volume) that represent a large number of par-
ticles; in this philosophy the solution (u−, u+) of (1.14) should be viewed as such a
concentration, which is to say as the projection onto x-space of a joint probability
distribution of a large number of particles.

For the simple reaction A " B these two interpretations are actually equivalent.
This arises from the fact that A → B reaction events in each of the particles are
independent of each other; therefore, the joint distribution of a large number N of
particles factorizes into a product of N copies of the distribution of a single particle.
For the case of this paper, therefore, the distinction between these two views is not
important.

More general reactions. The remark above implies that the situation will be dif-
ferent for systems where reaction events cause differences in distributions between
the particles, such as the reaction A+ B # C. This can be recognized as follows: a
particle A that has just separated from a B particle (in a reaction event of the form
C → A+B) has a position that is highly correlated with the corresponding B particle,
while this is not the case for all the other A particles. Therefore, the A particles will
not have the same distribution. The best one can hope for is that in the limit of a
large number of particles the distribution becomes the same in some weak way. This
is one of the major obstacles in developing a similar connection as in this paper for
more complex reaction equations.

Regarding possible extensions toward equations involving an arbitrary number of
chemical species, as well as different reaction and diffusion rates, we point out that a
formal gradient flow structure has recently been established in [14], independently of
this work.

1.11. Plan of the paper. One of the main difficulties in the proof of Theo-
rem 1.1, namely, the singular behavior given by the concentration of the invariant
measure γε onto the two lines at ξ = ±1, can be overcome by working in the underly-
ing space of (signed or probability) measures in D. This point of view is introduced in
section 2. Section 3 contains the basic Γ-convergence results (Theorem 3.1) and the
proof of Theorems 1.1 and 1.2. The argument showing the link between Γ-convergence
of the quadratic forms aε, bε and the convergence of the solutions to the evolution
problems (see the comments in section 1.9) is presented in section 4 in a general form
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which can be easily applied to other situations.

2. Formulation of the evolution equations in measure spaces.

The Kramers–Smoluchowski equation. We first summarize the functional
framework introduced above. Let us denote by (·, ·)ε the scalar product in Rd × R
defined by

(2.1) (x,y)ε := x · y + τε ξ η, for every x = (x, ξ), y = (y, η) ∈ Rd × R,

with the corresponding norm ‖ · ‖ε. We introduced two Hilbert spaces

Hε := L2(D, γε) and Vε = W 1,2(D, γε)

and the bilinear forms

bε(u, v) :=

∫

D
u v dγε for every u, v ∈ Hε,(2.2)

aε(u, v) :=

∫

D
(∇x,ξu,∇x,ξv)ε dγε for every u, v ∈ Vε,(2.3)

with which (1.7) has the variational formulation

(2.4) bε(∂tuε, v) + aε(uε, v) = 0 for every v ∈ Vε, t > 0; uε(0, ·) = u0
ε.

The main technical difficulty in studying the limit behavior of (2.4) as ε ↓ 0
consists of the ε-dependence of the functional spaces Hε, Vε. Since for our approach
it is crucial to work in a fixed ambient space, we embed the solutions of (2.4) in the
space of finite Borel measures M (D) by associating to uε the measure ρε := uεγε.
We thus introduce the quadratic forms

bε(ρ) := bε(u, u) if ρ3 γε and u =
dρ

dγε
∈ Hε,(2.5)

aε(ρ) := aε(u, u) if ρ3 γε and u =
dρ

dγε
∈ Vε,(2.6)

trivially extended to +∞ when ρ is not absolutely continuous with respect to γε or its
density u does not belong toHε or Vε, respectively. Denoting by Dom(aε) and Dom(bε)
their proper domains, we still denote by aε(·, ·) and bε(·, ·) the corresponding bilinear
forms defined on Dom(aε) and Dom(bε), respectively. Setting ρε := uεγε, σ := vγε,
(2.4) is equivalent to the integrated form

(2.7) bε(ρε(t),σ) +

∫ t

0
aε(ρε(r),σ) dr = bε(ρ

0
ε,σ) for every σ ∈ Dom(aε).

We also recall the standard estimates

1

2
bε(ρε(t)) +

∫ t

0
aε(ρε(r)) dr =

1

2
bε(ρ

0
ε) for every t ≥ 0,(2.8)

t aε(ρε(t)) + 2

∫ t

0
rbε(∂tρε(r)) dr =

∫ t

0
aε(ρε(r)) dr for every t ≥ 0,(2.9)

1

2
bε(ρε(t)) + t aε(ρε(t)) + t2bε(∂tρε(t)) ≤

1

2
bε(ρ

0
ε) for every t > 0.(2.10)
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Although versions of these expressions appear in various places, we were unable to
find a reference that completely suits our purposes. We therefore briefly describe their
proof, and we use the more conventional formulation in terms of the bilinear forms aε
and bε and spaces Hε and Vε; note that bε is an inner product for Hε, and bε + aε is
an inner product for Vε.

When u0 is sufficiently smooth, standard results (e.g., [6, Chapter VII]) provide
the existence of a solution uε ∈ C([0,∞);Vε)∩C∞((0,∞);Vε), such that the functions
t ,→ aε(uε(t)) and t ,→ bε(∂tuε(t)) are nonincreasing; in addition, the solution operator
(semigroup) St is a contraction in Hε. For this case all three expressions can be proved
by differentiation.

In order to extend them to all u0
ε ∈ Hε, we note that for fixed t > 0 the two

norms on Hε given by (the square roots of)

(2.11) u0
ε ,→ 1

2
bε(u

0
ε) and u0

ε ,→
1

2
bε(Stu

0
ε) +

∫ t

0
aε(Sru

0
ε) dr

are identical by (2.8) on an Hε-dense subset. If we approximate a general u0
ε ∈ Hε

by smooth u0
ε,n, then the sequence u0

ε,n is a Cauchy sequence with respect to both
norms; by copying the proof of completeness of the space L2(0,∞;Vε) (see, e.g., [6,
Theorem IV.8]) it follows that the integral in (2.11) converges. This allows us to pass
to the limit in (2.8). The argument is similar for (2.10), when one writes the sum
of (2.8) and (2.9) as

(2.12)
1

2
bε(uε(t)) + taε(uε(t)) + 2

∫ t

0
rbε(∂tuε(r)) dr =

1

2
bε(u

0
ε).

Finally, (2.10) follows by (2.12) since r ,→ bε(∂tuε(r)) is nonincreasing.

The reaction-diffusion limit. We now adopt the same point of view to formu-
late the limit reaction-diffusion system in the setting of measures. Recall that owing
to the special form (1.4) of γ, ρ3 γ implies ρ = 1/2(uλΩ ⊗ δ1 + uλΩ ⊗ δ−1), that for
u ∈ H := L2(D, γ) we set u±(x) := u(x,±1), and that we defined the function space

V :=
{
u ∈ H : u± ∈ W 1,2(Ω)

}

and the bilinear forms

b(u, v) =
1

2

∫

Ω

(
u+v+ + u−v−

)
dλΩ,(2.13)

a(u, v) :=
1

2

∫

Ω

(
∇xu

+∇xv
+ +∇xu

−∇xv
− + k

(
u+ − u−)(v+ − v−)

)
dλΩ.(2.14)

As before, we now extend these definitions to arbitrary measures by

b(ρ) := b(u, u) if ρ3 γ and u =
dρ

dγ
∈ H,(2.15)

a(ρ) := a(u, u) if ρ3 γ and u =
dρ

dγ
∈ V ,(2.16)

with corresponding bilinear forms b(·, ·) and a(·, ·); problem (1.14a)–(1.14c) can be
reformulated as

b(∂tρ(t),σ) + a(ρ(t),σ) = 0 for every t > 0 and σ ∈ Dom(a),
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or in the integral form

(2.17) b(ρ(t),σ) +

∫ t

0
a(ρ(r),σ) dr = b(ρ0,σ) for every σ ∈ Dom(a).

Since both problems (2.7) and (2.17) are embedded in the same measure space
M (D), we can study the convergence of the solution ρε of (2.7) as ε ↓ 0.

3. Γ-convergence result for the quadratic forms aε, bε. The aim of this
section is to prove the following Γ-convergence result.

Theorem 3.1. If ρε ⇀ ρ as ε ↓ 0 in M (D), then

(3.1) lim inf
ε↓0

aε(ρε) ≥ a(ρ), lim inf
ε↓0

bε(ρε) ≥ b(ρ).

For every ρ ∈ M (D) such that a(ρ) + b(ρ) < +∞ there exists a family ρε ∈ M (D)
weakly-∗ converging to ρ such that

(3.2) lim
ε↓0

aε(ρε) = a(ρ), lim
ε↓0

bε(ρε) = b(ρ).

Note that M (D) endowed with the weak-∗ topology is the dual of a separable
Banach space, and therefore the sequential definition of Γ-convergence coincides with
the topological definition [8, Proposition 8.1 and Theorem 8.10]; consequently The-
orem 3.1 implies the Γ-convergence of the families aε and bε. Theorem 3.1 actually
states a stronger result, since the recovery sequence can be chosen to be the same for
aε and bε. This joint Γ-convergence of the families aε and bε is nearly equivalent with
Γ-convergence of combined quadratic forms.

Lemma 3.2. Theorem 3.1 implies the

Γ(M (D))-convergence of qκε (ρ) := bε(ρ) + κ aε(ρ) to(3.3)

qκ(ρ) := b(ρ) + κ a(ρ)

for each κ > 0.
Conversely, if we assume (3.3), then (3.2) holds, and (3.1) follows under the

additional assumption

(3.4) lim sup
ε↓0

aε(ρε) + bε(ρε) = C < +∞.

Proof. The first part of the lemma is immediate. For the second part, suppose
that ρε ⇀ ρ and satisfies (3.4); the Γ-liminf inequality for qκε yields

lim inf
ε↓0

bε(ρε) ≥ lim inf
ε↓0

qkε(ρε)− Cκ ≥ qκ(ρ)− Cκ = b(ρ) + κ
(
a(ρ)− C

)

for every κ > 0, and therefore the second inequality of (3.1) follows by letting κ ↓ 0.
A similar argument yields the first inequality of (3.1).

Concerning (3.2), Γ-convergence of q1ε to q1 yields a recovery family ρε ⇀ ρ such
that

lim
ε↓0

aε(ρε) + bε(ρε) = a(ρ) + b(ρ) < +∞.

In particular, aε(ρε) + bε(ρε) is uniformly bounded, so that (3.1) yields the separate
convergence (3.2).
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One of the most useful consequences of (3.3) is contained in the next result (see,
e.g., [17, Lemma 3.6]).

Corollary 3.3 (weak-strong convergence). Assume that (3.3) holds for every
κ > 0, and let ρε,σε ∈ M (D) be two families weakly converging to ρ,σ as ε ↓ 0 and
satisfying the uniform bound (3.4), i.e.,

(3.5) lim sup
ε↓0

aε(ρε) + bε(ρε) < +∞, lim sup
ε↓0

aε(σε) + bε(σε) < +∞,

so that ρ,σ belong to the domains of the bilinear form a and b. We have

lim
ε↓0

aε(σε) = a(σ) =⇒ lim
ε↓0

aε(ρε,σε) = a(ρ,σ),(3.6)

lim
ε↓0

bε(σε) = b(σ) =⇒ lim
ε↓0

bε(ρε,σε) = b(ρ,σ).(3.7)

Proof. We reproduce here the proof of [17] in the case of the quadratic forms aε
(3.6). Note that by (3.5) and Lemma 3.2 we can assume that ρε and σε satisfy (3.1).
For every positive scalar r > 0 we have

2aε(ρε,σε) = 2aε(r ρε, r
−1σε) = aε(rρε + r−1σε)− r2aε(ρε)− r−2aε(σε).

Taking the inferior limit as ε ↓ 0 and recalling (3.1), we get for A := lim supε↓0 aε(ρε)

lim inf
ε↓0

2aε(ρε,σε) ≥ a(rρ+ r−1σ)− r2A− r−2a(σ) = 2a(ρ,σ) + r2
(
a(ρ)−A

)
.

Since r > 0 is arbitrary and A is finite by (3.5) we obtain lim infε↓0 aε(ρε,σε) ≥ a(ρ,σ)
and inverting the sign of σ we get (3.6).

We split the proof of Theorem 3.1 into various steps.

3.1. Estimates near Ω× {−1, 1}.
Lemma 3.4. If ρε = uεγε satisfies the uniform bound aε(ρε) ≤ C < +∞ for

every ε > 0, then for every δ ∈ (0, 1)

(3.8) ∂ξuε → 0 in L2(Ω× ωδ) as ε→ 0,

where ωδ := (−1,−δ) ∪ (δ, 1).
Proof. We observe that

τε

∫

D
(∂ξuε)

2 dγε ≤ aε(ρε) ≤ C < ∞.

If hδ = supξ∈ωδ
H(ξ) < 1, then infξ∈ωδ e

−H(ξ)/ε = e−hδ/ε, and we find

∫

Ω×ωδ

(∂ξuε)
2 dxdξ ≤ C

Zε

τε
e

hδ
ε = C

Zε

ε
e

hδ−1
ε .

Taking the limit as ε→ 0, we obtain (3.8).
Lemma 3.5 (convergence of traces). Let us suppose that ρε = uεγε ⇀ ρ = uγ

with aε(ρε) ≤ C < +∞, and let u±
ε (x) be the traces of uε at ξ = ±1. Then, as ε ↓ 0,

(3.9) u±
ε → u± strongly in L2(Ω),

where u± are the functions given by (1.13).
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Proof. Let us consider, e.g., the case of u−
ε . Let us fix δ ∈ (0, 1); by (3.8) and

standard trace results in W 1,2(−1,−1 + δ) we know that

(3.10) lim
ε↓0

∫

Ω
ω2
ε(x) dL

d = 0,

where

ω2
ε(x) := sup

−1≤ξ≤−1+δ
|uε(x, ξ)− u−

ε (x)|2 ≤ δ
∫ −1+δ

−1
|∂ξuε(x, ξ)|2dξ.

Let us fix a function φ ∈ C0(Ω) and a function ψ ∈ C0[−1, 1] with 0 ≤ ψ ≤ 1,
ψ(−1) = 1, suppψ ⊂ [−1,−1 + δ]; we set

Jε :=

∫ 1

−1
ψ(ξ) dγ̃ε(ξ), ũε(x) := J−1

ε

∫ 1

−1
uε(x, ξ)ψ(ξ) dγ̃ε(ξ),

where γ̃ε is the measure defined in (1.3). Note that

lim
ε→0

Jε = 〈ψ, γ〉 = 1

2
ψ(−1) +

1

2
ψ(1) =

1

2
.

Since ρε weakly converge to ρ, we know that

lim
ε↓0

∫

Ω
φ(x)ũε(x) dλΩ = lim

ε↓0
J−1
ε

∫

Ω
φ(x)ψ(ξ)uε(x, ξ) dγε(x, ξ) =

∫

Ω
φ(x)u−(x) dλΩ

so that ũε converges to u− in the duality with bounded continuous functions. On the
other hand,

∫

Ω
|∇xũε(x)|2 dλΩ ≤ J−1

ε

∫

Ω

∫ 1

−1
|∇xuε(x, ξ)|2ψ(ξ) dγ̃(ξ) dλΩ(x) ≤ J−1

ε aε(ρε) ≤ 2C

so that ũε → u− in L2(Ω) by the Rellich compactness theorem.
On the other hand, thanks to (3.10), we have

lim
ε↓0

∫

Ω

∣∣∣u−
ε (x)− ũε(x)

∣∣∣
2
dλΩ(x)

= lim
ε↓0

J−2
ε

∫

Ω

∣∣∣∣
∫ 1

−1
ψ(ξ)

(
uε(x, ξ) − u−(x)

)
dγ̃ε(ξ)

∣∣∣∣
2

dλΩ(x)

≤ lim
ε↓0

∫

D
ψ(ξ)ω2

ε (x) dγε(x, ξ) = 0,

which yields (3.9).
Remark. A completely analogous argument shows that if ρε satisfies aW 1,1(D; γε)-

uniform bound

(3.11)

∫

D
‖∇x,ξuε‖ε dγε(x, ξ) ≤ C < +∞

instead of aε(ρε) ≤ C, then u±
ε → u± in L1(Ω).
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3.2. Asymptotics for the minimal transition cost. Given (ϕ−,ϕ+) ∈ R2,
let us set

(3.12) Kε(ϕ
−,ϕ+) := min

{
τε

∫ 1

−1

(
ϕ′(ξ)

)2
dγ̃ε : ϕ ∈ W 1,2(−1, 1), ϕ(±1) = ϕ±

}
.

It is immediate to check that Kε is a quadratic form depending only on ϕ+−ϕ−; i.e.,

(3.13) Kε(ϕ
−,ϕ+) = kε(ϕ

+ − ϕ−)2, kε = Kε(−1/2, 1/2).

We call Tε(ϕ−,ϕ+) the solution of the minimum problem (3.12): it admits the simple
representation

(3.14) Tε(ϕ
−,ϕ+) =

1

2
(ϕ− + ϕ+) + (ϕ+ − ϕ−)φε,

where φε = Tε(−1/2, 1/2). We also set
(3.15)

Qε(ϕ
−,ϕ+) :=

∫ 1

−1

(
Tε(ϕ

−,ϕ+)
)2

dγ̃ε =
1

2

(
(ϕ−)2 + (ϕ+)2

)
+ (qε − 1

4 )(ϕ
+ − ϕ−)2,

where

(3.16) qε :=

∫ 1

−1
|φε(ξ)|2 dγ̃ε(ξ) = Qε(−1/2, 1/2).

Lemma 3.6. We have

(3.17) lim
ε↓0

kε =
k

2
=

√
−H ′′(0)H ′′(1)

2π
,

and

(3.18) lim
ε↓0

qε =
1

4
so that lim

ε↓0
Qε(ϕ

−,ϕ+) =
1

2
(ϕ−)2 +

1

2
(ϕ+)2.

Proof. φε solves the Euler equation

(3.19)
(
e−H(ξ)/εφ′ε(ξ)

)′
= 0 on (−1, 1), φε(±1) = ± 1

2 .

We can compute an explicit solution of (3.19) by integration:

φ′ε(ξ) = CeH(ξ)/ε, φε(ξ) = C′ + C

∫ ξ

0
eH(η)/ε dη.

Define Iε :=
∫ 1
−1 e

H(ξ)/ε dξ. The boundary conditions for ξ = ±1 give

C′ = 0, C

∫ 1

−1
eH(ξ)/ε dξ = CIε = 1.

It follows that

φε(ξ) = I−1
ε

∫ ξ

0
eH(η)/ε dη,
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and

kε = τεI
−2
ε

∫ 1

−1
e2H(ξ)/ε dγ̃ε(ξ) = τεZ

−1I−1
ε .

We compute, using Laplace’s method,

Iε =

√
2πε

|H ′′(0)|e
1/ε(1 + o(1)) and Zε =

√
2πε

H ′′(1)
(1 + o(1)), as ε→ 0,

thus obtaining (3.17). Since

φ′ε = I−1
ε eH/ε → δ0 in D ′(−1, 1)

and H is even, we have

φε(ξ) = I−1
ε

∫ ξ

0
eH(η)/ε dη → 1

2
sign(ξ)

uniformly on each compact subset of [−1, 1] not containing 0. Since the range of φε
belongs to [−1/2, 1/2] and γ̃ε ⇀ 1

2δ−1 + 1
2δ+1, we obtain (3.18).

3.3. End of the proof of Theorem 3.1. The second limit of (3.1) follows by
general lower semicontinuity results on integral functionals of measures; see, e.g., [2,
Lemma 9.4.3].

Concerning the first “lim inf” inequality, we split the quadratic form aε into the
sum of two parts,

(3.20) a1ε(ρε) :=

∫

D
|∇xuε(x, ξ)|2 dγε(x, ξ), a2ε(ρε) := τε

∫

D
(∂ξuε)

2 dγε(x, ξ).

We choose a smooth cutoff function η− : [−1, 1] → [0, 1] such that η−(−1) = 1 and
supp(η−) ⊂ [−1,−1/2] and the symmetric one η+(ξ) := η(−ξ). We also set

(3.21) ũ−
ε (x) :=

∫ 1

−1
η−(ξ)uε(x, ξ) dγ̃ε(ξ), ũ+

ε (x) :=

∫ 1

−1
η+(ξ)uε(x, ξ) dγ̃ε(ξ),

and it is easy to check that

(3.22) ũ±
ε ⇀

1

2
u± in D ′(Ω).

We also set θε :=
∫ 1
−1 η

+(ξ) dγ̃ε(ξ)
(
=

∫ 1
−1 η

−(ξ) dγ̃ε(ξ)
)
, observing that θε → 1/2.

We then have by the Jensen inequality and the assumption on the support of η±

a1ε(ρε) ≥
∫

Ω

∫ 1

−1
(η−(ξ) + η+(ξ))|∇xuε|2 dγ̃ε(ξ) dλΩ ≥ θ−1

ε

∫

Ω
|∇ũ−

ε |2 + |∇ũ+
ε |2 dλΩ,

and, passing to the limit,

lim inf
ε↓0

a1ε(ρε) ≥
1

2

∫

Ω
|∇u−|2 + |∇u+|2 dλΩ.
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Let us now consider the behavior of a2ε: applying (3.12) and (3.13) we get

a2ε(ρε) =

∫

Ω

(
τε

∫ 1

−1
(∂ξuε(x, ξ))

2 dγ̃ε(ξ)

)
dλΩ ≥

∫

Ω
kε(ũ

−
ε (x)− ũ+

ε (x))
2 dλΩ,

so that by (3.17) and (3.9) we obtain

(3.23) lim inf
ε↓0

a2ε(ρε) ≥
k

2

∫

Ω

(
u−(x)− u+(x)

)2
dλΩ.

In order to prove the “lim sup” inequality (3.2), we fix ρ = uγ with u in the domain
of the quadratic forms a and b so that u± = u(·,±1) belong to W 1,2(Ω), and we set
ρε = uεγε, where uε(x, ·) = Tε(u−(x), u+(x)) as in (3.14). We easily have by (3.18)
and the Lebesgue dominated convergence theorem

lim
ε↓0

bε(ρε) = lim
ε↓0

∫

Ω
Qε(u

−(x), u+(x)) dλΩ =

∫

Ω

(1
2
|u−(x)|2 + 1

2
|u+(x)|2

)
dλΩ = b(ρ).

Similarly, since for every j = 1, . . . , d and almost every x ∈ Ω

∂xjuε(x, ξ) = T(∂xju
−(x), ∂xju

+),

we have

lim
ε↓0

aε(ρε) = lim
ε↓0

∫

Ω

( d∑

j=1

Qε

(
∂xju

−(x), ∂xju
+(x)

)
+Kε

(
u−(x), u+(x)

))
dλΩ

=

∫

Ω

(
1

2
|∇u−(x)|2 + 1

2
|∇u+(x)|2 + k

2

(
u−(x) − u+(x)

))
dλΩ = a(ρ).

4. From Γ-convergence to convergence of the evolution problems: Proof
of Theorems 1.1 and 1.2. Having at our disposal the Γ-convergence result of The-
orem 3.1 and its corollary, Corollary 3.3, it is not difficult to pass to the limit in the
integrated equation (2.7).

Let us first notice that the quadratic forms bε satisfy a uniform coercivity condi-
tion.

Lemma 4.1 (uniform coercivity of bε). Every family of measures ρε ∈ M (D),
ε > 0, satisfying

(4.1) lim sup
ε>0

bε(ρε) < +∞

is bounded in M (D) and admits a weakly-∗ converging subsequence.
Proof. The proof follows immediately by the fact that γε is a probability measure,

and therefore

|ρε|(D) ≤
(
bε(ρε)

)1/2
.

Inequality (4.1) thus implies that the total mass of ρε is uniformly bounded and
we can apply the relative weak-∗ compactness of bounded sets in dual Banach
spaces.

The proof of Theorems 1.1 and 1.2 is a consequence of the following general result.
Theorem 4.2 (convergence of evolution problems). Let us consider weakly-∗

lower-semicontinuous, nonnegative, and extended-valued quadratic forms aε, bε, a, b
defined on M (D), and let us suppose the following.
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(1) Nondegeneracy of the limit forms. b is nondegenerate (i.e., b(ρ) = 0 ⇒
ρ = 0) and Dom(a) is dense in Dom(b) with respect to the norm-convergence
induced by b.

(2) Uniform coercivity. bε satisfy the coercivity property stated in the previous
Lemma 4.1.

(3) Joint Γ-convergence. qκε := bε + κ aε satisfy the joint Γ-convergence property
(3.3):

(4.2) Γ
(
M (D)

)
- lim
ε↓0

qκε = qκ = b+ κ a for every κ > 0.

Let ρε(t), t ≥ 0, be the solution of the evolution problem (2.7) starting from
ρ0ε ∈ Dom(bε).

If

(4.3) ρ0ε ⇀ ρ0 weakly-∗ in M (D) as ε ↓ 0 with lim sup
ε↓0

bε(ρ
0
ε) < +∞,

then ρε(t)⇀ ρ(t) weakly-∗ in M (D) as ε ↓ 0 for every t > 0, and ρ(t) is the solution
of the limit evolution problem (2.17).

If, moreover, limε↓0 bε(ρ0ε) = b(ρ0), then

(4.4) lim
ε↓0

bε(ρε(t)) = b(ρ(t)), lim
ε↓0

aε(ρε(t)) = a(ρ(t)) for every t > 0.

Proof. Let us first note that by (2.8) and the coercivity property of bε the mass
of ρε(t) is bounded uniformly in t. Moreover, (2.10) and the coercivity property
show that ∂tρε is a finite measure whose total mass is uniformly bounded in each
bounded interval [t0, t1] ⊂ (0,+∞). By the Arzela–Ascoli theorem we can extract a
subsequence ρεn such that ρεn(t) ⇀ ρ(t) for every t ≥ 0. The estimates (2.10) and
(3.1) show that for every t > 0, ρ(t) belongs to the domain of the quadratic forms a
and b and satisfies a similar estimate

(4.5)
1

2
b(ρ(t)) + t a(ρ(t)) + t2b(∂tρ(t)) ≤

1

2
lim inf

ε↓0
b(ρ0ε) < +∞.

Let σ ∈ M (D) be an arbitrary element of the domains of a and b; by (3.3) we
can find a family σε (actually a family σεn , but we suppress the subscript n) weakly
converging to σ such that (3.2) holds. By (2.7) we have

(4.6) bε(ρε(t),σε) +

∫ t

0
aε(ρε(r),σε) dr = bε(ρ

0
ε,σε),

and (2.10) with the Schwarz inequality yields the uniform bound
∣∣aε(ρε(t),σε)

∣∣ ≤ t−1/2bε(ρ
0
ε)

1/2aε(σε)
1/2 ≤ Ct−1/2,

where C is independent of ε; we can therefore pass to the limit in (4.6) by Corollary
3.3 to find

b(ρ(t),σ) +

∫ t

0
aε(ρ(r),σ) dr = b(ρ00,σ),

so that ρ is a solution of the limit equation. Since the limit is uniquely identified by
the nondegeneracy and density condition (1), we conclude that the whole family ρε
converges to ρ as ε ↓ 0. In particular, ρ satisfies the identity

(4.7)
1

2
b(ρ(t)) +

∫ t

0
a(ρ(r)) dr =

1

2
b(ρ0) for every t ≥ 0.
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This concludes the proof of (4.3) (and of Theorem 1.1).
In order to prove (4.4) (and Theorem 1.2), we note that by (2.8) and (4.7) we

easily get

lim sup
ε↓0

1

2
bε(ρε(t)) +

∫ t

0
aε(ρε(r)) dr ≤ 1

2
b(ρ(t)) +

∫ t

0
a(ρ(r)) dr.

The lower-semicontinuity property (3.1) and Fatou’s lemma yield
(4.8)

lim
ε↓0

bε(ρε(t)) = b(ρ(t)), lim
ε↓0

∫ t

0
aε(ρε(r)) dr =

∫ t

0
a(ρ(r)) dr for every t ≥ 0.

Applying the same argument to (2.9) and its “ε = 0” analogue, we conclude that
aε(ρε(t)) → a(ρ(t)) for every t > 0.

Remark (more general ambient spaces). The particular structure of M (D) did
not play any role in the previous argument so that the validity of the above result
can be easily extended to general topological vector spaces (e.g., dual of separable
Banach spaces with their weak-∗ topology) once the coercivity condition of Lemma
4.1 is satisfied.
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