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1. INTRODUCTION

In this note we describe the behaviour of a stripe-forming system that arises in
the modelling of block copolymers. Part of the analysis concerns a new formulation
of the eikonal equation in terms of projections. For precise statements of the
results, complete proofs, and references, we refer to [4] and [3].

1.1. Diblock Copolymers. In [4] we study the formation of stripe-like patterns
in a specific two-dimensional system that arises in the modelling of AB diblock
copolymers. This system is defined by an energy G. that admits locally minimizing
stripe patterns of width O(e), and the aim is to study the properties of the system
as € — 0. Below we will show that any sequence u. of patterns for which G, (uc) is
bounded becomes stripe-like; in addition, the stripes become increasingly straight
and uniform in width.

The energy functional is
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Here € is an open, connected, and bounded subset of R? with C? boundary, d is
the Monge-Kantorovich distance, and

1
K = {ue BV (92;{0,1}) : ][u(x)dx: 3 and u =0 on 89}.
Q
We introduce a rescaled functional G. defined by

Geu) = 5 (Zo(w) — 192).
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The interpretation of the function u and the functional %, are as follows.

The function u is a characteristic function, whose support corresponds to the
region of space occupied by the A part of the diblock copolymer; the complement
(the support of 1 —u) corresponds to the B part. The boundary condition v = 0 in
K reflects a repelling force between the boundary of the experimental vessel and
the A phase.

The functional %, contains two terms. The first term penalizes the interface
between the A and the B parts, and arises from the repelling force between the two
parts; this term favours large-scale separation. In the second term the the Monge-
Kantorovich distance d appears; this term is a measure of the spatial separation of
the two sets {u = 0} and {u = 1}, and favours rapid oscillation. The combination
of the two leads to a preferred length scale, which is of order ¢ in the scaling of (1).
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1.2. A non-oriented version of Eikonal equation. At finite £ > 0, structures
with small G. resemble parallel stripes of thickness roughly 2e. As ¢ — 0, these
stripes become dense, and the limiting structure can be interpreted as a field of
infinitesimal stripes—a field of orientations.

A natural mathematical object for the representation of such orientation fields,
or line fields, is a projection. We define a projection to be a matrix P that can be
written in terms of a unit vector m as P = m®m. Such a projection matrix has a
range and a kernel that are both one-dimensional, and if necessary one can identify
a projection P with its range, i.e. with the one-dimensional subspace of R? onto
which it projects. Note that the independence of the sign of m—the unsigned
nature of a projection—can be directly recognized in the formula P = m ® m.

We define div P as the vector-valued function whose i-th component is given by
(div P); := E?:l Oz, Pij. We consider the following problem. Let (2 be an open
subset of R2. Find P € L>(£; R?*2) such that

(2a) P =P a.e. in Q,
(2b) rank(P) =1 a.e. in
(2¢) P is symmetric a.e. in Q)
(2d) div P € L*(R?;R?) (extended to 0 outside ),
(2e) P divP =0 a.e. in Q.

The first three equations encode the property that P(z) is a projection, in the
sense above, at almost every x. The sense of property (2d) is that the divergence
of P (extended to 0 outside ), in the sense of distributions in R?, is an L?(R?)
function, which, in particular, implies

Pn =0 1in the sense of traces on 0f).

The exponent 2 in (2d) is critical in the following sense. Obvious possibilities for
singularities in a line field are jump discontinuities (‘grain boundaries’) and target
patterns (see Figure 1).
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Figure 1: Canonical types of stripe variation in two dimensions. Types (a) and (b)
are excluded by (2d).



At a grain boundary the jump in P causes div P to have a line singularity, com-
parable to the one-dimensional Hausdorff measure; condition (2d) clearly excludes
that possibility. For a target pattern the curvature x of the stripes scales as 1/r,
where r is the distance to the center; then [ ? is locally finite for p < 2, and
diverges logarithmically for p = 2. The cases p < 2 and p > 2 therefore distinguish
between whether target patterns are admissible (p < 2) or not.

Given the regularity provided by (2d), the final condition (2e) represents the
condition of parallelism, as a calculation for a smooth unit-length vector field m(x)
shows:

(3)

0=PdivP=m(m-(mdivm+Vm-m)) = mdivm+m(m-Vm-m) =mdivm,

where the final equality follows from differentiating the identity |m|?> = 1. For this
smooth case the orientation field P can also be interpreted as a solution of the
eikonal equation |Vu| = 1, as follows. The solution vector field m is divergence-free
by (3), implying that its rotation over 90 degrees is a gradient Vu; from |m| =1
it follows that [Vu| = 1. This little calculation also shows that the interpretation
of m in P = m ® m is that of the stripe direction; P projects along the normal
onto the tangent to a stripe.

1.3. Main result. The precise relation between the solutions of the non-oriented
eikonal equation and the block copolymer energy functionals is the following:

Theorem 1. The rescaled functional G Gamma-converges to the functional

é/g|divP(m)|2dx if P € Ko(Q)

+00 otherwise

Go(P) :=

Here the admissible set Ko(€2) is the set of solutions of (2). The topology of
the Gamma-convergence in this case is the strong topology of measure-function
pairs in the sense of Hutchinson [1]. The main tool in the proof of Theorem 1 is
an explicit lower bound on the energy G. originally derived in [2]. This inequality
gives a tight connection between low energy on one hand and specific properties
of the geometry of the stripes on the other.

We refer to [3, 4] for the details and an extended discussion.
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