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Abstract. We study a new formulation for the Eikonal equation |∇u| = 1 on
a bounded subset of R2. Considering a field P of orthogonal projections onto
1-dimensional subspaces, with divP ∈ L2, we prove existence and uniqueness
for solutions of the equation P divP = 0. We give a geometric description,
comparable with the classical case, and we prove that such solutions exist only
if the domain is a tubular neighbourhood of a regular closed curve.

This formulation provides a useful approach to the analysis of stripe pat-
terns. It is specifically suited to systems where the physical properties of the
pattern are invariant under rotation over 180 degrees, such as systems of block
copolymers or liquid crystals.

1. Introduction. In this note we study a new formulation of the Eikonal equation
which was suggested by an example of stripe patterns arising in block copolymer
melts. For precise statements of the results, complete proofs and references, we
refer to [9] and [10].

Many pattern-forming systems produce parallel stripes, sometimes straight, some-
times curved. In geology, for instance, ‘parallel folding’ refers to the folding of layers
of rock in a manner that preserves the layer thickness but allows for curving of the
layers [3]. In a different context, the convection rolls of the Rayleigh-Bénard ex-
periment produce striped patterns that may also be either straight or curved (see
e.g. [2]).

Block copolymers consist of two covalently bonded, mutually repelling parts
(‘blocks’). At sufficiently low temperature the repelling forces lead to patterns
with a length scale that is related to the length of single polymers. We recently
studied the behaviour of an energy that describes such systems, and investigated a
limit process in which the stripe width tends to zero [10]. In that limit the stripes
not only become thin, but also uniform in width, and the stripe pattern comes to
resemble the level sets of a solution of the eikonal equation. The rigorous version
of this statement, in the form of a Gamma-convergence result, gives rise to a new
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formulation of the eikonal equation, in which the directionality of the stripes is rep-
resented by line fields rather than by vector fields. Before stating this formulation
mathematically we first describe it in heuristic terms.

1.1. The Eikonal equation. The eikonal equation has its origin in models of wave
propagation, where the equation describes the position of a wave front at different
times t. For a homogeneous and isotropic medium, in which the wave velocity is
constant, the equation can be written in the form

|∇u| = 1. (1)

The wave front at time t is given by the level set {x : u(x) = t}, and the function
u has the interpretation of the time needed for a wave to arrive at the point x.

A feature of the eikonal equation is that the fronts at different times are parallel,
provided no singularities occur. In this sense the equation is a natural candidate
for the description of other processes that involve parallellism, such as the stripe-
forming systems mentioned above. However, a major difference between the stripe-
forming systems and the wave-front model is that the wave front has a natural
directionality associated with it: of the two directions normal to a front, one is
‘forward in time’ and the other ‘backward’. This distinction also is visible in the
notion of viscosity solution for (1) (see e.g. [4]).

The stripe patterns, on the other hand, have no inherent distinction between the
two normal directions. As a consequence a vector representation of a stripe pattern
may have singularities that have no physical counterpart. Figure 1 (left) shows an
example of this.

Figure 1. Stripe patterns can be represented by vectors (left)
or by unoriented line fields (right). Both representations have a
vortex singularity at the two ends; but the vector representation
also contains a jump singularity along the connecting line. Note
that the regularity restrictions of this paper exclude both types of
singularity, however.

1.2. Diblock copolymers. An AB diblock copolymer is constructed by grafting
two polymers together (called the A and B parts). Repelling forces between the
two parts lead to phase separation at a scale that is no larger than the length of a
single polymer. In this micro-scale separation patterns emerge, and it is exactly this
pattern-forming property that makes block copolymers technologically useful [11].

In [10] we study the formation of stripe-like patterns in a specific two-dimensional
system that arises in the modelling of block copolymers. This system is defined by an
energy Gε that admits locally minimizing stripe patterns of width O(ε). As ε → 0,
we show that any sequence uε of patterns for which Gε(uε) is bounded becomes
stripe-like. In addition, the stripes become increasingly straight and uniform in
width.
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The energy functional for an AB diblock copolymer, derived in [8, Appendix A],
is

Fε(u) =











ε

∫

Ω

|∇u|+
1

ε
d(u, 1− u), if u ∈ K,

+∞ otherwise.

(2)

Here Ω is an open, connected, and bounded subset of R2 with C2 boundary, d is
the Monge-Kantorovich distance, and

K :=

{

u ∈ BV (Ω; {0, 1}) : −

∫

Ω

u(x) dx =
1

2
and u = 0 on ∂Ω

}

.

We introduce a rescaled functional Gε defined by

Gε(u) :=
1

ε2

(

Fε(u)− |Ω|
)

.

The interpretation of the function u and the functional Fε are as follows.
The function u is a characteristic function, whose support corresponds to the

region of space occupied by the A part of the diblock copolymer; the complement
(the support of 1 − u) corresponds to the B part. The boundary condition u = 0
in K reflects a repelling force between the boundary of the experimental vessel and
the A phase. Figure 2 shows two examples of admissible patterns.

u = 0

u = 1

∂Ω

ε

Figure 2. A section of a domain Ω with a general admissible
pattern (left) and a stripe-like pattern (right). We prove that in
the limit ε → 0 all patterns with bounded energy Gε resemble the
right-hand picture.

The functional Fε contains two terms. The first term penalizes the interface
between the A and the B parts, and arises from the repelling force between the two
parts; this term favours large-scale separation. In the second term the the Monge-
Kantorovich distance d appears; this term is a measure of the spatial separation of
the two sets {u = 0} and {u = 1}, and favours rapid oscillation. The combination
of the two leads to a preferred length scale, which is of order ε in the scaling of (2).

1.3. A non-oriented version of Eikonal equation. A natural mathematical
object for the representation of line fields is a projection. We define a projection
to be a matrix P that can be written in terms of a unit vector m as P = m ⊗m.
Such a projection matrix has a range and a kernel that are both one-dimensional,
and if necessary one can identify a projection P with its range, i.e. with the one-
dimensional subspace of R2 onto which it projects. Note that the independence of
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the sign of m – the unsigned nature of a projection – can be directly recognized in
the formula P = m⊗m.

We define divP as the vector-valued function whose i-th component is given by

(divP )i :=
∑2

j=1 ∂xj
Pij . We consider the following problem. Let Ω be an open

subset of R2. Find P ∈ L∞(Ω;R2×2) such that

P 2 = P a.e. in Ω, (3a)

rank(P ) = 1 a.e. in Ω, (3b)

P is symmetric a.e. in Ω, (3c)

divP ∈ L2(R2;R2) (extended to 0 outside Ω), (3d)

P divP = 0 a.e. in Ω. (3e)

The first three equations encode the property that P (x) is a projection, in the sense
above, at almost every x. The sense of property (3d) is that the divergence of P
(extended to 0 outside Ω), in the sense of distributions in R

2, is an L2(R2) function,
which, in particular, implies

Pn = 0 in the sense of traces on ∂Ω.

The exponent 2 in (3d) is critical in the following sense. Obvious possibilities for
singularities in a line field are jump discontinuities (‘grain boundaries’) and target
patterns (see Figure 3).

(a) grain
boundary

(b) target and
U-turn patterns

(c) smooth
directional
variation

Figure 3. Canonical types of stripe variation in two dimensions.
Types (a) and (b) are excluded by (3d).

At a grain boundary the jump in P causes divP to have a line singularity, com-
parable to the one-dimensional Hausdorff measure; condition (3d) clearly excludes
that possibility. For a target pattern the curvature κ of the stripes scales as 1/r,
where r is the distance to the center; then

∫

κp is locally finite for p < 2, and
diverges logarithmically for p = 2. The cases p < 2 and p ≥ 2 therefore distinguish
between whether target patterns are admissible (p < 2) or not.

Given the regularity provided by (3d), the final condition (3e) is the eikonal
equation itself, as a calculation for a smooth unit-length vector field m(x) shows:

0 = P divP = m(m · (m divm+∇m ·m)) = m divm+m(m · ∇m ·m) = m divm,

where the final equality follows from differentiating the identity |m|2 = 1. A solution
vector field m therefore is divergence-free, implying that its rotation over 90 degrees
is a gradient ∇u; from |m| = 1 it follows that |∇u| = 1. This little calculation also
shows that the interpretation of m in P = m⊗m is that of the stripe direction; P
projects along the normal onto the tangent to a stripe.
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1.4. Results. The first result regards the relationship between problem (3) and
the eikonal equation. In the heuristic discussion above, we argued that the field P
has to be locally parallel, to be parallel to the boundary of Ω, and to avoid line
and vortex singularities. The two first statements are formalized in the following
theorem.

Theorem 1 ([9]). Let Ω be an open, bounded, and connected subset of R2 with C2

boundary, and let P be a solution of (3).

1. Let x0 be a Lebesgue point of P in Ω, let x ∈ Ω, and let L be the line segment
connecting x0 with x. Assume that L ⊂ Ω. If P (x0) · (x − x0) = 0, then
P (y) = P (x0) for H 1-almost every y ∈ L.

2. P · n = 0 a.e. on ∂Ω.

These two statements are meaningful since

3. P ∈ H1(Ω;R2×2).

In the second statement we provide a strong characterization of the geometry of
the domain Ω:

Theorem 2 ([9]). Let Ω be an open, bounded, and connected subset of R2 with C2

boundary. Then there exists a solution of (3) if and only if Ω is a tubular domain.
In that case the solution is unique.

(a) The tubular domain Ω (b) The projections field P

Figure 4. An example of admissible domain, for P ∈ K0.

A tubular domain is a domain in R
2 that can be written as

Ω = Γ +B(0, δ),

where Γ is a closed curve in R
2 with continuous and bounded curvature κ, 0 < δ <

‖κ‖−1
∞

, and B(0, δ) is the open ball of center 0 and radius δ.
The reason why Theorem 2 is true can heuristically be recognized in a simple

picture. Figure 5 shows two sections of ∂Ω with a normal line that connects them.
By the first assertion of Theorem 1, the stripe tangents are orthogonal to this normal
line; by the second, this normal line is orthogonal to the two boundary segments,
implying that the two segments have the same tangent. Therefore the length of
the connecting normal line is constant, and as it moves it sweeps out a full tubular
neighbourhood.

The precise relation between the solutions of the non-oriented eikonal equation
and the block copolymers energy functionals is the following:
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∂Ω

∂Ω

Figure 5. If tangent directions propagate normal to themselves
(Theorem 1.1), and if in addition the boundary is a tangent direc-
tion, then the domain is tubular (Theorem 2).

Theorem 3 ([10]). The rescaled functional Gε Gamma-converges to the functional

G0(P ) :=







1

8

∫

Ω

| divP (x)|2dx if P ∈ K0(Ω)

+∞ otherwise

The topology of the Gamma-convergence in this case is the strong topology of
measure-function pairs in the sense of Hutchinson [6]. We refer to [9, 10] for the
details of this proof and an extended discussion.

1.5. Discussion and open problems. The work of this paper represents a first
step in the analysis of this projection-valued eikonal equation. While the main
results are still lacking in various ways—which we discuss in more detail below—
the main point of this paper is to show that this projection-valued formulation is a
useful alternative to the usual vector-based formulation.

To start with, our Theorems 1 and 2 (proved in [9]) show that solutions of (3)
behave much like we expect from the eikonal equation, in the sense that directional
information is preserved in the normal direction. Theorem 2 makes this property
even more explicit, by showing that a full tube, or bunch, of parallel ‘stripes’ can
be identified.

However, it is the differences with the vector-valued eikonal equation that are the
most interesting. Figure 1 shows how this formulation can be a better representation
of the physical reality than the vector-based form. On the left, the vector field has
a jump discontinuity along the center line, while on the right the projection is
continuous along that line. Depending on the underlying model, this singularity
may have a physical counterpart, or may be a spurious consequence of the vector-
based description. For the wave-propagation model the singularity is very real;
for striped-pattern systems it typically is not. A projection-valued formulation
therefore provides an alternative to the Riemann-surface approach that is sometimes
used [5]. For this distinction to have any consequence, however, solutions with less
regularity than the divP ∈ L2 of this paper are to be considered. This constitutes
an interesting open problem, which we motivate further in the next paragraphs,
showing the main difficulties and differences with respect to the work presented in
this paper and indicating a possible alternative (rescaling of the) energy functional
which we believe could yield the desired results.
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The proof of the properties stated in Theorem 1 and Theorem 2 relies on a
reduction of the projection-valued formulation to a vector-based formulation which
allows us to apply a generalized method of characteristics, introduced in [7], to a
suitable vector field m satisfying P = m⊗m. This reduction to a vector formulation
is achieved by a Lemma by Ball and Zarnescu [1], which requires divP ∈ L2; for
less regularity the existence of a lifting may not hold, as the example of the U-
turn pattern (Figure 3b) shows. The dependence of the proof on a vector-based
representation is awkward in various ways. To start with, the condition divP ∈
L2 required for the lifting is much stronger than the conditions that Jabin, Otto,
and Perthame require for their results [7]. It also has the effect of excluding all
singularities, as we already remarked. It would be interesting to prove properties
such as those of Theorems 1 and 2 by methods that do not rely on this lifting.

We would hope that such an intrinsic projection-based proof could also be gener-
alized to the study of target patterns and U-turns, and eventually of grain bound-
aries. These will require increasingly weak regularity requirements: target patterns
may exist for divP ∈ Lp with p < 2, and for a line discontinuity, such as a grain
boundary, divP will be a measure. A natural way to study this kind of patterns
could be by exploring different rescalings of the functionals Fε defined in (2). For
example it would be interesting to study the limit of the functionals

Hε(u) :=
Fε(u)− |Ω|

ε2 log ε
,

which would allow for the formation of target patterns in the limit.
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